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FOREWORD

The classical prnblern of weapons control is predicting the future position of a maneu-

vering target Critical to successful prediction is the accurate estimation of the current target

sta&;.e. With the adven'. of guided weapons, the consequences of threat maneuver are reduced

when accurate estimate? oZ the target state can be obtained. Threat trends indicate that

the conditions unaer which hostile targets can be engaged successfully are becoming more

difficult to achieve; hence, any improvement in existing estimation algorithms is of critical

importance.

The reported research was conducted by Mr. W. D. Blair and Mr. G. A. Watson of

Naval Surface Warfare Center (NAVSWC) (Code G71) in conjunction with Dr. A. T. Alouani

of the Electrical Engineering Department, Tennessee Technological University. The results

of the research have advanced the state of knowledge in estimation theory and proposed

a computational efficient tedcnique for improving the state estimation for targets maneu-

vering through constant speed turns. The work was supported in part by the NAVSWC

AEGIS Program Office and in part by the NAVSWC Independent Exploratory Development

Progran.

This document has been reviewed by R. T. Lee, flead, Weapons Control Division.

Approved byý

DAVID S. MALYEVAC, Deputy ltead

Weapons Systems Department
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ABSTRACT

The use of a kinematic constraint as a pseudomeasurement in the tracking of constant

speed, maneuvering targets is considered in this report. The kinematic constraint provides

additional information about the target motion that can be processed as a pseudomeasure-

ment to improve tracking performance. The kinematic constraint for constant speed targets

is A. V = 0, where A and V are the target acceleration and velocity vectors, respectively. In

previous publications, the measurement equation for processing the kinematic constraint as

a pseudomeasurement was derived by a direct application of Taylor's theorem for a first or-

der linearization of that pseudomeasurement equation. A new formulation of the constraint

equation that provides significantly better tracking performance than the previous formu-

lation is presented along with the rationale for the new formulation. The filter using the

kinematic constraint for constant speed targets is shown to be unbiased and stochastically

stable. Simulated tracking results are given to show the potential for further improving the

performance of a track filter through the use of the proposed kinematic constraint. Simula-

tion studies arm presented for various data rates, levels of measuremncant errors, and deviations

in speed.
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CHAPTER 1

INTRODUCTION

The problem of tracking maneuvering targets has been studied extensively since the

mid 1960s. One of the first works to have a significant and lasting impact on the problem

was (1] where a target motion model with an acceleration that is exponentially correlated

in time was introduced. In that work, a Kalman filter was utilized to estimate the position,

velocities, and accelerations of the target. The rationale for the time-correlated acceleration

was derived from inertial systems in that a target accelerating at time t is likely to be

accelerating with similar acceleration at time t + r for sufficiently small r. However, the

assumptions of exponentially correlated, zero-mean accelerations of [1] produced a motion

model with an acceleration that decreases in magnitude during each state extrapolation.

Thus, when the actual target acceleration is constant or increasing, large errors occur in the

state estimates.

In the early 1970s, decision-directed tracking of maneuvering targets was introduced in

[2] to respond to the demand for algorithms that could provide better tracking of targets

performing high g, fast maneuvers, These decision-directed algorithms monitor the tracking

errors to detect a maneuver and respond by increasing the process noise covariance and/or

the dimension of the target motion model as described in 12,3,4]. While these algorithms

provide good tracking performance before and after the maneuver, their perfonnances during

&nd immediately following the maneuver are poor. The problem with these algorithms is

that the accelerations during a maneuver are not easily modeled in t",e ?,ensor reference

frame because they often vary irregularly with time in that frame. In tzi utw aAxeicrations

were modeled in a target-oriented reference frame to reduce the problems associated with

modeling the time-varying accelerations. While the algorithm in [5] provides relatively good

tracking performance, the modeling and transformations that must be estimated produce a

complicated algorithm.

The two-stage Kalman estimator was applied to the tracking of maneuvering targets
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in [6], and a significant reduction in the convergence time after a maneuver was achieved.
However, the two-stage Kalman estimator of [6] is limited to a constant acceleration model

with additive white noise. Input estimation and multiple model algorithms presented in

[7,8,9,10] were developed to address the problems of time-varying accelerations and conver-

gence time after a maneuver. However, the input estimation and multiple model algorithms

require significantly more computations than the previous techniques. A kinematic con-

straint can be utilized as additional information about the target to improve the tracking of
the time-varying accelerations with a small increase in computations.

When a target's trajectory satisfies a kinematic constraint, the kinematic constraint

provides additional information about the target's motion. Using the constraint removes

some of the uncertainty of the time-varying accelerations and tends to force the accelera-

tion estimates to change in a manner that is consistent with the dynamics of the target.
However, including the kinematic constraint in the motion model produces a state equation

with nonlinear dynamics. The use of a nonlinear state equation significantly increases the

computations involved in an extended Kalman filter because the state transition must be
computed on-line. Recently, the idea of introducing a kinematic constraint into the tracking

process through a pseudomeasurement was proposed in [11] because nonlinearities are easier

to accommodate in the measurement equation of the extended Kalman filter. The use of

the constraint was shown to improve the performance of a given track filter. The improve-

ment in the tracking performance can be attributed primarily to the reduced errors in the

acceleration estimates. The constraint tends to reduce the bias or lag in these estimates
when the actual acceleration is time-varying. Hlowever, using the kinematic constraint as

formulated in [11] results in marginal improvement in the performance of the track filter,

poor transient performance at initialization, atd a track filter for whicd a guarantee of sta-
bility may not be achievable. In this report, a new formulation of the kinenmatic constraint

is presented for constant speed tzvgets, along with the rationale for the new formulation.

The new formulation provides significantly better tracking performance than the one given

in [11], and simulation results are given to demonstrate the relative improvement. Also, a

track filter utilizing the new formulation of the kinematic constraint is shown to be, unbiased

and stociastically stable.

This report is organized as follows. In Chapter 2, the general problem of tracking
maneuvering targets is discussed, and the kinematic constraint for constant speed targets is

derived. The previously published and new formulations of the pseudomeasurement equation

for the kinematic constraint are presented in Chapter 3. The bias and stability of a filter
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using the new formulation are considered in Chapter 4. In Chapter 5, simulated tracking

results are presented to demonstrate the improved tracking performance achieved with the

kinematic constraint and document the sensitivity of the filter to data rate, measurement

errors, and deviations in speed. In Chapter 6, a summary and conclusions are given along

with suggestions for future research.
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CHAPTER 2

BACKGROUND

In this chapter, the general problem of tracking maneuvering targets is discussed and

the kinematic constraint for constant speed targets is derived. The dynamic system model

of a maneuvering target in track is given by

X = f(X,UW) (2.1)

Zk = h(XkVk) (2.2)

where X is the state vector, u is the control vector, w is the process noise vector representing

possible deviations in f(-) and external disturbances, Zk is the discrete-tine measurement
vector at time k, and vk is the measurement error vector. The dynamics of the target is

a continuous-time process as shown in Eq. (2.1) where f(.) is a dynamical constraint that

defines the motion for the target in the form of a differential equation. The dynamical

constraint, which is usually unknown to the tracking system, can differ significantly between

targets and change for a common target during the tracking process. As indicated by Eq.

(2.2), the measureitnt process is discrete-time because most sensors used for target tracking

record tlhe position and/or radial velocity for a given instant in time.

While f(-) is usually unknown by the tracking systemn, the major problem with tracking

maueuvering targets is that the control vector is not directly observable by the tracking

system. When the target applies a control, a bias or lag develops in the estiniates of the target

state. The methods proposed in [8] and [91 process the position tracking errors to estimate

the control vector u whicl produced the observed bias in the position estimates. However,

for an input estimation algorithm to be effective, an extensive and usually computationally

expensive maneuver detection algorithm as in [9] is required. The control can be included

as acceleration in the dynamical constraint f(.), but the acceleration most often varies with

time in such a manner that a filter model cannot be clearly identified during tracking. Thus,

the target dynamics are most often modeled as linear in a Cartesian coordinate frame to

simplify the filtering and reduce the computational requirenents. Also, for convenience the

2-I



NAVSWC TR 91-561

continuous-time dynamics are converted to a discrete-time system. As a result, the dynamics

"model commonly assumed for a target in track is given by

Xk+l = FkXk + Gkwk (2.3)

where Wk - N(0, Qk) is the process noise, Fk defines a linear constraint on the dynamics,

and Gk is the process noise input matrix. The target state vector Xk contains the position

(x, y, z), velocity (i, j, i), and acceleration (i, ý, i) of the target at time k as well as other

variables used to model the time-varying acceleration. When the target applies a control and

the time-varying accelerations are modeled incorrcctly, a bias or lag develops in the estimates

of the target state. While multiple dynamics models can be used as proposed in [71 and [10]

to identify the best model available in the filter, identifying the exact model is not feasible

because the target can apply many different control vectors to evadeý the tracking system.

