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Nomenclature

Upper Case

A flux Jacobian, A = g—g

A} a coeflicient for Blottner’s species viscosity equation

Ary — A coefficients for temperature dependent thermal conductivity

Ay — AL coefficients for temperature dependent viscosity

A% Jacobians evaluated with negative/positive eigenvalues set to zero

At Jacobians of the F'* and F~ flux-split flux functions

A Yoon's approximate Jacobians

B; a coeflicient for Blottner’s species viscosity equation

C temporary constant

cy a coefficient for Blottner’s species viscosity equation

Cy specific heat at constant pressure, J/mole K

C. specific heat at constant volume, J/mole K

C., averaged specific heat at constant volume, J/mole K

C.. specific heat at constant volume for electronic modes, J/mole K

C., specific heat at constant volume for rotational modes, J/mole K

Cr specific heat at constant volume for translational modes, J/mole K

C, specific heat at constant volume for translational and rotational
modes, J/mole K

C., specific heat at constant volume for vibrational modes, J/mole K

Ce,. specific heat at constant volume for vibrational and electronic
modes, J/mole K

Ce, . Ce, constants in K — € source terms

C, constant in calculation of eddy viscosity from & and e

D diffusion coefficient

D; species diffusion coefficient

D, cell Damkohler number

E total energy

E. vibrational/electronic energy per unit volume

F stretch factor for adapted mesh

F(U) inviscid flux function

Y T PN ON flux-vectors in z, y, and = directions

1:“,‘+1/2‘]-‘k inviscid flux through surface dividing ¢, 5,k and ¢ + 1, j, k cells

FE) Steger & Warming split flux functions for positive/negative
eigenvalues

O O O diffusive fluxes in the z. y. and = directions

F\. F;'. F} Steger & Warming split flux functions for eigenvalues

G term in k — € source terms

H total enthalpy. H = (E + p)/p

k.. equilibrium constant for reaction r
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molecular weight of mixture

molecular weight of species s

source terms

number of cells in shock capture band for bow shock adaption
total number of adaptable cells along the mesh line for bow
shock adaption

number of rcactions

number of species

flux vector

Prandt! number

turbulent Prandtl number

normal momentum flux

flux through cell surface

viscous, heat conducting, and diffusing portion of flux through
cell surface

inviscid portion of flux through cell surface

mixture gas constant, R = R/M

universal gas constant, = 8.31434 J/mole K

matrix of eigenvectors fo the flux Jacobian marrix, A
inverse of R

surface of a volume

sign of a characteristic variable (Harten Yee flux)

vector normal to a face of a cell with magnitude equal to the
area of the face

species Schmidt number

distance from the edge of the protected mesh to the shock, for
bow shock adaption

translational temperature

temperature of distant body (for radiative heat transfer)
temperature inside body

reference temperature for the c,,, k,, and s, curve fit
temperature at edge of Knudsen layer
vibrational/electronic temperature

wall temperature

total variation of U

conservative variables

volume

velocity vector

mole fraction of species s

chemical formula for species s

molar concentration of species s in moles / cm?
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by — bs
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polynomial curve fit coefficients for ¢;,, h,, and s, in terms of T
constants in the Landau-Teller expression for the vibrational
relaxation time constant

coefficient of the curve fits to c,,, and ey,

speed of sound

heat capacity of wall

specific heat at constant pressure, J/Kg K

mass fraction of species s, ¢, = p,/p

specific heat at constant volume, J/Kg K

averaged specific heat at constant volume, J/Kg K

specific heat at constant volume for electronic modes, J/Kg K
specific heat at constant volume for rotational modes, J/Kg K
specific heat at constant volume for translational modes, J/Kg K
specific heat at constant volume for translational and rotational
modes, J/Kg K

specific heat at constant volume for vibrational modes, J/Kg K
specific heat at constant volume for vibrational and electronic
modes, J/Kg K

coefficients of eigenvalue smoothing (Harten-Yee fluxes)

mass specific internal energy, J/Kg

volume specific internal energy, J/m?

variable in the approximate equation of state, p = p(3 — 1)/(e — €o)
mass specific electronic energy, J/Kg

mass specific rotational energy, J/Kg

mass specific translational internal energy, J/Kg

mass specific vibrational energy, J/Kg

mass specific vibrational/electronic energy, J/Kg

equilibrium value of mass specific vibrational/electronic energy, J/Kg
intermediate term in evaluation of Harten-Yee fluxes

enthalpy of species s

unit normal vector in x-direction

unit normal vector in y-direction

unit normal vector in z-direction

turbulent kinetic energy

boltzmann constant = 1.3805 x 1023

backward chemical reaction rate coeflicient for reaction r
forward chemical reaction rate coefficient for reaction r
coefficient of laminar heat conduction

coefficient of heat conduction for solid wall
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z, y, and = components of the unit normal vector

pressure
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with the other conservative variables held constant

partial derivative of pressure with respect to the :’th component of
momentum, with the other conservative variables held constant
partial derivative of pressure with respect to the total energy, with
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partial derivative of pressure with respect to E,, with the

other conservative variables held constant

conductive heat flux in the ’th direction

conductive heat flux from gas to wall
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conductive heat flux from within body to wall

conductive heat flux of vibrational/electronic energy in the
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time
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system

Greek Letters

r intermediate term in evaluation of Harten-Yee fluxes

A, initial cell height of the adapted mesh for bow shock fitting
Af time step

A diagonal matrix with eigenvalues of A on diagonal

Az A with negative/positive eigenvalues set to zero

] dissipation operator for Harten-Yee fluxes

Y function used during evaluation of Harten-Yee fluxes

Q. absorptivity of wall (for radiative heat transfer)

Ciyr)2 characteristic variables. used for Harten-Yee fluxes

~ thermodynamic variable in the expression. ¢? = 303

4 thermodynamic variable in the expression. p = p(5 — 1)(e — €g)
o) change of variable () over tinie step

) Ikronecker delta

¢ turbulent kinetic energy dissipation rate

€. emissivity of wall (for radiative heat transfer)

term in eigenvalue smoothing for Harten-Yee fluxes
coordinate running in direction of increasing & index

6

n coordinate running in direction of increasing j index

0 wall accomodation coeflicient

K partial derivative of the thermal eq. of state p = p(p;,.... pns. €)
for thermal equilibrium. & = %f ,

N parameter in extrapolation of U to surface for MUSCL differencing
(k = =1: fully upwind. & = 1: central)

Kir partial derivative of the thermal eq. of state p = p(p,. .... px5: €trs €ve)
for thermal nonequilibrium. K, = 5‘%’: b

Koe partial derivative of the thermal eq. of state P =P P1s-e PNSy Etrs Eve)
for thermal nonequilibrium, x,. = B%L -

N m’th eigenvalue of matrix A o

1 molecular viscosity of mixture

I turbulent viscosity of mixture

[k coeflicient of viscosity for k transport equation

I coeflicient of viscosity for € transport equation

v, forward stoichiometric coefficients for species s and reaction r

vy, “ackward stoichiometric coefficients for species s and reaction r

N coordinate running in direction of increasing 7 index

T universal constant (= 3.1415927)

p mass density of mixture




£s mass density of species s

Pi+1/2 arithmetical averaged density

o Stefan-Boltzmann constant (= 5.67032 x 1078 )

Tis1/2 intermediate term for Harten-Yee fluxes

Ok, O constants for k£ — ¢ turbulence model

Tij stress tensor

TLT Landau-Teller time constant for vibrational relaxation

) parameter in extrapolation of U to surface for MUSCL differencing
(¢ = O: first order, ¢ = 1: second order)

Xs partial derivative of thermal equation of state, x, = 58‘% e sien o

Mathematical Symbols

PR summation over index s from 1 to NV
v, product over index s from 1 to N
Subscripts
i,7,k average value of variable in cell i,j,k
Superscripts
n value of variable at current time step (time step where solution
is known)
n+1 value of variable at next time step (time step where solution is
being sought)
s value of variable at edge of Knudsen layer




1 Introduction

Computational fluid dynamics (CFD) is becoming a major element in the aerody-
namic design and analysis of full aircraft and aircraft components. As computers
and solution algorithms become even faster, numerical analysis will gradually re-
place wind-tunnel testing in most design procedures in the aerospace industry. The
emphasis on wind tunnel testing will shift from parametric testing of candidate de-
sign configurations to validation of CFD numerical analyses and verification of final
designs. CFD analysis can potentially generate design data much faster and at sub-
stantially less cost than by using wind-tunnel testing. CFD also offers the capability
of numerically simulating flow fields that can not be (or are extremely difficult to be)
achieved in wind tunnels. Since hypervelocity high-temperature flows are very diffi-
cult to achieve in wind tunnels, CFD analysis is of critical importance in the design
of hypersonic aircraft such as the National Aerospace Plane (NASP).

CFD analyses require immense computer resources. The future success of CFD
analysis depends greatly upon the development of faster computers and better solu-
tion algorithms. Solutions of the 3D Navier-Stokes equations (modeling the viscous
flow of compressible fluids) run for hours on present supercomputers (such as the
Cray-X-MP, Cray-II, and the Cyber 205) for the analysis of flow about relatively
simple aircraft components. Peterson [1] projects that computers capable of well
over one teraflops (one trillion floating-point operations per second) and having at
least one billion words of memory will be necessary for accurately simulating whole
aircraft turbulent flow fields using current algorithms. The estimates are even more
awesome when additional complexities are introduced into the equations modeling the
flow field: multi-species chemical reactions, multiple phases, sub-grid scale turbulence
models, and direct simulation of turbulence. The (theoretical) technological limit of
the Single-Instruction-Single-Data (SISD) and the Single-Instruction-Multiple-Data
(SIMD) computer architectures currently used on most supercomputers, however, 1s
only about one gigaflop (one billion floating-point operations per second) [2]. New
computer architectures must be utilized to achieve the substantial increases in com-
puting speed required for the desired CFD applications.

The only clear path to achieving substantial increases in computing speeds is the
implementation of Multiple-Instruction-Multiple-Data (MIMD) computer architec-
tures — that is parallel computers. Numerous first generation parallel computers
have been built and/or are presently available. These include the eight-cpu Crey-
Y-MP, ILLIAC-1V, Denelcor’s HEP computer, Alliant’s FX/8, Intel’s Touchstone
(iPSC/860), and Silicon Graphics Iris. Unfortunately, the current algorithms have
been developed primarily for SISD machines with some use of vectorization. These
algorithms will not be able to utilize the full capabilities of parallel computers effi-
ciently.

There is an urgent need to develop parallel algorithms for CFD flow analysis codes
to take advantage of parallel computers, but, development of parallel algorithms is not




a straight forward process. One of the problems with the use of parallel computers is
that their architectures differ in many respects. The number of CPU’s can vary from
2 to tens of thousands and have greatly differing computing capability. The memory
may be globally shared by all CPU’s or each CPU may have its own dedicated memory.
The method by which the CPU’s communicate is also a variable. Each CPU may
have a dedicated path to all of the memory, a switching network that connects the
CPU’s to memory, a bus that provides a common path connecting all the CPU’s with
the memory, or other methods as well. The above architectural aspects of parallel
computers, and the fact that these architectures are changing in time, make the
development of parallel algorithms difficult.

The goal of this work is to develop a flow analysis procedure for solving the
three-dimensional Navier-Stokes equations. The flow analysis procedure is capable
of simulating three-dimensional viscous hypersonic flows over complex aerodynamic
bodies, including the effects of finite-rate chemical reactions. Specific applications
could include hypersonic vehicles like the National Aerospace Plane (NASP), SDI
interceptors, as well as other conventional aircraft flow fields. The flow analysis
procedure utilizes efficient parallel algorithms for efficient computing on three parallel
computer: a CRAY Y-MP with 8 processors, a distributed memory Intel iPSC860
computer with 128 processors, and a Silicon Graphics Iris 4-D with 8 processors.

The Navier-Stokes equations, with additional equations for thermochemical nonequi-
librium, provide an accurate mathematical model of the flow of gases over most aero-
dynamic bodies at all speeds from low subsonic to hypersonic. If engineers could
solve these flow equations accurately and timely (like within an hour) for partial or
full aircraft configurations, the aircraft design process would be revolutionized. Engi-
neers could rapidly evaluate candidate configurations, and explore radically different
designs quickly and inexpensively. If numerical flow solutions could be performed
in much less than one hour, then software could be developed to perform automated
optimization of aircraft aerodynamic designs. The results would be more fuel-efficient
and higher-performance aircraft that cost less to design as compared to today’s air-
craft.

During the Phase I work several candidate parallel algorithms were developed and
implemented into a prototype 3D Navier-Stokes code. The algorithms were developed
on an Encore Multimax computer [3] with 10 NS§32332 32-bit microprocessors, each
capable of executing 2 million instructions per second (mips), yielding a total of 20
MIPS (millions of instructions per second) and approximately 3 MFLOPS (millions
of floating-point operations per second) for the Linpack double precision benchmark.
After incorporating the algorithms into prototype computer codes, the codes were
applied to a computationally demanding flow field calculation on the Multimax.

During the current work (Phase II) the most promising parallel algorithm has
been refined and optimized. The algorithm is incorporated into a production code
capable of simulating hypersonic flows over complete aircraft with complex geometry.
The final result of Phases II and III will be a useful CFD flow analysis code that




efficiently utilizes the parallel processing capability of MIMD computers with large
numbers of processors and can be applied to the most computationally demanding
flow field problems.

This report is broken into several sections. The section following this introduc-
tion, section 2, discusses the specific tasks performed during this contract. Section
3 discusses the model code developed to experiment with parallel processing before
beginning parallelizing the more complex Navier-Stokes code. Section 4 discusses the
governing equations and boundary condition solved by the Navier-Stokes code and
section 5 discusses the solution procedure used by the Navier-Stokes code. Section
6 discusses the parallelization of the Navier-Stokes code on three parallel computers.
Section 7 discusses the the suite of test cases chosen for this contract. Section 8 dis-
cusses the analysis of the parallel performance of the Navier-Stokes code and, finally,
section 9 gives conclusions.




2 Phase II Tasks

This section contains a brief description of the tasks completed during this contract.
Details of the research and results are discussed in following sections.

TASK 1. Develop a Parallel Implicit Algorithm for the Model Equa-
tions for the Silicon Graphics Iris.

A model code was developed that simulates the operation count, memory ac-
cesses, memory storage requirements, and the ratio of serial/parallel code of the
Navier-Stokes equations. Since the model code uses the parallel implicit algorithm
to solve a simple set of Laplace equations, instead of the much more complicated
Navier-Stokes equations, the development time is much shorter and modifying the
algorithm is much more convenient. The model code allowed us to study the behav-
ior of the parallel implicit algorithm on the Silicon Graphics Iris 4-D such as data
communication overhead, optimum subzone size, and potential speedup. Using this
model code the parallel implicit algorithm was optimized for execution speed. The
model code was written in Fortran 77. See section 3 for discussion and results.

Task 2. Develop a Parallel Implicit Algorithm for the Model Equations
for a Distributed-Memory MIMD Computer.

As in TASK 1 a model code was developed to study the behavior of the parallel im-
plicit algorithm on a distributed-memory MIMD computer. The distributed-memory
MIMD computers available at the beginning of this contract were examined and the
Intel Touchstone iPSC860 computer system was chosen. Time was obtained on the
128 processor iPSC860 at NASA’s Numerical Aerodynamic Simulator (NAS) to per-
form the programming of this and latter tasks.

Task 3. Develop a Parallel Implicit Algorithm for the Model Equations
for the Cray Y-MP Computer.

As in TASK 1 a model code was developed to study the behavior of the parallel
implicit algorithm on a Cray Y-MP supercomputer. The code was parallelized using
macrotasking. The Cray Y-MP at NASA’s Numerical Aerodynamic Simulator (NAS)
at Moffett Field, California was used. An important part of the effort was to compare
the cost/performance of various MIMD computers with current supercomputers.

Task 4. Evaluate Ada, C, and Mixed Fortran77/C Languages.

The use of Ada, C and mixing Fortran77 with C, instead of Fortran77 was eval-
uated. It was decided that the alternative languages provided no benefit significant
enough to warrant reprogramming the existing production Navier-Stokes program.
Fortran 77 was used for all of the remaining tasks.

Task 5. Implement a Parallel Implicit Algorithm into the Zonal Navier-
Stokes code for the Silicon Graphics Iris.

In the first four tasks we learned how the parallel implicit algorithm should be im-
plemented into the full zonal Navier-Stokes code. With this information, in this task
the coding was performed for execution on the Silicon Graphics Iris 4-D computers.

The governing equations and solver for the Navier-Stokes code are described in




section 4 and 5, respectively. This code is also used in the following five tasks.

Task 6. Calculate Flow Problems on the Silicon Graphics Iris.

In this task a suite of six to ten real-life engineering calculations was performed
on the Silicon Graphics Iris. These cases include simple and complex two and three-
dimensional viscous flows. Comparisons where made to experimental data. The
parallel efficiency of the algorithm was measured over a wide range of processors.
These problems include subsonic, transonic, and supersonic flows, over a range of
Reynold’s number, and with various types of boundary conditions. The choice of test
cases is described in section 7.

Task 7. Implement a Parallel Implicit Algorithm into the Zonal Navier-
Stokes code for a Distributed-Memory MIMD Computer.

The parallel implicit algorithm was implemented in the zonal Navier-Stokes code
for execution on a distributed-memory MIMD computer. The distributed-memory
MIMD computers available at the beginning of this contract were examined and
the Intel Touchstone iPSC860 computer system was chosen. Time was obtained on
the 128 processor iPSC860 at NASA’s Numerical Aerodynamic Simulator (NAS) to
perform the programming of this task and the calculations of Task 8.

Task 8. Calculate Flow Problems on the Distributed-Memory MIMD
Computer.

As in Task 6, we ran the same suite of real-life engineering flow problems to
evaluate the performance of the zonal Navier-Stokes code on the distributed-memory
MIMD computer.

Task 9. Implement a Parallel Implicit Algorithms into the Zonal Navier-
Stokes code for ithe Cray Y-MP.

In order to get comparisons with current supercomputer speeds, we implemented
the parallel implicit algorithm into the zonal Navier-Stokes code for execution on the
CRAY Y-MP.

Task 10. Calculate Flow Problems on the Cray Y-MP Computer.

The suite of real-life engineering flow problems was run on the CRAY Y-MP with
the number of processors varying from 1 to 8.

Task 11. Evaluate and Compare Results.

