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ABSTRACT

This is the second Annual Technical Summary of the MIT Lincoln Laboratory
parametric study of diffusion-enhancement networks for spatiotemporal grouping
in real-time artificial vision. Spatiotemporal grouping phenomena are examined
in the context of static and time-varying imagery. Dynamics that exhibit static
feature grouping on multiple scales as a function of time, and long-range appar-
ent motion between time-varying inputs, are developed for a biologically plausible
diffusion-enhancement bilayer. The architecture consists of a diffusion layer and a
contrast-enhancement layer coupled by feedforwaxd and feedback connections; input
is provided by a separate feature-extracting layer. The model is cast as an analog
circuit that is realizable in VLSI, the parameters of which are selected to satisfy a
psychophysical data base on apparent motion.
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PREFACE

This report contains the selected results of many simulations performed during
the past year using the network architecture and simulation tools developed during
the first contract year [4]. Although all these simulations are new this year, the
underlying biological and psychophysical insights and motivations remain the same;
thus, the sections describing these findings are similar to the first year's report.
Small additions and corrections have been added where new results have come to
light, a more detailed description of a possible cortical location for this processing
is indicated, and a number of the figures have been reworked.

In addition, though few significant changes have been made to the network,
many of the perceptual effects described below have now been demonstrated. This
success is due to the change in approach discussed at the end of last year's report
[4], in which the "parameter pools" that produce the desired effects are located by
human-guided search. As a result, the section describing the model is also quite
similar to last year's, though some changes have been made to the feedback charac-
terization.

Those familiar with the first-year report might wish to skim these sections
and start reading in detail at the section entitled "Diffusion-Enhancement Bilayer
Model."
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1. INTRODUCTION

This study suggests that diffusion-enhancement interactions play a fundamental role in human
preattentive perception. Understanding parallel networks that simulate such interactions is impor-
tant for understanding neurobiological findings and will suggest new experiments for researchers
in that field. The study of spatiotemporal networks is of special interest because it aids the un-
derstanding of the static and dynamic grouping of stimuli that occurs in and across the visual,
auditory, and somatosensory systems [14,24,25].

Such grouping phenomena are also important in artificial vision systems (191. During the
past year, a biologically plausible network model has been refined [2,3] from several reference
works [4,19,21,22,23] and used to explain some static and dynamic grouping experiments from the
psychophysical literature. This diffusion-enhancement bilayer (DEB) represents the interactions
between a layer of astrocyte glial cells and a neuronal layer. Long-range communication is achieved
via the diffusion of K+ throughout the electrically coupled glial layer, and percept localization
occurs in the contrast-enhancing (CE) neuronal layer. These glial and neuronal layers are coupled
by K+ currents leaking from glial endfeet in close proximity to the neuronal layer.

In order to explain the DEB model, the reader must understand some of the biological and
psychophysical results that led to the development of this model; thus, a literature review is pre-
sented before the model itself is described. Numerical simulations performed with the model are
also discussed.

During the last year, two feedback parameterizations were considered; both are reported here.
The first is a simple algebraic decay that has been used to demonstrate several psychophysical
phenomena. This parameterization is then shown to be sensitive to system noise. As a result,
a second parameterization is considered in which the feedback activates more slowly. This is
significantly more resistant to noise, but has not yet been shown to demonstrate all of the modeled
phenomena. Completed simulations axe then presented and plans for future simulations outlined.



2. BACKGROUND: PSYCHOPHYSICAL PHENOMENA AND
RELATED NEUROBIOLOGY

Psychophysical experiments that are being modeled and neurobiology that could support such
phenomena are described in this section. Both psychophysics and neurobiology provide data used
to set the DEB model parameters.

2.1 Psychophysical Results

2.1.1 Spatiotemporal Grouping Phenomena

The DEB model replicates the effects of both static and dynamic grouping. A striking example
of static feature grouping in the visual domain is demonstrated by Marroquin's diagram, shown in
Figure 1 [17]. Notice how the dots in the diagram appear to group with their neighbors on greater
and greater scales over time as one stares at the center of the hexagon.

The simplest dynamic apparent motion-effect is known as gamma motion and occurs when a
single light is turned on for a brief time, then turned off. Although the light is of a fixed spatial
extent, the perception is of a light that first expands and then contracts [14], as shown in Figure 2
for one-dimensional space.

New dynamic grouping phenomena emerge when two distinct stimuli interact over time to
form the percept of long-range apparent motion. In the human visual system, apparent motion
can be demonstrated with two lights of fixed spatial extent that are illuminated at distinct times
across a fixed spatial separation (Figure 3). With different spatial separations, illumination times,
and interstimulus intervals, the light can appear as two separate lights flashing, as one spot that
moves smoothly between two real lights, or as one spot that moves smoothly from the first location,
jumps, and continues moving smoothly to the second location [14,24]. The most common form of
object motion, phi, gives no impression of a particular shape undergoing motion, whereas in beta
motion a well-defined shape is seen in motion. Similar effects can be achieved by substituting tones
for points of light [25].

