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Abstract

There were several accomplishments of this research, both theoretical and
computational. In joint work with Todd, we presented a cutting plane pri-
mal projective interior point method which we applied to matching problems,
with encouraging computational results. Primal projective methods require a
method to update the dual; we showed how various dual updates are related
to each other and we also derived a dual projective algorithm. We derived
"a polynomial-time shifted barrier warm start algorithm which can be used m
"a cutting plane method; we showed that the directions obtained axe strongly
related to the directions derived in the work with Todd; computational re-
sults showed that the algorithm can be useful in some situations. The grant
partially supported a Ph.D. student, Brian Borchers, who received his degree
in August, 1992. His thesis concerned the use of branch-and-bound methods
and contained good computational results as well as interesting theoretical ob-
servations. One paper from this thesis describes how the primal-dual interior
point method can be used efficiently in a branch-and-bound method for solv-
ing mixed integer linear programming problem. Another paper describes how
branch and bound algorithms for nonlinear integer programming problems can
be improved. Borchers and I also developed a primal-dual interior point cutting
plane method for solving linear ordering problems; the computational results
for this algorithm were very encouraging, with run times comparable to those
required by a simplex based cutting plane algorithm.
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6 Abstract

There were several accomplishments of this research, both theoretical and
computational. In joint work with Todd, we presented a cutting plane pri-
mal projective interior point method which we applied to matching problems,
with encouraging computational results. Primal projective methods require a

method to update the dual; we showed how various dual updates are related
to each other and we also derived a dual projective algorithm. We derived
"a polynomial-time shifted barrier warm start algorithm which can be used in
"a cutting plane method; we showed that the directions obtained are strongly
related to the directions derived in the work with Todd; computational re-
sults showed that the algorithm can be useful in some situations. The grant
partially supported a Ph.D. student, Brian Borchers, who received his degree
in August, 1992. His thesis concerned the use of branch-and-bound methods
and contained good computational results as well as interesting theoretical ob-
servations. One paper from this thesis describes how the primal-dual interior
point method can be used efficiently in a branch-and-bound method for solv-
ing mixed integer linear programming problem. Another paper describes how
branch and bound algorithms for nonlinear integer programming problems can
be improved. Borchers and I also developed a primal-dual interior point cutting
plane method for solving linear ordering problems; the computational results
for this algorithm were very encouraging, with run times comparable to those
required by a simplex based cutting plane algorithm.



1 Introduction

This is the final report of the research supported by the ONR Grant number N00014-
90-J-1714. In this report we summarize the research accomplished and the papers
produced.

Currently, almost all approaches to solving integer programming problems with
linear programming methodology use the simplex method to solve the linear pro-
grams. There have been several notable successes with such algorithms. Within the
last eight years, interior point methods have become accepted as powerful tools for
solving linear programming problems. It appears that interior point methods may
well solve large linear programs substantially faster than the simplex method. A nat-

ural question, therefore, is whether interior point methods can be successfully used to
solve integer programming problems. This was the subject of the research conducted
under this grant.

We are interested in branch-and-cut algorithms, which are a combination of cut-
ting plane methods and branch-and-bound methods. Let S be the convex hull of
the set of feasible integer points. In a traditional cutting plane method, the linear
programming relaxation of the problem is solved to optimality using the simplex
algorithm: if the optimal solution t is integer, then we are done; otherwise t can
be separated from S, an extra constraint (or cutting plane) added to the relaxation
and the process repeated. The extra constraint takes the form a~x < bk; this con-

straint is satisfied by all points in S but it is violated by t. Traditicnal cutting

plane methods used Gomory cuts, but the recent success of cutting plane methods
has come about with the use of facet-defining inequalities, which give proper faces
of maxi;:.al dimension of the convex hull of the set of feasible integer points (see, for

-4example, (6, 10, 11, 12, 13, 231). We use an interior point method in place of the
simplex algorithm. We usually do not solve the relaxation to optimality, but attempt 0

to find cutting planes before reaching optimality. This is usually possible with an
interior point method; in fact, it is more attractive with an interior point method
than the simplex method because the interior point method gets close to optimality
quickly, whereas the simplex method may pivot a vital element into the basis on the
last iteration.

