
SUUIiTTED TO: F1TCS22, BOSTON, MASSACEUSETTS, JULY 8-10, 1992

AD-A256 039

COMPILER-ASSISTED STATIC CHECKPOINT INSERTION 1

Junsheng Long and W. Kent Fuchs Jacob A. Abraham

Center for Computer Engineering Research Center
Reliable and High-Performance Computing Department of

Coordinated Science Laboratory Electrical and Computer Engineering
University of Illinois University of Texas at Austin

Urbana, IL 61801 Austin, TX 78712

fuchs~gcrhc.uiuc.edu
--DTIC °

(217) 333-9731

ELECTE FAX: (217) 244-5686

OCT 0 7 1992 Principal contact: W. Kent Fuchs

ABSTRACT

This paper describes a compiler-assisted approach for static checkpoint insertion. Instead of
fixing the checkpoint location before program execution, a compiler enhanced polling mechanism
is utilized to maintain both the desired checkpoint intervals and reproducible checkpoint loca-
tions. The technique has been implemented in a GNU CC compiler for Sun 3 and Sun 4 (Sparc)
processors. Experiments demonstrate that the approach provides for stable checkpoint intervals
and reproducible checkpoint placements with performance overhead comparable to a previously
presented compiler-assisted dynamic scheme (CATCH) utilizing the system clock [17].

Key Words: static checkpoints, checkpoint placement, checkpoint interval and compilers.
Word Count: 3893.
Approval for submission and presentation has been obtained.

T•, do,,-ument has been approved
,:r pI;']v ri'lýi:-e and sale; its

d•;trir ,n ii unlimited.

'This research is supported in part by the Department of the Navy and managed by the Office of the Chief of
Naval Research under Contract N00014-91-J-1283, and in part by the National Aeronautics and Space Administration
(NASA) under Contract NAG 1-613, in cooperation with the Illinois Computer Laboratory for Aerospace Systems
and Software (ICLASS).

92-26530IIIhIIII iH,|I s
man~~~~~~ ~~~ IB0e 0i m 85 • .ta-.-2la i m



I. INTRODUCTION

Checkpointing and rollback is a common recovery strategy in fault-tolerant systems [1]. Con-

siderable theoretical research has been devoted to determining optimal checkpoint intervals [2-7].

A practical problem in implementing checkpointing and rollback recovery is the maintenance of the

desirable checkpoint interval. Checkpoints may be static in the sense that they are at fixed locations

in a program or they may be dynamic such that their locations in a program may vary, as a func-

tion of time or system behavior. Although dynamic checkpoints can be implemented with existing

hardware interrupt support (system dock), they are not reproducible. Static checkpoints must rely

on either insertion of checkpoints before program execution or monitoring the program behavior

during execution. Reproducible checkpoint intervals, as obtained with static checkpoints, can be

used for debugging [8-11] or error detection by means of checkpoint comparison with replicated

processes [12-13].

Chandy and Ramamoorthy have developed a scheme for application level checkpoint insertion,

given a computation sequence, execution time, checkpoint time and restart time [14]. Their scheme

is a graph-theoretic method to determine the optimal locations for checkpoint placement. Toueg

and Balaoglu, and Upadhyaya and Saluja followed a similar approach [3, 15-16]. Li and Fuchs

have studied techniques for checkpoint placement at the compiler level (CATCH) [17]. Check-

point subroutines are transparently inserted in the user program by the compiler. CATCH is a

dynamic checkpoint insertion scheme. To maintain the desirable checkpoint interval, the real time - V _

clock is polled to decide if a checkpointing call is due. Polling the real time clock can result in C

different checkpoint locations for different execution runs of the same computation due to the clock ....................

granularity (one second in Unix) and the workload on the system. -----

This paper presents a compiler-assisted approach for static checkpoint insertion. Instead of -,odes

! or



2

fixing the checkpoint locations before program execution, a compiler enhanced polling mechanism

is utilized to maintain both the desired checkpoint intervals and reproducible checkpoint locations.

Instruction-based time measures are used to track the computation progress and thus checkpoint

intervals. These measures produce static checkpoints by eliminating the real time clock. This

approach has been implemented in a GNU CC compiler for Sun 3 and Sun 4 (SPARC) processors

[18]. Experiments demonstrate that our approach provides for scalable checkpoint intervals and

reproducible checkpoint placements with a performance overhead that is less than that of the

previously presented compiler-assisted dynamic scheme (CATCH).

