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ABSTRACT

As part of Lincoln Laboratory's research on neural network technology, a
general-purpose machine vision system was designed that can learn to recognize
diverse objects. This system models human vision, primarily with neural networks,
and the learning is by example. The system was tested on two disparate classes
of objects, military vehicles and human cells, with video images of natural scenes.
These objects were chosen because large databases are available and because most
researchers judge them to be unrelated. The system was trained and tested with
40 images of military vehicles. After training with 18 images, the system was able
to recognize the tanks, howitzers, and armored personnel carriers of the remaining
images without error. Pathologists at Lahey Clinic Medical Center collaborated in
the cytology study where the system was trained and tested on 156 cell images from
human cervical Pap smears. After training with 118 images, the system correctly
classified all of the other cells as normal or abnormal (that is, precancer). These re-
suits are preliminary because the number of military vehicles and Pap smear samples
was small. Nonetheless, the results are extremely encouraging and clearly indicate
that additional development of the system is warranted. We note that the architec-
ture of the system is applicable to many civilian and military tasks. The application
of the system to a specific task requires appropriate training.
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1. INTRODUCTION

1.1 Motivation

Machine vision (MV) is a field in rapid development with ambitious goals. In its broadest
definition, MV is the scientific discipline that addresses the problem of using sensor-derived images
to recognize objects. An Innovative Research Project (IRP) project was designed to test some new
ideas in MV. The main result of this project is a general architecture for MV, which is developed
by modeling the human vision system primarily using neural networks (NNs).

To test the generality of the MV's architecture, images of military vehicles and Pap smear
cells are employed. These images are chosen because, for most researchers, the two classes are
quite different, and because ample size databases are available. The same vision system without
significant changes processed the two classes of images. The results are encouraging. Tests show
that after sufficient training, the system can recognize new images without error.

Good MV systems have many applications. Applications of interest to MIT Lincoln Labora-
tory are in remote sensing and automatic target recognition. Other uses include medical screening,
industrial inspection, and robot vision. The vision architecture developed during this project is
applicable to all these areas.

1.2 Conventional Machine Vision

To show the context of the work a brief review of conventional MV, an active research area for
more than 30 years, is given. The section is from review articles. See Gordon, 1989 [1], Rosenfeld,
1987 [2], and Rosenfeld, 1988 [3] for more information.

To a major extent, conventional MV technology evolved from the work of one man, D. Marr,
at MIT in the 1970s. Developed from the information theory, cybernetics, and digital computer
technology of that era, Marr's contributions were made within the discipline of artificial intelligence.
His work led to numerous papers on vision and, finally, to the book Vision [4].

An acknowledged contribution of Marr's was his attempt to clarify the thinking about vision
systems or, more generally, information processing systems. In his work, Marr introduced the
distinction among three levels of explanations: (1) the theory level, (2) the algorithm level, and (3)
the implementation level. Consideration of these levels and to the issues raised by them leads to a
sequence of questions that guides the design of an MV system.

Marr's explicit ideas somewhat puzzled researchers in vision at the time because other ap-
proaches used concepts that were undefined, or they used descriptions rather than explanations [1,
pp. 194, 225]. Mart attained a high degree of rigor because his approach produced ideas that could
be checked directly by computer simulation.



At the theory level, Marr asserted the key issue is determining both a goal for the computation
and strategies for achieving that goal. By explicitly stating the computational goal and accom-
panying strategies, the machine's achievements can be described and its constraints characterized.
Knowledge of the constraints, in turn, allows the processing stages to be defined.

At the algorithm level, the key issues are how the input and output are represented and the
actual algorithm for transformation. The algorithm depends partially on the nature of the data
representation.

At the implementation level, the key issue is how the machine actually works. The concern
here is with the hardware of the machine and the nature and operation of its component parts.

For example, applying Marr's approach to optical sensors and two-dimensional processing
leads to a modular design with the following consecutive processing stages:

1. Extract features such as edges from an image to produce a map representation. The
map (called the primal sketch) consists of pixels and their feature values, such as
edge strengths. (In this context, edge strengths are various combinations of first and
second derivatives at each point in the image.)

2. Improve the map by grouping pixels in connected regions.

3. Represent the map by an abstract relational structure.

4. Recognize objects by comparing the structure with stored models.

Three-dimensional scenes are an extension of 2-D scenes. For the extension to 3-D, stages I
and 2 should be replaced by a method to find the surface orientation of each pixel. The process
will produce a representation map called the 2 1/2-D sketch.

Further extensions of Marr's method add one or more of the following stages:

1. Cleanup of input pixel values with image-restoration techniques.

2. Production of multiple images for stereomapping and motion analysis.

3. Adjustment of the processing by feedback from later stages to earlier stages.

4. Recognition of objects by matching them with models made up of composite parts.

The most rigorous of the conventional MV design methods comes from Marr's work. Yet, to
some MV researchers and potential users, the performance of conventional MV systems is disap-
pointing. The following quotes by Rosenfeld, a founder and a leading MV figure in a special issue
of the IEEE Proceedings reviewing the field, and others reflect this assessment.

"The prevalent opinion in machine vision today is that any significant increase
in processing complexity for industrial applications must await the arrival of new
special-purpose, parallel-type computer architectures [5, p. viii]."
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"There is inadequacy in current theories [of machine visionJ. There is paucity
of well defined problems that have well defined rewards associated with them [5,
pp. 189-90]."

"Another problem associated with current activities on the theory of machine
vision is an underlying assumption that a theory of 'general' machine vision is
achievable. This assumption may be false [5, pp. 189-90]."

"...standard vision techniques for feature detection, segmentation, recovery, etc.,
often do not perform very well when applied to natural scenes [3, p. 867]."

"Ideally, the [vision process] stages should be closely integrated; the results ob-
tained at a given stage should provide feedback to modify the techniques used at
previous stages. This is rarely done in existing vision systems, and as a result,
little is known about how to design systems that incorporate feedback between
stages [3, p. 868]."

"Little is known about visual knowledge representation or about flexible control
structures for vision systems [3, p. 868]."

"...humans can recognize objects-even complex objects whose presence was unexpected-
in a fraction of a second, which is enough time for only a few hundred 'cycles' of
the neural 'hardware' in the human visual system. Computer vision systems have
a long way to go before they will be able to match this performance [3, p. 868]."

In summary, current MV performance is significantly less than that of biological vision. Note
the references to parallel-type architectures, feedback to earlier stages, and flexible control struc-
tures. Note also the need for well-defined problems, a general structure, and applications to natural
scenes. The architecture developed during this project has these features.

1.3 Goals and Methods

The main goal of the project was to develop general MV architectures that would work on a
variety of image types without significant changes in the algorithm. This robustness contrasts with
the current practice of tailoring MV systems to specific applications. Such tailored systems have
not performed well in situations unforeseen by the designers.

In many respects the human vision system, known for its high performance over a wide
range of objects and situations, is far superior to current MV systems. Thus, in developing the
architecture of the system, a decision was made to model selected functions of the human vision
system. Although this idea was not new, the approach was: the entire system, module by module,
was primarily modeled through the use of NNs. Features were incorporated that give the human
vision system advantages over MV systems, namely, feedback, parallel architecture, and a flexible
control structure. All individual modules and the major composite subsystems were tested.
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Two new technologies made this study feasible: NN theory and a new class of computers.
These technologies were not available in the 1970s when Marn was developing his method.

1.4 Report Road Map

Each section is independent. Section 2 summarizes the results. Section 3 reviews the informa-
tion about Miological vision systems used in modeling. Section 4 develops the architecture. Section
5 describes the software testbeds. Testbeds are developed for an IBM PC/AT, a Sun workstation,
and a networked Sun-CONVEX combination. Section 6 gives the test results. Section 7 describes
some extensions and applications. Section 8 gives the conclusions. The mathematical details are
in the appendix.
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2. SUMMARY OF RESULTS

2.1 Introduction

This section summarizes the results obtained with the testbeds during the project. Section
6 contains a more complete description and discussion. These results are preliminary because of
the limited number of tested images. Nevertheless, the results are extremely encouraging and are
dearly pointing toward further work on the system, especially on larger databases.

The system consists of a location channel and a classification channel working in parallel. To
simplify the interpretation of results, the location and classification channels were tested separately.

For the classification channel, the objects were centered, or foveated, by hand so that the tests
evaluated classifying under ideal conditions. Thus our classification results gave an upper bound
on system performance because the location process introduces additional errors. Table 1 shows
the classification results.

TABLE I

A Summary of the Results

Classification Tests

Military Vehicles (56 Images)
Data: 42 x 42 x 8 Bit Video, 700-m Range
Train: 10 Tanks, 8 Howitzers
Test: 10 Tanks, 8 Howitzers, 4 APCs
Result: No Errors (Preliminary).

Pap Smear Cells (156 Images)
Data: 175 x 175 x 8 Bit Video, 400X Magnification
Train: 66 Normal, 52 Abnormal
Test: 26 Normal, 12 Abnormal
Result: No Errors (Preliminary)

Location Tests

Coarse
Binary Test Patterns All Found in Field-of-View after
Training System on Representative Shapes

Pull-In
Single Cells: Pull-In :5 8 Steps
Multiple Cells: Pull-In :5 8 Steps in Most Cases



2.2 Military Vehicles

For military vehicle classification, the input images are 120 x 128 x 8 bit video images. The
vehicles are at a range of 700 m. To characterize classification, the vehicle images were extracted
by hand. The extracted images were 42 x 42 pixels. Figure 1 shows a tank image and an extracted
box. The system was trained on images of 10 tanks and 8 howitzers. The system was tested on
different images of 10 tanks, 8 howitzers, and 4 armored personnel carriers (APCs). The system
classified all the test images without error.

4183-95-2C

Figure 1. Example of a tank intensily image from a low-level TV camera and a 42 x 42
pixel box extracted for processing by the classification channel.
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2.3 Pap Smear Cells

For the Pap smear cell classification, the input images are 512 x 512x 8 bit video images.
The cells are at 400x magnification. Images of single cells were extracted again by hand. Each
image was 175 x 175 pixels. Figure 2 shows a normal Pap smear cell. The system was trained on
images of 66 normals and 52 abnormals. The system was tested on different images of 26 normals
and 12 abnormals. It classified all these test images without error.

11066-2C

Figure 2. Typical image of normal Pap smear cells at 400x magnification. The cell size
is about 175 x 175 pizels. Morphologic changes in the nucleus and cytoplasm, including
size, shape, and texture, are criteria for malignancy.

For the location channel, the search function executes in two stages - coarse location followed

by pull-in. In the coarse location, the system rapidly scans the field-of-view (FOV) for objects of

7



interest. Typically, when found, an object is partially in the box. In pull-in, the system centers the
object starting with the object partially in the box. Table 2 shows the location results.

For the coarse location, an IBM PC/AT test bed was used. The tests showed coarse location
with 3 x 3 test patterns on a 25 x 25 pixel FOV. The results showed (1) coarse location of all test
patterns when the system trained on representative shapes and (2) that the system is robust to
offset and noise.

For pull-in, images of Pap smear cells in plain and natural backgrounds were used. For a
single cell in natural backgrounds, pull-in was successful in eight or fewer steps, starting with a
175 x 175 pixel box about 40 percent off-center and ending within 10 percent off-center. For two
cells situated side-by-side, a much more difficult case, pull-in was successful to one or the other
cell in eight or fewer steps in most, but not all trials. Multiple cells were not exhaustively tested
because of time limitations.

While these tests demonstrate the concept, more testing is clearly needed for identifying
precisely where the system fails. Moreover, tests are needed for assessing applications with other
types of images.
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3. THE HUMAN VISION SYSTEM

3.1 Introduction

This project applied NNs and conventional processing to develop a general MV system based
on a model of the human visual system. The idea is that with reasonable modeling, the performance
would approach that of human beings.

Vision is an immensely active research area about which much has been written. This section
summarizes selected aspects of human vision to provide background and to introduce terminology.
In this report, vision means higher primate vision, especially human vision. Although data exists
for several species, many of these results come from the macaque monkey, an animal with visual
capabilities similar to that of human beings. In comparison, the vision systems of creatures lower
than primates differ significantly.

3.2 General Brain Architecture

This discussion starts with an overview of the human brain [6-15]. The human brain has
three main structures: the forebrain, midbrain, and hindbrain. The forebrain, or neocortex, shown
in Figure 3 (top left), consists of two thin sheets of neurons (typically 1.5 to 5 mm thick) with
well-known folds. Each sheet covers 1000 cm 2. (The midbrain and hindbrain are not shown.)

On the microscopic level, the neocortex consists of distinct areas or modules. The modules
are defined by function and anatomical structure. A common designation scheme is the one by K.
Brodmann (1909). Figure 3 (top right) shows some of the 52 Brodmann areas of the human brain
by shading some of the areas associated with vision. More sophisticated experimental techniques
indicate about 200 modules; the smaller subdivisions do not reflect real differences [7, p. 345].

3.3 Vision Architecture

The visual cortex occupies the entire back half of the neocortex hemisphere [15, p. 371].
Areas 17, 18, and 19 are feature detectors stages, areas 20 and 21 function as classifiers, and area
7b helps to locate objects in the FOV.

Figure 3 (bottom) shows the parts of the brain involved in vision. Certain modules in the
midbrain belong to the visual system, for example, the lateral geniculate body or nucleus (LGN).

Images captured by the eye balls are relayed through the LGN, which has processing functions and
acts as a buffer.

The retina has about 1.25 x 10s receptors. Data compression by retinal processing is about 125
to 1, which gives a resolution near fovea, the most sensitive part of the retina, of about 1000 x 1000
pixels. The relative discrimination to brightness variations is 570 "just noticeable differences," and
to frequency variations is 128 "just noticeable differences [14, p. 261."
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Figure 3. Schematics of the human brain shouinn the major structures and the Brodmann

areas.

