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Structural Assessment

1
A Structural Cognitive Approach to the Assessment

of Classroom Learning

The present paper describes a method of assessing classroom knowledge
that involves an integration of psychcmetric and cognitive perspectives.
Perhaps because of their different interests these two approaches
historically have had relatively little influence on one another. Whereas
psychcmetricians are primarily concerned with the predictiveness of a
measure, cognitivists have been more concerned with representational models
of knowledge. In this paper we hope to show that there exists a natural
synergism between the cognitive and psychometric approaches that when
appropriately integrated can mutually facilitate progress towards their
respective goals. More specifically, the cognitive perspective, with its
structural assumptions regarding the representation of knowledge, can provide
the basis for some new and useful methods to assess classrom learning. The
psychcmetric approach, on the other hand, with its emphasis on test validity
and reliability, can provide a much needed empirical basis for models of
knowledge representation. i_

We begin this paper by contrasting the cognitive approach and the
psychometric approach as they are implemented in classroom assessment. We
then turn to a more detailed discussion of a structural approach to knowledge
assessment, which integrates the cognitive and psychometric perspectives
within the context of classroom learning.

Two Contrasting Perspectives on Knowledge Assessment

The psychometric approach, as applied in the classroom
setting, usually assesses knowledge with conventional essay, true-
false, and multiple choice exams. A student's performance on this
type of exam is usually represented in terms of a percentage
correct. Many educators are perhaps so familiar with this generic
form of examination in their classes that they no longer consider
the assumptions underlying this "how much" approach to knowledge
assessment. By accumulating points across questions, we are
assuming a kind of independence that suggests we conceptualize
knowledge as a list of independent facts or elements. Although this
criticism maybe less true of essay exams, it remains the case that
using a single index, such as percentage correct tells us very
little regarding what a student knows or does not know.

An simple list of item may serve as an appropriate representation for
certain limited domains (e.g., the capital cities for the 50 states of this . For
country), but there is a great deal of empirical and theoretical work 0 r
from the cognitive literature, suggesting that a list is not a valid means of
representing more complex domains of knowledge (e.g., Ci, Glaser, & Farr,
1988; Genter & Collins, 1983). A cxmmonly held and long-standing assumption 0 i
in cognitive psychology is that knowledge is organized and structured (Bower,
1975; Tulving & Donaldson, 1972; Wertheimer, 1945). From the cognitive
perspective, to be knowledgeable of a domain, one must understand the
interrelationhips among the important concepts within the domain. Consistent ,/

with this assumption, cognitive models of knowledge representation are - '
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primarily concerned with the types of structures that organize bodies of
knowledge. In fact, the meaning of any specific concept is assumed to be
largely dependent on its interrelationships with other concepts. Although
there are a variety of structural models of knowledge in the cognitive
literature (e.g., Anderson & Bower, 1973; Collins & Quillian, 1969), most
share a central theme in assuming that the interrelations among concepts is
an essential property of knowledge.

As Shavelson and colleagues (Schavelson, 1972; Schavelson & Stanton,
1975) realized some two decades ago, this assumption regarding the
representation of knowledge has some iqportant implications for the
assessment of classroom learning. Basically, how we assess knowledge should
be consistent with how we assume knowledge is represented. If structural
properties are an important component of knowledge representation, then our
assessment tools must measure these structural properties. Over the past few
decades, an impressive literature has accumilated indicating that the
structural properties of domain knowledge are closely related to competence
in the domain (e.g., Chase & Simon, 1973; Chi, Glaser & Rees, 1981)'. From
this perspective, knowledge of a domain implies at some level understanding
how the various donain concepts are interrelated. This view strongly suggests
that our methods of assessment must capture this structural component of
knowledge in order to be valid.

An obvious implication is that we should use some type of cognitive
representational model to assess an individual's knowledge of a domain. In
the next section we describe in some detail how a structurally oriented
approach to knowledge assessment can be successfully implemented. Howevei,
before we conclude this section we need to discuss how the structural
assessment approach is mutually beneficial to the cognitive approach and the
psychometric approach as it is applied in the classroom. Its potential
benefits to the psychometric approach are twofold. First, it would more
solidly ground classroom evaluation in a context of knowledge representation
theory. Secondly, if structural aspects of knowledge are related to domain
performance, the assessment of these structural properties should improve
prediction. Finally, as will be discussed in same detail later, the
representation may be presented in the form of a visual graph that allows the
instructor to more easily identify the locus of a student's misconceptions
regarding the domain. This in turn could facilitate individualized training
intervention.

