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NONPARAMETRIC BAYESIAN BIOASSAY

INCLUDING ORDERED POLYTOMOUS RESPONSE

by

Alan E. Gelfand Lynn Kuo

Department of Statistics, U-120

University of Connecticut

Storrs, Connecticut 06269-3120, U.S.A.

SUMMARY

Previous attempts at implementing fully Bayesian nonparametric bioassay

have enjoyed limited success due to computational difficulties. We show here

how tais problem may be generally handled using a sampling based approach to

develop desired marginal posterior distributions and their features. A useful

extension is presented which treats the case of ordered polytomous response.

Illustrative examples are provided.

Key Words: bioassay, Dirichlet process prior, Gibbs sampler, potency curve,

product Beta prior.
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1. Introduction

We first formalize the quantal bioassay problem as follows. An

experimenter wishes to investigate the potency of a stimulus by administering it

at k dosage levels, t1 , t 2 ,...,tk. A total of ni subjects are treated at level ti

with the number of positive responses obtained denoted by Xi, i=1,2,...,k. The

potency curve F is the distribution of tolerance levels, that is F(t) is the

prohahility of achieving a positive response at dosage level t. We seek to make

- about F. Parametric models as, for example, discussed in Finney

(1978) typically specify F as a family of logit or probit forms. We take a

nonparametric setting only assuming F to be an arbitrary right-continuous

non-decreasing function whose range is [0,1].

Taking a Bayesian inferential framework, we note that the fully Bayesian

nonparametric approach to estimating the tolerance distribution in a quantal

bioassay has not previously been implemented due to computational difficulties.

Antoniak (1974) has shown that, under Ferguson's Dirichlet process prior (1973),

the posterior distribution of the potency curve is a mixture of Dirichlet process

distributions. Unfortunately this mixture becomes increasingly intractable as the

number of observed dosage levels increases. In her unpublished dissertation, of

M.N. Wesley abandons calculation of the posterior expectation of the potency

curve at the observed dosage levels because of such difficulties, estimating, *

instead, the posterior mode. Kuo (1988), again in deference to these difficulties,

obtains linear Bayes estimates under squared error loss. Related previous

Bayesian work includes Kraft and Van Eeden (1964), Ramsey (1972),

Bhattacharya (1981), Disch (1981) and Ammann (1984).
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This paper has two objectives. First, we show how fully Bayesian analysis

to obtain for any t, the posterior distribution of F(t) given the data X = (X1,

X2,. ..,Xk) can be straightforwardly implemented under two rich classes of prior

specification. In addition, features of these distributions such as mode,

expectations and quantiles can be readily obtained. Second, we provide a useful

extension of the quantal bioassay model which allows ordered polytomous

response arising from stochastically ordered potency curves. Missing data can be

readily handled. To our knowledgi, no literature on Bayesian approaches to this

problem exists.

The format is the following. In Section 2 we develop the details to

implement the first objective. Section 3 provides an illustrative example using

the Dirichlet process prior with a data set from Cox and Snell (1989). In Section

4 we develop the aforementioned extension while in Section 5 we provide an

illustrative example adapted from Maxwell (1961) for the case of two ordered

response levels utilizing a product-Beta class of priors. Section 6 offers brief

summary and discussion.

2. Models, Distribution Theory and Inference For the Basic Bioassay Problem

We assume the responses, Xi, to the dosage levels t, are independently

distributed as Binomial Bi(ni,pi) with pi = F(ti) where F(t) is an unknown

underlying potency curve yielding the probability of a response at dosage level t.

H1c.ce the likelihood at X = x is

k n. x. n.-x.
L(p;x) = I1 (x)Pil (1-Pi)i=1
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where P = (Pl,...,pk).

Interest focuses on inference regarding the pi's and the function F.

Often F is given a parametric form F(t;0) such as a scale and location logistic

or probit curve. This literature is large. See, for example, Finney (1978) for

discussion and references. Here we assume F belongs to the nonparametric class

of right-continuous non-decreasing functions taking values in [0,1].

