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FINAL TECHNICAL REPORT

1. SUMMARY

1.1 PROJECT OBJECTIVES AND ACCOMPLISHMENTS
The purpose of the this project is to extend a deductive object base with knowledge-based prob-

lem solving and planning, which is intended to realize the concept of very-high level programming in
a database system. The input to such a system is a specification of the problem to be solved (as a set
of goals) and the output is a solution of the problem, where the knowledge-based problem solving
system deals with problems that do not change the state of a database and the planning system
processes goals that require some state changes in the database.

In our approach, the knowledge-based problem solving system stores a set of problem models
(such as graph problems) so that an input problem can be matched through an object-oriented
specialization/generalization process. If no problem models can be matched by a given problem, the
user should be provided with a high-level programming system that allows a top-down problem solv-
ing process be carried out until some matches can be found at detailed implementation stages.

For the planning system, we have realized that most of the conventional approaches based on the
formulation of operations-preconditions-postconditions have been proved to be inefficient. We -have
classified general planning problems into several classes so that each class can be solved individually
and efficiently. With this approach, each class of planning problems can be constructed as a problem
model and included in ihe general problem solving system.

Our accomplishments can be summarized as follows:

I. Within an object-oriented knowledge base framework, we have developed the necessary con-
structs to define problem models. Matching between a given problem and problem models is
accomplished through theorem proving.

2. We have developed an object-oriented knowledge base programming environment in which
object-oriented programs can be specified and executed easily and efficiently.

3. We have designed an object-oriented planning system that employs a high-level query language
as the goal specification language. We have classified planning problems according to different
constraints. With such, we can concentrate on classes of planning problems that allow efficient
solutions. These problems include simple operator ordering problems, consumer ordering prob-
lems, prox•ucer ordering problems, and consumer-producer ordering problems.

4. We have found that most planning problems that require sequencing of operations that compete
for space belong to the above classes of planning problems. Consequently, the previous
approaches that universally employ the pre-condition/post-condition formulation is neither
appropriate nor necessary, and efficient solutions can be developed with algorithmic approaches.

This report summarizes the theories and algorithms devised for items 1-3 listed above. Publica-
tions for item 4 are included in the appendix.
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[7] Xue, Q., and Sheu, P. C-Y., "Path Planning for Reconfigurable Robots,", submitted to Interna-
tional Journal of Robotics and Manufacturing, 1990.
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2. PROGRAM TRANSFORMATION

Programming activities are knowledge-intensive, where extensive knowledge of application
domains and programming languages is required. Even though there have been numerous approaches
in the field of program transformation and verification [PaSt83] [Feat86] [MiDG86], their practical
utility is still limited. This is partially due to the inability to properly manage the large amount of
knowledge from different domains. For this reason, the role of knowledge management for various
problems in software engineering is getting more attention from researchers [Bars87]. Recently,
several software engineering environments have been designed with strong supports from knowledge
bases or data bases [Pene86] [Clem88] [Estu86] [HuKi88] [SmKW85].

This section describes a Knowledge-Based Program Transformation System (KBPTS) that has
been designed on top of an object-oriented knowledge base for the purpose of autoinatic program
transformation and optimization. In KBPTS, a program can be specified by means of a variation of
C++ which allows object classes and their associated methods be iiunctionally specified before imple-
mented. In the object-oriented knowledge base, a collection of abstract algorithms are stored as a
library of algorithms. Like application programs, the functionality of each abstract algorithm is given
in additional to the implementation. A program in KBPTS is developed by first specifying its func-
tionality. The transformation system then searches for an abstract algorithm whose functionality can
match that of the program. If the search succeeds, the program is replaced by the implementation of
the abstract algorithm (with proper instantiations), which is supposed to be efficient.

2.1 RELATED WORK
Work related to the programming system described in this report, can be classified into five

categories: implementation of sets in object-oriented programming, object-oriented databases, program
transformation, software reuse, and knowledge-based editors.

Implementation of Sets in Object-Oriented Languages

Among existing object-oriented programming languages, Smalltalk [GoAR89] may have the
most object-oriented implementation of sets. Since sets, as well as bags, arrays, dictionaries, sorted
collections, and others, are subclasses of the class collection, every instance of such classes is an
independent object containing other objects. Depending on the class, various methods are available;
some of which are methods to count, add, delete, copy, replace, or sort elements. For some classes,
elements need not all be of the same type.

The influence of Smalltalk is evident in two languages (BGGH91]. The first. Objective C. is a
superset of C. In addition to arrays and structures which are a part of C, it supports sets, dictionaries,
and ordered collections which are based on the collection classes found in Smalltalk. The second
language, Actor, also has collection classes which are taken directly from Smalltalk. Finally, there is
one very popular object-oriented language, C++ which, like Objective C, is a superset of C. There is
no implementation of sets or any collection classes in C++ other than the basic C arrays and stnic-
tures. In [Koen92], several aspects of designing a container or collection class were considered in
extending C++.



-4-

Despite that the provision of sets is an important feature of a declarative programming language,
to our knowledge very few of object-oriented programming languages have listed declarative program-
ming as its targeted goal; this is reflected by the fact that no further specification constructs such as
variable quantifiers have been provided in such languages beyond sets.

Object-Oriented Databases

Several object-oriented databases have been proposed, a partial list includes GEMSTONE
[MaSt86][CoMa841, Iris [Fish87], Ariel [Macg85], EXODUS [Care86J, Trellis/Owl (Obri86] and
POSTGRES [RoSt87] [StHH871. Most of these systems have been designed to simulate semantic data
models by including mechanisms such as abstract data types, procedural attributes, rules, inheritance,
union type attributes and shared subobjects. Declarative programming in such systems is confined to
be declarative retrieval of persistent objects.

Most recently. a number of object-oriented databases have been available commercially. some
examples are Versant, 02, and ObjectStore [CACM91]. Instead of providing a query language, most
of them require persistent objects be accessed directly from within an object-oriented program. Most
of the above systems have been implemented with an extended language compiler and a separate data-
base system so that accesses to persistent objects/data are implemented by an object storage system.
To our knowledge, little consideration has been given to global optimization. On the other hand,
although the lack of a query language can eliminate the gap between a database system and a pro-
gramming language, it also causes declarative programming an even more remote goal of such sys-
tems.

Program Transformation

Program transformation includes predefined transformations (e.g., rewriting rules) and program
constructions from a high level nonexecutable specifications to a low level executable form. Existing
transformation systems can be divided into two classes: those that perform transformations automati-
cally and those which are guided by users. The CIP project [CIP84] [BMPP89] focused on
correctness-preserving and source-to-source program transformation at different levels of abstraction.
The development process is guided by the programmer who has to choose appropriate transformation
rules. The user guidance accomplishes the creative part in the development process. DEDALUS
[MaWa79] and KBSA [PrSm88] attempted to automate the transformation selection process.
DEDALUS was able to create a program, a correctness proof, and a proof of termination for programs
of a limited scope. DEDALUS selects candidate rules by pattern-directed invocations and applies
those rules sequentially. KBSA focused on automatic algorithm design, deductive inference, finite
differencing, and data structure selection. Given a problem description, KBSA generates an optimal
program through correctness-preserving transformations. One of the major problems with existing
automatic program transformation systems is that most of them try to transform a program from
scratch; consequently the lack of driving force of a design process can only lead to limited successes
in practical applications. Even though some search approaches such as cost functions and efficient
search methods have been employed, global strategies have yet been integrated effectively [Scha90].

Software Reuse
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Software reuse appears in two levels of abstraction: reuse at the code level and reuse at the
specification level [DiU88]. While code-level reuse involves modifying existing code [PrFr87],
specification-level reuse is based on an external, often formal, program specification. Existing metho-
dologies include program transformation [Chea84] [BoMu84] and software library
[BABK871[WoSo88][NTF9Il]. Program transformations are used to refine a specification or an
abstract program defined in a very high level language into a program written in a target language
[KaGa87]. Software libraries require the ability to locate the appropriate software components based
on users' requests. Most of such systems employ certain kind of indexing techniques or syntactic
matching for the purpose of searching; and a more flexible and efficient matching mechanism remains
to be developed [DiU88].

Knowledge-Based Editors

Simple program editors have been extended to be more powerful ones. Some incorporate an
understanding of the syntactic structure of the program being edited [MeFe81] [TeRe8 1]. This makes
it possible to support operations based on the parse tree of a program (e.g., inserting, deleting, and
moving between nodes in the parse tree). Syntax-based editors also ensure the syntactic correctness
of the program being edited. KBEmacs [Wate85I extended program editors further by including an
understanding of the algorithm structure of the program. By comparing the algorithm structures with
programming cliches, which are standard models of solving programming problems, KBEmacs can
intelligently assist programmers. KBEmacs assists programmers to construct programs more rapidly
and more reliably by combining or modifying existing algorithmic cliches. The idea of using algo-
rithmic cliches is similar to that of using abstract algorithms in KBPTS. One difference is that cliches
are domain dependent reusable components while abstract algorithms are general ones which can be
applied to problems in various domains.

2.2 DECLARATIVE OBJECT-ORIENTED PROGRAMMING

For the purpose of declarative programming, KBPT extends the C++ programming language
with the constructs for functional specifications and associative programming, which are described in
the following subsections.

2.2.1 FUNCTIONAL SPECIFICATIONS

IN KBPT, functional specifications are accomplished with the declaration of sets and the availa-
bility of quantifiers for logical expressions:

Set Classes

Given a class a, the class of all possible ordered sets which can be derived from instances of a is
declared as:

class set of CE

//methods
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The following declaration defines a set a of class a:

set_of_c a;

Set Projection

Given a set or an object a of class cc, the following notation designates the projection of a on attri-
butes A 1 ... , An:

aA l.An

Head and Tail

The function head() applying to a set returns the first element of the set; the function tail() returns th,:.
remaining of the set. The symbol NIL designates the empty set.

Universal Quantifier

A variable in a logical expression can be universally quantified by the quantifier:

(forall <variable-idb in <set id>)

Existential Quann'ier

A variable in a logical expression can be existentially quantified by the quantifier:

(exist <variable_it> in <set id>)

Membership

The following function returns 1 if <variable id> is an element of <set.id>:

<set.ida>:member(<variable id>);

Based on the above, a class declaration can define the functionality of each method and any logi-
cal property of its instances in additional to the structure of the class. The general form of a class
declaration is:



-7,

class <class id>

<class id> [/<variableid>] <method id&> (parameter) lomainJl....
parameter n:domain n);

[<= logical expression;]

[<= logical expression;)
[<= logical expression)

[<= logical expression]

In the above, each logical expression associated with a method, if specified. describes the desired rela-
tionships among the parameters, the target object (which is represented as Self 1), and any returned
object (which is represented as a variable that is defined after the returned class). Multiple logical
expressions can be associated with a method: each of which designates an alternative functional
specification. The symbol "+Self +" designates the updated value of Self in case the method changes
the contents of the object. On the other hand, each logical expression associated with the class, if
specified. describes the logical property of each instance. Multiple logical expressions can be associ-
ated with a class: each of which designates an alternative description of the class. Such descriptions
are typically used to define derived classes and can be used in the program transformation process. A
set class cannot be associated with any logical expression (but its methods can) as its properties are
defined by the class it is derived from.

Example 2-1

The following declarations define the classes for an airline reservation system.

class city I
public:

l/attributes and methods

class set of city I...);

class flight {
public:

city source, destination;
float fare;
void addfare(int amount);

<= (+Self+ = Self + amount)
I/oth7 :rs

Note that Self and self are different; the latter is a pointer in C++.
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class set oflight 1{ 1

class airlineI
public:

set ofcity cs;
set qf flight fs;

int connection(city s,city 4tet qflgtcltfr)

<= Se#f'cs.member(s) &&
Self'cs.member(t) & &
(c.headO.source s) s)
Self.-connecion(c.tail().destination,t fare))) &&
(fare = c.heado.fare + fare])))

<= Self.cs.member(s) &
Self .cs.membe r(t) &
(c.headO.source == s) && (c.head0.destination ==t) &&
(c.tail() == NIL) && (fare == c.headV.fare)

set oflight Id cheapest connection(ciry s.city t~float fare);
<= (connection(s,t4 fare) ==)1) &&

!((exist c in Self.fs) (connection(s,t~c fare)) & &
(fare) <fare))

I/others

0

Example 2-2

The following declarations define a class father and a derived class ancestor

class fatherI
char father(30J, childf3OJ;
I/others

1; *

class ancestorI
char ancestor/'30J, descendantf3OJ;
I/others
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}, <= (exist s in father) (exist u in ancestor) ((s father == Self.ancestor) &&
(s.child == u.ancestor) && (u.descendant == Setf.descendant))

<= (exist s in father) ((sfather = = Sey.ancestor) & &
(s.child = = Se!',descendant)

2.2.2 ASSOCIATIVE PROGRAMMING

The availability of sets as described in the last subsection allows objects be retrieved in an asso-
ciative fashion. The following functions/statements are used to access the elements in a set:

1. <setidh>:insert(<variable.id>);

2. <set.id> :delete(<variable.id>);

3. (foreach <variable.id> in <set id>) statement;

Example 2-3

Assume the following declarations:

class rectangle {
public:

vertex ab,cld;
int intersect(rectangle r); Iltest if two rectangles intersect
int size(; lIreturns the size of a rectangle
void plot(; /Iplot a rectangle
I/others

.oo.

class vertex {
public:

float xy;
I/others

j°,.

class block {
I/attributes
void plot(; l/plot a block
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class ontop I
public:

block top bottom;
//others

class setof block (... 1;
class setof ontop I...);
class set of rectangle I...);

set of block sb;
set_of_ontop sot;
set ofrectangle sr;
block b;
op_:op a;
rectangle s,t,u;

The following are some example statements which access objects associatively:

ilplot pairs of rectangles of sr which intersect each other
(foreach t in sr)

(for each u in sr)
if (t.intersect(u) == 1) {t.plotO; u.plotO;)

1/plot the smallest rectangle in sr

(foreach t in sr)
if !((exist s in sr) (s.sizeO > t.sizeO) t.plotO;

//plot each block which does not support any other block
(foreach b in sb)

if !((exist a in sot) (a.bottom == b)) b.plotO;

0

2.3 OBJECT-ORIENTED LOGIC SYSTEM

A set of class definitions as described in Section 3 can be translated into an object-oriented logic
system. Formally. we define an object-oriented logic system to be a two-level system. The first level,
or the object level, is a tuple Lo = (0 .Go ,Do), where 0 is a first order object language. Go is an
object representation of 0, and DLo is a set of deductive laws. Similarly, the second level, or the
schema level, is a tuple Ls = (S.Gs .Ds). where S is a first order object language, Gs is an object
representation of S. and DLs is a set of deductive laws.
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Consider an object base Go. namely a set of classes and their associated methods. We define the
first order schema language consisting of: a set of constants (which are started with an upper case
letter), a set of variables (written in upper case letters), and the following predicates (in lower case) to
describe object classes and relations:

1. class (a .a na) is true if a is the name of a class of objects, and the attributes of each object
of class a is a1,... ,aI. The symbol set..of.a designates the class of all possible ordered sets
which can be derived from the objects in class a.