Section II describes our static checkpoint insertion approach and implementation. Section

III discusses the experimental results.

II. STATIC CHECKPOINT INSERTION

A. Instruction-based Time Measure

Maintaining desirable checkpoint intervals requires a time measure. Using the elapsed time

of a computation as the time measure leads to dynamic checkpoints. This is because the elapsed

time for a computation often varies from execution to execution due to resource sharing with other

computations. Static checkpoint insertion requires a time measure that is independent of the real

time clock and that describes checkpoint interval in terms of computation progress. Instruction-

based measures, such as the instruction cycle count, satisfy both requirements, as they are only

related to the instructions executed in a computation.

In this paper, we consider three architecture-independent instruction-based measures: instruc-

tion count, loop/function count and selected loop/function count. The instruction count (IC) is



3

the number of instructions in a computation, while the loop/function count (LFC) is the number of

loop iterations and function calls. The selected loop/function count (SLFC) is the number of loop

iterations/function calls for selected loops and functions. Although LFC and SLFC are potentially

less accurate than ICC and IC with respect to the computation time, they can be maintained

with low cost. The accuracy may still be adequate if the checkpoint interval contains a lot of loop

iterations so that a stable mix of instructions is executed in each checkpoint interval.

B. Checkpoint Insertion Schemes

We use a polling mechanism with instruction-based time measures to accomplish the static

checkpoint insertion. The compiler calculates the instruction-based time along an execution path.

These statically calculated values for the time measure are accumulated in a counter during t02

program execution on the fly. The accumulated counter gives the time measure since the last

checkpoint. The basc compiler that was selected to implement our static checkpoint insertion is

the GNU CC compiler version 1.40 for Sun 3 and Sun SPARC. A register transfer language (RTL)

filter is placed between parsing and object code generation.

Based on the location of the time measure accumulation and polling points, the four schemes

we have implemented are described below:

1. B-B: This scheme measures the instruction count (IC). The code for both the time measure

accumulation and polling is inserted in each basic block of the program. A basic block is a

sequence of consecutive instructions in which the program control enters at the top and leaves

from the bottom with no branches or halts inside. Basic blocks in this paper are described

in terms of RTL instructions.



4

2. B-L: In this scheme, the time measure is also the instruction count (IC). The time measure

accumulation code is inserted in each basic block, while that for polling is placed in each loop.

3. L-L: This scheme uses the loop/function count (LFC) as the time measure. The code for the

time measure accumulation and polling is inserted in every loop and function.

4. SL-SL: In this scheme, the time measure is the selected loop/function count (SLFC). The code

for the time measure accumulation and polling is inserted only in the selected loops/functions.

C. SLFC Determination

In order to implement the SL-SL scheme, a method for selecting loops for SLFC was developed.

Our approach is profile-based. Probe routines are placed into a program by the compiler. These

probes collect the trace information during program profiling. The information collected is used to

aid the loop selection for the SLFC measure. Once SLFC is determined, the compiler places static

checkpoints in the program according to the SLFC measure.

There are two problems involved in selecting an SLFC measure: (1) to identify a set of loops

that tend to appear throughout the execution trace, and (2) to determine a threshold value for

each selected loop. This threshold value is important as the on-the-fly accumulated SLFC value is

compared against this threshold value at each polling point in order to make a checkpoint decision.

During profiling execution, each probe records the loop/function ID and calculates the frequency

of occurrences of this loop in a checkpoint interval. If a set of loops can be found such that every

checkpoint interval contains at least one loop from the loop set, this loop set may be a candidate

for SLFC. The frequency associated with each loop for a checkpoint interval can be used as the

threshold value for the loop.



5

Given a program and its profile data, the SLFC selection can be formulated as a cover set

problem in a weighted bipartite graph. The checkpoint intervals and loop/function IDs are two

sets of vertices. If a loop appears in a checkpoint interval, there is an edge between the checkpoint

interval vertex and the loop vertex. The frequency of the loop occurrences in the checkpoint interval

is the weight for this edge. The cover range of a loop vertex is the set of all the checkpoint interval

vertices that are connected to the loop vertex. An SLFC cover set is a set of the loops such that

their cover range contains all the checkpoint interval vertices.

There are four criteria for selecting a good SLFC cover set that gives a stable checkpoint

interval with a small polling overhead:

"* Minimal overlapping: The overlapping of cover ranges for two selected loops may result

in unstable checkpoint intervals due to the interference of their possibly different threshold

values.