In this task we evaluated and compared the results from the previous tasks. In
particular, the parallel speedup and efficiency of selected flow problem on each com-
puter was compared. Trends were identified. Effects of flow conditions, computer
architecture, algorithm characteristics, and any other significant items were analyzed
and documented in section 8.

Task 12. Deliver Software to DARPA.

The zonal Navier-Stokes software that is developed in this contract will have use
by others in the DARPA research community for application to flow field compu-
tations. There may also be interest in the DARPA research community to analyze
and study the actual coding in the actual coding in the zonal Navier-Stokes code in
order to better understand the parallel implicit algorithm. The use of the code are




be documented in a user’s manual. The software is being delivered to DARPA.

Task 13. Reporting, Documentation, and Reviews.

Results of this work were documented in semi-annual technical reports and in this
final technical report. R&D status reports and funds expenditure charts were deliv-
ered monthly. In order to enhance the communication between DARPA and Amtec,
oral reviews were made periodically at the DARPA office in Arlington, Virginia.




3 Model Code

A model code was developed to simulate the operation count, memory accesses, mem-
ory storage requirements, and the ratio of serial to parallel code in the Navier-Stokes
code. This development was under tasks 1 through 4 as described in section 2. Since
the model code uses a parallel implicit algorithm to solve a simple set of Laplace
equations, instead of the much more complicated Navier-Stokes equations, the devel-
opment time is much shorter and modifying the algorithm is much more convenient.
The model code is written to match the structure of the Navier-Stokes code as closely
as possible.

The model code solves the Laplace’s equation (V?¢ = 0) on a three-dimensional
multiple-zone Cartesian grid. The internal points are differenced using standard sec-
ond differences

Bit1,5k — 20ijk + Dic1jk
1
Gisrrk = 28isk + Gijork | Bisker = 26ik + Pisk-1 _ g
Ay? Az? B

Dirichlet boundary conditions are used with ¢ set to unity on some of the faces of the
zones and zero on the other faces. The result, when equation 1 is applied to all cells
in the grid, is a large sparse linear system of algebraic equations. These equations
are solved using point Gauss-Seidel relaxation. This relaxation scheme is modified
to be a lower-upper (LU) approximate factorization as is done for the Navier-Stokes
solver (see section 5). The procedure uses a diagonal wavefront algorithm with which
the inner most loop is over all points on the 1 + j + k constant plane. All points on
this plane are independent of the other points on the plane so that they may all be
updated simultaneously. This allows the code to vectorize (or parallelize) over the
inner loop. The Navier-Stokes solver also uses a diagonal wavefront algorithm.

The model code and the Navier-Stokes code are multiple-zone codes which use
multiple ¢, j, k ordered grids patched together at common boundaries. The hierarchi-
cal structure of the codes reflect their multiple-zone nature. The main routine is a
driver routine which calls subroutines to operate on zones. The main operations are
“perform one iteration for a zone” and “transfer data between zones”. This model
fits nicely with the data partitioning and interprocessor communication approach
required on parallel computers.

Development of the model code was completed on the Cray Y-MP, the Intel Touch-
stone iPSC/860 and the Silicon Graphics Iris 4-D machines. The following subsec-
tions present results and specific implementation of the domain decomposition due to
different computer architectures on the distributed memory MIMD computer (Intel

Touchstone iPSC/860), the Cray Y-MP, and the SGI machine.

|
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Figure 1: Domain Decomposition on Distributed Memory MIMD Computer

3.1 Distributed Memory MIMD Computer

The code was parallelized on the distributed memory computer using a permanent
domain decomposition technique. The basic idea of domain decomposition is to break
up the overall domain into subdomains (subzones) which are assigned to separate pro-
cessors. In this case, the number of subzones is equal to the number of processors
used in the calculations. A schematic diagram of the domain decomposition of a
simple two-dimensional geometry is shown in Figure 1. The size of the subzones must
be small enough to fit within the available local memory of the processor attached
to that subzone. Calculations are driven using a global time step. Subzones are con-
nected by means of interzone patches which provide communication between adjacent
subzones. This communication between the subzones on different nodes is done by
copyving the data from the sending subzone to an intermediate array on the same
processor. This array is then sent to an intermediate array on the receiving processor
and subsequently used as boundary conditions in the corresponding subzone on the
receiving processor.

However, this domain decomposition technique changes the relaxation procedure
somewhat because data is lagged at the boundaries of the zones. We studied the effect
of this modification on the convergence rate by running a 40 x 40 x 40 calculation
using 1 through 25 processors on the iPSC/860 computer (i.e., 1 to 25 zones). Figure
2 shows the results of the model code with number of zones varying from 1 to 25.
Figure 3 shows the corresponding convergence rates. It is seen that subdivision of
the zones reduces the convergence rate slightly as the number of zones increases.
However, the effect seems to be small and therefore, can be ignored especiaily when
the gain in speed up is significant.
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Processors | Time (seconds) | Speed-Up | Efficiency | MFlops
1 1763.5 1.00 100 1.70

4 440.1 4.00 100 6.81

9 196.0 9.00 100 15.30
16 110.5 15.96 100 27.14
25 73.6 23.96 96 40.75
32 59.6 29.59 92 50.32
36 53.0 33.27 92 56.59
49 41.8 42.19 86 71.75
64 32.9 53.60 84 91.16

Table 1: Results of Model Code Calculations on Intel iPSC/860 MIMD Computer.

The Laplace code was run numerous times to obtain timings on the iPSC/860
parallel computer. The results, which were obtained using the vector option on the
Intel Portland Group compiler (if77), are shown in Table 1. Note that the efficiencies
are very high for this problem. The MFlops were calculated from the measured time
on the iPSC/860 and the number of floating point operations measured by the Cray
hardware performance monitor for the Cray Y/MP version of the model code. The
main contributors to the reduction in efficiency with increasing number of processors
are sequential code, load leveling, and interprocessor communication overhead.

Sequential code are sections of the computer program that cannot be parallelized.
The time required to execute the sequential portion of the code does not decrease
with increasing number of processors and therefore becomes increasingly significant
as the total run time decreases with the addition of more processors. Even though the
algorithm is designed to be perfectly parallel (i.e., no sequential portion whatsoever),
there are redundant initializations which are performed by each processor and thus
can be thought of as sequential code. Unfortunately, the overall amount of work
performed by the Laplace code is small and hence the work performed on this very
small portion of sequential code is a significant percentage of the total work.

The second contribution to the reduction in efficiency is poor load leveling. Load
leveling is making the amount of work performed by all processors equal. If the
amount of work in not equal then some processors will waste CPU time waiting
for other processors to finish, and hence the overall performance is dictated by the
slowest processor (or processor with the most work). The model code automatically
subdivides the grid into relatively equal subzones. If the subzones are all of the
same size, the amount of work performed by the processors is nearly equal and the
load is leveled. Unfortunately, the solution domain cannot always be subdivided into
equally sized subzones. To elucidate this effect, we have performed calculations on
four different grid sizes. The original speed-up and efficiencies are shown in Figures
4 and 5.

The lack of load leveling can be factored out to obtain the potential speed-up and
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efficiency when the work load of each processors are equal,

average zone size

efficiency = - —_
maximum zone size

The adjusted speedup and efficiency, with the effect of load leveling factored out, is
shown in Figures 6 and 7. The adjusted efficiency with 64 processors varies from 48%
for a 48x48x3 grid to 62% for a 72x72x5 grid. The remaining reduction in efficiency
1s due to sequential code and interprocess communication overhead. Note that for
smaller problems. the overall parallel performance is shown to be degraded. Therefore.
to maximize a parallel performance, one must run the largest problem possible on
each of the processor. For small problems, use a small number of processors and for
large problems use a .arger number of processors. However, if wall-clock-time is the
primary interest, the more processors used in the calculation the shorter the time.
For the problems considered, there was never a case where increasing the number of
processors increased the run time.

The final contribution to the reduction in efficiency is interprocessor communi-
cation overhead. Interprocessor communication adds an overhead which is highly
dependent on the parallel computer being used. For the iPSC/860 the communi-
cation rate between processors is very fast so the main overhead is in establishing
the communication link. The iPSC/860 therefore favors the passing of a few large
sections of data rather than many small sections of data. For a given size problem.
the interprocessor communication overhead increases with the number of processors
for two reasons: the total amount of data transferred increases and the number of
interzone communication links increases (more communication startup overhead). In-
terprocessor communicat.on overhead is believed to be the biggest contributor to the
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reduction in parallel efficiency in Figures 6 and and 7.

3.2 Shared Memory Cray Y-MP

The procedure for parallelizing c:. the Cray Y-MP is similar to the procedure used for
the distributed memory MIMD computer. Both use domain decomposition, where
the overall domain (original zones) is broken up into subdomains (new zones) which
are assigned to separate processors. This subdivision of zones changes the relaxation
procedure because data is lagged at the boundaries of the zones. The effect of these
lagged boundaries on the convergence rate was shown to be small for the iPSC/860
version. and since the Cray Y-MP has only 8 processors this effect is negligible. The
parallel performance was measured for macrotasked runs with 1 to 8 processors. It
is important to note that these runs were performed in the dedicated (one user)
mode. since there are no tools to measure the performance of macrotasked jobs in the
multiuser mode. The resulting speedup and parallel efficiency are shown in Figure 8.
The efficiency varies from 100% for one cpu to 23% for 8 cpu’s. This is a very rapid
drop in efficiency compared to the results for the Intel Touchs one computer. In fact.
the speedup in Figure 8 shows that it is actually slower to run with 6 or 8 processors
than to run with 4 processors.

[t was concluded that the poor parallel performance of the model code on the
Cray Y-MP is due to a reduction in vector length with zonal subdivision. The Cray
Y-MP cpu’s are highly dependent on vectorization to obtain their good performance.
The domain decomposition used to parallelize the code reduces the vector lengths.
To test this hypothesis we ran the model code on one cpu with the grid divided into
subzones as it is when run in parallel. The speedup and efficiency are then caiculated
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Figure 8: Parallel performance of model code on the Cray Y-MP - calculated by
comparing to one zone on one cpu

by comparing to the single cpu results with an equivalent number of subzones. The
results are shown in Figure 9, where p is the number of subzones. Using this compar-
ison, the parallel efficiency varies between 98% and 126%. Clearly, the reduction of
vector length due to the division of the solution domain into subzones is the primary
cause of the low performance in Figure 8, not the fact that multiple cpu’s are used.

3.3 Shared Memory Silicon Graphics Iris

Most of the subroutines developed for Cray Y-MP and distributed memory MIMD
computers were used to develop a parallel version of the model equations on the Silicon
Graphics Iris 4-D with 8 cpu’s. The SGI is a shared memory MIMD computer. The
parallelization is done by generating threads that run on the different processors.
The DO loop is the basic work unit which is split into concurrent threads. Since
the compiler on this machine is limited only to DO loop parallelization, the original
thread is the master, and it controls the execution of all other threads. By splitting
the DO loops surrounding the A-level in the driver routine, the code is executed in
parallel. The CSDOACROSS compiler directive is used for the DO loop. The subzone
number is defined as the LASTLOCAL variable where the final value is important.
However, the iteration number, time step, and convergence rate are defined to be
shared. Data for each subzone is isolated and can only be accessed by one thread,
thus preventing memory access collisions.

Based on the :— and j—direction divisions specified by the user, each zone is
divided automatically into subzones. One of the processors must perform the job
management and i/o in addition to number crunching. This adds work to one pro-
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Figure 9: Parallel performance of model code on the Cray Y-MP - calculated by
comparing to p zones on one cpu

cessor and could effect the load leveling for small problems, but it is insignificant for
most problems. The interzone communication is done by copying boundary condition
data into an intermediate array. Data in this array is locked until all processors finish
the time step. This synchroaizes the calculation so that no processor may start on
the next time step until all processors are finished with the current time step. If the
subdivision of the zones has a load balancing problem, or if other processes delay
the execution of one thread. this synchronization will significantly reduce the parallel
efficiency. However, synchronization is necessary to prevent memory collision which
could easily happen in a shared memory system. After the time step is finished in
all subzones, data in the intermediate arrays are available to complete the transfer of
data between the subzones.

The model code was run numerous times to obtain timings on the parallel Silicon
graphics computer. The solution was the same as that obtained on the iPSC/860,
Figure 2. The parallel speed up and efficiency results are shown in Figures 10. The
test case consists of 40 x 40 x 40 mesh points, similar to the one used for timings on the
Cray Y-MP and Intel Touchstone iPSC/860 machines. It is important to note that
the runs were performed in a multi-user mode. Since the maximum number of cpus
on the SGI machine is 8, the effects of the domain decomposition on the convergence
rate is negligible. Unlike the Cray Y-MP, however, the reduction in vector length from
the subdomain decomposition does not significantly affect the overall performance of
the code. The parallel speed up and parallel efficiency are excellent for up to 4 cpu's.
The significant drop in efficiency of the code for more than 4 cpus is due to memory
contention, bus bandwidth limitations, and cpu-time competition from other users on
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4 Navier-Stokes Equations with Chemistry

4.1 Transport Equations

Tasks 5 through 11 of this contract (see section 2) were performed using Amtec’s ex-
isting three-dimensional Navier-Stokes code. This code solves the Reynolds-averaged
Navier-Stokes equations with user specified chemistry, thermal nonequilibrium, and
a two-equation turbulence model. These equations are given below in integral form

(4].
%///VOIUdV+//S}3-ﬁdS=//mNdV (2)
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Here the standard summation convention (sum over repeated indices) is followed and
d;; is the Kronecker delta function (é;; = 1 when ¢ = j and §é;; = 0 otherwise). The

subscript s is the number of the chemical species being considered.

The w, through w, are the chemical species source terms. For a set of NR reactions

defined by
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The forward reaction rate, k;,, is calculated from the Arrhenius equation using user
supplied coeflicients. The equilibrium constant, K, is calculated from user supplied
curve fits to the species enthalpy and entropy.

The vibrational-electronic energy source term is given by the Landau-Teller for-

mula,

er. — €ye
Wye = e __° 3
g TLT ®)
where the time constant 7,7 is given by the Landau-Teller expression,
b, T* exp ((bs/T)™)
TLT = p(l — b5€_b6/T) (4)

and the equilibrium vibrational energy, €], is evaluated in terms of the translation-
rotational temperature, T, using the curve fits described in section 4.2. Equations
3 and 4 are a simple relaxation of the mixture vibration-electronic energy toward
equilibrium.

For turbulent flows there are two options for turbulence models: the Baldwin-
Lomax algebraic model [5] and the k — € two-equation model [6]. When the k — ¢
turbulence model is chosen, the last two transport equations in equations 2 are solved.
The pertinent constants and relations for this model are as follows.

me =
Ok
— Kt
pe = pt s
C, = 144
C, = 192
g, = 1.0
o, = 1.3
Ou; Ouy\ Ou;
Gr = p (3.1;; + 8:&) Oz i
k2
pe = Cub-
C, = 009
HeCp
kk = =%
t P,

The values of C¢,, C,,, 0, 0, and C, may be specified by the user. The above values
are the defaults.

Physically Equation 1 represents a very simple idea: the time rate of change of
mass. momentum, and energy within an arbitrarily chosen volume, V, is equal to
the apparent flux of these quantities inward through the surface, S, surrounding the
volume plus the production of these quantities within the volume. The finite volume
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Figure 11: Finite Volume Mesh

method consists of breaking the flow field up into a large number of finite volume cells,
as shown in Figure 11, and applying the integral equations directly to each volume.

4.2 Thermodynamics

The equations in the previous section must be supplemented by an equation of state
to calculate p and T from p and e. The code offers three options for equations of
state: a single species perfect gas, Tannehill’s curve fits for real air, or a mixture of
thermally perfect gases. The latter option must be used if multiple species or thermal
nonequilibrium is considered.

In addition to calculating p and T, it is necessary to calculate five thermodynamic
variables which are needed to calculate the numerical fluxes. The first two are 4 and
¥. For perfect gas flows v and ¥ are identical and are equal to the ratio of specific
heats. ¥ = 2. For real gases, however, the ratio of specific heats no longer has any
physical significance and the quantities ¥ and 7 are defined so as to simplify the
calculation of numerical fluxes. In particular we use Vinokur’s definition (7).

pc
y = =
4
_ P
= 14—
! ple — ¢o)

For numerical fluxes based on Roe’s flux function Vinokur has defined the alternative
variables x and yx which are the partial derivatives of pressure p with respect to
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internal energy per unit volume é and density p.
dp
9¢|,
dp

X = £
Ple

The final state variable is the mean specific heat &, = -‘-“T"ﬂ

4.2.1 Perfect Gas

The perfect gas equation of state is expressed with the following equations:

p = p(r—1e (5)
T = £ (6)
Cy

The equation of state can be altered for different gases by specifying the ratio of spe-
cific heats, v, and the gas constant, R. The gas constant for a gas of a given molecular
weight, M, is calculated from the universal gas constant B = 8.31434J/mole K using
the formula R = R/M. The specific heat, ¢, is calculated using c, = TR—.

The remaining five needed state variables are given by the following formulas.

v = specified

Y =7

Kk = v-—1

X 0

_ R

c1J = cv::———-
¥y-1

4.2.2 Equilibrium Air Curve Fits

The second option for equation of state is Tannehill’s curve fits for real air. With this
option the code calls a subroutine given in reference [8] to calculate p and T from
p and e for each finite-volume cell and each time step. This routine contains curve
fits for p, T, and c in terms of p and e obtained from detailed calculations of air in
thermochemical equilibrium. The curves are valid up to 25,000K.

The remaining five needed state variables must be calculated from the outputs
of the equilibrium air subroutine. In addition to pressure p and temperature T, the
subroutine also returns the speed of sound, c. With this, and the fact that e = 0 we
can calculate three variables directly from their definitions.
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The pressure derivatives, £ and x cannot be directly calculated using data returned
from the subroutine. Some numerical differentiation is required.
To evaluate « and y, start with the chain rule

_(op\ ., [Op s
ép = (—a-g)p6e+ (ap)éJp_ kbé+ xbp

and the expression for speed of sound in terms of £ and x (equation 5 in {7])
2 =x+«h

Eliminating x from the two equations and solving for « yields

. ép — c*ép
b6é — hép
plp + 8p, & + 68) — p(p, &) — ép

0& — hép

This expression may be used to calculate x from any combination of §p and 6é. After
some experimentation, 6é = 2hép was chosen since it seems to avoid most spurious
results near discontinuities in the curve fits. The other pressure derivative, x, is then
calculated from y = ¢ — kh.