Psychologists have examined in detail the conditions that will produce these three distinct
types of motion, and discovered that for fixed-flash durations there is a clear range of onset-to-onset
interval (SOA)' versus spatial separation that will produce smooth apparent motion (Figure 4). If
the SOA is shortened, lights begin jumping rather than smoothly moving between each other, while

'The onset-to-onset interval is often referred to as the "stimulus onset asynchrony" (SOA) and is
defined as the time between the onset of two successive applications of a stimulus. Related is the
interstimulus interval (ISI) that is defined as the time between two successive stimuli. Thus, ISI +
stimulus duration = SOA.
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Figure 2. Gamma motion. Left: a light of fired spatial extent is illuminated then extin-
guished. Right: the percept is of a light expanding and then contracting.
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Figure 3. Long-range apparent motion. The filled rectangles represent sources in space-
time separations that produce the illusion of long-range apparent motion. The empty
rectangles repry rnt sources that are ignited too late for the spatial distance or are too
far away for the given ISI. The bottom center rectangle occurs soon enough to give the
appearance of smooth motion from the left-most rectangle to the first shaded square, a
short jump to the second shaded square, followed by smooth motion to the destination,
while the rectangle below it exhibits pure smooth motion.
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a still shorter SOA causes the lights to appear to flash simultaneously. If the SOA is lengthened
beyond an acceptable limit, the lights flash independently of each other. Similar conditions can be
created by varying the spatial separatien of the two stimuli.t
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Figure 4. Parameters affecting long-range apparent motion, SOA versus spatial separa-
tion [14j.

Once this effect was discovered, the next step was to calculate rate of motion. Unfortunately,
it is unclear how best to calculate velocity of the illusory motion. A physical theory would plot
v - Distance Traveled in these experiments the distance traveled is clear, but the interpretation of-- Time

time i. not. If ISI is used (the time between when the object was last seen in its initial location
and when it showed up in its final location), cases exist for illusory motion with infinite velocity.
SOA is the next reasonable choice, but stimulus duration has been shown to affect apparent motion.
Kolers [14] argues that this is as reasonable a plot as any; this report agrees and displays velocity as
distance traveled versus SOA in Figure 5 for comparison purposes. It is unclear, however, whether
the relationship between velocity and spatial separation is linear.
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Figure 5. Calculated velocity versus spatial separation [14].

To furt',,r ur 4erstand L, parent motion, other psychophysical experiments have been per-
formed; in ti, visuwa domain all involve additional stimuli. Split-motion effects are demonstrated
with three lights of fixed spatial extent; the center light is illuminated and extinguished, then the
two outer lights. If the two outer lights are equidistant to the center light, the latter appears to
split and move to both outer lights. If the two outer lights are at staggered distances, the center
light appears to move only to the closest light (Figure 6). Also, if the equidistant version of the
display is placed in the periphery of the visual field, the center light appears to move toward the
light farthest from the fovea.

The opposite of the split effect is the merge effect, in which first the two outer lights, then
the centei light, are illuminated and extinguished. If the two outer lights are equidistant to the
center, they both appear to move to the center light and merge with it. If the two outer lights are
not equidistant, only the one that is closer appears to move to the center (Figure 7). Once again,
if the equidistant display is placed in the periphery of the visual field, the outermost light appears
to move toward the center.
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Figure 6. Split effects. Illuminating one point source followed by illuminating two
equidistant point sources cause the first to appear to split and move to both of the later
sources. If these are not equidistant to the first, movement is only to the closer of the
pair.

Another important multielement stimulus causes the Ternus effect. This effect illustrates that
more than one distinct motion percept can be achieved from the same display by altering subtle
aspects. In the Ternus stimulus, two frames with three aligned lights each are illuminated and
extinguished in succession. The frames are aligned so that two of the three lights occupy the same
space, and the third appears alternately on the left and right of the central two objects. When the
ISI is short, the third light appears to move around the central two objects (element motion), but
when the ISI is long the three appear to shift as a coherent group (Figure 8).