"* Minimal cover set: The size of an SLFC cover set is directly related to the code size overhead

as the code inserted is proportional to the size of the cover set. Given that code size is not

a problem for most applications, this criterion may be discounted during the selection of an

SLFC cover set.

"* Minimal average frequency: The average frequency for a loop in the SLFC cover set is used

as the threshold value, for this loop, in our current implementation. A higher frequency leads

to more frequent execution of the inserted checkpoint polling code for this loop and thus a

higher run-time overhead.

" Uniform Frequency: This calls for a small variance in the frequencies for a loop in the SLFC

cover set. As checkpointing is delayed for small frequency edges and is too frequent for large



6

frequency edges, large variance in frequency weights results in a more unstable checkpoint

interval.

Although finding a minimal cover set is NP-complete, finding a cover set with minimal and

uniform frequency can be mapped into the problem of finding a minimal total weight cover set. In

the current implementation, a heuristic algorithm is used to combine all these criteria for SLFC

selection (Figure 1). This heuristic is a greedy algorithm with different priorities for cover range,

frequency average, and frequency variance. It selects loop vertices with large cover ranges and small

frequencies under constraints of small relative frequency variance and little overlap for the selected

loops.

III. EXPERIMENTAL EVALUATION

Six benchmark programs were used to examining our static insertion technique. Our objective

was to study effectiveness of the checkpoint interval maintenance in terms of:

1. The average checkpoint interval and its variance. This gives the effectiveness of an instruction-

based time measure for checkpoint interval maintenance. A small variance implies that the

instruction-based measure is accurate with respect to execution time.

2. Scalability of the checkpoint interval with respect to the instruction-based time measure

threshold, for checkpoint polling tests. Linearity in the checkpoint interval with respect to

the polling threshold allows for accurate prediction of the desired threshold.

3. The overhead for checkpoint interval maintenance due to the compiler-assisted technique.

This overhead results from the time measure accumulation and checkpoint decision making

at polling points.



7

select
[1) the number of checkpoint intervals that a loop

covers as the primary key (in decreasing order);
[2] the average frequency of a loop as the secondary

key (in increasing order); and
(3] the relative standard deviation in frequency

for a loop (std. dev./average) as the third
key (in increasing order).

sort the vertices according to the above keys.

cover-set - NULL;

/* set for no overlapping cover range */

overlapping.size - 0;

while (size(cover.sot) < desiredcoverage) do
{

for each vertex v in the sorted loop-set do
{

/0 select a v with uniform frequency e/
if (freq.variance(v) > threshold) continue;

if (size(cover.range(v) and cover.set) <- overlapping-size)
add v to cover-set;

if (size(cover-set) >- desired-coverage) break;

/0 relax the overlapping constraint e/
overlapping.size-+;

if (no changes in cover-set) break;

Figure 1. Heuristic SLFC Selection Algorithm.



8

4. Code size. This reflects the space overhead due to code insertions.

A. Benchmark Programs

Of the six benchmark programs we examined, four are scientific applications where loops are

large and the calling depth is small. The other two programs contain a number of small loops and

a large calling depth. The six benchmark programs are as follows:

convlv: is an FFT algorithm that finds the convolution of 1024 signals with one
response [13, 17].

espresso: is a SPEC integer program for boolean function minimization, developed
at the University of California at Berkeley [19]. It contains a lot of short
loops, and recursive functions.

li: is a Lisp interpreter solving the 8-queen problem. It is a SPEC integer
program developed by Sun Microsystems [19].

ludcmp: is an LU decomposition algorithm that decomposes 100 randomly gener-
ated matrices of size that is uniformly distributed between 50 and 60 [13].

rkf. uses the Runge-Kutta-Feblberg method for solving the ordinary differential
equation y' = x + y, y(0) = 2. This is a floating-point intensive program
with large loop bodies [13, 17].

rsimp: is the revised Simplex method, for solving the linear optimization problem
for the BRANDY set, from the Argonne National Laboratory [13, 17].

Table 1 describes the structure of the six programs in terms of the basic blocks. The block

size is the number of the RTL instructions in a basic block. The static program information is

collected from the program, during compilation, while the dynamic information is collected from

profiling during execution. The fact that convlv and rkf have large loop bodies is reflected in their

large dynamic basic block sizes. Similarly espresso and li have small loop bodies (and thus small

dynamic basic blocks). The basic block size has an important impact on the performance overhead

required for checkpoint interval maintenance. Smaller basic blocks result in a higher checkpoint



9

Table 1. Benchmark Characteristics.

