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FOREWORD

The classical problem of weapons control is predicting the future position of a maneu-
vering target Critical to success{ul prediction is the accurate estimation of the current target
state. With the adven: of guided weapons, the consequences of threat maneuver are reduced
wuen accurate estimates or the target state can be obtained. Threat trends indicate that
the conditions under which hostile targets can be engaged successfully are becoming more
gifficult to achieve; hence, any improvement in existing estimation algorithms is of critical

importance.

The reported research was conducted by Mr. W. D. Blair and Mr. G. A. Watson of
Naval Surface Warfare Center (NAVSWC) (Code G71) in conjunction with Dr. A. T. Alouani
of the Electrical Engineering Department, Tennessee Technological University. The results
of the research have advanced the state of knowledge in estimation theory and proposed
a computational efficient technique for improving the state estimation for targets maneu-
vering through constant speed turns. The work was supported in part by the NAVSWC
AEGIS Program Office and in part by the NAVSWC Independent Exploratory Development
Program.

This document has been reviewed by R. T. Lee, Head, Weapons Control Division.

Approved by:

\Dx.uul’ LA~

DAVID S§. MALYEVAC, Deputy Head
Weapons Systems Department
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ABSTRACT

The use of a kinematic constraint as a pseudomeasurement in the tracking of constant
speed, maneuvering targets is considered in this report. The kinematic constraint provides
additional information about the target motion that can be processed as a pseudomeasure-
ment to improve tracking performance. The kinematic constraint for constant speed targets
is AV = 0, where A and V are the target acceleration and velocity vectors, respectively. In
previous publications, the measurement equation for processing the kinematic constraint as
a pseudomeasurement was derived by a direct application of Taylor’s theorem for a first or-
der linearization of that pseudomeasurement equation. A new formulation of the constraint
equation that provides significantly better tracking performance than the previous formu-
lation is presented along with the rationale for the new formulation. The filter using the
kinematic constraint for constant speed targets is shown to be unbiased and stochastically
stable. Simulated tracking results are given to show the potential for further improving the
performance of a track filter through the use of the proposed kinematic constraint. Simula-
tion studies are presented for various data rates, levels of measurement errors, and deviations

in speed.
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CHAPTER 1
INTRODUCTION

The problem of tracking mareuvering targets has been studied extensively since the
mid 1960s. One of the first works to have a significant and lasting impact on the problem
was (1] where a target motion model with an acceleration that is exponentially correlated
in time was introduced. In that work, a Kalman filter was utilized to estimate the position,
velocities, and accelerations of the target. The rationale for the time-correlated acceleration
was derived from inertial systems in that a target accelerating at time t is likely to be
accelerating with similar acceleration at time ¢ + 7 for sufficiently small r. However, the
assumptions of exponentially correlated, zero-mean accelerations of {1] produced a motion
medel with an acceleration that decreases in magnitude during each state extrapolation.
Thus, when the actual target acceleration is constant or increasing, large errors occur in the
state cstimates.

In the early 1970s, decision-directed tracking of maneuvering targets was introduced in
[2] to respond to the demand for algorithms that could provide better tracking of targets
performing high g, fast maneuvers, These decision-directed algorithms monitor the tracking
errors to detect a maneuver and respond by increasing the process noise covariance and/or
the dimension of the target motion model as described in {2,3,4]. While these algorithms
provide good tracking performance before and after the mancuver, their performances during
and immediately following the maneuver are poor. The problem with these algorithms is
that the accelerations during a maneuver are not easily modeled in t'e sensor reference
frame because they often vary irregularly with time in that frame. In [o] the acceicrations
were modeled in a target-oriented reference frame to reduce the problems associated with
modeling the time-varying accelerations. While the algorithm iu [5] provides relatively good
tracking performance, the modeling and transformations that must be estimated produce a
complicated algorithm.

The two-stage Kalman estimator was applied to the tracking of mancuvering targets
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in [6], and a significant reduction in the convergence time after a maneuver was achieved.
However, the two-stage Kalman estimator of [6] is limited to a constant acceleration model
with additive white noise. Input estimation and multiple model algorithms presented in
(7,8,9,10] were developed to address the problems of time-varying accelerations and conver-
gence time after a maneuver. However, the input estimation and multiple model algorithms
require significantly more computations than the previous techniques. A kinematic con-
straint can be utilized as additional information about the target to improve the tracking of

the time-varying accelerations with a small increase in computations.

When a target’s trajectory satisfies a kinematic constraint, the kinematic constraint
provides additional information about the target’s motion. Using the constraint removes
some of the uncertainty of the time-varying accelerations and tends to force the accelera-
tion estimates to change in a manner that is consistent with the dynamics of the target.
However, including the kinematic constraint in the motion model produces a state equation
with nonlinear dynamics. The use of a nonlinear state equation significantly increases the
computations involved in an extended Kalman filter because the state transition must be
computed on-line. Recently, the idea of introducing a kinematic constraint into the tracking
process through a pseudomeasurement was proposed in {11] because nonlinearities are easier
to accommodate in the measurement equation of the extended Kalman filter. The use of
the constraint was shown to improve the performance of a given track filiter. The improve-
ment in the tracking performance can be attributed primarily to the reduced errors in the
acceleration estimates. The constraint tends to reduce the bias or lag in these estimates
when the actual acceleration is time-varying. However, using the kinematic constraint as
formulated in {I1] results in marginal improvement in the performance of the track filter,
peor transient performance at initialization, and a track filter for which a guarantee of sta-
bility may not be achievable. In this report, a new formulation of the kinematic constraint
15 presented for constant speed targets, along with the rationale for the new formulation.
The new formulation provides significantly better tracking performance than the one given
in {11}, and simulation results are given to demonstrate the relative improvement. Also, a
track filter utilizing the new formulation of the kinematic constraint s shown to be unbiased

and stochastically stable.

This report is organized as follows. In Chapter 2, the general problem of tracking
maneuvering targets is discussed, and the kinematic constraint for constant speed targets is
derived. The previously published and new {ormulations of the pseudomeasurement equation

for the kinematic constraint are presented in Chapter 3. The bias and stability of a filter
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using the new formulation are considered in Chapter 4. In Chapter 5, simulated tracking
results are presented to demonstrate the improved tracking performance achieved with the
kinematic constraint and document the sensitivity of the filter to data rate, measurement
errors, and deviations in speed. In Chapter 6, a summary and conclusions are given along
with suggestions for future research.
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CHAPTER 2
BACKGROUND

In this chapter, the general problem of tracking maneuvering targets is discussed and
the kinematic constraint for constant speed targets is derived. The dynamic system model
of a maneuvering target in track is given by

X = f{X,u,w) (2.1)
21 = h(Xy,vi) (2.2)

where X is the state vector, u is the control vector, w is the process noise vector representing
possible deviations in f(-) and external disturbances, Z; is the discrete-time measurement
vector at time k, and vy is the measurement error vector. The dynamics of the target is
a continuous-time process as shown in Eq. (2.1) where f{-) is a dynamical constraint that
defines the motion for the target in the form of a differeniial cquation. The dynamical
constraint, which is usually unknown to the tracking system, can differ significantly between
targets and change for a common target during the tracking process. As indicated by Eq.
(2.2), the measurement process is discrete-time because most sensors used for target tracking
record the position and/or radial velocity for a given instant in time.