One benefit of a structural approach to assessment for cognitive
theory is that it provides an empirical basis for evaluating different
representational models of knowledge. This type of representational
v;-: idation has been largely lacking in the
cognitive literature. As will become apparent when we describe the
implementation of the structural approach, the structural representations
are evaluated in terms of their ability to predict classroom exam
performance. In other words, each student will have her unique, empirically
derived representation of a knowledge domain. Thus, predictive validity plays
a central role choosinq a theoretical representation of domain knowledge.
This stands in contrast to the methods by which most cognitive
represesntational models are validated. Cognitivists have
been far more concerned with issues relating to the architecture of their
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models of semantic memory and knowledge representation. Among other things,
these models attempt to capture the way we rapidly access and retrieve
various bits of information from memory. Experiments designed to test these
models often look at how stimulus parameters (e.g., word length) influence
response latencies. The models are intended to apply to large populations
(e.g., native English speaking adults), or specific groups (e.g., expert
prLogat -r), with little or no interest in individual differences.

In summary, our aim is to build scme bridges between applied educational
testing and cognitive theories of knowledge representation. We believe the
schism between the two fields is unnecessary and counterproductive. It
developed, we believe, primarily out of their different interests. The
cognitivists were concerned with the development of models of cognitive
representational systems, whereas the educational assessmnt researchers were
more concerned with the immediate issues of validity and reliability.
Indeed, there exists a natural synergism between the two fields that could be
mutually beneficial to the progress of both. Specifically, we hope to show
that test theorists' concerns with predictiveness will benefit modeling of
cognitive structure, and the cognitivists' structural perspective will
positively influence the development of the methods used to assess domain
knowledge.

Structural Assessment: Methods and Findings
In this section we provide a general methodological overview of

structural approaches to knowledge assessment, with special emphasis on
methods we have developed over the past few years. Although not a
comprehensive review of the literature, the discussion should give the reader
a basic understanding of the structural approach, how it differs from more
conventional testing approaches, a smattering of relevant findings, and some
of the more important issues and ihlications viewed from the structural
perspective.

Research on structural knowledge assessment in classroom began to
appear, primarily in educational psychology journals, in the late 1960's and
early 1970's (e.g., Johnson, 1967; 1969; Kass, 1971; Shavelson, 1972;
Shavelson & Stanton, 1975). Several investigators reported encouraging
findings, indicating that classroom performance was related to students'
structural organization of the central concepts in the course. For example,
Fenker (1975) had students in a measurement class and a design class rate the
relatedness of pairs of concepts and then transformed their ratings to an MDS
spatial representation. The students' MDS representations were then compared
with a referent representation based on the average ratings of eight experts
in each domain. He found that students' similarity to the referent structure
was correlated (r=.54) with course grades in the design course, and (r=.61)
with grades in the measurement course. Despite the generally positive outcome
of this early work, there were a number of specific methodological problems
that hampered further advances. Perhaps foremost was the lack of
quantitative methods for evaluating structural representations. We believe
that our current recearch has made significant progress in addressing these
issues.
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Our discussion of structural assessment methods is organized in terms of
the three major steps that are involved in their implementation: (a)
elicitation - evoking same behavioral index of an individual's organization
of domain concepts; (b) representation - applying techniques that transform
the elicited data into a representation that captures the inportant structural
properties of domain knowledge; and (c) evaluation - quantifying the level of
knowledge or sophistication that is reflected in the representation.
Elicitation

Elicitation, as the word suggests, is the process of evoking or
extracting what a person knows about some knowledge damain. There are a wide
range of methods for eliciting knowledge, ranging from direct approaches, such
as interviews and conventional essay exams, to more indirect approaches where,
for example, knowledge may be inferred on the basis of reaction tines (e.g.,
Collins & Quillian, 1969).

One important point about elicitation is that the method of elicitation
should be compatible with the cognitive model of knowledge representation.
Thus, if it is assumed that knowledge is structural in its representation, it
follows that the elicited behavior should be sensitive to the
interrelationships among the concepts. The implications of this assertion
will be better appreciated after we have discussed the elicitation,
representation, and evaluation phases of the structural approach.
For the present, it suffices to say that the elicitation procedure must
provide same indication of the relatedness between pairs of concepts. With
an appropriate representational transformation of these relatedness ratings
it should be possible to capture more global structural properties of damain
knowledge.