Static Basic Block Dynamic Basic Block
Program Total number Avg. size Total number Avg. size

(ins./block) (106) (ins./block)
convlv 128 5.89 13.49 9.87
espresso 9018 3.10 108.56 2.85
li 3077 2.43 149.27 2.32
ludcmp 96 3.52 20.87 4.95
rkf 33 4.72 4.289 7.64
rsimp 185 3.08 73.02 4.57

maintenance cost in B-B and B-L as the ratio of the inserted code to the basic block size is high.

B. Checkpoint Intervals

Table 2 summarizes the checkpoint intervals generated on a Sun 3/50 diskless workstation.

The threshold value, L, is the number of RTL instructions that are executed before the next

checkpoint for B-B and B-L, and the number of loop iterations for L-L and SL-SL.

For all six programs, the checkpoint interval generated is linearly scalable. L is program

specific due to different block structures in different programs. For the same L, the floating point

programs (e.g., rkf.) generate longer checkpoint intervals than the integer benchmarks (espresso

and li). The linear scalability of the checkpoint interval makes it possible to produce a consistent

checkpoint interval across different programs. For example, the first few polling points can compare

the targeted checkpoint interval with those generated under the initial L. If they disagree, L can be

adjusted according to this linearly scalable relationship to obtain the desired checkpoint interval.

The standard deviation in the checkpoint interval reflects the accuracy of the interval as

maintained by the instruction-based measure. Table 2 compares the standard deviations of all the

four schemes. Generally, the standard deviations are less than one third of their corresponding

checkpoint interval averages. Statistically, the actual checkpoint interval would most likely be



10

Table 2. Checkpoint Interval Maintenance (Sun 3).

Interval Average Standard Deviation
Program Scheme L (sees.) (secs.)

L 5L IOL L 5L IOL
B-B 500,000 1.54 7.6.f 15.41 0.0209 0.0355 0.0528

convlv B-L 500,000 1.44 7.22 14.71 0.0347 0.0768 0.1040
L-L 50,000 7.78 23.80 47.72 0.0654 0.1168 0.1535

SL-SL 50,000 4.76 23.67 47.65 0.0960 0.2287 0.3427
B-B 500,000 0.83 4.17 8.34 0.0043 0.0474 0.1492

espresso B-L 500,000 0.79 3.97 7.93 0.0218 0.2284 0.6066
L-L 500,000 4.87 24.04 48.07 1.6159 6.0640 10.7311

SL-SL 500,000 3.89 17.81 37.27 3.5543 8.5735 13.9470
B-B 500,000 1.18 5.88 11.77 0.0002 0.0007 0.0007

li B-L 500,000 0.94 4.62 9.52 0.0031 0.0005 0.5168
L-L 500,000 7.30 37.02 72.49 0.0187 0.3404 0.0344

SL-SL 500,000 6.08 29.13 58.27 0.3896 0.1070 0.1564
B-B 500,000 1.44 7.19 14.38 0.1734 0.1552 0.1976

ludcmp B-L 500,000 1.34 6.73 13.45 0.1642 0.1556 0.2017
L-L 50,000 2.00 10.06 20.11 0.1146 0.1287 0.1969

SL-SL 50,000 1.89 9.49 18.71 0.1825 0.4040 0.3159
B-B 500,000 5.05 25.26 50.71 0.5713 2.4046 4.3954

rkf B-L 500,000 4.95 24.74 49.65 0.5684 2.?,'* 4.3822
L-L 50,000 8.18 40.68 81.38 1.0644 3.9855 6.9957

SL-SL 50,000 8.08 39.55 76.84 0.6678 1.4292 4.6366
B-B 500,000 1.26 6.29 12.58 0.0228 0.0820 0.1601

rsimp B-L 500,000 1.18 5.88 12.09 0.0204 0.0651 0.2833
L-L 500,000 15.34 76.70 154.40 0.2102 1.0541 1.8698

SL-SL 500,000 15.22 75.99 151.81 0.3683 0.7133 0.2399



11

Table 3. Interrupt Driven Dynamic Scheme (Sun 3).

Threshold Average Average Standard Exec. time
Program value number of interval deviation overhead

(secs.) checkpoints (secs.) (secs.) (%)
convlv 5 64.6 4.93 0.0693 0.17

espresso 5 41.2 4.89 0.0890 0.03
1i 5 672.5 4.99 0.0220 0.24

ludcmp 5 51.0 4.87 0.1072 0.21
rkf 5 81.0 4.98 0.0480 0.07

rsimp 5 146.2 4.99 0.0557 0.08

Table 4. Checkpoint Interval Maintenance (Sun 4).