The difficulty with using an interior point method in a cutting plane algorithm is
that the solution to one relaxation is usually not a good starting point for an interior r
point method, because it is close to the boundary of the feasible region. Thus, it is L'

usually necessary to attempt to stop solution early: the earlier we are able to find
good cutting planes, the better the initial solution to the next relaxation. Early
termination obviously reduces the number of iterations spent solving the current
relaxation, but in addition it reduces the number of iterations spent solving the next )des
relaxation, because the initial point to the next relaxation is more centered. There )r
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are two potential disadvantages to trying to find cutting planes early: if the search
for cutting planes is unsuccessful, we have wasted time; secondly, it may well be that
superfluous constraints are added, with the result that the algorithm requires extra
iterations and extra stages of adding cutting planes. The attempt to exploit early
termination is a recurrent theme of the research generated under this grant.

The grant partially supported the paper with Todd [22] which described a primal
projective cutting plane algorithm, which was used to solve matching problems. The
primal projective method was applied to the dual of the current relaxation of the
integer programming problem. We described how cutting planes can be added and
also how variables can be added. We gave computational results which illustrated
that such an algorithm may be attractive, provided cutting planes are identified early.
We describe this paper in more detail in Section 2.

Primal projective algorithms require a method for updating the dual. In [18], we
showed how two dual updates are related to each other. We also described a dual
projective algorithm, deriving the direction by using a QR-decomposition. This paper
is the subject of Section 3.

When adding a cutting plane, we add a variable to the dual. If we give this
variable value zero, then the new dual solution is feasible. Unfortunately, this is not
a good starting point for an interior point method because interior point methods
generally require that all variables should be strictly positive. In [17], we described
how shifted barriers can be used to overcome this difficulty. The barriers are the
nonnegativity constraints; if these are relaxed slightly, or shifted, then giving the new
variable the value zero gives a point which strictly satisfies the inequality constraints;
this is now a feasible starting point for an interior point method. This algorithm is
discussed further in Section 4.

This grant partially supported the research of the student Brian Borchers, who
received his Ph.D. in August 1992 [3]. One aspect of his thesis was to describe a
primal-dual barrier method for solving mixed integer linear programming problems
using branch-and-bound [5]. This research showed that an interior point method
can be employed successfully in a branch-and-bound algorithm because it is usually
sufficient to obtain only an approximate solution at each node of the branch-and-
bound tree. If it is necessary to branch on the current node, then the approximate
solution provides a good initial solution for use in an interior point method to solve
the child subproblem. Encouraging computational results were given. A spin off of
our investigations into using interior point methods in this way was the observation
that branch-and-bound methods for mixed integer nonlinear programming problems
can also be improved through the use of early branching [4). The work in Borchers's
thesis is described in more detail in Section 5.

Borchers and I also developed a primal-dual barrier method cutting plane algo-
rithm for solving linear ordering problems [19, 20]. The cumputational results we
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obtained with this algorithm were comparable with those obtained using a simplex-
based cutting plane method. These computational results give hope that interior
point cutting plane methods may well outperform simplex methods on large prob-
lems, that is, problems which are not solvable on current hardware in a reasonable
amount of time. With the rate at which hardware is improving, these currently in-
tractable problems may soon be solvable with a cutting plane method based on an
interior point method. For more details on this algorithm, see Section 6.

This grant has also partially supported the research of another student, Zhao-

Yang Cheng, who is expected to receive his Ph.D. in the summer of 1993. Cheng has
investigated the links between various interior point methods. He has also shown how
interior point methods can be used to solve geometric programming problems; one of
the methods used for these problems is a column generation approach.

2 Initial work using the primal projective method

In [22], we presented a cutting plane method for solving integer programming prob-
lems. This algorithm applied the primal projective method to the dual of the current
relaxation of the integer programming problem. The dual solution was updated by
using a method based upon the Todd-Burrell update [25].