Although the cause of these motion effects has been debated for nearly a century, it is known
that they do not occur at the retinal level, as evident from a variation on the basic long-range
apparent motion experiment. In this variant, known as dichotic presentations, the first light is
presented to the subject's left eye, and the second light is presented to the subject's right eye.
Apparent motion is experienced, indicating that spatiotemporal interactions occur at the cortical
level. In addition, and based on the split and merge experiments performed in the periphery, these
effects occur after the visual system has compressed (or down-sampled) the periphery in favor of the
fovea, i.e., at the visual cortex. Such sampling and compression occur in at least two places in the
visual system [n]. First, the retina itself contains a nonuniform population of rods and cones; the
densest population occurs in the fovea. Second, the receptive fields of the retinal ganglion cells are
markedly smaller in the fovea than in the periphery; hence, the well-known cortical magnification

8
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Figure 7. Merge effects. Illuminating two point sources equidistant from a third, later-
illuminated point source gives the appearance of the two merging and becoming one. If the
original pair is not equidistant from the third point source, oniy the closer of the two will
appear to move.

of the fovea and compression of the periphery. Based on neurobiology and psychophysics, it seems
evident that the substrate of apparent motion lies in the visual cortex.

This grouping process is not restricted to sight. In the tactile area, if two vibrators agitate
the skin with a small ISI, the subject experiences a single vibration between them. As in the visual
domain, the effect occurs not in the skin but in the cortex; if the skin between the two vibrators is
locally anaesthetized, the effect is still experienced [7]. Similar experiments have been devised for
the auditory sense, and similar results were reported. Most bizarre are the intermodal experiments,
in which apparent motion is perceived between a sound and a light source [25].

2.1.2 Useful Psychophysical Parameters

Psychophysical literature suggests that the structure of the DEB model and long-range appar-
ent motion examples continue to support this diffusion concept and begins to suggest rates at which
it should occur. Figure 4 provides spatial and temporal parameters to which the model should con-
form. The lower curves suggest that communication time varies with distance (i.e., Korte's Law),
while the upper curves suggest that object memory (and its reinforcement mechanisms) will fade
after a time and that this fade occurs faster over greater distances. Both are considered indicative
of a leaky diffusion network in which stimulus activity first rises and spatially expands, then falls

9
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Figure 8. Ternus effect. Illuminating shifting groups of three point sources produces the
illusion of one in element motion or all three in group motion. The percept changes with
changing ISI.

and contracts; the DEB network was designed to produce these effects. For a fixed (small) spatial
separation, there should be a range of SOAs in which motion should be perceived; outside that
range no motion should be realized.

It is difficult to directly relate the model time and space scales to biological time and space, so
ratios are examined that allow units to be ignored. One ratio considered is the longest-to-shortest
SOA for which smooth motion occurs at a fixed spatial separation. Figure 4 suggests that this ratio
is restricted to < 4, with the ratio decreasing as the spatial separation increases. It is uncertain
how to compare psychophysical with model-predicted velocities because there is still no way to
interpret the velocities of apparent motion.

2.2 Biological Considerations

Consider that the above psychophysical effects have two salient processes: long-range commu-
nication that facilitates interaction of features generated by the inputs (point light sources in the
visual domain) and a focusing process that enables objects in apparent motion to have a definitive
location. This section discusses the neurobiological elements that are most likely to provide the
foundations for both processes. Because it has already been suggested that static and dynamic
grouping occurs in the cortex, the cortex is seen as the likely host.

10



The cortex is divided almost evenly between nonneuronal and neuronal cells. The largest class

of nonneural brain cells, the neuroglia, is believed to be the site of the long-range communication
process, while neuronal networks provide focusing of activity to create the percept.

There are strong indications from psychological, neurophysiological, and perceptual literature
that two rather separate pathways exist; one that responds to movement, and a second that responds
to static attributes such as form and color [16,26]. The dynamic pathway is commonly referred to
as the magnocellular pathway. In primates, the anatomical and physiological differentiation from
the static or parvocellular pathway is clear as early as the retinal ganglion cells. Large, type-A
retinal ganglion cells provide input to the large-celled magnocellular layers of the lateral geniculate
body (LGN), while smaller, type-B cells provide input to the parvocellular subdivision of the lateral
geniculate body. From the LGN, the magnocellular pathway progresses up through visual cortex
areas V1 layers 4Ca into 4B; then into areas V3, V2K, and V5 simultaneously. The parvocellular
pathway enters 4A both directly and via 4C#3, then enters layers 2 and 3 before connecting with
areas V21 and V2N, which in turn connect to V4. After this point connections are more broadly
made and less well understood. Cortical areas V2 and V3 could be the site of the processing
illustrated in this report, and the two path&Arays permit a similar network to be used in both.

2.2.1 Astrocyte Glial Cells

Once thought of as only providing passive physical support, neuroglial cells now appear to
play an "active role in maintaining normal brain physiology" [13]. Concentration is on the astrocyte
glial cells because they are known to provide long-range communication between coupled astrocytes
(Figure 9). Although to date such coupling has not been directly demonstrated in vivo (Kettenman
and Ransom [12] suggest that this is due to technical difficulties), there is some evidence that it
occurs, 2 and there is direct evidence for coupling in cultured astrocyte cells. Such communication
is not rare. Indeed, Kettenman and others have observed that "mammalian astrocytes in cell
culture are widely coupled to one another electrically" and that "qualitative studies have shown
that cultured astrocytes form a highly coupled electrical syncytium" [121 that is believed to provide
the long-range communication necessary to support the above psychophysical phenomena.