Also, since Eq. (2.3) is a linear function of Xk, the motions in the x, y, and z coordinates

are often modeled as independent, while these motions are very seldomn independent in the

coordinate frame chosen for tracking. Therefore, additional information %okid be helpful to

reduce the modeling error of the time-varying accelerations.

A kinematic constraint can be utilized ats additional information about the target to

reduce the errors in the state estimates due to time-varying accelerations and model uncer-

tainty. Using the kinematic constraint tends to force the acceleration estimates to change in

a manner that is consistent with the dynamics of the target. A kinematic constraint cmn be

developed for use in tracking constwnt speed, maneuvering targets. The speed of a target is

giveii by

+ + .Y(2.4)

For a target moving at a constant speed,

ds
- 0 (2-6)

S-"or

i + + + =0 (2.6)

Eq. (2.6) can be written as

V- A = 0 (2.7)

where the target velwity V and acceleration A are givet by

r (2,8)

and
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A=[;i ý jT (2.9)

This kinematic constraint for constant speed targets is useful information that can be incor-

porated into the system state in Eq. (2.1) or used as a pseudomeasurement in conjunction

with Eq. (2.2). While both approaches are conceptually feasible, the second approach is more

attractive because the first restricts the state equation to be nonlinear. In the implemen-

tation of the extended Kalman filter, including nonlinearities in the measurement equation

is computationally less expensive than in the state equation [11]. If the state equation is

nonlinear, the transition matrix for propagating the state from time k to time k 4 1 must be

computed on-line at each propagation because the transition matrix will be highly depen-

dent on the state of the target. Computing the transition matrix on-line greatly increases

the computational cost of implementing the extended Kalman filter. Thus, incorporating

the kinematic constraint into the filter as a pseudomeasurement as suggested in [11] is the

focus of this report.

In this report, the measurement p-ocess of Eq. (2.2) will be assumed to be linear. While

most sensors used for target tracking measure the target position in spherical coordinates, the

spherical measurements can be transformed into a Cartesian coordinate franc for processing

as a linear function of the target state. Thus, the measurement process is given by

Z4 = 14, X& + q', (2.10)

where 4t is the target measurement in the Cartesian coordinate frame, Hl, is the input

mnatrix, and t!& - N(0, RL) is the measurement error. While the ineasurement errors in

spherical coordinates are usually assumed to be Gaur-sian wnd uncorrelatedt in range, 1waring,

and elevation, the transfonration to the rectangular coordinate frane causes the components

of rtk to become nouGaussian and correlated.

A Kalman filter is oftea employed to filter the measuremienits fof estimating the state

of the target. Wlwn the target motion and neasurements are linear and the nmemuremnent

and motion modeling error processes are Gaussian, the Kalman filter provides the minimum

mean-square error estimate of the target state. When the target motion and measurement

models are linear, but the error processes are not Gaussian, the Nalhal, filter is the best

linear estimator in the mean-square error sense. The Kalman filtering equations &wociaated

with the state model of E-q. (2.3) and the meassurement model of Eq. (2.10) are given by

the following equations.
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Time Update:

Xk1k= FkXklk (2.11)1

Pk+llk = ± GkikFk +jG (2.12)

Measurement Update:

Xk~lk = Xjk~k. ± Ak[Zk - ikXkik-.1I (2.13)1

Pklk =[I - A'kIIklPkjk-i (2.14)
I i = u~~~~u + (.5

where Xj N(Xklk Pkjk) with Xk1& and Pk~ denoting the mecan and error covariance of
the state estimate, respectively. The subscript notation (klj) denotes the s5tate estirnae for

time k when given measurements through time .'and Kk denotes the Kalman gain at time

k.I

The measurement update of the. Kalman filter can be viewed as a wveighted least-square

estmaton rolemas iscssd i [1).For the system inEkqs. (2.3) and (2.10), the objective1
function to he mnimuuized in the least-squares svnse with respect to XL is

J(A&) =;[(Ni. - Xik-k1)P ,(X& -- x. k

+ (/t - IIgXi)fR-'(74 - fL&X&.)] (2,16)

where X&1j_. is the predicted state estimate for timne k based on mieasureml-ent-s through

time k- - 1, and0 P~k is the 'covariatice of (X& Xkj~) '1hc reslklting esItinlatt' of Xj 1
that inmesJ(Xj) is denloted as tkjký This cost function will he utilized to explain anld
justify thle iticlusion of thle kinlemlatic consltraint as a pscuAdorneasuremcn%. The formulationi

of the pseudonwvasurenwnt equation for the kinematic constraint usedi in tllJ in pre-sent(ed in
the next Chapter along With the new form~ulationl Of the p)SeUdomeCASArenCitlt "Iulation.
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CHAPTER 3

FORMULATIONS OF THE KINEMATIC CONSTRAINT

The kinematic constraint of Eq. (2.7) can be incorporated into the Kalman filter as

a pseudomeasurement through direct linearization of the constraint equation or through a

modified formulation of the constraint. In this chapter, both the direct approach and the

new formulation of the constraint are presented.

DIRECT LINEARIZATION

Since the kinematic constraint is a nonlinear function of the target state, it is first

linearized about the predicted state Xkjk_1 as

*Vk" Ak = Vklk- Akk-1 + Ckjk-l(Xk - Xkik- 1) (3.1)

Swhere

Xk= [ Xk Yk Zk 4 ik 4 k ýI k ]T (3.2)

Cklk-I= [0 0 0 x41k-1 4lk4k-i zk4k-1 4k1k-1 Ykfk-I ijkk-•- (3.3)

Since

-kk-1Xklk-1= 2Vkk- 1 ' Al. -I (3.4)

and VY' '4k-0, 0Eq. (3.1) can be written as

*Vkk-1 AIk-,. = t-1Xk (3.5)

-Since the coioAtrint has been linearized and the target motion may deviate slightly from a
constant speed, the i nearized coi.,traint is modeled with an additive error as

SVkjk-j " Aklk-1 = 0klj.-jXk (3.6)-k,,X, +p(3.6)

wherc / - N(0, R.) relaxes the constraint. With this -.)al modification, the nonlinear

kinematic constraint is in the form of a linear measurement. The cost function of Eq. (2.16)
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can be augmented with Eq. (3.6) to obtain

J'(Xk) = 1(Xk - Xklk-1 )Tp- -I Xk - Xklk-1) + (Zk - HKXk)TR_1(Zk - Hk.X1.)

+-Vj.l ~ -Ckk~~)R 1 V 1  C' t- lk](3.7)
+(Vklk-l • Aklk-1 _ Cklk-,Xk)TRal (Vklk-1 " Aklk-1 - Cj- -k)(37

After augmenting the measurement with the kinematic constraint, the cost fanction is given

by

Ja(Xk) = [(Xk - XklkI)T P, -(Xk Xklk-i)

± (Zk, - LKXi) T (RY-,(Zk - LkXk)] (3.8)

where

SZk (3.9)

Lj: (3.10)
[R0 0] (3.11)

A Kalmnan fiier can be implementd o minimize Ja(Xk) in the least-squares sense with

respect to Xk. For the filter, Eq. (2.3) serves as the state model and the measurement

modet is given by
Z' = LjXk + V, (3.12)

where v' = [vi ,417'. This formulation closely parallels the one given in [11]. A new formula-

tion for including the kinematic constraint in the filter as a pseudomeasurement is given in

the next section.

NEW FORMULATION

Examining the formulation for the kinematic constraint in Eq. (3.6) shows tha. several

modifications can be made to improve the formulation. The kinenatic constraint can be

linearized about the filtered state estimate Xj.1j. instead of the predicted state estimate

Xklk_.- By processing the measurement Z4 before linearization, a more accurate linearization

can be achieved because the filtering of Zk rduces the error in velocity and acceleration

estimates used iti C(-). Also, analyzing Eq. (3.5) shows that the Pcceleration estimates are

used in V(.) to observe the target velocities and the velocity estimates are used to observe

the ';rget accelerations. Since the acceleration estimates are usually less accurate than the

3-2
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velocity estimates, using the acceleration estimates to observe the velocities may be counter

productive. Thus, from the first two points, the kinematic constraint of Eq. (2.7) is written

as

Vklk• Ak = 0 (3.13)

where

Vklk= [4k! lk zk k]T (3.14)

and

Ak = k ýk jk]T (3.15)

The Vklk is the filtered velocity estimate, and Ak is the actual target acceleration at time k.

The kinematic constraint of Eq. (3.13) is a linear function of the elements of state vector.