There are several advantages to making the relaxation the dual problem when us-
ing the primal projective method. Primal feasibility is maintained even when cutting
planes are added, so the method can be immediately restarted. The initial primal
point, immediately after adding cutting planes to the dual, has all the additional
primal variables set to zero. For the interior point algorithm to proceed, the variables
must be strictly positive. The paper [22] gave a direction which is guaranteed to result
in a strictly positive feasible point, if one exists. It was shown that moving in this
direction was equivalent to solving a Phase I problem involving an artificial variable,
in that the point generated by the solution to the Phase I problem corresponded to
taking a certain step length in the direction. The primal projective algorithm for lin-
ear programming only uses the value of the dual solution when calculating the primal
direction, so it does not need a dual solution which is strictly feasible. When the dual
problem is a relaxation of the integer programming problem, any feasible solution to
the integer program gives a feasible dual point, but this point is not usually strictly
feasible. Because of the choice of algorithm, these solutions are immediately useful.

When setting tip the initial relaxation of an integer programming problem, it is
often useful to omit many of the variables. For example, for the perfect matching
problem, the initial relaxation may contain variables only for the shortest ten edges
adjacent to each vertex - see, for example, Gr6tschel and Holland [10]. After obtain-
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ing an optimal solution to this revised problem using a cutting plane algorithm, it is
necessary to check the reduced costs of the omitted variables. If some of the reduced
costs are of the wrong sign, variables should be added to the formulation and the
problem resolved. We gave a Phase I problem which can be used to initialize when
these variables are added to the dual problem, and we gave a probabilistic argument
to show that the Phase I problem is likely to be solved in one iteration when only a
few variables are added.

The algorithm was implemented and used to solve perfect matching problems.
We chose to experiment on the perfect matching problem because good separation
heuristics for finding violated cutting planes are available [101. The separation rou-
tines can only be called when the dual solution is successfully updated using the
Todd-Burrell procedure. We found that it was best to call the separation routines as
soon as the dual solution was updated; this dual solution was good enough that it
was almost always possible to find violated cutting planes, provided the solution to

the current relaxation did not solve the integer programming problem. The results
were encouraging for two reasons. First, the number of iterations required at each
relaxation was approximately six for the problems we tested, which is far fewer than
the number required to solve the linear program from scratch, because cutting planes
were identified before optimality and because the solution to the previous relaxation
did serve as a warm start which could be exploited by the primal projective method.

Second, the number of stages of adding cutting planes was limited, illustrating that
the separation routines work well at an interior point.

3 Dual updates

The algorithm described in [22] updates the dual solution by solving a one-variable
constrained version of the dual. In [24], Todd proposed an alternative update which
involves solving a two-variable problem. In [9], Gonzaga motivated a one-variable
update in a different manner. We showed that Todd's two-variable update and Gon-
zaga's one-variable update are equivalent in [18].

In [18], we also described a dual projective algorithm, deriving the directions
through consideration of a QR-decomposition. Consideration of a QR-decomposition
is a useful tool for analyzing projections when the constraint matrix can be broken

into parts; some of the results in [21] were obtained through this technique.

4 Shifted barriers

In [17], we described a column-generation algorithm which is based upon Freund's
two "warm start" shifted barrier function algorithms for linear programming [8]. By
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using shifted barriers, extra variables can be introduced with value zero, and the new
point will be an interior point.

In [8], the nonnegativity constraints x > 0 are replaced by constraints of the form
x + h(cTx - B) >_ 0, where cTx - B is the current duality gap and h is a nonnegative
vector. Thus, if the vector h is chosen appropriately, a certain amount of negativity
is allowed in the variables x. One result of this is that it is possible to have "interior"
points where the variables are zero. This can be used in a column generation method:
additional variables can be given the value zero when they enter.

Generating columns corresponds to adding constraints in the dual linear program.
In a cutting plane algorithm for solving integer programming problems, constraints
are added to a linear program as the solution proceeds. As was the case with the
algorithm given in [22], this algorithm can be used when the relaxation of the integer
programming problem is regarded as the dual linear programming problem. When
cutting planes are added, the additional primal variables are given the value zero
and the barrier constraints are satisfied strictly, so the interior point method can be
restarted immediately, with no need for a Phase I procedure.