4.2.3 Thermally Perfect Species - Thermal Equilibrium

The third option for equation of state is for thermally perfect species in either thermal
equilibrium or thermal non-equilibrium. This option requires curve fits in terms of
temperature for the specific heat at constant pressure, c,, the enthalpy, &, and the
entropy, s, for each species. These curve fits are expressed as polynomials for up to
three user specified temperature ranges.

E& = aps+ a2.sT + aSsT2 + a4sT3 + aSsT4

R
hs az az, 2 A4, Qs, Qgs

= agy 4 BT 4 2272y Jeps | TSeqpa | 6 7
BT a1+2T+3 -i-4T+5 +T (7)
i‘.’. - 2_3_’_ 2 E‘i_l_ 3 25_:'_ 4
7 = ay,log T + a2, T + 2T + 3T + T + as,

The temperature ranges chosen for most of the cases considered in this research effort
are 300K to 1000K, 1000K to 6000K, and 6000K to 15000K. If the temperature
exceeds the maximum temperature of the upper range or the minimum temperature
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of the lower range, the specific heat is assumed to be constant at the value calculated
for the closest temperature within the valid temperature range. The out of range
enthalpy and entropy curves are then calculated by appropriate integrations of ¢,
and matching of values at the edge of the valid temperature range.

For thermal equilibrium an iteration is necessary to obtain the temperature, T,
from the species densities, p;, and internal energy, e, using the above curve fits. The
formula for internal energy in terms of temnerature for a given set of species densities
is obtained from the definition of enthalpy, @ = e + p/p, the thermal equation of
state, p; = fkRT, and the the curve fit for enthalpy from equation 7. The resulting
expression,

NS » 5
Ps R Als oy
= —_— s E T —
‘ s=1 P A:{*’ (a6 * =1 { T) (8)

is a nonlinear equation for T" which must be solved iteratively. A Newton iteration
is used to approximately solve this equation for each cell on each time step. The
temperature from the previous time step is used as an initial condition for the Newton
iteration.

For the evaluation of the Steger and Warming fluxes v, ¢,, and % are needed. The
speed of sound used for the calculation of v is the frozen chemistry speed of sound

defined by
Ip
2 -— —
©F (Bp)s,c,

where ¢; = p;/p is the mass fraction of species :. Using this and previously given
definitions. the resulting expressions for a thermally perfect mixture are

R
Y = 1+—
Cy
C__€
T
R
¥y = 14—
Gy

Here

NS
R
R = Co—r
; M,

NS
Cy = z C,Cu,
s=1

Note that the expressions for v and ¥ are very similar except that the actual specific
heat. ¢, is used for ¥ while the mean specific heat, ¢, is used for 7.
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The pressure derivatives, x and x are needed for the Harten Yee flux function. In
this case there must actually be a x defined for each species.

7]
= (5)
Ps) cpe,

The expressions for the pressure derivatives for the mixture of thermally perfect
species is

R R
Xs = M,T——c:e’
R
K = —
CU

In the above expressions R and ¢, are the mixture values defined previously.

4.2.4 Thermally Perfect Species - Thermal Nonequilibrium

For thermal nonequilibrium we must consider the detailed contributions to the in-
ternal energy. It is generally assumed [9, 10, 11, 12] that the internal energy is the
sum of independent energies from translational motion, rotation motion, electronic
excitation, and vibrational excitation.

e=¢ +e +e +e,

In general, each of these components may have an independent temperature associ-
ated with it whereas in equilibrium all of the temperatures are the same. For most
calculations it is reasonable to assume that the rotational mode is in equilibrium with
the translational mode [10, 11] since they both equilibriate very fast in comparison to
the vibrational mode. This allows these two energies to be considered, for all practi-
cal purposes, as one energy, e, = e, + €,, which is described by the temperature T.
Likewise, the electronic and vibrational energy levels may be considered to be in equi-
librium and are described by the combined energy e,. = e, + €, and the temperature
T,. Furthermore, it is assumed that the vibrational/electronic modes of all species
are in equilibrium with one another and with the electron translational energy mode
at the temperature 7,.

The goal of this section is to describe how the temperatures T and T, are calculated
from the species densities p,, total internal energy e, and vibrational/electronic energy
eve. 10 do this the functional form of the specific heats for the two modes in terms
of their respective temperatures is needed. Since the energy modes are independent
we may write for the case of equilibrium

¢, (T) = cur o(T) + ¢4, (T)
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The variation of c,, is easily obtained for each species from the curve fits of equation

7.

—1{— =ay — 1+ agT +03T2 +¢14T3 + a5T,4

Since the code is generally used to analyze flows of gas at high temperatures, the
rotational modes of diatomic or polyatomic gases are assumed to be fully excited.
The species specific heat for the translational and rotational modes is therefore inde-
pendent of temperature and given by

Cvtr
—= =15+d 9
5 + (9)
where d is the number of rotational degrees of freedom. For monatomic molecules
d = 0, for diatomic molecules d = 2, and for non-inline polyatomic molecules d =
3. The remaining contributions to specific heat are from vibrational and electronic

excitation.

C—UI"?—’- =a; —25—d+ a;T + a3T? + a7 + a5 T

This approach to calculating c,,,, differs considerable from the approach taken by
Candler {12] and Park [11]. They both used approximate formulas for ¢,, , and c,,,
based on fundamental physics. However, their approach is more complex and should
yield no better accuracy than the approach taken here. Furthermore, the current
approach has the advantage of keeping the physics used to calculate the equilibrium
constants for the chemical reactions consistent with the physics used to calculate
the temperatures. Both Candler and Park use simple curve fits for the backward
reaction rates which is less accurate and less general than calculating the backward
reaction rates from the equilibrium constants and the equilibrium constants from the
thermodynamics as is done in this investigation.

Once the variation of the specific heat c,,,, with T, is known we may obtain the
variation of e,, with T,, for a species by integration.

€ve, Tee
R = ‘[r cuve.J(T)dT + evcc (TO)
0

= bGa + (als - 25— da) Tve + %Tge + a_;ine + %T:e + _0;_5ch (10)

where Ty is some temperature, within the temperature range for the curve, at which
the value of e,,, is known and

bos = €ye, (To) = [(al, —25-d)To+ DT+ R+ R+ | (12)
As mentioned previously the curve fits are generally broken into three separate poly-
nomials for three temperature ranges. The constant, bg,, is first calculated using the

curve for the temperature range containing T,.s, the reference temperature, where
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eve, = 0. The calculation is performed using equation 12 with Ty = T,.; and e,,, = 0.
The constant bg, is then calculated for neighboring curves, using equation 12 by re-
quiring that e,., be continuous at the boundary between two curves.

Equation 10 is an expression for the species vibrational energy e, in terms of the
vibrational temperature T,.. After making the appropriate sums the expression for
the mixture vibrational energy e,. in terms of the vibrational temperature T, is

NS R 5. as
e =9 =+ b+ Y —Th — (25+d,) T, (13)
s=1 P M, =1 l
This expression is a nonlinear equation for T,. which must be solved iteratively. A
Newton iteration is used to approximately solve this equation for each cell on each
time step. The vibrational temperature from the previous time step is used as an
initial condition for the Newton iteration.

The equation for the species trauslation/rotational energy e s in terms of trans-
lational/rotational temperature T is obtained by integrating equation 9 for ¢, and
requiring that, when in equilibrium, <5 + =2+ 4 1 give the original curve fit, equation
7. The result is

e};, = a6y — bes + (1.5+d,) T (14)
When summed appropriately this expression gives the following equation
€ — €y = > &i[ae,—be,+(1-5+ds)T] (15)
=P M,

This is a linear algebraic equation which may be solved directly for T.
The speed of sound used to evaluate « is the frozen-chemistry, frozen vibrational-
electronic energy speed of sound defined by

dp
2 f—] —
°= (ap)s,ci,(u

Using this and previously given definitions, the resulting expression for a thermally
perfect mixture in thermal nonequilibrium are

) R
T=y=1+—
tr
Note that c,,, is the mixture translational-rotational specific heat. This value is
independent of temperature but depends on the species concentrations.
With the addition of thermal nonequilibrium there are now two «’s; one for each

independent internal energy.
Kip = op
" N aétr Eve i

. ( Jdp )
Y e, ).
€ty Py
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As before, there is a y defined for each species.

o= (52)
AS
aP; E(r.eu-plis

The expressions for the pressure derivatives for the mixture of thermall: perfect

species 1s

R R

s = —T — —ey

X M, o,
R

Kep =
CUtr

kK, = 0

The pressure derivative with respect to the vibrational-electronic energy, €,.. is zero
because the pressure is not a function of the vibrational-electronic temperature, T,,.
If the translational energy of the free electrons is in equilibrium with the vibrational-
electronic energy of the other species rather than their translational-rotational inter-
nal energy, the pressure will depend on T, and the above expressions will be more
complicated.

4.3 Transport Properties

The transport properties are the viscosity u, the conductivity k, and the binary
diffusion coefficient D. These quantities are calculated within the code using various
user specified methods. These methods are summarized below.

4.3.1 Viscosity

The viscosity is calculated using one of three methods. The first method is to assume
that the viscosity depends only on temperature and that the dependence may be
approximated by the formula

_ Al-‘l TA”2 + Au.‘JT + AIM
# B A#sT + ‘4#6 .

The famous Sutherland’s law is obtained by setting

= 1.451 x107®
A = 1.5
A = 0
A, =0
4

A

A

H1

1
= 110.
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The second method for calculating the viscosity is the equilibrium air curve fits of
Tannehill [13]. The third and final method for calculating viscosity is to use Blottner’s
formula for the viscosity of individual species

ps = 0.1exp [(4’,’ InT + Bf) InT + Cf] ,

and then use Wilke’s mixing formula to obtain the mixture viscosity. The Wilke’s
semiempirical mixing rule is

Xopts
L=y =22
K=
where X, is the mole fraction of species s and
T M\ VA 2 M, \1~V/?
¢,=zxm[1+ ;‘ (1_14_) ] [S(H—M )] . (16)

This latter method was used by Candler for thermochemical nonequilibrium calcula-
tions {12].

4.3.2 Conductivity

Conductivity is calculated using one of four methods. The first is to assume a Prandtl
number P, and calculate the conductivity from

Ky

k===,

P,
This method is always used for turbulent flows. A second is to assume that the
conductivity is a function of temperature only and use the same sort of formula as
used for viscosity,

AleA"2 + AksT + Ak‘

A, T + A, .
The third method for calculating the conductivity is the equilibrium air curve fits
of Tannehill [13]. The final option for calculating conductivity is to use the Eucken
formula to calculate the species conductivity from the species viscosity,

k=

5
ks = /‘ls (§Cvt,s + CUr..- + CUue,s)

kUC.l = #Jct'vz.o

and then determine the mixture conductivity using Wilke’s formula,

X, k,
kl = E ¢

X, ke,
b = 275

where o, iIs given in equadion 16.




4.3.3 Diffusion coefficient
The species diffusion coeflicients are calculated using an expression from Lee [10].

_ —An-f,-'-(l -¢,)D

D, =
1-X,
The diffusion coefficient D is calculated from a specified Schmidt number S..
U
D=
pSe

The default Schmidt number is 0.5. The diffusion coefficient for ions is generally
assumed to be double the neutral species diffusion coeflicient because of the existence
of an electric field. This is accomplished in the code by specifying a different Schmidt
number for each species (S., = 0.5 for neutral species, S., = 0.25 for ions). The
species diffusion coefficient is then given by

%(l—ca) [
I_Xa PSc.

The electron diffusion coefficient is often treated specially [10], but here it is calculated
like any other species.

D, =

4.4 Boundary Conditions

The boundary conditions are an extremely important aspect of the problem formu-
lation. At each boundary of the flow domain boundary conditions must be applied
based on the physical nature of the boundary. The code has options for several types
of boundary conditions. These boundary conditions are discussed below.

4.4.1 Free-Slip Walls

When an inviscid analysis is being performed, or when a known stream surface is
chosen as a boundary of the computed flow domain, a free-slip boundary condition is
specified. The boundary condition is simply that there is no flow through the wall.
This means that the component of velocity normal to the surface is zero and that
the component of velocity tangent to the surface is allowed to change as required
by the governing equation. The presence of a free slip wall also affects the pressure
and temperature fields. If the wall is curved, a non-zero pressure gradient is needed
normal to the wall to turn the flow in the direction that the wall is curving. This
pressure gradient may be calculated from the normal momentum equation at the wall
and used to set the wall pressure. However, in most analyses, the viscous nature of
the flow near actual walls is generally so significant that a no-slip boundary condition
1s necessary. The free-slip boundary condition then should be used only along stream
surfaces, such as planes of symmetry, which are not curved. The gradients of pressure
and temperature normal to free-slip walls are, therefore, assumed to be zero.
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Figure 12: Types of heat transfer to the wall

4.4.2 No-Slip Walls

For flows of gases at all but the lowest densities the velocity at walls is essentially
zero. Furthermore, for high Reynold’s number flows, the normal pressure gradient is
approximately zero deep within the boundary layer. This leaves the specification of
boundary conditions for translational-rotational temperature, vibrational-electronic
temperature, species concentrations, turbulent kinetic energy, and turbulent energy
dissipation rate at the wall.

The wall temperatures may either be specified (isothermal) or determined from
an analysis of the various heat transfers to and from the wall. For all but adia-
batic walls the vibrational-electronic energies are assumed to in equilibrium with the
translational-rotational energies at the wall so that T, = T. For adiabatic walls the
gradient of the vibrational energy is zero, %}‘ = 0, where y’ is the distance normal
to the wall.

The possible forms of heat transfer to the surface of the wall are shown in Figure
12. In general they include heat conduction to the surface from the gas, heat con-
duction to the surface from within the solid wall, and radiation of heat away from
the surface. The first law of thermodynamics requires that the sum of the heat fluxes
into the surface be zero.

g +9:+q =0 (17)

By writting gy, ¢s, and ¢, in terms of the wall temperature and temperature gradient,
equation 17 may be used to determine the wall temperature.

The simple adiabatic wall boundary condition is obtained when the wall is a
nonradiating insulator. In this case ¢, = ¢, = ¢; = 0. The heat conduction within
the gas is given by Fourier’s law of heat conduction, ¢, = —k%, for which the heat
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conduction is directly proportional to the normal gradient of temperature. If ¢, = 0
the normal gradient of temperature is zero.

When the wall is not a perfect thermal insulator, or the wall emits or absorbs
thermal radiation, the boundary condition for the wall temperature becomes more
complex. Wall heat conduction can gct quite complex, depending on the wall geome-
try and the properties of the wall material. Likewise, the radiative heat transfer to the
wall can also be very complex depending on the geometry of the surface, temperatures
of the gas. and composition of the gas. A complete treatment of these phenomena
is bevond the scope of this research effort. However, simple approximations for the
wall heat conduction and radiative heat transfer are included for the estimation of
hypersonic vehicle wall temperatures. The wall heat conduction is assumed to be
through a thin skin of thickness ¢,.,. uniform conductivity k;, and no heat capacity.
Furthermore, the temperature at the inner surface of the skin, T}, is assumed to be
constant. The expression for the wall heat flux per unit area is then

4s = — A,su (18)
twall
The wall radiative heat transfer is assumed to be between the wall and some distant
body of temperature T,. Also, it is assumed that there is no interaction of the
radiation with the gas. The radiative heat flux per unit area is then

qr = ~a7 6th-‘::, - CYUJT‘;b (19)

Here o is the Stefan Boltzmann constant, ¢, is the emissivity of the wall, and a,,
is the absorptivity of the wall. This expression excludes gas to wall radiative heat
transfer which can contribute significantly to the surface heat flux balance.

Substituting the expressions for ¢,. ¢s, and ¢, into equation 17 we get the following
equation.

BT Tw - ‘Tiw 4 4
v W ) = —]\',——Za—“——— - [EwTw - awTdb} (20)
This is a differential expression for the wall temperature T, which is coupled to the

temperature field through the normal temperature derivative g% . The numerical
w

treatment of this equation is described elsewhere in this report.

For flows with species transport. the walls are assumed to be non-catalytic so
that 2% = 0. The validity of this assumption will depend on the nature of the wall
material and the degree to which the flow is out of equilibrium.

4.4.3 Rarefied Gas Slip Walls

The rarefied gas, slip wall boundary condition is included to enable analysis of hy-
personic vehicles at higher altitudes than would otherwise be possible. At the high
altitudes and hypersonic velocities at which many aerospace vehicles are expected to
operate. the Knudsen numbers get large and the continuum assumption begins to
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break down. At the edge of the continuum limit, the continuum assumption fails first
in a region next to the wall having a thickness on the order of the local molecular
mean-free path. In this layer, called the Knudsen layer, the Navier-Stokes equations
no longer apply. A rigorous treatment of the flow within the Knudsen layer would
require the solution of the Boltzmann equation. However, such a procedure is beyond
the scope of this work, and would likely be very cxpensive.

If the Knudsen layer is thin the flow field may be obtained by solving the equations
of continuum flow, the Navier-Stokes equations in this case, with modified boundary
conditions {14, 15, 16, 17]. In particular, a jump or slip in the wall values of species
concentrations, pressure, velocity, and temperature must be allowed. The code uses
simplified versions of the surface slip equations derived by Gupta, Scott, and Moss
[17].

The jump relations are used for two purposes: to obtain boundary conditions
at the edge of the continuum flow domain, and to obtain wall values of pressure,
temperature, etc. for force integrations and thermal load estimations. For example,
the pressure jump is not actually needed for the boundary condition but is needed to
determine the wall pressure for force integrations. Conversely, the temperature jump
is needed for the boundary condition when either the wall temperature is specified or
a radiating and/or conducting wall is considered. The slip velocity relation is always
used. The boundary conditions are actually the conditions at the edge of the Knudsen
layer and will be indicated by the subscript s.

To remain consistent with the available no-slip boundary conditions, the rarefied-
slip boundary is assumed to be non-catalytic. Therefore

3c,-

oy

Likewise, the pressure gradient at the edge of the Knudsen layer is assumed to be
zero. The reasoning is the same as for the no-slip wall.