While f(:) is usually unknown by the tracking system, the major problem with tracking
maneuvering targets is that the control vector is not directly observable by the tracking
system. When the target applies a control, a bias or lag develops in the estimates of the target
state. The methods proposed in [8] and [9] process the position tracking errors to estimate
the contro! vector u which produced the observed bias in the position estimates. However,
for an input estimation algorithm to be effective, an extensive and usually computationally
expensive maneuver detection algorithm as in [9] is required. The contro} can be included
as acceleration in the dynamical constraint f(-), but the acceleration most often varies with
time in such a manner that a filler model cannot be cleatly identified during tracking. Thus,
the target dynamics are most often modeled as linear in a Cartesian coordinate frame to

simplify the filtering and reduce the computational requirements. Also, for convenience the
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continuous-time dynamics are converted to a discrete-time system. As a result, the dynamics

mode] commonly assumed for a target in track is given by
X1 = Fi X + Gruy (2.3)

where w; ~ N(0,Q;) is the process noise, Fj. defines a linear constraint on the dynamics,
and G} is the process noise input matrix. The target state vector X contains the position
(z,y, z), velocity (2,9, 2), and acceleration (Z,y,2) of the target at time k as well as other
variables used to model the time-varying acceleration. When the target applies a control and
the time-varying accelerations are modeled incorrectly, a bias or lag develops in the estimates
of the target state. While multiple dynamics models can be used as proposed in [7] and [10]
to identify the best model available in the filter, identifying the exact model is not feasibie
because the target can apply many different control vectors to evade the tracking system.
Also, since Eq. (2.3) is a linear function of X}, the motions in the z, y, and z coordinates
are often modeled as independent, while these motions are very seldom independent in the
coordinate frame chosen for tracking. Therefore, additional information wouid bz helpful to

reduce the modeling ervor of the time-varying accelerations.

A kinematic constraint can be utilized as additional information about the target to
reduce the ervors in the state estimates due to Ume-varying accelerations and model uncer-
tainty. Using the kinematic constraint tends to force the acceleration estimates to change in
a manner that is consistent with the dynamics of the target. A kinematic constraint can be
developed for use in tracking constant speed, maneuvering targets. The speed of a target is
given by

§=(F+ i+ ) (2.4)

For a target moving at a constant speed,

dy
- = 2.5
or
rr+yy+iz=10 (2.6)
Eq. (2.6) can be writien as
VeA=0 (2.7)

and
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A=[z § 3z)F (2.9)
This kinematic constraint for constant speed targets is useful information that can be incor-
porated into the system state in Eq. (2.1) or used as a pseudomeasurement in conjunction
with Eq. (2.2). While both approaches are conceptually feasible, the second approach is more
attractive because the first restricts the state equation to be nonlinear. In the implemen-
tation of the extended Kalman filter, including nonlinearities in the measurement equation
is computationally less expensive than in the state equation [11]. If the state equation is
nonlinear, the transition matrix for propagating the state from time & to time & + 1 must be
computed on-line at each propagation because the transition matrix will be highly depen-
dent on the state of the target. Computing the transition matrix on-line greatly increases
the computational cost of implementing the extended Kalman filter. Thus, incorporating
the kinematic constraint into the filter as a pseudomeasurement as suggested in [11] is the
focus of this report.

In this report, the measurement process of Eq. (2.2) will be assumed to be linear. While
most sensors used for target tracking measure the target position in spherical coordinates, the
spherical measurements can be transformed into a Cartesian coordinate frame for processing

as a lincar function of the target state. Thus, the measurement process 1s given by
Zy = He X + v (2.10)

where Z; is the target measurement in the Cartesian coordinate frame, H; is the input
matrix, and vy ~ N(0, Ry} s the measurement error.  While the measurement errors in
spherical coordinates are usually assumed to be Gaussian and uncorrelated in range, bearing,
and elevation, the transformation to the rectangular coordinate frame causes the components

of v to become nonGaussian and correlated.

A Kalman filter is often employed to filter the measurements for estimating the state
of the target. When the target motion and measurements are linear and the measurement
and motion modeling error processes are Gaussian, the Kalman filter provides the minimum
mean-square error estimate of the target state. When the target motion and measurement
models are hncar, but the error processes are not Gaussian, the Kalman filter is the best
linear estimator in the mean-square error sense. The Kalman filtering equations associated
with the state model of Eq. (2.3) and the measurement model of Eq. (2.10) are given by

the following equations.
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Time Update:

Xegrk = FaXap (2.11)
Piyip = Fe P FE + GiQi G (2.12)
Measurement Update:
Xk = Xigp—1 + K[ Ze = He Xy (2.13)
Pog = [I = Ki Hi] Py (2.14)
Ki = Py HY (HePopoy HE + ReJ™ (2.15)

where X} ~ N(Xyp, Pyi) with Xy and Py, denoting the mean and error covariance of
the state estimate, respectively. The subscript notation (k) denotes the state estimate for
time k& when given measurements through time j, and K} denotes the Kalman gain at time

k.

The measurement update of the Kalman filter can be viewed as a weighted least-square
estimation problem as discussed in [11]. For the system in Eqgs. (2.3) and (2.10), the objective

function to be minimized in the least-squares sense with respect to Xy is

. 1, .. . T 1y~ . -
J(X) = 50X = Neo) TP (Ve - N
+ (£ = Hg Xo) R (2 - Hi X)) (2.16)

where Xyp q 18 the predicted state estimate for time & based on measurements through
time k — 1, and Py is the covariance of (Xi — Xy ). The resulting estimate of X,
that minimizes J( X3} is denoted as Xppp. This cost function will be utilized to explain and
justify the inclusion of the kinematic constraint as a pseudomeasurement. The formulation
of the pseudomeasurement equation for the kinematic constraint used in {11] is presented in

the next chapter along with the new formulation of the pseudomeasurement equation.

2-4
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CHAPTER 3
FORMULATIONS OF THE KINEMATIC CONSTRAINT

The kinematic constraint of Eq. (2.7) can be incorporated into the Kalman filter as
a pseudomeasurement through direct linearization of the constraint equation or through a
modified formulation of the constraint. In this chapter, both the direct approach and the

new formulation of the constraint are presented.