2. a :method(m d 1,....d,) is true if a '3 a class. m is a method, and the domain of the ith parame-
ter of the method is di.

3. attribute(a,b,c) is true if the attribute b of class a has the the domain c, where c is a set.

4. The predicate instance_of(a2b) is true if object a is an instance of class b; the predicate
member.of(a,b) is true if object a is an instance of set b.

Similarly, we define the first order object language consisting of: a set of constants (written in lower
case letters), a set of variables (written in upper case letters), an n-place predicate symbol m for each
of the n-ary method m (For simplicity, we shall assumed that all method names are distinct) and the
following predicates (in lower case) to describe objects and relationship among a set of objects:

1. The predicate a:m(x1,...,xr) is true if the method m of some class is applied to the object a of
the same class with the arguments x ,....xr of legal values.

2. The predicate a(t) is true if t is an instance of class a. The predicate set._of.a(t) is true if t is
an instance of the class set..of a (i.e., t is a set whose elements are of class a).

3. The predicate member .ofta,b) is true if the object a is an element of the set b. The notation
[HtT]. where H and T are variables or constants, designates a set whose first element is H and
the rest of the set is T.

Finally, following the syntax and semantics of PROLOG, both a schema-level deductive law and an
object-level deductive law are expressed in the form of:

f :"f1,f2..fn,

In both cases, f is called a derived predicate. If a perdicate f is defined in terms of:

f :-e.

f "-em.

its semantics is

f <=> e Ie 2 1... em.

If m = 1, this shall result in f <=> e 1.
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For simplicity, from now on we shall use the notation

class(a•a l:dl.--...,n:d. )

in place of the set of predicates:

class(a ....a )

attribute(a, a I~d 1)

attribute(a, a. ,d.)

Example 2-4

Suppose we have an object class called city with only one attribute, state, whose domain is string,
and an object class called flight with the following attributes:

1. source, whose domain is city;

2. destination, whose domain is city;

3. fare, whose domain is float;

Also assume that we have a class called airline with the following attributes:

1. cs, whose domain is setofciry;

2. fs, whose domain is set of flight;

Associated with the class airline, assume we have a method call connection which takes two cities as
the input and returns a set of flights which connect the two cities. The structure of this system can be
described as follows, where expressions at schema level and expressions at object level are separated
by a line. The same convention will be followed in the remaining of the report.

class(citystate:string)
class(flightsource:citydestination:city fare.float)
class(airline,cs:setof cityfs:set.offlight)
airline:method(connection,setof flight,ciry,city float)
airline:method(cheapest~fare,city,city float)
airline(A) :- instance of(A.cs,set of city), instance.oftAfsoet, offlight).

A:connection(CS•,T,Fare)
member of(SA.cs), member of(TA.cs),
member of(FtA.fs), (Fsource = S), (F.destination =),

(C = [FI), (Fare = F fare).

A:connection(CS,T,Fare) :-
member of(SA.cs), member of(TA .cs),

member of(FAfs), (Fsource = S),
A :connection(CJ ,F.destination,T,Farel),
C = [!•CIJ, (Fare = F fare + Farel).
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A:cheapest connection(D,S,TFare)
A :connection(DS,TFare),
"(A:connection(CS,TFarel), (Fare) < Fare))

0

Similar to the two-level structure described above, given a class declaration presented in the generm
form, we say a logical expression is presented at object level if it is associated with a method and we
say a logical expression is presented at schema level if it is associated with a class. The class declara-
tion can be translated into an object-oriented logic system according to the following rules:

Quantifjers

A logical expression which is presented at object level and is existentially qualified in the form of
(exist t in c) d is translated to c(t), d (if c is a class) or member.of(t,c), d (if c is a set). A logical
expression which is presented at object level and is universally qualified in the form of (forall t in c)
d is translated to -(c(t), "d) (if c is a class) or -(memberof(t,c),'d) (if c is a set).

For the schema level, the same rules as described above apply except any expression of the form cx(a)
in the translated expression is replaced by instance_of (ata) and any expression of the-form
setof!ma) is replaced by instance oJ(a,setofca).

Structures

A class definition presented in the form of

class a {
domain-1 attribute1;

domain 1 attribute 1;
ilmethods

<= ci

<=-C n

is translated to the following at the schema level:

class(a,attribute l ,...,attribute_n )
2

attribute(a,attribute. 1domain 1)

attribute(a,attribute ndomain n)
a(Seof :- 8, ci1;

2 If an attribute is presented in upper case, it should be converted to lower case.
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a(Self) 6- c.n;

where 6 = instance of(attribute..1,domain_1), ... instance of(attribute n,domain n). In case no c-i is
specified. it is translated to:

class(a,attribut el ,... ,attribute n)
attribute(a,attributeJ ldomain-l)

attribute(a,attribute _ndomain_n)
a(Sely:) 5

Set Classes

A set class definition presented in the form of

class set.of a {

Ilmethods

is translated to the following at schema level:

class(set.of a)

Methods

A method definition presented in the form of

d/s c:m(parameterI l:domain..l,... ,parameter n:domain n)
<= c_1

<= c n

is translated to:

c:method(m,d,domain 1,... 4oinain n?3

Se#'f-m(s,parameterl ,... parameter n) c:- 6, 1.
Sety.-m(s,parameterI,... parameter n) 6.c n.

3 If an attribute is presented in upper case. it should be oonverted to lower case. The variable Seyfcan be replaced by
any variable which is distinct from the others. In this case all instances of Self in c- 1. C .. , n should be replaced.
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where S' = domain T(parameterl),... ,domainn(parametern). Note that the convention used in this
report is that after translation, the first parameter of a method predicate corresponds to Self, and the
second parameter corresponds to th,. returned object (if specified).

Sets

If both functions head and tail appear in a logical expression and are applied to the same object a of
class set.of_a in the form of a.head 0 and a.tail O at object level, J1 instances of a.head O are
replaced by a variable T and all instances of a .tail() are replaced by a variable S, where S and T are
two variables which are distinct from the others. In the mean time, the following expression should be
added to the translated expression:

a(T), set of_fa(S), A = [TLSJ

If only head is applied to an object a of class set of a at object level, all instances of a .head() are
translated to a variable T, where T is a variable which is distinct from the others. In the mean time,
the predicate a(T) should be added to the translated expression. On the other hand, if only tail is
applied to an object a of class set of at object level, all instances of a .tail() are translated to a
variable S, where S is a variable which is distinct from the others. In the mean time, the predicate
set_of_a(S) should be added to the translated expression.

For the schema level, the same rules as described above apply except any expression of the form a(a)
in the translated expression is replaced by instance.of (a,a) and any expression of the form
set ofa(a) is replaced by instance o fa ,setofa).

Membership

A function call of the form a:member(b) at both levels is translated to member_oftb,a).

0

Example 2-5

With the above rules, the declarations made in Example 2-1 can be translated to the declarations
presented in Example 2-4.

0

In addition, the expression S' will be omitted for the examples for clarity.
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2.4 OBJECT UNIFICATION

The presence of variables and constants at object level which are structured objects makes
unification at that level a rather complicated task. At the first glance, given a predicate c(A) and
assuming the structure of c has been declared as class(c,a 1:d1,.....a, :d,), it can be translated to the
following set of predicates:

c(A)
attributevalue(Aa 1A 1)

attribute value(A ,an A,,)

where a predicate attribute .value(a,bc) is true if object a has c to be the value of its attribute b.
Now. any object expressed as A .a, 1 _< j 5 n, can be translated to Ap. The same rule can be applied
recursively if any of the Ai's is a structured object. This mechanism seems to work well if the type of
A is known exactly. However, if c is object (which means a can essentially be any type of object) or
some unknown attribute of A is referenced (in the form of A .B, for example, where B is a variable).
the above mechanism would be stucked. In the following, we shall extend the conventional unification
algorithm in order to handle structured objects in general. Before proceeding, let us recall that the
disagreement set of a nonempty set W of expressions is obtained by "locating the first symbol
(counting from left) at which not all the expressions in W have exactly the same symbol, and then
extracting from each expression in W the subexpression that begins with the symbol occupying at that
position" [ChLe691.

The unification algorithm is extended to include structured objects as follows:

Object-Oriented Unification Algorithm

step 0
Retrieve the types of each expression if known.

step I
k = 0, Wk = W, ak =' =

step 2
If Wk is a singleton, stop with success and return Cak. Otherwise, find the disagreement set Dk of Wk.

step 3
If there exist elements u and v in Dk, consider the following:

1. If both u and v are predicate symbols, u and v cannot be unified (as they are different) and
stop with failure.

2. If u = A 1 A2..A, and v = B 1.B2...Bm, where each Ai, l:i!n, or BilIjm, is a constant or a
variable:

2-a If u and v cannot be of the same type with a unifier or with a unifier which has not been
applied before and backtracking is possible, backtrack to the previous decision point;
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otherwise stop with failure.

2-b If u and v can be of the same type with a unifier 8" which has not been applied before,
add this step as a decision point. Let 8 = {(u * 8)lu, (v 8')/v }. Also let 13 = 1P u {(" e
u)/u, (8 * v)/v ). If at this point there exists a set of unifiers of the form {w1/y ,.....W /Y' },
where each wi is of the form DI D 2..-Dq.Ti for which T, is a constant or a variable and
each y, is of the form C I.C 2...Cp .Si for which Si is a constant or a variable, consider the
following. If {T1 ...,T, I covers all the attributes of DI....Dq and {S .SrI covers all the
attributes of C I...CpI then add D I...Dq/Ci ...Cp to 8. If {Si,....St covers all the attributes
of C1 .... Cp but {T1 ,....T7,} does not cover all the attributes of DI....Dq, then add
DTI...TI/C I...Cp to 8. Otherwise go to step 4.

step 4
Let ak+i = ak * 8- Wk+I = Wk * 8.

step 5

k = k + 1 and go to step 2.

0

Example 2-6

Consider the following two expressions, assuming airline(G) and airline(A), where the class airline
is defined as in Example 2-1 and translated as in Example 2-4:

W = {p (G.ES ,G.NS ,G), p (A.fs A.cs A )}

According to the extended unification algorithm, initially P3 is 0. The unifier 8" = (A/G ,fslES } unifies
G.ES and A.fs. Let 8 = {(G.ES 8 8')/E.GS, (A.fs e 8')/A.fs I = {A.fs/G.ESA.fs/A.fs }. Also set
=- 1 u {A.fs/G.ESA..fs/A.fs} = {A.fs/G.ESA.fs/A.fs). At the end of the first iteration. W, =

{p(A.fs,G.NS,G), p(A.fs.A.csA)}. Similarly, a unifier for the second argument can be obtained as
{A.cs/G.NSA.cs/A.cs} and P3 becomes {A.fs/G.ESA.fs/A.fs, A.cs/G.NS.A.cs/A.cs }. At this point
A.fs and A.cs cover all the attributes of A and {G.ES .G.NS ) covers all the attributes of G (based on
their types), so that the unifier {AIG I is added, and the resulting set of unifiers is returned success-
fully.

2.5 DEDUCTIVE UNIFICATION

A simple solution to the problem of mapping abstract algorithms to application algorithms can
be proceeded as follows:
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1. Construct abstract object classes and their associated methods in the object level.

2. Compare the application with the abstract classes and their associated methods, if a match can be
identified, those abstract algorithms whose functionalities can be matched are instantiated.

We consider a library of algorithms as a collection of useful methods. Such algorithms should be
as abstract as possible so that they can be instantiated by most applications. As an example, we can
define the abstract class w_graph (weightedgraph) and some methods which implement efficient
graph-based algorithms as foUows 4:

Graph-Based Classes and Methods

class(node)
class(edge,vl :node,v2:node,w float)
class(w_graph,ns:set.of fnode ,es:set.ofedge)

wgraph:method(w.path,setof edge,node,node float)

G:w.path(P:set._of edgeA:node,B:node,W.'float)
member of(E,G.es), (E.vI = A), (E.v2 = B), (P = [EI), (W = E.w).

G:w.path(P:setof edgeA:nodeB:node,W.float)
member_of(E,G.es), (E.vJ = A),
G:w.path(P1,E.v2,B,WJ), (W = E.w + Wi), (P = [EIP1])

G:shortest.path(P:set of fedge,A :nodeB:node,W.:float)
G.w.path(PAB,W),
"(G:w.path(PIA,B,W1), (WI < W))

If we compare the functionality of the method shortestpath and the functionality of the method
cheapestconnection, we can find the following terms which syntactically correspond to each other:

vertex(V) city(C)
edge(E) flight(F)
w graph(G) airline(A)
G :path(P,A ,B,W) A :connection(C,S,T,F)
G:shortest_,path(PAR,W) A:cheapest.connection(CS,TF)

In conventional unification algorithms, two predicates which have different predicate heads cannot be
unified. However, we know that the shortest.path algorithm in class w graph can be used for
finding the cheapest connection in the class airline by properly instantiating the variables in the
shortest.path algorithm with those in the airline reservation system with the following substitutions:

In the remaining of the report, for clarity, we shall use the notation c:m(pI:dl,...,pn:dn) in place of c:m(pl,....pn)
when the functionality of the method is given.
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Variables: I AIGA.csIG.ns,A.fslG.es.SIA,TIB,FIE,CIPFare/WF fare/E.w}
Predicates: { airlineiwgraphconnectiongraphlwyparhcheapest.connection/shortest.path }

This is an example of matching with analogy [Carb8l][Ders86][NTFrgl], and in order to perform this
we need an analogical unification process. This can be accomplished by extending the object
unification algorithm to include predicate symbols for unification. However, this approach is clearly
purely syntactic. To unify two programs analogically, it is required that each program be described
with the same number of predicates and for each predicate, with the same number of arguments. The
predicates used in the application need to be carefully designed so that they can be syntactically
unified by those associated with the abstract algorithms. Consequently, the user has to memorize a
large number of predicates, and their semantics, in order to reuse the abstract algorithms.