The Bayesian framework requires specification of a prior which represents

our beliefs regarding F(t). Practically this necessitates fhl- C-ecification of a

joint measure for p with density denoted by h(p) wawch 6y assumptions on F

is over the set Sk = {p: 0_Pl ... pk11. One family of priors which has been

discussed in this context in the literature is the Dirichlet process prior introduced

by Ferguson (1973). Kuo (1988) provides a recent summary of this discussion.

This specification assumes that F is close to some given Fo with closeness

quantified by a given precision M. More precisely, for any t, the induced prior

on F(t) is a Beta distribution, Be[MFo(t), M{1-Fo(t)}]. Since E{F(t)} =

Fo(t) and Var{F(t)} = Fo(t){1-Fo(t)}/(M+i), Fo and M have

interpretations which facilitate their specification from prior information. in

particular F° is usually taken to be a standard distribution whose median agrees

with our prior guess for the LD50 and whose spread provides rough agreement

with our prior expectations at other dosage levels. M is chosen to reflect our

confidence in F in accord with the extent of our prior experience. In practice

we might experiment with several choices of M to see the effect on posterior

features of interest.

The induced prior on p is an ordered Dirichlet
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k+1
r( E yi) f1-1

D(P)=R+ pl (P2-Pl) ) (1-p) 7k+1 (2)

i=1

where -ti= M{Fo(ti) - Fo(ti-l)}' i=l,...,k+l. Here we assume to = -- , Fo(to)

= 0, tk+1 = , Fo(tk+l) = 1, so that Dyi = M. Marginal and conditional

distributions and expectations under (2) are routine.

A second class of priors for p is the product-Beta. This family has been

cuscussed in unpublished work of L. Sharples and takes the form

k ai-1 fii-1
T B(p)=ck(a ,/) rI Pi (1-p i ) ai>0, /i>0 (3)i=1

where a = (al,...,ak), /3 - ( 0I,..Xk) and ck is the normalizing constant under

restriction to Sk . Sharples shows that ck can be expressed as a finite

multidimensional summation.

Note that 7rB offers mathematical convenience in that it is conjugate

with respect to (1) while irD is not. The family (3) is a flexible class of priors

but it is not clear how to select a and # in accord with prior information.

That is, unlike 7rD' IB is not induced in any obvious way from a prior on F

since it is specified within dosage levels rather than across them. However IB

can be chosen to reflect to prior information about F in terms of a given F°

and given precision. Letting e(i) denote a row vector having value 1 at the ith

coordinate, 0's elsewhere, expectations involving the pi may be formally given,

e.g., EB(Pi) = Ck(a, /)/ck(a + e( i), 0 ). This suggests equating EB(Pi) =

Fo(ti), i = 1,...,k. Moreover, Mi - ai + 0i can be viewed as a precision
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parameter analogous to M above. The magnitude of Mi reflects our confidence

in the value F 0 (ti). With specification of Mi we obtain k equations in k

unknowns. Unfortunately, explicit calculation of the EB(Pi) will be infeasible

except in very special cases making solution of this system of equations virtually

impossible. However, the conditional distribution of pi given pj, j~i is

obviously a Beta distribution, Be(ai, Oi) restricted to [pil, Pi+1]" Though,

again, the mean of this conditional distribution will not be available explicitly

the mode is readily obtn,-o It is pi - (ai-1)/(Mi-2) provided ai>1, 0i>l

and Pi-1 - pi - p + " JLaiung pi as an approximation to the marginal mode for

pi we equate it to Fo(ti) whence ai = (Mi-2) Fo(ti) + 1 and Oi = M -a.

Objects of primary interest for Bayesian inference are the marginal

posterior distributions of pi I X and, at a specified t, of F(t) IX. For such

distributions the mean or the mode provide point estimates while appropriate

quantiles provide interval estimates. As noted in the introduction, computation

of such distributions and estimates has proved very difficult. However the

sampling based approach discussed in the context of hierarchical Bayes models in

recent papers by Gelfand and Smith (1990), and Gelfand et. al. (1990) is ideally

suited to this problem. This approach, known as the Gibbs sampler, is an

iterative Markovian updating scheme which dates at least to Metropolis et al

(1953). We do not review details here merely remarking that implementation

requires sampling from so called complete conditional distributions. For the

remainder of this section we develop these distributions under both 7-B and 7rD

and indicate how the desired posterior density estimates and features are

obtained.