DIRECT LINEARIZATION

Since the kinematic constraint is a nonlinear function of the target state, it is first

* linearized about the predicted state Xy as

Vi o Ap = Vo Aot + Creo1 (Xe — Xy (3.1)

&vhere
Xe=lox we 2 & o & & B %) (3.2)
Crk-1=[0 0 0 &per Fibeer Zi—1 Bhje-t Ukk-1 Zkfk1 | (3.3)

~ Since
Cr=1Xkr=1 = 2Vijeo1 * Afi-1 (34)

and Vi - 4; =0, Eq. (3.1) can be writien as
Viji=1 * Akt = Cijp_1 Xi (3.9}

Since the ronstraint has been linearized and the target motion may deviate slightly from a
constant speed, tiie iinearized cor. traint is modeled with an additive error as

Vige-1 - At = Chp1 X + p (3.6)

where p ~ N(0,R,) relaxes the constraint. With this £nal modification, the nonlinear

kinematic constraint is in the form of a linear measurement. The cost function of Eq. (2.16)
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can be augmented with Eq. (3.6) to obtain

. 1 _ .
JHXy) = §l(Xk ~ Xk|k-1)TPk|;§_1(Xk ~ Xip—1) + (Zx ~ He Xe)T R (Zk ~ H X))
+ (Vijeo1 * Ariet = Crpe—1 X6) By (Vigor - Aot — Cijao 1 X)) (3.7)

After augmenting the measurement with the kinematic constraint, the cost {unction 1s given

by

1 -
J4(Xe) = 5[(Xe = Xigpor) Py (Ke = Xigaoa)

+ (2§ - Le Xe) (R) (2§ - LX) (3.8)
where

Zi= :Vm .kauk--x]; (3.9)

Ly = ogf;] (3.10)

By = | B }‘Qﬂ] (3.11)

A Kalman filier can be implemented .0 minimize J%(X}) in the least-squares sense with
respect to Xi. For the filter, Eq. (2.3) serves as the state model and the measurement
model is given by

Zy = Ly Xy + v (3.12)

where v} = [vi )7, This formulation closely parallels the one given in [11]. A new formula-
tion for including the kinematic constraint in the filter as a pseudomeasurement is given in
the next section.

NEW FORMULATION

Examining the formulation for the kinematic constraint in Eq. (3.6) shows that several
modifications can he made to improve the formulation. The kinematic constraint can be
linearized about the filtered state estimate Xy instead of the predicted state estimate
Xiji—1- By processing the measurement Z befere linearization, a more accurate lincarization
can be achieved because the filtering of Z; reduces the ervor in velocity and acceleration
estimates used in C(+). Also, analyzing Eq. (3.5) shows that the acceleration estimates are
used in C(+) to observe the target velocities and the veloaity estimates are used to observe

the *arget accelerations. Since the acceleration estimates are usually less accurate than the
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velocity estimates, nsing the acceleration estimates to observe the velocities may be counter

productive. Thus, from the first two points, the kinematic constraint of Eq. {2.7) is written

as
Vi - Ax =0 (3.13)
where
. . . 4T \
Vite = [Tk Uak  Zuir) (3.14)
and
Av=1% 9 &7 (3.15)

The Vi is the filtered velocity estimate, and Ay is the actual target acceleration at time k.
The kinematic constraint of Eq. (3.13) is a linear function of the elements of state vector.
Since

Vil - Ak = |Vigel| Axlcost (3.16)

and errors in Vi can produce 8 # 7/2, Vi - A; can be rather large when the magnitude
of the velocity or speed is large. Thus, in order to remove the dependence of the constraint
equation on the target speed, Eq. (3.13) is written as

Vi
Sk a=0 (3.17)
Skt
where
. . 2 a4
Spp = (3:%,“., + yi’f;k + 2)? (3.18)

Since the constraint may not be satisfied exactly and V), is an estimate of the velocity,
Eq. (3.18) is modeled with additive white noise to relax the rigidity of the constraint. The
resulting kineinatic constraint equation is
Vi
:—'—-‘/ik+m =0 (3.19)
Ok|k

where pi ~ N{0, R}). The p; is a white Gaussian process that accounts for the uncertainty
in Vi and the constraint. Since the initial estimates of V. may be very poor, RY is

initialized with a large value and allowed to decrease as
R =ri(6)f + 1o (3.20)

where r) is chosen large for initialization and rg is chosen for steady-state conditions.

The filtering equations for the new formulation of the kinematic constraint are given in
the following eauations where X,‘:“_ denotes the state estimate after the constraint has been

applied, and P,f' i 18 the associated state error covariance. The filtering equations are

3-3
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Time Upaate:
K = FiXi
Py = FkPIflkFE + G QiGY
Measurernent Update:
Xiik = Xippor + Ki[Zy — Hi Xy
Py = (I = K Hy] Py
Constraint Update:
Xip = 1 = KiCu] Xaps
Pix = I = KiCr) Py

where

Ky = Pyo_(H{ [HiPyioy HY + Ri]™

Ki= P‘.'kC{[CLPHkC{ - Rﬁ]_l

1 . . .
Co=5—[0 0 0 0 0 0 dap Jup Zaa)
Sik

(3.21)
(3.22)

(3.23)

(3.24)

(3.26)

(3.27)
(3.28)

(3.29)

Simulation results demenstrating the tracking perrormance of a filter using this formulation

of the kinematic constraint are given in Chapter 5. The stability of the filter is considered

i the next chapter.
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CHAPTER 4
STABILITY AND BIASNESS ANALYSIS

The filtering problem consists of estimating the state of a stochastic dynamical system
from noisy observations. One of the requirements of the estimation problem is that the
system be stochastically observable. If the system is not completely observable, part or all
of the state may not be extracted from the measurement information. The confidence level
of the state estimates is measured by its error covariance matrix. If the error covariance
matrix is not bounded, one would have no confidence in the estimates. Another issue of
importance is the filter bias. A biased filter provides rather poor estimates. The purpose of
this chapter is to analyze the stability and biasness of a filter using the kinematic constraint
for constant speed targets as a pseudomeasurement. If including the kinematic constraint as
a pseudomeasurement produces an unstable or biased filter, using it in this manner would
be an inappropriate technique for improving the performance of a tracking filter.

First, some background information on the stability of stochastic systems is given. Then
stochastic stability of the filter with the kinematic constraint is considered along with the
biasness of the filter.

BACKGROUND ON STOCHASTIC STABILITY

This section reviews some of the definitions and theorems rclated to stochastic control-
lability, stochastic observability, and stochastic stability for linear systems. First, consider
the dynamical system of a target in track as

Xis1 = Fe Xy + Gruyg (4.1)
Zy=HMH X+ Vi (4.2)

where wy ~ N(0,Q,), and vy ~ N(0, R;).

Definition 1 [12}: The system of Eq. (4.1) is called Controllable in a stochastic sense
4-1
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at time k > [ if no linear combination of the elements of the state at time k can be estimated
perfectly (with no error) given only perfect knowledge of X;. If the system is controllable
for all £ > [ then it is called Completely Controllable.

Theorem 1 [12]: The system of Eq. (4.1) is Controllable at time & > [ if and only if

the matrix
k-1

o(k,1) =) B(k,i +1)GiQiGT O (k,i + 1) (4.3)
1=l
is positive definite at time k, where
k-1

o(k,i) = [[ F; (4.4)

)=t
and @(k, 1) is the system controllability matrix at [.