Another problem associated with the above approach is that the analogical unification algorithm
only considers the number of arguments when two predicates are matched; as a consequence some
random substitutions may be produced. As an example, consider two predicates isequalset(SS 2)
and isequal.tuple(TJ,T2), where the former is true if two sets SI and S2 are equal, and the latter is
true if two tuples T, and T2 are equal. According to the analogical unification algorithm, they can be
unified. However, since the argument domains for the two predicates are different, the algorithm test-
ing for the equality of sets should be fundamentally different from that for tuples.

To solve the problems with second-order unification, a little more thought suggests that the
matching between an application program and an abstract program should be done in first order, this
implies we should parameterize the structure of an abstract class and present it as a derived class. The
concept of parameterization is similar to that of templates in C++ [Stro91]. However, in order to
instantiate a template in C++, the programmer has to be aware of its existence. Declaring it as a
derived class can eliminate such a need, which is the theme of this research, so that the association
between an application and a template can be established transparent to the programmer. With such,
we can establish the following principle of matching between two methods P and Q:

If P <=> Q then P can be used to solve Q, and vice versa

Example 2-7

As an example, we can rewrite the graph-based methods as follows:

class(wgraphNSset.ofXES:setofY)
graph(G) :-

instance oftG.NS,•seof _X), instance of(G.ESsetof Y),
attribute(YA,X), attribute(Y,8AX), attribute(Y,Cfloat).

wgraph:method(wypathP:setofYS:X,T:X,W:floatL:int)

G :wjpath(P:set ofYS :X,T:X,W.'float L:int)
member ofE,G.ES), (E.A = S), (E-9 = T),
(P = [EA), (W = E.C), (L = 1).

G.w.path(P:set.of_YS:X,T:X,W :floatL:int)
member ofE,G.ES), (EA = S).
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G.wjpath(Pi ,E.B,T,WJ ,Lih (P = (EIP)J),
(W = E.C + Wi). (L = Li + 1).

G:shortesgtath(P:se ofYSXTXWfotLit
G-wath(P.S,T,W,L),

-(G.wjpath(Pi S,T,WJ .L), (Wi < W))

To make the example more interesting, let us assume that a connection between two cities is restricted
to consist of either one flight segment or two flight segments. In addition, we assume that the method
connection is only interested in computing the fare for a connection between two cities. Note that
with this the number of arguments associated with the predicates wypath and connection are different.

class(city.state:string)
class(flight,source:city,destination:citytare.jfloat)
class(airline,cs:se:_of cir.vs:se ofjgt

airline:method(connection,C:set of fiight.S:city,.TcityFare.:float)
airline:cheapest~jare(S:city,T. cityFare.fioat)

A:connection(C.S,T,Fare) :
member of(FA.A s), (F.source = S), (F.destination =T)
(C = fF1), (Fare = F fare).

A:connection(CS,T,Fare) :
member of(FAAf), (F.source =S)
member of(HA.A s), (H.source = F.destination),
(H.destinaýtion = T), (Fare = Ffiare + Hfiare).

A:cheapestJ'are(ST,Fare) :
A:connection(CSTFare),
- (Aconnection(Ci S,TF), (F < Fare)).

We shall see that the method shortest path can be used to solve the problem of cheapestjfare:

1. The object A,,,s forms a w _graph object. This can be proved by the following substitutions:

A/is/G.ES
A.cs/GJVS
cityiX
flightlY
source/A
destination/B
fare/C

so that
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airline(A) =>
instance qftA~fs~setojigh)
instance qftAxcsastof ciry).

airline(A), attribute(fligh:.source,ciry),
aatribute(flight,destination,cia'y), attribute(flightfarejloat) =>

graph(A.3 jr)

2. The methods w~path and shortestypath can be instantiated according to the above instantiations:

ACSJS :w~path(P:set oflightS:ciry,T~city,W.floatL:int)
memberýoftEA.fs), (E.source = S), (E.desrination = T),
(P = [E)), (W = Efiare), (L = 1).

Ac3 j .-wyath(P:se1:q of lightS:city,T~city,W.ftoat.L:int)
memberý _oftEAfs), (E.source =S)
A.wjpath(Pi ,E.destination,T,WJ Li), (P = [6IPIJ),
(W = Efiare + WI), (L = Li + 1).

fs j:shortest jath(P:sq q ofjfightS:city,T~city,W~float.LL:int)
Ac5i .-wjxnth(P.S,T,W,L), (L <= LIL)
- (A,, 3 , -wypath(PI .STWI.LA) (Li <= LL~). (W] <W))

3. It can then be proved that

Ax:onnection(CST,Fare) => Acp1 .-wjath(PS,T.WJ)

with the following set of substitutions forom the first law associated with Ax:onnection:

s/s
TIT
FIE
C/P
FareiW

It can also be proved that

A :connection(C,S,T,Fare) => Acj,5 .-wjpath(PS.TW,2)

with the following set of substitutions from the second law associated with Ax:onnection:

s/s
VTI
FIE
JHI/PI
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H.Fare1WI
FarelW
1/LI
2/L

4. Similarly, it can be proved that

Ac, .-.wpath(PS,T.WI) => A:connection(CS.TFare)

with the following set of substitutions in the first law associated with A :connecton:

S/S
TIT
ElF
P/C
WIFare

and prove that

Ajr .-w_path(P.S.T,W.2) => A:connection(CS,TFare)

with the following set of substitutions in the second law associated with A :connecton:

s/s
TIT
ElF
P11(H!
WIIH.Fare
WiFare

4. Based on 2 and 3, we can conclude that

A:connection(CSTFare) <=> A,, .tpwath(PS.TW.J) I A,,j, .wpath(P.S.T.W,2)

Subsequently, the following can be concluded:

A,,j 3 :shorrest.path(PST,W2) <=> A:cheapest-fare(CS,T,F)

This is because

A:connection(CS,T,Fare) <=> A., -* .wjpath(PS.T.W.L), (L <= 2)

0

Example 2-8
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As another example, consider the following two versions of sort:

Version 1:

set ofinteger:method(sortB:set of integer)

A:sort( B) :- A.-permutation(B), B~sorted().
[1 :sorted0.
JMTJ:sorted(): not (member of(X,T), (X < HM) T:sortedO).

Version 2:

set ofjflight:method(sortB.setffiq t

set of integer:method(sorted' ,B:seto integer)

A:sort(B) :- A.-permutation(B), Bfar, :sorted' (C).
[J.-sortedo).
(HITJ~sorted'( :- f[tTJ:sorted - (0).
j1-trJ:sortedlJ(N) :- (N <= H), T~sorted-l(H).

It can be proved by induction that (RtTJsorted() => [WJtT:sorted-1(O) and therefore [htTJ:sorted() =>

fI-ItT:sorted'(O) as follows:

1. It is trivial that (J:sorted() => (J:sorted(O).

2. Assume that (HtTJ:sorted() => !IltJ:sorted-j(O) 4the Hypothesis). Now the following can be
proved:

[H'V~HtIJ:sorted() => not (memberý f(X,[RITJ), (X <= H')), !HTJ:sorted0.

By the hypothesis and the above, and since [HItT].sorted-](N) => (N <= H), T~sorted_1(H):

fH'V'RTJ :sorted()
=> (H <= H'), l[ltTI~sortedo.
=> (H <= H'), [IMTJ~sorted - (O).
=> (H <= H'), (0 < H) T.-sortedl](H).
=> (0 < H), (H <= H'), T~sorted J(H).
=> (0 < H'), fHtTJ~sorted l(H').
=> (0 < H'), (liT):sorted-1(H').

Similarly, we can prove that (I-tT):sorted'( => [iftT):sorted(0) and conclude that [HITJ:sorted'( <=>

(M77.sorted(0).

0
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3. OPTIMIZATION OF QUERY PROGRAMS

We define an object-oriented database program to be a set of statements (function calls in a
LISP-flavored programming language) whose execution is sequenced by a set of control constructs.
These statements in general operate on a set of programming objects (i.e., variables and constants) and
database objects which are classified into different types. The major difference between a program-
ming object and a database object is that the latter is persistent. However, the contents of a program-
ming object can be assigned to a (compatible) database object and vice versa. From performance point
of view, we feel that a major difference between a database programming system and an ordinary pro-
gramming system should be that a database program needs to be evaluated by the database program-
ming system but not by some extension of an ordinary compiler due to the large volume of data
involved. On the other hand, it would be inappropriate to loosely couple an ordinary compiler (with a
pre-pru.essor) and a database query optimizer due to the communication overhead and the lack of glo-
bal considerations.

This section studies the approach to globally optimizing the evaluation of database programs
within a prototyped object-oriented database programming environment OASIS (an Object-oriented
And Symbolic Information System), which is a database system intended to extend the conventional
UNIX programming environment with persistent customized objects, object-oriented database pro-
gramming, and symbolic information management. The OASIS query languages extend conventional
databaise query languages with procedural methods and general control statements. As the complexity
of the languages makes it difficult, if not impossible, to devise a "query optimizer" based on a
universally applicable algorithm, the OASIS query interpreter optimizes the performance of OASIS
programs based on a collection of "basic patterns" for which each pattern is associated with a
separate query optimization algorithm. Consequently, an OASIS program can be divided into a set of
segments and each segment is optimized separately.

In this section, we describe the optimization techniques for a set of basic patterns consisting of
iterative statements and a set of nested statements. Such statements occur most frequently in query
programs and are different from traditional nested queries (which are mainly used for the purpose of
aggregation) in nature. The optimization techniques discussed in the followir,.g include an extended
decomposition algorithm, evaluation of multiple conditions, data dependence analysis, and optimiza-
tion of queries with arbitrary nesting. The conventional query decomposition algorithm [WoYo76] is
extended to incorporate the evaluation of procedural methods. When a series of conditional state-
ments is included in a nested loop, these statements can be transformed into independent statements so
that common subexpressions can be shared to reduce the evaluation cost. When update operations are
included in nested statements, data dependencies among statements are taken into account for proper
optimization. Finally. for a 9,eneral query which is an arbitrary combination of basic patterns, a global
optimization strategy is disc ,zd.

3.1 PREVIOUS WORK
In the past. several database programming languages have been proposed and/or implemented

[AtBu87J. Some database query languages can be embedded in a host programming (e.g., SQL in
PL/I (Astr761 and QUEL in C [SWKH761). To our knowledge, most of the above systems have been
implemented with an extended language compiler and a separate database system so that accesses to
persistent objects/data are optimized by the database system at the query level. Little consideration has
been given to global program optimization as an ordinary compiler does.
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Along another direction, extensive research has been reported on the subject of multiple-query
optimization and evaluation of nested queries for relational databases. In general, multiple-4uery
optimization procedures consist of two parts [PaSe88]: identifying common sub-expressions and con-
structing a global access plan. Although detection of common sub-expressions or applicability of
access paths may be computationally intractable or even undecidable if a set of arbitrary sub-
expressions is considered [Jark84], various approaches have been proposed [JaKo84] [GrMi81]
[Jark84] [ChMi821 (ChMi86I. Given the information of sharing, several search heuristic algorithms
have been discussed [GrMi80) [Sell88] [PaSe88] (PaTL89]. On the other hand, optimization of nested
queries in a relational database such as SQL has been discussed extensively in [Kim82] [Kim84] and
[GaWo87], for which the major concern for nested queries has been the treatment of aggregation func-
tions.

Multiple queries and nested transactions, in general, can be regarded as special cases of database
programs. Consequently, the techniques developed in these two areas can be applied to optimize
qualified segments in a database program as we will describe later.

3.2 OVERVIEW OF AN OBJECT-ORIENTED AND SYMBOLIC INFORMATION SYSTEM

In this section, we briefly review the essence of OASIS and introduce the schema definition for
a small database as an example.

3.2.1 THE ARCHITECTURE OF OASIS

The overall architecture of an OASIS environment is shown in Figure 3.1. which consists of a
database, a knowledge base, a meta-knowledge base and an OASIS database programming language
interpreter:

USERI
C OASIS
0 s
N c
S _____ UNIX________H_

T N
R E
AM
I user system A

N objects tuples objects

T metbods tuples
S methods

Figure 3.1. OASIS Architecture.
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(1) The database contains a set of methods and a set of persistent objects that are organized into
classes.

(2) On top of the objects and methods, there are a set of integrity constraints and a set of view
definitions, stored in a textual form.

(3) An OASIS database program interacts with the OASIS environment with the OASIS interpreter.
A user interacts with the OASIS system with functions written in OASIS-LISP (which is an
extension of LISP) or OASIS-C (which is an interpretable version of C); both types of functions
can be used in an interleaved way to accomplish a complex user query.

In OASIS, five classes have been predefined: integer, float, string, symbol' and list, where the
first four are referred to as primitive classes. A list object is a composite object with three attributes:
name, car and cdr, where name stands for the name of the list, car refers to the first element of the
list, and cdr refers to a list that is composed of the remaining elements in the list. A summary of the
database definition language of OASIS is given in Appendix A.