We note that in our illustrations sampling is conducted with v
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independent parallel replications each taken to r iterations. Choice of v

determines how close our density estimate is to the exact density at the rth

iteration the order of convergence being 0(v-l ). Choice of r determines how

close the latter density is to the actual marginal posterior density with

convergence at an exponential rate (Geman and Geman, 1984; Tanner and Wong,

1987). Settings for r and v to achieve smooth converged estimates vary with

the application and require diagnostic assessment as in Gelfand et. al., (1990).

For the examples in sections 3 and 5 r = 20 and v = 1000.

Each of the priors (2) and (3) requires a nniur ohist to facilitate

implementation of the sampling approach. For 7rD, although (1) and (2) are not

conjugate with respect to the pi, introduction of a set of unobserved multinomial

variables simplifies the required sampling. Let Zi = (Zil,...,Zik+1) -

Mult(ni, A), i=l,...,k, where A-(A1,...,Ak+I) with A. = p. - P-IP - Op

1. The variable Zij denotes, amongst the ni individuals receiving dosage

level ti, the unobserved number who would have responded to dosage level t

but not to dosage level t,_.l

The Gibbs sampler may be implemented using random draws from the

complete conditional distribution of p IX, Zl,...,Zk and from the complete

conditional distributions of ZiIX, p, Z, j~i. The former is an ordered Dirichlet

updating (2)

k+1r( E " j) k+1 --y.-1

7 (-j) j-

j=1
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where yj = j S Zij. Thus, the complete conditional density for pi, over the

set [pi-1' Pi+11' denoted by gD(PiIX, Zl,...,Zk, pj, jji), is that of a. + Pi-1

where ai - (Pi l-Pi-1)Beta( "

The complete conditional distribution for Zi is a product of two

multinomials. That is, writing Zi = (Zi(1), Zi(2)) where Zi(1) = (Zil,...,Zii),

Zi(2) = (Zi,i+,...,Zi.k+1) , Zi(l) and Zi(2) are conditionally independent given

Xi with Zi(1) - Mult(X i , pi 1A(1)), Zi(2) - Mult(ni-X i , (1-pi)-IA(2)), A(1) =

(AI,...,Ai), A(2) = (Ai+1,...,Ak+l).

After v independent replications each to the rth iteration we obtain

(p(r), z(r)'""z(r) ' s=l,...,v. The resulting estimate for the marginal posterior

density of pi is

}D(Pi I X) = v-I~ F" gD(Pi I X' Z I '"zrks I  js i 4

Similarly the posterior mean of pi is estimated using the mean of gD leading to

-1 v ,,,r) + ((r) (r) -
ED(PiIX) = v- E [psi-,s + ( ), s-Pi-l)T f is/( is+i+ls)}] (5)

where + i j=1,t..+k+1.

A posterior density estimate for F(t) at say t=t may be obtained by

including F(t ) as an additional model parameter. More precisely we revise the

prior to include F(t) and to take the form D(p) • hD(F(t )IP). Paralleling

(2) if t f [ti, ti+11, h is naturally the density of pi + a where - (Pi+l -
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pi) Beta() ,i - 3' ) with y = M{Fo(t ) - Fo(ti)}. Since there is no data

at dosage level t* , the complete conditional distribution for F(t) is

hD(F(t p) as well. Therefore the posterior density estimate for F(t ) is

v E1 hD(F(t*) pr)). A convenient by-product of this specification is that the

posterior mean of F(t ) is

ED{F(t )IX} ED {Pi + (Pi+l -Pi) 7f /7'i+lIX}

3i+ 1-3 *+ ED (pi IX) + ' ED (Pi+l[IX) (6)
'i +I 7'i+1

Expression (6) shows that once the posterior means for the pi's have been

computed using (5), an elementary interpolation formula enables ED(F(t) I X)

for any t. This formula was first noted by Antoniak (1974). The unpublished

Ph.D. theses of M.N. Wesley also discusses (6) as well as computation of

ED(Pi IX). In fact, she obtains exact formulas for these e.,ctations for up to

four dosage levels but evaluation of these formulas even for three levels is a

forbidding task. By comparison, the estimate (5) is routine to evaluate

regardless of the number of dosage levels. Moreover, using the above estimates of

the posterior densities for the p1 and F(t) we may straightforwardly obtain

other features of these densities such as modes and quantiles.