Proof: [12] The system state at time & is given by

k-1
Xi= (k)X + ) O(k,i + 1)Giw (4.5)
1=l
Let ¢ # 0 be an arbitrary constant vector, then T X} is an arbitrary linear combination

of the elements of the state at time &, The linear minimum variance, unbiased estimate of
¥ X; based on X is

TXy = Ok, 1) X, (4.6)
Its estimation error is given by
- k-1
e = Y 0(k,i + )Gy (4.7)

=1

The vanance of the estimation error is

VAR[ei) = Elexe])
el o
=k [c' SY 0k,i + 1)Giww! GToT (k, j + 1)c]
1=l =l
L Al k_l . 19
= [Z@(k,w 1)G,QiGTOT (k. i + l)]c (4.8)
y=1
An clement of the cstimate of Xy, can be perfect if and only if the variance VAR[ex] is zero

for ¢ # 0 and the matrix ¢(&,1) ef Eq. (4.3) in this case is not positive definite. Therefore,

4-2
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for the system to be controllable, ¢(k,1) must be positive definite. Since each term in the
summation of Eq. (4.8) is non-negative definite, once the sum becomes positive definite it
remains positive definite for all future times.

Q.E.D.

Definition 2 [13]: The system in Egs. (4.1) and (4.2) is Uniformly Completely Con-
trollable if there exist a positive integer N and positive constants aj, 81 such that

0<al £ gp(k,k - JV) < B/l (49)
Lemma 1 {13]: If the dynamical system in Eqgs. (4.1) and (4.2) is Uniformly Com-
pletely Controllable and Py > 0, then Py > 0 for any k¥ > N, where P, is the initial

covariance matrix, and Py is the covariance matrix of the Kalman filter using the system
model Eqs. (4.1) and (4.2).

Proof: See (13] pp. 238-239.
Next, the definition of stochastic observability is given along with an explanation of the

requirement that the information matrix has to be positive definite in order for a stochastic
system to be observable,

Definition 3 {12]: The system in Eqs. (4.1) and (4.2) is Observable in a stochastic
sense at time [ if there exists a matrix S; such that at some & > |

k
Xi=) 52 (4.10)
j=t
where X’: 1s a minimum variance, absolutely unbiased estimate, which can be stated as
E[:\;ﬂ/\'(] = X) (4.11)

If this is true for all k, then the system is called Completely Observabie.

Theorem 2 [12]: The system of Eqgs. (4.1) and (4.2) is observable at { if and only if

k
Gk ) =Y OT (i, ) HT R 03, 1) (4.12)

1=

43
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is positive definite for some k > I, where O;(k, ) is the information matrix of the system.

Proof: Using Egs. (4.1) and (4.2) with w; =0,

7= HiX; + v (4.13)
21y = Hy B X+ o (4.14)
Ziya = Hi2®(1 4+ 2, D) X1 + vy (4.15)
Zy = Hi®(k, ) X1 + v (4.16)
Eqgs. (4.13)-(4.16) can be written as
Yi = Mi X1+ Vi (4.17)
where
H
H,+1<b§l + l,Ig
My = | Hi2 @+ 2,1 (4.18)
HyO(k, 1)
Yi=(2 Zip ... Z) (4.19)
Vi=[(u wgr ... w ]T {4.20)
and
E(WV]T) = diag[Ry, Riyy, ..., Re) = Ry (4.21)
If an unbiased minimum variance estimate exists, it is given by in {13] as
Xi= MTR; M) MT RS 'Y, (4.22)
which exists if and only if
MIR;IM >0 (4.23)

For Ry > 0, Eq. (4.23) is valid if M is a {ull rank matrix. Note that the system information
matrix is given by
k
MIR; M=) 0T (L 0 HT R (L) (4.24)

1={

Q.E.D.

Definition 4: [13] The system in Eqs. (4.1) and (4.2) is Uniformly Completely Ob-

servable if there exist a positive integer N and positive constants a2, #; such that
0 < a2l Ok k=N)< B (4.25)
4-4
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where O3 (k, k — N) isthe information matrix of the system.

Lernma 2: If the system in Eqs. (4.1) and (4.2) is uniformly completely observable and
uniformly completely controllable, and if Py > 0, then Py is Uniformly Bounded from
below for all k > N,

Pup 2 [ (k= N+ Ou(k k- W) 2 (o)l k2N (4.26)

Proof: See [13] pp. 236-238.

Lemma 8: If the system in Egs. (4.1) and (4.2) is uniformly completely observable and
uniformly completely controllable, and if 7 > 0, then the error covariance matrix Py is
Uniformly Bounded from above for all k 2 N,

- l+a
Py < [p(klk = N) + 67k, k — N)] < ( 21

az

)I, k>N (4.27)

Proof: See {13] pp. 234-235.

Theorem 3: If the system in Eqs. (4.1) and (4.2) is uniformly completely controllable
and uniformly completely observable, and if Py 2 0, then the Kalman Filter of the system
is Uniformly Asymptotically Stable.

Proof: see (13] pp. 240-242 and (14].

STOCHASTIC STABILITY

This section discusses the stability of the filter that uses the kinematic constraint as a
pseudomeasurement. As indicated by Theorem 3, if the system with kinematic constraint is
uniformly completely controllable and uniformly completely observable, then the system is
uniformly asymptotically stable.

Consider the kinematic constraint of Eq. (3.19)

Vi
™ CAp+ pp =0, (4.28)
T
where pj ~ N(0, R}). Eq. (4.28) may bte rewritten as
0= X, DeXx + ik (4.29)

where

4-5
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Xe=[ox w = & o & 5 @ =)l (4.30)
1 |0sxe O3xs

Dy = :S,— O3x¢ I3 (4.31)
Kk | 03xs O3x3

with Opxq represent the null matrix with m rows and n columns, and I, is an identity matrix
with n rows. Eqgs. (4.2) and (4.29) may be rewritten as

[Zk} = LiX: + [vk ] (4.32)
0 Bk
where
L= [ Xi"pk] (4.33)
Rk=E{ [Z:] [v;r “;I‘] }= [%k Ig‘;] (4.34)

Lemma 4: If the system in Eqs. (4.1) and (4.2) is uniformly completely controllable,
then the system with kinematic constraint in Eqs. (4.1) and (4.32) is also Uniformly
Completely Controtlable.

Proof: Both systems have the same controllability matrix.

Lemma §: If the system in Eqgs. (4.1) and (4.2) is completely observable, then the system
with kinematic constraint is also Completely Observable.