2.2.2 Neuronal Networks

Many cells in the visual cortex are known to derive their input from networks of neurons.
In Hubel [11], simple cells (which respond to oriented lines) are postulated to be made up of a
hierarchy of lower-order, radially symmetric, center-surround cells. Similarly, complex cells (which
respond to oriented lines in a wide receptive field) and end-stopped cells are made up of a network of
simple cells. Also, directionally tuned, motion-sensitive cells are postulated to consist of inhibitory

2Low-molecular-weight dye passes between adjacent cells [1], and glial networks are postulated to
act as potassium spatial buffers [12,13,15,18].

11



and excitatory connections. Similar inhibitory and excitatory interconnections are used in the CE
neuronal network where cells are assumed to be sel!-exciting and latterly inhibiting within the layer.

2.2.3 Interactions

Astrocyte glial cells are known to interact electrically among themselves and with neurons;
the nature of that interaction is now considered.

Kettenman and Ransom [12] discovered that in cultured astrocyte syncytia, the resistance of
the electrical gap junctions between astrocytes is not voltage dependent over much of the membrane
potential fluctuation; thus, a charge flow model examining intra-astrocyte communication should
be independent of the membrane potential of the astrocytes. Futhermore, it is known that "glial
cells.. .have a high potassium concentration and have negligible ionic permeability for ions other than
potassium" [15]; therefore, current flow is modeled through glial cells as transfer of potassium ions
to or from the cell in a manner obeying Ohm's law. When this process is expanded to encompass
current flow in a network of glial cells, the motion of these ions can be approximated with a diffusion
equation.

A further proposition is that a glial syncytia provides long-range communication between
neurons in a layer via transmission of potassium and other ions. It has been shown that "variations
in [KI÷]extracellular have profound effects on neuronal excitability, modulating such processes as
synaptic transmission and the initiation and propagation of action potentials" [18]. Such [K+]
variations can be realized near the leaky endfeet of astrocytes that are in close proximity to neuronal
synapses (see Figure 9). This report is not the first to propose such an interaction. In 1965, Hertz
[101 proposed "a mechanism...in which the potassium ions, which have been lost from one nerve
cell during its activity, are transported through neuroglia cells to the outer surface of another nerve
cell, which is then depolarized and stimulated; that is, a neuronal-neuroglial-neuronal impulse
transmission." Hertz continues: "Potassium ions which have been released from an active area
are transported through neuroglia cells to the outside of other neurones [sic]; these are in turn
stimulated and potassium ions are released, to be transported actively through other neuroglia
cells. In this way the spreading depression is propagated across the entire cortex more rapidly than
can be explained by a diffusion." An alternative rapid propagation mechanism could be due to
small interglial electromagnetic fields, where ions taken up at one location induce other ions to be
released elsewhere. The DEB model explicitly uses such interactions to spread and reinforce the
charge distribution in a diffusion layer.

12
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2.2.4 Useful Biological Parameters

Odette and Newman [18] note that glial cell endfeet "can contain up to 95% of the total cell
conductance." This is important to determine how "leaky" the diffusion process should be.

Kettenman and Ransom [12] have examined astrocyte coupling in cultured layers by elec-
trically stimulating (via KCI injections) one glial cell, then measuring its voltage and that of the
neighboring cell. The ratio of these voltages is fit to an exponential, which approximates the steady-
state decay in a 1-D and 2-D syncytium: x = exp (j,), where d is the distance from the injection

and L is the length constant. Kettenman and Ransom [12] measured astrocyte L in vitro to be
80 to 100 tm. L can be used to relate the DEB model to physical size of the biological networks
and is related to the ratio of the conductances given by G., and G. in Section 3.1. Further, L is
not related to the 1-D model explained herein, as it is believed that the 1-D length constant would
have to be significantly greater than the 2-D decay length. Indeed, experiments with restricted 2-D
syncytia have L values that are greater than their full 2-D syncytia counterparts [12]. L is expected
to be more valuable in the context of the 2-D experiments.