The FOV of each pixel at fovea with good contrast and brightness is about 0.5 min of arc

(8 mdeg) [9, p. 45]. Thus, the FOV for highest acuity for each eye is 500 mmn of arc or 8.3 deg.
The eyes can track with about 1 min of arc precision [9, p. 34].

Assuming 7 bits per pixel and a 100 Hz pulse frequency along the optic nerve (typical values),

the data rate to the visual cortex is about 700 Mb/s, less than the capacity of current fiber optic

channels.

Researchers have extensively studied the vision system of macaque monkeys [15, p. 37]. In

the macaque and other primates, at least a dozen cortical areas are involved with vision. These

areas are shown in Figure 4. Evidence shows a hierarchical structure for the vision system. That
is, researchers can assign the modules to distinct processing levels. (Deductively, there is no reason
to expect such organization. For example, the brain could be a complex network without distinct

hierarchical levels [15, p. 371].)

Researchers have mapped over 30 pathways among vision-related areas, but the actual number
is probably much larger because there are many connections to areas that have not been studied.
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A basic finding is that with few exceptions the pathways connect the areas in reciprocal fashion

[15, p. 3711].

For the dozen visual areas, the overall cortical hierarchy has six levels. Researchers con-
structed the hierarchy by assigning each area to a level just above the highest area providing an

input [15, p. 372]. The procedure leads to the six levels.

Anatomical, behavioral, and physiological data show two distinct channels for classifying and
locating, shown in Figure 4 by the dotted line and the X-Y pathways. The two channels separate at
the retina and remain separate at the cortical and midbrain levels. Evidence shows the classification
channel analyzes form and color. The location channel analyzes visual motion across the FOV [15,
p. 372].

The two channels have separate retinal detector cells, labeled X and Y. The X-cells go to the
classification channel [6, p. 353]; they are medium sized cells with small optical fields, which give
high-acuity and comparatively slow response times. The Y-cells go to the location channel; they
are big cells with large optical fields, which give low acuity and fast response times. (Another kind
of retinal cell, the W-cell, goes to the midbrain areas. The W- cells have small fields and coordinate
the FOV to head and eye movements.) The population distribution is about X (50 percent), Y (5
percent), and W (45 percent).

The classification channel starts at the X-cells of the retina. It then goes to the RGC. It
continues to the LGN, to the primary visual cortex (VI - also called area 17), and to the secondary
visual cortex (V2-V5 - also called areas 18 and 19). It then goes to the inferior temporal cortex
(ITC - also called areas 20 and 21).

The visual pathway maps the FOV seen by the eyes onto Vl. The mapping in VI is impressed
on the fourth layer (out of six layers) of the cortex sheet. The mapping is continuous and has the
well-known logarithmic distortion near fovea and rotates the external image about the horizontal

axis.

Areas Vl, V2, and V3 work like feature detectors. As discovered by Hubel and Weisel (1955),
the features provide only contour and orientation information about the pattern in the FOV.

Researchers measured the response of individual cells (neurons) along the classification chan-
nel to external images [10, p. 69]. In the retina and LGN, the response is either on-center/off-
surround or off-center/on-surround. In V], three cell types have been found: simple, complex, and
hypercomplex.

Simple cells respond to stationary edges, slits, or lines in the external image at precise orien-
tation (angle). In human beings the angular resolution between two straight lines is about 10 deg

[9, p. 48]. Interpolation allows discrimination between two lines that differ by about 3 deg. To
produce a response from a simple cell, a stationary line must be carefully oriented and positioned.
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The retinal cells on which light must fall to affect a neuron in V1 are clustered in a small area
called the receptive field. At fovea, simple cells have receptive fields measuring about one-quarter
deg by one-quarter deg. At the periphery, the receptive field size is about one deg by one deg.

Complex cells respond to moving edges, slits, or lines in a specific direction. About 75 percent
of cells in Vl are complex [10, p. 74]. The receptive field of complex cells is slightly larger than
that for simple cells. Near fovea the receptive field size is about one-half deg by one-half deg.

Hypercomplex cells respond if one or both ends of a line stop in the receptive area. If the line
goes through the receptive area without stopping, the hypercomplex cell response goes to zero or
a constant value.

Summarizing the feature detectors, the features in primate vision are stationary or moving
edges, slots, or lines. In comparison, these are not the features commonly used in current machine
vision algorithms. Typical features in MV algorithms are corners, faces, frequencies, or responses
of matched filters.

The ITC (areas 20 and 21) in the classification channel works like a classifier. The ITC output
goes to higher level centers of logic and emotion [16, ch. 5].

The location channel starts at the Y-cells of the retina. The channel goes through the midbrain
areas to the superior colliculus (SC) and then to the pulvinar nucleus (PT). It continues to the
posterior parietal (PP). The output of this channel goes to the frontal eye fields (area 8). Evidence
suggests this system is responsible for location analyses of objects in the FOV.

Besides connections along the classification and location channels, the two channels are in-
terconnected. The SC projects directly to the ITC bypassing the rest of the main route. The PT
projects to the secondary visual cortices and to the ITC. The classification channel also passes data
to the location channel bypaths from VI to SC and PT [16, p. 101].

Considering the system as a whole, researchers believe it works as follows: retinal images
send information for pattern analysis by the classification channel. The classifying system passes
the information from the RGC to the LGN to VI, through several paths in V2, V3, V4, and V5,
then to the ITC.

Simultaneously, retinal images pass through midbrain routes, which locates objects and ana-
lyzes spatial relations and motion. The location system interacts with the pattern analysis system
at most steps along the route. Major interactions for constructing spatial relations occur in the
location visual cortex [16, p. 101].

Besides the preceding step-by-step level scheme, there also is a relationship between the level
and the receptive-field size. Receptive fields are smallest in Vl, and they increase in size at successive
levels of the hierarchy [15, p. 372].

Researchers have found that receptive field properties can vary [16, ch.5]. That is, there is a
mechanism for adjusting a feature extracting cell. The mechanism employed probably is presynaptic
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inhibition. Presynaptic inhibition is i mechanism that acts selectively to turn off partictilar inputs
to a neuron. (For a description of synaptic processes see [12, chs. 9 and 10].)

Presynaptic inhibition in the feature extraction stages changes the shape and location of
the receptive field. Research shows emotional states can alter the receptive fields. Under normal
conditions, stimulating the ITC changes the receptive fields of area V1, suggesting that the ITC
may exert feedback control over the feature detectors.

Thus, recognition is likely to involve an active feedback process that restructures the feature
extraction stage. Feedforward and feedback signals continue until matching occurs between an
input and some known class of stimulus [16, p. 108].

Moreover, recognition starts with standard receptive fields. If matching by the ITC falls,
feedback then shifts the processes in the preceding stages to extract features for another object
class.

Research also suggests a mechanism for directing attention to selected locations in the FOV.
In short, there is windowing. Windowing focuses on small details and also ends notice of other
objects in the FOV. Researchers suspect the midbrain directs this process, perhaps cued by cortical
inputs.

The vision system has other inputs besides those from the retina. Signals from the motor
systems provide feedback about eye position. Inputs from the frontal cortex may be the source of
selective attention. These attention inputs direct goal-related processes. Visual memory is another
source of input, which may improve the search strategy in the perceptual analysis [16, p. 132].

Research shows extensive use of feedforward signals. Outputs of the visual front-end feed a
variety of later stages. The higher processing levels may be tapping the preprocessor signals for
simple information, like overall brightness.

Output is available from each stage of processing probably to all parts of the system. The
primary cortex provides information about the detailed nature of the visual field and its spatial
structure, but it does not analyze patterns into objects. To organize patterns, the higher levels
draw on experience (memory).

After visual processing, the outputs from the visual system are used throughout the brain.
One area records visual objects (memory). Another area organizes a logical world model from expe-
rience and sensory inputs (cognition). Yet another area responds emotionally to objects perceived
(motivation) [16, ch. 5].

Summarizing the above description, Figure 5 shows a block diagram of the brain's visual
processing. As seen, the system is a sensor-preprocessor-feature-extracting classifier system. A
small number of serial stages process large arrays of data. Within each stage the processing is
heavily parallel. The modules are connected by feedforward and feedback pathways.

Finally, the system is asynchronous, that is, there is no master clock. The system is a
serial-parallel, analog, asynchronous, real-time computing machine while man-made computers are
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usually serial, digital, synchronous, and off-line. The system continually updates on each pathway.
Thus, there will be differences in the processing time among the modules. In practice the longest
times are a fraction of a second, roughly, the characteristic visual interaction time with the outside
world.

VISUAL
SPATIALLY-MAPPED PASSIVE MEMORY

FEATURE EXTRACTOR MCAIMDEGREE OF
SYSTEM OF GLOBAL MATCH TO

TUNABLE DETECTORS FEATURE OBJECT TEMPLATE
FOR GEOMETRIC SYNTHESIS ANALYSIS
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FREQUENCY ACTIVE BACKGROUND OBJECT
FEATURES MECHANISM DEFINITION RECOGNITIONSOF GLOBAL

FEATURE

SYNTESISFEEDBACK

_ TUNING FOR
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PROCESS

FEEDFORWARD

U.T-IA VISUAL CODING AND ATTENTIONTUIGDA

INPUT PREPROCESSOR VISUAL ORIENTING DIRECTING

BLACK-BOX MODEL OF VISUAL PERCEPTION PRINCIPAL DATA
FLOW PATHS

-- TUNING, FEEDBACK,
AND CONTROL PATHS

Figure 5. A block diagram of the vision system containing modules discussed in the text
[Redrawn from Kent (1981)].
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4. THE APPROACH - A BIOLOGICALLY INSPIRED TWO CHANNEL
SYSTEM

4.1 Introduction

Section 1 discusses the advantages of biological vision over current MV. Section 3 suggests
these advantages are attributable to feedback, flexible control, and the kinds of feature detectors.
This section describes our architecture for a general purpose MV system, which incorporates some
of the biological characteristics.

The purpose of the system is to find and identify spatial patterns of luminance in the FOV. The
term "general purpose" means recognizing objects from widely varying classes without changing the
algorithm. In practice, applying the system to a class requires setting a few sensitivity parameters
and then training the system by examples.

Our approach was to model the human vision system. Thus the functions and names of
different modules were based on structures in the human brain, described in Section 3. The modules
roughly approximate the functions of their biological counterparts, as understood at this time. For
convenience, a mixture of NNs and standard processing algorithms were used to implement the
module functions.

All known characteristics of human vision were not modeled. As shown in Table 2, modeling
of binocularity, size invariance, motion detection, color sensitivity, and virtual boundary perception
were omitted so that a simple architecture could be studied. Moreover, these features are unnec-

essary for many applications. In principle, modules that model these characteristics can be added
to the testbed system (see Section 7). The architecture of the system includes two major channels
that work together. The location channel searches for objects of interest in the FOV and, after one
is found, the classification channel classifies it. Studies of the human vision system, as well as that
of other animals, suggest that the locating and classifying functions are separate (see Section 3).

Figure 6 shows a block diagram of the architecture. Sections 4.2 and 4.3 describe each of the
modules. To illustrate how the system works, a 525 x 525 pixel input image with 8 bit pixels is
used. It is assumed that 175 x 175 pixel objects appear in this image. This object size corresponds
to normal cells in a Pap smear image at 400x magnification. In operation, the location and
classification channels are coupled and work together simultaneously; however, for convenience, the
description starts with the classification channel and the modules shared by the two channels. The
text follows the overall block diagram (Figure 6).

4.2 Classification Channel

Certain classification channel modules approximate the functioning of selected brain areas:
the lateral geniculate nucleus (LGN), visual area 1 (VI, also called A17), visual area 2 (V2, also
called A18), inferior temporal cortex 1 (ITC1, also called A20), and inferior temporal cortex 2

17



TABLE 2

Assumptions for Modeling the

Human Vision System

Input Images

Up to 525 x 525 Pixels
Gray (8 Bits)

Architecture

Include
Principle Data Flow Paths
Feedback and Control Paths
Two Channel Architecture

Neglect
Color
Motions
Binocularity
Retina Processing
Perceived Boundaries

(ITC2, also called A21). Other modules, such as the SUM module, approximate certain biological
functions without the anatomical correspondence.

4.2.1 LGN Module-Grayness Processing

Figure 7 shows the front-end processing stages in the classification channel. The classification
channel has feedforward and feedback signals. As shown, signals flow from the input image, through
the feature extracting stages, and to ITC1 input.

The first module in the classification channel is the LGN, containing the CALIBRATE and
NORMALIZATION boxes (Figure 6). Assume the location channel has found an object in the FOV
(see Section 4.3). The location channel sends the pattern's position to the LGN module (Figure 7,
bottom). In the example, the windowed image covers 175 x 175 pixels.

The CALIBRATE box computes a histogram of the windowed image. Our testbed images
have 8-bit pixels. Histograms of these images are typically concentrated in a small band within the
range of 0 to 255. Calibrating spreads the intensity values over the entire 0 to 255 range by linearly
mapping the lower part to 0 and the upper part to 255.

The histogram's lower limit is defined as the point where the cumulative count is 1 percent
of the peak value, and the upper limit is where the cumulative count exceeds 99.25 percent. These
limits prevent outlying pixel values from affecting the histogram stretching factors.
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FiguIre 7. Summaryj of image processing operations. For the example of a 525 x 525

input image, the classification channel places a window of 175 x 175 psxels around the

object an the image. (The window size is set to fit the object size.) The 175 x 175 window

is then broken into subwindows to extract details of the image, and the details are storedl

in the f'eature vector.
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The NORMALIZE box rescales the pixel values so pixels leaving the LGN module are in the
range from zero to one by dividing the calibrated pixel values by 255.

The CALIBRATE and NORMALIZATION boxes handle the grayness and adjust for overall
brightness in the FOV, which decouples the image's grayness and illumination from the rest of the

processing. The decoupling allows the remaining modules to be designed for pixel values lying in a
well-defined range, in our case from zero to one.