Proof: The information matrix associated with the system with kinematic constraint is
given by

k
Ok, ko) = Y OT(i, k)LT R, L3, &) (4.35)
iﬂko

The system is comiplctely observable if and only i{
O(k, k) >0, forallk >k (4.36)

Using Eqs.(4.1), (4.33), and (4.34),

L r oarv V[Re 017 Hi ..
O(kdo) = 3 0G k) [T DIXa] |'S pe| | xTiy| 00
t==kg
k Lr A k 2N .
=Y OT( R HTRTHOG ) + ) 07 (1, k) DT Xyo(RE)Y ™ XT Did (i, k)
t=ky 1=kg

= 0,(k, ko) + 92(1:, ko) (437
4-6
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where 6y (k, ko) is the information matrix of the system without kinematic constraint. The
©1(k, kg) is positive definite for k > kg since the original system is assumed to be completely
observable. Since each term of the summation in ©;(k, ko) is positive semidefinite, ©2(k, ko)
is positive semidefinite. Therefore,

O(k, ko) = O1(k, ko) + O2(k, ko) >0 (4.38)
for all & > ko and the system with pseudomeasurement is completely observable.
Q.E.D.
Define . 1 [Oexe  O3x3
Dy = Egl: [Oaxs %lkaﬁ} (4.39)
where Vj; is the filtered target velocity vector at time k.

Assumption: Assume there exists a positive 4 > 0 such that for all k

0% 7 Ds $1GQG] (4.40)

Theorem 4: Under the assumption of Eq. (4.40), if the system in Eqs. (4.1) and (4.2)
is uniformly completely observable and uniformly completely controllable, then the system
with kinematic constrain® is Uniformly Compietely Observable.

Proof: Using Eqs. (4.37) and (4.39),
O(k, ko) = B1(k, ko) + Oa2(k, ko)

k i .
= 0y(k ko) + 3 07 (i ko) i bl ko) (341)

t"-‘-%kg

Now, if the system in Eqs. (4.1) and (4.2) is uniformly completely observable, then using
Eq. (4.25),

0 < aal €0i(k,k-NYS B (4.42)
Using Eq. (4.42) in Eq. (4.41)
0 < azl + 062k, k- N)< Ok, k—N)< B3 +02(k, k= N) (4.43)
which implics that
0 < ayl <Ok, k= N)< B3I+ 0k k- N) (4.44)

4-7
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Using Eq. (4.40),

k -
: Dy ..
Bolk,k - N) = > o7k~ N)R_ﬂ(z,k - N)
t=k—-N '
k
<y Y ®T(,k- N)GiQiGT®(i,k - N) (4.45)
i=k—N
Thus
Oa(k,k — N) < yp(k, k = N) S 1B (4.46)
Using Eq. (4.46) in Eq. (4.44),
0<al O(k,k—N) < Bl +46811 (4.47)
Define
8 = B2 +b. (4.48)
Then, Eq. (4.47) can be rewritten as
0<al <O(kk-N)LBI (4.49)

which indicates that the system with kinematic constraint is uniformly completely observable.
Q‘E"Dt
Lemma 6: If the system in Eqs. (4.1) and (4.2) is uniformly completely observable,

Py > 0, and the assumption of Eq. (4.40) holds, then the error covariance matrix of the
filter with kinematic constraint £, is Uniformly Bounded from belo: for all k 2 N,

Pup 2 [0 (kb= M)+ Ok k=N 2 (=)0, k2N (450)
14+ mf
Proof: Using Lemma 4 and Theorem 4, the system with kinematic constraint is completely
uniformly controllable and completely uniformly observable. For such a system Eq. (4.50)
holds by Lemma 2. Nete that the lower bound of Py, is a function of 3, which is a function
of 4.

Lemma T: If the system in Egs. (4.1) and (4.2) is uniformly completely observable and
uniformly completely controllable, and if Py > 0 and assumption of Eq. (4.40) holds, then the
crror covariance matrix Py of the filter with kinematic constraint is Uniformly Bounded
from above for all k > N,

1+ a8,

Pye < [e(kk = Ny 407k k= )] < (
az

)1, k>N (4.51)
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Proof: Follows from Lemma 3.

Theorem 5: If the system in Egs. {4.1) and (4.2) is uniformly completely controllable
and uniformly completely observable, Py > 0, and the assumption of Eq. (4.40) holds, then
the kinematically constrained filter is Uniformly Asymptotically Stable.

Proof: Follows from Theorem 3.

It is worth noting that the condition of Eq. (4.40) is not very restrictive in practice. Given
the block diagonal structure of Dy and the fact that it is normalized, for a given RY, a large
enough 4 almost always exists so that Eq. (4.40) is satisfied.

BIASNESS OF KINEMATICALLY CONSTRAINED FILTER
This section considers the bias of a filter using the kinematic constraint as a pseudomea-
surement. Define
eklk = X& - X;lk, (4-52)
€hje-1 = Xk — Xgjpoy
= Fp1 Xy + Graywney - Foad Xy
= Fk—xek-z]k-: + Groywiy, (4-53)

where X[, is the filter state estimate after the kinematic consiraint has been applied. Using
Eqs. {4.32)-(4.34),

e = Ao = Xgppy — K&{ [;8‘] - [éﬁ[)k] -\'m-:}
= ehpq — Ki [x;l:‘i&pk] ey — K [;::]
= (1 = Kily ) eyeny — Ki [L:] (4.54)
e = Fiu{l = KyLi)eauoy - FuKy [;ﬁ ] + Gy (4.55)
Elereip] = Full - KyLp)E [eap ] (4.56)

fE [e),p,_;] =0, then E [C&Hlk] = Q.

Lemma 7: The kinematically constrained filter is unbiased if the system in Egs. (4.1) and
(4.2) 13 uniforinly completely controllabie.

19
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Proof: Define the Lyapunov function

Vi=E [eﬂk_l] ol E [exi1) (4.57)
It can be easily shown ihat

Vi = tr(Pyy_ Eleqs-1) Bl )) (4.58)
Note that

Pyp = (I = Ki L) Pyyg

= (I — KiLi)Pypoy (I — KiLi)T + KxRu K] (4.59)
Peyik = Fe Pk F + GeQiGY (4.60)

If the system in Egs. (4.1) and (4.2) is uniformly completely controllable, then the system
with kinematic constraint is uniformly completely controllable, and Py > 0, & 2 N, by
Theorem 2. Using Eq. (4.60), P~y > 0, therefore Vi > 0 and V; is a Lyapunov function.

Define the differential
AVigr = Vi ~ W
Using Eqs. (4.56) and (4.57),
AVig = B el | {0 ~ KeL) T PLL BT = KaLa) = PGl MElewpan) (361)
Using the matrix inversion Lemma, and assuming R>0and G’kQ&GE >0,
(I-Ky Lk)"‘Fz‘P{’”kf‘&(I = Kila) - PR
= (I = Ky L) IR P FT + GiQuGl)™ ‘uu*mf, )~im \
= (I - KyLa)! [zm Pl + Py W (GG NN - Kala) - Paiy
= (I - KaLa) (Pgy - Pi(Pgs + FLGUQuGL) )™
qul(l ~ KyLy) - IH‘ \
= (I - MLEV el = Kala) = Py = (- Kala) Py
(P + (chC’u‘m ' m(‘ - Ky L)
= (I - KoL) PGi_y - Pl = P[Pl + FHGQUGD) T R P |
= ~LEKT P, - Poi Pl + FRGQGD T R Pyl
= ~Li(LyPapoa L] + Re) 'y - Par(Poi + P‘;’(G&QgG{)“h)"‘Pﬂg , (4.62)
Eq. (4.62) is the sum of one negative semidefinite matrix and one negative definite matrix,
respectively. This indicates that AVy,, 1s negalive definite. Hence Vi — 0 as k& — oc.
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Therefore Efepjr—i] — 0 as £ — oo, and the hier with the pseudorn.easurement is unbi-
ased.