Since

Vkjlk- Ak = IVkRIlAkjlcosO (3.16)

and errors in Vkjk can produce 0 $ ir/2, Vklk , Ak can be rather large when the magnitude

of the velocity or speed is large. Thus, in order to remove the dependence of the constraint

equation on the target speed, Eq. (3.13) is written as

_Vklk. AL. = 0 (3.17)SkIL-

where

=(4k +k1k l + Z21k) (3.18)

Since the constraint may not be satisfied exactly and Vklk is an estimate of the velocity,

Eq. (3.18) is modeled with additive white noise to relax the rigidity of the constraint. The

resulting kinematic constraint equation is

V!- -. " Ak + Pk = 0 (3.19)
'Lklk

where /ik - N(O, R.). The ;xk& is a white Gaussian process that accounts for the uncertainty

in V1 lt. and the constraint. Since the initial estimates of V4pt may be very poor, R' is

initialized with a large value and allowed to decrease as

I. = rI(b + ro (3.20)

where rl is chosen large for initialization and ro is chosen for steady-state conditions.

The filtering equations for the new formulation of the kiAineoiatic constraint are given in

the following equations where X',, denotes the state estimate after the constraint has been

applied, and P', is the associated state error covarince. The filtering equations are
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Time Update:

Xk+ljk = FkXkJk (3.21)

Pk+1Ik = FkPk'IkFT + GkQkGT (3.22)
Measurerient Update: SXkjk = Xkk- 1 + Kk[Zk - HkXklk-1] 

(3.23)

P~}= [I - KkHk]Pkjlk- (3.24)

Constraint Update: [

k= [I - K'Ck]Xklk (3.25)
Pk= [I - K'Ck]Pkjk (3.26) I

where

hk = Pkl,._tH. [HkPklk..lHT + RkI-1  (3.27)

"=, LCTPkIkCk (3.28)

= [0 0 0 0 0 0 i kjk4-J (3.29)

Simulation result. demenstratng the tracking pertormance of a filter using this formulation

of the kinematic constraint are given in Chapter 5. T he stability of the filter is considered

in the next chapter.
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CHAPTER 4

STABILITY AND BIASNESS ANALYSIS

The filtering problem consists of estimating the state of a stochastic dynamical system

from noisy observations. One of the requirements of the estimation problem is that the

system be stochastically observable. If the system is not completely observable, part or all

of the state may not be extracted from the measurement information. The confidence level

of the state estimates is measured by its error covariance matrix. If the error covariance

matrix is not bounded, one would have no confidence in the estimates. Another issue of

importance is the filter bias. A biased filter provides rather poor estimates. The purpose of

diis chapter is to analyze the stability and biasness of a filter using the kinematic constraint

for constant speed targets as a pseudomeasurement. If including the kinematic constraint as

a pseudomeasurement produces an unstable or biased filter, using it in this manner would

be an inappropriate technique for improving the performance of a tracking filter.

First, some background informaition on the stability of stochastic systems is given. Then

stochastic stability of the filter with the kinematic constraint is considered along with the

biasness of the filter.

BACKGROUND ON STOCHASTIC STABILITY

This section reviews some of the definitions and theorems related to stodcastic control-

lability, stochastic observability, and stochastic stability for linear systems. First, consider
the dynamical system of a target in track as

Xk+, = PkXk + Gkwk (4.1)

&_ = IlkXk + Vk (4.2)

where wk - N(O,Qk), and Vk ~ N(O, Rk).

Definition 1 [12]: The system of Eq. (4.1) is called Controllable in a stochastic sense
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at time k > I if no linear combination of the elements of the state at time k can be estimated

perfectly (with no error) given only perfect knowledge of X1. If the system is controllable

for all k > I then it is called Completely Controllable.

Theorem 1 [12]: The system of Eq. (4.1) is Controllable at time k > I if and only if
the matrix

k-1

ýp(k, 1) = Z (k, i+ 1)GjQjGT'IOT (k,i +1) (4.3)
i=1

is positive definite at time k, where

k-1

D(k,i)= JJFi (4.4)
j~i

and co(k, 1) is the system controllability matrix at 1.

Proof- [12] The system state at time k is given by

k-I

XL. = O(k, l)Xt + Z D(k,i + l)Giw (4.5)
i=l

Let c 0 0 be an arbitrary constant vector, then cTXk is an arbitrary linear combination
of the elements of the state at time k. The linear minimum variance, unbiased estimate of

cTXk based on X 1 is

,.1X L 1. = ¢(k, 1)X1 (4.6)

Its estimation error is given by

k-I-- :• c• c~rE[] (k, i + 1)Gtw, (4.T)

The variance of the estimation error is
.!11

VAJ?[ek] = Ejekce1

k-1 k1== E Ec E (k, i + l)Gj w~4G"$'O(k, j + l)cl

= TI 4(k, + l)GQ~G7,'D(k, i + 1)] c (4.8)

An element of the estimate of X.\iL. can be perfect if aid only if the variance VAR(eq] is zero

for c $ 0 and the matrix V(k, 1) of E;q. (4.3) in this case is not positive defnite. Therefore,
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for the system to be controllable, W(k, 1) must be positive definite. Since each term in the
summation of Eq. (4.8) is non-negative definite, once the sum becomes positive definite it

remains positive definite for all future times.

Q.E.D.

Definition 2 [131: The system in Eqs. (4.1) and (4.2) is Uniformly Completely Con-

trollable if there exist a positive integer N and positive constants al, 01 such that

0 < al I <_ W(k, k- 1;) < 011 (4.9)

Lemma 1 [131: If the dynamical system in Eqs. (4.1) and (4.2) is Uniformly Com-

pletely Controllable and P0 Ž> 0, then Pklk > 0 for any k > N, where P0 is the initial

covariance matrix, and Pkjk is the covariance matrix of the Kalman filter using the system

model Eqs. (4.1) and (4.2).

Proof: See (13] pp. 238-239.

Next, the definition of stochastic observability is given along with an explanation of tile

requirement that the information matrix has to be positive definite in order for a stochastic

system to be observable.

Definition 3 1121: The system in Eqs. (4.1) and (4.2) is Observable in a stochastic

sense at time I if there exists a matrix Si such that at some k > I

&

1 = Z , siZ) (4.10)

where X1 is a minimum variance, absolutely unbiased estimate, which can be stated as

L'([XIXd = (4.11)

If this is true for all k, then the system is called Completely Observable.

Theorem *2 [12]: The system of Eqs. (4.1) and (4.2) is observable at I if and only if

O1(k, 1) = D"((, 1)I1IR- IH (i, 1) (4.12)
v=1
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is positive definite for some k > 1, where 01(k, 1) is the information matrix of the system.

Proof: Using Eqs. (4.1) and (4.2) with wk = 0,

ZI = H1 XI + vI (4.13)

Z1+1 = H1 +1 F1XI + vj+j (4.14)

Z +2 = HI+2, (l + 2, l)X1 + v+2  (4.15)

A = HkO(k,l)XL + vi (4.16)

Eqs. (4.13)-(4.16) can be written as

Yk = MkX± + Vk (4.17)

where

H1  1
HI H 1 (+1 1,l/Mk= HI+2 4(l + 2, 11(4.18)

Hk'W(k,l)

Yk=(ZI Z1+. ... zk]T (4.19)
VL-k=vI VI+I .. ' vkT (4.20)

and

E(flV[kT] = diag[R, Rj+,,..., Rk] (4.21)

If an unbiased minimum variance estimate exists, it is given by in (13] as

X1 = (ML. k- ' i.1 M[R 1TYk (4.22)

whicl exists if and only if

MkR'Rj M- > 0 (4.23)

For &rj > 0, Eq. (4.23) is valid if Mk is a full rank matrix. Note that the system information

matrix is given by

Mj/t-I = >3 k(i, )117 R'1'(i, ) (4.24)

Q.ED,

Definition 4: (13] The system in Eqs. (4.1) and (4.2) is Uniformly Completely Ob-

servable if there exist a positive integer N and positive constants a2, fi2 such that

0 < a21 < 0 1(k,k - N) < !2I (4.25)
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where E1 (k, k - N) isthe information matrix of the system.

Lemma 2: If the system in Eqs. (4.1) and (4.2) is uniformly completely observable and

uniformly completely controllable, and if P0 > 0, then Pkjk is Uniformly Bounded from

below for all k > N,

P1 Ž [W- 1 (k, k - N) + e1 (k, k - N)f l > al) I, k_>_N (4.26)

Proof: See [13] pp. 236-238.

Lemma 3: If the system in Eqs. (4.1) and (4.2) is uniformly completely observable and

uniformly completely controllable, and if P0 Ž_ 0 , then the error covariance matrix Pkjk is

Uniformly Bounded from above for all k >_ N,

Pkjk : [(klk - N) + 0'1(k,k - N)Ia2#(l± 1)I, k>N (4.27)
at2

Proof: See[131 pp. 234-235.