4.2.2 V1 Module-High Resolution Features

The first feature-generating module is A17 (or V1), which breaks the input window into
subwindows of 7 x 7 pixels. Thus, in our example of a 175 x 175 pixel window, there are 625
subwindows. Note that the 7 x 7 subwindow size is unrelated to the input image size. Each 7 x 7
subwindow is then processed by SPIRAL MAP and VISAREA1.

SPIRAL MAP (Figure 6) scans through the subwindows in a spiral pattern. The mapping
proceeds as follows: left to right across the top row, down the right column, right to left across the
bottom row, up the left column, back across the second row, and so forth until the process ends
at the center subwindow. The purpose of the spiral mapping is to simplify interpretation of the
feature data.

VISAREA1 (Figure 6) does the high-resolution feature extraction. For each 7 x 7 pixel
subwindow, VISAREA1 measures luminance gradients (increasing or decreasing) in four directions.

A gradient is a characteristic of gray images and is analogous to an edge in a binary image. The
luminance gradient in our system is the rate of change, or slope, in brightness across a 7 x 7

subwindow. Windows with an abrupt step in brightness in one direction will have a large gradient
in that direction; windows with a gradual change in brightness from one side to the other will have
a small gradient; windows with uniform brightness, that is, windows with no visible edges, will
have zero gradient.

The gradients in different directions are usually not the same because the slope depends on
direction. For each 7 x 7 subwindow, the system produces gradients in four directions: vertical,
horizontal, and the 45-deg diagonals.

Figure 8 shows the operations for producing the four features of each 7 x 7 subwindow. As
shown, with reflecting and rotating the input, only two different NNs are needed.

The gradient detectors in the system use a cooperative-competitive NN. In the test bed, these
NNs have 25 hidden neurons and 1 output neuron. As suggested by biology [7], each neuron is
either excitatory or inhibitory, not both. Figure 9 illustrates this NN.

The gradient-measuring NNs are designed to give responses to selected patterns. Figure 10
shows the design patterns. For the testbed, each feature detector NN has 1924 fixed interconnecting
weights.
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Figure 8. Feature detector module for the Vi module. The gray input image is reflected
and rotated as shown so that only two neural networks are needed for the four directions
and their two gradients.
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Figure 9. Architecture for a feature detector neural network. An input pattern, shown in
cross-hatching, is impressed on M neurons. Each input neuron is connected to N hidden
neurons and a single output neuron, whose output is high for a chosen angular orientation
of the input pattern and low for other orientations. The hidden neurons may be excitatory
(labeled +) or inhibitory (labeled -) and are interconnected. In the baseline system the
input pattern i 7 x 7 pirels with ,5 hidden neurons.

The weights are computed off-line with a genetic algorithm technique described in the ap-
pendix. The weights are fixed. Figure 11 shows the horizontal responses to the design patterns and
Figure 12 shows the diagonal responses.

The gradient detectors model similar biological processes (see Section 3.3). Classification uses
only these features, and those of V2 and SUM (see below). In the example, after windowing to
175 x 175 pixels, four orientation signals are produced for each 7 x 7 pixel subwindow giving 2500
feature lines from V1.

Note the system does not use operations common to other systems. It uses no Fourier trans-
form. Nor does it have face, corner, circle detectors, or matched-filters.

To help interpret the feature values obtained from SPIRALMAP and VISAREA1, the V1
outputs are arranged in a vertical vector (Figure 7). For the 175 x 175 pixel window, there are
2500 VI values because each 7 x 7 subwindow produces four values. Feature values are stored from
the image's outer parts at the top of the vector and feature values from inner parts at the bottom
of the same vector. Thus, data about the general shape of an image are found at the top of the
vector and data about the interior are at the bottom.
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Figure 10. Gray patterns used to design the VI feature detectors, as described in the

appendir. The set includes horizontal (1-3), 45-deg diagonal (4-6), vertical (7-9), and

135-deg diagonal (10-12) with two gradient directions.
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Figure 11. Response of the horizontal feature detector to the design patterns.

4.2.3 V2 Module-Shape Features

The second feature-generating module is A18 (or V2), which detects edges near the perimeter
of the input window. V2 (Figure 6) is also part of the location channel (see Section 4.3), and its
output contains information about an object's general shape.

To detect edges, the AVERAGE box (Figure 6) defocuses the image to produce a single 7 x 7
image, regardless of the size of the input image. For the 175 x 175 input case, the defocusing
averages over 25 x 25 input pixels to produce each output pixel. The averaging smears pattern
details (details captured by V1), but retains data about the outside edges.

Figure 13 illustrates averaging a cell wholly in the window (top) and partially in the window
(bottom). As shown, the averaging produces a single smeared 7 x 7 pixel image of the pattern in
the window.

VISAREA2 detects edges near the four sides of the defocused image. In VISAREA2, a 3 x 7
pixel detector detects the presence of near-horizontal edges at the top and bottom of the smeared
image. A 7 x 3 pixel detector detects the presence of near-vertical edges at the right and left of the
smeared image. Figure 14 shows the positioning of the detectors.
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Figure 12,. Response of the 45-deg diagonal feature detector to the design patterns.

For objects framed hy the window, there will be edges on the four sides. The VISAREA2
output is four values. The values measure the NORTH, SOUTH, EAST, and WEST edge strengths.
These four values are included in the feature vector. As shown in Figure 15, a single 7 x 3 NN,
with rotations and complementing, can do all V2 feature detection.

Figure 16 shows the design patterns for VISAREA2. These patterns were used to design a
7 x 3 pixel input NN with the genetic algorithm technique described in the appendix. Patterns I
to 4 are representative edges of a gray image. Patterns 5 to 8 are representative of nonedges, that
is, parts of patterns that are not properly windowed.

The VISAREA2 edge detectors also use 25 neuron, cooperative-competitive NNs with fixed
weights. Figure 17 shows the response of the V2 vertical (WEST) edge detector module to the
design patterns. The presence of an edge in this section of the image (patterns 1-4) gives a large
response, while the others (patterns 5-8) give a much smaller response.

4.2.4 SUM Module-Object Size

The third feature-generating module is SUM (Figure 6), which adds up the pixel values of the
input window. Thus, the single output from SUM measures the object's gross size. For convenience,
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Figure 13. The AVERAGE module in V2 takes a, say, 175 x 175 pixel input image
and smears its details to give a 7 x 7 pixel output image that retains the general shape
information.

this function has been separated from V1 and V2, although the biological function occurs in both
V1 and V2 (see Section 3.3). The SUM output also is included in the feature vector.

4.2.5 Feature Vector

The system classifies using data about detailed structure (V1), overall shape (V2), and size
(SUM). The different subwindow sizes of V1, V2, and SUM model approximately the different size
receptive areas of the visual cortex. For the 175 x 175 pixel window, there are 2500 values from
V1, four values from V2, and one value from SUM. These 2505 values form the feature vector.

The SUM, V1, and V2 values are adjusted to give, roughly, equal influence to an object's
size, shape, and detail structure, as described in Section 6.

Figure 18 shows the feature vector of a normal Pap smear cell. Note the relative sizes of the
SUM, V2, and V1 components. Figure 19 shows V1 features near the center of a normal cell and an
abnormal cell. The grid, not to scale, suggests the matrix of 7 x 7 subwindows. Note the differences
between feature vectors for the two types of cells. The comparison suggests that an adequately
sensitive classifier can distinguish the two cells - a suggestion that must be verified by testing.
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Figure 14. Block diagram of the V2 VISAREA2 modules. The modules detect the edges
(if any) in 3 x 7 and 7 x 3 pixel sections of the 7 x 7 input image. The four outputs
indicate the presence or absence of an edg- in the corresponding section of the 7 x 7 input
image.

28



ROTATE INPUT IMAGE s21

X 01 NORTH

MAX SOUTH

MAX EAST

I J MX INWEST

C COMPLE&IEfT (V, =-Vs) D

Figure 15. Details of the V2 VISAREA2 modules. The gray input image is rotated and
complemented as shoum so that on!; one NN is needed for detecting edges in the four
sections of the image.
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Figure 16. Gray patterns used to design the V2 feature detectors, as described in the
appendix. Patterns I to 4 correspond to the presence of an edge, while patterns 5 to 8
correspond to a nonedge.
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Figure 17. Response of the vertical WEST feature detector to the design patterns. For
the baseline system, when an edge is present in one side of an image, the response is high.
Otherwise it is low. The "signal-to-noise" ratio is at least 50 for the design images.
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Figure 18. Feature vector of a normal Pap smear cell. The three kinds of components

(SUM, V2, and VI) of the feature vector are weighted so that classification is based on

size (SUM), general shape (V2), and interior details (Vi).
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Figure 19. Comparison of (a) normal Pap smear and (b) abnormal Pap smear cells.
Shown on the right are 612 of 2500 V1 features from the center of the images, that is,

near the nucleus. The grid (not to scale) suggests the 7 x 7 bores of VI within which

edges are detected.
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4.2.6 ITC1 Module-Unsupervised Classification

The recognition process consists of an unsupervised classifier (ITC1) followed by a supervised
one (ITC2). For the unsupervised classifier, the well-known ART-2 NN was used. ART-2 was
selected over other NN classifiers, such as perceptrons and Hopfield NNs, because of ART-2's
speed, stability, feature amplification, and noise reduction - characteristics that were better suited
to the application in this study. And, ART-2 is a better model of the biology (for a discussion see
Carpenter and Grossberg [17]).

Adaptive Resonance Theory (ART) is a learning theory introduced by Boston University
Professors G. Carpenter and S. Grossberg [17]. ART mimics the human brain by taking inputs
from the environment, organizing the inputs into internally defined categories, and then recognizing
similar patterns in the future.

There are three classes of ARTs. ART-i, which was developed first, is used with binary
inputs; ART-2 is used with patterns consisting of real numbers; and ART-3 handles sequences of
asynchronous input patterns in real time. This study used ART-2. Several versions of ART-2 exist,
but they all have the same basic characteristics.

Figure 20 shows the basic structure of ART-2, an NN with two levels of interconnected
neurons, F1 and F2. The neurons are mathematical models of biological neurons. In the figure,
the bottom layer of F1 receives the input pattern - a list of numbers representing the input. F1
consists of three layers of interconnected neurons that filter out noise, enhance the shape of the
pattern, and rescale the input pattern values. The filtered pattern appears at Fl's top layer, which
is connected to the F2 level. The filtered pattern, called the exemplar, is the pattern that ART-?
stores.

In the F2 level., each neuron represents a category, or, with high sensitivity, one example input
that defines a category. The activation of 71 and P2 nodes models the activation of biological
neurons.

The F1 and F2 levels are connected in both a bottom-up and top-down fashion by the long-
term-memory (LTM) trace. Mathematically, the LTM trace is the set of weights given to the F1
nodes as they attempt to turn on an F2 node by a winner-take-all competition. Functionally, the
LTM trace stores information permanently or until the trace is modified by learning. The LTM
models the synaptic junctions of biological neurons.

To train an ART-2, the LTM trace values are set according to a rule given by Carpenter and
Grossberg [17]. Next, training patterns are presented to F1 one after the other. Initially, when
ART-2 is untrained, the first pattern immediately causes the NN to enter into the learning mode.
The network learns the pattern by modifying the weights associated with one of the F2 nodes.

After the first pattern is learned, each succeeding pattern will trigger the network to search
for a match among the F2 nodes. If the pattern is a close match to a previously learned one, ART-2
enters the learning mode and modifies the LTM trace so that the trace represents a composition
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Figure 20. Summary of the ART-2 classifier, a neural network with two levels, F1 and
F2, that consist of interconnected neurons. The bottom layer of F1 receives an input
pattern (feature vector) that is then filtered, enhanced, and rescaled by the three F) layers.
The filtered pattern appears at Fl's top layer, which is connected to the F2 level. The
filtered pattern (ezemplar) is the pattern that ART-2 stores.

of all the past, closely matched patterns. If the pattern is mismatched with all those previously
learned, ART-2 goes into the learning mode and modifies the weights associated with an unused
F2 node. Thus each pattern is automatically associated with an F2 node, and in this way ART-2
programs itself.

After training is completed and a new pattern is presented, the pattern's exemplar is produced.
ART-2 then searche.s the LTM trace for the most closely matched exemplar. When a match is found,
the corresponding F2 neuron turns on, indicating the category that best matches the pattern.

Before using ART-2, parameters must be set that influence the network's performance. For
many of these parameters, suitable values have been determined by experience. One parameter
of particular importance is the Vigilance, which serves as a threshold on the degree of similarity
between the LTM trace and the input pattern's exemplar. If a certain mathematical matching
formula equals or exceeds the Vigilance, that pattern will be associated with the corresponding F2
node. When the Vigilance criterion is not satisfied, ART-2 declares a mismatch and searches for a
match among the other nodes.

The selection of a low Vigilance value (that is, a value near zero) leads the system to tol-
erate large differences, resulting in coarsely defined categories. A high Vigilance value (that is,
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a value near one) leads to increased sensitivity in pattern discrimination, resulting in finely de-
fined categories. In practice, the Vigilance should be adjusted high enough to distinguish patterns
that represent different categories. The value, however, should be low enough that slight changes
resulting from incomplete or wrong information will not cause misclassification.

4.2.7 ITC2 Module-External Names

After training, the ITC1 (ART-2) output nodes in F2 correspond to particular patterns, or
objects. For example, if the first ten training images are tanks, the first ten ITC1 output nodes
will correspond to tanks. In the basic system, the supervised classifier, ITC2, is a simple logical
OR operation to associate activity of these nodes with the name TANK. (Note: ITC1 is called
an unsupervised classifier because the label of an input pattern is the F2 node number, which is
internally and automatically defined by the algorithm. ITC2 is called a supervised classifier because
the user defines the labels.)