For the slip relations we define a local coordinate system with y' normal to the
surface and 2’ and =’ tangent to the surface. The velocity slip relationship is obtained
from equations 40 and 41 in reference [17} by assuming that the derivatives along the
surface are small compared to normal derivatives. The result is

9 _ ’ NS
w o= LRSS 1)

=1

v, = 0 (22)

9 _ I} NS
w, = E2 2 A S v (23)
20 |Vkrdy],

i=1

The normal velocity, v is of course zero because the wall is impermeable.
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The temperature boundary condition is different depending on whether the wall
is adiabatic or otherwise. If it is adiabatic the total energy flux to the wall must be

Zero. aT a a
u w
QQs [kay + ( 6 7 +’w-6—y—,):|a -—0 (24)

Since the tangential velocities are no longer zero at the boundaries, the work term is
not zero and the temperature derivative is not zero.

If the wall is not adiabatic, the following temperature jump equation, obtained
from equation 43b of reference [17] is used.

(1 NS ;:T -
T (Ze1) LB (25)

e —_ -— —

Tw 2

s
1=1

7"2—6‘ l_lgaT +l P Z 2kTmss
" h 2p oy 4 m,‘

-

i=1

Here P, is the normal momentum flux, P, = p* + 7,,, which is approximately equal
to the pressure, p°, if the Knudsen Layer is thin. When the wall temperature T,
is specified, the above equation is used directly as an expression for the boundary
temperature T,. When the wall is radiating and/or conducting, the above equation is
used in conjunction with the energy balance equation, equation 17. This equation is
used with g, given by equation 24, ¢, given by equation 18, and g, given by equation
19. The resulting expression is

Tu; - Ew aT 3u a‘UJ
— k"——t;r_ - EuT Tde l:k(T)—’!? + < a 7 +w ay )] =0 (26)

Equations 25 and 26 are two nonlinear, differential expressions for T, and T,,. To-
gether, they constitute the temperature boundary condition for rarefied-gas, radiating
and/or conducting walls.

4.4.4 Supersonic Inflow

The supersonic inflow boundary condition requires specification of all variables by the
user. This boundary condition is only appropriate where the Mach number, based on
the velocity at the boundary, is greater than one.

4.4.5 Supersonic Outflow

Along a supersonic outflow boundary nothing may be specified by the user. The
flow variables along such a boundary are completely determined by the upstream
flow. Strictly speaking, this boundary condition is only appropriate when the Mach
number, based on the velocity normal to the boundary, is greater than one. However,
its use is acceptable for Mach numbers less than one when the low velocity is due to
a thin boundary layer along a nearby wall.
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4.4.6 Mixed Subsonic/Supersonic Outflow

The treatment of subsonic outflow boundary conditions is guided by the theory of
characteristics. For a subsonic flow at the exit the u’ — ¢ characteristic propagates
information upstream from the boundary cell to the interior cell. In this case, one
variable must be specified at the boundary cell. Currently, a constant static pressure
is specified at the outflow boundary.

épp =0

The remaining variables in the boundary cell are calculated using the four downstream
running characteristic equations (thermal equilibrium and no chemistry). These equa-
tions, written in delta form, are

uAt|S) [ 1 ] B
Vel IP® —P1+§(PB —p1)| = R

, u' + ¢) At)S /
épp + pc5u3 = —(—-—‘731—1—'—-" [PB —-pr+ PC(“;B - u,)] =R,
, A5,
5’03 = _-I‘/_OI-]_ ['UB - ‘1)’1] = R3
uy At) S|
VOI[

1
dpp + 55}75

Swiy [wp ~ wi] = Rs.

The above equations are five linear algebraic equations in the five unknowns épg, fuj,
bvg, dwp, and dpg. This system is solved directly and the boundary cell solution is
updated.

When there is a secondary energy equation, for vibrational-electronic energy, the
vibrational energy is simply extrapolated. The same is true of the species mass frac-
tions and turbulence quantities (k¥ and €). This is consistent with the theory of char-
acteristics since the vibrational energy and species transport equations corresponds
to a u’ characteristic.

4.4.7 Subsonic Inflow

For subsonic inflow the stagnation pressure, stagnation temperature, and flow di-
rection are specified. These quantities are related to the static pressure and static
temperature by the following equations:
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A ( a ) = specified
0
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v v
Vi = (VTot)O = specified
w w
= = specified 27
= (), = (27)

The first two equations above are simply the isentropic relations written in terms of
the total velocity, Vy,;, and the speed of sound at a sonic throat, a.. The speed of
sound at a sonic throat is calculated from the specified stagnation temperature.

(a.)? = 2R p
Y+ 1p:
Equations 27 are a system of five equations in five unknowns: p, p, u, v. and w, but one
of the last three equations is redundant. To complete the system another equation
is needed. This is to be expected since there is an upwind running characteristic
carrving information out of the flowfield interior to the inflow boundary.
The last equation to close the system is the characteristic relation carrying infor-

mation upstream to the inflow boundary.

! !
S )[5p cggl

ot ot oz bz
This equation is forward differenced in time.
’ u -~ C At ' r \n
épp — pcbup = W=da —— [p1 = pB — pc(u; — up)] (28)

The subscripts I and B indicate the ﬁrst interior cell and the inflow boundary cell,
respectively. The prefix é§ indicates the forward in time difference of the variable
following it.

The number of unknowns is reduced to three if the isentropic relations, the first
two of Equations 27 are written in terms of u’. This is done using the relation

Vi, = bu”? (29)
where
b = 1
1+ (') Vo) ~ () Veor)? = (v/ Vo)t — (w/Vror)?

= constant.

The modified isentropic relations are
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The modified isentropic relations, Equations 30, and the discrete form of the upstream
running characteristic relation, Equation 28 are three algebraic relations in three
unknowns.

The isentropic relation for pressure, the first of Equation 30, may be placed in
delta law form by considering incremental changes in the variables p and u’.

20y o =1, ()]
Som = p 0 X o
PB Pt7+1 e [l T +1 (a.) Up (31)

This equation and Equation 28 are solved for u’. The pressure and density are then
obtained from the isentropic relations, Equations 30. The velocities are also calculated
from u'y using Equation 29 and the last three of Equations 27. The specification of
the flow within the subsonic inflow boundary cell is then complete for flow without
chemistry.

For flow with chemistry, the mass fractions of the species are also specified at the
inflow boundary. The species densities are then calculated from the specifies species
mass fractions and the calculated total density. At subsonic inflow boundaries the
vibrational/electronic modes of internal energy are assumed to be in equilibrium with
the translational/rotational modes. Therefore the vibrational temperature is set equal
to the translational temperature and the energies are calculated accordingly.

When the two-equation turbulence model is used, the turbulent kinetic energy &
and dissipation rate ¢ are specified by the user.
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5 Navier-Stokes Solution Procedure

The Navier-Stokes equations are solved using an LU-SGS implicit finite-volume method
which is based on work by Yoon[18, 19]. This type of algorithm has proven to be
a robust and efficient relaxation procedure for steady state flow calculations. The
algorithm used in this investigation is a combination of the algorithm presented by
Peery and Imlay[20] and Yoon’s algorithm. A detailed description of the algorithm

is given in the following subsections.

5.1 Internal Grid Cells
An individual finite volume cell, with indices i, j, and k, is shown in Figure 13.
Applyving the integral equations in this volume gives

d - e - = - =
z.t-(Ui'j'kVOIi'j'k) = ~(D,PS + DJPS + Dk PS) + }Vi,]',k

where U x 1s the mean value of U in cell ¢,j,k and D;P-§, for example, represents

the difference of the fluxes through opposing faces of the cell.
The time derivative is approximated using backward in time differencing:

V ¢ 2 —~ = - - -
i‘:'kd(/z‘,]‘,k = —(DiP.-S+D; P-S+ Dy P-S)+ N; 1 132)

where
R n41 n
OUijw = Uil — Ul

For the approximation of the flux through a surface the inviscid and diffusion terms
of the flux vector are considered separately.

.5 = B.§m 4 p.§u1

otz

Figure 13: Finite Volume Cell
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These terms are then evaluated in a manner consistent with the predominant nature
of the equations in the limit as Re — oo (hyperbolic) and Re — 0 (parabolic); i.e.,
upwind differencing for the inviscid terms and central differencing for the diffusion
(viscous stress and heat flux) terms.

The evaluation of the inviscid terms is based on the flux splitting in combination
with upwind-biased MUSCL-like differencing [21]. The code currently supports two
flux functions: the flux-vector-splitting of Steger and Warming[22] and the TVD
fluxes of Yee[23]. The diffusion terms are evaluated using standard central differences
[24]. These flux functions are described in detail in the following subsections.

The following subsections use the notation F(U) = P-§™ = a function of U.
This function is defined in equations at the beginning of section 4. The actual flux
through a surface is given a tilde, F, to distinguish it from the function.

5.1.1 Steger and Warming Flux Function

Flux-vector-splitting was developed by Steger and Warming [22] and Van Leer [25] as
a way to upwind difference the Euler equations in regions of subsonic flow. If the flow
normal to the surface of a cell is supersonic, the theory of characteristics tells us that
the flow field at the surfice depends only on the solution upstream of the surface. In
this case, the flux at the surface may be simply evaluated using the solution in the
cell upstream of the surface.

- { FUjrx) ifv'>c

Fipn = F(Uiprjx) ifv' <c (39

If the flow is subsonic however, the flux through the : + 1/2 surface depends on the
solution both upstream and downstream of the surface. Then the simple upwinding
applicable to supersonic flows. equation 33, is no longer appropriate. The term up-
wind differencing must now be defined to mean differencing in a manner appropriate
with the mathematical characteristics of the flow. As shown in Figure 14, there are
characteristics running both to the right and left in subsonic flow and upwind dif-
ferencing must therefore use backward differencing on some of the flux and forward
differencing on the rest of the flux.
In flux-vector-splitting methods, the flux function is written as

FUy=F*(U)+ F (V) (34)
so that the flux-split Jacobians. At = _615_. have eigenvalues satisfying
Am (4+) >0 forallm
dn (A7) <0 forallm (35)
Flux splitting has therefore divided a flux which cannot in general be upwinded into

two fluxes which separately can be upwinded. With first order upwinding the flux
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u+c u-c

Figure 14: Mathematical characteristics of one-dimensional subsonic flow

through the ¢ + 1/2 surface is

Fi+1/2.1.k = F* (Ui;k) + F~ (Uiz1.54)
Higher order accurate methods are obtained by combined extrapolation and interpo-
lation of the solution to the surface from nearby cells.

U = Uiju+ % (1 = &) (Ui = Uiz in) + (1 + &) (Uigrk — Ui ji)] (36)

) ¢ . -
UY = Uipje + 1 (1 = &) (Uig1k = Uipz ) + (1 4+ &) (Ui jk ~ Ui jx)) (37)

Here o varies the differencing between first order, ¢ = 0, and second order. ¢ = 1.
The second parameter. &, varies the differencing between fully upwind, & = —1, and
central. K = 1. The second order flux is then

Fi+1/2,,,k = F* (U—) + F~ (U+)

This form of differencing is called MUSCL differencing.

Equations 34 and 35 do not uniquely define the split fluxes F* (U). In fact, there
are many flux-splittings that have been proposed {22, 25, 26]. The two most common
flux-splittings are those of Steger and Warming [22] and Van Leer (25]. Both splittings
were originally developed for ideal gases and were later extended for use with real
gases (7, 27]. The code uses Steger and Warming flux-vector-splitting with a simple
extension to multiple species transport and thermal nonequilibrium.

Steger and Warming [22] developed their splitting based on the homogeneity prop-
erty, FF = AU, of the flux vector with a thermally perfect gas. They wrote the flux
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Jacobian as

A=At + A"
where
AT = RTIAER
and A% is the diagonal matrix with elements
1
’\ﬁ =35 (’\m + IAm”

-

Here the matrices A, R, and R~! are the diagonal matrix of eigenvalues, matrix of
eigenvectors, and its inverse, for the flux Jacobian A. Therefore, A* and A~ are the
flux Jacobian matrix with the negative and positive eigenvalues set to zero. The split
fluxes are F* = A*U. This process may be performed numerically for each face on
each time step, but it requires less computer time if the matrix multiplies are not
required.

To eliminate the matrix multiplies. the contribution to the flux from each eigen-
value must be considered separately. There are three unique eigenvalues: A; = v/,
A2 = v' + ¢, and A3 = V' — ¢. The A, eigenvalue is repeated so that, for lows without
species transport or thermal nonequilibrium, A = diag {A1, A2, A1, A1, A3}. The sep-
arate contributions from each eigenvalue are obtained by defining diagonal matrices
with all but the desired eigenvalue set to zero.

Al = dzag {Al,O,Al,/\l,O}
Ay = diag{0,),,0.0,0}
A3 = diag{0,0,0,0, A3}

The fluxes are then F} = R~'A,,RU. Performing tlie above operations for thermally
perfect gas without species transport or thermal nonequilibrium gives.

1
u
oo M -1) v (38)
’ v
w
C2
%(u2+v2+w2)+e—m
- 1 .
Azp u-+cn;
F:‘,\ = 32- v+ cny (39)
7 w+ cn,
| H +cu' |
- | .
A u_mz-
F = 2%:’ v—cn, (40)
w — cn,
| H —cu’ ]
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Vinokur [7] used an alternative approach to derive the Steger and Warming fluxes
and found that the above formulas also apply to real gases, provided that v is defined
= e
7 - p ’ . .
The split fluxes, F*, are obtained from the F,, by splitting according to the sign
of the eigenvalue. For —c < v’ < 0 we therefore have

Ft=F) and  F-=F+F)

These fluxes are relatively inexpensive to calculate compared with the formulation
requiring numerical matrix multiplies.

The Steger and Warming fluxes defined by equations 38 through 40 may be simply
extended to handle species transport and thermal nonequilibrium. First, evaluate the
fluxes with species transport equations combined into a single continuity equation
having flux, Fiu.ss. Then

F+ = £F+
+
- P -
FS = —SIFMQSS

The same approach is used for the vibrational/electronic energy flux,

Fr =) py

mass

-
_ (pe)t -
Fe, = TF"‘“”

and for the fluxes for the k& — ¢ turbulence model. Using this approach, the additional
cost of computing the fluxes for additional species transport or energy equations is

minimal.

5.1.2 Harten and Yee Flux Function

In the early 1980's Yee. Warming, and Harten [23], and others (23, 29, 30] prerented
upwind biased schemes for nonlinear scalar equations for which the total variation of
the solution always diminishes as the solution proceeds.

TV (U™Y) < TV (UM)

where

TV(U)= Y. Uipr - Uil

t=—00

Schemes which are total variation diminishing (TVD) are guaranteed not to generate
spurious oscillations and are therefore very robust for applications involving shock
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waves. When the same scheme is applied to nonlinear systems it is no longer TVD
but it still exhibits excellent accuracy and robustness for problems involving strong
shock waves. A finite-volume version of Harten and Yee’s scheme is included in the
code. The scheme is obtained by using the Harten-Yee flux function described in this

section.
The Harten-Yee flux function is written as a central difference flux plus a dissipa-

tion term.

1
Fiippsn =5 [Ff+1,j,k + Fijx + (RA‘I’A).~+1/2,,-,;¢] (41)
The dissipation operators ®,; are defined as follows.
(Pa)iy1j2 = gi +git1 — ¥ (Ai+1/2 + Fi+l/2) Qit1/2 (42)
where
Qiy1/2 = (RA);-+11/2 (Uitr.ik — Uijik) (43)

and, in the standard, form ¥;,(z) = |zim|, where z is any matrix. A modified form
of ¥(z) will be discussed latter in this section.

A key to the definition of the Harten-Yee flux is the eigensystem of the flux
Jacobian matrix, A = g%. The components of the eigensystem are the diagonal matrix
of eigenvalues A, the matrix of right eigenvectors R, and its inverse R~!. Expressions
for these are given in appendix A. In the above equations ® is the dissipation term
which will reduce the scheme to Roe’s first-order upwind scheme [31] in regions of
steep gradients. The definition of the flux is completed by the relations

gi = & max [O,min (a,-+1/2|a,-+1/2|,8 Ui—1/2ai—-l/2)]

S = Sign(ai+l/2)
1
37 (Aisi2)

Ti+1/2

and
23128 if oiyqy2 # 0

, — Xy 41/2
Fiiz = { 0 aiprj2 =0
To avoid excessive roundoff etror, I';;,/2 in the above equation is actually set to zero
any time a;41/2 is near zero (—107%2 < aj41/2 < 107%2).

This scheme is theoretically second-order accurate in space. Simply stated, the
scheme is a central difference scheme where, for regions of smooth solutions, the
dissipation term is turned off. Conversely, for regions with steep gradients such as
shock waves, it reduces to a first order scheme to avoid aphysical oscillations in the
solution. The first order scheme to which it reduces is the flux-difference splitting of
Roe.

Since the Harten-Yee flux function is based on Roe’s flux-difference splitting, it
shares certain abnormalities with Roe’s scheme. In particular, Roe’s scheme does
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not necessarily satisfy the entropy inequality and may therefore yield aphysical solu-
tions such as expansion shock waves [28, 29, 26]. A related phenomena, with serious
ramifications, is the stagnation line Carbuncle described in [33]. The Carbuncle is
an aphysical inward or outward bowing of the bow shock wave near the stagnation
line on a supersonic blunt body. It occasionally occurs when an unmodified Roe or
Harten-Yee scheme is used for hypersonic blunt body calculations. It is eliminated
by modifying the function ¥(z) so that it never becomes zero. We use

1
Uom(z) = 5 (Izmml + /22, + em)

Far away from zero each element of ¥ approaches the absolute value of the corre-
sponding element of z, as it should. When z,,, approaches zero, however, ¥,
approaches the positive number z,.

The values of ¢,, are calculated based on user defined constants and the type
of characteristics equation which corresponds to A,,. If the characteristic transports

entropy

('l + ¢)
J

. o — 2.+ D .
1.5,k “Pi.3.k -1.4.k
Em = dl +d4 Di+ J Pt; Di j

Pitijk + 2Pijk + Picik

If the characteristic transports acoustic waves

Em = d2 + ds

, S — D + p; .

41,5k — 2Pijk 1.5k
pl J .)pt J pl J (|’l}’| + c)
Div1,k T 2Pisk + Pic1,k ]

Finally. if the characteristic transports momentum components tangent to the surface

Pisrjk — 2Pijk + Picijk
Pit1jk + 2Pijk + Pi-1jk

(1o + C)}

Em = [d3+d6

Different constants were provided for each type of characteristic because. for a given
problem. constants which are appropriate for one type of characteristic equation may
be excessive for another type. For example, a blunt body problem may require a
fairly large value of d; to avoid a Carbuncle but a relatively small value for dj to
avoid excessive smearing of the boundary layer.