Theorem 3: If the system in Eqs. (4.1) and (4.2) is uniformly completely controllable

and uniformly completely observable, and if Po _> 0, then the Kalman Filter of the system

is Uniformly Asymptotically Stable.

Proof: see [13] pp. 240-242 and [14].

STOCHASTIC STABILITY

This section discusses the stability of the filter that uses the kinematic constraint as a

pseudomeasurement. As indicated by Theorem 3, if the system with kinematic constraint is

uniformly completely controllable and uniformly completely observable, then the system is

uniformdy asymptotically stable.

Consider the kinematic constraint of Eq. (3.19)

klk. AL + p = 0, (4.28)

Sk~k

where Pk - N(0, R'). Eq. (4.28) may be rewritten as

0 = XlIkDkXk + 14k (4.29)

where

4--5
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Xk =- [Xk Zk 4 Ik zk Xk jk IT (4.30)
1 [ 0 3X6 03X3]

Dk3X6 13 (4.31)
k 03x6 03,3J

with 0 mxn represent the null matrix with m rows and n columns, and I,, is an identity matrix

with n rows. Eqs. (4.2) and (4.29) may be rewritten as

['k] = LkXk + [2] (4.32)

where

Lk Tk (4,33)L•=LklkDk

Rj =41 E42 isR (-4

Lemma 4: If the system in Eqs. (4.1) and (4.2) is uniformly completely controllable,

then the system with kinematic constraint in Eqs. (4.1) and (4.32) is also Uniformly

Completely Controllable.

Proof: Both systems have the same controllability matrix.

Lemma 5: If the system in Eqs. (4.1) and (4.2) is completely observable, then the system

with kinaematic constraint is also Completely Observable.

Proof: The information matrix associated with the system with kinematic constraint is

given by

0 (L, ko)- O T(i, k)LT'R-'Lj0(i, L) (4-35)

i-k0

The system is completely observable if and only if

O(k, k•) > 0, for all k > L-( (4.36)

Using Eqs.(4.1), (4.33), and (4.34),
k - [ R 0 1 7 1 A,0(k, to) 0 (i, L) [ nY7 DT1 11] ['i 0 j [X~Di j

- 'F~i k)H,'R-')Hl?(i, k)+ 1,?7()k)D,7*Xjj-(R )- 'XjjDj0(1, k)

E) I (k. 4) + 0 2 (k, ko) (4.37)

4-6
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where e 1(k, ko) is the information matrix of the system without kinematic constraint. The

e1 (k, k0) is positive definite for k > ko since the original system is assumed to be completely

observable. Since each term of the summation in 6 2 (k, ko) is positive semidefinite, 0 2(k, ko)

is positive semidefinite. Therefore,

E(k, ko) = e1 (k, ko) + e 2 (k, ko) > 0 (4.38)

for all k > ko and the system with pseudomeasurement is completely observable.

Q.E.D.

Define
1 [ 06X6 O3xs 0

=Sk- [ 03x6 V TV >-0.

where Vkjk is the filtered target velocity vector at time k.

Assumption: Assmrne there exists a positive -j > 0 such that for all k
I T

0 Ok :5 'iGkQkGT (4.40)

Theorem 4: Under the assumption of Eq. (4.40), if the system in Eqs. (4.1) and (4.2)
is uniformly completely observable and uniformly completely controllable, then the system

with kinematic constrain', is Uniformly Completely Observable.

"Proof: Using Eqs. (4.37) and (4.39),

So(kt,,) = o1 k, ko) + 0 2(k, ko)

I (k= ,ko) + r~i, ko) 0(i, 1-ý) (4.41)

Now, if the system in Eqs. (4. 1) and (4.2) is uniformly compltely observable, then using

Eq. (4.25),

0 < a2I <_ 0 1(k,k - N) •1321 (4.42)

Using Eq. (4.42) in Eq. (4.41)

0 < 021 + 0 2(k, k - N) • 0(k, k - N) < 1ill + 02(k, k - N) (4.43)

which implies that

0 < 021 < 6(k, k - N) _< All + O0(k, k - N) (4.44)

4--7
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Using Eq. (4.40),

62 (k,k -N) = E T -N) (ik-N)

i=k-N

k
E ý (i,k- N)GjQ GTt(i,k- N) (4.45)

i=k-N

Thus

0 2 (k, k -1N) <y 7p(k, k - N) < yfl, 1  (4.46)

Using Eq. (4.46) in Eq. (4.44),

0 < a21 5 O(k, k - N) •_ /21 + 71311 (4.47)

Define

/0 = 32 + 701- (4.48)

Then, Eq. (4.47) can be rewritten as

0 < a21 5 O(k,k - N) 0 /1 (4.49)

which indicates that the system with kinematic constraint is uniformly completely observable.

QE.D.

Lemma 6: If the systen in Eqs, ((4.1) and (4.2) is uniformly completely observable,

Po > 0, and the assumption of Eq. (4.40) holds, then the error coariance matrix of the

filter with kinematic constraint PL.lt is Uniformly Bounded from belo, for all k > N,

PkIL Ž((kk - N) + O(k, k - N)[-1  ( )i 1, k N (4.50')

Proof: Using Lemma 4 and Theorem 4, the system with kinematic constraint is completely

uniformnly controllable and completely uniformly observable. For giuch a System Eq. (4.50)
holds by Leanma 2. Note that the lower bound of Pkl• is a function of /3, whici is a function

of 7.

Lemma 7: If the system in Eqs. (4.1) and (4.2) is uniformly completely observable and

unifomily completely controllable, and if P0 > 0 and assumption of Eq. (4.40) holds, then the

error comariance matrix PII1 of the filter with kinematic constraint is Uniformly Bounded

from above for all k > N,

•k < IV(kI-, - N) + -'(k, k.- N)] < (1 + 12), k> N (4.51)
a2

4--8
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Proof: Follows from Lemma 3.

Theorem 5: If the system in Eqs. (4.1) and (4.2) is uniformly completely controllable

and uniformly completely observable, P0 _> 0, and the assumption of Eq. (4.40) holds, then

the kinematically constrained filter is Uniformly Asymptotically Stable.

Proof: Follows from Theorem 3.

It is worth noting that the condition of Eq. (4.40) is not very restrictive in practice. Given

the block diagonal structure of Dk and the fact that it is normalized, for a given RP, a large

enough -y almost always exists so that Eq. (4.40) is satisfied.

BIASNESS OF KINEMATICALLY CONSTRAINED FILTER

This section considers the bias of a filter using the kinematic constraint as a pseudomea-
surement. Define

eklk = Xk - XkL, (4.52)

ekl&-1 = Xk XklkjI

= Fl;-IX&-j + Gk-lwk-I -- F

= IA-ICL-Ilkl- + G.-lw.-U , (4.53)

where XVk' is the filter state estimate after the kinematic conws,raiut has been applied. Using

Eqs. (4.32)-(4.34),

-~~~~Ik{[J j'~]Al}
-" klk-1 - K X7' D, Cklk-. - Kk

I (I- K&Lk ]klk-I - Kk [p] (4.54)

Ck+I-••, = ( - K'kLk)ckl-,_ - F&,["k + GkW (4.55)

k Ik Fk(I - KkL.&)E,[eItklku (4.56)

If E [kik-J 0. then E Ck+ Ik 0.

Lemma 7: The kinematically constrained filtet is unbiased if the system in Eqs. (4.1) and

"(4.2) is uniformly completely (ontrollabie.

4-9
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Proof: Define the Lyapunov function

Vk =E [Tek-, I P4j 1 E[I.I (4.57)

It can be easily shown that

V= tr(P-_lE[ekikl]E[eCTl]) (4.58)

Note that

Pkik = (I - Kk)Pklk-1

= (I - KkLk)Pklk.l(I - KkLk)T + KkRkKT (4.59)

Pk+llk = FkPklkFkT + GkQkG'l (4.60)

If the system in Eqs. (4.1) and (4.2) is uniformly completely controllable, then the system

with kinematic constraint is uniformly completely controllable, and PkI,, > 0, k > N, by

Theorem 2. Using Eq. (4.60), Pkik-I > 0, therefore Vk > 0 and Vk is a Lyapunov function.