After ITC2 processing, the system decides whether to store the object's name and location,
and the ART-2 matching parameter [17] serves as a confidence measure for the decision process.
If the matching parameter just passes a threshold (the Vigilance), the "confidence level" is 50
percent. A perfect match corresponds to a "confidence level" of 100 percent. If the "confidence
level" passes a second threshold specified by the user, the system stores the results. But if the level
is not sufficiently high, the location channel adjusts the window (discussed in the following section)
and the system processes the image again.

4.3 Location Channel

The location channel places an input window around an object so that the system might
classify it. As shown in Figure 6, the location channel consists of the following modules: superior
colliculus (SUPERC), LGN, V2, and posterior parietal cortex (PPC). Location is a two-stage
process consisting of coarse location followed by pull-in.

In practice the location processing is as complex as the classification processing. It must
quickly find patterns of interest in the background clutter. Location also is as important as classi-
fication. For example, the search for one or two abnormal cells in 50,000 (typical of a Pap smear
slide) is a location problem. After finding an abnormal cell, recognition is relatively easy.

4.3.1 SUPERC Module-Coarse Location

SUPERC processing, shown in Figure 21, uses a second ART-2 NN to perform coarse location.
The network's LTM trace, which is computed off-line, corresponds to general shapes of interest.
This trace primes the system. To detect the presence of an object, the SUPERC ART-2 compares
the exemplar of its current window to the LTM trace. Even an off-center object will trigger a match
if the object's size is correct.
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Figure .). Schematic of the coarse location processing. A stored top-down exemplar

in an ART-, neural network primes the system for detecting objects of general size and

shape, even if off-center.

In the example, SUPERC extracts a 175x 175 pixel window from the input image. It impresses

the window on the F1 bottom layer. The 175 x 175 pixel images produce 30,625 inputs to the ART-

2. The exemplar is computed. The system compares the LTM trace to the exemplar. The designer

selects the LTM trace so an object of the correct general size causes a ma.ch, even if off-center. A

match indicates an object of this size is present,

If the system finds no match in a window, it moves on to an abutting window. In the

example with a 525 x 525 FOV, there are nine coarse location positions. The system uses the

match parameter as an Enable signal to the LGN module. A module inside SUPERC selects

the coarse window positions. The system sends the coarse position to the ADJ box for further

adjustment (Figure 6).
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4.3.2 PPC Module-Pull-In

The second stage of location is pull-in, or fine adjustment of the coarse location. Pull-in
operates on a feedback path consisting of the LGN, V2, and PPC modules. Using the outputs of
V2, PPC makes small changes in the window's position. When the system centers a window on an
object, all the V2 edge strengths are about equal. Otherwise, PPC tries to equalize the V2 edge
strengths.

For example, Figure 22 shows the V2 output for an object wholly (top) and partially in the
window (bottom). When an object is centered in the window, the edge strengths will be about
equal. If the object is not centered, that is, it is partially in the window, one or more edges will be
missing. Then, the corresponding edge strength will be small. The system moves the window to
equalize the edge strengths.

INPUT
FROM AVERAGE

MODULE NORTH V2 OUTPUTS

7 NORTH SOUTH EAST WEST

7'

SHIGH HIGH HIGH HIGH

I .. . . . . .I

LOW HIGH HIGH LOWI ...

71

Figure 12. Examples of (a) the window centered on an object and the corresponding four
V2 outputs, and (b) the window not centered. When the window is not centered, the
unequal V2 outputs produce signals that move the window (pull-in).
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To center the window on an object, the system routes the edge strengths from V2 to the
DELTA1 box in PPC. This box carries out a control law for moving the window. For example,
Figure 22 shows an object that is below and to the right of the window. The position produces a
smaller north than south response and a stronger east than west response. To center the object,
the DELTA1 (Figure 6) box must move the window south and east.

In the baseline design, the control law is a standard bang-bang rule with a dead-zone for
the vertical and horizontal directions. The output of the DELTA1 box is the adjustments in the
vertical and horizontal directions. Figure 23 shows the control law used in the baseline.

181440-t0
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Figure 23. The baseline control law for vertical pull-in of the window. The two V2 out-
puts, NORTH and SOUTH, are subtracted and the window is moved if the thresholds are
exceeded. In practice, the thresholds and step size are selected according to the application.
A similar system with the EAST and WEST V2 outputs is used for horizontal pull-in.

A second pull-in path, which consists of LGN, V2, ITC1, ITC2, and PPC, makes repeated
tries at recognition. ITC2 activates this path when the classification channel has low confidence in
a match between an input pattern and the closest stored pattern. When the path is activated, the

40



DELTA2 box produces a small, random adjustment of the window's position and the system then
tries to classify the object with greater confidence. A counter limits the number of tries.

4.4 System Dynamics

In computer simulations, the system executes sequentially. First, the location channel finds
and windows an object. The classification channel then does identification.

In a parallel implementation with custom hardware, the modules run simultaneously. Se-
quence control is by Enable signals and carefully chosen time constants. Time constants associated
with the location channel are short, so the system will converge quickly to the location. The clas-
sification channel time constants are longer and the identifying process is comparatively slow. The
difference in the time constants ensures classification on a centered object.
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5. THE SOFTWARE TESTBEDS

5.1 Introduction

A major goal was to test the architecture with computer simulation. To that end, a series of
software testbeds was developed to study algorithm performance. As the testbeds were programmed
to handle more complex and more extensive data, the architecture and algorithms evolved.

Table 3 summarizes the software-related aspects of this project. We built up three versions of
the software. The first version was written in the APL*PLUS programming language and ran on an
IBM PC/AT. Using synthetic binary images, such as alphabetic letters, the APL*PLUS software
tested the algorithms of selected modules.

TABLE 3

A Summary of Software Issues

Sun
Testbed 4/110 and

Issue IBM PC/AT SPARC Sun-CONVEX

Programming APL*PLUS C C
Language

Operating System DOS UNIX UNIX

Input-Output APL Native STD and STD and
Format Files NATO NATO

Interface None Sun View VIEWPROC
Graphics (Calls SunView

or X-Window)

Vectorization Not Applicable Not Applicable Yes

Batch Mode No Yes Yes

Image Types Simulated Simulated Real
and Real

Classification Channel V1 and ITC1 Yes Yes
Testbed Only

Location Channel Coarse Only Not Tested Pull-In
Testbed
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environment for this kind of user interface through the SunView window management system.
This graphical interface package provides simple methods for displaying results and controlling
program execution. Such utilities minimize programming.

The classification channel testbed, called Ceilview, creates and arranges a set of interaction
windows. Figure 24 shows the resulting screen display. The user enters data through the keyboard
and selects run options with a mouse. Text and graphical displays provide feedback about algorithm
results.

The upper left window selects and controls the input images. To specify an image, the user
enters appropriate information in text fields defining a directory, file name, and image number.

At the bottom of this window are several buttons to control the image display. To exercise
these functions, one moves the cursor to an appropriate button and clicks with the mouse.

The "Display" button activates the testbed's image acquisition functions. An initial routine
opens the specified image file and checks the file format. Subsequent routines locate the designated
image, retrieve it, and produce a display. The display procedure provides descriptive information
in several other fields. One of these fields identifies the display's color look-up table. Others show
the magnification (zoom factors) and the position of a display window cursor.

The upper left window also has another button that clears the image display window. "Zoom"
and "Unzoom" buttons change the magnification by a factor of two. A "Quit" button stops the
program and exits.

The lower left window displays the original input itiage and a modified version after pro-
cessing. A video look-up table (VLT) determines the coloration by associating specific red, green,
and blue intensities with each data value. The testbed gets this table from a file and the user can
change the mapping by entering the name of a different VLT file.

The upper right window controls the ITC1 module's ART-2 classifier. The first two fields
control the weighting of the SUM and V2 feature components. Default values are set in the testbed
code. Other ART-2 parameters, such as Vigilance, reside in a parameter file. The last two fields
accept file names for storing and retrieving the LTM trace. After entering the name of a target or
source file, the user clicks a button at the bottom of the window.

A central horizontal window lies beneath the image control and ART-2 control windows.
Buttons in this window run different parts of the algorithm. Two of these commands run the image
histogram and perform histogram equalization. Others run the V1 edge detectors, the V2 edge
detectors, and the ART-2 classifier, as shown.

The lower left and lower right windows display graphical results to assist with monitoring.
After histogram equalization, the testbed shows a modified image in the lower left window. This
display overwrites the original input image. Plots of the histogram and V1 features appear in the
lower right, as shown.
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Figure £4. Sun workstation display of a Pap smear cell, its histogram, and its feature
vector.
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With these buttons and displays, a user can execute the algorithm step-by-step and inspect
intermediate results. At every step in the algorithm, several options are available. For example,
one can proceed to the next step or repeat earlier ones with a different image or other parameter
values. The user also can carry out repeated tests while varying the parameter values or can stop
the program at any time. The broad choice of options, commands, and feedback was a design goal.

Figure 25 shows the operator interaction during a typical test run as a flow chart. The
interaction was suggested by the SunView button syntax. The flexibility of the interface greatly
simplified the task of algorithm assessment, and, in practice, proved to be extremely convenient.

While coding and debugging the Sun testbed, we focused entirely on the algorithms and the
user interface. During this period, the CONVEX minisupercomputer was installed and brought on
line. Then the Sun-CONVEX testbed was developed. This software extension improved the run
speed while preserving all previous capabilities.

In the Sun-CONVEX testbed, functions are distributed between the two host computers. A
Sun workstation still controls the flow of data, and in this capacity, it performs I/O and interacts
with the user. These functions are identical to those of the Sun testbed. The CONVEX car-
ries out the most computationally intensive algorithms, which are V1 and ART-2. The separate
subprograms communicate over Group 22's local area network.

To coordinate the Sun and CONVEX operations, a protocol for passing data and calling
algorithm procedures was defined. The two computers use the TCP socket facility to establish a
common communication channel. A server program on the CONVEX accepts input from the Sun.
It then runs V1 or ART-2. After running one of these modules, the server sends the results back
to the Sun.

The Sun programs were modified to communicate with the CONVEX. Commands were added
to carry out steps in the processing sequence. Certain commands send image data to the CONVEX
and compute the V1 feature values. Another command transfers the V1 results back to the Sun.
The Sun combines the VI values with the SUM and V2 components and performs weighting. Other
commands send the complete feature vector to the CONVEX and run ART-2. Results from ART-2
are then transferred back to the Sun, which includes the index of the active F2 node, the number
of iterations needed for learning, and the matching metric's value when it passed Vigilance.

When operating with the CONVEX server, the Sun executes these commands instead of its
own Vi and ART-2 procedures. Our modifications, however, preserved the Sun's ability to run V1
and ART-2 on its own. A user chooses one of these options during the start-up procedure.

Two extra steps are needed to run using the CONVEX. First, one logs on to the CONVEX
and starts the server program. Then the user appends a string "-convex" on the command line for
starting the Sun program. This second step directs the Sun to work with the CONVEX. If either
step is omitted, the Sun testbed runs alone.

47



101440-11

START PROGRAM

[SPEECIIFY PATH TO STORED IMAGE
ýRETTRIEVE AND DISPLAY IMAGE

-*-=<NO

EXECUTE ALGORITHM AND
ASSESS THE RESULTS

YS MORE PROCESSING?

Figure 25. Flow chart of testing procedure.

48



5.3.2 Location Channel

Foveation is critical to recognition. In the system, foveation means finding a pattern of
interest and centering a box or window on it. The approach of this study consists of two steps:
coarse location followed by pull-in, as described in Section 4.

Coarse location is easier than pull-in; preliminary tests of the course location were performed
on an IBM PC/AT. Section 6 describes the tests. Pull-in needs more care, because reliable recog-
nition depends on having the window well-centered on an object. The pull-in facility also has to
work under real conditions, that is, in scenes with nearby objects and cluttered backgrounds.

A software testbed for the pull-in modules was designed and tested. The system runs on
either a Sun workstation or a CONVEX minisupercomputer. In practice, speed usually favors the
use of the CONVEX.

The testbed relies on two software packages developed in Group 22. One of the packages is
the "opt" utility, which allows program parameters to be specified either interactively or from the
command line with little programming effort.

The second software package is the VIEWPROC utility that produces and displays graphics
output on a Sun workstation. VIEWPROC is designed to allow a graphics display device to be
designated as any workstation in the network and can run on either the Sun workstations or the
CONVEX system.

The location channel pull-in testbed maintains two display windows, shown in the next section
(Figure 27). One window displays the image to be processed. A box is drawn in black at the initial
position, given by the operator. As the box coordinates are modified, the color changes to brighter
red to track the behavior of the pull-in over time. If the final position is reached before the maximum
number of iterations have elapsed, the final position is drawn in green to highlight this fact.

The second window displays the portion of the image contained in the initial boxed region.
Next to this image is the contents of the box at the current position. The final state of this window
shows the initial and final box contents.

In practice, a user can quickly exercise the pull-in function over a wide range of conditions.
During testing, one varies the initial position and other parameters with the selected image.

The test images can be natural or synthetic. In the course of this project, a software utility
was developed to construct test images. The program allows extracting 175 x 175 images and
inserting them into larger scenes of 525 x 525 pixels. For example, the 525 x 525 scene might
have a plain, clutter-free background. Several extracted images also could be inserted into the
same 525 x 525 frame. With this software, one can develop precisely controlled tests of the pull-in
function.
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5.4 Vectorization

To take advantage of the CONVEX's parallel-vector architecture, the V1 and ART-2 routines
were modified. Even without these modifications, the CONVEX provides some benefit because
each of its two processors performs arithmetic operations at about four times the speed of a Sun
4/110. With well-written software, however, this minisupercomputer can reach much greater speeds
when executing loops.