Q.E.D.

4-11
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CHAFPTER 3
SIMULATION RESULTS

This chapter presents simulation results that demonstrate the potential for improving
the tracking performance of the constant acceleration Kalman filter through the use of the
kinematic constraint., The simulation results are presented to document the benefits of the
kinematic constraint for various data rates, measurement error variances, constraint error
variances, and deviations from constant speed. This chapter is divided into four sections. The
first section describes the simulation procedures employed for comparing the kineinatically
constrained filter with the standard vnconstrained constant acceleration filter. The second
section presents the target trajectories used in this study. The third section presents the
simulation results for the unconstrained and kinematically constrained filters under a variety
of tracking conditions. The final section summarizes the simulation results.

SIMULATION PROCEDURES

The system models used for the simulation studies are discussed in this section. A
constant acceleration motion model was used since it is often used for tracking maneuvering
targets. The discrete-time dynamics model for constant acceleration motion is given by Eq.

(2.3) with
A 0 0
= ? 6‘& g (8.1)
‘B 0 0
G, = 8 .g ?3 (5.2)
where h
. T
1 17 5 |
0 ¢ 1
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T
T T2 ]
[ 6 2 (54)
Xe=[ox & Zx we Uk Uk 2 @ ) (5.5)

The state, X}, contains the positions, velocities, and accelerations of each coordinate. For
this simulation study, the data rate was periodic with period T being the time between
successive measuremsants. To complete the time update portion of the Kalman filter, Qy
must be established. Since the output of the filter is in Cartesian coordinates, the model
error wi, of Eq. (2.3) was modeled as a derivative of an acceleration and was assumed to

have the same variance for each coordinate. Thus, with E{w;] =0 and E [wjuff] = Qibjk,

¢ 0 0
Qk = 0 qi 0 = qz.[;; (56)
0 0 ¢f

To define the measurement equation, the measurement equation for range, bearing, and
elevation, which is a nonlinear function of the state X, must be linearized. The measurement

equation as a function of the actual target state is given by

b

[ b
e 2 4 .2
re <£k+yk+~k_) v{.
o ] - tan~! Y b 5
Zr= b | = Tk + | v (8.7)

eL-J tan™! (—-—f-k-“——) vk
22 4 2
\/'—L}.‘ + /]

L

-

where ry, by, and ¢; are the measured range, bearing and elevation at time k, respectively.
The v, vz, and v{ are the measurement errots for time & The measurement errors are

characterized by E{m} = 0 and E [vjug] = Ryéj, with

g; 0 0
Re=10 of 0 (5.8)
¢ 0 o

Let

A
[, ]
o
=

2

k

Yk

- tan~} | =
wxg=| (%)
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Using a first order Taylor series to linearize Eq. (5.7) about the predicted state estimate

Xijk-1 gives
7y = i X; + v (5.9)
where
Zy = Zp — hi(Xipp—1) + HeXgppoy (5.10)
Oh (X,
Hy = —g(X—*) (5.11)
EolXp=Xp—y
The Hj matrix is given by
[ Tklk—1 Ykjk-1 ZEk-1
—_— 0 0 e 00
Ry Rijry Ryjk-1
—Vkjk-1 Thjk—1
— —— 00 0 0 0
Hy= Rhy—y Rhyjr_1 (5.12)
k| k~1 Tklk—1 — 2k 1YRjk-1 k|k-1
—_— 0 0 ———— 0 0 . ¢ 0
i Rﬁklk—lRiuq Rklk—lRiu-x Rf-[k-l ]
where
Rijr-y =(3ilk-—1 + yfu_l + qu_; )* (5.13)
Rhyj..y =(xi1k-1 + yiu-l)& (5.14)

The kinematic constraint is incorporated into the track filter with the pseudomeasurement
equation given in Eq. (3.19). The state estimate, Xy, and associated error covariance,
Pk, from the measurement update portion of the filter are used i the constraint update
process. The constrained state estimate X Kk and associated error covariance X zl , are given
by

(G ={1 - K{Ci| Xu (5.15)
Piw=[1 - K,ka] " (5.16)
where

Kf =PuyCl (CuPiCT + RY)™ (5.16)

1 . . .
Cr=5— (00 2y 0 0 gop 0 0 Iy (5.17)

Kk

S =(ip + Jip + ézlkﬁ (5.18)
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The only parameter involved in implementing the kinematic constraint that can be manip-
ulated by the user is the constraint variance R}. As discussed in Chapter 3, the constraint
variance has the form

RE =11 (8)" 41 (5.19)

where k is the iteration number of the filter, ry is chosen to provide the initial constraint
variance, ry is chosen to provide the steady state constraint variance, and § provides the
decay rate of the constraint variance. For a constant acceleration track filter, Egs.(4.40),
(5.2) and (5.6) give a relationship for determining rg. For the case of the total target velocity
being in one coordinate, Eq. (4.40) can be reduced to

1

T0 2 T
1T

(5.19)

where 7 is selected by the filter designer. Note that for this case with G} having the form
given by Eqgs. (5.2) and (5.4), rg is dependent on the sample period. The parameter v allows
the user to “tune” the constraint variance to achieve a desired reduction in the state error
covariance as discussed in Chapter 4.

DESCRIPTION OF TARGET TRAJECTORIES

This section describes the three target trajectories to be used in the simulation study.
The first target trajectory, Trajectory 1, shown in Figure 5.1 is a constant speed, 3 ¢ circular
trajectory that will be used to assess the tracking performaunce during a mancuver. In the
sccond trajectory, Trajectory 2, shown in Figure 5.2 the target moves with constant velocity
for the first 15 sec, makes a 90 degree, constant speed turn during the next 15 sec, and moves
with: constant velocity during the last 12 sec. The first two trajectories maintain a constant
height and constant speed so that they are ideally suited for the constant speed kinematic
constraint. The third target trajectory, Trajectory 3, shown in Figure 5.3 makes a constant
height turn while the speed decreases at a rate of 2 m/sec®. This trajectory will be used
to assess the sensitivity of the performance of the filter utilizing the kinematic constraint to
deviations in speed.

RESULTS

This section presents the simulation results for the kinematic constraint. The results
for each track filter are an average of 100 Monte Carlo experiments. The Root-Mean-Square

Errors (RMSE) in position, velocity, and accelerations will be used as the measure to assess

54
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the accuracy of the filters. The parameters r) and 6 for implementing the constraint were
fixed with ry = 200 and § = .9 throughout the simulation study. The parameter 4 will be
adjusted to manipulate R} by its steady state value rq.