15



3. DIFFUSION-ENHANCEMENT BILAYER MODEL

3.1 DEB Network Architecture

The DEB model consists of two processes that mirror the two salient psychophysical processes
mentioned in Section 2.2, i.e., a diffusion layer that facilitates long-range interactions via local
connections and a focusing layer that reinforces the diffusion layer and provides the sensation of
a localized object traversing a spatial separation. In this model, visual input is presented and
preprocessed to point features before passing to the spatiotemporal grouping network. In the case
of the primate vision system, both center-surround processing and logarithmic spatial mapping
occur before grouping begins in the cortex [11]. Following feature extraction, activity is input to
the diffusion layer that interacts with a localizing CE layer, which periodically samples the state of
the diffusion layer; its output is fed back to the diffusion layer to reinforce new input and facilitate
sustained interactions. This report proposes that a motion detection system, such as that of van
Santen [20] or Waxman [221 or [6], detects the smooth motion of the activity maximum as well as
the motion of the activity edges at the output of the CE layer and causes the sensation of motion
in the psychophysical experiments. Also, activity prompted by a single input at first grows, then
eventually dies down, so that after a period of time grouping is no longer possible (Figure 4). This
effect is a result of the limited time span of featural input from a single feature, the leaky diffusion
layer, and the imposition of decay on the feedback from the CE layer.

With this high-level description of the network in mind, a 1-D circuit form of the DEB model
is illustrated in Figure 10. Note the two layers - a diffusion layer that permits long-range charge
interactions and a CE layer that localizes the charge distribution from the diffusion layer and
produces improved SNR via the feedback pathways. Currently, the electrical model is simulated
by integrating the governing equations shown in Figure 10. A separate input layer of feature-
sensitive neurons provides activity to the diffusion layer via glial cell endfeet. Glial endfeet also
bidirectionally carry feedforward and feedback activity (i.e., charge or K+ ions).

The diffusion layer of the DEB model is governed by three coupled systems of differential
equations based on Ohm's law; the first represents the spatially coupled diffusion layer:

[Q G ('+) + Q('-') - 2Q(')-

dt C9  9 C9

+ gg! [Cg Qo i) - O(i}] + Sti [Ca oQi, _ Q(0](1
C9 LC. 1 (1)

This equation contains several parameters that can be considered independent of the other coupled
equations. Conductivity G., controls the speed with which charge Qa is distributed throughout the
glial layer, while G9 controls how rapidly -harge leaks from the glial nodes into the environment.
Together, conductivities G9, and G9 determine the spatial extent over which charge can spread in

17
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the diffusion layer. The other two equations govern charge input to the diffusion layer as provided
by the featural input neurons [Equation (2)] and feedback from the CE neurons [Equation (3)].

dQi(i) = - _[SQ_ , - Q(_)] (2)

dQe.(i) _ ge [LCGQ ( i) Q (3)]
dt Co Ce

Conductance G9, controls the rate at which new inputs affect the charge on the diffusion layer. G.e
controls the rate at which the CE layer feels the effects of developing charge distributions on the
diffusion layer, as well as the rate at which feedback from the CE layer modifies the diffusion layer.
The capacitors represented in all three equations store the distribution of charge in the diffusion
layer C9 and at the interfaces to the input C: and the enhancement layers (Ce).

The charge in the CE endfeet is periodically sampled 3 by the CE neurons, which process
activity on a shorter time scale than the diffusion layer. The sampled charge is contrast enhanced
via a network originally formulated by Grossberg [8], and the output from this network is fed back
to the facing endfeet. The equation governing charge in this system of N neurons represents a
network of self-exciting nodes with long-range lateral inhibition and passive decay;

dt-c- -A() - Qc-e W~''ce 4
dt C _EfQ,,)+B(cý 4

k

where

SCQ/Qi 0<_Q Q1 ()/(Q = CQ Q, < Q (5

Equation (4) can be rewritten as a shunting short-term memory model with charge limited
to the range [0,B]. Depending on the choice of parameters, the rapidly attained equilibrium can
either pick the node with maximal charge or contrast-enhance the charge across the layer. The
latter properties are of interest because constant signals are suppressed, noise fluctuations are
quenched, and all nodes of nearly maximal activity are enhanced. In any case, the dynamics lead

'Periodic sampling in time by the CE neurons can be identified with the refractory period of neurons
that are phase-locked in a layer.
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to a normalization of activity across the layer, with total equilibrium activity equal to E = B -.

When in this domain, the nodes for which activities fall below

QMt)= Q1- A(6)

for a sufficiently large time will be forced to lose all activation, i.e., they will be quenched.

Because feedback reactivates the diffusion layer, even once the original input is off, the feed-

back amplitude must be dampened over time. Without this step, a single light will be sustained

in memory forever. This problem is resolved by forcing the parameter B in Equation (4) to decay
with time between inputs to the system; that is, the duration of the feedback is limited in time.

When a new input stimulates the visual field, the CE layer is re-energized and B is reset to its

maximum value. Between inputs this decay is modeled as

B = 4 Brax - (7)

where t (x) is a threshold linear function equal to x, if x > .0, and 0 otherwise. (To date, most

experiments have set 0 = 0.)