During loops the program takes a large array of data and repetitively carries out a calculation.
The CONVEX accelerates loops by vectorization, a technique in which separate arithmetic and
memory management units concurrently perform different suboperations using pipeline hardware.

Each unit loads its inputs, performs a designated operation, and passes the result on as input
for the next unit. On each machine cycle, one set of operands enters the pipeline and one final
result goes to memory. The units, which feed the pipeline, manipulate data as vectors. In general,
to be worthwhile, a pipeline must engage a significant portion of these resources and keep them
busy a large part of the time.

The CONVEX C-compiler converts many loops into machine instructions for one or more
pipelines. The compiler's goal is to maximize the number of arithmetic operations done in each
cycle. The CONVEX C-compiler increases its yield by performing certain limited manipulations of
the source code.

Some kinds of calculations, however, simply cannot be vectorized, for example, recurrence,
which is a significant problem. Recurrence take places when input for a loop calculation is computed
during an earlier iteration of the same loop. If the CONVEX really performed all loop iterations
simultaneously, it could not compute the recurrent input values before they were needed, because
the calculations are inherently serial. In general, pipeline timing depends on the detailed structure
of a loop. With recurrence and with variations in the iteration time, the CONVEX cannot ensure
that the results will be ready in time for later input.

The CONVEX C-compiler actively guards against this scheduling problem. While inspecting
source code, it checks for recurrent expressions, and whenever the compiler finds one of these
statements in a loop, it translates the statement into scalar machine instructions. The mechanism
is conservative, that is, it bypasses vectorization whenever there is any possibility of recurrence.

Much of the V1 and ART-2 code is considered to be recurrent by the CONVEX C-compiler.
This apparent recurrence occurs because the C programming language represents each array as a
variable holding the memory address of a contiguous data block (a "pointer"). After defining an
array variable, a program can freely change the specific address stored there. Thus, stipulated C
code can arrange for distinct array variables to point at different elements in the same physical
data block. When this situation occurs, a loop will be recurrent if it sets values and takes inputs
in those arrays.
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The CONVEX C-compiler can check for these recurrent array references, but only when the
array addresses are strictly local to a single C subroutine. Such checking becomes unreliable when
the actual array addresses pass among different subroutines as arguments or global variables. When
software modules share array pointers, any subroutine can assign the array addresses. Thus, at any
point in the program, the actual array addresses will depend on a preceding history of subroutine
calls.

Moreover, the C-compiler cannot evaluate these historical effects, because the order of sub-
routine execution may be data dependent. So, to be cautious, the CONVEX C-compiler bypasses
vectorization whenever a loop accesses arrays defined as global variables or subroutine arguments.

Indeed, most data arrays in the VI and ART-2 code fall into the class of global variables.
Thus, the CONVEX C-compiler flagged many expressions as recurrences and declined to vectorize
them. Fortunately, a programmer can override the antirecurrence mechanism on a statement-by-
statement basis, by placing the string

" \$dir no-recurrence''

immediately before a loop. In this way the C-compiler is forced to vectorize, in spite of an apparent
recurrence. The directive is entered as a C-language comment, and the programmer must make
certain the expression actually is nonrecurrent before overriding.

All the flagged recurrences were examined; most were false. By overriding and vectorizing
these loops, the speed of the V1 and ART-2 computations was greatly increased.

While a few of the flagged recurrences were genuine, most could be broken down into a
sequence of nonrecurrent steps. This reformulation replaces a single recurrent loop expression with
a sequence of two or more loops. The new sequence of computations produces the same result as
the original formula. This technique was used to cut out all but one of the true recurrences in the
ART-2 programs, thus increasing the proportion of vectorized loops.

Vectorization of the V1 and ART-2 algorithms yielded disparate benefits. For ART-2, run
time with a 175 x 175 image dropped from about 20 min on a Sun 4/110 to about 18 s on the
CONVEX. For V1, the gains were substantial, but less dramatic: 4.5 min on a Sun 4/110 to 45 s
on the CONVEX.

The disparity of benefits arises because of the different computational structures of the algo-
rithms. For V1, matrix multiplication and sigmoid functions lie at the heart of the algorithm. To
compute responses for the NN's hidden units, the algorithm iterates these operations in a series
of successive approximations, described in the appendix. The procedure decides when to stop by
comparing the current response values with those from the preceding iteration. It halts when the
differences fall to zero.

The hidden unit calculation in Vi is highly recurrent because results from each iteration
serve as input for the next. The termination criterion prohibits vectorization because the actual
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number of iterations is uncertain. In general, pipelines must carry out a fixed sequence of arithmetic
operations and cannot handle this conditional loop control. Thus, in V1 only the individual matrix
multiplication and sigmoid operations can be vectorized.

To process an entire 175 x 175 scene, the V1 hidden unit calculation must operate 5000 times
(625 positions x 4 orientations per position x 2 gradient directions per orientation). Each position
requires an additional matrix multiplication and sigmoid to produce the final output signal from
the hidden unit responses. On average, the V1 algorithm carries out many tens of thousands of
matrix multiplications per scene. For each of these operations, the CONVEX must set up and shut
down a separate pipeline.

Moreover, overhead is another consideration. Whenever feeding a pipeline, the CONVEX
performs certain overhead tasks, such as loading data into a vector register and waiting for the first
output to reach the end of the vector computation. Efficient programs can handle large amounts
of input for each unit of overhead.

In the V1 algorithm, vectorized loops operate on relatively small data sets; the input window
contains 49 pixels, and the hidden layer has 25 units. Thus, with a large number of these short
loops, the VI algorithm has high overhead per pixel.

By comparison, most loops in the ART-2 programs work on a feature vector with 2505 ele-
ments. The ART-2 algorithm also executes considerably fewer loops over its course of execution.
Thus, the ART-2 code has a much lower ratio of overhead to throughput. These factors are respon-
sible for the difference in performance gains between V1 and ART-2 (our colleague C. Mehanian
helped to optimize the ART-2 routines).

5.5 Batch Mode

After developing the interactive program, a batch capability for testing large databases was
added. In the batch mode, the program automatically reads input image specifications from a
disk file. Within memory limits it can handle an arbitrary number of files. The batch option runs
images through the full algorithm without operator intervention.

To run the batch mode, the user provides a Batch Directory and Batch File Name through
text fields in the upper left window. These inputs identify a file containing the list of input images.
The user then selects the "Run from Batch File" button in the central horizontal window.

As each image is processed, the batch routine records results in a log file. When the algorithm
runs successfully, a log file entry gives the ART-2 class (F2) node, the number of iterations needed to
learn the pattern, and a value for the matching metric when it first passed Vigilance. In unsuccessful
cases where an error occurs, the program writes a descriptive message. In practice, faulty input
image specifications are the most common cause of error.

To develop the batch mode, a different Group 22 software resource was exploited. This facility
provides utility programs for handling lists of input images. These ASCII "sequence files" list the
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desired input images in a specific syntax. Individual entries give the full pathname (directory and
filename) of a file and a single interval of consecutive frame numbers.

One of the utility programs reads the sequence file and formats the image specifications for

internal use. Another utility program furnishes image specifications in the same order given by the

file, as the processing passes from one image to the next. A user must create the sequence file before

running the testbed program. The sequence file dictates the order of processing by composing the

list of image specifications. The testbed's batch facility greatly shortens the testing time.
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6. TEST RESULTS

6.1 Introduction

Current MV systems usually do not perform well on images from natural scenes. As discussed
in Section 1, the reasons are many and well documented. The goal of this project was to develop a
general purpose MV system. The method for testing the system was exercising the algorithm with
two widely differing classes of images: vehicles and cells. These two classes were selected because
large databases exist and because most researchers judge them significantly different.

Major subsystems were tested to assess their performance. Because of time constraints ex-
haustive testing was not possible, sensitivity studies were not conducted, and the system was not
integrated. Moreover, to simplify the interpretation of the results, the location and classification
channels were tested separately. Nevertheless, enough testing was executed to characterize roughly
the performance of the two channels.

For the location channel, individual testing with different images was performed on the coarse
location and pull-in functions. If the location channel does not function, the system will not center
the image at the fovea, and classification performance will then suffer, perhaps significantly.

For the classification channel, the objects were centered, or foveated, by hand so that the tests
evaluated recognition under ideal conditions. Thus, the results gave an upper bound on system
performance because the location process introduces additional errors.

The preliminary test results were auspicious. The system located and recognized objects
in their natural settings, and the algorithm was robust with respect to centering accuracy and
background clutter. More testing is necessary before fully knowing the power and limitations of
this approach. Moreover, massive testing is nxcessary for measuring c-ror rates less than a few
percent. One also needs to test other images besides cells and vehicles. 1

Nevertheless, enough tests were run to suggest that this is a general approach to the MV
problem. More than one general solution, however, may ex, t, and another design especially tuned
for an application may give superior performance.

1Since completion, tests with laser radar range and SAR imagery have been performed. The system
was trained on video and tested on laser radar range and vice versa. The software has been modified
to include feature fusion. These results are reported elsewhere. They generally support the results
discussed in this report.

55



6.2 Location Channel Tests

6.2.1 Coarse Location

Coarse location is the first step in foveation. The system coarsely locates objects of interest,
for example, cells and vehicles in their natural backgrounds using an ART-2 NN. The process is
usually called segmentation.

In the system, coarse location operates as follows:

1. The Fovea Move module drives the fovea to a new position (Section 4.3.1).

2. An F2 node is excited. A top-down image is produced on the top layer of F1 (prim-
ing).

3. The system compares the input image with the stored general images. If an object
is present, the comparison parameter (norm) is larger than the Vigilance threshold.

4. The position coordinates and norm are inputs to the LGN module. The coordinates

define the first box location. The norm signal is an Enable signal to the LGN module.

Three main questions arise about coarse location of objects in the FOV.

1. Can the system find all objects of interest?

2. What is the sensitivity to object shape?

3. What Vigilance threshold is needed?

To study these issues, a software testbed of the algorithm on an IBM PC/AT written in the
APL*PLUS language was developed. Although this testbed was too slow for real images it was
designed to test the concept by doing simple binary images and silhouettes.

Coarse location tests were performed on the PC testbed. The PC testbed simulated finding
objects in the FOV. A 25 x 25 pixel FOV with 5 x 5 coarse locations was assumed. A 3 x 3 pixel
pattern could be positioned at each coarse location.

An ART-2 was trained on a single, uniform 3 x 3 pattern at each coarse position. This gave
25 F2 nodes, one for each position. Figure 26 (top) shows the coarse position numbering. The
figure shows a training pattern in the first position.

Six simple binary test patterns are defined. Figure 26 (bottom) shows these patterns. By
experimenting, it was found that setting the Vigilance to 0.79 detects a test pattern.

In test patterns 1 and 2, at the positions shown, the system found all four objects. The norm
of each object is 0.88, greater than the threshold of 0.79. At positions without objects, the norm
is 0.75.
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Figure 26. Training and test patterns for coarse location SUPERC module.

For test pattern 3, a 3 x 3 uniform object was translated one pixel to the right. The pattern lies
partially at positions 13 and 14. The norms for positions 13 and 14 are 0.93 and 0.84, respectively.
Thus, with the above threshold the system shows an object at the two positions.

For test pattern 4, a 3 x 3 uniform object was translated right one pixel and down one
pixel from position 13. The norms for positions 13, 14, 18, and 19 are 0.88, 0.81, 0.81, and 0.78,
respectively. Thus, with the above threshold the system shows an object at positions 13, 14, and
18, and none at 19.

For test pattern 5, the corner pixels of two adjacent objects were removed. Nevertheless, the
norms at positions 12 and 13 are 0.88, specifying an object.

For test pattern 6, the center pixels of two overlapping objects are missing. The norms at
positions 13, 14, 18, and 19 are 0.93, 0.80, 0.80, and 0.82, respectively. Thus, the system detects
objects at all these positions.
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For these simple binary shapes this approach works. Moreover, the algorithm allows priming
the system for general shapes without recognizing them. The algorithm is robust to offset and
noise, although more testing needs to be done, especially with real images.

6.2.2 Pull-In

Pull-in is the second foveation step. The algorithm was programmed on the Sun-CONVEX
system. Pull-in has feedforward and feedback signals, described in Section 4.3.2. Section 5.3.2
describes the software testbed.

Pull-in was tested by producing test scenes. To create a test scene, a background was selected
first. Then, one or more cells were selected and placed in the background.

To run a test, the box is positioned for windowing. In a fully integrated system, the coarse
location channel positions the box. The software testbed then moves the box according to the
procedure described in Section 4.3.2. The testbed records the position of the box at each step.

Figure 27 shows a typical result for a single cell in a natural background. The two boxes on
the right show the first and last box positions. The left screen shows the box history. The first
position (black) moves to intermediate positions (red) and then to the last position (green).

Repeated runs of the testbed gave the pull-in characteristics. Figure 28 shows the simplest
occurrence, the pull-in characteristics of a cell on a plain background. For example, starting at
(-5,4) the trajectory of the pull-in is (-4,3), (-3,2), (-2,1), (-1,1), and (0,0). Note that each
increment is 15 pixels.

After many runs, the pull-in characteristics for this case can be summarized. At a radius of
75 pixels (five increments) from the center, the system pulls in and centers the box within 15 pixels
(one increment) of the midpoint. For cell sizes of roughly 175 x 175 pixels (cervical epithelial cells
at 400x magnification), this pull-in range corresponds to 42.8 percent of the cell diameter. Thus,
if 42.8 percent or more of a cell's diameter is inside the initial windowing box, the pull-in aligns
the box within 8.6 percent of the diameter in eight moves or less. Figure 29 shows a typical pull-in
trajectory for a single cell on a plain background.

At greater offsets the system may oscillate. Several representative situations were tested.
Figure 30 shows two cells in a natural background. The system pulled in the first box in six steps.
But for some first positions, the system oscillates between two cells.