1. 3.2.2 A SMALL DATABASE AS AN EXAMPLE

In this section, we present a schema definition which describes a small world including various
obstacles and moving cars. The meaning of each class and attribute is self-explanatory. Note that a
class (recursively) inherits the attributes and the methods of its superclass unless the class overrides
them. A class can redefine a method with the same name as in its superclass and rename an attribute
in its superclass (e.g., the notation TID/QID can be used to change an attribute name OlD into TID).
For example, each entity in the class triangle has TID, SIZE, COLOR, and its three nodes as its attri-
butes. The class hierarchy of this database is as follows:

<classes>
(defclass car world (CWID int) (key CWID))

<subclasses>
(defsubclass obstacles car-world (OID/CWID int) (SIZE int) (COLOR string) (key OlD))

<subclasses>
(defsubclass triangle obstacles (TID/OID int) (NODE1 position) (NODE2 position)

(NODE3 position) (key TID))
(defsubclass rectangle obstacles (RID/OlD int) (NODE 1 position) (NODE2 position)

(key RID))
(defsubclass circle obstacles (CID/OID int) (CENTER position) (RADIUS int)

(key CID))

(defsubclass operator car world (EMPID/CWID int) (DEPT string) (CAN-DRIVE car)
(key EMPID))

(defsubclass car car-world (CAR ID/CWID int) (YEAR int) (MODEL string)
(PERMIT int) (key CARID))

A symbol is a sequence of alpha-numeric characters.
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(defsubclass station carworld (SID/CWID int) (PLACE position) (PERMIT int)
(key SID))

<methods>
; move an object 'a' from 'bV to 'c'
(defmiethod (move int) (a car-world) (b position) (c position) ( ...

; rotate an object 'a' by 'd* degree
(deftnethod (rotate int) (a carworld) (d int) (...))

; return the distance between two objects 'a' and 'b'
(definethod (distance int) (a car-world) (b carworld) (...))

;return the length of the shortest path between two objects 'a' and 'b"
(definethod (shortest.path int) (a car world) (b car-world) ( ... ))

; Given two geometric object a and b. check if they are intersected or not.
; If intersected, return the size of the intersected area; otherwise return 0.
(definethod (intersect int) (a car-world) (b car_world) (...))

3.2.3 STORAGE STRUCTURES

In OASIS, objects in a class are stored in the form of a relation, where each tuple corresponds
to an object instance in the class. Considering this, in the remaining of this section, we use the term
"relation" and the term "class" interchangeably. An attribute value in OASIS can be a nested object
and retrieval of each nested object is done directly through its key identifier (whose value is stored as
the value of the attribute). For simplicity, we assume a uniform cost for referencing an attribute
value.

3.3. A DATABASE PROGRAMMING LANGUAGE AND BASIC PATTERNS

As described earlier, an OASIS database program interacts with the OASIS environment with
the OASIS interpreter. A user interacts with the OASIS system with functions written in OASIS-LISP
(which is an extension of LISP) or OASIS-C (which is an interpretable version of C); both types of
functions can be used in an interleaved way to accomplish a complex user query. In the rest of this
section, we shall concentrate on OASIS LISP. The term "query" will be used interchangeably with
the term "query program".

Two outstanding features of OASIS-LISP which may affect the evaluation significantly are as
follows:

a) Procedural methods are allowed in queries.

b) Control structures are allowed in a program.

In the following, we briefly explain these two features:



- 28-

METHODS IN QUERIES

Methods are customized procedures associated with object classes. Including methods usually
saves additional programming effort by calling methods within a query program. For instance, the
following query retrieves a list of triangles which intersect with a rectangle and the areas of the two
objects are the same.

(forall v I in triangle
(forall v2 in rectangle

(cond (and (ieq v I AREA v2.AREA)
(intersect v I v2))

(retrieve v1 .TID))))

Without the method intersect in the above example, we may need an additional program segment
checking the intersection of two rectangles.

CONTROL STRUCTURES Op8
In OASIS-LISP, various control structures such as conditional statements and iteration loops are

included to enhance the scope of traditional query languages; these include while, do and forall, where
a while or do statement iterates until a condition fails or the induction variable reaches a preset limit
and a forall statement iterates for each instance of a given set. One example usage of iterations is to
realize a transitive closure. One can find all the connections between two nodes using the trari-itive
closure of connections.

In OASIS-LISP, most interesting relational (or set-oriented) operations can be programmed using
forall and cond statements. Consequently, the basic patterns of statements can be classified accord-
ing to the f orall and cond statements in a query.

3.3.1 CANONICAL FORALL-COND STATEMENTS
A canonical query consists of a set of successively nested forall statements and a cond state-

ment in the inner most loop. It is in the following form:

(forall ... in R,

(f orall ... in Rk
(cond (F action))...)

When the innermost action is a retrieve statement, this is equivalent to a relational query as follows
(written in QUEL):

RANGE OF v1 IS R,

RANGE OF vi IS Ri
RETRIEVE

WHERE condition

Because only arithmetic comparisons and aggregation methods are supported in a relational data-
base, including procedural methods causes some problems to traditional relational query optimization
strategies. In optimizing a query program, a canonical query can be considered as a basic pattern.
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When a query program is processed, it should be transformed into a canonical query if possible. For
example, consider the following query which includes a cond statement in the middle of a set of suc-
cessively nested forall statements.

(f orall v I in R I
(forali v2 in R 2

(cond FI
(f orall v3 in R 3

(cond (F2 acion))))))

Applying the commutative law between selections and cross products, the above query can be
transformed into a canonical query as follows:

(f orall v I in R I
(forall v 2 in R 2

(forall v3 in R 3

(cond ((and F I F 2) action )))))

3.3.2 NESTED STATEMENTS IN SUCCESSIVE FORALL STATEMENTS

Various statements can be nested in one or more successively nested forall statements._ The
basic patterns of nested queries can be classified as follows:

(a) A GENERAL COND STATEMENT (TYPE-GENERALCOND)

If we extend a canonical query with a general cond statement, we can obtain a query of the
form:

(f orall ... in R 1

(f orall ... in Rk

(cond (F, action,)

(F, action,)...)

where the generalized cond statement should be interpreted as:

(IF FI THEN DO action,)
(ELSE IF F 2 THEN DO action2)

(ELSE IF F,, THEN DO action,,)

(b) MULTIPLE COND STATEMENTS (TYPE-MULTIPLE COND)

If multiple cond statements are included inside of a set of successively nested forall statements,
we would obtin a query of the form:

(f orall ... in R,

(f orall ... in Rk
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(cond (F I action,))

(cond (F. action.)...)

Semantically, the cond statements in the above query should be processed sequentially for each
instance of variable bindings (i.e.. each tuple in the cross products of relations R 1, .... Rk).

(c) NESTED FORALL STATEMENTS (TYPE-NESTED FORALL)

When a forall statement is present with other statements (e.g., other forall or cond statements)
at the same level of nesting, it cannot be included in the outer forall statements. For example, con-
sider the following query

(forall ... in R,

(forall ... in Rk

(f orall ... in R
(retrieve ...))

(cond (F action)...)

In this example, (forall ... in R (retrieve ...)) is an individual forall statement rather than a part of a
successively nested forall statements. Typical nested queries in a relational language can be con-
sidered as instances of this type.

(d) ASSORTED STATEMENTS (TYPE-ASSORTED)

In general. an arbitrary combination of the statements available in OASIS-LISP can be nested.
Besides forall, cond, and retrieve, a statement in OASIS-LISP could be a method which may be a
data manipulation statement such as append, delete and replace. In this situation, optimization of a
nested statement may be affected by the presence of other statements. In particular, when data mani-
pulation statements are present along with other statements (e.g., cond and nested forall) inside of a
set of successively nested forall statements, data dependences should be analyzed for proper optimi-
zation. As an example, consider the following query:

(forall ... in Ri

(forall ... in Rk
(cond (F, action,))
(replace Rj A (plus Ri A 10))
(cond (F 2 action2))))

Because the attribute value Ri.A. where 1 < i < k, are updated after the first cond statement in each
iteration, F 2 should be evaluated according to the updated values.

In fact, a canonical query or a nested statement of type GENERAL COND, MULTIPLECOND
or NESTED FORALL is a special case of a type-ASSORTED statement. Given a type-ASSORTED
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statement, those special cases should be considered first.

3.3.3 GENERAL MULTI-LEVEL STATEMENTS (TYPE-GENERAL)

We define a level of nesting to be set of a successively nested forall statements and the body of
the innermost forall statement, where the body of the innermost forall statement can include another
level of nesting recursively. Generally, a nested query may consist of multiple levels of nesting,
where each level of nesting would be one of the basic patterns defined above (i.e. canonical queries
and nested statements of types GENERALCOND, MULTIPLECOND, NESTEDFORALL, and
ASSORTED).

3.4. PROCESSING A CANONICAL QUERY

In the previous section, we showed a canonical query is semantically equivalent'to a relational
query. However, including procedural methods introduces problems to conventional relational query
optimization techniques. For a large database, an optimal nested-loop algorithm could be inefficient
when the number of variables involved in a query is large. Realizing this, a non-linear search
approach based on query decomposition is taken in OASIS. The definitions of the query decomposi-
tion algorithm [WoYo76] and connection graphs are summarized in Appendix C. The main idea of
the decomposition algorithm can be summarized as follows:

(a) Perform lower-cost operations first, i.e., in the order of selection, equi-join, general-joins and
Cartesian product.

(b) Keep the temporary relations small by selecting small relations first and disconnecting the graph
if possible.

In order to evaluate a canonical query written in OASIS-LISP, the original query decomposition
algorithm should be modified because procedural methods were not considered. While conditions in
the original query decomposition algorithm can be considered as logical methods in OASIS (see
Appendix A). a conjunct in OASIS-LISP can be a method of any type. In the following, we discuss
how to decrease the number of method calls when the query decomposition algorithm is followed.

In a connection graph, a procedural method can be denoted by a rectangular node, where its
input arguments and output arguments are represented by input arcs and output arcs, respectively. As
an example. an extended connection graph for the following query is shown in Figure 3.2.

(forall vI in car
(forall v2 in station

(forall v3 in operator
(forall v4 in manager

(cond (and (ieq v I.PERMIT v2.PERMIT)
(and (seq v MODEL v3.CAN DRIVE)
(and (seq V 3.DEPT v 4.DEPT)

(and (shortest path v! V2 PATH)
(ile PATH 100)))))

(retrieve all))))))

In OASIS, procedural methods are procedures which can include either simple mappings or very
expensive computations (e.g., matrix computations). If a procedural method has only one input
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ieq(station.PERMIT shortest- -
car.PERMIT) path

car ile(c 15)

Mq(car.MODEL

operstor.CAN-DRI YE) l~ 5

.q(operator.DEPT

mbusger.DEPT)

Figure 3.2. An extended connection graph.

argument and it is an attribute of a relation (we define this relation to be an input relation to the
method), the method will be executed for each tuple in the relation. In this case, evaluation of the
method does not change the number of tuples in the input relation. It attaches the values of output
arguments to each tople in the input relation. If the input values of a procedural method come from
more than one relation and the relations are not connected by joins, the method should be evaluated
for all possible combinations (of instantiations) for its input variables (i.e., all the toples from the
Cartesian product of the input relations).

Before a procedural method is evaluated, all the input relations of the method should have been
instantiated or dissected because the values of input arguments are needed for evaluation. In the

decomposition algorithm, evaluation of procedural methods should be included among dissections
because instantiations can always be done without increasing the number of tuples in relations. Dur-
ing dissections, we can reduce the number of method calls by considering the effects of a dissection
on an input node (i.e., a node which represents an input relation) or a node which is connected to an
input node of the method.

When two relation nodes n and m are connected by a join edge, we define the reduction factor
r,'" associated with the edge to be
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rn = Im join n I
In I

Similarly, the reduction factor r," can be defined as

r•. = Im join n l

Iml

If an input node in for a procedural method is a candidate for the next dissection, we can compute the
reduction factors for all the nodes conp, • , conk which are connected to in. If the value of any

con'
ri, ,. where 1 < i :5k, is less than one, dissecting conj can reduce the number of method calls. Simi-
larly, if a candidate node cand for the next dissection is connected to an input node in for a method
to be evaluated, we compute the reduction factor rc,'. If ri'3'n is greater than one, the' input node in
should be dissected first to decrease the number of method calls. As an example, consider the con-
nection graph shown in Figure 3.3, assuming the cardinalities of the involved relations are given as
follows:

Irrianglel = 100
Vectangle = 100
kriangle join rectangld = 500

[rotatel-3"

~(sq tr|.COLOR

Figure 3.3. A connection graph including a procedural method.

According to the decomposition algorithm, ignoring the method rotate, either rec or tri can be
selected for dissection. Assuming rec is selected, because the node rec is directly connected to the
input node tri of the method rotate, we compute the reduction factor rr before rec is dissected:

rc= Itriangle join rectanglel =Itrianglel

This implies that if the join is performed, the method rotate should be evaluated for each tuple in the
result of the join, and the cardinality of which is five times as large as that of relation triangle. Con-
sidering this, the node tri should be dissected first, and, in this case, the number of method calls is
100.
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If a method has more than one input relation, then any connection between the input relations
should be considered for the method evaluation. When two input relations for a method are connected

directly by an edge, evaluation of the edge may decrease the number of method calls because the
method will be evaluated for only those pairs of tuples which satisfy the condition on the edge. This
is a slight modification to the dissection operation because the method calls will be deferred until after
the edge is evaluated. When two input relations for a method are connected indirectly (i.e., they are
connected through some other nodes), we can compare the cardinalities of the resulting relation pro-
duced by the connections and the Cartesian product of the two input relations to choose a smaller one.
If the former is chosen, evaluation of the method should be deferred until all the involved edges are
evaluated.

Considering the above, the modified query decomposition algorithm can be summarized as fol-
lows:

ALGORITHM 3.1. Modified Query Decomposition Algorithm
INPUT: A connection graph for a canonical query.

OUTPUT: An access plan.

1) Do all instantiations. Here a method is instantiated (executed) if all of its input arguments have
been instantiated.

2) Select a relation node n for dissection based on the original query decomposition algorithm.

2.1) If n is an input relation for a method to be evaluated, compute the reduction factors with
con,

respect to all the nodes con,, , conk connected to n. If any reduction factor r• ,'
con.

where 1 •< i !5k, is less than one, select the node conj which produces the minimal rn for

dissection.

3.2) If the node n is connected to an input node in of a method to be evaluated, compute the
reduction factor ri. rinf is greater than one, select the node in for the next dissection.

3) Perform dissection on the selected node n'. If at this point all the input nodes to a method are

only connected through the method, evaluate the method for all the tuples in the Cartesian pro-
duct of the input nodes.

4) Repeat steps 1-3 until no edge remains.