For KB, examination of (1) and (3) reveals that the complete conditional

distribution of P1 IX, pj, j#i, is that of a Beta(a + Xi , Oi + ni - Xi) restricted
to [P-l Pi+1 ] which we denote by gB(Pi Xi, Pi' " Sampling from

by retaining appropriately restricted draws from the unrestricted Beta
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distribution will be very inefficient when pi+l - Pi-1 is small. One-for-one

sampling from gB may be achieved through the use of the incomplete Beta

.unction which is incorporated into many scientific subroutine libraries. If G(y)

P{Y~yIY-Beta(a,b)} then Z is distributed as Beta(a,b) restricted to [c,d] if

Z - G- 1 [G(c) + U{G(d) - G(c)}] where U is a U(0,1) variate. After v

replications, each to the rth iteration we obtain p(r), s=,...,v. To obtain a
5

posterior density estimate for pi we would compute

v .(r) P
fB(PiIX) = v- Eg B(p i Xi, i-l,s' i+(r,) S (7)

Use of (7) is preferred to a kernel density estimate based upon the p) since, by

using the conditional structure of the model, substantially smaller v is needed

(see Gelfand and Smith, 1990). Though standardization is required to obtain

each gB in (7) this requires only a univariate rumerical integration and can be

done quite rapidly using simple trapezoidal or Simpson's rule integration. Since

moments of gB are not available explicitly, an expression such as (5) is

unavailable for EB(Pi I X); posterior moments of pi are most easily calculated

using the p (r)
pis

A posterior density estimate for F(t) at say t=t may be obtained by

including F(t*) as an additional model parameter. More precisely, as with D'

we revise the prior to include F(t) and to take the form lrB(p) • hB(F(t)Ip).
*

Paralleling the development below (3) if t 4~ti, ti+l], hB is naturally a

Beta(a , ) restricted to [Pi' pi+l ) where with M a + 0 specified, a

=(M -2)Fo(t ) + 1 and 0 =M - a. Again, in the abonce of data at

dosage level t ,the complete conditional distribution for F(t) is hB(F(t )p)
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so that the posterior density estimate for F(t*) becomes v-1 E hB(F(t) Ipr)).

Again one dimensional numerical integration to standardize hB is required.
Unfortunately no interpolation formula analogous to (6) is available for

EB(F(t) IX).

3. A Numerical Example

The data for this example are taken from an illustrative table in Cox and

Snell (1989 p.7). In all, there are 150 subjects at 5 different stimulu J O

subjects at each level. The data are given in Table 1. A probit model N(2,.25)

was chosen as the prior shape F with four choices for strength of prior belief,

M = 1, 30, 100, 300. Table 1 supplies the maximum likelihood estimate and

prior guess, Fo(t, for each stimulus le,,,:!. Using the 7rD prior, (2), Table 1

also shows the nonparametric Bayes estimates, (5), of F(ti) for each value of M

using the Gibbs sampler with a total of r = 20 iterations and v = 1000

replications. The supplied standard deviation (S.D.) measures the variation

amongst these replications and also is an estimate of the marginal posterior

standard deviation of F(ti). Interval estimates for the F(ti) were obtained

using the empirical distribution of the 1000 estimates from the 1000 replications.

In particular, equal tail 95 percent confidence intervals are given here.

Under 7rD the Bayes estimate of F(t) can be obtained using the

interpolation formula (6). Figure 1 graphs the Bayes estimate of the entire

potency curve using this formula for M=1 and M=100 as well as the curve F 0

With increasing M, the Bayes estimate approaches the prior F0 Figure 2 plots,

for M = 1, the Bayes estimate with 95 percent posterior confidence band
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developed from pointwise interval estimates using five points between each

observed stimulus level. With increasing M the bands would become narrower.