The cpu time for the matrix multiplies in equations 41 and 43 would normally
increase quadratically with the number of transport equations. For example, the
matrix multiplies would require more than four times as much cpu time for the Wray
model (7 species. 11 transport equations) than for no chemistry (1 species, 5 transport
equations). In this code, however. the matrix multiplies are performed analytically
whenever possible and the cpu time increases nearly linearly with the number of
added species.

To evaluate the variables at the cell surfaces arithmetic averaging of the cell cen-
tered values is used. This kind of averaging has the advantage of computational sim-
plicity and can be easily extended for problems in thermochemical nonequilibrium.
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Other kinds of averaging can also be used, but they are usually more complicated.
Arithmetic averaging takes the form

B 1
Pivrj2 =3 (pi + pit1)

The same procedure is used to calculated @, v, W, and @ at the surface.

5.1.3 Diffusive Fluxes

The diffusive fluxes are the contributions of the viscous stresses, heat conduction, and
species diffusion to the surface flux, P-S in equation 32. These terms are obtained
from

P51~ pin 8

where
/ +Plv;i,‘ \
+Psvf.~
+pN$vj‘v5.‘
Rd= +7a
+7i
+Ti3
+u;Ti; + ¢
Que,
—#k'az—:j
N
and
Ou;  Ou; 2 . Oui
o= - — L) 28 =—=
T (k4 1) [(6$j+6$() 3 Jazk]
oT
= (e + k) —
qi ( I+ t) 613,‘
0T
= —~(k k
ch| (ch+ t) 61:‘
oxX
d _  _ -3
PsUsi = st 61‘,’
D - %—‘(l—c,)’D
s 1-X,

The derivatives are approximated using standard central differences [24] centered at
the cell face.
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The calculation of the derivatives is the same regardless of the dependent variable,
so we will present formulas for temperature T only. First the derivatives are estimated
with respect to the £,7,( coordinates where ¢, 7, and { are the coordinates running
in the increasing z, 7, and k direction respectively. The estimation of the temperature
derivatives are given below for the ¢ + 1/2, j, k surface.

oT

3 ~ Tiyjk— Tijx

orT 1

E]_ = 5 [Ti+l,j+l,k - Ti+1,j-1.k + Ti,j+1,k - Ti,j—l.k]
oT 1

a3 (Tit1,5041 = Tigrjp-1 + Tijaer = Ti jaa]

The treatment of the j + 1/2 and k + 1/2 surfaces is very similar. Then a transfor-
mation is performed to obtain the derivatives with respect to the z,y, z coordinates.
The transformation of the derivatives is performed as follows.

aT 9z % @8z 17'rar
9 Of O F)
| _| o5 o o ot
a - 8n 38y 98n ]
9 oz dy 2z ot
Bz a¢ 3 B¢ ac
When the 3x3 matrix above is inverted,
-1
2 on o = 2y o
g 31 g - T T3
98 b N | _| o= a 2
] 9 ] - an 98y 8 9’
2 o 3¢ oz 3y o:
8z 08z 8z ¢ 9 8¢

the elements of the resulting matrix may be approximately evaluated in terms of
surface area projections and volumes.

5.1.4 Implicit Treatment — Point Implicit

The flow equations with finite-rate chemistry are stiff (difficult to solve) because of
the wide range of time scales involved. Certain reactions may have time constants
orders of magnitude smaller than any flow characteristic time (r = L/V). As aresult,
explicit methods are unstable at any reasonable time step and implicit methods are
required. Unfortunately, our experience is that implicit methods are also adversely
affected by the chemical stiffness and that unacceptably small time steps must be
taken. Add this to the fact that the chemical species transport equations dramatically
increase the cost of an implicit time-step and you have a very inefficient scheme.
One standard way to overcome the stiffness of the chemical source terms is to
treat the chemical source terms implicitly and the cell fluxes explicitly. The discrete
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flux balance is then
Vol,"j'k
At
where n is the current time step at which the solution is known and n + 1 is the new

time step at which the solution is being calculated. It is standard to linearize the
implicit source term

§U;0=—(Di P-S+D; P-S+ D, P-5)"+ NI} (44)

n n ON\"
TR N+ (5'[7) .k6Ui.j,k
LI 1Y

so that the discrete flux balance equation becomes

Vol ON\" 5 3 5 d p.a\" n n
[‘AT’ (5%) ]..kav..,j,k=—(D.~P-S+D,-P-S+DkP~S) + Nije = — Rl
5

(45)
The Jacobian of the source terms is an N x N matrix, where N is the number of
transport equations. Equation 45 therefore represents a coupled system of N linear
algebraic equations which must be solved for each finite-volume cell on each time
step. The resulting method is called a block point implicit method since it requires
the solutions of linear systems with N x N block matrices. If the number of species
is large, the solutions of these systems can become the most expensive part of the
procedure.

The cost of the block point implicit method may be reduced somewhat by taking
advantage of the natural sparseness within the source Jacobian matrix. In particular,
four rows of this matrix, those corresponding to the momentum and total energy
equations, are always zero. For example, for laminar thermochemical nonequilibrium

flows -

[ duy Qwp  dwy  Jwy  dw  Jwy dw
3m 8pNS amy ma dms oF B¢y
dwys dwys Owys Buwys Bwys Bwys Buys
BN EXS) 3pNS am dma dms 8E ey
- 0 0 0 0 0 0 0 (46)
ou 0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
Swye Swye Swye Swye Swye Swye dwy,
L 9m dpoNs amy am; ma 8E B¢y

Utilizing the sparseness of this matrix, the cost of solving the linear system of equation
45 is little more than the cost of solving an (NS + 1)z(NS + 1) linear system.

The cost of solving the linear system may be further reduced by using atom
conservation equations to eliminate additional lines of the matrix. For example, Park
and Yoon [34] used the conservation of oxygen and nitrogen atoms to reduce the
size of the linear system for non-ionized air by two equations. This reduced the
size of the system from 6z6 to 4z4, thereby reducing the computational effort for
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the system solution by two thirds: from 191 floating point operations to 62 floating
point operations. This approach to matrix reduction could, with some difficulty, be
extended to more complex reactions such as Parks ionizing air reaction model [11] or
Jachimowski’s hydrogen air combustion model [35]. Unfortunately, the savings is not
as great for models with a large number of species (ionizing air) as it is for models
with few species (non-ionizing air). Furthermore, this approach is very difficult to
implement with general user-specified chemistry. The code therefore uses a different,
more general, approach to reducing the cost of solving the linear system.

Two things have been done to improve the efficiency of the block point implicit
method. The first is to automatically reduce the reaction rates when they are exces-
sive. The second is to reduce the cost of the system solution by replacing the source
Jacobian matrix with a diagonal approximation to the source Jacobian matrix.

The stiffness is greatly reduced by limiting the reaction rates so that the cell
Damkohler number does not get too large. The cell Damkohler number, D,, is the
ratio of the characteristic flow time (time for flow to cross cell) to the characteristic
reaction time (time for reaction to be 1/e completed).

.,
D, =<
Tr

If D, is much larger than unity the model is attempting to complete the reaction in
less time than it takes for the flow to cross the cell. In steady state flows this means
that the model will attempt to complete the reaction in less than a cell width. We
cannot accurately calculate any flow feature in less than 2 cell widths so there is no
advantage in letting the reactions progress that fast. In cases where the reaction rates
calculated from the Arrhenius equations give D, greater than a user specified value,
D,,.... we simply reset the reaction rates so that D, equals the D, ... The backward
rates are modified by the same factor as the forward rates so that the equilibrium
solution is unchanged. Numerical studies have shown that there is no effect on the
accuracy of the final solution if D, .. > 10.

The second modification of the block point implicit method is to replace the true
Jacobian of the species source terms with an approximate diagonal Jacobian [55].
With a diagonal Jacobian. the solution of the linear system given by equation 45
reduces to N scalar divisions; very inexpensive compared to the solution of even the
reduced block linear system. Two approximate forms for the source Jacobian were
studied. The first approach uses the spectral radius of the true source Jacobian as the
diagonal term of the approximate source Jacobian. Finding the eigenvalues of % can
be difficult so we actually use the L2-norm of the matrix. This gives a conservative
estimate of the spectral radius.

The above approach is equivalent to rescaling the time step for the species trans-
port equations so that the fastest reaction is explicitly stable. This is stable but may
converge slowly since. when fast reactions are present, it can dramatically slow down
the convection of mass. This is particularly true when one reaction is much faster
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than the others but does not involve any of the dominant species. In these cases it is
much more efficient to rescale the time steps for each species independently.

The second approach bases the diagonal term for each species continuity equation
on only the reactions affecting that species. This is done by replacing the diagonal
elements of the source Jacobian matrix by the L2-norm of the elements along the row.
This approach converges quicker than the uniform rescaling but it does not insure
atom conservation in the unsteady solution. Atoms are conserved in the steady state
solution however. This latter approach is currently implemented here.

5.1.5 Implicit Treatment — LU-SGS

The flux vector is a function of the solution in nearby cells. Consider only the z +1/2
surface.

P-Sirz = fUiss s Uik Usr ik Uinzin) (47)

The flux is evaluated at the new (unknown) time level and linearized using Yoon’s
approximate Jacobians.

P-S ?:11/2 ~P-5 ?+1/2 + A?;-I/Z,j.k 5Ui.j.k + Ai—+1/2,j.k 5Ui+1.j,k (48)

where

~ 1
Al ok = '2'(Ai.j.k+P(Ai,j.k)),

- 1
dzgk = 5 (A = p(Aivaik),

A is the flux Jacobian, and p(A) is the spectral radius (maximum eigenvalue) of A.
Substituting equation 48 and the corresponding flux for the j— and k—direction faces
into the discrete conservation equation, equation 32, yields the implicit finite-volume
equation. This equation may be written as three steps:

1. Calculate the residuals for each cell using an explicit flux balance.
Rix=—(D;P-S+D; P.-§+ D P-S)" + NI, (49)
The residuals will approach zero as the solution approaches steady state.

2. Calculate the change in the solution by solving the block-linear system of alge-
braic equations. The rows of this system are the block-linear algebraic relations
resulting from the implicit flux balance applied to each cell.

VOI,"J"k aN{,J‘_k
A Uik = e 8Uis (50)

+ D; [A;:l/?.).k 5U,"]'.k + Ai—+1/2,j,k 6U,’+1,J"k]

+ DJ [B:'J+1/2,k 6U-‘J.k + Bi—,1+1/2.k 5Ui.1+1.k]
+ Di [C:J,k+l/2 6Ui.1‘.k + Ci:j,k+l/2 ‘5Ui.j.k+1] = Ri.y.k
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Because of the choice of Jacobians, this resulting block matrix multiplying éU; ;
is approximately diagonal when the source Jacobian, %—?Ji*l*f-, is zero.
\F D

3. Update the solution using

rw = Ulie +r8Us ik
where r is a relaxation factor. The code starts with a user specified r near one
and updates the solution. If the solution at time level n + 1 results in negative
pressures or temperatures the relaxation factor is halved and the solution at n+1
is recalculated. This process is continued until all pressures and temperatures
are non-zero or r reaches a specified minimum.

The above algorithm consists of three steps which must be done on each time
step. The first step is an explicit step which calculates the residual from the local
variation of the solution. The second step implicitly calculates the change in the
solution according to global variations in the residual. The last step updates the

solution.
The second step is the most difficult because it requires the solution of a large

sparse system of linear equations. The LU-SGS algorithm approximately solves this
svstermn using two sweeps of a point Gauss-Seide] relaxation. Assume the iteration
sweeps first in the direction of increasing i, j, k indices and then in the direction of
decreasing 1. j. k indices. The increasing i, j, k iteration is performed by applying the

equation
Vol IN 7=
[(S—t— +ra+rg+ 7'c) I - (5@')1”} ‘Sbi.j.k

- "1x+—1/2,1.k5(":-1,1,k - Bx‘+.]—1/2.k5Ui.,J—1,k - C?.],k—l/26["ri..1,k—l = Ri.].k (51)

at cach internal cell. The decreasing 1. J. & iteration is performed by applying the

equation
Vol aN
(—At +ra+rp+ rc) I - (a[;)i‘j'kj' U 5k

+ “1i_+1/2,;,k‘5Ui+l-J‘k + BlT]+l/2.k6l,i~j+1‘k + i_:J,k+1/26Ui‘]-k+l
™ - + T=
A? 1/2,,,;.-5 i-1.k B:-]-]/'Z,ké -‘/ri.j—l.k - Ci,],k—l/Z(S('z.j,k—l = R:'.J.k (52)

This scheme may be written as an approximate lower-upper (LU) factorization by
subtracting equation 31 from equation 52 and rearranging to remove 6U; , from the

Vol BN .
(—A—t +ra+rg+ rc) I - (Eﬁ):]k] oUi ;.
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+ AL1y2u0Uir15k + Bl 1240V 500k + CF 4 p1/20Ui sk

Vol ON
= —— +tra+rg+ rc) I - (——) sU; ;. (53)

This equation replaces equation 52. It yields the same results as equation 52 but
requires fewer floating point operations and less memory. The diagonal wavefront al-
gorithm is used in the solution of the Lower and Upper systems to allow vectorization
or parallelization (see section 3}.

When the source Jacobian, %%’, is zero the LU-SGS scheme is very efficient because
the main block (i.e. the matrix multiplying U, ;) is diagonal and easy to invert.
When there are chemical reactions the source Jacobian, given by equation 46, is not
zero. Therefore, the resulting matrix is not diagonal and would be more expensive to
invert. We therefore use the approximate source Jacobians discussed in the previous

section to diagonalize the main block for chemically reacting flows.

5.2 Boundary Conditions

The various boundary condition options available in the code are described in section
4.1. These boundary conditions are in the form of algebraic or differential relation-
ships for the flow variables on the boundary. The boundary conditions are satisfied
numerically by setting the values of the flow variables in the boundary cells so that
the boundary conditions are satisfied on the surface between the boundary cell and
the first internal cell.

5.2.1 Free-Slip Walls

The zero gradient in pressure and temperature boundary conditions are easy to im-
plement. The pressure and temperature within the boundary cell is simply set to the
values in the first internal cell. The impermeable wall condition is set by reflecting
the velocity vector about the surface. Mathematically,
- _ (0 _oV.5
Vboundary cell (L 2V n)internal cell

where V is the velocity vector and 7 is the unit surface normal vector. The average
velocity at the surface is therefore tangent to the surface.

5.2.2 No-Slip Walls

For no-slip walls the easy boundary conditions are for velocity and pressure. The
velocity in the boundary cell is set equal to the negative of the velocity in the interior
cell so that the velocity at the wall is zero. The pressure in the boundary cell is equal
to the value in the first internal cell. The wall temperature depends on whether the
wall is adiabatic, isothermal, or radiating/conducting.
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If the wall is adiabatic (and nonradiating), the temperature gradient in the gas at
the wall is zero. This is satisfied by setting the boundary cell temperature equal to
the temperature in the first internal cell.

If the wall is isothermal, the temperature at the wall is specified. This is satisfied
by extrapolating the temperature from the internal cell and wall into the boundary
cell. Then when the boundary cell and internal cell temperatures are averaged the de-
sired wall temperature is obtained. The boundary cell species densities are calculated
from the temperature, pressure, and zero gradient in species mass fractions.

The most complicated case is when the radiating/conducting wall option is chosen.
In this case the wall temperature is given by the complicated expression, equation 20.
For numerical reasons it is often desirable to slow down the change in wall temperature
during the initial transients, so we add a heat capacity (per unit volume), c;., to the
wall. For simplicity, the heat capacity is lumped at the surface so that the expression
for the heat conduction into the wall doesn’t change. The resulting expression for the
wall temperature is

a7,
Chclyall—F— = qq + qs + qr

ot
7 aT 0 T,
( w 3 0T , tw T Tl 4 4
Chctwall—ét_ = —k Ez_ . - k’_i,;;—— - a [CwTw - awTdb] (54)

The above expression is an ordinary differential equation that must be solved at each
wall surface at each time step. The equation is highly nonlinear and very stiff because
of the T? term in the radiative heat flux. The equation is solved using a linearized
fully implicit procedure.

n+l _ gm Chelwall _ aqg _ aq, _ 3qr
L ‘Tw”qg”’”’)/( At oI, oI, oL,

When the wall capacity, ci.. is set to zero this is equivalent to doing one Newton
iteration on the nonlinear equation per flow solver time step.

5.2.3 Rarefied Gas Slip Walls

In section 4.4.3 expressions were given for the velocity at the edge of the Knudsen layer
and temperature jump across the Knudsen layer. The actual boundary conditions for
the Navier-Stokes solver are the values of the flow variables at the edge of the Knudsen
layer. as indicated by the subscript s, not the values of the flow variables at the wall.
In this section we describe the numerical treatment of these boundary conditions.
The first step is to find the temperature at the edge of the Knudsen layer, T,. This
temperature depends on the nature of the boundary. If the wall is adiabatic with no
radiation. equation 24 holds and the temperature gradient is simply related to the slip
surface velocities and velocity gradients. The velocities and gradients are evaluated
from the velocities at the previous time step and the desired temperature gradient is
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obtained by setting the boundary cell temperature appropriately. For example, if the
surface is the j = 5/2 boundary, then
Tiok =Tipx + 51 5k [(u:,a,k + Ui (Wigk — i) + (Wigk + wiae)(Wiay — wf,z,k)] ;

where u’ and w' are two orthogonal components of the surface tangent velocity.

If the wall is either isothermal or radiating/conducting, T, must be calculated
using the temperature jump relation given in equation 25. The equation is rewritten
as a function of the temperature ratio whose value should be zero.

1(z) -

T, 2_9[KT, A (T, T, %k, m, ., [T
) Ve [p VoI(Tw_Tw)]+Z e m O\ T

1=1

N2 ZkT m, T

_Z ‘T =0

This nonlinear equation is solved using a Newton iteration.

Ts n+1 Ta n f
) -&) -7
Currently, one iteration of the Newton iteration is performed per time step so that
the equation is not solved completely on each time step, but is accurately solved when
the solution is at steady state.

When the wall is isothermal, the wall temperature T,, doesn’t change and the
above procedure is used to calculate T,, the temperature at the edge of the Knudsen
layer. The temperature in the boundary cell is then determined by extrapolation.
If the wall is radiating and/or there is heat conduction into the wall, the wall tem-
perature is given by equation 26. In this case, equations 25 and 26 are a pair of
coupled nonlinear algebraic equations for the 7, and T,,. The first equation is solved,
as described above, using one step of a Newton iteration. For the solution of this
equation the value of T, from the previous time step is used. The second equation
is then solved for T, as described in the previous section while assuming that ==
is constant. This procedure converges to the appropriate wall temperature and Sllp
surface temperature at steady state.