Interval Average Standard Deviation
Program Scheme L (secs.) (secs.)

L I_5L OL L 5L 1OL
convlv L-L 50,000 0.43 2.13 4.23 0.0139 0.0412 0.0709

SL-SL 50,000 0.42 2.09 4.18 0.0119 0.0258 0.0363
espresso L-L 500,000 1.06 5.27 10.53 0.2490 0.9836 1.8720

SL-SL 500,000 0.87 3.96 8.30 0.7575 1.8839 2.9514
ii L-L 500,000 1.94 9.70 19.41 0.0074 0.0090 0.0297

SL-SL 500,000 1.65 8.26 16.53 0.0182 0.0319 0.0463
ludcmp L-L 50,000 0.25 1.26 2.52 0.0256 0.0289 0.3707

SL-SL 50,000 0.23 1.15 2.30 0.0290 0.0515 0.0449
rkf L-L 50,000 1.09 5.47 10.94 0.2189 0.8943 1.6498

SL-SL 50,000 1.08 5.38 10.78 0.2323 0.9276 1.6498
rsimp L-L 500,000 1.90 9.50 19.00 0.0227 0.0575 0.0918

SL-SL 500,000 1.78 8.88 17.80 0.0628 0.1975 0.3587

within two or three standard deviations of the average interval. As mentioned previously, small

changes in checkpoint frequency from the optimal frequency have little effect on the performance

of the optimal solution [2-7]. Using the loop iteration count in L-L and SL-SL does not noticeably

decrease the checkpoint interval accuracy. This may result from the large threshold L value,

since the large number of loop iterations between checkpoints likely leads to a stable mixture of

instructions for each checkpoint interval. As a comparison, Table 3 shows a program-independent

checkpoint interval as maintained by the dynamic interrupt scheme using the system real time

clock.

The results for L-L and SL-SL on a Sun 4 SPARC IPC are given in Table 4. The checkpoint



12

interval for the programs with a lot of floating-point operations and large loop bodies (rkf and

convlv) is significantly larger than for those with smaller loop bodies. The integer programs,

especially espresso and li, generated comparable intervals. This suggests that L is less program

specific for integer programs in a RISC machine than in a CISC machine, as the frequency of almost

one instruction-per-cycle improves the accuracy of instruction count or loop count as a measure

of execution time. However, the SUN SPARC checkpoint intervals for the integer benchmarks

(espresso and li) are in the same order of magnitude as the floating programs with comparable

loop sizes, while the SUN 3 checkpoint intervals for the same integer programs are one order of

magnitude smaller. The increased checkpoint intervals for espresso and Ii on SUN SPARC can

be explained by the lack of support for integer multiplication and division on SUN SPARC [20].

In fact, integer multiplication and division are implemented through software traps, and integer

multiplication and division are frequently used for address manipulations in the integer benchmarks

we examined. The discrepancies in checkpoint interval between programs with intensive floating

point operations and those with intensive integer operations still exist for SUN SPARC, since the

IPC SPARC implementation supports the floating point through an off-chip floating point unit.

C. Checkpoint Interval Maintenance Overhead

In Table 5 the execution overhead in B-B and B-L is generally around 20% for programs with

moderate basic block size (convlv, ludcrnp, rkf and rsimp) and more than doubles the execution

time for programs with small basic block size (< 3 for espresso and li). This is expected since

the instruction-based measure is updated in each basic block. A smaller basic block results in

larger updating code with respect to the block size, and thus larger insertion overhead. In B-B, the

checkpoint polling point is also inserted in each basic block. B-B has roughly twice the overhead



13

Table 5. Checkpoint Interval Maintenance Overhead (Sun 3).