These tests show adequate pull-in range. The coarse location sensitivity is chosen so objects
outside the pull-in range will be in the range of an adjacent box. The sensitivity to differences
in the gradient across V2 remains to be studied. These and other situations, for example with
overlapping, also remain to be studied.
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Figure 27. Sun workstation display of a Pap smear cell for a pull-in test. The two smaller
images on the right show the initial (middle) and final (right) positions of the window.
The left screen shows pull-in with the starting window position in black, intermediate
positions in red, and the final position in green.
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Figure 28. Ezample pull-in characteristics for a single Pap smear cell on a plain back-
ground. The figure shows pull-in from four quadrants starting near the periphery to the
center of the 175 x 175 pizel window.
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Figure 29. Typical pull-in trajectory on a single cell. Starting with an initial offset of
the window, t~e pull-in system centers the window on the object so recognition may be
done by the classification channel.
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Figure 30. Ezample of pull-in on one of two cells in their natural environment. As
before, the two smaller images on the right show the initial (middle) and final (right)
positions of the window. The left screen shows pull-in with ti - starting window position
in black, intermediate positions in red, and the final position in green.
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6.3 Classification Channel Tests

To study the system's performance for recognition, tests were performed on two very different
databases. This section describes tests with images of military vehicles and Pap smear cells.

6.3.1 Vehicles

A database of three common military vehicles is assembled: a M48A5 tank, a M113 APC,
and a Ml10 self-propelled howitzer. The database consists of 40 images: 4 APCs, 16 howitzers,
and 20 tanks. The vehicles were at 700-m range, with orientations that varied from front-on to
broadside to end-on, and the background consisted of trees and rolling hills.

The images, intensity measurements made with a low-level TV camera, were 120 x 128 pixels
with each pixel containing 8 bits, so that 28 gray values could be representrd [20]. The beamwidth
of each pixel is 300 x 300 square microradians. No effort was made to improve these images with,
for example, preprocessing. Figure 1 shows a typical tank image.

To simulate the foveation of an image, a 42 x 42 window was centered by hand. This procedure
measures the error rate caused by the classifying. The 42 x 42 pixel box enclosed all the images,
regardless of orientation. All the boxes include background pixels, and at least 20 pixels in the
minimum projected dimension were on the target.

The system then produced a feature vector that contained three kinds of data: SUM, V1,
and V2. The relative weighting among the three components varied. Large SUM and V2 values
resulted in VI having little effect on recognition, while small SUM and V2 values allowed Vi to play
a predominant role. By adjusting the SUM and V2 multipliers, the three feature-vector components
are given roughly equal influence.

To find suitable weighting values, the system was trained on a small set of images and watched
the resulting number of categories that ART-2 formed. Figure 31 shows the results for an 18-image
training set.

When the SUM and V2 multipliers have low values, the number of categories is the same as
the number of inputs. The system, however, becomes more sensitive to the interior details of the
image, and to the noise. As the SUM and V2 multipliers increase, the V1 features become less
important and the system loses its ability to discriminate between certain categories. Consequently,
the number of ART-2 categories decreases below the number of input patterns.

The dotted line in Figure 31 represents a rough boundary for this transition. To obtain
roughly equal weighting for SUM, Vi, and V2, a point is chosen inside the boundary near the
elbow as compromise between noise robustness and object discrimination. In general, the SUM
and V2 multiplier values depend on the window size and sensor properties.

For comparison, Figure 32 shows the feature vector of a tank, a howitzer, and an APC. The
system distinguished among these and similar feature vectors.
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Figure 31. SUM and V2 multipliers for an 18-image training set of military vehicles.
At low multiples the number of categories is equal to the number of inputs, but the system
is more sensitive to noise. As the multiples are increased the system loses its ability to
discriminate, and the number of categories decreases below the number of inputs. The
dotted line represents a rough boundary for this transition. We selected a design value
inside the boundary and near the elbow of the curve.
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Figure 32. Example feature vectors of a tank, a heowitzer, and an armored personnel
caroier (AmPC). The system distinguished similar veciors during training and testing.
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The system trained on 10 random tank images that spanned orientations from front-on to
end-on and stored the corresponding exemplars in ART-2 nodes 0 through 9. Next the system
trained on eight howitzers and stored their exemplars on nodes 10 through 17. During training a
Vigilance of 0.999 was used, which corresponded to a 2.6 deg angular separation in feature-vector
space.

After the training was completed, the system was tested on the remaining 22 images. Table
4, which summarizes the results, shows that the system correctly classified the remaining 10 tanks
and 8 howitzers. When the Vigilance was set to 0.997, which corresponded to an angular separation
of 4.4 deg, the four APC images went to an untrained (or unknown) node. Thus, for this example,
the system's recognition was errorless.

TABLE 4

Preliminary Classification Results for Military Vehicle

Estimate
True Train Tank Howitzer APC

Tank 10 10 0 0
Howitzer 8 0 8 0
APC 0 0 0 4

6.3.2 Pap Smear Cells

A set of 23 normal and 16 abnormal Pap smear cell images (the Lahey Clinic collaborators
judged the cell types) were assembled. The images were 175 x 175 pixels, with 8-bit gray values.
Figure 19(a) shows a typical image of a normal cell and Figure 19(b) a typical image of an abnormal
cell (the grid suggests the Vi processing). To the right of the photographs, VI feature values near
the cell's nuclei are shown.

To train and test on different orientations, each cell image was rotated 90 deg, 180 deg, and
270 deg. The rotation expanded the dataset to 92 normals and 64 abnormals, or 156 altogether.

Seven typical cells are chosen to set the SUM and V2 multipliers. Figure 33 shows the number
of ART-2 categories as the multipliers are varied. The figure shows roughly the boundary. As with
the military vehicles, the design values are selected to weight the SUM, V2, and Vi values about
equally.
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Figure 33. SUM and V2 multiples for Pap smear cervical epithelial cells. As before, at
low multiples the number of categories is equal to the number of inputs, but the system
is more sensitive to noise. As the multiples are increased the system loses its ability to
discriminate, and the number of categories decreases below the number of inputs. The
dotted line represents a rough boundary for this transition. A design value inside the
boundary and near the elbow of the curve was selected.

The system was trained with a Vigilance of 0.99999. This Vigilance corresponds to 0.256 deg
separation in feature space. (Tests showed separation of the cells in feature space varied from 0.256
to about 30 deg.)

At first the training sets were chosen randomly, as had been done with the military-vehicle
dataset. The random selection, however, resulted in high error rates, that is, some cells did not
make good training examples. In general, cells far from the normal-abnormal boundary in feature
space do not help the system improve its discrimination ability. For this reason, an iterative training
method was developed that selected cells near the boundary.

The system was trained iteratively by starting with two normal and two abnormal cells. The
system was tested on the remaining 152 images. The training set was increased by adding roughly
equal numbers of false positives and false negatives. (False positive errors are normal cells classified
as abnormal. False negatives are abnormal cells classified as normal.) The error rates of false
positives and false negatives drop as the procedure is repeated.

68



Figure 34 shows the error rates as the number of training examples varies. (Note that it is
crucial to keep the false negative rate small to avoid potentially fatal errors.) The curves were
produced by the iteration method described above. Each cell took about 40 s to train and about
25 s to test on the Sun/SPARC-CONVEX testbed.
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Figure 34. Error rate versus training set size for images of Pap smear cells.

Table 5 summarizes the results and shows no false positives and false negatives with 118
training images.

TABLE 5

Preliminary Cytology Results with Iterative Training

Estimate
True Train Normal Abnormal

Normal 66 26 0
Abnormal 52 0 12
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The results suggest the system generalizes from its training in the following sense. Mathe-
matically speaking, the feature vectors lie in a 2505-dimensional vector space, as described earlier
in Section 4.2.5. The normal cells lie in a subset of that vector space, and the abnormal cells lie
in a different subset. If the subsets had formed a checkerboard pattern, or had a highly jagged
boundary, training might have required all the images. The curve, however, in Figure 34 suggests
the elimination all false negatives with far fewer images. Thus, it is believed that the boundary is
comparatively smooth, which allows the system to generalize.

The results suggest the system might have promise for initial cytology screening. Furthermore,
the results suggest that the error rates can be deceased to less than, say, five percent, with training
sets of several hundred examples for each cell type. More testing is necessary both to confirm or
disprove these preliminary results and to assess the system's practical value. For the system to
achieve an error rate of less than a few percent, a much larger database is required.
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7. APPLICATIONS AND EXTENSIONS

Reliable MV systems have many applications. Besides those areas of interest to MIT Lincoln
Laboratory in remote sensing and automatic target recognition, other uses include medical screen-
ing, industrial inspection, and robot vision. The architecture of this Lincoln Laboratory system is
applicable to these diverse areas.

The basic system architecture also is extendable, and the following sections describe several
possibilities. Note that the examples include new principles and so are speculative.

7.1 Sensor Fusion

A direct extension of the research is to combine parallel sensors. Figure 35 shows a fusion
concept at the feature-vector level. The bottom system is our basic system with minor additions,
and the top is another system, which can be of a different type.

The two systems produce features that train the classifier. Preliminary tests of this concept
have been accomplished with video and laser radar range images [21].

7.2 Moving Objects

Another extension is the capability to track and recognize moving objects. Figure 36 shows
a conceptual block diagram in which an object in the FOV is moving in an arbitrary direction.
To detect the motion, modules can be added that are sensitive to the motion of edges at multiple
orientations. These motion detectors mimic characteristics of biological vision systems.

In Figure 36, the system feeds signals from the motion detectors back to the SUPERC module
for tracking. The motion-detector features are stored in the feature vector for recognition. To use
time-varying features for recognition, the ART-2 module can be replaced by an Avalanche-type NN
[221. This modification would enable the recognition of, say, a flying butterfly [23].

7.3 Binocular Vision

For an extension to binocular vision, Figure 37 shows two of our basic systems working in
parallel. In the figure, the SUPERC module points the two "eye balls," and the left and right
FOV of each sensor (denoted as L1, L2, R1, and R2, respectively) go separately to two LGNs for
calibration and normalization.

The system uses parallel sets of feature detectors, and the feature vector consists of the left
and right features and their difference, or disparity. The classifier is similar to the classifier of the
baseline system.
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Figure 36. Block diagram of neural network architecture for moving objects.

7.4 Vision-Motor Systems

This section ends on a more speculative note by describing an NN system for driving a car.
Figure 38 shows the conceptual block diagram.

The video sensor, with two pointing angles, is part of the basic vision system. (Note that
Boston driving needs more than one camera.) An addition to the vision system is the GAZE
channel, which gives direction information that combines with the visual features to form the feature
vector. The ITC is like that of the baseline system: its output drives a command-generating NN.
The network used is Vector Integration to Endpoint (VITE) [24], a type of NN that models biological
motor systems. During the learning process, the adaptive elements are in target command map
module. Output from the command-generating NN drives other modules that give speed, steering,
and braking commands to the automobile.
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8. CONCLUSIONS

A general purpose MV system was developed for recognizing stationary visual objects in their
natural settings. The system selectively models the architecture and the functions of the human
vision system. The recognition of objects is experiential. Moreover, the performance improves
through experience.

The system was tested with images of common military vehicles and human cervical cells.
The recognition was perfect after sufficient training. This result suggests that further development
is warranted and that practical systems might be feasible. Much more work, however, is needed
for reducing the design to practice.

Application of the concepts developed in this project have begun. At MIT Lincoln Labora-
tory, studies continue on additions like motion detection, sensor fusion at the feature level, and
applications with imagery from microwave radars and infrared sensors. The work also considers
hardware implementations of the algorithm.

This new approach to MV is believed to be very promising.
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APPENDIX
DESIGNING NEURAL NETWORKS BY THE GENETIC ALGORITHM

This appendix describes a practical method for designing neural networks with fixed inter-
connections among the neurons. This class of neural networks is useful for modeling selected
biological neural groups and as preprocessors, feature detectors, and control modules in application
systems. The approach is from the genetic algorithm, a procedure suggested by natural heredity
and evolution for efficiently searching over a parameter space.

The design method avoids common simplifying assumptions, and it enables designing complex,
general cooperative-competitive neural networks with feedback that realize (or model) arbitrary,
designer-specified, input-output functions. Design examples are given )f on-center/off-surround
architectures, which crudely model the simple cells in the visual cortex and are applicable as feature
detectors in machine vision systems. Scaling laws are described for designing general cooperative-
competitive neural networks. The project used this method to design the feature detectors in V1
and V2.

A.1 Introduction

Designing neural networks (NNs) for modeling and applications is an intensive, ongoing ac-
tivity reported in countless research articles. Many NNs have fixed interconnections among the
elementary processors, or neurons. This class of NNs can model selected parts of biological brains
(for example, in the visual cortex of higher animals) and are useful in applications (for example, as
sensor front-ends, feature detectors, and control units). This appendix shows how complex NNs can
be easily designed by a genetic algorithm (GA) method, which have fixed feedforward and feedback
connectiuns among the neurons, specified input-output (I/O) characteristics, and, if desired, have
properties known from anatomy and physiology.

Conventional NN design techniques make many simplifying assumptions to obtain a tractable
problem. Common assumptions include: the neurons are arranged in layers, no lateral connections
are made in a layer, and the layer-to-layer signals are feedforward. Or, a neuron can be both
excitatory and inhibitory, that is, the connection weights (modeling synaptic transmission coupling)
from a neuron to others, can be positive to some and negative to others.

These are significant restrictions, especially in modeling biological systems, because they differ
from our present knowledge of the anatomy and physiology of the cerebral cortex of higher animals
[8]. The design method described below does not make these assumptions. Thus, it may be of
interest to theorists and to designers of applications because the resulting NNs can be smaller for
the same function and, perhaps, easier to implement in software or hardware, or both.