6) Return the Cartesian product of the relations saved so far.
0

Example 3-1. Consider the connection graph shown in Figure 3.2. According to the original

decomposition algorithm, either operator or car can be selected for dissection. Assume r=r"t°) is

less than one, where

r97 r~alro, Icar join operator I

= Icarl

According to step 2.1) of Algorithm 3.1, we dissect operator first. After the dissection, the relations
car and station can be instantiated. Subsequently, the join between operator and manager is com-
puted. Because the method shortest path has two input nodes and they are connected directly, it

should be evaluated for each tuple in the result of the join between the two relations car and station.
Finally, all the car-station pairs with the shortest distance less than or equal to 15 are computed, and
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the Cartesian product of such pairs and all the operator -manager pairs computed earlier is returned as
the result.

The modifications introduced in Algorithm 3.1 may change the basic order of dissections in the
original decomposition algorithm only when the change can reduce the number of method calls. In
addition, when a node to be dissected is one of the input nodes of a method, evaluation of the method
is deferred until all the input arguments are instantiated.

3.5 PROCESSING A TYPE-GENERALCOND OR TYPE-MULTIPLECOND QUERY

A type-GENERALCOND or type-MULTIPLECOND query may contain multiple conditional
clauses (i.e., conditions and associated actions). Basically these conditional clauses can be evaluated
sequentially by nested iterations. However, if the order of evaluation is not relevant to the meaning of
the query (e.g.. read-only queries in general), for each conditional clause, we can derive a relation
whose tuples satisfy the condition using relational operations. Subsequently, evaluation of multiple
conditions can be optimized by considering common subexpressions IKim82] [Kim84]. A heuristic
approach to optimize multiple conditions will be presented later by modifying the decomposition algo-
rithm.

3.5.1 MULTIPLE CONDITIONS

We recite the general syntax of type-GENERALCOND queries as follows:

(forall ... in R,

(f orall ... in Rk
(cond (F1 action,)

(F, action,)...)

The simplest approach to processing a query of the above form would be to take a Cartesian product
of all the relations involved in the forall statements, then test each condition in turn. Assuming that
IRi = ni (for 1 < k), the cost of evaluating such a query would be of the order O(n1 I ... x nt). How-
ever. if we collect only those tuples which will be used for the actions in the conditional clauses, per-
forming the Cartesian product of all the involved relations can be avoided.

As mentioned earlier, the cond statement in the above is semantically equivalent to an IF-
THEN-ELSE statement. Among the tuples in the Cartesian product of R1, .... Rk, only those which
satisfy at least one of the conditions will be executed. In terms of relational algebra, one of the
actions is executed for the following candidate relation:

Rc,,d = OF (R i x... xR )

where F = F I v ... v F.. The disjunction of conditions can be expanded using unions, i.e.,

Rd -= OF-, (R I x... xRk ) U ... U O -F(Rlx... xRk )
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Now the cost of evaluating the subqueries aF, (R 1 x... xRk), 1 s i < n, can be decreased by sharing

common subexpressions.

Similarly, consider a type-MULTIPLE COND query in the following form:

(f orall ... in R,

(forall ... in Rk
(cond (F1 action ,))

(cond (F, action,)...)

In this case, a candidate relation for each cond statement can be computed. The candidate relation
Rcad, for actioni, 1 < i s n, contains only those tuples which will be actually used for'the execution

of actioni, 1 < i s n:

S= F, (R)x...xRk

The evaluation cost can be reduced by considering the sharing of common expressions among Rc,,4,

I :s i s n. In the next subsection. Algorithm 3.1 is further modified to evaluate multiple conditions.

3.5.2 PROCESSING MULTIPLE CONDITIONS

As discussed in [ChMi86], a connection graph can be extended as follows to represent multiple
conditions. First, one candidate relation should be returned as the answer for each condition. Second.
the priority in selecting the nodes should be changed because some instantiations may prevent later
sharings.

Now. given a node for each relation Ri, 1 < i S n, a conjunct in each condition can be added as
an edge. The label of each edge is added with the condition number from which it comes. For exam-
ple, considering the following query, its connection graph is shown in Figure 3.4.

C 1 : (and (ile tri .SIZE 10)
(and (seq tri.COLOR rec .COLOR)))

C 2 : (and (seq tri.COLOR rec.COLOR)
(igt (distance rec cir) 50))

According to [ChMi86], in processing an extended connection graph, each condition is evaluated
separately unless some sharing is possible. The basic two operations (i.e., instantiation and dissection)
were modified as follows:

(a) After an instantiation has been performed on a relation, the edge, the node corresponding to the
constant are deleted, and the relation node together are turned into a small node. If two condi-
tions are identical, only one small node is created.

(b) When the join conditions are different between two nodes, one dissection will be done for each

condition and a separate set of constant nodes is created. For two conditions that are identical.
only one set of constant nodes is produced.

When the above two types of basic operations are executed, the execution cost can be reduced
by sharing common subexpressions among conditions. However, in order to achieve the maximum
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cii 50

2) igt(distance
50) (2)

distance

(2)
seq(tri.COLOR

Q il(tri'SIZE tec'COLOR) (1)

10 tri rec
sq(tri.COLOR

rec.COLOR) (2)

Figure 3.4. A connection graph for multiple conditions.

saving, a complete search with a combinatorial complexity is necessary [Jark84]. In most cases, a
heuristic approach with a relatively small search space would be viable. In evaluating multiple condi-
tions heuristically, the most important thing is to defer the instantiations properly. If two conditions
share a join and one of these two includes a selection on one of the relations (see Figure 3.5 (a) for
an example), obviously the common join should be executed first. If two conditions share a join and
each of them has a different selection on one of the relations (see Figure 3.5 (b) for an example), the
two relations have to be evaluated separately. However, as shown in Figure 3.5 (c), two selection con
ditions could be comparable (i.e., one condition subsumes the other). In other words, the result of one
selection (tri.SIZE < 100) is a super set of the result of the other selection (tri.SIZE <10). In this
situation, the more general selection (tri.SIZE < 100) can be executed first followed by the join opera-
tion. The other selection will be executed based on the result of the join.

When methods are considered, the order of evaluation with sharing of subexpressions as
described above may conflict the procedure described in the previous section. In other words, evaluat-
ing common subexpressions may increase the number of method calls. To avoid this, we can dissect
a input argument of a method if the cardinality of the input node is known to be increased (by com-
puting the reduction factors) after including it in a corrmon sub-expression. Considering the above, a
modified decomposition algorithm that considers the evaluation of multiple conditions and methods
can be summarized as follows:

ALGORITHM 3.2. Query Decomposition Algorithm for Multiple Conditions
INPUT: A connection graph for multiple conditions.
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Figure 3.5. Examples of ordering common expressions.

OUTPUT: An access plan.

1) Do instantiations on relation nodes which are not incident upon any common edge. Here a

method is instantiated only if all of its input relations have been instantiated.

2) Select a node n for dissection in the following order of preference:

1.1) Select a node which is incident on a common join edge between two relation nodes for

dissection. If the node is connected to an input node in of a method and the reduction fac-

tor ri, is greater than one, dissect in instead of n. If the node is connected to any constant

with a selection edge, do the following:

1 1.1) If the selection is common to the set of conditions which share the common join

edge, execute tie instantiation before the node is dissected.

1.1.2) If the node is connected to a different constant for each of the conditions that share

the common join edge and these selections are comparable, execute only the most

general selection before the node is dissected. The other selections are done

immediately following the dissection.

1.2) Select a node which is incident on a common join edge between a relation node (i.e.. itself)

and a method for dissection. This choice can be superceded by the same considerations
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listed in step 3 of Algorithm 3.1. If the node is connected to any constant with a selection
edge, do the following:

1.2.1) If the selection is common to the set of conditions which share the common edge,
execute the instantiation before the node is dissected.

1.2.2) If the node is connected to a different constant for each of the conditions that share
the common edge and these selections are comparable, execute only the most gen-
eral selection before the node is dissected. The other selections are done immediately
following the dissection.

1.3) If no node can be selected in the above, select a node for dissection according steps 2 and 3
of Algorithm 3.1.

2) Do step I until no edge remains.

3) Return the Cartesian product of the relations saved so far for each condition.
0

Example 3-2. Consider the multiple queries shown in Figure 3.4. Initially, no instantiation is
possible since none of them is shared. According to step 1.1 of Algorithm 3.2, the node tri is be
selected for dissection in Step 1 (This is arbitrary, the node rec can be selected as well.) Assuming
that the reduction factor between tri and rec is 5, rec is dissected instead of tri. The method dis-
tance. with input node rec can be evaluated in Step 2. In Step 3, the common join with condition
(seq tri .COLOR rec .COLOR) is performed. Subsequently, the selection (ile tri.SIZE 10) is be exe-
cuted before the evaluation of the method distance.

The algorithm for muidple queries described in this subsection considers procedural methods in
sharing of common subexpressions among multiple conditions. One minor modification made to the
decomposition algorithm presented in [ChMi86] is the change of the order of preference in selecting
operations. Clearly, this algorithm does not generate a globally optimal access plan while the methods
in [Sell88] and [PaSe88I do. The procedure generated by this algorithm could be noticeably eypen-
sive compared with the case in which each common subexpression is extremely high while it can be
avoided if each condition is processed separately. In order to prevent this situation, we could include
some checking procedure prior to the evaluation of each common subexpression. For example, we
can estimate the cardinality of the result relation for a common subexpression and take alternatives if
it is too large.

3.5.3 PROGRAM TRANSFORMATION

Once each Ran,, *1 i e n, is obtained, a query of type-GENERALCOND given earlier in this

section can be transformed into the following:

(f orall vI in Rcand,

action 1)
(forall V2 in (Rcand2 - Rc.nd.)

action 2)

(f orall v. in (Rcad". - Rc ...- R-.d,)
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action.)

Using a temporary relation, a number of subtraction operations can be saved in the above query:

(f orall vI in Rc.nd,

action 1)
(forall v2 in (Rcajd 2 - Rcandl)

action2)

(set temp (Rcand, U RUand))

(forall v3 in (Rý'd3 - temp)

action3)

(set temp (temp U RcInd))

(set temp (temp U Rcarnd.))

(forall v. in (Rcad. - temp)

actionn)

Similarly, a query of type-MULTIPLECOND can be transformed into the following:

(f orall vI in Rcad,

action 1)
(f orall v2 in Rca,2

action 2)

(forall v. in Rcand.

action,)

The evaluation cost of the query can thus be reduced by considering common-subexpressions in the
transformed query.

3.6 PROCESSING A TYPE-NESTED FORALL QUERY

When a forall statement or a set of successively nested forall statements is present with other
statements in the body of another set of successively nested forall statements, a query is not canoni-
cal and a different optimization technique is needed. In OASIS, a type-NESTED FORALL query is
transformed to a canonical query if it is equivalent to a traditional nested query [Kim82]. If a type-
NESTED FORALL query cannot be transformed into a canonical one, the nested forall statement
can be optimized by avoiding repeated processing of invariant computations inside of the statement.
In this subsection, we describe an approach to detecting loop invariants inside of a nested forall
statement. To start, given a nested forall statement within another nested forall statement, we define
its associated inside loops to be all the forall statements included in the statement and its associated
outside loops to be all the forall statements which iterate on the nested forall statement. As an



-41-

example, consider the following query:

(forall vI in triangle
(forall v2 in rectangle

(forall V3 in circle
(cond ((and (intersect vI v2)

(seq v2.COLOR v 3.COLOR))
(retrieve v 3.AREA into Temp)))

(cond (ieq v .AREA imax(Temp))

(retrieve v I.TID))))))

We can derive the followings:

nested forall statement = (forall V2 in triangle ...

inside loops = I (forall v2 in rectangle ...

(forall v3 in circle ... ) I

outside loops = { (forall v1 in triangle .. )

Given a nested forall statement, a connection graph can be constructed for its associated inside loops.
The connection graph for the nested forall statement (forall v2 in rectangle ...) is shown in Figure
3.6. Note that as before, we use arrows to represent input arguments for procedural methods.

Iintersect ]

rI , (eq rec.COLORI

Figure 3.6. A connection graph.

Given a connection graph, we traverse it from all the node corresponding to the relations
included in its outside loops (e.g., triangle in this example). In the traversal, we follow all incident
arrows and edges on a current node, where arrows are traversed only in the forward direction. After
the traversal, we can collect all the edges which have not been passed as loop invariants, and these
edges can be precomputed outside of the nested forall statement only once. In this example, we start
the traversal with the node tri. The traversal soon terminates at the node intersect; thus leave the edge
between rec and cir not traversed. Consequently, the join between tri and rec is considered loop
invariant and can be precomputed and saved. As a result, the above query can be transformed into
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the following:

(forall vI in triangle
(forall v2 in new

(cond (intersect v I v2.RECTANGLE)
(retrieve v2.AREA into Temp)))

(cond (ieq v I.AREA (imax Temp "" AREA))
(retrieve v I.TID)))

where the temporary relation new can be computed as

(forall v3 in rectangle
(forall v4 in circle

(cond (seq v3.COLOR, v4.COLOR)
(retrieve v3 and v4.AREA into new))))

3.7 PROCESSING A TYPE-ASSORTED QUERY

When a number of statements are arbitrarily combined and nested in a set of successive forall
statements, evaluation or optimization of a nested statement may be affected by other nested state-
ments. In this section. update statements such as append, delete and replace are considered.

3.7.1 EVALUATION OF ASSORTED STATEMENTS

A statement in OASIS could be a forall statement, a cond statement, a method, or an update
statement. Even though a method can stand alone as a statement, in most cases methods are included
in a forall or a cond statement as a part of its condition or its action.

Adjacent forall or cond statements can usually be evaluated with the consideration of common
subexpression sharing unless update operations are included in one of these statements. If no update
operation is included, connection graphs for these statements can be merged into one and Algorithm
3.2 can be applied to evaluate this graph. For example, the following type-ASSORTED query can be
considered as two sub-queries, and the merged connection graph for this query is shown in Figure
3.7(a).

(forall v I in triangle
(forall V2 in rectangle

(forall v3 in circle
(cond ((and (seq v 1.COLOR v2.COLOR)

(ieq v2.AREA v3.AREA)))
(retrieve v3.AREA )))

(cond (seq v .COLOR v 2.COLOR)
(retrieve v I.TID))))

can be decomposed into two sub-qureies:

statement 1:
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(forall vI in triangle
(forall v2 in rectangle

(forall v3 in circle
(cond ((and (seq v ,.COLOR v2.COLOR)

(ieq v2.AREA v3AREA)))
(retrieve v3.AREA )))))

statement 2:

(forall vi in triangle
(forall v2 in rectangle

(cond (seq v 1.COLOR v2.COLOR)
(retrieve v i.TID))))

The merged connection graph for this query is shown in Figure 3.7(a).