Define the differential

A.V.+1 = Vj+ I - Vk

Using Eqs. (4.56) and (4.57),
AL+ E e[ ' 'rP4--kk -PZ

IV! -, ] {(I- KL&.)' F kP/ F&(J- Kl Lk)- P(I•_, )E(ek[lkj (4.61)

Usiag the matrix inversion Lemuna, and assuming R > 0 and GkQkC?' > 0,

LGt(F( - O Lk)

(I -hKkLk) - PI - ±P &k(GkQiG")-'Fi'(1 - KLLI.) -,
- (I- K )L7.)tPjI - Pj(P•I• + F"(GkQkG")-'FFf)-1

P4' I (I - tE&ILk) - kIi,1
(I - k LLO) Pý,1) - k Lk) - -(I-K&K L )Tp-3

(pA + (,,7" "Q r-'-N )

(I- IQLf)f P-_ - I)-' 1 -- 1 [I+-' + FG(GQ'kG'). , -kl'- kjk- I kl-I r kk k-

- L•,(Lk, &P _IL" + i)- - Pil +_(•,P& + (G)QkG Pkf1)-Pik- (4-62)

Eq. (4.62) ;s the sum of one negative semidefinite matrix and one negative definite matrix,

respectivdy. This indicates that Ali+1 is negative definite. Hence V' -* 0 as k --* oc.

4-10
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Therefore E[Clk.] ---- , 0 as k -- oo, and the hfier with the pseudomieasurement is unbi-

ased.

Q.E.D.

4-11
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CHAPTER 5

SIMULATION RESUL.TS

This chapter presents simulation results that demonstrate the potential for -improving
the tracking performance of the constant acceleration Kalman filter through the use of the

kinematic constraint, The simulation results are presented to document the benefits of the

kinematic constraint for vArious data rates, measurement error variances, constraint error
variances, and deviations from constant speed. This chapter is divided into four sections. The

first section describes the simulation procedures employed for comparing the kinematically

constrained filter with the standard unconstrained constant acceleration filter. The second

section presents the target trajectories used in this study. The third section present3 the
simulation results for the unconstrained and kinematically constrained filters under a 'variety

of tracking conditions. The final section summarizes the simulation results.

SIMULATION PROCEDURES

The system models used for the simulation -tudies are discussed in this section. A
constait acceleration motion model was used since it is often used for tracking maneuvering
targets. The discrete-time dynamics model for constant acceleration motion is given by Eq.

(2.3) with

'A I 01
Fk= A (5.1)

L(- 0 A

Gk = (5,2)0 0 B

where
1I TT

A= 0 1 T (5.3)

0 0 1
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B = T] (54)16 2

Xk = [ Xk ik xk Yk Yk 4k Zk Zk ýk IT (5.5)

The state, Xk, contains the positions, velocities, and accelerations of each coordinate. For

this simulation study, the data rate was periodic with period T being the time between
successive measurements. To complete the time update portion of the Kalman filter, Qk

must be established. Since the output of the filter is in Cartesian coordinates, the model

error wk of Eq. (2.3) was modeled as a derivative of an acceleration and was assumed to

have the same variance for 'each coordinate. Thus, with E[wk] = 0 and E [wiwT] = Qk~jk,

[q2 0 01

Qk= 0 q' 0 = qki3 (5.6)
0 0 q 2

To define the measurement equation, tite measurement equation for range, bearing, and
elevation, which is a nonlinear function of the state Xk, must be linearized. The measurement

"equation as a function of the actual target state is given by

H + Y 2 + 4)2
Z = = tan-I (!) + F 1 (5.7)

L:: 'tallf-) kL VI'k+k

where r7', bk, and ek are the measured range, bearing and elevation at time k, respectively.
The ", t,4, and t, are the measurement errors for time k. The measurement errors are

dcaracterized by E[t,.j] 0 and E [vjvi] = R&6jk with

ra, 001
Rk= 0a (5.8)I0 0 02

Let

• rk Y- + Yk Z4

-z ta ll - (5.9)

tail-
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Using a first order Taylor series to linearize Eq. (5.7) about the predicted state estimate

Xk.k-. gives

2k = HkXk + vk (5.9)

where

kZ = Zk - hk(Xklk-l) + -HXlk- 1  (5.10)

-":--Ohk (Xk) (5.11)
-Xk Xk=Xklk-1

The Hk matrix is given by

Xkjk-1 0 0 Yklk-1 0 0 Zklk-1 0 0"
Rk•.-1 Rk0k-1 Rklk-1

H.= -Ykjk-1 0 0 Xklk-I 0 0 0 0 0 (5.12)
Ik RhklkI_ Rhklk_1

-Zklk-lXklk-l 0 0 -Zklk lYkjk-1 0 0 Rhkjk-I 0 0

n R hkjk _ .1R 'kl R klk- 1Rkl_ 0 0 RI2 0

k~k-Ik~k-1k~k-I

where

Rkj-Ik =(ilk-_ + Yk± lk-I + ZIkj-i)ý (5.13)

Rhkjk,.l =(X• - + 21k-•1• (5.14)

The kinematic constraint is incorporated into the track filter with the pseudomeasurement

equation given in (3.19). The state estimate, XA.Ik, and associated error covariance,

P1&l, from the measurement update portion of the filter are used in the constraint update
process. The constrained state estimate XIand associated error covariace are given

by

xC =I - C (5.15)

P I =[I- KC,, P, (5.16)

where

K' = Pj- kG1 (ckPkjkCk" + (R.16)1

cL.0 0 o 1k 0 0 k 0 0 1 (5.17)
SkIk

s~l• =(�jk + ý1,+ " (5.1)
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The only parameter involved in implementing the kinematic constraint that can be manip-

ulated by the user is the constraint variance R'. As discussed in Chapter 3, the constraint

variance has the form

Ro = r, (8)k + ro (5.19)

where k is the iteration number of the filter, r, is chosen to provide the initial constraint

variance, r0 is chosen to provide the steady state constraint variance, and 8 provides the

decay rate of the constraint variance. For a constant acceleration track filter, Eqs.(4.40),

(5.2) and (5.6) give a relationship for determining ro. For the case of the total target velocity

being in one coordinate, Eq. (4.40) can be reduced to

ro > 1T2q~' (5.19)

where - is selected by the filter designer. Note that for this case with Gk having the form

given by Eqs. (5.2) and (5.4), r0 is dependent on the sample period. The parameter -f allows

the user to "tune" the constraint variance to achieve a desired reduction in the state error

covariance as discussed in Chapter 4.

DESCRIPTION OF TARGET TRAJECTORIES

This section describes the three target trajectories to be used in the simulation study.

The first target trajectory, Trajectory 1, shown in Figure 5.1 is a constant speed, 3 g circular

trajectory that will be used to assess the tracking performance during a maneuver. In the

second trajectory, Trajectory 2, shown in Figure 5.2 the target moves with constant velocity

for the first 15 sec, makes a 90 degree, constant speed turn during the next 15 sec, and moves

with constant velocity during the last 12 sec. The first two trajectories maintain a constant

height and constant speed so that they are ideally suited for the constant speed kinematic

constraint. The third target trajectory, Trajectory 3, shown in Figure 5.3 makes a constant

height turn while the speed decreases at a rate of 2 rn/sec2 . This trajectory will be used

to assess the sensitivity of the performance of the filter utilizing the kinematic constraint to

deviations in speed.

RESULTS

This section presents the simulation results for the kinematic constraint. The results

for eadc track filter are an average of 100 Monte Carlo experiments. The Root-Mean-Square

Errors (RMSE) in position, velocity, and accelerations will be used as the measure to assess

5-4
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the accuracy of the filters. The parameters r, and 6 for implementing the constraint were

fixed with rl = 200 and 6 = .9 throughout the simulation study. The parameter 7 will be

adjusted to manipulate R" by its steady state value ro.

First, simulation results will be presented to demonstrate the improvement in tracking

performance provided through the use of the kinematic constraint. For this part, the data

rate is 4 Hz with ar = 8 m and ab = ae = 2 mrad. The results for tracking Trajectory

1 with a kinematically constrained and an unconstrained track filter are given in Figure

5.4. The model error was qk = 3 m/sec3 for both filters and ' = 2 for the kinematically

constrained one. Notice the significant improvement in position, velocity, and acceleration

estimates gained through using the kinematic constraint. More improvement is achieved

during filter initialization and when the target is further from the radar where the sensor

errors are greater.

The tracking results for Trajectory 2 are given in Figure 5.5. The kinenjatically con-

strained filter provides improved state estimates when compared to its unconst.rained coun-

terpart for this maneuver. By using the kinematic constraint, improved target state estimates

are obtained during the maneuvering portion of the flight with improvement in tracking ac-

curacy before and after the maneuver. The model error was qk = 12 m/sec3 for both filters

and ' = 8 for the kinematically constrained filter. The greatest amount of improvement

occurs for the velocity and acceleration estimates.