We analyzed this algorithm in the context of solving a linear program min{cT X
Ax = b, x > 0}, where we only work with a subset of the variables, adding extra vari-
ables as necessary, by checking for violation of the corresponding dual constraints.
We showed that the resulting algorithm requires O(nL) iterations, where n is the
number of variables in the complete primal problem and L is the size of the data of
the problem. We analyzed the direction taken by the algorithm immediately after
a variable is added. We showed that this direction is a combination of three direc-
tions: the affine descent direction, the centering direction, and the direction obtained
in [22]. Thus, this algorithm could be regarded as a refinement of the algorithm given
in [22], with the algorithm generating a direction which is a combination of the three
natural directions. For more information on the affine and centering directions, see,
for example, the survey in den Hertog and Roos [14].

We implemented the algorithm and compared it with two other algorithms on some
randomly generated transportation problems. The shifted barrier column generation
algorithm performed considerably better than the primal projective algorithm applied
to the full set of columns. We also compared the algorithm with a column generation
algorithm similar to the one described in [22]: when only a few columns are added
at once, it appears that the shifted barrier algorithm outperforms the other column
generation algorithm, but the shifted barrier algorithm is slightly worse when many
columns are added.
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5 Branch-and-bound

The grant partially supported the research of Brian Borchers, who completed his
Ph.D. in August 1992 [3]. His thesis was concerned with ways in which early termi-
nation could improve branch-and-bound algorithms.

In [5], we described a branch-and-bound algorithm which solved the linear pro-
gramming subproblems by using the primal-dual barrier method. When using branch-
and bound, one of four things can happen at the current node of the branch-and-bound
tree. The subproblem could be unbounded; in an interior point method this can be
detected by finding a ray in the dual problem. The subproblem could have optimal
value worse than the value of a known integer feasible solution, so the node is fath-
omed by bounds; in an interior point method, this can usually be detected well before
the subproblem is solved to optimality. The optimal solution could be an integer so-
lution with value better than the best known solution; in this case we need to solve
the subproblem to optimality, but the node is then fathomed. The final possibility is
that the optimal solution to the subproblem has optimal value smaller than the best
known solution, but the optimal solution is not feasible in the integer program; in this
case, we can use heuristics based upon the basis identification techniques described
in El-Bakry et al. [7] to determine that one of the integer variables is tending to a
fractional value, and therefore that we should branch early.

It should be noted that in only one case is it necessary to actually solve the
relaxation to optimality, and in that case the node is fathomed. When we branch
early, one dual constraint is dropped, so the previous dual solution is still feasible.
One primal variable is fixed, so infeasibilities are introduced into the primal problem.
We found that we could still solve the child node quickly, provided we centered the
solution slightly when restarting by adding small amounts to variables close to their
bounds.

We solved several sets of problems using our branch-and-bound algorithm, com-
paring our results with the IBM package OSL [15]. Our algorithm was very compet-
itive with OSL on some randomly generated capacitated facility location problems;
these problems had no more than 20 warehouses and 400 destinations. Our algo-
rithm did not perform so well on some test problems supplied to us by AT&T, on
some problems drawn from the test set ORLIB [1], and on some problems drawn
from the test set MIPLIB (2]. This was for at least two reasons: first, our code is not
nearly as sophisticated as OSL in the way it chooses branching variables or the next
subproblem to attack; secondly, these problems are just not large enough (none of
them has more than 820 constraints) - problems that are amenable to solution with
current hardware are not really big enough for the interior point method to perform
better than the simplex method on the subproblems.

The paper [4] concerns the related problem of solving a mixed integer nonlinear
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programming problem using branch-and-bound. Until now, all such branch-and-
bound algorithms had solved the relaxations to optimality. We were able to demon-
strate the advantage of branching early. We applied our algorithm to problems whose
relaxations were convex problems and we used Lagrangian techniques to bound the
values of the subproblems.

6 A primal-dual cutting plane method

We have developed a cutting plane algorithm based upon the primal-dual barrier
method for linear programming [19, 20]. We have tested this algorithm on the linear
ordering problem with good computational results.