(seq tri.COLOR sqrcRE

(a)

r(1,2) (1)

0 0
(b)

Figure 3.7. A merged connection graph for a type-ASSORTED query.

Note that in the connection graph shown in Figure 3.7(a). each relation node is marked with the
statements in which it is iterated. In this example, relations triangle and rectangle are iterated in
both statements, but relation circle is iterated only in statement 1. Given a merged connection graph.
Algorithm 3.2 can be applied to process it until no edge remains. A candidate relation for each state-
ment i can be generated by a Cartesian product of all the disjointed nodes marked with i.

The connection graph shown in Figure 3.7(a) can be processed by dissecting the node rec first
since it disconnects the graph and it is incident on a common join edge. After this operation, two
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nodes r(l,2) and s(l) remain as shown in Figure 3.7(b), where the node r(l.2) represents the result
of the join between the relation triangle and a tuple t in the relation rectangle, and (1.2) denotes that
tais node belongs to statements 1 and 2. Similarly, s(1) stands for the results of the join between
relation circle and a tuple t in rectangle, and it belongs to statement 1. As a result, the candidate
relations for statements 1 and 2 can be generated as follows:

R,.a I = U (r(l,2) x s(1))
t in r(1.2)

Rca0 .) (- U r(1,2))
t inr(1.2)

Evaluation of n consecutive statements by Algorithm 3.2 is viable when the summation of the
n

cardinalities of all the candidate relations (i.e., • I I) is less than the cardinality of the Cartesian
i-I

product of all the involved relations and there is a reasonable amount of sharing. If at least one state-
ment runs on all the combinations of tuples (i.e.. the Cartesian product) of the involved relations,
applying Algorithm 3.2 cannot reduce the evaluation cost comparing to the simple nested iterative
approach. A cond statement with a condition which is always true or a method which stands alone as

a statement are examples. Given a sequence of statements nested in a set of successively nested

forall statements, estimating IRc,•, I and the amount of sharing prior to applying Algorithm 3.2
i-I

is necessary.

3.7.2 UPDATE OPERATIONS IN QUERY PROGRAMS

Evaluation of multiple statements is more restricted if update operations (i.e., append, delete,
and replace) are involved. When update operations are included in a series of statements, some rela-
tions could be modified by a statement. Consequently, any statement which follows it and uses the
modified relations should wait until the modification is done before it is evaluated. This is an exam-
ple of data dependence [Kuck81]. and we say that the latter statement depends on the former. Gen-
erally, when there are data dependences among nested statements, a statement cannot be evaluated
separately using the candidate relations described in the previous subsection. For example. consider
the following query:

(forall vI in triangle
(forall v2 in rectangle

(forall V3 in circle
(cond ((and (seq v ,.COLOR v3.COLOR)

(ieq v2.AREA v3.AREA)))
(replace v3.AREA (iadd v3.AREA 10))))

(cond ((and (intersect vI V3)

(ieq v2.AREA v3.AREA)))
(retrieve (list v 1.TID v2.RID v3.CID)))))

Wc have two statements nested (in parallel) in a set of nested forall statements:

SI: (cond ((and (eq v .COLOR v 3.COLOR)
(ieq V2.AREA v3.AREA)))
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(replace V3.AREA (iadd V3.AREA 10))))
S 2 : (cond ((and (intersect v 1, V3)

(ieq v2.AREA v3.AREA)))
(retrieve (list v 1.TID v2.RID v3.CID)))

In the above example, S I updates the relation circle, and S 2 reads the value of the relation. The
execution of S2 should wait until S is executed in each iteration. Because the relation circle might
be updated again in the next iteration, the execution of S 2 cannot be postponed to the next iteration
either. As a result, the nested statements S, and S2 should be evaluated sequentially in each iteration
of the forall loops. In the remaining of this subsection, we describe the data dependence among
nested statements.

We define the read set and the write set for each statement as follows. The read. set of a state-
ment is a set of relations whose contents are read by the statement. Similarly, the write-set of a state-
ment is a set of relations whose contents are modified by the statement. This can be rewritten as

readset (Si) = { R I the contents of R are read by Si )

write.set(Si) ={R I the contents of R are modified by Si

Given a sequence of nested statements SI , ... , S,, in a set of nested forall loops, they can be num-
bered so that i < j if Si comes before Sj in the sequence. The procedure of finding the data depen-
dence among a set of nested statements can be summarized as follows:

(1) Derive read-set and writeset for each statement Si, 1 !s i _5n.

(2) We have a dependence pair (Si, Sj) if

i) i <j

ii) write .set(S) ni read set(Sj) * 0

iii) write set(S) r)I read.set(S) n.* write.set(Sk) = 0, for all i < k < j.

In each dependence pair (Si, Sj), Sj depends on Si.

Example 3-3. For the example query in this subsection, we can derive the following:

read..set(S 1) = { triangle, rectangle, circle }

write-set (Si) = 0 circle )

readset(S2) = { triangle, rectangle, circle }

write set(S 2) = ) }

Through a dependence analysis, (S I, $2) is found to be a dependence pair because the set I R I R e
write-set (S1) r) read-set(S2 ) ) (which is I circle }) is not empty.

0
Given a type-ASSORTED query which includes update operations, we search for any data

dependence among nested statements as described above. If no data dependence is included in the
query, it can be evaluated as described in the previous subsection. Otherwise, the query should be
evaluated by nested iterations.
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3.8 PROCESSING A TYPE-GENERAL QUERY

A type-GENERAL query may contain multiple levels of nesting, where each level of nesting
would be •ne of the basic patterns, i.e., canonical, GENERAL COND, MULTIPLECOND,
NESTED FORALL, or ASSORTED. Given a type-GENERAL query, first it can be optimized glo-
bally by moving some computations to outer levels of nesting from inside. Then, it can be processed
by applying the optimization techniques discussed earlier.

3.8.2 GLOBAL OPTIMIZATION

In a query with multi-levels of nesting, computation in a nested loop is supposed to be evaluated
for each iteration of an outer loop. In this situation, if some computations in a nested loop could be
executed in an outer loop without changing the results, the overall evaluation cost can be reduced.

Detection of loop-invariants has been discussed earlier in this section. Loop-invariants of a loop
denote those computations whose results do not depend on the iteration variables of the loop. In
some cases, even those computations which are not loop-invariants can be removed from a loop if
necessary variables are saved properly. Generally, we can postpone any computation until its results
are used by some others. The reason for postponing computations is that the amount of postponed
computations may be reduced after they have gone through database operations such as joins and
selections.

To optimize a query globally, levels are introduced in a connection graph for queries with multi-
ple levels of nesting. Levels of nesting can be numbered by setting the outermost level to level 1 and
increasing the number by one as it goes down to inner loops. Two adjacent levels are divided by a
dotted line in a connection graph. A connection graph with the notation of levels for the following
nested query is shown in Figure 3.8.

(forall vI in obstacle
(forall v2 in triangle

(forall v3 in rectangle
(cond ((and (setq INTSEC intersect(v2, v3) (setq S (get-area INTSEC)))

(retrieve v3.AREA S into Tempi))
(cond (ieq v2.AREA imax(Templ .... AREA)))

(retrieve v2.TID Templ.S into Temp2))
(cond (and (include Temp2.TID v 1) ((igt Temp2.S 100)))

(retrieve Temp2.TID))))))

In Figure 3.8, the dotted arrows designate direct copies between levels and they do not represent
any computation. In this example, the derived attribute S in level 3 is not used until the outermost
query (i.e., level 1) is evaluated. We can notice that the number of calls for the method getarea can
be reduced significantly if we defer the evaluation until level 1. To avoid this, the input argument
INSEC should be saved in temporary relations.

In order to generalike this observation, we need a simple data-flow analysis. Computations in a
query program can be divided into two types: relational operations (e.g., join and selection) and pro-
cedural methods. For each operation C, we define the following:

USE(CJ = the set of variables whose values are used by C.
GENIC] - the set of variables whose values are generated by C.
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Figure 3.8. A connection graph for a nested query.

For a relational operation, the set USE includes all the relations and constants which are involved in

the operation and the set GEN includes the result relation. For a procedural method, the set USE

includes all the input arguments and the set GEN includes all the output arguments. For each level

L1, GEN[L, ] includes the iteration variables which can be "used" in Li and all the variables available

from all the temporary relations in Li. According to the above, GENIL, I includes all the iteration vari-

ables for level L,. where 1 < j.gi.

To analyze the data flows in each level 4, we first derive the USE and GEN sets for all the

operations included. For each GEN in Li, search all USE sets in Li to check if any variable in it is

used in that level. If all the variables in GENIC ] are not used, the evaluation of C can be moved to

the next higher level, i.e., Li- 1. The details of this procedure are described in the next algorithm.

Because it is very expensive to save all the input relations for relational operations, only procedural
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methods are considered in the next algorithm.

ALGORITHM 3.3. Global Optimization
INPUT: A connection graph for a type-GENERAL query.
OUTPUT: An optimized type-GENERAL query.

Suppose the given query has n levels of nesting. For each level L4, where i = from n to 1. do the

following:

1) Derive GEN [L4] and GEN and USE for each operation in Li.

2) For each procedural method Mi. search through all USEs to check any variable in it is used or
not. If all the variables in GEN [Mj] are not used at the level, do the following:

2.1) If any variable in USE [Mj ] is an iteration variable, go to the beginning of Step 2 and con-
sider Mj+,.

2.2) Save all the variables in USE [Mj I into a temporary relation and move Mj into the next

level Li - 1 with proper connections between members of USE [Mj 3 and GEN [Cj 1.

3) Repeat Step 2 until no method can be moved.
0

Example 3-4. Consider the connection graph shown in Figure 3.8. At level 3, we can derive the
following:

GEN[L3] = { V3 , V2 }
USE[intersect] = { v3, v2 }
GEN[intersect ] = { INTSEC )
USE [get.area]= { INTSEC )
GEN[get area] = { S I

With a simple search, we can find that the variable in GEN [getareal (i.e., S) is not used by any

other computations. Because USE[get.area ] (i.e., INTSEC) is not an iteration variable (i.e., v 3 and

v2), the method get area can be moved into level 2 by saving INTSEC into a temporary relation.

Without get area, the next iteration of Step 2 in Algorithm 3.3 will find that GEN[intersect] (i.e.,
INTSEC) is not used, and therefore it can be moved up again. In this example, the method intersect
cannot be moved because its USE includes some iteration variables.

After applying Algorithm 3.3 to levels 2 and 1, the connection graph is changed as shown in
Figure 3.9 and the corresponding query program is as follows:

(forall vI in obstacle
(forall v2 in triangle

(forall V3 in rectangle
(cond ((setq INTSEC intersect v2 v3))

(retrieve v3.AREA INTSEC into Tempi)))
(cond (seq v2AREA (imax Tempi "" AREA)))

(retrieve v2.TID TemplJNTSEC into Temp2))

(cond ((and (include Temp2.TID v i)
(and ((setq S (getarea Temp2.INTSEC)

(igt S 100))))
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(retrieve Temp2.TID)))

0

Level 1

te get.-rea 1

INTSEC/ TID

( v2

\.(seq v2.AREA (max tempi.AREA))

Level 2

temPI

AREA 2 %-"NTSEC

3 %%%%%%I

Level 3inesc

Figure 3.9. An optimized connection graph.

In the above example, the number of calls to the method get area is reduced because the tem-
porary relations have been operated by a set of selections before the method get area is evaluated in
the modified program. Once a type-GENERAL query is optimized by the above algorithm, each level
of nesting can be optimized further by applying an appropriate technique discussed earlier. In the



-51 -

next subsection, we describe the general procedure to evaluate a type-GENERAL query.

3.8.3 PROCEDURE OF EVALUATING A TYPE-GENERAL QUERY

Given a type-GENERAL query, it can be globally optimized first as discussed in the previous
subsection. Further optimization and evaluation is based on the optimization techniques for basic pat-
terns. One way to represent the structure of a given query is to use a query graph.

A query graph is a binary tree, where each node denotes a statement Each node can have up to
two children: a left child and a right child, where the left child represents the first statement among its
nested statements and the right child represents the next statement in the same level of nesting. For
example, the query graph for the transformed query in the previous subsection is shown in Figure
3.10.

Figure 3.10. A query graph.

In this query graph, nodes are labelled by F, I, R and RI to represent statements of types forall,
cond, retrieve and retrieve-into, respectively.

The optimization techniques discussed in this section can be divided into two types:

a) Type A:Techniques wt .,'h transform a given query syntactically.
Techniques of this type are those developed for type-NESTEDFORALL queries (i.e.,
detecting loop-invariants and transforming them into canonical queries).

b) Type B:Techniques which speed up the evaluation of a given query.
Techniques of this type are those developed for canonical queries and for types
GENERAL COND. MULTIPLECOND and ASSORTED.
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Techniques of type A may change the structure of a given query or move some computations
into upper levels. For this reason, techniques of type A should be applied prior to those of type B.
Also, they should be applied in a bottom-up fashion (i.e., from the lower levels to the upper levels) so
that any change in the structure of the query can be propagated to the upper levels.

Techniques of type B can include some modifications to the statements, but those modifications
are internal and do not affect the overall structure of a given query. Techniques of type B are applied
in a top-down fashion.

In summary, a general procedure for processing a type-GENERAL query is described in the fol-
lowing algorithm.

ALGORITHM 3.4. OPTIMIZATION OF A TYPE-GENERAL QUERY
INPUT: A query graph for A type-GENERAL query.
OUTPUT: An optimized evaluation procedure.

1. Apply Algorithm 3.3 to the query graph for global optimization.

2. Search the query graph in the post-order (i.e., search the graph recursively in the order of left
child, right child, and parent) and identify basic patterns in it.