A conventional design for NN feature detectors is to compute the output by convoluting the
input pattern with a kernel matrix. The kernel matrix is selected so that the output gives, say,
a measure of the orientation of a line in the input pattern. The response mimics the orientation
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responses to illumination contrast of simple cells in the visual cortex [9]. A typical robotics ap-
plication with this design is described by Kuperstein [25]. While mathematically convenient, the
approach is at best a rough approximation of biological feature detectors because convolution is
linear.

In feedforward NNs, adjusting connection weights currently is done by simulated annealing
(SA) or backpropagation (BP). SA includes the Boltzmann machine [26] and is slow. BP is the
most common method. It was originated by Werbos [27], developed, and described by Rumelhart
[28] and other members of the PDP group. BP and its many variations, however, suffer from
slowness for many problems [29] and is restricted to designing feedforward NNs.

Section A.2 gives a short summary of genetic algorithms, pertinent to the IRP application.
Section A.3 derives the representation starting with the additive short-term memory (STM) equa-
tion. Section !.4 gives the design method. Section A.5 shows the on-center/off-surround (0/0)
design examples and Section A.6 presents scaling laws for general CC NNs.

A.2 Genetic Algorithm Background

For over a decade the GA community, originated by Holland [30], has pursued trial and error
strategies for designing adaptive systems. For a collection of current papers see the proceedings of
the most recent GA conferences [31,32]. The GA is a search procedure, inspired by evolution and
heredity, for finding high performance structures in a complex parameter domain. For NN design
purposes, the GA is a search method for finding a good set of weights in a high-dimensional, non-
linear weight space. (A degenerate form of the GA are the well-known gradient-descent techniques,
including BP.)

GA theory gives guidelines for constructing practical search techniques (a direct random
search of parameter space is not practical because the number of trials increases exponentially
with the number of neurons). The fundamental requirements are that the problem be represented
by some data structure, the solutions be capable of evaluation, the advances already made be
retained, and the population of retained structures be increased [33]. In all GA applications the
major problems are: a convenient representation of the system, devising genetic operators that
produce good solutions, and defining payoff functions.

The GA can be defined as follows: A set of structures are created (generation), which at-
te pt to solve a problem. The structures (parents) are manipulated by a set of genetic operators
(traditionally crossover, inversion, and mutation [30]), to create a new set of structures. The new
structures are evaluated on how well they solve the problem. The best set of structures is saved
(the next generation). This process is repeated until a structure produces an acceptable solution
to the problem.

Researchers have applied the GA to design simple NNs. Recent examples are found in Miller
et al. [34], who assume a feedforward NN. A matrix of digits denotes the nature of interconnections
among the neurons. The GA picks rows of Jhis matrix and swaps with the parent. The resulting
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NN is trained by BP and evaluated. Whitley [35] represents a feedforward NN in binary form
with four or eight bits for each connecting weight. The weight bits are concatenated to form a
string, which is manipulated by an adaptive mutation operator. The NN is then trained by BP
and evaluated. Harper et al. [36] also represents connections by a bit string, uses the standard
mutation operator, and trains the system by BP. These GA studies, which only consider simple
examples (like the XOR problem), assume feedforward NNs, BP-related performance metrics, and
binary string representations for the connection weights.

The initial work with the GA manipulated a representation using bit strings. Application
to problems such as NNs requires another representation. Numerous representations have been
studied. These include parameter spaces [37], rule spaces of programming languages [38], and
structure spaces of classifiers [39]. One example of interest to the NN community is that tree
classifiers (modeled by NNs) tend to mutate toward increasing complexity, under certain conditions
[39].

Traditionally three genetic operators are used to create the new structures: crossover, inver-
sion, and mutation. The difficulties with these operators axe that they require the problem to be
represented in powers of two and that some of the mutations will be extremely unlikely [33]. More
general operators employing table lookups have been developed.

In any application a task is to devise genetic operators for the problem at hand. The criteria
for constructing GA operators is set by the Schema theorem [40]. In general, new operators should
not disrupt the distribution of trials and should encourage the formation of building blocks.

Another issue in applying the GA is the payoff function in the evaluation stage. GAs are not
effective in searching spaces in which the payoff is zero almost everywhere. The design of effective
payoff functions is critical, as will be seen later. Vector-values payoff functions may be useful.

Two distinct GA approaches were originated by Holland. These approaches are popularly
named after the communities where they were first elaborated.

In the Michigan approach there is a single system consisting of a set of rules or parameters.
New rules discovered by genetic operators are applied to existing rules. Each rule is assigned a
strength indicating the utility of the rule to the system's goal of obtaining an external payoff. Rules
achieve high strength either by obtaining direct payoff from the task environment or by setting the
stage for later rules. In the Michigan approach, the GA operates on internal parameters or rules
of a single system. The GA picks the "best" as it adapts tc an environment.

In the Pittsburgh approach there are numerous structures each with a set of rules. In Holland's
original book a particular class of adaptive plans was defined, called reproductive plans [30, pp.
90-111]. In this plan a fixed set of possible s ilutions is maintained. An individual solution is
selected according to its performance rank, modified by one or more genetic algorithms, evaluated
by the environment that contains the external inputs, and then used to replace a randomly selected
member of the set. In this manner the set of possible solutions evolves to contain members with
high performance, because the better an individual performs the more offspring it has.
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The Michigan approach has proven to be most practical in on-line, real-time environments,
because of the reduced computational loads. The Pittsburgh approach is appropriate with off-line
environments, in which more leisurely exploration is acceptable. In GA terminology, this appendix
uses a Michigan approach to NN design.

The remainder of the appendix describes an approach for designing general cooperative-
competitive (CC) NNs with fixed connection weights. It demonstrates the method by using non-
trivial examples (75 neurons, 1920 connection weights) of orientation detectors modeling simple
cell modules in the visual cortex of primates, which satisfies important biological constraints.

A.3 Formulation

A.3.1 Activation Equation

Suppose a set of neurons {Lv} are connected to form a feature detector module. Each neuron
is described mathematically by equations that, roughly, model its biological processes. A common
approach is to characterize the vi-th neuron by its activation level (xi) and by its connections with
other neurons, given by a set of coupling coefficients {Zji}.

For the activation level or STM, assume an equation for vi of the form [41]:

dx-- =axi +, Zjif(Xj) + Ii, (A.1)

dt

where

xi = activation of the i-th neuron,

Zji = LTM trace from the j-th neuron to the i-th neuron,

Ii = external input to the i-th neuron,

f = a signal function,

a = relaxation time constant parameter.

This equation, called the Additive STM Equ-..ion, is basic in NN research and is adequate
for many NN designs. (If desired, it can be replaced by the Shunting STM Equation for a better
model of the biology [41].)

Assume the coupling coefficients (or the LTM trace) are constant and unknown. For this
class of NNs with fixed interconnections, the main problem is to determine a set of weights, {Z,,},
satisfying prescribed I/O relations.

To illustrate the method, the design of a feature detector module is carried throughout the
discussion. Designing NNs for other functions follows similarly.
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A simple design of a feature detector module gives a si,-g, output for some spatial activation
pattern defined on a rectangular array of input neurons. The output could show the angular
orientation of the pattern. For a feature detector assume: the input patterns defined on M input
neurons, N hidden (internal) neurons, and a single output neuron. Thus, each input pattern is
characterized by the activation level of a single output neuron, as shown in Figure A-1.

1088-2626

INPUT
PATTERN OUTPUT

- T0

M N ONE
INPUT HIDDEN OUTPUT

NEURONS NEURONS NEURON

Figure A-1. Nomenclature for a feature detector neural network. An input pattern,
shown in cross-hatching, is impressed on M neurons. Each input neuron is connected
to N hidden neurons and a single output neuron, whose output is high for a chosen angu-
lar orientation of the input pattern and low for other orientations. The hidden neurons
may be excitatory (labeled +) or inhibitory (labeled -) and are interconnected. The design
method enables computing the connection weights.

The input pattern may be binary or gray. Assume no feedback from the hidden neurons or
from the output neuron to the input neurons; however, assume feedback among the hidden neurons.
For this example, a set of STM equations can be written from Equation (A.1):

1. Input Neurons:
dt -i i + Ii, i = I, .-, M. (A.2)
d8
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2. Hidden Neurons:
dzi M+N

d- = -- z + E Zjif(xj), i1,...,N. (A.3)
j= 1

3. Output Neuron:

dzo M+N
W- = -aXo+ • Zjof(xj). (A.4)

j=1

A.3.2 Matrix Formulation

The STM equations of the hidden neurons can be written as:

dzi N M

d- - -axi + E Zjif(AX) + E Zkif( (Z), i = 1,''", N, (A.5)
j= k--=1

where

Z.i = LTM trace within the hidden neuron-,

Zki = LTM trace from the input pattern to the hidden neurons.

Assume a = 1 (equivalent to rescaling the other variables). Then, in the steady-state the
input neuron activations approach the external inputs, that is, Xl -- Ik, k = 1,... ,M as t - 00.
Assuming no self-sustained oscillations, in the steady-state the hiddn neuron activations become:

N M
Xi = E ZZif(xj) + E Zkif(1k), i - 1,---,N. (A.6)

j=l k=1

For convenience, matrix notation is introduced as follows: Let

X1

X . (A.7)

L N j

Here X is the activation vector of the hidden neurons, written as an N x 1 matrix. The steady-state
hidden neuron equations, Equation (A.6), in matrix notation becomes:
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X = Af(X) + Bf(I) (A.8)

where

Z11 ZNI

A= (A.9)

ZIN ZNN

is a constant N x N matrix,

B= (A.10)

ZIN ... ZdN

is a constant N x M matrix,

f(zi)

f(X) =(A.11)

f(ZN)

is an N x 1 matrix with the signal function applied to each element, and
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f(Ii)

(A.12)

f(IM)

is an M x 1 matrix. Note the indices in A and B are reversed from the usual matrix notation
because of how the terms were originally defined.

In this formulation no assumptions are made about the kind of signal function. The model
also is a "sum-of-sigmoids" and not the usual simplifying approximation of "sigmoid-of-sums."

Let the steady-state output be Z, that is, Z zo(t -- oo). Then, Equation (A.4) gives:

N M
Z = E Zjof(zj) + E Z4f(I), (A.13)

j=1 k=1

which in matrix form is:

Z = Cf(X) + Df(I), (A.14)

where

C =- Zo ... N] (A. 15)

is a constant 1 x N matrix, and

D =[Z/0 ... 4~0 ](A. 16)

is a constant 1 x M matrix.

Thus, in matrix notation the NN is described by a set of four matrices {A, B, C, D}.
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To design an NN with given I/O characteristics, a set of matrices {A,B,C,D} must be
determined. With reference to the GA, copies of the system with random changes are simply
copies of this matrix set with random changes in their elements. (In the GA context, the matrix
elements play a role analogous to the DNA molecules in biological evolution.)

Given a system described by the set {A, B, C, D} and an input matrix, I, the hidden system,
Equation (A.8), must be solved for the steady-state activation vector, X. Once X is known, the
output Z is computed by Equation (A.14).

A.3.3 Assumptions for Biological-Like Neural Networks

To illustrate the design method, a problem is solved that is difficult by other methods. As-
sume the NN is to model, crudely, biological feature detectors such as those found in the human
primary visual cortex. (Such an NN also is useful in applications because, presumably, the resulting
performance would be similar to the comparatively high performances of natural vision systems.)
To model biological NNs, assumptions are applied from experimental findings. The assumptions
for mimicking biological NNs are discussed by Crick and Asanuma [7] and are summarized here in
the first two items. Assume for feature detectors:

1. Each neuron is either type I (excitatory) or type II (inhibitory) and cannot be of
both types.

2. A neuron can not excite or inhibit itself.

3. The NN are in a 0/0 architecture. (The more general CC architecture is considered
below.)

With these assumptions, the system matrices for 0/0 NNs have the following properties:

1. A has zero diagonal components.

2. A and C have negative or zero elements.

3. B and D have positive or zero elements.

4. The columns of A give the lateral inhibition to other hidden neurons (for example,
column 1 is the inhibition of neuron v, on the other neurons, and so forth for the
other columns).

These constraints are difficult to add in standard design techniques; however, they can be
easily accommodated with this approach. Figure A-2 summarizes these constraints on the system
matrices.

For the more general CC NN, the hidden neurons are mixtures of excitatory and inhibitory
types. Thus, matrices A aald C have a mixture of columns containing all positive or all negative
elements with the diagonal elements of A still zero.
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NO FEEDBACK

'L 0 EITHER EXCITATORY (+)
OR INHIBITORY(-

> ~NOT BOTH

0 X 0[ x 1[ x
x xX B,, X

A,, 0 X
X X
X 0X INXMX NXN

C.[ ]IXN D=[ X ]IXM

COLUMNS HAVE SAME SIGN

Figure A-2. Constraints of A, B, C, D neural networks. For on-center/off-surround neu-
ral networks, the elements in A and C are negative while the elements of B and D are
positive. For cooperative-competitive neural networks, the elements in a column and cor-
responding element in C or D have the same sign, which may be positive or negative.

A.4 Design Procedure

A.4.1 Computational Steps

From the GA, the computational steps for the design procedure are the following:

1. Make copies of the parent set {A, B, C, D}. In each copy, randomly select columns
of the parent. The elements of the selected columns are then randomly changed
subject to the constraints given in the section A.3.3. In GA terminology, the random
changes are done by a mutation operator (see example in Section A.5).

2. Using a set of input training patterns, for each training pattern and each copy, solve
for the output. (Note: a solution may not always exist - see Section A.4.3.)

3. Select the best copy according to a payoff criterion (see Section A.4.2). Make this
copy the survivor.
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4. Using the survivor as the parent for the next generation, repeat steps (1) to (3).

5. Continue until the payoff criterion is met. The surviving system, {A, B, C, D},
describes the NN.

The procedure is summarized by a flow diagram shown in Figure A-3.