First, simulation results will be presented to demonstrate the improvement in tracking
performance provided through the use of the kinematic constraint. For this part, the data
rate is 4 Hz with o, = 8 m and oy = 0, = 2 mrad. The results for tracking Trajectory
1 with a kinematically constrained and an unconstrained track filter are given in Figure
5.4. The model error was g = 3 m/sec® for both filters and ¥ = 2 for the kinematically
constrained one. Notice the significant improvement in position, velocity, and acceleration
estimates gained through using the kinematic constraint. More improvement is achieved
during filter initialization and when the target is further from the radar where the sensor

errors are greater. )
a

The tracking results for Trajectory 2 are given in Figure 5.5. The kinematically con-
strained filter provides improved state estimates when compared to its unconstrained coun-
terpart for this maneuver. By using the kinematic constraint, improved target state estimates
are obtained during the maneuvering portion of the flight with improvement in tracking ac-
curacy before and after the mancuver, The model error was g = 12 m/sec® for both filters
and ¥ = 8 for the kinematically constrained filter. The greatest amount of improvement
occurs for the velocity and acceleration estimates.

The accuracy of the tracking results is highly dependent on the rate at which the mea-
surements are receivod with higher data rates yielding better state estimates. The effects of
data rate on the performance of a track filter using the kinematic constraint is considered
with simulation results for data rates of 2 Hz, 4 Hz, and 10 Hz. The measurement errors
are fixed with ¢, = 8 m and oy = 0. = 2 mrad. The model error is gz = 3 m/sec® for both
filters and v = 1 for the constrained filter. Figures 5.6, 5.7 and 5.8 give the tracking results
for Trajectory 1 at data rates of 2, 4, and 10 Hz. The kinematic constraint provides about
the same level of improvement in the state estimates at each data rate.

Figures 5.9, 5.10, and 5.11 give the tracking results for Trajectory 2 at 2, 4, and 10 Hz.
The motion model error is g = 12 m/sec? for both filters and v = 1 for the constrained filters
At all three data rates, the constrained filter outperformed its unconstrained counterpart.

Note that data rate has less of an adverse effect on the performance of a kinematically

constrained filter than the unconstrained one.
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The kinematically constrained track filters outperformed their unconstrained counter-
parts for each of the data rates considered. The tracking performance has not been max-
imized, but the value of the kinematic constraint is clearly demonstrated. The use of the
kinematic constraint in a filter which receives its data at a low rate can track as accurate
and sometimes more accurate than an unconstrained filter receiving data at a much faster
rate. If a system is limited in its data rate due to hardware or other restrictions, the kine-
matic constraint can improve the accuracy of the state estimates of the target. Improvement
in tracking accuracy for the constrained filters wher: compared to the unconstrained filters

occurred at all the data rates considered in this part.

The effects of the constraint variance on tracking performance is of considerable impor-
tance for filter design. Steady-state variance of the constraint error is examined because the
variance at initialization can be made to decay very quickly with the formulation of Rf as
given in Eq. (3.20). The effects of the constraint variance on tracking performance will be
analyzed by varying v in the formulation of ry given in Eq. (5.19). The effects of 4 are
assessed for Trajectories 1 and 2 being considered at data rates of 4 Hz and 10 Hz with
o = 8m and 0. = 0y = 2 mrad. As shown in Figures 5.12 and 5.13, the effects of the
constraint variance on the tracking results for Trajectory 1 were small for a data rate of 4
Hz with 4 = 0.5,1,8 and ¢x = 3 m/sec’. The RMSE in position, velocity, and acceleration
estimates are fairly similar for each value of y. A slight degradation in acceleration estimates
can be seen as y decreased because the steady-state variance was increasing. However, this
is only a small degradation in performance in this case. Decreasing the constraint variance
could provide slight increases in tracking performance, but simply applying the constraint is
sufficient to provide improved tracking results.

For the circular trajectory with a 10 Hz dava rate and 4 = 0.5, 10, 20, varying v has a
significant effect on the performance of a kinematically constrained filter. This point is shown
in Figure 5.13. The steady-state constraint variance iicreases and becomes too loose as vy
1s decreased. There is a distinct separation in the accuracy of the velocity and acceleration
estimates. The best performance occurred when y = 20; slight increases in peiformance
could occur if ¥ was increased to tighten the constraint variance. Notice the position and
velocity estimates beginning to diverge toward the end of the maneuver when = 0.5 and

the data rate is at 10 Hz. This is again a result of setting the constraint variance too large.

The effects of the constrainy variance are considered for the target making a 90 degree
turn. The model error is again g = 12 m/sec®, with v = 1/16,8. The results for a 4 Hz

data rate are shown in Figure 5.14. Changing the value of the steady state constraint has
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very little effect on the overall performance of the track filter. The position and velocity
estimates are quite similar for each value of 4 with a slight difference in results occurring
for the position estimates. Decreasing 4 loosened the constraint variance and improved the
tracking of the position. The tracking performance is essentially insensitive to the constraint
variance in this case. However, the position estimates from the kinematically ccunstrained
filters are highly sensitive to the constraint variance for a data rate of 10 Hz. In Figure 5.15,
the position estimates improved as the constraint variance was loosened by decreasing 4.
There are also slight changes in the velocity results, but the changes are not obvious Cue to
the amount of error incurred at the beginning and end of the turn.

The steady-state constraint variance can be very critical to the tracking accuracy of
a kinematically constrained filter. If the target is in a maneuver, the ‘ariance should be
tightened by increasing 4 in order to track the target more accurately. However, if the
target is going through a complete maneuver, the constraint should be applied very loosely
by decreasing 4 to attain greater accuracy. Increasing the varianrce allows the kinematic
constraint to track a wider range of maneuvers more accurately. It is important to know the
data rate and model error when choosing 4. An improper choice of ¥ may not provide the
most accurate results. The constraint variance should be based on the data rate and model
error 8o that tracking improvement can occur for the maneuver with the largest change in
acceleration.

The effects of measurement error on the performance of the kinematic constraint are
discussed next. The two trajectories have three different amounts of measurement error
added to them to simulate different sensor accuracies. Ti:e three noise levels are denoted as
low, medium, and high. Low noise has ¢, = 4 m and 0, = 3 = 1 mrad, medium noise has
o = 8§ m and ¢, = 0y = 2 mrad, and high noise hes ¢; = 12 m and ¢, = 0y = 3 mrad. The
filters operate at a 4 Hz data rate with 4 = 1 for the constrained fiiters. A comparisoa is

)

made between the kinematically constrained ai- ! vunconstrained track filters for each noise

lovel.

The effects of measurement error on tracking performance or the target performing a
circular maneuver are presented first. The tracking results of the unconstrained filter ave
highly dependent on the amount of measurement and jyrocess error as shown in Figure 5.16.
As expected, the accuracy of the state estimates increases as the amount of error decreages.
The results for the constrained filters are shown in Figure 5.17. The tracking accuracy for
the constrained filters at the different noise levels is much better thau the unconstrained

filters. The acccleration tracking accurac for the constrained filters is somewhat insensitive
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to the size ¢f oy, ¢y, and o, for this maneuver. The velocity tracking accuracy ie slighily
sensitive with the most sensitivity shown in the position estimates. The constrained track
filters are less scasitive to the amount of measurement noise than the unconstrained filters

for this circular maneuver.