The accuracy of the tracking results is highly dependent on the rate at which the mea-

surements are received with higher data rates yielding better state estimates. The effects of

data rate on the performance of a track filter using the kinematic constraint is considered

with simulation results for data rates of 2 Hlz, 4 lIz, and 10 Hz. The measurement errors

are fixed with ar = 8 m and ab = a, - 2 mrad, The model error is qk = 3 m/sec3 for both

filters and y = 1 for the constrained filter. Figures 5.6, 5.7 and 5.8 give the tracking results

for Trajectory 1 at data rates of 2, 4, and 10 Hlz. The kinematic constraint provides about

the same level of improvement in the state estimates at each data rate.

-Figures 5.9, 5.10, and 5.11 give the tracking results for Trajectory 2 at 2, 4, and 10 Iz.

The motion model error is qk = 12 m/sec3 for both filters and 7 = 1 for the constrained filters

At all three data rates, the constrained filter outperformed its unconstrained counterpart.

Note that data rate has less of an adverse effect on the performance of a kinernatically

constrained filter than the unconstrained one.
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The kinematically constrained track filters outperformed their unconstrained counter-

parts for each of the data rates considered. The tracking performance has not been max-

imized, but the value of the kinematic constraint is clearly demonstrated. The use of the

kinematic constraint in a filter which receives its data at a low rate can track as accurate

and sometimes more accurate than an unconstrained filter receiving data at a much faster

rate. If a system is limited in its data rate due to hardware or other restrictions, the kine-

matic constraint can improve the accuracy of the state estimates of the target. Improvement

in tracking accuracy for the constrained filters when compared to the unconstrairned filters

occurred at all the data rates considered in this part.

The effects of the constraint variance on tracking performance is of considerable impor-

tance for filter design. Steady-state variance of the constraint error is examined because the

variance at initialization can be made to decay very quickly with the formulation of R' as

given in Eq. (3.20). The effects of the constraint variance on tracking performance will be

analyzed by varying -y in the formulation of ro given in Eq, (5.19). The effects of -Y are

assessed for Trajectories 1 and 2 being considered at data rates of 4 Hz and 10 Hz with

a, = 8 m and a, = ob = 2 mrad. As shown in Figures 5.12 and 5.13, the effects of the

constraint variance on the tracking results for Trajectory 1 were small for a data rate of 4

Hz with y = 0.5,1,8 and qk = 3 m/sec3. The RMSE in position, velocity, and acceleration

estimates are fairly similar for each value of 7. A slight degradation in acceleration estimates

can be seen as 7 decreased because the steady-state variance was increasing. However, this

is only a small degradation in performance in this case. Decreasing the constraint variance

could provide slight increases in tracking performance, but simply applying the constraint is

sufficient to provide improved tracking results.

For the circular trajectory with a 10 Iz data rate ard - = 0.5, 10,20, varying -t has a

significant effect on the performance of a kinematically constrained filter. This point is shown

in Figure 5.13. The steady-state constraint variance i creases and becomes too loose as -t

is decreased. There is a distinct separation in the accuracy of the velocity amd acceleration

estimates. The best performance occurred when - = 20; slight increases in performance

could occur if -i was increased to tighten the constraint variance. Notice the position and

velocity estimates beginning to diverge toward the end of the maneuver when - = 0.5 and

the data rate is at 10 Hlz. This is again a result of setting the constraint variance too large.

The effects of the constraint variance are considered for the target making a 90 degree

turn. The model error is again q%. - 12 rn/sec 3 , with y = 1/16,8. The results for a ,1 H1z

data rate are shown in Figure 5.14. Changing the value of the steady state constraint has

5-17



NAVSWC TR 91-561

146

1A4

122

10-
I 11: gamma - 8

^' 2: gamma - t
•2 3: gamma - .5

6

10 20 30 40 50 60
TIUE (SEC)

2

4 11 gamma - 8

2: gamma - I
3: gamma - .3

1.5

• a

ol 
3: gamm a - ,5

-0 20 30 40 50 w

IW( (S*EC)

Figure 5.12 Results for Different Constaint Variances for Trajectory I With 4 lHz Data,

q = 3 m/sec , o, = 8 m, and a, = ab = 2 mrad

5-18



NAVSWC TR 91-561

14-

12-12

10-

4- 1: gamma - 20
2: gamma - 10

2 3: gamma - .5

0
0 10 20 30 40 so 80

TIUE (SEC)

10

13- 2

J AU
6-

S 4.

2- 1: gamma - 20

2: gamma;- 10

0 0 IO 2 .0 3 0 4 0 so 60

TWEJ (SEC)

5 19



NAVSWC TR 91-561

very little effect on the overall performance of the track filter. The position and velocity

estimates are quite similar for each value of 'y with a slight difference in results occurring

for the position estimates. Decreasing -y loosened the constraint variance and improved the

tracking of the position. The tracking performance is essentially insensitive to the constraint

variance in this case. However, the position estimates from the kinematically c(-nstrained

filters are highly sensitive to the constraint variance for a data rate of 10 Hz. In Figure 5.15,

the position estimates improved as the constraint variance was loosened by decreasing -Y.

There are also slight changes in the velocity results, but the changes are not obvious d'.te to

-the amount of error incurred at the beginning and end of the turn.

The steady-state constraint variance can be very critical to the tracking accuracy of

a kinematically constrained filter. If the target is in a maneuver, the ,:ariance should be

tightened by increasing y in order to track the target more accurately. However, if the

target is going through a complete maneuver, the constraint should be applied very loosely

by decreasing -f to attain greater accuracy. Increasing the variance allows the kinematic

constraint to track a wider range of maneuvers more accurately. It is important to know the

data rate and model error when choosing y. An improper choice of -y may not provide the

most accurate results. The constraint variance should be based on the data rate and model

error so that tracking improvemnent can occur for the maneuvc •- with the largest change in

acceleration.

The effects of measurement error on the performancc of the kunematic constraint are

discussed next. The two trajectories have three different anounts of macsurement error

added to them to simulate different sensor accuracies. T'i.e three noise levels are denoted as

low, medium, and high. Low noise hl as = 4 ni and a, = ab = 1 mrad, medium ,,oise has

a, = 8 In and e= a = 2 mrad, and high noise hi ar = 12 in and a, = ab = 3 mrad, The

filters operate at a 4 11z data rate with -y I for the constrained filters. A comparison is

made between the kinematically constrained a.- .nconstrained track filters for each noise

level.

The effects of measurement err..Jr on tracking perforriviuce for the target performing a

circular maneuver are presented first. The tracKing results of the unconstrained filter are

highly dependent on the amount of measurement and irocess error as shown in Figure 5.16.

As expected, the accuracy of Oxc state estimames increases as the amount of error decreases.

The results for the constrained filters are shown in Figure 5.17. The tracking accuracy for

the constrained filters at the different noise levels is much better than the unconstrained

filters. The acceleration tracking accuracy for the constrained filters is somewhat insensitive
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to the size of a,, as, and a, for this maneuver. The velocity tracking accuracy is slightly

sensitive with the most sensitivity shown in the position estimates. The constrained track

filters ere less sensitive to the amount of measurement noise than the unconstrained filters

for this circular maneuver.

The effect measurement error has on tracking accuracy for the 90 degree turning target

is not as obvious as the target maneuvering in a circle. Both types of filters appear to provide

the same tracking estimates. The unconstrained filter results are shown in Figure 5.18. As

expected, an increase in tracker accuracy occurs when the error decreases, with the most

improvement in the position and velocity states. When compared to its constrained counter-

parts as in Figure 5.19, most of the improvement using the kinematically constrained filter

occurs in the maneuver portion of the target trajectory. The kinematically constrained fil-

ters did provide better state estimates than thtir unconstrained counterparts for the different

noise levels used in the study.

This part of the simulation results is devoted to deviations in target speed. The previous

parts involve tracking targets maneuvering at constant speed. The kinematic constraint is

designed to track this type of maneuver. However, if the target deviates from constant speed,

can the kinematically constrained track filter provide better results than an unconstrained

one? What must be done to ensure that the tracking is accurate throughout the maneuver?

This is the focus of the following simulation results.

Trajectory 3 includes a maneuver with a deviation in speed. The target has a constant

height of 200 in anid is making a circular-type maneuver. The duration of the turn is 40

sec and has an initial and final speeds of 330 rn/sec and 250 m/sec, respectfully. The

total acceleration also changes from an initial magnitude of 3 g to 2.3 g. As a result, the

"general trend of the target is to spiral in on itself. There are two sets of simulation results

for this part. The first set has a data rate of 4 Iz and the second a data rate of 10 1Iz,

but both have a model error of qk = 3 m/sec3 and measurements errors of a, = 8 ni and

ae = a = 2 mrad. The kinematically constrained filters are compared to their unconstrained

counterparts. Various values of 7 were used to tighten or loosen the constraint variance.