3. Optimize all type-NESTEDFORALL in a bottom-up fashion.

4. Evaluate the optimized query in a top-down fashion. For each level, apply appropriate optimiza-
tion techniques.

0
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4. CONSTRUCTIVE PLANNING

Parallel to queries, in an object base we define an update query to be a formula of the form:

declarations
action
such that conditions

Unlike queries, the purpose of update queries is to move an object base from one state to another
state, subject to the constraints imposed by the system. The major problem with conjunctive update
queries is that the operations in a query may be specified in an order such that the standard PROLOG
evaluation process may fail to achieve the desirable purpose due to the so-called "negative goal
interactions" [Wile83]. For instances, performing one operation may accidentally undo some previ-
ously accomplished operations, or performing one operation may prevent some other operations from
being performed. The properly execute the operations, planning is required.

In the past, we have seen the major problem with linear planners: goal interactions. In many
situations, goal interactions cannot be removed by simply reordering the operator sequence by which
these goals are achieved. Rather, it requires that the operations be intermixed. Some nonlinear
planners have been proposed based on this observation. Although nonlinear planners have been proven
to be more efficient than linear ones, however, it can be proved that they have by no means solved
general planning problems. Since robot task planning is a special class of planning problems, in this
section we will show that some subclasses of robot task planning problems can be solved effectively.

4.1 NONLINEAR PLANNING AS CONSTRAINT SATISFACTION

In the simplest case, a nonlinear planner can first develop a plan for each conjunct goal, assum-
ing that there is no interactions among these goals. Once the plans are developed, they are merged
together based on the interactions among them. Initially, each plan provides a partial ordering among
its own operations. As more interactions are uncovered, it may be necessary to move an operator from
one plan to another place (so that certain interaction can be avoided) and consequently another partial
ordering constraint is developed. For instance, if operator p in plan x negates the precondition of
operator q of plan y, and x, y are executed in sequence initially. In this case, this negation may be
avoided by moving q so that q is executed before p. In other words, a partial ordering constraint p >
q is developed.

We shall regard this as an operator ordering problem, and an ordering criterion has been pro-
posed by Chapman in his Modal truth Criterion [Chap87] as described in the following.

Modal Truth Criterion

"A proposition p is necessarily true in a situation s iff two conditions hold: there is
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a situation t equal or necessarily previous to s in which p is necessarily asserted; and for every step
C possibly before s and every proposition q possibi) codesignating with p which C denies1. there is
a step W necessarily between C and s which asserts r2, a proposition such that r and p codesignate
whenever p and q codesignate. The criterion for possibly truth is exactly analogous, with all the
modalities switched (read "necessary" for "possible" and vice versa)."

For the operator ordering problem, consequently, let p be an ordering of operators (f 1_.J.

P = f(f Oa Oe 0), (f ',a ,e ). (f n,a.,e n )],

where ei stands for the effects created by operator f' and a' stands for the preconditions that have to
be held before f' can be applied. For simplicity, we assume that each e' is a preposition in the opera-
tor ordering problem and a' is true. Assume G = {u. . un } is a set of conjunctive goals that have to
be satisfied, and for each ui. 1 < i < n. there is one and only one fj such that eJ => ui. An operator
ordering problem with the above assumptions will be called a simple operator ordering problem later.
For each ui, let

Vi = {fjl e - > ui = vi}
Ui = {fjl e-> u= } - {IUil .... Uiw(i)}

Let q (fi) be the position of f, in p, we can obtain that p is a plan if and only if for each i, the fol-
lowing is true:

[q(vi) > q(uil)] A ... A [q(vi) > q(ui,)]

Let y, denote the above formula, let let dij be [q(fi) > q(fj)], and let D be the set {dijl there exists a
Yk such that d,. r yk 1. The problem of searching for an ordering of (f .fm) is equivalent to the
problem of instantiating (q(f,),.... q(If')) such that Yl A ... A y. is true. To determine if a simple
operator ordering problem is solvable, we can first enlarge D to D with the transitive rule:

dij \ djk --+ dik, for all possible i,j, and k.

Now, the problem is solvable if there exist no i and j such that both dij and dji belong to D .

If an operator ordering problem is determined to be solvable, assuming the cardinality of D is
r, a solution can be obtained according to Algorithm 4.1 as follows:

Algorithm 4.1

step I

sequence = null;

I C is called a c' )ber by Chapman.

2 W is called a white knight; the process which re-asserts r is called declobbering.
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step 2

1. For i = l to n do

If there exists no j such that dij belongs to D', append fi to the end of sequence;

2. For all i identified above, remove each dki for any k from D'. If no such i could be identified
in (1) terminate; otherwise go to step 2.

0

According to step 2, the complexity of this algorithm is 0(r). The idea of assuming that the effects
and preconditions of operators as static, state independent propositions and treating a conjunctive plan-
ning problem as a constraint satisfaction problem is not new. Such an idea has been explored in
DCOMP [Nils80]. In DCOMP, a goal reduction process first develops an AND tree by expanding
top-level goals into more detailed ones, assuming that all the goals are independent. However, the
goal reduction process provides a partial ordering among higher-level goals and lower-level goals. An
analysis of possible goal interactions is then carried out. As a consequence, for each goal, two lists are
constructed. The first list, called the add list, contains all the subgoals whose effect can produce a
precondition of the associated goal. The second list, called the delete list, contains all the subgoals
whose effect can negate a precondition of the associated goal. Based on the add and delete lists,
further ordering constraints can be developed, and sometimes new steps are added to satisfy the order-
ing constraints.

Like STRIPS, a hierarchical version of DCOMP, called NOAH, was proposed [Sace751. Several
researchers [AlKo83I [McDe83] [MFDD85] [Vere83] extended NOAH by improving the representa-
tion of time in different ways. David Wilkin's SIPE [Wilk84J further extended it with the concept of
resource, by which operations utilizing shared resources can be sequenced to avoid conflicts, and with
the mechanism that can perform simple deductions based on the effects produced by operators. More
recently, based on the Modal Truth Criterion, David Chapman's TWEAK [Chap87] proposed a non-
linear approach that can be proved to be complete, i.e., the planner can develop a plan if it indeed
exists. However it may never stop if such a plan does not exist, and Chapman showed that this is the
best we can hope for.

TWEAK can be regarded as the first planning mechanism which is developed based on a sound
theory. Like other nonlinear planners, it is constraint-based, so that a plan is a partial order of opera-
tors. Basically, given a set of goals, TWEAK tries to accomplish the goals by constructing and
refining partial plans, where a partial plan is a set of steps for which some information (e.g., variables,
orders) is not specified. Constraints are developed as the planning process proceeds. A typical con-
straint could be "The variables x and y cannot codesignate (i.e., be unifted)."; or it could be a partial
ordering constraint like "The action x has to be executed before action y, although they do not have
to be performed back to back." At any time, the planner has to make sure that the Modal Truth Cri-
terion is satisfied, i.e., the preconditions of an action are always true, regardless how the current par-
tial plan is completed. Assuming p is a precondition for an action that has been included in a partial
plan, and s is the current situation, TWEAK employs one of the following techniques for this pur-
pose:

1. Simple Establishment. If p has been established in s, the planner constrains a step that estab-
lishes p to occur before s.
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2. Step Addition: A step is added right before s in order to assert p.

3. Promotion: A clobber is moved backward so that it will happen after s.

4. Separation: If q is a clobbering proposition which possibly codesignates with p, the planner
constrains the partial plan by not allowing q to codesignate with p.

5. Declobbering by White Knight* Insert a white knight to avoid clobbering

We can discover that many of the above techniques have been employed in some previous planners,
for which such techniques were proposed as heuristics. However, Chapman can prove that the above
techniques are necessary and sufficient for constructing a complete and correct planner, and this is the
major contribution of TWEAK.

Based on the above, a TWEAK planner can work in a straightforward way. Initially, given a
problem, the plan is empty. The planner always looks for an unaccomplished goal to satisfy, and par-
tial ordering constraints are incrementally introduced based on the Modal Truth Criterion as the plan-
ning process proceeds. One of the above techniques (e.g., goal promotion, white knights) is used to
resolve a possible goal interaction whenever it occurs, and possibly new operators are introduced. If
several alternatives exist to order an operator, to choose an operator, or to choose a goal, a nondeter-
ministic choice is made. Whenever a new constraint is inconsistent with the existing ones, backtrack-
ing ia advocated based on dependency. Chapman showed that virtually almost all existing nonlinear
planners could be regarded as a special case of TWEAK; and indeed he has cleaned up much of the
research on general-purpose planning in the last decade. However, it should be noted that TWEAK
has by no means solved the general planning problem [Amst87]. For instances, it may not develop an
optimal plan, and the restricted form of propositions on which the Modal Truth Criterion is based
makes it impossible to represent nontrivial domains. A more detailed discussion about its weaknesses
can be found in [Chap87] [Amst87].

Example 4-1

Assume that the initial configuration and the goal configuration of a blocks world problem are given
and shown in Figure 4.1(a) and Figure 4.1(b), respectively. Also assume that the available robot
operations are puton and putdown (see Figure 4.2), where x stands for post-conditions and p stands
for preconditions. Figure 4.3 shows how a constraint-based planner can solve this problem by incre-
mentally establishing a plan. Note that in Figure 4.3(a), an arc between two operators a -+ b desig-
nates a precedence relationship, which is supposed to be derived from a constraint discovered in Fig-
ure 4.3(b).

0

A F F C

B E E D

C D B A

(a) initial configuration (b) goal configuration

Figure 4.1 A blocks world problem
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puton(x,y):
P: clearox). clear(y)
X: (if onfxz) then -on(x~z)). onfx,y)

putdown(k):
P: clear(x)
X: if on(x~z) then -on(x~z)

Figure 4.2 Robot operations

~~wE) puWoWn(F on(F.E) 4~ 1 4 prodMSe Pf*=Wn. b
cieart) putdOwWnA) NOne 5 1 5 SProducw PMCWon. for I
on(C 0) puun(C.D) clear(C), dea(D) NOne
d~ea(C) Pmv~w"(8) None 6 c 2 6 prodicS preownd Ibr 2

S 4 6 5 pmdums precon. br6
*6 1 I negtes Precod. of 6

dWDr() padown(E) None 7 3 7 produme preOnd. tor 3
4~ 7 4 rowes Precond. Aw7
7~ 2 7 pm~vos precond.of 2

WD(.A) psAon(OA) None 4 '6 6 negate Preovor of 4
3 2 2 negateapr@oan. Of3
S 3 3 negates precond of

on(F.E) p~utn(F.E) None 1 8 8 negtes prownd.of 1
None
A Valid Total Ordeivq: 4.7. ES.f. I Z 8

Figure 4.3 Execution of a non-linear planner
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Example 4-2

This example is another illustration of a constraint-based planning process, assuming that the initial
configuration and the goal configuration of a blocks world are given and shown in Figure 4.4(a) and
Figure 4.4(b), respectively. Also assume that the available robot operations are the same as those in
Example 4-1. Figure 4.5 shows the flow of the process. Note that in this case it is not able to derive
an optimal plan, as blocks F and E need not be putdown before being stacked on A and F, respec-
tively.

0

D

E

F

A F A

B E B

C D C

(a) initial configuration (b) goal configuration

Figure 4.4 A blocks world problem



- 59 -

dlear(F) on(FF, larA

on(,E) puto 1 ,E clear(f), clear(D None
clear(E) put do wn(F) None 5 < 1 5 produces precond. for 1
clear(D) putdown (E) None 4 < 1 4 produces precond. for 1

5 < 4 5 produces precond. for 4
on(E,F) puton(EF) clear(E), clear(F) 2 < 1 1 negates precond. of 2

5 < 2 5 produces precond. of 2
4 < 2 4 may negate effect of 2.

on(F,A) puton(FA) None 3 < 2 2 may negate effect of 3
5 < 3 5 negates effect of 3

A Valid Total Ordering: 5,.4.3. 2, 1

Figure 4.5 Execution of a non-linear planne
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4.2 THE CONSUMER ORDERING PROBLEM

In some cases, the operators in an operator ordering problem work under the same set of
resources and each of them would consume a (different) subset of the resources in order to accom-
plish its corresponding goal. On the other hand, the applicability of each operator is determined by the
availability of certain resources. We call such a problem as the a consumer ordering problem.

Given a set of goals (u ..... u,.) and a set of corresponding operators (f I....j ,), a consumer ord-
ering problem can be formulated as follows. Let R be a set of resources and let Ri be the set of
resources that will be consumed by operator fi after it is applied. At each state sj (which is defined to
be the state of the system after the first j operators have been applied), in additional to the require-
ment that Ri has to be available, let pi (sj) be the function that determines the applicability of fi (i.e.,
it is true if fj can be applied at state sj, and it is false otherwise). Assuming the initial state is so, the
corresponding consumer ordering problem is to find an ordering p of f . such that if fi is the
j+lth operator to be applied, pj(s,) is true and Ri is available.

Clearly, the approach to solve a consumer ordering problem should be different from that of a
simple operator ordering problem. This is because the preconditions of each operator are state depen-
dent (except that the resources to be consumed are known), and therefore we cannot analyze the
operators for any potential goal conflicts. However, we could have the observation that when the last
operator is applied, the state of the system is completely predictable (i.e., the resources consumed by
the other operators are known). This suggests that we can identify the last operator by choosing
among the operators the one which is applicable, assuming all the other operators have been applied.
If more than one of such operator can be identified, then they can be applied in an arbitrary order.
Subsequently, we can remove these operators from further consideration, and this process is repeated
until all the operators are identified. We shall call this procedure a backward operator search process
later. Formally, this process can be described as follows, assuming the notations defined earlier are
used:

Algorithm 4.2

step I

sequence - null;
remained if = ,..J. I
R =R;.

step 2

I. Q =C:
For each fi in remained do

Let D = R -R and let s be the state at which the resources in D have been occupied;

If the intersection of (RI u ... u Ri_1 u R*+j u ... u R,) and Ri is not empty, there is a
directly resource conflict so terminate, no solution exists for the problem.

If pi(s) iý -ie, appendfi to the end of sequence, letR = R - Ri. and let Q = Q u {ft },
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2. For each fi in Q, remove f, from remained; if remained is ý terminate, else go to step 1.

0

4.3 THE PRODUCER ORDERING PROBLEM
A producer ordering problem is like a consumer ordering problem, except that instead of con-

suming some resources, each operator would produce some resources. However, the applicability of
each operator is as well determined by a function, which is state dependent.