Although a variety of elicitation methods have been used to obtain
concept relationships, including word associations (Johnson, 1967), ordered
recall (Cooke, Durso, & Schvaneveldt, 1986), and card sorting (Shavelson &
Stanton, 1975), simply having subjects make subjective ratings of degree of
relatedness between pairs of concepts works quite well in assessing an
individual's knowledge of the interrelations among domain concepts (Fenker,
1975; Goldsmith, Johnson, & Acton, 1991). Furthermore, there may be certain
advantages to using relatedness ratings to elicit domain knowledge. First,
subjects have no difficulty using a numerical scale to express their sense of
.celatedness. As a result, it is relatively simple to autnmate the
administration and scoring of the ratings. This allows for the objective and
efficient gathering of large amounts of relatedness data. Second, unlike essay
exams and interviews, relatedness ratings do not assume that subjects have
conscious access to all relevant knowledge. In fact, in our own work we have
found that requiring subjects to make rapid relatedness judgments on the basis
of their initial intuitions may result in more reliable and valid ratings than
allowing unlimited time.

Two questions about concept selection inevitably arise when using
relatedness judgments to assess domain knowledge, namely, how many and which
concepts should be rated? Not surprisingly, these two questions are closely
related, since thc number of concepts required to obtain a valid assessment
is likely to depend on how the concepts are selected.

In deciding on the number of concepts to be rated we must consider how
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the number of concepts influences the total number of pairs that are rated.
At the extremes each concept could be paired with one or all other concepts
in the list. Because some structural methods of analyzing ratings require
that data be collected on all pairwise combinations of concepts (e.g.,
Pathfinder, Schvaneveldt, 1990), we will focus the discussion on this case.
When all pairwise combinations of concepts are rated for n concepts, there
will be [n(n - 1)/2] pairwise ratings. For example, 24 concepts would result
in 276 pairs, which requires approximately 45 minutes for most students to
ccmplete. For practical considerations, including attention span and fatigue,
this sets an upper limit of approximately 30 concepts we can expect students
to rate in a single session.

In one study (Goldsmith, Johnson, & Acton, 1991) involving an
undergraduate course in design of experiments, we found that when students
rated all pairwise combinations of concepts, predictiveness of course
performance improved in a linear manner from .15 to .74 as the number of
concepts rated increased from 5 to 30. Although this suggests that more is
better, we have found with 24 concepts predictions of college classroom course
performance ranged from approximately .50 to .85 across several different
domains (cognitive psychology, computer programing, and design of
experiments).

We turn next to the question of how concepts are selected. We first
attempted to generate a fairly comprehensive list of the important concepts in
a subject by analyzing the glossary and index of relevant textbooks. We then
conferred with the course instructor, to add any important concepts that were
missing. From this list we selected a sample of concepts (usually 24) that
the instructor agreed were representative of the course material.

Considerable work is left to be done on developing a set of criteria to
serve as a systematic basis for selecting concepts. One obvious criterion
proposed by Hirsch (1987) and Boneau (1990) is the concept's importance to the
domain, as judged by experts. Being knowledgeable of the most important
concepts within a domain may be sufficient if our only goal is to define sine
basic level of competence, but these concepts may not adequately discriminate
among higher levels of expertise. Thus, another basis for selection would be
to select those concepts which best discriminate between levels of expertise.

Selecting concepts on the basis of their correlation with exam scores is
similar to the item selection procedure commonly used in test construction
(Anastasi, 1988). When this procedure is used in test development it applies
to specific items, whereas in the rating task the selection of a concept would
imply that it would be paired with the other n-1 concepts. Thus, item
selection may be more efficiently applied to pairs of concepts than individual
concepts.

Recently, we have found (Goldsmith & Johnson, 1990) that by selecting the
more predictive pairs, it is possible to predict classroom exam performance as
well with ratings of 100 or fewer selected pairs, as with all 276 pairwise
combinations of 24 concepts. Si-,ply in terms of prediction there
appear to be obvious benefits to employing an item selection procedure.
However, there is a cost when it comes to transforming the ratings into a
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structural representation. This will become more apparent in the next
section, where we discuss the representation of the elicited knowledge.

Representation

Once we have elicited an individual's concept interrelationships in a
domain, we must decide how to transform these raw proximities into a
representation that best models the individual's knowledge. We mention three
important criteria in choosing a representation. First, the representation
should have acceptable predictive validity. That is, we should be able to
predict an individual's level of competence in a domain at least as well with
the representation as with the untransformed ratings.

Second, the representation should be easily ccmprehended. One advantage
of many scaling algorithms is that they result in visual representations
depicting the organization among concepts in a manner that is relatively
easily interpreted. For example, cluster analysis represents the concepts
organized in terms of a hierarchical graph (Johnson, 1967; MilliganM& Cooper,
1987). Thus one can see by visual examination how an individual organizes the
concepts within a domain.