At the end of this report another choice will be motivated for modulating B so that it has a
finite rise time, as well as a finite duration. For these experiments, B is chosen as

mt

B = Bd",etPer2 (8)

3.2 Relationship to Biological Networks

A number of DEB model components have direct correlates in biology. Capacitor Ci represents
a neuronal-astroglial interconnect that is locally excited by presented features. A feature-sensitive

neuron fires; as it repolarizes, K+ is released into the extracellular compartment. (The input source
function described in Section 4.2 tries to model this charge release.) K+ ion pumps bring K+ onto
C,, which represents a highly permeable endfoot of an astrocyte glial cell (cf. K+-spatial buffering
[15,181). Here the K+ is freely diffused via ion currents within glia (with membrane capacitance
Cg) and forms a network through electrical gap junctions between astrocyte glial cells [12]. The
interglial connections are represented by the conductors Ggg. A portion of the K+ is diffused out
of the cells at endfeet to an upper CE neuronal layer, which is excited by the locally increased
extracellular K+ concentration. This astroglial-neuronal interconnect is represented by C,. The
neuronal layer is hypothesized to interact within itself to contrast-enhance its own activity, further
releasing K+ as it fires. It then feeds this contrast-enhanced K+ profile back to the glial layer
via the same endfeet, thereby reinforcing the charge distribution in the glial network, particularly
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near the charge maximum. The output of the CE layer also provides the basis for the percept of a
compact form in smooth motion.

3.3 Alternative Models

One interest~ng alternative model for long-range apparent motion was proposed by Grossberg
and Rudd [9]. Their basic model elements responsible for creating continuous motion paths from
spatially disparate inputs are very similar to those currently being studied. Essentially, localized
inputs (e.g., flashes of light) are assumed to excite a spatially extended Gaussian activation pattern
of fixed scale. By combining a preprocessing stage, which detects spatial gradients of brightness with
a temporal change detector, their input functions grow and decay over time. When this growth
function is used to excite the Gaussian activity pattern, a fixed-scale Gaussian activity wave is
obtained, with amplitude that grows then decays in time. Grossberg and Rudd demonstrate that if
spatially separate inputs are flashed at different times and an appropriate scale Gaussian used, the
two activity waves will merge into a single activity hump, the maximum of which slides continuously
from the position of the initial input to that of the final input. They then assume that a separate
contrast-enhancing process localizes this moving maximum.

The DEB model shares the two essential elements of the Grossberg-Rudd model, i.e., a spa-
tially extended response to an input that evolves over time, followed by a CE process that localizes
the response; however, where Grossberg and Rudd assume a fixed-scale Gaussian response to an
input, the DEB uses a diffusion process that responds with increasing scale as a function of time.
Both models seek other, earlier processes to determine the dynamic natur:- of the input function
responsible for exciting the activity profiles that will interact with one another.

Another alternative model, introduced by Waxman, et al. [22], and modified by Fay and
Waxman [6], is the short-range motion process, the essential concept of which is the temporal
growth and decay of a Gaussian activity wave in response to a transient input. For noninteracting
inputs (i.e., a Gaussian wave with scale smaller than the spacing of inputs), this process provides a
means to directly extract the speed of moving features. When the features are close to one another
the waves interact; in so doing, they interpolate the trajectory between inputs.
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4. NUMERICAL SIMULATIONS

4.1 Overview

The following numerical simulations continue to build on work performed previously. Tool
flexibility and speed continue to be enhanced. This development effort allowed demonstration of
many of the percepts discussed in section 2.1.1. After this success the network was reexamined,
considering the effect of noise, and solutions were formulated for any problems encountered. This
section discusses the successes achieved in chronological order; except where indicated, the following
network parameters are employed: G -L = .25, GIg- = .4, G_2-' = .003(dynamic) and G -" = .15

- ' Ggg - Ggg G99

(static), F = 15,-i = 5, X 1 = 23,A = 1, B = 2501,C = 1,• = 0,F = 2.25. In the first series of
simulations B is modulated as specified in Equation (7), with B.m = 2501, r1 = 2.25, while in the
later simulations B is modulated as in Equation (8), with &.1, = 50,7 2 = 25,p = 1.5.

In all simulations the motion of the CE layer's activity edges and the activity maximum are
considered to drive the percept of apparent motion, with the latter defining object location.