The tracking results for the 4 Iz data rate shown in Figure 5.20 indicate that the

kinematic constraint can be employed to improve the estimation accuracy even if the target
does not maintain constant speed. The constraint variance must be very loose throughout the

entire maneuver for improvement in tracking to be maintained. When y is set to large, the

state estimates eventually degrade to a point where the unconstrained filter outperforms the
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constrained one. This is highly evident in the position and velocity estimate results. However,

when the constraint variance is set loosely, improved state estimates can be achieved through

the entire maneuver.

The tracking results for 10 Hz are very similar to the 4 Hz data rate results. As shown in

Figure 5.21, the constraint must be set extremely loose for improvement to occur throughout

the entire duration of the maneuver. If the constraint variance is set too tightly, the state

estimates begin to diverge during the maneuver. The constraint must be applied loosely

if the target is not maneuvering at constant speed. Thus, non-constant speed targets can

be tracked with improved accuracy with the constant speed kinematic cGnstraint if the

constraint variance is set properly.

SUMMARY OF THE SIMULATION RESULTS

LThe formulation and implementation of the constant speed kinematic constraint as a

pseadomeasurement can improve the tracking accuracy of maneuvering targets. The sim-

ulation results clearly demonstrate that the kinematic constraint is a useful technique to

improve tracking accuracy. The effects of data rate, measurement error, and constraint vari-

ance were all investigated. For each of these variants, the kinematically constrained filter

outperformed its unconstrained counterpart. The sensitivity to increases in measurement

noise of the tracking results for the constrained track filters is substantially less than that of

the unconstrained filters.

The performance of kinematically constrained filters can be tuned using the constraint

variance. In most cases, simply applying the kinematic constraint in the track filter using

an arbitrary constraint variance is enough to provide improved tracking results. However,

the type of maneu, er,, Uata rate, and model error must be considered before the value of I

is chosen. An improper choice of y can yield tracking rosults which do not provide the most

improvement in performance. The constraint variance is a very significant parameter the

user can mauipulate to achieve the degree of improvement desired.

The formulation of the kinematic constraint was designed to improve tracking perfor-

ia•"nce by reducing the error in the acceleration estimates of the target. The simulation

results support this point. The increase in acceleration estimate accuracy provided much

needed improvement of the velocity estimates. The improvement in estimating the target

state, especially the velocity and acceleration, is important for weapons and fire control.
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The improved state estimation accuracy obtained by including the kinematic constraint

as a pseudomeasurement to a track filter has been demonstrated using the simulation results

of this section. Improvement has been achieved for a variety of tracking conditions. The

amount of improvement can be set by varying the constraint variance under the conditions

described above. The target maneuvers chosen for the simulation results demonstrated that

the kinematic constraint is useful in increasing tracking performance. Other targets similar

to the decreasing speed target should be explored in depth to determine the amount of

improvement that the kinematic constraint can provide and under which conditions when

compared to its unconstrained counterpart. The accuracy of state estimates for maneuvering

targets can be greatly improved by employing the kinematic constraint with this formulation.
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CHAPTER 6

SUMMARY AND CONCLUSIONS

A new formulation of the kinematic constraint was prcsented, and the use of the kine-

matic constraint was shown through simulation results to improve the tracking of constant

speed, maneuvering targets with a constant acceleration Kalman filter. Under the assump-

tion of Eq. (4.40) the system with kinematic constraint was shown be uniformly completely

controllable and uniformly completely observable which implies that the kinematically con-

strained filter is uniformly asymptotically stable. As discussed in Chapter 4, the sufficient

condition of the assumption in Eq. (4.40) is not very restrictive in practice. The kinemati-

cally constrained filter was also shown to be unbiased. In addition, the lower bound of the

covariance matrix of the kinematically constrained filter was shown to depend on a param-

eter - defined in Eq. (4.40). In the filter design process, the parameter -y may be chosen so

that this lower bound does not violate the Craaner-Rao lower bound.

While improvernent in tracking performance was obtained with the kinematic constraint,

a quantitative measure of the benefits gained by using the kinematic constraint as a pseu-

domeasurement are not clear at this time. The kinematic constraint used in this work is

valid when the target is moving through a constant speed trajectory. While the parameter

-u. was introduced to relax the constraint, procedures for selecting the statistics of pk for the

case of a variable .speed target are not available at this time. As indicated by the simulation

results, the use of the kinematic constraint improves the tracking performance only when the

target is nwving at a constant (or nearly constant) speed. An important issue is to identify

the benefitb of this constraint when the target is moving at a rather variable speed. While

this issue has not been thoroughly addressed at this time, the Interacting Multiple Model

(IMM) algorithm [10] provides a technique for utilizing a kinematically constrained filter for

constant speed manieuvering targets in conjunction with other filter models for targets that

maneuver with variable speed. Thus, additional research is needed to show the benefits and

refine the method of implementation of the kinematic constraint. Also, methods for selecting

R' a priori and during the tracking process are also needed.

-- = =•6-1



NAVSWC TR 91-561

REFERENCES

1. Singer, R.A., "Estimation of Optimal Tracking Filter Performance for Manned Maneu-
vering Target," IEEE Trans. Aero. Elect. Sys., July, 1970, pp. 473-483.

2. McAway, R.J., and E. Delinger, "A Decision-Directed Adaptive Tracker,"IEEE Trans.
Aero. and Elect. Sys., 1973, pp. 229-236.

3. Bar-Shalom, Y., and Birmiwal, K., "Variable Dimension Filter for Maneuvering Target
Tracking," IEEE Trans. Aero. and Elect. Sys., Sept. 1982, pp. 621-629.

4. Clark, B.L., Development of an Adaptive Kalman Tracking Filter and Predictor for Fire
Control Applications, Naval Surface Warfare Center, Dahlgren, VA, NSWC TR-3445,
1977.

5. Berg, R.F., "Estimation and Prediction for Maneuvering Target Trajectories," IEEE
Trans. Auto. Cont., March 1983, pp. 294-304.

6. Alouani, A.T,, Xia, P., Blair, W.D., and Rice, T.R., "A Two-Stage Kalman Estimator
for State Estimation In the Presence of Random Bias and for Tracking Maneuvering
Targets," Proc. of 30h IEEE Conf. on Decision and Cont., Brighton, UK, Dec. 1991,
pp. 2059-2062.

7. Chang, C.B., and Athans, M., "State Estimation for Discrete Systems with Switching
Parameters," IEEE Trans. Aero. and El6ct. Sys., May 1978, pp. 418-425.

8. Chan, Y.T., IuN, A.G.C., and Plant, J.B.,"A Kalman Filter Based Tracking Scheme with
Input Estimation," IEEE Trans. Aero. and Elect. Sys., Mardc 1979, pp. 237-244.

9. Bogler, P.L., "Tracking a Maneuvering Target Using Input Estimation," IEEE Trans.
Aero. and Elect. Sys., May 1987, pp. 298-310.

10. Blora, H.A.P., and Bar-Shalom, Y., "The Interacting Multiple Model Algorithm for
Systems with Markovian Switching Coeffilcients," IEEE Trans. Auto. Cont., Aug. 1988,
pp. 780-783.

11. Tahk, M., and Speyer, J.L., "Target Tracking Problems Subject to Kinematic con-
straints," IEEE Trais. Auto. Cont., Mardc 1990, pp. 324-326.

12. Stubberud, Seminar in Katmnan Filtering, University of California, Irvine, University
Extension, Oct. i5-17, 1990.

7-1



NAVSWC TR 91-561

13. Jazwinsky, A. H., Stochastic Processes Filtering Theory, Academic Press, Sarn Diego,
CA, 1970.

14. McGarty, T. P., Stochastic Systems and State Estimation, John Wiley & Sons, New
York, NY, 1974.

7-2



NAVSWC TR 91-561

DISTRIBUTION

Copies Copies

ATTN DRRABINDERMADAN 1114SE 1 ATTN EDWARD PRICE 1
CHIEF OF NAVAL RESEARCH SCOTT GODFREY 1
800 N QUINCY ST FMC CORPORATION
ARLINGTON VA 22217-5000 1 DANUBE DR

KING GEORGE VA 22485
ATTN DR GLENN M SPARKS 1

ANTHONY VIDMARJR 1 ATTN JOSEPH S PRIMERANO 1
GOVERNMENT ELECTRONIC SYSTEMS RAYTHEON

DIVISION PO BOX 161
GENERAL ELECTRIC COMPANY DAHLGREN VA 22448
MOORESTOWN NJ 08057

ATTN DR RAGHAVAN
ATTN PROF YAAKOV BAR.SALOAM 1 LNK CORPORATION

DON LERRO 1 6800 KENNELWORTH AVE
ESE DEPARTMENT U-157 STE 306
260 GLENBROOK RD RIVERDALE MD 20737
STORRS CT 06269-3157

ATTN GLENN WOODARD 1
ATTN OLIVER E DRUMMOND SYSCON CORPORATION

PH D PROFESSIONAL ENGINEER 1 TIDEWATER DIVISION
GENERAL DYNAMICS PO BOX 1480
AIR DEFENSE SYSTEMS DIVISION DAHLGREN VA 22448-1480
10900 E 4TH ST
MZ 601-75 DEFENSE TECHNICAL INFORMATION
RANCHO CUCAMONGA CA 91730 CENTER 2