Execution # of Executable Text seg.
Program Scheme time RTL size size

(sees.) I insns. (K bytes) (K bytes)
original 360.31 790 32 16

B-B 414.41 15.01% 1274 61.27% 40 25% 24 50%
convlv B-L 388.80 7.91% 959 21.39% 40 25% 24 50%

L-L 367.45 1.98% 848 7.34% 40 25% 24 50%
SL-SL 363.62 0.92% 811 2.66% 40 25% 24 50%

original 217.52 35621 176 152
B-B 517.70 138.00% 71611 101.04% 440 150% 408 168%

-apresso B-L 418.56 92.42% 47005 31.96% 328 86% 296 95%
L-L 312.52 43.67% 38708 8.67% 208 18% 176 16%

SL-SL 218.70 0.54% 36340 2.02% 184 5% 160 5%
original 3330.18 10459 104 80

B-B 8151.98 144.79% 22860 118.57% 200 92% 168 110%
H B-L 6481.24 94.62% 14736 40.89% 160 54% 128 60%

L-L 4429.34 33.01% 11763 12.47% 120 15% 88 10%
SL-SL 3343.68 0.41% 10595 1.30% 104 0% 80 0%

original 245.17 414 24 8
B-B 317.43 29.47% 809 95.41% 32 33% 16 50%

ludcmp B-L 297.08 21.17% 560 35.27% 32 33% 16 50%
L-L 261.73 6.75% 477 15.22% 24 0% 8 0%

SL-SL 245.19 0.01% 437 5.56% 24 0% 8 0%
original 416.37 188 24 8

B-B 434.68 4.36% 331 76.06% 24 0% 8 0%
rkf B-L 430.60 3.42% 235 25.00% 24 0% 8 0%

L-L 424.44 1.94% 202 7.45% 24 0% 8 0%
SL-SL 417.77 0.34% 198 5.56% 24 0% 8 0%

original 678.23 724 24 8
B-B 843.36 24.35% 1488 105.52% 32 33% 16 50%

rsimp B-L 796.66 17.46% 1011 39.64% 32 33% 16 50%
L-L 731.96 7.92% 852 17.68% 32 33% 16 50%

SL-SL 678.51 0.04% 764 5.52% 24 0% 16 50%

as B-L. The large value for the polling threshold L and small block size imply that the polling

at each basic block is unnecessary if a fine grain checkpoint interval is not targeted. If additional

hardware is available, an interrupt driven mechanism can be used to eliminate the high overhead

in B-B and B-L. In fact, a hardware instruction (cycle) count register can be added as part of the

process context. It can be decremented whenever an instruction is executed. Once it reaches zero,

an interrupt for checkpointing can obtain a static checkpoint without any polling overhead.



14

Table 6. Checkpoint Interval Maintenance Overhead (Sun 4).

Execution # of Executable Text seg.
Program Scheme time RTL size size

(secs.) insns. (K bytes) (K bytes)
original 28.55 1297 40 24

convlv L-L 29.83 4.48% 1401 8.02% 40 0% 24 0%
SL-SL 28.57 0.07% 1308 0.85% 40 0% 24 0%

original 44.74 46810 256 232
espresso L-L 55.95 25.06% 51572 10.17% 304 19% 272 16%

SL-SL 44.78 0.09% 46821 0.02% 272 6% 240 5%
original 939.23 13796 144 112

li L-L 1087.21 15.76% 16137 16.97% 168 17% 128 14%
SL-SL 943.95 0.50% 13807 0.08% 152 6% 112 0%

original 31.11 638 24 8
ludcmp L-L 33.98 9.23% 742 16.30% 32 33% 16 50%

SL-SL 31.27 0.51% 649 1.72% 32 33% 16 50%
original 54.47 312 24 8

rkf L-L 55.62 2.11% 337 8.01% 24 0% 8 0%
SL-SL 54.79 0.59% 323 3.53% 24 0% 8 0%

original 83.86 1114 32 16
rsimp L-L 94.07 12.18% 1309 17.50% 32 0% 16 0%

SL-SL 83.87 0.01% 1125 0.99% 32 0% 16 0%

The execution overhead for L-L is relatively small for programs with large loop sizes. However,

L-L may still result in high polling overhead for programs with small loops (espresso and li). The

profile-based SL-SL produces the smallest execution overhead of the four schemes, by polling only

at the selected loops. In fact, the overhead is less than one percent of the execution time.

The increase in program size on a Sun 3 due to code insertion is presented in Table 5. The

executable file size and text segment in the executable file are aligned at an 8K page boundary.

The change in the executable and text segment may not reflect the checkpoint insertion if there

is an unused internal fragment and the inserted code is smaller than the fragment. The number

of RTL instructions in a program may be a better indicator for describing the code size overhead.

The space overhead follows the general pattern in the execution time overhead. L-L typically has a

code overhead of 20 percent on a Sun 3/50, while SL-SL has a mere 5 percent code size overhead.