4.2 System Input

Two different inputs represent the result of early visual processing performed in each of
the two visual pathways. The first is a sustained input used in the static pathway; this input
rapidly rises to a maximum value that is sustained until the stimuli are removed. The second
is a transient input used in the dynamic pathway; this input rises rapidly, then decays quickly.
Although attempts were made to produce results consiste-,. V~Ln the psychophysical data base for
static and dynamic systems using one copy of the moael and one type of input, these attempts
failed. The neurophysiological literature was then consulted; it was noted that cat X and Y cells
(analogous to primate A and B cells) had significantly different stimulus response characteristics
[5]. A functional approximation was then genera-Led to the "ýverage response histogram" recorded
by Enroth-Cugell and Robson [5]. The two inputs are pictured in Figure 11. The static input is
defined as:

20, *0"1 ,e1T 0<t < 15

2~) 20,*15' " *e- 15_< t< 100 (9)
0 otherwise

while the dynamic input is defined as:

26,*01*e2t 0<t<70I(t) (10)
0 otherwise
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Figure 11. Simulation input. Left is the "sustained" input to the "parvocellular" system,
right is the "transient" input to the "magnocellular" system.

4.3 Gamma Motion

In this experiment a single light is illuminated, then extinguished. Recall that the percept is
of the light expanding when it is first illuminated, then contracting when it is extinguished. The
total activity distributed throughout the system is depicted in Figure 12. (The graphs for this and
remaining simulations are presented from left to right, and from top to bottom.) Activity enters the
network through the input endfeet (upper left), then flows into the central network where activity
is diffused into adjacent glial cells (upper right). This activity distribution further spreads into the
glial enhancement endfeet (lower left), from where it is then contrast-enhanced (lower right). In
this simulation the activity maximum does not move and thus does not contribute to the percept,
but the activity edges expand when the dynamic input is first injected into the DEB network and
the activity edges contract when the input is extinguished (see contour plot in Figure 12). It is the
motion of the activity edges in the CE layer that yields the motion percept.

4.4 Long-Range Apparent Motion

In this experiment two lights are illuminated at different locations and times; when the timing
and object spacing is correct, the percept is of smooth motion from the first light to the second. In
this simulation (Figure 13), both the CE layer activity maximum and the activity edges contribute
to the motion percept. The maximum is believed to indicate the location of the moving illusory
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light between the two illumination points. Notice how re-energizing the CE layer upon the second
input amplifies the activity at the first input. Still the activity maximum moves smoothly between
the first and second input locations. The simulation shown here is for stimuli appearing eight
nodes apart, but the same simulation can be run (with no parameter changes!) for distances from
two to ten nodes away. Slightly greater distances produce incomplete movement from the first
to the second stimuli, while still greater distances produce no movement at all. No movement
occurs when the activity "mountains" leak from the system before interacting, which is analogous
to the non-interacting percept in Figure 3. Incomplete movement occurs when the initial local
activity maximum moves toward the distant second maximum, but the distance is great enough
that grouping occurs in the manner of the forthcoming "static" grouping examples.

4.5 Equidistant Merge

In this experiment three lights interact; two lights are illuminated, then a third light, equidis-
tant between the first two, is illuminated. The percept is of the first two lights fusing at the third
light's location. In the simulation depicted in Figure 14, the three lights' effects can be clearly
seen in the input endfeet's activation graph. As the concentrated activity moves from the input
endfeet into the interglial communication layer, activity diffuses and begins to interact. This activ-
ity moves into the contrast-enhancement endfeet, where the contrast-enhancement layer takes up
the activation. Here the merge sensation is reinforced by the motion of activity edges, while the
activity maximum moves smoothly from the location of the two initial lights to the central light. 4

4.6 Equidistant Split

In this experiment three lights interact; one light is illuminated, then two lights, equidistant
to the first, are illuminated. The percept is of the first light splitting in two, with each half moving
off to join the third light's location. In the simulation depicted in Figure 15, the three lights' effects
can be clearly seen in the input endfeet's activation graph. Here the split sensation is reinforced by
the motion of activity edges in the CE layer, which expands significantly with the introduction of
the two later stimuli. Unfortunately, three final maxima are produced rather than one maximum
splitting and joining the later two, so it is difficult to interpret the sensation of object localization.
This remains a shortcoming of the model.

4.7 Static Grouping

Figure 16 represents the response of the CE layer to a static 1-D "image" with structure
on multiple scales. In this image there are three point-source inputs at nodes 30, 37, and 42.

"If the third input is removed, a static grouping of two inputs is obtained. Running this simulation
in the dynaiuic pathway produces a broader, weaker maximum than that caused by the merge
experiment.
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Figure 13. Long-range apparent motion (original feedback). From left to right, top to
bottom: ac~ivity distributed on glial input endleet, activity distributed within interglial
layer, activity on glial enhancement endfeet, activity after contrast- enhan cement process-
ing. Both the contrast-enhanced activity maximum and the activity edges support the
percept of motion from node 40 to node 48; the activity maximum provides the location of
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Initially (t = 1) the network responds with maxima at each of the three inputs, then (t = 8) only
two maxima survive as the two closest sources interact and merge on the diffusion layer; finally
(t = 24), all three merge, and the network displays only a single maximum on this coarser scale.
As t - oo, this network generates a maximum that can be used as a focus of attention near the
geometric mean of the input locations. Note that if the eyes follow the absolute maximum value,
concentration is first on the small- then the large-scale interactions.