The effect measurement error has on tracking accuracy for the 90 degree turning target
is not as obvious as the target maneuvering in a circle. Both types of filters appear to provide
the same tracking estimates. The unconstrained filter results are shown in Figure 5.18. As
expected, an increase in tracker accuracy occurs when the error decreases, with the most
improvement in the posiiion and velocity states. When compared to its constrained counter-
parts as in Figure 5.19, most of the improvement using the kinematically constrained filter
occurs in the maneuver portion of the target trajectory. The kinematically constrained fil-
ters did provide better state estimates than their unconstrained counterparts for the different
noise levels used in the study.

This part of the simulation results is devoted to deviations in target speed. The previous
patts involve tracking targets maneuvering at constant speed. The kinematic constraint is
designed to track this type of maneuver. However, if the target deviates from constant speed,
can the kinematically constrained track filter provide better results than an unconstrained
one? What must be done to ensure that the tracking is accurate throughout the mancuver?

This is the focus of the following simulation results.

Trajectory 3 includes a maneuver with a deviation in speed. The target has a constant
height of 200 m and is making a circular-type maneuver. The duration of the turn is 40
sec and has an initial and final speeds of 330 m/sec and 250 m/sec, respectfully. The
total acceleration also changes from an initial magnitude of 3 ¢ to 2.3 ¢g. As a result, the
general trend of the target is to spiral in on itself. There are two sets of simulation results
for this part. The first set has a data rate of 4 Hz and the secoud a data rate of 10 Hz,
but both have a model error of g = 3 m/sec® and measurements errors of o, = 8 m and
o, = 0y = 2 mrad. The kinematically constrained filters are compared to their unconstrained
counterparts. Various values of 4 were used to tighten or loosen the constraint variance.

The tracking results for the 4 Hz data rate shown in Figure 5.20 indicate that the
kinematic constraint can be employed to improve the estimation accuracy even if the target
does not maintain constant speed. The constraint variance must be very loose throughout the
entire maneuver for improvement in tracking to be maintained. When v is set to large, the

state estimates eventually degrade to a point where the unconstrained filter outperforms the
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constrained one. This is highly eviaent in the position and velocity estimate results. However,
when the constraint variance is set loosely, improved state estirmates can be achieved through

the entire maneuver.

The trackiug results for 10 Hz are very similar to the 4 Hz data rate results. As shown in
Figure 5.21, the constraint must be set extremely loose for improvement to occur throughout
the entire duration of the maneuver. If the constraint variance is set too tightly, the state
estimates begin to diverge during the maneuver. The constraint ~ust be applied loosely
if the target is not maneuvering at constant speed. Thus, non-constant speed targets can
be tracked with improved accuracy with the constant speed kinematic constraint if the

constraint variance is set properly.

SUMMARY OF THE SIMULATION RESULTS

The formulation and implementation of the constant speed kinematic constraint as a
pseudomeasurement can improve the tracking accuracy of maneuvering targets. The sim-
ulation results clearly demonstrate that the kinematic constraint is a useful technique to
improve tracking accuracy. The effects of data rate, measurement error, and constraint vari-
ance were all investigated. For each of these variants, the kinematically constrained filter
ouiperformed its unconstrained counterpart. The sensitivity to increases in measurement
noise of the tracking results for the constrained track filters is substantially less than that of

the unconstrained filters.

The performance of kinematically constrained filters can be tuned using the constraint
variance. In most cases, simply applying the kinemaiic constraint in the track filter using
an arbitrary constraint variance is enough to provide improved tracking results. However,
the type of maneuver, Cata rate, and model error must be considered before the value of 4
is chosen. An improper choice of 4 can yield tracking results which do not provide the most
improvement in performance. The constraint variance is a very significant parameter the

user can mauipulate to achieve the degree of improvement desired.

The formulation of the kinematic constraint was designed to improve tracking perfor-
p ance by reducing the error in the acceleration esiimates of the target. The simulation
results support this point. The increase in acceleration estimate accuracy provided much
needed improvement of the velocity estimates. The improvement in estimating the target
state, especially the velocity and acceleration, is important for weapons and fire control.
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The improved state estimation accuracy obtained by including the kinematic constraint
as a pseudomeasurement to a track filter has been demonstrated using the simulation results
of this section. Improvement has been achieved for a variety of tracking conditions. The
amount of improvement can be set by varying the constraint variance under the conditions
described above. The target maneuvers chosen for the simulation results demonstrated that
the kinematic constraint is useful in increasing tracking performance. Other targets similar
to the decreasing speed target should be explored in depth to determine the amount of
improvement that the kinematic constraint can provide and under which conditions when
compared to its unconstrained counterpart. The accuracy of state estimates for maneuvering

targets can be greatly improved by employing the kinematic constraint with this formulation.
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CHAYTER 6
SUMMARY AND CONCLUSIUNS

A new formulation of the kinematic constraint was presented, and the use of the kine-
matic constraint was shown through simulation results to improve the tracking of constant
speed, maneuvering targets with a constant acceleration Kalman filter. Under the assump-
tion of Eq. (4.40) the system with kinematic constraint was shown be uniformly completely
controllable and uniformly completely observable which implies that the kinematically con-
strained filter is uniformly asymptotically stable. As discussed in Chapter 4, the sufficient
condition of the assumption in Eq. (4.40) is not very restrictive in practice. The kinemati-
cally constrained filter was also shown to be unbiased. In addition, the lower bound of the
covariance matrix of the kinematically constrained filter was shown to depend on a param-
eter ¥ defined in Eq. (4.40). In the filter design process, the parameter 4 may be chosen so
that this lower bound does not violate the Cramer-Rao lower bound.

While improvernent in tracking performance was obtained with the kinematic constraint,
a quantitative measure of the benefits gained by using the kinematic constraint as a pseu-
domeasurement are not clear at this time. The kinematic constraint used in this work is
valid when the target is moving threugh a constant speed trajectory. While the parameter
Wi was introduced to relax the constraint, procedures for selecting the statistics of y; for the
case of a variable speed target are not available at this time. As indicated by the simulation
results, the use of the kinematic constraint improves the tracking performance only when the
target is noving at a constant (or nearly constant) speed. An important issue is to identify
the benefits of this constraint when the target is moving at a rather variable speed. While
this issue has not been thoroughly addressed at this time, the Interacting Multiple Model
(IMM) algorithm {10] provides a technigue for utilizing a kinematically constrained filter for
constant speed maneuvering targets in conjunction with other filter models for targets that
maneuver with variable speed. Thus, additional research is needed to show the benefits and
refine the method of implementation of the kinematic constraint. Also, methods for selecting
R} a priori and duting the tracking process ate also needed.
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