1a82U2-26

CHOOSE
INITIAL

{A,B,C,D)

MAKE RANDOM
COPIES

AND
SOLVE

TRAININGSELECT
PATERANINS SMALLEST

PATFERNSMETRIC

Figure A-3. Computational flow diagram of the design method. The parent set of four
matrices {A, B, C, D) represents a neural network. At each generation several offspring of

the parent are produced by random changes. The best offspring is saved and is the parent
for the nezt generation. The process is continued until a good neural network is found.

A.4.2 Payoff Criterion

Defining a good payoff function is critical, as mentioned in Section A.2. For illustration, a

metric is chosen to measure the distance (error) of the output from a desired output, for each
training pattern.
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Many metrics are possible. One convenient metric specifies that for each input training
pattern, the output response lies within a band of upper and lower thresholds, where the thresholds
are specified by the designer. This HI-LO metric is formulated as follows:

For Np training patterns, the metric, d, is:

Np
d = Z'(TLOi<_Z1 <_THI.), (A.17)

i=1

where

Zi = output for the i-th input training pattern,

TLOi = lower bound for the i-th input pattern,

THI, = upper bound for the i-th input pattern,

and

(TLO,5Zi5THIi) 0 if TLOi<_Zi and Zi,_THIi, (A.18)1 otherwise.

Another practical metric specifies that the output be above a passband threshold for certain
patterns and below a stopband threshold for the other patterns. This PASS-STOP criterion is
formulated below.

For N1 PASS patterns and N2 STOP patterns, with Np N1 + N2, the metric, d, is:

NI N 2

d = _9(Z._Ti) + Z'(Zj:_Tj), (A.19)
i=1j=

where

Tj = selection thresholds, i = 1,.- , Np,

and

(zi2_T=) 0 if Z _Ti, (A.20)
91 otherwise,
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(Z,ýT,) 0 if Zi_5Ti, (A.21)(1 otherwise.

For the two metrics, the following inequalities hold:

O<d<_Np. (A.22)

The condition d = Np means the system, {A,B, C, D), satisfies none of the payoff criteria
(maximum error). The condition d = 0 means the system satisfies the selection criterion and a
solution has been reached. In practice the metric, d, starts at Np (or smaller) and monotonically
decreases to zero.

A.4.3 Solution of the Activation Equation

To implement step (2) of the algorithm (Section A.4.1), for each set {A,B,I} solve the
equation:

X = Af(X) + Bf(I). (A.23)

Three outcomes are possible when attempting to solve Equation (A.23): no solutions may
exist, a single solution may exist, or multiple solutions may exist. [The three outcomes are easily
seen by assuming I is binary and solving Equation (A.23) by hand for a low-dimension system.]

Many authors have studied the solution of nonlinear matrix equations such as Equation (A.23)
[421. The method used here is a combination of operator decomposition followed by recursion,
typical in fixed-point theorems.

Following Adomian and Adomian [43], the first two terms of an operator decomposition
solution, X0 and X 1 , are given by:

X0 = Bf(I) (A.24)

XI = A(Xo) + Xo (A.25)
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The recursion is:

X(+) = Af(X(-)) + Bf(I) (A.26)

where X, is the initial trial solution, and

X(-) =current trial solution for X,

X(+) =next trial solution for X.

The recursion is continued until X(+) = X(-), or fails after a fixed number of tries.

This recursion converges to a solution if and only if the operator defined by the right-hand
side of Equation (23) is a contraction operator [42]. In practice an operator may be a contraction
in some subspaces and not in other subspaces. For the examples below, the initial values, X 1 ,
produced by operator-decomposition are in a contraction subspace for about 90 percent of the
choices of {A, B, I). It typically requires seven to ten recursions to reach the final solution of the
activation equation. [The above scheme for solving Equation (A.23) is preferable to one using only
the operator decomposition approach for NNs with many hidden neurons. For small systems with
10 or fewer hidden neurons, the operator decomposition method gives solutions after computing
fewer than four terms. See Adomian and Adomian [43] for a description.]

A.5 Examples

Consider designing an 0/0 NN that is sensitive to horizontal binary patterns, to a resolution
of 45 deg, on a rectangular array of neurons. Common design procedures for this problem have
simplified topologies, as discussed in Section A.1, or apply other ad hoc approaches.

An example of an ad hoc approach for this problem is to sum the number of ON input
neurons in each row of an input rectangular array and pick the maximum. Similarly, sums for the
two diagonal and vertical directions are computed for measuring the "strengths" in those directions.
A comparison of the four direction values then is a measure of the "orientation" of the pattern.
This orientation detector, however, is unsatisfactory because patterns can be easily constructed for
which the response is unreasonable.

To illustrate the proposed method, an NN is designed for which a large output shows the input
pattern has a horizontal orientation. That is, the weights are chosen so that the NN is sensitive to
horizontal edges.

Table A-1 shows the assumed parameters for the example. As seen, the input pattern is
defined on 7 x 7 or 49 input neurons. (An NN with an angular resolution of 10 deg would have a
larger number of input neurons and could be designed by this method.) The hidden system has 25
neurons.
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Starting with a random set {A, B, C, D} for the first generation, at each generation ten copies
are made of the parent set. For each copy, a third of the matrix elements (weights) are randomly
changed by selecting integer values over the range -10 to +10, subject to the constraints given in
Section 2.3.

TABLE A-1

Input Parameters fro Designing a Horizontal Feature Detector
Using and On-Center/Off-Surround Neural Network

Example I Parameters

Input Neurons (M) 7 x 7 (49)

Hidden Neurons (N) 25

Copies per Generation 10

Fraction of Wwights Changed

Per Copy 1/3

Search Range 0, ±1,±2,..., ±10

High Band 50 to 100

Low Band -100 to 10

A HI-LO metric is assumed for the training patterns with some of the outputs in a high
band and the others in a low band. The desired output response to the high (horizontal) training
patterns is 50 to 100. The desired response to the low (nonhorizontal) training patterns is -100
to 10. The input vector, I, for each training pattern is produced by row-by-row scanning. For this
NN, 1924 coefficients must be specified. For simplicity, the signal function is a unit step.

The HI-LO metrics ef the ten copies are computed and compared with the metric of the
parent set. If an offspring metric is below the parent metric, the offspring replaces the parent set
for the next generation.

Figure A-4 shows the assumed 12 training patterns and the desired responses (high or low)
for each pattern. As seen, training is on three horizontal patterns and nine other patterns, and
each training pattern has about two hidden neurons.

The design algorithm was coded in the APL*PLUS programming language and run on an
8 MHz IBM PC/AT machine. Figure A-6 shows the history of the metric as the system evolves
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00 00 0 00 00 00 00 1
0000000 0000010
0000000 0000100
11 111 1 0001000
0000000 0010000
0000000 0100000
0000000 1000000

00 00 0 00 00 00 00 0
00 0 0 000 00 00 01 0
0000000 0000100
0111110 0001000
0000000 0010000
0000000 0100000
0000000 0000000

00000000 0000000
00000000 0000000
00000000 0000100
0011100 0001000
,0000000 0010000
0000000 0000000
0000000 0000000

HORIZONTAL 45 DEG

0.001000 1 000000
0001000 0 1 00000
0001000 0010000
0001000 0001000
0001000 0000100
0001000 0000010
0001000 0000001

0000000 0000000
0001000 0100000
0001000 0010000
0001000 0001000
0001000 0000100
0001000 0000010
0000000 0000000

00 00 0 00 00 00 00 0
00 00 0 00 00 00 00 0
0001000 0010000
0001000 0001000
0001000 0000100
0000000 0000000
0000000 0 000000

VERTICAL 135 DEG

Figure A-4. Example binary training patterns for a feature detector. Three patterns are
used for each of four orientations. For sensitivity to horizontal patterns, the outputs are
specified high for the three horizontal patterns and low for the others.
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to a solution in about 600 generations. The metric started at d = 10 and ended at d = 1 at 600
generations. The one remaining error was a response above the high threshold, and so the run was
stopped.

I I

10 INPUT NEURONS 49

9 HIDDEN NEURONS 25OUTPUT NEURONS 
1

8 NETWORK TYPE ON CTR/OFF SUR
7 PATTERNS 12

0 6 PATTERN TYPE BINARY "
n- 5 CRITERIA TYPE HI AND LO

4

3

2
1 

l
0o III

1 10 102 103 104

NUMBER OF GENERATIONS

Figure A-5. Time history of the error that measures the deviation of the outputs of 12
training patterns from specified outputs. The box shows the assumptions for a horizontal
detector with an on-center/off-center surround architecture.

Figure A-6 shows the resulting system's response to the training patterns. It shows the ratio
of high-to-low values (the effective "signal-to-noise ratio") is above five.

The example was repeated with a different payoff criterion to design a diagonal-sensitive
(45 deg) NN. All parameters are the same as in the horizontal example. The high responses are
the 45 -deg training patterns and the others have a low response. Figure A-7 shows the responses
of a diagonal feature detector to the training patterns. Thus, the method easily produced designs
for orientation detectors (with 45-deg angular resolution) satisfying biological constraints.

The design technique also can be applied to gray input images by a straightforward extension
to the preceding algorithm. The input values are scaled to lie in the interval [0,1] by preprocessing.
To preserve the grayness, a piecewise-linear signal function with saturation is used in the input
terms to give:
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X = Af1 (X) + Bf2 (I) (A.27)

Z = Cf1 (X) + Df2 (I) (A.28)

where fl() may be a unit step like before and f2 () is a piecewise-linear signal with saturation such

as

200
INPUT NEURONS 49
HIDDEN NEURONS 25
OUTPUT NEURONS 1
NETWORK TYPE ON CTR / OFF SURSPATTERNS 12

PATTERN TYPE BINARY
CRITERIA TYPE HI AND LO

100

X 50- - PASS BAND
MINIMUM(3Oz

ul STOP BAND
1c 10 --------------- MAXIMUM

I- 0 . . -

1 6 12 PATTERN NUMBER
a.
I"-

0

-100 HOR I VER I

DIAG UP DIAG DN

Figure A-6. Response of a horizontal feature detector to 12 training patterns. The three
horizontal patterns produced outputs above 50 and the others produced outputs below 10.
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200
INPUT NEURONS 49
HIDDEN NEURONS 25

OUTPUT NEURONS 1Z
NETWORK TYPE ON CTR / OFF SUR

PATTERNS 12
PATTERN TYPE BINARY

100 CRITERIA TYPE HI AND LO

50 PASS BAND

a, MINIMUM

W STOP BAND
10 MAXIMUM

6 12" PATTERN NUMBER

0

-100 L

HOR I VER I
DIAG UP DIAG DN

Figure A- 7. Response of a 45-deg diagonal feature detector to 12 training patterns. The
same parameters and payoff function were used as for the horizontal detector ezcept the
high outputs were the 45-deg patterns and the low outputs were the others.
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0, X<O
ff2(XM X, 0_<X_<l (A.29)

1, X>l.

This set of equations then is used in the design procedure like before.

The parameters in Table A-1 must be consistent or no solution is possible. In GA terminology,
the payoff function must be capable of being met by a search over the parameter space. The
examples and the scaling laws of the next section give rough values. In practice the parameters
can be readily selected during initial trials.

A.6 Scaling Laws for Cooperative-Competitive Neural Networks

In practice minimizing computation time is desirable. To produce rough guidelines, many
design exercises of orientation detectors were run for fixed CC NN, that is, the hidden neurons may
be of both types I and II (excitatory and inhibitory, respectively). (In comparison, the 0/0 NNs
in the preceding section have only type II hidden neurons.) The CC NNs are more general, and as
a result they can satisfy I/O requirements that 0/0 NNs can not.

In a CC NN, the system matrix properties for 0/0 NN are changed as follows (see Section
A.3.3):

1. Property (1) still holds.

2. Properties (2) and (3) are changed so that the corresponding columns of A and C
and C and D have the same sign.

Two important parameters in the algorithm are the number of hidden neurons and the number
of copies made per generation. A relationship is written assuming a power law:

NGcSNaNCO (A.30)

where

NG = number of generations,

N = number of hidden generations,

NC = number of copies per generation.

Figures A-8 and A-9 show the number of generations required to find a solution as a function
of the number of hidden neurons and the copies made per generation, respectively. The brackets
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show the range of the number of generations needed to reach a solution. As shown for the CC NNs,
a 1 and 8 -3/2.

102 - -

z
U)z
0
P

Z o
CC

L-
10

m

z

10 102

NUMBER OF HIDDEN NEURONS (N)

Figure A-8. Scaling law for cooperative-competitive neural networks. The vertical axis
shows the number of generations needed to satisfy the payoff function as the number of
hidden neurons was varied. The brackets indicate the range in values, which is a random
variable.

To first approximation the computational time varies like N/NC1/2 , because the total com-
puter time is proportional to the total number of copies, that is, to NGxNC. In practice, the
number of generations needed for solution is random, because the mutation process is random, and
the guidelines show the mean number of generations.
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Figure A-9. Scaling law for cooperative-competitive neural networks. The vertical axis
shows the number of generations needed to satisfy the payoff function as the number of
copies per generation was varied. The brackets indicate the range in values, which is a

random variable.

A.7 Discussion

This appendix gives a practical, unified method for designing complex, fixed interconnected
NNs that realizes designer-specified I/O characteristics, and (if desired) meets constraints emerging
from the experimental studies of natural brains. The previous sections describe the design of 0/0
and CC NNs meeting specified I/O functions according to two criteria. Many examples show the
approach produces NN designs with good output signal-to-noise ratios.

The method has several extensions of interest to theorists and application designers. In
the applications, the technique can be applied to design multiple output NNs with specified I/O
properties. Preliminary designs have been done of NNs with two outputs for a control system.
The results will be reported in the future. For the theorists, the modeling of veto cells and neural
systems with diffuse inputs, described in J.P. Frisby [8], can be carried out.
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