The next step is to calculate the velocities at the edge of the Knudsen layer. These
velocities are given by equations 21 through 23. The velocities are first transformed
into the orthogonal surface normal coordinate system (z’,y’, z’) where y’ is the co-
ordinate normal to the surface. The derivatives in equations 21 and 23 are then
differenced. For example, for the j = 5/2 boundary this yields

ou, 24, ,
ay, = V(;i [ui,3,k - us] .




The resulting algebraic expressions are solved for v} and w/) to give

__¢
T 14
C

_ !
L= T

o~

where
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The slip surface velocities are then transformed back to the global (z,y. z) coordinate
system and the boundary cell values of velocity are determined by extrapolation.

The boundary cell values of pressure and species density are calculated as de-
scribed in the previous section.

5.2.4 Supersonic Inflow

The supersonic inflow condition is satisfied by setting the flow variables in the bound-
ary cells to the values specified by the user.

5.2.5 Supersonic Outflow

The supersonic outflow condition is satisfied by setting the flow variables in the bound-
ary cells equal to the flow variables in the neighboring internal cell.
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6 Parallel Navier-Stokes Implementation

The 3-D Navier-Stokes code “HANA™ has been parallelized on the Intel Touchstone
iPSC/860, Cray Y-MP, and Silicon Graphics Iris 4-D machines using domain decom-
position. This development is under tasks 5 through 10 as described in section 2. The
approach is essentially the same as that taken for the model code described previously
in section 3.

The Navier-Stokes equations are solved using Lower-Upper Successive Gauss-
Seidel relaxation (LU-SGS). The procedure uses a diagonal wavefront algorithm in
which the inner most loop is over all points on the 7 + j + k constant plane (see
Figure 15). All points on this plane are independent of the other points on the plane
so that they may all be updated simultancously. This allows the code to vectorize
over the inner loop.

The structure of the HANA code is shown in Figure 16. It is a multiple-zone
(multi-block) code that uses multiple i, j, k ordered grids patched together at common
boundaries. The hierarchical structure of the code reflects its multiple-zone nature.
The main routine is a driver routine which calls subroutines to operate on zones. The
main opecrations are “perform one iteration for a zone” and “transfer data between
zones”. This model was chosen because it fits nicely with the data partitioning and
interprocessor communication approach required on parallel computers.

The following subsections present the specific implementation of the domain de-
composition technique. Descriptions of the demonstration cases and timings on a
single cpu Cray Y-MP computer are presented in the following section. Finally, com-
parisons are presented for the parallel efficiency, speed up and performance of pHANA
on the different parallel machines.

6.1 Distributed Memory MIMD Computer

The 1PSC /860 version of the pHANA code requires a host program and a node pro-
gram to run. Due to the computationally demanding nature of the Navier-Stokes
equations (especially for chemically reacting flows). both programs must be written
in double precision format. The host program, which is usually run on the svstem
resource manager (SRM), allocates a cube of nodes (processor-memory pairs). ‘Lhe
host program also requires information on how each of the zones is divided in the i-
and j-directions. the number of processors used, the name of the cube, the name and
location of the node program. and a flag to tell the node program whether it is a new
or restart calculation. The host program allows a cube to be allocated and released
automatically when the program is running. It also allows the user to load a node
program from the concurrent file system (cfs) by specifying the full path name of the
node program. The Navier-Stokes solver is the node program which has to be loaded
onto the nodes by the host program.

The node program (pHANA) was parallelized on the distributed memory com-
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puter using a permanent domain decomposition technique. The domain decomposi-
tion used in the Navier-Stokes implementation is the same as the domain decompo-
sition for the model equation. The decomposition is limited to 4 “two-dimensional”
aecomposition, to reduce the search effort for interzone boundary conditions. The
basic idea of domain decomposition is to divide the overall domain two-dimensionally
(i.e., in the I-direction and J-direction only) into subdomains (subzones) which are
assigned to separate processors. The K-direction is not affected by the decomposition.
The number of subzones is equal to the number of processors used for the calculation.
The domain decomposition is modified for the Navier-Stokes code implementation
due to load balancing. faster ifo. and memory limitations. The modifications in-
clude: input/output and job management, initial conditions, and restart capabilities.

The input/output tasks. which were performed by the SRM in the model code.
were moved to one of the nodes. In addition, this input/output node (processor) was
dedicated to perform all job management activities. The reasons of this change were:

1. The amount of data that can be transferred from the SRM to the nodes is limited
to 256 Kbytes. Node to node transfers do not have this limitation. Since the
Intel Touchstone favors the passing of a few large blocks of data rather than
many small blocks. several variables are combined and passed simultaneously.
This reduced the overhead in establishing interprocessor communication links.

2. Dedicating a node to i/o avoids the load .eveling problems seen with the model
equation. /o is generally performed L. sequential code which cannot be paral-
lelized. When one node shares i/o and solution duties, it is much slower than
other nodes. Since the solutions on all nodes cre syrchronized, all other cpus
have to wait until the node sharing i/o and solution duties is finished. Using
a dedicated node for i/o and job management duties, the solver cpus have less
idle time.

The second modification to the domain decomposition involved the initialization
process. Previously. the mesh was input and the variables were initialized on the i/o
node before the domain was split and distributed to the solver nodes The »rocess was
modified because of the 8 megabytes memory limitation of the nodes on the standard
iPSC /360 machine, which leaves only 5 megabytes for data after the executable is
loaded. This seriously limited the size of the problem that couid be run on this
com;».ter. The modified initialization procedure is:

1. The i/o node reads in the original mesh from an external mesh file.

2. The i/o node splits the mesh into subdomains based on the specified number of
divisions in the [ and J-directions.

3. After the original mesh has been split into subdomains, the i/o node sends the
subdomain meshes to the appropriate solver nodes.
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4. The solver nodes now perform the flow field initialization based on the data
received from the 1/0 node.

By distributing the mesh before initianzing the flow variables, the memory required
by the i/o node is minimize and larger cases can be calculated on the machine.
However, the initial interprocessor communication increased due to the passing of the
parameters defining the initial conditions.

The third modification to the domain decomposition procedure was the reading
and writing of the restart file. Due to the memory limitation mentioned above.
the restart file is now written in terms of the decomposed subdomain zones. When
the code is restarted, the i/o node allocates just enough memory (or heap space)
for one subdomain, reads the restart file for that subdomain, sends the data to the
appropriate node and releases the memory. These operations are repeated until all of
the subdomains in the restart file are input and sent to their nodes. This procedure
allows HANA to use all of the available memory, where each cpu contributes about
five megabytes of usable memory. Further, the restart files are now written in the
concurrent file sy stem (cfs) to speed up the read and write time. It appears that
access time to a cfs restart file is an order magnitude faster than access time to a
restart file on an SRM disk. However, the draw back of writing the restart file onto
a cfs disk is that it cannot be accessed interactively.

A schematic diagram of the domain decomposition of a simple two-dimensional
geometry is shown in Figure 17. The size of the subzones must be small enough
to fit within the available local memory of the processor attached to that subzone.
(‘alculations are driven using a global time step. Subzones are connected by means of
interzone patches which provide communication between adjacent subzones, shown
in Figure 18. This communication between the subzones on different nodes is done
by copying the data from the sending subzone to an intermediate array on the same
processor. This array is then sent to an intermediate array on the receiving processor
and subsequently used as boundary conditions in the corresponding subzone on the
receiving PLocessor.

6.2 Shared Memory Cray Y-MP

The procedure for parallelizing on the Cray Y-MP is similar to the procedure used
for the Navier-Stokes code implementation on the Intel Touchstone iPSC/860 (i.e..
macrotasked domain decomposition). A given zone is divided up automatically into
subzones. The number of subzones is equal to the number of processors used in
the calculation. Unlike the distributed memory MIMD version however, there is no
processor dedicated for job management and i/o purposes. One of the processors is
burdened with the job management and i/o responsibilities, in addition to number
crunching. However. because the CRAY uses a small number of fast processors. the
additional work load on this processor is in most cases negligible.
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Parallelization is performed using macrotasking compiler directives. The conserva-
tive variable data for each subzone is isolated and can only be accessed the processor
which is assigned to that subzone (private data). As with the Intel iPSC/860 the
communication between the subzones is done using interzone patches. The bound-
ary conditions on each subzone are copied into an intermediate array where data is
shared with the adjacent processors. The macrotasking parallelization (large-grain
parallelization) is done by isolating segments of the code that can be run in paral-
lel into external subrou.ines. The job is divided into tasks to be run on different
cpus by executing multiple A-level solver routines with each processing on a differ-
ent subzone. The A-level solver routine is defined as external in the driver routine.
To start a task. the compiler directive TSKSTART is used. Thus. TSKSTART is
invoked several times with the same external routines as arguments. causing several
processors to execute the solver routine in parallel. The memory which contains the
data sets for each subzone is treated as private data. Upon the completion of the
solver routine. the shared data (the interzone patch array) i1s modified by copying the
updated boundary data. The L2-norm convergence level is also shared data where
cach processor contributes its subzone L2-norm. To avoid memory contention prob-
lems. a TSKWAIT compiler directive is called on each time step prior to all boundary
condition updates. The boundary conditions are updated by unlocking values in the
shared data area.

This domain decomposition technique is the same as the one used on the dis-
tributed memory MIMD computer. The transfer of data between subzones is different,
as 1t is done using shared memory rather than message passing between processors.

A major problem with the Cray Y/MP is that it is not possible to obtain accurate
timings of parallel runs when it is in the multiuser mode. The timings for task 3 were
made with the NAS Cray YMP in single-user mode. which required the computer to
be dedicated to our use. Clearly. such runs must be scheduled well in advance and
must run very quickly. We were unable to get dedicated time on the NAS Cray YMP
for timing of Navier-Stokes runs.

Another problem with the parallelized code on the Cray is that the domain de-
composition reduces the vector lengths and. therefore. the vector efficiencies. For
example. a zone which has an [-dimension of 80 may be divided into two zones with
I-dimensions of 40. The zone with a dimension of 80 has a longer vector length than
the zones with dimension 10 and will therefore take less than twice as long to update.
The net result is in effect a reduction in parallel efficiency even without memory con-
tention or load leveling problems. This problem may be avoided by increasing the
problem size as the number of cpu increases.

6.3 Shared Memory Silicon Graphics Iris

The procedure for parallelizing on the Silicon Graphics Iris 4-D (SGI) is very similar
to the procedure used for the Intel Touchstone iPSC/860 and the Cray Y-MP (i.e.,




macrotasked domain decomposition). Based on the number of user-specified divisions
in the :— and j—directions, a given zone is divided up automatically into subzones.
No host program is necessary in this case, and one processor is responsible for the
job management and i/o operations. in addition to number crunching. This does
not cause a significant load leveling problem unless the number of grid points is very
small.

The SGI is a shared memory MIMD type computer. The compiler parallelizes by
generating threads (processes) from DO loop iterations. The DO loop is the basic
work unit that is split into concurrent threads. Since parallelization on this machine
is limited only to DO loop parallelization, the original thread is the master, and it
controls the execution of all other threads. By splitting the A-level call loops in the
driver routine, the code is executed in parallel. The CSDOACROSS compiler directive
is used for the DO loop over the solver routine. The subzone number is the variable
incremented in the DO loop. It is defined as a LASTLOCAL variable so that the
appropriate values are sent to the slave threads. The time step number, time, and
convergence level are defined to be shared. Data for each subzone is isolated and can
only be accessed by one thread, thus preventing memory access collisions.

The transfer of data between subzones on different processors is through shared
memory locations. The interzone communication is done by copying boundary condi-
tion data into an intermediate array. Data in this array is locked until all processors
finish the time step. This is synchronized such that the boundary conditions are not
updated and processors cannot start working on the next time step until all proces-
sors are finished working on the current time step. If the subdivision of the zones
has a load balancing problem. or if other processes delay the execution of one of the
threads. this synchronization will significantly reduce the parallel efficiency. However,
svnchronization is necessary to prevent a memory collision which could easily happen
in a shared memory system. After the time step is finished in all subzones. data in the
intermediate arrays is available to complete the transfer of data between subzones.
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7 Test Cases

During tasks 6, 8, 10, and 11 we performed a suite of nine engineering calculations
on three different computers using the parallelized Navier-Stokes code. The nine test
cases are listed in Table 2 and are presented in this section. All cpu times given in
this section are the single cpu Cray Y-MP time. Timings on other computers scale
accordingly and the comparisons are presented in the next section.

Lg'ase No. Description 1
1. RAE-2822 airfoil

Unsteady flow past a cylinder

Mars penetrator with C'O; chemistry model

Hydrogen-air shock induced combustion

Premixed hydrogen-air past a 10° ramp

Hydrogen-air oblique detonation ram accelerator

Methane-air shock induced combustion

Methane-air thermally choked and transdetonative ram accelerator
Ideal gas 3-D ram accelerator

SR R A

Table 2: Suite of Test Cases

7.1 RAE-2822 Airfoil

The first test case is a 2D flow field that is representative of a class of viscous-shock
flow interactions commonly found on transonic vehicles. A two-zone body fitted C-
mesh consisting of 104 x 44 and 104 x 44 points was used in the calculation. The
24 inch chord RAE-2822 airfoil has a sharp trailing edge, a moderate amount of aft
chamber. and a 12.1% thick supercritical section. This airfoil has been widely used
for code validations. The case computed is a Mach 0.73 flow at a 3.19° angle of attack.
A converged solution was achieved within 2000 iterations requiring approximately 30
minutes on a Cray Y-MP. The mesh. pressure contours and the pressure coeflicient
from the computed solution are shown in Figures 19. 20, and 21.

The computed solution shows a very good comparison with the experimental re-
sults. A discrepancy in the pressure coefficient is due to neglect of turbulence. Ex-
perimentally. a boundary-layer trip strip was placed at 3% chord.

7.2 Unsteady flow past a cylinder

The second test case is an unsteady Mach 0.45 flow past a cylinder at a Reynolds
number of 110.000. The case is selected to demonstrate pHANA’s unsteady flow

61




5.0 [-

25r

0.0

5

S0 ‘
[ L R L ! i

-25 0.0 25 50 75

Figure 19: RAE-2822: Two-zone Mesh

AL ] o
oS
0.0
L5 L
1 N U 1
Q.0 as 10 15

Figure 20: RAE-2822: Pressure Contours

10
Experimental Data

o5

05

A A

- —
0.00 0 980 078 1.00

X/C

Figure 21: RAE-2822: Computed Pressure Coefficient vs. Experimental Data

be




analysis capability. A three-zone mesh consisting of 40 x40, 40 x40, and 40 x 96 points
was used in the calculation. The calculation was performed using an explicit method
and was carried over to 10,000 time steps taking approximately 20 cpu minutes.
Streamlines of the results at different times are shown in Figure 22.

7.3 Mars penetrator with CO; chemistry model

The third case is a calculation of hypersonic flow of Martian atmospheric gas over an
axisymmetric aerobrake. The geometry for this vehicle is shown in Figure 23. The
calculation was done using a 50 x 60 single zone mesh which ignores the afterbody of
the vehicle. The freestream conditions are P = 7.36 N/m? T = 149°K, U = 4783m/ s,
and M = 24. The freestream chemical mass fractions for CO; and N, are 0.9685 and
0.0315 respectively. A 1000°K isothermal no-slip wall boundary condition is used on
the surface.

The chemistry model used includes 8 species and 12 reactions [64], as shown in
Table 5. The temperature used in the Arrhenius rate expression is the geometric
mean of the translational and vibrational temperatures, T = /T1,. The Landau-
Teller coefficients for the vibration/electronic energy source term are also taken from
[64]. At these conditions, the effect of ionization is negligible so it was neglected in
the chemistry model. A converged solution was obtained in 6000 iterations requiring
about 1.0 Cray Y-MP cpu hour.

The computed temperature contours for this calculation is shown in Figure 24.
The flow is energetic enough to cause significant decomposition of CO; but much less
dissociation of V,. As expected, the temperature peak behind the shock is visible all
along the aerobrake surface.

7.4 Hydrogen-air shock induced combustion

The fourth test case is the shock-induced combustion of a Hydrogen-air mixture.
Shock-induced combustion phenomena, ranging from decoupled shock-deflagration
systems to overdriven oblique detonation waves, were experimentally investigated in
the mid 1960’s and early 1970’s. Experiments mostly consisted of firing ballistic and
other blunt body projectiles through explosive mixtures such as H,/O, and H;/Air.
Calculations of this type of reaction are very demanding in terms of numerical ro-
bustness and accuracy, since the reactions usually occur very fast with significant
energy release which takes place in a very short distance. Two results from Lehr’s
(48] experiment were modeled numerically. The two cases involve a 15mm sphere-
cylinder shaped projectile moving through a stoichiometric mixture of hydrogen-air
(P = 42662Pa.T,, = 250°K’) at velocities of 2605 m/s and 1685 m/s, respectively.
Inviscid calculations were performed on a 72 x 65 grid Converged solutions were
obtained within 4000 iterations or about 40 cpu minutes. Tle combustion model
used is listed in Table 6. It includes 6 reacting species (H,, Oz, H,0, H,0, and OH)
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Figure 23: Geometry of the Mars Penetrator
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Figure 25: Hydrogen-Air Shock Induced Combustion

and | inert species (N;) and is similar to the model we used in previous calcula-
tions {71, 72. 73], and the model used by Yungster [66, 67, 68].

Experimentally, Lehr found that the superdetonative case resulted in a coupled
shock-deflagration system, whereas the subdetonative case yielded a decoupled shock-
deflagration system. These two cases were also modeled numerically by [66] and [72].
Figures 25a and 25b show the computed temperature contours for the two cases
along with experimental shadowgraph from [48]. The results correctly predict the
location and the shape of the wave. In the superdetonative case, it appears that the
combustion front decouples from the shock wave around the shoulder of the projectile.
This phenomenon was also seen in Lehr’s experimental shadowgraph. Unlike the
superdetonative case, the combustion front in the subdetonative case is decoupled
from the bow shock wave and is separated by an induction region. The temperature
appears to be constant in the induction region and is followed by a sharp rise at the
combustion front.