4. Ordered Potency Curves

We extend the model of Section 2 to allow ordered polytomous response

arising from stochastically ordered potency curves. Suppose for a given stimulus

we observe whether or not each of two events occurred-such that one is contained

within t,, o ,. For example, event A might be "patient died" while event C

might be "patient's condition worsened" whence A C C. Other illustrations

include: in response to a dosage of medication, A is "improvement in a particular

metabolic index", C is "improvement or no change in this index"; in response to

hours of tutoring, A is a "high pass" on a standardized exam, C is a "pass" on

this exam. We show here how the approach of Section 2 can be extended to

handle such situations with further extension to more than two nested events

being obvious. The case of non-nested events as for example if A is a decline in

blood pressure while C is a decline in cholesterol level is not handled here.

Formalizing notation, suppose at level ti, i=1,2,...,k we observe n.

subjects with event A occurring Xi times, event C occurring Yi times with A

c C so that Xi < Yi. We model this situation with two underlying potency

curves FA(t), FC(t) which are stochastically ordered, i.e., FA(t) < FC(t).

Letting pi- F A(ti) < qi -- FC(ti) we assume that the joint distribution of X.

and Yi is specified through (Xi, Yi-Xi) - Mult (ni; pi, qi-Pi, 1"qi). Hence

with p = (pl,...,pk) and q = (ql,-..,qk) the likelihood at X = x, Y - y is
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k n. x- y1-x. n.-y.

Interest focuses on inference regarding the pi 's and qi's as well as FA and

F C. Prior specification is restricted to the set Tk =(p,q) : 0 <1 p,. Pk

0 <-q q2  .. qk S ,pi for all i). We consider two families of priors

extending rD and 7rB respectively.

In extending 7rD the Dirichiet process prior is replaced by a product

Dirichlet process prior with stochastic :'-rd'cr. We do not attempt formal

definition or investigation of such measures here. Rather, if F A is close to some

given F Ao with precision MA and F C is close to some given F 0 oWith

precision M C then for any t we assume that the joint prior on (F A(t), FC(t))

is of the form

MAF~ot- MA{1-F O(t)}-1
d(t) F A(0)1 A{1ot-l -FAt)A A

fF N1CF CO(0 0  1FC( t) MCf lFCo(t)}11 (N
{F(t)} 1 0 ()

over 0 ( FAWt Fc(t) < 1. Expression (9) is a product of Beta forms

standardized by d(t) under the order restriction. Similarly the induced prior on

(p, q) over T k takes the form of a product of ordered Dirichlets,

k+1 -v-i1 77-1

rID(P'9q = c(7, 77) n a 'i f (10)

where aj= pj - q..1, vj-qj_,r = MA IFAo(tj) - Fko(tj -)l, 7j~
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Mc{Fc'o(tj) - Fco(tjl)} and c(-,77) is the standardizing constant.

irB is extended to produce a form over Tk which is conjugate with (8),

that is,

k a.-1 6-

7rB(p,q) = c(a, ,11 pjJ (qj-pj) (1-qj) J (11)

where again c is the standardizing constant. Linking 7rB(p,q) to prior

information can be done similar to that for rB(p) using the condition'.1 modes

of pi and of qi-Pi. Assuming ai + Oi + 6. = Mi Mi specified, with ai, i, I

> 1 we obtain ai = (Mi-3) FA,o(ti), Pli = (Mi-3) {Fco(ti) - FAlo(ti)} and

= Mi - ai -ai"

Implementation of our sampling approach for the prior (10) is simplified

by the introduction of unobserved multinomial variables as in Section 2.

Associating ZA with event A, ZC with event C, i=1, ...,k the distribution
I 1

theory proceeds similarly to that in Section 2 leading to marginal posterior

density estimates for pi and qi analogous to (4). Unfortunately the restriction

pi - qi precludes explicit calculation of complete conditional moments so that
there is no analogue to (5); we use the p(r) s=1,...,v, to obtain posterior

expectations. Posterior density estimates for FA(t ) and Fc(t) along with

interpolation formulas for posterior expectations can be developed paralleling the

discussion below (5) leading to (6). For the prior (11) distribution theory and

sampling parallel that above (7). Posterior density estimates analogous to (7)

arise along with posterior density estimates for FA(t ) and for Fc(t). The

use of (11) is illustrated with an example in Section 5.