CAMERON STATION
ATTN DRJ N ANDERSON I ALEXANDRIA VA 22304-6145

A T ALOUANI 5
P K RAJAN I INTERNAL DISTRIBUTION:

DEPARTMENT OF ELECTRICAL
ENGINEERING E231 3

TENNESSEE TECHNOLOGICAL E232 2
UNIVERSITY E261 (GARNER) I

TTU BOX 05004 E32 (GIDEP) i
COOKEVILLE TN 38505 F21 I

F21 WPARKER) I
ATTN DR GEORGE SWISHER 1 F21 (RYAN) I
COLLEGE OF ENGINEERING F32 (HILTON) I
1fU BOX 05005 F41 2
TENNESSEE TECHNOLOGICAL F41 (TANNER) I

UNIVERSITY F41 (MARTIN) I
COOKEVILLE TN 38505 F41 (KLOCIHAK) I

(1)



NAVSWC TR 91-561

DISTRIBUTION (CONTINUED)

Copies

F44 1
G
G05 1
G06 1
G07 1
Gil (DOSSETT) 1
Gil (GROVES) 1
Gil (LUCAS) 1
G13 (BEUGLASS) 1
G20 1
G23 (OHLENMEYER) 1
G23 (JOHN BIBEL) 1
G23 (MALYEVAC) I
G43 (GRAFF) I
G70 1
G702 (AUGER) 1
G706 (BUSCH) 1
G71 1
G71 (BLAIR) 30
G71 (RICE) 1
G71 (GRAY) I
G71 (MURRAY) 1
G71 (CONTE) 1
G71 (WATSON) 25
G72 (GENTRY) I
G72 (BOYKIN) I
G73 (FONTANA) I
N06 I
N05 (GASTON) 1
N24 I
N24 (BAILEY) I
N24 (HANSEN) I
N24 (SERAKOS) I
N32 (CURRY) I
N35 (BOYER) I
N35 (HELMICK) I
N35 (HARTER) I
N35 (BAILEY) I
N35 (FENNEMORE) I

(2)



Form ApprovedREPORT DOCUMENTATION PAGE OMB No. 0704-0188

Publicrneporting burden for this collection of information is estimated to aveiage 1 hour per response. including the time for reviewing instructions, searching existing data souirces.
gatfiering and maintaining the data needed, and completing and reviewing the collecticos of information Send comments regarding this burden estimate or airy other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services. Directorate for Information Operations and Reports, 12 1S Jefferson
Davis Highway. Suite 120.4. Arlirrgton. VA 22202-4302, and to the Office of Management and Badget. Paperwork Reduction Project (0704-0188), Washington. DC 20503

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE j3. REPORT TYPE AND DATES COVERED

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Use of Kinematic Constraint in Tracking Constant Speed Maneuvering
Targets

6. AUTHOR(S)

W. D. Blair, G. A. Watson, and A.Trj Alouani

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

Naval Surface Warfare Center (Code G71) NAVSWC TR 91-561
Dahigren, VA 22448-5000

9. SPONSORING/ MONITORING AGENCY NAME(S) AND 10. SPONSORING/ MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

1 2a, OtSTRIBUTIONIAVAILABILITY 12b. DISTRIBUTIlON CODE

Approved for' public release; distribution is unlimited.

11. ABSTRACT (Alij rseum ZOO %votijq

rThle use of a kinemautic constraiint a~s a psaudonita.surenlent. in the trzacking of constant speed maneuvrering
targfets is considered in this report. The kinetwific constraint provides additional information ahotit the
tairget motion that can 1K, processed as a su dowsrn to improve tracking p)erformance. iflo
kineniatic constraint for constant s4peed targets is A -V -=0, where A ind V are the target acceleration and
vrelocity vectors, respectively. InI previous publicatiOnsi, thle mensuroulent. uquation for processing the
kinematic constraint as a pseudomeasurement, war, derived by a direct application oft"Iaylor's thesorem for a
first order linearization of that pseudomeasuremient equation. A new formulatio~n of the Constraint eqUntion
that provides significantly better tracking petifontiance, than thle previous formulation is prownend. and the
raitionalt for the new formulation is disiussed. Thei filter usi-ýng the kinematic con.straint for constant speecd
targets is shiown to be unbiased and ,ztochasqically stiAble. Simulated tracking results are given to show the
potentiaxl for further improving the performance of a trAck filter through the use of the proposed kinemlatic
consitraint. Simulation studies are presented for various data rates, levels of measurement errorlt, and
deviations in speed.

14. SUBJECIT TEfMS IS. NUMBER OF PAGES

kinemuatic constraint5 Wudomt~asumrenent, constant %peed tarizets 6
16. PRICE CODE

(W REPORT 1 OF THIS PAGE OF ABSTRACT

UNCLASSIFIED) UNCLASSIFIED UNCLASSI FIEl) U11

USN 7540101-280.5$00 Stand~ard Form 298 (Rev 2-89)



GENERAL INSTRUCTIONS FOR COMPLETING SF 298

The Report Documentation Page (RDP) is used in announcing and cataloging reports. It is important that
this information be consistent with the rest of the report, particularly the cover and its title page.
Instructions for filling in each block of the form follow. It is important to stay within the lines to meet
optical scanning requirements.

Block 1. Agency Use Only (Leave blank). Block 12a. Distribution/Availability Statement.
Denotes public availability or limitations. Cite any

Block 2. Report Date. Full publication date including availability to the public. Enter additional limitations
day, month, and year, if available (e.g. 1 Jan 88). Must or special markings in all capitals (e.g. NOFORN, REL,
cite at least the year. ITAR).

Block 3. Type of Report and Dates Covered. State
whether report is interim, final, etc. If applicable, enter DOD - See DoDD 5230.24, "Distribution
inclusive report dates (e.g. 10 Jun 87 - 30Jun 88). Statements on Technical Documents."

DOE - See authorities.
Block 4, Title and Subtitle. A title is taken from the NASA - See Handbook NHB 2200.2
part of the report that provides the most meaningful NTIS - Leave blank
and complete information. When a report is prepared
in more than one volume, repeat the primary title, add
volume number, and include subtitle for the specific Block 12b. Distribution Code.
volume. On classified documents enter the title
classification in parentheses.

DOD - Leave blank.
Block 5. Fundin Numbers. To include contract and DOE - Enter DOE distribution categories from
grant numbers; may include program element the Standard Distribution for
number(s), project number(s), task number(s), and Unclassified Scientific and Technical
work unit number(s). Use the following labels: Reports.

NASA - Leave blank.
"C - Contract PR Project NTIS - Leave blank.
G - Grant TA Task
PE - Program WU Work Unit Block 13. Abstract. Include a brief (Maximum 200

Element Accession No. words) factual ýummary of the most significant
information contained in the report.

BLOCK 6. AuthorUs). Name(s) of person(s) responsible
for writing the report, performing the research, or Block 14. Subject Terms. Keywords or phrases
credited with the content of the report. If editor or identifying major subjects in the report.
compiler, this should follow the name(s).

Block 15. Numbr of Pages. Enter the total number
Block 7. Performing Oranization Name(s) and of pages.
address(es). Self-explanatory.

Block 16. Preýo_ i C e. Enter appropriate price code
Block 8. Performing Organi_,tion Report Number, (NTIS only)
Enter the unique alphanumeric report number(s)
assigned by the organization performing the report. Block 17.-19. Se(urity Classifications. Self.

explanatory. Enter U.S. Security Classification in
Block 9. SponsoringLMonitorinq Agency Nam nd accordance with U.S, Security Regulations (i.e.,
Address(e"). Self-explanatory. UNCLASSIFIED). If form contains classified

information, stamp classification on the top and
Block 10. SporssorinQlMonitoring Agencv Feport bottom of this page.
Nu ber. (IfKnown)

Block 20, Limitation of Abstract. This block must be
Block 11. Sunppementary No•te . Enter information not completed to assign a limitation to the abstract.
included elsewhere such as: PTepared in cooperation Enter either UL (unlimited or SAR (same as report).
with...; Trans. of...; To be published in.... When a An entry in this block is necessary if the abstra.t is to
report is revised, include a statement whether the new be limited, If blank, the abstract is assumed to be
report supersedes or supplements the older report. unlimited.

S'andatd Frn N,8 Bk (Re'v 2 19)