7.5 Premixed hydrogen-air past a 10° ramp

In the fifth test case the HANA calculations are compared with calculations presented
by Chitsomboon et. al [77] who used the Roger and Chinitz two-step combustion
model. The test case involves a supersonic premixed stoichiometric hydrogen-air
mixture which is ignited by the boundary layer and a shock wave induced by a 10°
compression ramp. The M = 4 flow was initially at 900°K and 1 atmosphere. The
same combustion model as in the previous case was used in this calculation. The shock
and the boundary layer raise the temperature and start the combustion process. The
calculation was performed using a 80 x 50 grid requiring 5000 iterations and 45 cpu
minutes. Results are compared in Figures 26a through Figures 26c. The HANA
results compare favorably with the results of Chitsomboon. However. our results
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Figure 26: Hydrogen-Air Past a 10°Ramp

show significantly larger H,O and smaller OH mass fractions than their results. The
differences are due to the different chemistry models used. Qur model yields somewhat
faster and more complete reactions than the global two-step-reaction of Roger and
Chinitz. The same behavior was also observed by Shuen and Yoon (70}.

7.6 Hydrogen-air oblique detonation ram accelerator

The sixth test case involves the superdetonative operation mode of a ram accelerator
in a stoichiometric hydrogen-air mixture. Results from the calculation are compared
to Yungster's calculation [67]. The geometry is a 15 cm long projectile with a 14°
cone half angle and a 1.95 cm maximum diameter inside a 3.0 cm diameter tube.
The projectile is moving through a 300°K, 1 atmosphere, stoichiometric hydrogen-
air mixture. and its wall is assumed to be isothermal at 600°K. The geometry and
the flow parameters are similar to those used by Yungster. However, information
was not available for the radius of the round corner at the transition region between
the nose and the body of the projectile. A 135 x 51 mesh and a 7 species, 8 step
chemistry model was used in the calculation. A converged laminar calculation is
achieved within 8000 iterations requiring about 2 cpu hours. The three different Mach
numbers considered are: M = 6.7,7.5, and 8.0. Temperature contours for these cases
are shown in Figure 27. Figure 28, and Figure 29 for M = 6.7,7.5,8.0, respectively.
Water vapor mass fraction contours for these cases are shown in Figure 30. Figure 31.
and Figure 32. The pressure profiles at the projectile and the tube walls for the
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M = 6.7 case are compared to results tzken from Yungster's calculaticns in Figure 33
and Figure 34. As previously computed. the combustion begins in the boundary layer
region. propagates outwards to fill the whole gap between the projectile wall and
the tube wall. and finally establishes a shock-deflagration front. Results show good
agreement with Yungster's calculation. Small discrepancies are due to the difference
in the expansion region at the nose/body junction of the projectile.

7.7 Methane-air shock induced crmbustion

The seventh set of test cases was selected from the French-German Research Insti-
tute of Saint-Louis (ISL) shock tube experiments [80]. At ISL, the two experiments
described in Table 3 were performed using a stoichiometric methane-air mixture at
P.. =31000Pa. T, = 295°K. and U, = 2333m/s.

| Case No. Description |
1. Blunt cylinder witl different chemistry models
2, Cyvlinders of various diameters

Table 3: Methane-Air Combustion Cases
Four different chemistry models were used for the calculations of the blunt cylin-

d-r. they are: a "full” model. a quasi-global, a three-step, and a single-step global
combustion model. The full model was derived from several published methane-7'r
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combustion models. There is significant variation in some of the reaction rates cal-
culated from the published rate coefficients for the different models. The rate which
gave the best solution for shock induced combustion on a blunt body was chosen. The
final model consists of 13 species and 19 elementary reaction steps. see Table 7. This
model is called full because it contains no global reactions. It is, however. truncated
and a detailed sensitivity study was not performed to determine that all ignored re-
actions are insignificant. Note that for simplicity, nitrogen is assumed to be inert in
this model.

The second model tested was due to Wesbrook and Dryer and is called the quasi-
global reaction model. It includes 10 species and 12 reaction steps, see Table 3. The
model was first used by Edelman and Fortune [82], who combined a single reaction
of fuel and oxidizer with a detailed reaction mechanism of a CO — H; — O, system.
[t provides a better equilibrium temperature and a more accurate representation of
concentrations of the products and reactants than the global reaction alone. The first
reaction ;i this model is a phenomenological model and the reaction rate is given in
the form of

koo = CT"ezp(—E/kT) [Fuel]* [Ozidizer]’ .
A small modification was made to INCA to accommodate this form such that
ky = kare [CHJ "2 [02]7%2,
where k,,, is the standard Arrhenius form of the reaction rate. It is important to note

that after some careful comparisons to the original model listed in Westbrook and
Dryver [75]. reactions involving H,0, and HO, were omitted without any noticeable
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differences. Thus. the model was reduced from 12 species and 21 reactions to 10
species and 12 reactions.

The last two chemistry models are global models that were developed by West-
brook and Dryer {73. 76] and used in the ram accelerator calculations by Nusca [74,
SI]. They are a three-step model having 7 species and a one-step model having 5
species.

In the first case. the geometry is a 7 mun diameter blunt cyvlinder. Calculations
were performed on a 72 < 65 mesh. Temperature contours from the laminar calcu-
lations for all four models are shown in Figures 35a through Figures 35d. Both the
full model and the quasi-global model predict a coupled shock-deflagration system
near the stagnation region which then decouples at the shoulder of the cylinder. The
two contour plots show a remarkable resemblance to the interferometry pictures from
ISL [30]. Unfortunately, a more quantitative comparison to the experimental results
is not possible at present. On the other hand. the three-step and global models grossly
underpredict the amount of combustion.

Figures 35e and 35f show the stagnation line pressure and temperature compar-
ison between the full model and the quasi-global model. It appears that the two
mudels compare favorably. However. the quasi-global model slightly overpredicts the
equilibrium temperature. It is important to note that the full mode! used here is a
significant simplification of the complete model listed in [76]. and that there is much
uncertainty in some of the rate coefficients. Thus. the quasi-global model appears
to vield a reasonable result with about 20% saving in cpu-time compared to the full
maodel.

To determine the effects of turbulence on the shock and combustion front locations.
thie Baldwin-Lomax turbulence model was used for a calculation with the quasi-global
chemistry model. The computed temperature contours are shown in Figures 35g. The
~hock dettaeration location is not affected by turbulence. However. the turbulence
appears to enhance the combustion process behind the shoulder of the cylinder. The
turbulent result 1s not significantly different from the laminar solution.

The second case involves two-dimensional rods of varyving diameter. The flow
ficld was modeled on a 72 x 65 two-dimensional blunt body mesh. Results from the
‘alenlations for Tmm. 3mm. Imm. and 0.5mm diameters rods are shown in Figures 36a
thronel 3Gd. respectively. Notice how a coupled shock deflagration svstem becomes
a deconpled system as the rod diameter is reduced. However. ISL reported that there
ix a sharp ignition onset between the fimm and 3mm diameter rods. This discrepancy
conld be due to the inaceuracy of the gnasi-global model in the calculation of induction
time. The position of the pressure 1transducers in the experiments is crucial. Theyv
may have heen placed too far away from the rod itself to be able to identify the
detlaeration location for all rod diameters,

Foven thoneh the two ~calibration™ cases above do not show an exact agreement
with the experimental findines. they show a promising trend that such a complicated
combustion can be modeled nsing the gnasi-global chemistry model.
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7.8 Methane-air ram accelerator

The eighth set of test cases is Methane-air combusting flow about a ram accelerator
operating in the thermally chocked. traisdetonative, and superdetonative modes.
Results are compared with experimental data from the University of Washington.
Depending on the speed of the projectiles and the Chapman-Jouget (C-J) det-
onation speed of the mixture. the ram accelerator operation modes can be divided
into three regimes [69. 78]: the thermally choked subsonic combustion mode. the
transdetonative mode. and the superdetonative mode. The thermally choked mode
operntes at speeds up to about 35% of the detonation speed of the mixture. This
mode is usually characterized experimentally by a very sharp rise in the tube pres-
sure profiles xomewhere along the second half of the projectile body. The combustion
ustally occurs behind the projectile. spreads to the full tube diameter. and forces
the flow to thermally choke at some distance downstream from the projectile [69].
The transdetonative operation mode is usually observed when the velocity of the
projectile is 857 to 115% of the local C-J speed of the mixture [69]. In this regime.
it appears that projectiles can make a smooth transition from the thermally choked
mode 1subdetonative speed) to the superdetonative operation mode in a single mix-
ture 69]. The superdetonative operation mode requires that the projectile travels
at a minimum speed of 11557 of the mixture C-J speed [65]. The basic principles
of this operation mode are similar to the oblique detonation wave engine and the

scram-accelerator [79].
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Figure 37: Ram Accelerator Mesh and Geometry

In a previous report {73, we concluded that by increasing the projectile’s speed.
the normal shock (which is the characteristic of the thermally choked subsonic coin-
bustion mode) moves downstream on the projectile and detaches from the projectile’s
body as it enters into the transdetonative operation mode. As the transdetonative
mode is entered. an oblique shock appears which is attached at the base of the pro-
jectile. Since the shock strength is not sufficient to render the flow behind it subsonic
over the entire domain. the flow behind this oblique shock is a mixed. Part of the
combustion occurs supersonically and the rest occurs subsonically. These previous
calculations. however. only considered the bulk combustion processes and neglected
the effects of the boundary-layer interactions. An objective of the present calculation
was. therefore. to analyze the importance of boundary layers in the ram accelera-
tor flow fields. It is shown that the “free-slip wall” assumption can only be used
in the thermally choked calculations. and boundary-layer interactions are extremely
important in higher velocity operation modes.

The geometry considered is shown in Figure 37. This geometry is the actual ram
accelerator geometry given in [78]. The tube diameter is 38 mm. The projectile has a
10” nose cone half-angle. a forebody length of 82.06 mm, a body length of 71.1 mm.
and a bhase diameter of 17.8 mm. The three-zone computational domain consisted of
63 < 60. 34 < 60. and 34 < 120. mesh points clustered near the projectile wall and
the tube wall. The free-stream mixture is 2.5CHy + 20, + 5.5V, at 31 atmospheres
and 300°/A". The Chapman-Jouget (CJ) detonation velocity for this mixture is 1770
m/s [78]. Caiculations were performed "inder a laminar flow assumption. A converged
solution was usually achieved within 9.000 iterations requiring approximately 10 Cray
Y /MP c¢pu hours/case. The domain was initialized with free stream conditions with
a normal shock at the base of the projectile. Behind the shock, the pressure was set
to 10 times the free stream value, the temperature was set to 2500° K, and the rest of
the field variables were set to free-stream conditions. The boundary conditions were:
no-slip on the projectile surface. free-slip on the tube wall. a symmetry plane on the
center line behind the projectile. and supersonic outflow. The combustion mode] for
the ram accelerator calculations is the quasi-global mechane-air model described in
the previous section.

A total of ten runs were made to demonstrate the thermally choked and the
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transdetonative operation modes of the ram accelerator. The ten runs are listed in

Ta‘!)l(’ i,

R'ase No. Description

T(m/s) (70cs )

1. Thermally Choked 1250 0.71
2. Thermally Chorked 1330 0.76
3 Transdetonative 1470 0.33
1 Transdetonative 1540 0.87
3. Transdetonative 1625 0.92
6 Transdetonative 1685 0.95
T Transdetonative 1760 0.99
3. Transdetonative 1840 1.04
Y, Transdetonative 1965 1.11
10. Transdetonative 2015 1.14

Table 1: Ram Accelerator Cases

The computed temperature contours. and pressure profiles along the tube wall for
‘e ten cases are shown in Figures 38 through 7. respectively. In the thermally choked
mode. one can see clearly the series of oblique waves which culminate in a “normal”
“hock. This normal shock is stabilized on the projectile’s body by the massive heat
addition behind the projectile and the thermal choking point which occurs about

srajectile length behind the base. It is important to note that the location of
t1i~ normal shock is strongly affected by the amount of heat addition behind the
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Figure 42: My = 0.92 Ram Accelerator
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Figure 44: Mgy = 0.99 Ram Accelerator
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Figure 47: M¢,; = 1.14 Ram Accelerator

base. Thus. it depends on the reaction rates used in the combustion model. By
using different combustion models. the unstart phenomenon has been experienced in
which the normal shock and combustion front move upstream of the throat. and the
projectile experiences negative thrust. A small boundary layer combustion region also
appears following the normal shock. This boundary layer combustion is suspected to
be due to the adverse pressure gradient behind the shock. which causes the laminar
boundary laver to separate. In the separation region. the temperature and residence
times are high enough to initiate combustion. A similar behavior has also been
observed in the oblique detonation mode calculations of Yungster [68]. The first
dip in the pressure profiles corresponds to the expansion region at the base of the
projectile. Behind this expansion point, the pressure increases until it reaches a local
maximum where the combustion front reaches the tube wall. Downstream of this
expansion point. the flow chokes and becomes transonic. The two thermally choked
calculations appear to agree with the experimental results observed at the University
of Washington [78]. The base region acts as a flame holder at these velocities and
there is no combustion in the boundary layer upstream of the normal shock.

In the transdetonative operation mode. the culminating shock is no longer a nor-
mal shock. It changes its characteristics and becomes an oblique shock wave. As
the velocity is increased. the shock recedes along the body of the projectile. Since
the shock is no longer normal, it is not sufficient to render the flow behind it sub-
sonic over the entire tube arca. The flow behind this oblique shock is mixed flow.
where a full combustion is reached in a very short distance in the subsonic region
but much slower in the supersonic part. This oblique shock is followed immediately
by a combustion front which starts at the boundary layer. This partial combustion
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Figure 48: Thrust Coefficient of the Ram Accelerator

on the body of the projectile has also been observed experimentally. As the veloc-
itv is increased. the location of the shock/deflagration system continues to recede
along the body until it reaches the projectile’s base. This point coincides with the
lowest thrust coefficient which occurs at U/Ucy = 0.92. In contrast to the inviscid
results [73]. bevond this velocity the shock/deflagration front now moves forward on
the projectile’s body. This phenomenon is related to the upward sweep in the thrust
coefficient. At velocities higher than 1840 m/s, combustion occurs prematurely in the
boundary laver at the nose region of the projectile. This behavior has also been ob-
served in the oblique detonation mode calculations of Yungster [68] and experimental
luminosity data [69. 78. 83]. In contrast to Yungster’s results however, the full tube
combustion is not reached until about 2 to 4 projectile’s length downstream. The
location where a full tube combustion begins is also observed as the peak pressure
in the tube wall pressure profiles. These locations (where a full tube combustion
begins) appear to be further back than the experimental data. This discrepancy
is probably due to neglected turbulence and three-dimensional effects. This down-
stream/upstream movement of the shock/deflagration front has also been observed
by Nusca [81]. However. since his results were obtained by coupling two different
codes in an iterative manner (where the flow field is partitioned by a normal shock),
the culminating shock was always a normal shock.

The computed thrust coefficients for different velocities are compared to the thrust
coefficient derived from the experimental observations in Figure 48. The computed
thrust coefficient shows very good agreement with the experimental data. It is impor-
tant to note that. after some careful comparisons to the experimental data. there are
two discrepancies. First, the pressure profiles along the tube wall indicate that this
shock/deflagration system has a very high peak pressure which is not observed in the
experimental results. This phenomenon may be due to simplified free-slip boundary
conditions applied at the tube wall. Second, the first pressure peak behind the throat
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Fignre 19 Mesh and stream-tubes for Ideal Gas 3-D Ram Accelerator

is lower in the computed results than that observed experimentally. This discrepancy
is <hown in the next section to be due to fin interactions. Fin effects might also
acconnt for indications in the luminosity data that there is combustion at the throat.

Results from this set of calenlations indicate the importance of the bonndiny
faver combustion in the transdetonative operation mode of the ram accelerator. [t
also gives a possible explanation of the second upward sweep in the thrust data.
Finallv. the overad] resulrs show o very good agreement with the experimental result-
and trends from the Tniversity of Washington., However. there are several aspects
neclected in thos caiculation which are suspected to play a significant role in numerical
<inntfations of the rransdetonative operation mode. One is the effect of the hinhiv
swept tins which will generate three-dimensional shock waves and vortices along the
projectile bodv. The three-dimensional shock waves. vortices. and boundary laver
may mteract and initiate throat combustion at lower velocities than predicted by thie
axisvinmetric cajenlations. The three-dimensional shock and the throat combustion
cond also explan the underprediction of the first pressure peak downstream of the
throat.

7.9 Ideal Gas 3-D Ram Accelerator

Fhie final rest vases a perfeet gas caleulation for a three-dimensional ram accelerator
projectife. was <elected to elucidate the effects of fin interactions. The projectiie
geometry is similar to the one nsed at the University of Washington [69]. However. 1o
sipliiy the compntation. the height of the fin is truncated slightly to allow a 3 nun
vap between the finand the rabe wall. The gap in the experiment is essentially zery
capproximately 0,05 mmn. Further. a laminar ow and free slip walls were assumedd.
[ie free stream condinons were £ = 31 atmospheres. T, = 300°A. and {7, = 1510
mo~o Phe catenianion was performed with the 10« 20 < 20 single-zone mesh <hiowr
m Fienve 190 Phe compnted stream-tubes isee Figure 19) show a vortex rollup alone
the <ide of the ine Fieure 50 <hows the tube wall pressure profiles at three different
otientations with respeet to the in 10,157 and 15°). At 0% the jump in the ‘e
proessure peak was abont 30 times the free-stream pressure. This peak hax never heen

sernin the axisvimmerrie calenlations and 1s solely due to the fin effect. The g




is also associated with a three-dimensional oblique shock reflection which is shown
in the 15° pressure trace profile as a second pressure peak. In the corresponding
axisvrumetric calculation. the tube wall pressure profile was similar to the one at 15°
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Figure 50: Tube Wall Pressure Protfiles at 0°.15°.45° angles to the fin

without the second pressure peak.

The oblique shock wave due 10 the fin interactions changes the flow features "1 the
ram accelerator projectile flow fields. It also sheds light on the discrepancies ‘n the
comparison between the experimental pressure profiles and results from axisymmetri~
calculations. Unfortunately. this calculation does not give information on the effecis cf
the shock wave on the boundary laver and combustion initiation. Obviously. the wave
will raise the temperature behiud it significantly which may be enough to start the
combustion for some cases. More three-dimensional calculations should be performed
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including boundary laver efiects and finite-rate combustion.