One advantage of using the primal-dual barrier method is that both the primal
and the dual solutions get updated at every iteration. Compared to the algorithms
described in [22, 171, this provides considerably more flexibility over when to call the
separation routines. We chose to call the cutting plane routines whenever the duality
gap fell below a dynamically adjusted tolerance. If the separation routines are called
too soon then superfluous constraints are added to the formulation; if they are called
too late then additional iterations are spent on the current relaxation and the initial
solution to the next relaxation is close to the boundary of the feasible region, which is
not an advantageous starting point. The tolerance is adjusted dynamically depending
on the number of violated cutting planes and their violations: if many constraints are
found which are violated by large amounts then the tolerance is increased; if only a
few constraints which are violated by a small amount are found then the tolerance is
decreased.

We now describe the method we developed for restarting the algorithm after
adding cutting planes. We implemented the algorithm so that the relaxation of the
linear ordering problem was the primal problem. The cutting planes are inequality
constraints in the primal problem, so their addition results in the addition of a slack
variable to the primal problem; this slack variable must lie hetween zero and two for
any point in S, the convex hull of the set of linear orderings. When cutting planes
are added, columns are added to the dual problem but the corresponding variables
have no sign constraint, so the new dual variables can be given the value zero and
the new dual point is a feasible point for starting the interior point method. There is
an additional dual constraint corresponding to the additional primal slack variable;
this constraint contains both a slack and a surplus variable, so it can be satisfied by
setting both of these additional dual variables equal to 0.1. The only other modi-
fication we made to the dual was to increase slack and surplus variables which are
very close to their bounds - this was done for numerical stability. The addition of
cutting planes makes the current primal solution infeasible. In our initial experiments
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we attempted to use the infeasible interior point method described in, for example,
Lustig et al. [16]. However, we found that the algorithm took several iterations to
regain feasibility, by which time the solution was far from optimality in the current

relaxation. In order to avoid this problem, we constructed a point xFEAS which is
in the relative interior of S. This point is always an interior point in any relaxation,
so it is always feasible in the primal problem. Thus, when we restarted the interior

point method after adding cutting planes, we set the primal point to xFEAS. Initially
XFEAS is set to the vector of halves. We attempt to update it at every primal itera-
tion: if the new primal solution is in S then xFEAs is updated to this new solution;
otherwise, xFEAS is updated by taking a step from XFEAS towards the new primal
point. The work spent updating xFEAS was minimal, but the number of iterations
saved was considerable. A more sophisticated updating scheme for xFEAS may well
be justified. The only other update to the primal solution when adding cutting planes
was to increase variables which were very close to their bounds, as was done for the

dual solution; this was necessary for numerical stability.
We found it computationally efficient to d.op constraints which were far from

being tight. In this way, the linear algebra required to calculate the projections is
kept tractable. The disadvantage of dropping constraints is that some constraints
may be added and dropped repeatedly; in practice, this disadvantage is easily offset
by the speed up in the linear algebra.

There was one other aspect of the implementation which was designed to make
the linear algebra efficient. When we added cutting planes, we ensured that the set
of additional constraints contributed at most one extra nonzero to any column of A.
We found that this considerably improved the performance of the algorithm because
the work required to calculate a projection was greatly decreaseQ. Because of this
choice, many more relaxations are examined and more iterations are taken, but the

cost of this is easily outweighed by the decrease in the time required each iteration.
As in [22], an attempt was made to find feasible integer points b-, -ounding the

current point in the relaxation. The rounding heuristics depend on the particular
combinatorial optimization problem. For the linear ordering problem, we attempted
to find an ordering which corresponds closely to the fractional feasible point.

Gr6tschel et al. [12] implemented a simplex based algorithm for the linear ordering
problem. It is impossible to really compare their runtimes with ours, because of the
difference in hardware. Nonetheless, it does appear that our run times, at least for
the larger, 56 and 60 sector, problems, are similar to theirs.
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7 Conclusions

This research has shown that interior point methods can be adapted to solve inte-
ger programming problems. Because of the size of problems that can currently be
solved, the methods we have developed have been at best competitive with methods
based upon the simplex algorithm. Experience with linear programming problems
has shown that the time required by an interior point method usually increases less
quickly than that required by the simplex method as problem size increases. If a
similar trend holds for integer programming problems (our results to date appear to
show this same pattern), then we believe that these results hold great promise for the
future, because better hardware will make larger problems tractable. We intend to
continue developing these methods, trying them out on larger problems.
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