Similar results for L-L and SL-SL on a Sun SPARC IPC are given in Table 6. The execution



15

Table 7. SL-SL Profiling Summary.

Analysis time
Program Loop Cover Threshold Coverage (secs.)

set set set (%) Sun 3 Sun 4
convlv {0-14} {14} {15} 100 1.9 0.8

espresso {0-783} {621} {910} 94.2 10.1 4.3
li {0-388} {156} {13} 100 72.8 32.9

ludcmp {0-14} {4} {39} 100 3.5 1.5
rkf {0-2} {1} {7100} 100 0.4 0.1

rsimp {0-29} {20} {10} 100 1.4 0.6

overhead is reduced (by almost a half) for integer benchmark programs (espresso and li) and

increased for the floating point programs for L-L. The execution time overhead for SL-SL is again

less than one percent of total execution time. The space overhead for L-L on a Sun SPARC IPC is

slightly increased due to the relatively large RISC code size compared to the non-RISC code size.

The space overhead for SL-SL is less than four percent of program size.

D. Profiling and SLFC Selection

In our profiling experiments, the minimal coverage that was selected for the SLFC selection

algorithm was 90 percent. Table 7 indicates that our algorithm identifies only one loop/function

polling point for each of the six programs we considered. Tables 2 and 5 have shown that this

SLFC selection is effective in reducing overhead and producing stable checkpoint intervals.

The key to a successful profiling is to use a representative data set during profiling. There

are four sets of data for espresso. We used the first set (bca.in) as the profile data. Table 8

compares the results for the program profiled on bca.in and run with three non-profiled data sets.

The execution overhead for SL-SL is still less than one percent. Although the produced checkpoint

intervals are less than the profiled intervals, they are within the same order of magnitude. This

indicates that bca.in may not be the representative data set for the four data sets, and it highlights



16

Table 8. SL-SL Results for Non-profiled Data Sets.

Sun 3 Sun 4
Data set Scheme Interval Exec. time Interval Exec. time

OL (sec.) 1OL (secs.)
bca.in orginal 217.52 44.74

SL-SL 37.27 218.70 8.30 44.78
cps.in orginal 269.14 57.68

SL-SL 17.71 269.52 3.76 57.72
ti.in orginal 323.94 69.90

SL-SL 10.08 324.28 2.15 70.02
tial.in orginal 554.62 113.88

SL-SL 26.08 555.48 5.28 114.40

the need for representative profiling data in using the profile-based SLFC selection.

E. Comparison with CATCH

With respect to overhead, the L-L scheme is very close to the basic CATCH [17]. The L-L

run-time overhead is essentially the same as that for maintaining the potential checkpoint leverage

in CATCH. The extra overhead for CATCH is in polling the real time clock. The results for SL-SL

are comparable to those for the trained CATCH, as both use the profile-based approach. In the

trained CATCH, the cover set is selected based on coverage and checkpoint size with no regard to

the threshold value determination and non-overlapping of cover ranges. Table 9 compares L-L and

SL-SL with their corresponding CATCH schemes. The interrupt-driven dynamic scheme is also

presented. Generally, the overhead for our static scheme (L-L and SL-SL) is less than that for the

dynamic CATCH. The overhead for SL-SL is comparable to that for the interrupt-driven dynamic

approach, without using extra hardware support.



17

Table 9. Execution Time Overhead: Static vs. Dynamic Insertion.

Static Insertion Dynamic Insertion
Program L-L SL-SL CATCH Interrupt

Basic Trained Driven
convlv 1.98% 0.92% 4.76% 1.39% 0.17%

espresso 43.67% 0.54% 56.52% 9.85% 0.03%
Ii 33.01% 0.41% 38.12% 6.11% 0.24%

ludcmp 6.75% 0.01% 8.18% 3.76% 0.21%
rkf 1.94% 0.34% 2.74% 0.75% 0.07%

rsimp 7.92% 0.04% 13.21% 5.22% 0.08%

IV. SUMMARY

In this paper, a compiler-assisted approach for static checkpoint insertion has been presented.

This approach uses an instruction-based measure to describe checkpoint intervals in terms of com-

putation progress. The instruction-based measure is independent of the real time clock, although

it has a time attribute related to the program execution. This relationship between computation

progress and execution time makes it possible to use an instruction-based measure for checkpoint

interval maintenance.