Reaction C n E/k
I CO=M = (C+0+M [45x10"% -1.0 128900
2O, =M = CO+0-+M]|37x10" 0 52.500
3 0,+ M = 20+ M 2.0x10%7 1.5 59.500
i CO-CO = (CO,=C 23x10% 053 65.710
5 CO=+0 = (0,+C 3.9x10 -0.18  69.200
6 CO;+0 = 0,+C 1.7x10"3 0 26.500
TN, + M = 2\ <+ T.0x10%'  -1.6 113.200
s NO+M = N+O+M |Llxi0o" 0 75.500
9 CO+N = NO+C 2.9x10" 0.5 53.630
10 N, + = NO+ N 6.4x10""  -1.0  38.370
Il NO+CO = CO,+ N 1.6x10”% 0.5 12.070
12 NO+0O = 0.+ N\ S.4x10M? 0 19.450

S3

Table 5: Chemistry model for Mars atmospheric gases




[ No. | Reaction C n E/k |

1. |H+ 0= 0OH+O0 22E14 0.0 8455.0

2. |O+H, < OH+H 7.5E13 0.0 5586.0

3. | H,+OH < H + H,0 2.0E13 0.0 2600.0

i. |OH +OH < 0+ H,0 53E12 0.0 503.0

5. | Hp+ M <= 2H+ M 5.3E18 -1.0 51987.0

6. | O+ M < OH+ H+ M | 52E21 -1.5 59386.0

T 1OH+ M= O+H+ M 8.53E18 -1.0 50830.0

8. |0+ M = 0+0+ M 7.2E18 -1.0 59340.0

Table 6: Hydrogen-Air Combustion Model
[ No. [ Reaction | C n E/k |

1 |CHy+ M < CH;+H+M |[150E+17 0.0 44600.0
2 |CHy+ H <= CHs;+ H; 2.00E+14 0.0 5982.7
3 \CH{+O0OH < CH; + H,0 3.00E+13 0.0 2513.7
4 |CHi+0 <= CH;+0OH 2.00E+13 0.0 3469.0
5 {CH;+ 0 <= CH,O0+ H 8.00E+13 0.0 502.7
6 |CH;+ 0, < CH,O0+OH 4.00E+13 0.0 8798.1
7T |CHO+M << CO+H,+ M |200E+16 0.0 17596.2
8 | CH,O+0H < CHO + H,O | 250E+13 0.0 502.7
9 |CH,O+0 < CHO+OH 3.00E+13 0.0 0.0
10 { CH,O+ H < CHO + H, 1.70E+13 0.0 1508.2
11 |CHO+OH <= CO,+ H 1.00E+14 0.0 0.0
12 {CHO+ M <<= CO+H+M |200E+12 05 14479.2
13 |CO+0H <= CO,+H 5.50E+11 0.0 543.0
4 | H+ 0= OH+O0 220E+14 0.0 8455.0
15 |O+H, <= OH+H 7.50E+13 0.0 5586.0
16 | OH+ H, <= H,O0+ H 2.00E+13 0.0 2600.0
1T |OH+OH <= H,0+ 0 5.30E+12 0.0 503.0
18 | H0+ M= H+H+ M 5.50E+18 -1.0 51987.0
19 | HHO+ M < OH+H+ M 5.20E+21 -1.5 59386.0

Table 7: Methane-Air “Full” Combustion Model



[ No. | Reaction [ C n E/k |
1 |CHy+150;, = CO +2H,0 [ 4.00E+10 0.0 24333.0
2 |CO+0OH < CO;+H 1.50E4+07 1.3 -402.2
3 |CO+0;<=C0;+0 3.10E4+11 0.0 18903.3
1 |CO+0+ M <= CO,+M |[590E+15 0.0 2061.3
5 |H+0,<= OH+O0 2.20E+14 0.0 8446.2
6 |O+H, < OH+H 1.80E+10 1.0 44745
7T |OH+ Hy <= H,O0+ H 2.20E+13 0.0 2564.0
8 | HHO+ 0 < OH +OH 6.80E+13 0.0 9250.6
9 [OH+ M = O0O+H+M 8.00E+19 -1.0 52135.0
10 |0+ MM <= 04+0+M 5.10E+15 0.0 57816.1
11 |Ho+ M= H+H+M 2.20E+14 0.0 482638
12 | O+ M < OH+H+ M |220E+16 0.0 52788.6

Table 8: Methane-Air Quasi-Global Combustion Model
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8 Evaluation and Comparisons of Parallel Perfor-
mance

In this section, timings for six of the test cases described in the previous section are
presented. From these timings, the parallel performance of pHANA can be estimated.

Two parameters commonly used to measure the parallel performance of an ap-
plication program are speedup and efficiency. Speedup is defined as the ratio of the
time required to run a particular application on one processor to that required to run
on N processors. Efficiency is defined as

Efficiency = Speedup/N,

or the fraction of the maximum possible speedup obtainable with NV processors. Am-
dahl’s law relation is often used to determine the maximum possible performance of
an algorithm. Using Amdahl’s relation, the speedup and efficiency are given by

N
Speedup = —— —
pee = L r = p)N
1
Efficiency = ———4
Y s+ =pN

where p is the fraction of the calculation that is performed in parallel. Obviously,
algorithms that can give p = 1 arc of particular interest. With such algorithms there is
no inherent limit placed on the speedup by the algorithm itself. The current algorithm
is designed to achieve nearly 100% or p = 1 parallelism. However, in practice, there
are several factors that limit the performance of the current implicit algorithm:

1. load balancing (t;)
2. interprocess communication/data swapping and synchronization (¢.)
3. additional work due to domain decomposition (¢yqq)
4. reduction in vector length ({,ec¢)
5. competition for cpu time among users (for multi-user systems) (tez¢)
Therefore. the time required to complete a calculation on N processors (ty) is
tv = (8/N) + bty + te + tagar + Loect T Leztr

where t; is the time required to solve the same problem on one processor.

Load balancing refers to the even distribution of the computational time among
the processors. For our implicit algorithm, it can be eliminated by satisfying a simple
formula:

MOD ({(ID+ (n; = 1) *x4],n;) = MOD ([JD + (n; — 1) x4],n;) = 0.
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where ID. JD are the number of mesh points in the i- and j-directions, and n; and
n; are the number of divisions used in each direction to decompose the domain. In
this section. the load balancing problem has been eliminated in all cases by select-
ing combinations for the domain decomposition such that perfect load balancing is
achieved.

Interprocess communication/data swapping and synchronization are an important
consideration in the design of parallel algorithms. Even for a perfectly parallel algo-
rithm. the total computational time is always augmented by the time to perform the
necessary communication between processors. The communication time is dependent
on the hardware bandwidth, the message passing software, and the algorithm. The
ratio of the time required for message passing to the total run time depends on the
amount of work {nuwmber crunciing) un each processor. It is approximatety inversely
proportional to the square root of the number of mesh points assigned to each pro-
cessor and to the number of species included in the calculation. For a distributed
memory syvstem. it is generally advantageous to minimize the number of messages
passed and to maximize the size of each message. This reduces the effect of latency
time (or the time required to send a 0-byvte message) on the parallel efficiency.

The domain decomposition technique adopted in the current implicit algorithm
formulation is not perfect. One of its drawbacks is that additional work is required
as more processors are used to solve a problem in a parallel manner. The additional
work occurs at the mesh cell faces that define the boundaries between subzones. For
a single processor calculation the flux through each face must only be calculated onc.
per time step. With multiple processors it must be calculated twice; once for each
of the subzones on either side of the face. Thus, for parallel calculations. the added
work to compute these fluxes is approximately

taagr 5 [(JD * (n; — 1)) + (ID * (n; — 1))].

Of course this work is only involved in the flux and implicit flux Jacobian calcula-
tions. which together are approximately 40% of the total work. Therefore the final
additional work due to subdomain decomposition is:

n,-—l+nj—1]
ID JD |’

A 2-cell interprocess communication patch was chosen over a 1-cell patch which would
require half as many additional subzone boundary cells due to domain decomposition.
However. a 1-cell patch would require additional calculations and information to be
sent for the explicit and implicit fluxes to the neighboring processors. which is less
cost effective. It is obvious that for a constant problem size the additional work due
to parallelization increases with increasing number of processors. The best parallel
efficiency is obtained by solving the largest possible problem that will fit in the avail-
able memory for a given number of processors. While this approach will optimize
parallel efficiency. it may not satisfv the most common goal. which is to minimize the

taddl/tl ~ (.40 *

run time for a constant size problem.




The reduction in vector length is a very important consideration if a parallel al-
gorithm is to be used on a parallel vector machine. It also affects performance on
machines which utilize pipelining architectures. The domain decomposition divides
the overall domain into smaller subdomains which results in shorter vector lengths.
Even without any other factors affecting its performance, the time to complete a cal-
culation increases with the reduction in vector length. In this report, vector length
reduction is especially noticeable in the Cray Y-MP performance, and will be ad-
dressed later in this section.

The two shared memory systems tested in this work are the Cray Y-MP and the
SGI 4D. Both systems are multi-user/multi-tasking systems where several users can
run their specific application programs simultaneously. On this type of system, un-
fortunately, the presence of other users affects the performance of parallel algorithms.
Other users programs will unevenly delay the execution of the pHANA calculations
on some of the processors. This leads to an uncontrollable load leveling problem as
the other processors sit idle while the delaved processor catches up.

In the following subsections, timing results for three parallel computers are pre-
sented.

8.1 Distributed Memory MIMD
The parallel HANA code (pHANA) was tested on an Intel Touchstone iPSC/860 for

six of the cases described in section 7. The parallel speedup and efficiency for these
cases are shown in Figures 51 and 32. The efficiency of the code is different for the
different cases. As expected, better efliciencies are achieved for the cases with larger
meshes.

Figure 33 shows how the cpu time is spent for the axisymmetric combusting ram
accelerator case. By holding the number of mesh cclls-per-processor constant, the
domain decomposition overhead (f,44;) is constant and the overhead due to reduction
of vector length for pipelining (f,e.) is eliminated. Thus, the reduction in efficiency
as the number of processors is increased is attributable only to the interprocess com-
munication overhead (t¢.). Note that for this case. the calculation solves 14 sets of
partial differential conservation equations (10 species, 3 momentum, and 1 energy).
This maximizes the amount of work on each node. Therefore, the ratio of commu-
nication overhead to the total amount of work is minimized, resulting in a very high
parallel performance (see Figures 51 and 52). It appears that when a maximum
amount of work is assigned equally to all cpus. only 25% or less of the total time
is spent doing “noncomputational” activities when the number of processors is less
than 64.

As depicted in Figure 51, the speedup increases as the amount of work relative to
the communication time overhead increases. Figure 34 illustrates how the cpu time is
spent for a calculation where the number of cpus is increased and the size of the prob-
lem is held constant. It shows the distribution of cpu time for the hydrogen-air shock
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constant

induced combustion case. For this case, increasing the number of processors utilized
in the calculation increases the percentage of work due to domain decomposition and
decreases the working vector length. To isolate the interprocess communication over-
head time (%), a set of calculations was performed varying the number of cpus but
holding the work per node constant. Also the effect of the reduction in vector length
overhead time (t,.,;) was approximated by running a set of 1-cpu calculations where
the dimension of the problem was changed. Unlike the axisymmetric combusting ram
accelerator case. the hydrogen-air shock induced combustion only requires 11 partial
differential conservation equations (7 species, 3 momentum, and 1 energy). Therefore,
each subdomain is smaller and requires less work than that for the ram accelerator
case. This results in lower parallel efficiency and a higher ratio of interprocess com-
munication overhead to the total computational time. This ratio increases linearly
after 15 processors. More than 25% of the total cumulative time is spent performing
“noncomputational” activities when the number of processors exceeds 40.

Finally, the floating point operations per-second (flops) for the combusting ram
accelerator case are given in Table 9. The flops are calculated based on the floating
point operation count provided by the hardware performance monitor on the Cray Y-
MP. [t appears that at least 48 processors are required to obtain a speed comparable
to a single cpu Cray Y-MP for this case.
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able

Case,

Number of Pro:essors

Speedup Efficiency .\IFlops-]

1 1.0 100.0 3.00
6 5.70 95.0 17.1
14 12.88 92.0 38.7
30 26.71 39.0 S0.17
18 38.40 80.0 115.3
60 46.20 76.9 138.7

iPSCR60: Floatine point operations per-second for the ram accelerator
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Figure 55: Speedup on Cray Y-MP

8.2 Shared Memory Cray Y-MP

The parallel speedup and efficiency on the Cray Y-MP for the six test cases are shown
in Fieures 55 and 36. The performance of the code appears to change for the different
cases. The best performance is achieved for the cases with the longest vector lengths.

Figure 37 shows how the cpu time is spent on the axisymmetric combusting ram
accelerator case. In this case. the amount of work and the vector length on each
cpu is held constant. The reduction of efficiency is due only to the interprocess
communication overhead (t.) and synchronization. This overhead is shown to be
less than 10% for 8 cpus. Unfortunately the same result does not apply for smaller
cases where the number of mesh cells is held fixed while the number of processors is
increased.

To investigate the effect of varyving vector length on the performance of the code.
we have selected two sets of 1-cpu runs where each dimension is changed while holding
others constant. The first set fixes JD = 11 while varying the number of mesh points
in the l-direction. and the second fixes I D = 53 while varying the number of mesh
points in the J-direction. Results from this test for are shown in Figure 38 for the
hyvdrogen-air shock induced combustion case. The vector length is a very important
factor in the achieved speed on the Cray Y-MP. This result is crucial for understanding
the reduction of efficiency of a parallel algorithm as the number of processors is
increased. Using the domain decomposition technique, a computational domain is
broken up into smaller subdomains which are assigned to different processors. A good
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parallel performance can only be obtained if the dimensions of these subdomains are
large enough such that the effect of vectorization can be neglected. For our test cases.
a vector length of at least 50 is required for this to be true.

Figure 59 illustrates further how the cpu time is spent for a calculation in which
the number of cpus is increased and the size of the problem is held constant. As the
number of processors is increased. the additional work due to domain decomposition
increases and the vector length of each subdomain decreases. The overhead time
associated with reduction in vector length (t,..) is approximated by running a set of 1-
cpu calculations where the dimension of the problem was changed (see, Figure 38). As
mentioned previously. the vector length in this case is much shorter than is optimum
and the run. therefore. results in lower parallel efficiency. The ratio of overhead time
due to vectorization loss to the total computational time is increased. This represents
more than 209 of the total cpu time for a constant-size parallel run with eight cpus.

Finally the floating point operations per second (flops) measured for the combust-
ing ram accelerator case are given in Table 10. This performance can be improved by
increasing the number of mesh cells in the calculation.

8.3 Shared Memory Silicon Graphics Iris

The parallel speedup and efficiency on the SGI 4D /380 for the six test cases are shown
in Figures 60 and 61. As for the other two computers, the performance of the code is
different for different problems. The performance appears to be excellent for four or
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is constant

less processors. However, when a larger number of cpu’s are used, the performance
drops significantly. As mentioned previously, the load balancing problem has been
eliminated for our test cases. However, in a multi-user system one cpu may be working
on two or more applications at a time. Multiple applications running at the same
time resulting in cpu competition which causes some cpus to lag behind the others.
The faster cpus must then wait for the slower ones to catch up. A second factor is the
relatively low bandwidth on the SGI bus. The bandwidth is too small and cpus often
have to wait to access memory when more than four cpus are working on a problem.

Unlike the iPSC/860 and the Cray Y-MP discussed previously, the best perfor-
mance on the SGI machine was not achieved for the largest test case. This is due to
the smaller cache memory available on the machine. The cache was not large enough
for the combusting ram accelerator case to run without significant cache misses.

Figure 62 shows how the cpu time was spent on the axisymmetric combusting
ram accelerator case. In this case, the amount of work on each cpu is constant. The
reduction of efficiency is due only to the interprocess communication overhead (t.),
synchronization. competition with other applications for the cpus, and the low bus
bandwidth. This overhead is shown to be more than 25% for 8 cpus.

Figure 63 illustrates further how the cpu time is spent for the constant-size prob-
lem. As the number of processors is increased, the additional work due to domain de-
composition increases. The overhead time associated with reduction in vector length
(tiect) 1s seen to be minimal since the SGI is not a vector machine. The amount of
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time required for communication and synchronization appears to be less than that
for the combusting ram accelerator case. The cpu time spent on noncomputational
activities 1s fairly low when less than 1 processors are utilized. However, this overhead
time jumps significantly for higher number of cpus due to cpu competition and the
inability of the bus to handle the traffic.

The floating points operations per second (flops) measured for the combusting
ram accelerator case are given in Table 11. The flops are calculated based on the
number of floating points given by hardware performance monitor on Cray Y-MP.

| Number of Processors  Speedup  Efficiency MFlops_]

1 1.0 100.0 2.69
2 1.98 98.9 3.33
4 3.72 93.0 10.01
6 4.34 80.7 13.02
S 5.56 69.5 14.96

Table 11: SGI 4-D/380: Floating point operations per second for the ram accelerator

case.
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Conclusions
result of this investigation we can make the following conclusions.

A model code has been written which solves a set of Laplace equations on a mul-
tiple zone mesh using point Gauss-Seidel relaxation and a diagonal wavefront
algorithm. The code was written to simulate the operation of a Navier-Stokes
code as closely as possible. The model code was parallelized on the Cray Y-MP,
Intel Touchstone iPSC/860. and Silicon Graphics Iris 4-D /380 (SGI) machines.

The 3D Navier-Stokes code was parallelized using domain decomposition on
the Cray Y-MP, Intel Touchstone iPSC/860, and SGI 4-D/380 computers. The

governing equations and solution algorithm for this code, pHANA. are detailed
in sections 4 and 5.

Flow field and parallel performance results are given for the calculations on the
three computers. The test cases include two and three-dimensional flows at
subsonic. transonic. and supersonic speeds. Thermochemical models vary from
nonreacting ideal gas to combusting gases.

The main deterrent to parallel performance on the Intel iPSC/860 was inter-
process communication. Improvements to the hardware which reduce the in-
terprocessor communication latency should dramatically improve the parallel
performance of the Navier-Stokes code particularly for cases which can not be
sized to fully utilize the memory available with each cpu.

The main deterrent to parallel performance on the CRAY Y-MP was the re-
duction in vector length due to domain decomposition. Vector length was not
as critical to performance on the other two computers.

The main deterrent to parallel performance on the SGI 4-D/380 was memory
contention. low bus bandwidth, and competition for CPU time with other pro-
cesses.

For all computers. increasing the size of the problem as the number of processors
increased yielded a better performance than holding the problem size constant
as the number of processors increased.
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