Given a set of goals (u ,...,uu) and a set of corresponding operators (f ....f,), a producer order-
ing problem can be formulated as follows. Let R be a set of resources and let Ri be the set of
resources that will be produced by operator f, after it is applied. At each state sj (which is defined to
be the state of the system after the first j operators have been applied), let pi (sj) be the function that
determines the applicability of fj (i.e., it is true if fi can be applied at state si, and it is false other-
wise). Assuming the initial state is so, the corresponding producer ordering problem is to find an ord-
ering p off . such that if fi is the j+lth operator to be applied, pj(si) is true.

A producer ordering problem as described above can be solved by a forward search process.
Starting from the initial state, we first identify a set of operators that can be applied. Since each opera-
tor would simply produce some resources, the order of these operators would be irrelevant. The above
process can be repeated, assuming all the operators just identified have been applied. This process
continues until no more operators remained to be identified. Formally, this process can be described
as follows, assuming the notations defined earlier are used:

Algorithm 43

step I

sequence = null;
remained = {f ....,
R = the set of resources that are available initially;

step 2

. Q =0
2. For each fi in remained do

Let D = R u IRi I fi c Q ) and let s be the state at which all the resources in D are
available.
If pi(s) is true, append fi to the end of sequence and let Q = Q V {fi) ; If remained is
not empty and no such fi exists, there is no solution to the problem and terminate.

3. For each fi in Q, remove fi from remained; if remained is 0 terminate, else go to step 2.

0
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4.4 THE CONSUMER-PRODUCER ORDERING PROBLEM

In addition to consumer ordering problems and producer ordering problems, there are situations
in which the resources need to be reorganized, which would need both consumers and producers. We
call such problems as consumer-producer ordering problems.

Given a set of goals (u ,...,u. ), a set of producer operators (g I...,gm ), and a set of consumer
operators (f I.....f). a consumer-producer ordering problem can be formulated as follows. Let R be a
set of resources, let Gi be the set of resources that will be produced by operator gi after it is applied,
and let Ri be the set of resources that will be consumed by operator fi after it is applied. At each
state sj (which is defined to be the state of the system after the first j operators have been applied), in
additional to the requirement that Ri has to be available, let pi(sj) be the function that determines the
applicability of fi (i.e., it is true if fI can be applied at state sj, and it is false otherwise). Similarly,
at each state sj, in additional to the requirement that Ri has to be available, let qi (sj) be the function
that determines the applicability of g, (i.e., it is true if gi can be applied at state sj, and it is false oth-
erwise). Assuming the initial state is so, we can formulate the corresponding consumer-producer ord-
ering problem as to find an ordering p off g ,...,g. such that if fi is the j+lth operator to be
applied, pj(s5) is true and Ri is available. Furthermore, if gi is the j+bl' operator to be applied, qj(si)
is true and Gi is available.

Clearly, a consumer-producer ordering problem as formulated above can be solved easily by a
two-phase approach. In the first phase, we sequence the producer operations according to Algorithm
4.3. In the second phase, the consumer operations are sequenced according to Algorithm 4.2. The
consumer-producer ordering problem can be made more interesting by creating the concept of
"consumer-producer-pair". First, we shall assume that the number of consumer operations and the
number of producer operations are the same. Second, for each gi, 1 < i < n, an fj, 1 : j < n, is
assigned to be its partner. Now, the consumer-producer ordering problem is to sequence f 1 .... f.,
g 1, ..... g into a plan for which the number of consumer-producer-pairs is maximal, where we define
a consumer-producer-pair of a plan to be any (fi ,gj) pair, where gj is the producer partner of fi, that
can be executed consecutively. It should be note' that any plan generated by the two-phase approach
described earlier would have at most one consumer-producer-pair.

A consumer-producer ordering problem as formulated above can be solved in the following way.
First. identify a partial ordering among the producer operations according to Algorithm 4.5 (see
below). Second, identify a partial ordering among the consumer operations according to Algorithm 4.4
(see below), assuming that all producer operations have been applied.

Algorithm 4.4 (Partial Ordering Consumers)

step)I

sequence = null;
remained = {f1 .... ,
index = 0;
R R:

step2
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1. index =index + 1; Ti,, 4)

2. For each f, in remained do

Let D = R - Ri and let s be the state at which the resources in D have been occupied;

If the intersection of (R1 U ... u Ri-. u Rj+1 u ... u Rn) and Ri is not empty, there is a

directly resource conflict so terminate; no solution exists for the problem.

If pi(s) is true, Ti,d, = Ti,,. u {ff } and R = R - R5 ;

3. For each fi in Ti,,k,, remove f1 from remained; if remained is 4) go to step 4; else go to step

1.

4. For i = index-I to I do

For each fj in Ti+j do
For each fk in T7 do

fj < fk:
0

Algorithm 4.5 (Partial Ordering Producers)

S t C , )

sequence = null;
remained = ,ffl....fn }
index = 0;
R = the set of resources that are available initially;
Q =0;

step 2

1. Tid=

2. For each fi in remained do

Let D = R u {Ri I f, e Q ) and let s be the state at which all the resources in D are

available.

Ifpi(s) is true. T8,,A, = Ti,,U fif); Q = Q u {ff}; If remained is not empty and no

such fi exits, there is no solution to the problem and terminate.

2. For each f, in Tid. remove f, from remained; if remained is 4 go to step 3. else index =

index + 1 and go to step 1.

3. For i = I to index-l do

For each fj in T5 do
For each fk in T"+j1 do

fj <A;
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0

The partial ordering developed in Algorithm 4.4 designates the minimal (logical) sequence requirement
for the consumers. Similarly, the partial ordering developed in Algorithm 4.5 designates the minimal
(logical) sequence requirement for the producers. Based on these basic requirements, the following
algorithm develops a plan that maximizes the number of consumer-producer-pairs. This algorithm
develops a plan incrementally. At each step, assuming the state is s, it looks for a consumer-
producer-pair (fi gj) to apply, where (1) both fi and gj have no precedents according to the basic
ordering requirements, (2) gi is executable under s, (3) fi is executable under sogj, and (4) fi does
not block any producer in the future. If such an (fi,.gj) cannot be found, it chooses any applicable
producer operator and applies it. This process repeats until no producers remained to be ordered; at
this point all the remaining consumer operations are applied following the basic ordering requirements.

Algorithm 4.6

step I

If there remains no gj to be ordered, append each remaining fi to plan.

step 2-

Compute I = I (f ,gj)I (fi'gj) is a consumer-producer-pair, there exists no fh such that fk < fi, and
there exists no gr such that gr < gS)] If I is 0, choose any gj, for which there exists no gt so that gk
< gj, and append gj to plan.

step 3

Choose any (fi .gj) in I for which (1) gj is executable under s, (2) f, is executable under segj, and
(3) fi does not block any producer in the in the future. If such (f ,gj) can be found, do the following:

a. Append (fi ,g,) to plan;

b. s=s * gi:

c. s =s Of;

d. Remove any partial ordering requirement in which fi takes the precedence.

e. Remove any partial ordering requirement in which gj takes the precedence.

f. go to step 2.
If no such pair can be found, choose any g., for which there exists no gk so that gS < gj, and
append gj to plan. Also remove any partial ordering requirement involving gj and go to step 2.

0

As a final remark, the consumer-producer ordering algorithm discussed has a feature that has been
implemented in some other planning systems: incremental planning, such as the approach proposed by
Waldinger [Wald77]. In Waldinger's approach, each subgoal is solved at one time, followed by a
goal-violation checking. Whenever a proposed operator creates a protected goal violation, it is inserted
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at an earlier point in the partial plan. A check of goal violation is then conducted again and, if another
goal violation occurs, it is inserted at another, yet earlier, point in the plan. However, Wadinger'
approach is not guided by any information, and therefore it could be inefficient.

4.5 SOLVING BLOCK WORLDS AS C-P PROBLEMS

Clearly, a block worlds problem can be regarded as a consumer-producer problem. To see this,
we shall assume that the following operators are available:

I. remove (block.id position)

2. put (block id ,position )

Note that these two types of operators are sufficient to solve a blocks world problem. To convert a
blocks world problem into a consumer-producer problem, the remove operators can be regarded as
producer operations, and the put operators can be regarded as consumer operations. Given the initial
configuration and the final configuration of a blocks world, the problem is to remove all the blocks in
the initial configuration and put the blocks to their desirable positions. Assuming there are n blocks, it
is clear that both the number of producer operations and the number of consumer operations ame n.
For each block, the corresponding put and remove operators form a consumer-producer pair. Further-
more, the functions pi and q,, 1 _< i < n, as described earlier, can be determined based on the follow-
ing physical constraints:

1. No block can be moved to a position that is not supported.

2. No block can be removed from a position that supports another object.

A blocks world problem can then be solved by Algorithm 4.6.

Example 4-3

Assume that the initial configuration and the goal configuration of a blocks world are given as in Fig-
ure 4.6. Formulating this problem as a consumer-producer problem, only two types of operations are
needed: remove and put (see Figure 4.7). Figure 4.8 shows the flow of Algorithm 4.6.

A,p4

Cp B.i)5

IAplI [7Bp C,Dp6

(a) initial configuration (b) goal configuration

Figure 4.6 A blocks world problem
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rernove(x,p)

P: removable(x,ps) remove(A~p1). remove(B.p2), remove(C.p3)

put(x,p) put(A~p4), put(B,p5). put(C,p6)

P: putable(x.p.s)

Figure 4.7 Robot operations

Consumers: 1: put(A p4), 2: put(Bp5), 3.put(Cp6)
Producers: 4: rernove(A p l), 5: remove(B.p2), 6: rerove(C,p3)
Initial Partial Ordering: 6 < 4, 3 < 2, 2 < I
Consumer-Producer-Pair Found in 1st Iteration: (6.3)
Partial Ordering Constraints after 1st Iteration: 3 < 2, 2 < 1
Consumer-Producer-Pair Found in 2nd Iteration: (5,2)
Partial Ordering Constraints after 2nd Iteration: None
Consumer-Producer-Pair Found in 3rd Iteration: (4,1)

Figure 4.8 Execution of Algorithm 4.6
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Example 4-4

Assume that the initial configuration and the goal configuration of a blocks world are given as shown
in Figure 4.9. Formulating this problem as a consumer-producer problem, the pussible operators are
shown in Figure 4.10. Figure 4.11 shows the flow of Algorithm 4.6.

C3

A,pl F,p6 F,pl C,p6

B,p2 E,pS - E,p2 D,p5

C.p3 D.p4 B.p3 A,p4

(a) initial configuration (b) goal configuration

Figure 4.9 A blocks world problem

remove(x,p) 1 remove(Ap l), remove(B.p2), remove(C.p3)"

P: removable(x,p) rernove(Dp4), remove(EZpS), remove(Fp6)

put(x'p) put(A,p4), put(B.p3), put(C.p6)

P: putable(x.p,s) put(Dp5), put(Ep2), put(Fp 1)

Figure 4.10 Robot operations
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Consumers: 1: put(Ap4), 2: put(Bp3), 3:put(C~p6),
4: put(D,p5), 5:put(Ep2), 6put(Fp 1)

Producers: 7: rerove(A,p 1), 8: remove(Bp2), 9: remove(C,p3)
0l:remove(D,p4), 11:remove(Ep5), 12:remove(F~p6)

Initial Partial Ordering: 7 <8<9, 12< 11 < 10,2<5<6. 1 <4<3
Consumer-Producer-Pair Found in Ist Iteration: None
Producer Applied in 1st Iteration: 12
Partial Ordering Constraints after ist Iteration: 7 < 8 < 9,2 < 5 < 6, 11 < 10. 1 < 4 < 3
Consumer-Producer-Pair Found in 2nd Iteration: None
Producer Applied in 2nd Iteration: 7
Partial Ordering Constraints after 2nd Iteration: 8 < 9, 11 < 10, 2 < 5 <6, 1 < 4 < 3
Consumer-Producer Pair Found in 3rd Iteration: None
Producer Applied in 3rd Iteration: 8
Partial Ordering Constraints after 3rd Iteration: 11 < 10, 2 < 5 < 6, 1 < 4 < 3
Consumer-Producer Pair Found in 4th Iteration: None
Producer Applied in 4th Iteration: 11
Partial Ordering Constraints after 4th Iteration: 2 < 5 < 6, 1 < 4 < 3
(All producers have been applied at this point)
Consumers Applied Finally: 2, 1, 5. 4, 3. 6

Figure 4.11 Execution of Algorithm 4.6
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Example 4-5

Assume that the initial configuration and the goal configuration of a blocks world are given as shown
in Figure 4.12. Formulating this problem as a consumer-producer problem. the possible operators are
shown in Figure 4.13. Figure 4.14 shows the flow of Algorithm 4.6. Note that in this case Algorithm
4.6 is able to develop an optimal plan.

D,p7

E,p8

F,p9

A,pl F.p6 A,pl

B,p2 E,p5 B,p2

C,p3 D,p4 C,p3

(a) initial configuration (b) goal configuration

Figure 4.12 A blocks world problem

remove (x~p)
Pemovemovxbp)s1 remove(A,p l), remove(B.p2), remove(Cp3)"
P: removable(x,p~s) remove(Dp4), remove(EpS), remove(Fp6)

put(xp) put(A p 1), put(B,p2), put(C.p3)

P: putable(x,p.s) put(Dp7), put(Ep8), put(Fp9)

Figure 4.13 Robot operations
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Consumers: 1: put(Dp7), 2:put(E~p)8, 3:put(F.p9)
Produc ers: 4:remove(D~p4), 5::remove(Ep5), 6:remove(Fp6)
Initial Partial Ordering: 6 < 5 < 4, 3 < 2 < 1
Consumer-Producer-Pair Found in !st Iteration: (6,3)
Producer Applied in 1st Iteration: 6
Partial Ordering Constraints after 1st Iteration: 5 < 4, 2 < 1
Consumer-Producer-Pair Found in 2nd Iteration: (5,2)
Producer Applied in 2nd Iteration: 6
Consumer-Producer Pair Found in 3rd Iteration: (4,1)
Producer Applied in 3rd Iteration: 4
Partial Ordering Constraints after 3rd Iteration: None
(All producers and Consumers have been applied at this point)

Figure 4.14 Execution of Algorithm 4.6
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