4.8 Noise Effects

The effect of noise on the system is considered next. In this series of simulations, a small
amount of noise is added to the input endfeet, the interglial diffusion sublayer, and the enhancement
endfeet of the diffusion layer. Total noise per node is randomly distributed between 0 and 1 unit
of activity. This simulates the effects of additive noise that could be caused by residual activity
or steady-state random-onset firing of the input neurons. The noise simulations will motivate the
choice of a new feedback activity function that has a finite rise time [Equation (8)].

With the original feedback formulation, the gamma motion effect in noise can give rise to false
sources of activity (see Figure 17). In this case feedback amplifies small noise fluctuations before
the new activity is able to pass through the diffusion layer to the enhancement endfeet. These
amplified sources create the appearance of new stimuli where none exist.

By causing the total feedback activity to slowly increase after the stimuli's presence is felt,
the stimuli is able to diffuse into the network and overwhelm the noise. One possible formulation
that accomplishes this is given in Equation (8), but similar results can be obtained by simply
delaying the onset of the feedback activity for a fixed unit of time. With this alternative feedback
formulation, the system is less affected by noise and the percept is as expected (see Figure 18). It
is interesting to compare the activity contours of Figures 17 and 18; the new formulation expands
less rapidly than the old and persists for nearly twice as long (note the change in scale). It is
difficult to assess the correctness of either, as no one has yet performed psychophysical experiments
to measure the rate of gamma motion expansion.

A similar problem occurs when noise is introduced in the long-range apparent motion simu-
lation and the other simulated effects. In Figure 19, the activity maximum wanders aimlessly due
to enhancement of the initial noise. 5

'In this diagram, several other weak local maxima exist, but because they are more than 5 orders of
magnitude smaller than the depicted local maximum, it is assumed that limited precision neurons
would be unable to sense them.
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In the simulation employing the new feedback (Figure 20), anomalous behavior only appears
at the very beginning of the simulation (two maxima occur). One time unit later, the spurious
maximum ceases to exist and the simulation then proceeds as it should.6

Input endleet ---- Inter-gliat diftusion ---
Activity Activity

2000- o
1500- Input to node 40at tme 0and node 48 at time110

400-
1000 4200-X

500 200

250 \"'~1250 \j>:~,, ~'-
30 \\30 :, , ,

Node 45\.Node

50 _ _ _ _ _ __ _ _ _ _ _ 10012500150175200

25 507 rime150720 025 Time

Enhancement endfeet ---- Contrast-Enhancement Result

5678Activity Activity Activity Contours--

1000

25 r

10

250 25 002

354



Input endfeet ---- Inter-glial diffusion

Act"vt Activit

600 nput to node 40at time 0and node 48at time 90 1000-

5000- 800-

4000., 600.

loo 0'::H:r. 0

20250 :-~ .

32\50 30d "Ay~'~~:~

40 ~4¶' ~40 **

0od 2 Sm 0 5 5 'Tm

80 45

70 3005IO 5507

4050 450
30-30

25010 0-

30- K 'A*-

500 .. 2255

40 40' Tn

t 4r5a laer acAiyo la nhneetedet ctivity atrcontratehacmn

Figucessin. Long-range apparent motionocus with nosmot m(tio fedak.From thefirt trinput,

node to the second input node.

35



5. WORK IN PROGRESS

A dynamic model for a two-layered network that spatiotemporally groups its inputs on mul-
tiple scales as a function of time has been explored. Moreover, this model generates long-range
apparent motion between spatially separate inputs introduced at different times. Subtle changes
to the rate that feedback is introduced to the system produced a network that was more tolerant
to noise.

Current research includes examining the new feedback profile on simulations of equidistant
and non-equidistant split, equidistant and non-equidistant merge, and in locating a parameter pool
that will produce long-range apparent motion over a wider range of distances. Also, the robustness
of the current feedback's formulation will be explored by systematically increasing the noise present
in the system. A related series of experiments will explore intersimulation time, to see how long
lingering activity will influence a later simulation.

Future work will include the psychophysical phenomena not yet discussed: the Ternus and
peripheral effects. The peripheral effects should be simple to implement, as these are believed to be
due to the topological preprocessing performed before the data arrives at the network. To simulate
the biological system, the data will be spatially logarithmically mapped before administering ac-
tivity to the system; this procedure is expected to reproduce the peripheral psychophysical results.
The output of this system will also be extended via a second layer of local contrast-enhancement
to more clearly illustrate a pathway concentrating on the expanding activity edges.

The final effort to be explored is the 1-D Ternus effect; when its results can be reproduced,
the DEB model will be extended to two dimensions.
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