It is worth noting that, regardless of prior, missing data can be readily
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handled. For instance, should Xi be unavailable we need only include it as an

additional parameter in the model. Complete conditional distributions for each

of the other parameters when Xi is given as well will be exactly as before while

the complete conditional distribution of Xi will be Bi(Y, pi/qi).

5. A Second Numerical Example

The data in Table 2 is taken from Maxwell (1961, p. 70). In his table

eacn oi k23 boys is classified into one of five different age groups and is assigned a

rating on a four point scale (-1, 0, 1, 2) for the symptom of "disturbed dreams".

A rating of 2 denotes the most severe suffering from bad dreams while a rating

of -1 denotes no suffering at all. To simplify the illustration we combine the two

intermediate categories, ratings 0 and 1, into one to obtain Table 2.

In the context of Section 4 we envision two underlying "potency" curves.

One is associated with the event A, "rank -1 is assigned", that is, no suffering

from bad dreams. The other is associated with the event C, "rank -1, 0 or 1 is

assigned", that is, no suffering or mild suffering from bad dreams. With these

definitions, curves for the incidence of A and of C which are monotonically

increasing with age seem reasonable. Obviously A C C thus ordering the curves.

Labeling the five age categories from youngest to oldest as 0, 1, 2, 3, and 4, for

category i, Xi counts the incidence of A, Yi counts the incidence of C. The

top part of Table 3 converts Table 2 to this notation.

The product Beta prior, (11), is taken here. For illustration we assume

here that all prior precisions M i are equal to 10, that FA,o is N(2,4) and that

FC,o is N(1,4). For each age category prior incidence probabilities associated
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with these two curves appear in Table 3 along with ai, #i and 6.

Table 3 next lists the Bayes estimates (posterior means) based upon r=20

iterations and v=1000 replications. As in Table 1 standard deviations and 95%

equal tail interval estimates for each pi and qi are also given. Lastly this table

gives the maximum likelihood estimate for (p, q). The maximum likelihood

estimate for P2 badly violates the monotonicity assumption but a standard two

sample test reveals that it is not significantly smaller than that for p1 even at

the 0.1 level. As analternative estimiate we include the isotonic regression of the

maximum likelihood estimate asing the pooled-adjacent-values-algorithm

(Rubertson, Wright and Dykstra, 1988). This estimate is still unsatisfying since

strict monotonicity might be anticipated.

6. Summary and Discussion

Nonparametric bioassay is inherently attractive in freeing us from

parametric specification of a form for the presumed underlying potency curve.

Similarly, Bayesian inference is attractive for the bioassay problem since we often

have prior knowledge regarding the potency curve, e.g., the LD50, the steepness,

etc. While Bayesian nonparametric problems are typically quite hard, the fact

that the bioassay setting provides a binomial likelihood enables simplification

particularly with regard to prior specification. Even so, previous attacks have

enjoyed limited success in developing desired marginal posterior distributions and

their features due to computational difficulties. However, the Gibbs sampler

approach is shown to be well-suited for the general handling of such "likelihood x

prior" forms. Moreover, a potentially useful extension can be handled as well
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through this sampling-based approach. Other extensions, for instance, to

multivariate dichotomous response and to nominal polytomous response are

worthy of further investigation.
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Table 1 Analysis of Data from Cox & Snell, 1989. All ni = 30.

Table 2 Disturbed Dream Data Adapted from Maxwell (1961).

Table 3 Analysis of Data From Maxwell, 1961, See Section 5 for Details.
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Age Groups

5-7 8-9 10-11 12-13 14-15

2 7 13 7 10 3

Disturbed Dream 0 or 1 7 26 20 21 9

Rating -1 7 10 23 28 32
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Fig. 1. Bayes estimates of the potency curve. - - - = Bayes estimate for

IM=1• .- - Bayes estimate for M=100, - Prior curve, Fo,

while squares denote maximum likelihood estimates at t=0,1,2,3,4.

Fig. 2. The Bayes estimate of F for M = 1 and its 95% confidence band.
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