Four different schemes, based on this approach, have been implemented and evaluated. Ex-

periments show that our static method can generate a stable and scalable checkpoint interval. The

overhead for the basic block-based schemes, such as B-B and B-L, is high without hardware sup-

port. The loop iteration count based scheme L-L can obtain a checkpoint interval comparable to

B-B and B-L, with significantly less overhead. The block size of a program has an important impact

on insertion overhead for our schemes. The profile-based SL-SL scheme can effectively reduce both

the run-time overhead as well as the space overhead. In fact, this scheme can produce scalable and

stable checkpoint intervals with an overhead comparable to that of the hardware interrupt scheme.

This only requires a representative data set for accurate prediction of program run time behavior.



18

REFERENCES

[1] P. A. Lee and T. Anderson, Fault Tolerance: principles and practice. Springer-Verlag/Wien,
1990.

[2] P. L'Ecuyer and J. Mallenfant, "Computing optimal checkpointing strategies for rollback and
recovery systems," IEEE Trans. on Computers, vol. 37, pp. 491-496, April, 1988.

[3] S. Toueg and 0. Babaoglu, "On the optimum checkpoint selection problem," SIAM Journal
on Computing, vol. 13, pp. 630-649, Aug., 1984.

[4] C. M. Krishna, K. G. Shin, and Y.-H. Lee, "Optimization criteria for checkpoint placement,"
CACM, vol. 27, no. 6, pp. 1008-1012, Oct. 1984.

[5] A. Duda, "The effects of checkpointing on program execution time," Information Processing
Letters, vol. 16, pp. 221-229, 1983.

16] E. Gelenbe and D. Derochette, "Performance of rollback recovery systems under intermittent
failures," CA CM, vol. 21, no. 6, pp. 493-499, 1978.

(7] J. W. Young, "A first order approximation to the optimal checkpoint interval," CA CM, vol. 17,
no. 9, pp. 530-531, Sept. 1974.

[8] S. Feldman and C. Brown, "A system for program debugging via reversible execution," ACM
SIGPLAN Notices, Workshop on Parallel and Distributed Debugging, vol. 24(1), pp. 112-123,
Jan. 1989.

[9] D. Pan and M. Linton, "Supporting reverse execution for parallel programs," ACM SIGPLAN
Notices, Workshop on Parallel and Distributed Debugging, vol. 24(1), pp. 124-129, Jan. 1989.

[10] L. D. Wittie, "Debugging distributed C programs by real time replay," ACM SIGPLAN No-
tices, Workshop on Parallel and Distributed Debugging, vol. 24(1), pp. 57-67, Jan. 1989.

[11] K. Li, J. F. Naughton, and J. S. Plank, "Real-time, concurrent checkpoint for parallel pro-
grams," Proc. 2nd ACM SIGPLANSymp. on Principles and Practice of Parallel Programming,
pp. 79-88, March, 1990.

[12] J. Long, W. K. Fuchs, and J. A. Abraham, "A forward recovery strategy using checkpointing
in parallel systems," Proc. Int'l. Conf. on Parallel Processing, vol. 1, pp. 272-275, 1990.

[13] J. Long, W. K. Fuchs, and J. A. Abraham, "Implementing forward recovery using checkpointing
in distributed systems," Proc. 2nd IFIP Working Conf. on Dependable Computing for Critical
Applications, pp. 20-27, Feb. 1991.

[14] K. M. Chandy and C. V. Ramamoorthy, "Rollback and recovery strategies for computer pro-
grams," IEEE Trans. on Computers, vol. 21(6), pp. 546-556, June 1972.

[15] J. S. Upadhyaya and K. K. Saluja, "A watchdog processor based general rollback technique
with multiple retries," IEEE Trans. on Software Engineering, vol. 12(1), pp. 87-95, Jan. 1986.



19

[16] J. S. Upadhyaya and K. K. Saluja, "An experimental study to determine task size for rollback
recovery systems," IEEE Trans. on Computers, vol. 37(7), pp. 872-877, July 1988.

[17] C. C. Li and W. K. Fuchs, "Catch: Compiler-assisted techniques for checkpointing," Proc.
20th Int'l. Symp. on Fault-Tolerant Computing Systems, pp. 74-81, 1990.

[18] R. M. Stallman, "Using and porting GNU CC," Proc. 2nd Int'l Conf. on Computers and
Applications, 1990.

(19] SPEC, Spec newsletter. Fremont, CA: SPEC, Feb. 1989.

[20] ROSS Technology, Inc., SPARC RISC user's guide. 7748 Hwy. 290 West, Austin, Texas 78736:
ROSS Technology, Inc., 1990.