Finally, the representation should be consistent with our theoretical
conceptions of knowledge. In the case of conventional exams we often simply
use the percentage correct to represent what an individual knows about some
domain. As argued above, this method suggests that knowledge can be
conceptualized as an accumulation of independent facts. A percentage index
estimates the proportion of information known. Although the information may
actually involve understarding certain conceptual relationships, a percentage
does not explicitly reflect the structural properties of the individual's
knowledge.

The next question is to determine which type of representation better
models the specific structural property that is assumed to be inportant. There
are a variety of scaling procedures that researchers have historically used to
infer the structural organization underlying similarity judgments. One of the
more frequently used methods is multidimensional scaling (MDS) (e.g., Kruskal,
1964), which represents a set of concepts in terms of an n-dimensional
Euclidean space. Other scaling algorithms such as cluster analysis (e.g.,
Johnson 1967) and additive trees (Sattath & Tversky, 1977) result in
hierarchical graph representations. A more recently developed scaling
algorithm, Pathfinder (Schvaneveldt, 1990) also organizes the concepts into a
connected graph representation, but Pathfinder does not impose a hierarchical
solution and thereby allows greater freedom in developing an individual's
structural graph.

To provide a concrete illustration of a Pathfinder network, Figures 1
and 2 show Pathfinder solutions for an expert's and a novice's ratings of
24 concepts from a cognition and memory course. Those readers having some
background in cognitive psychology will see that, while some of the novice's
structure is quite reasonable, it reveals a number of either missing or
inappropriate relationships.
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In choosing a type of representation, all of the above criteria must be
considered. If the research is theoretically motivated the theory will suggest
the structural properties that are of primary interest, and this will
likely favor one representational approach over others. For example, there is
evidence (Holman, 1972; Pruzansky, Tversky, & Carroll, 1982) suggesting that
spatial representations, such as MDS, work better for perceptual pnenomenon
(e.g., color represented in terms of a three dimensional space involving hue,
saturation, and brightness), whereas network representations are better for
conceptual phenomena (e.g., a biological taxonomy of animal species).

If, on the other hand, the research has a more applied orientation then
ease of representation may play a more important role. For example, assume
the goal is to design an individualized curriculum that is aimed at addressing
specific knowledge deficits within a domain. This process could be
facilitated with the use of network representations, such as those presented
in Figure 1. By visually examinimj student and expert networks, it could
be determined which specific clusters or connections were missing rom an
individual student's organization of a domain.

Finally, the choice of representation can be based on predictiveness.
Using this criterion, the type of representation that provides the best
prediction of dcmain competence is preferred. We believe that the
predictiveness criterion, if used in moderation, could have a healthy
influence on the theoretical development of cognitive representations by
forcing the representations to make more fine-grained distinctions. Many
models of knowledge representation (e.g., Collins & Quillian, 1969) are able
to make very general predictions regarding the organization of knowledge
(e.g., the attribute of singing is more closely related to canaries than is
the attribute of eating), but they fail to address irdividual differences in
domain competence.

There is a danger of overemphasizing predictabil itL.r as a basis for
favoring a particular representational transformation. On first consideration
it may appear that predictability is a copletely objective basis of
evaluating the validity of alternative representations. This assumption,
however, is only true to the extent that the external criterion that is being
predicted is an objective definition of ccmpetence. In the case of our own
work we have been using course points from classroom exams as the external
criterion. At sane point we must ask ourselves if we would be happy if our
structural measure correlated perfectly with exam scores. Obviously not. The
point is, we doubt the ultimate validity of conventional exam, but we must
use them as a means of bootstrapping a new alternative. The eventual
acceptance of a structural approach to assessment will rest upon a multitude
of criteria. Thus, the overemphasis on a single criterion at this early
juncture is likely to be misguided.

In concluding our discussion of knowledge representations, it should be
apparent that research and theory in this field is still in its infancy. It
is far too early to exclude alternative representational systems from further
consideration on the basis of the preliminary data that is currently
available. We are proposing a broad scale program of research in which
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different investigators will explore a variety of methods and applications.
The problems are sufficiently complex to accommodate more than a single model.

Evaluation

The third step in knowledge assessment is to evaluate an individual's
knowlxlge representation. Wat level of sophistication or competence is
indicated by a particular representation? Clearly, we must have some means of
transforming a representation into a simple index of onetenoe. We will
discuss two fundamentally different methods of evaluation. One approach we
call referent-based, in which the student's representation is compared against
some external standard. In referent-based evaluation some index of similarity
between the student and expert referent representation is used to predict
domain competence (e.g., classroom exam performance). The other approach to
evaluation is referent free in that the assessment refers to intrinsic
properties of the student representation.

Referent Based Evaluations. When attempting to assess domain competence,
the most obvious external standard is an expert or group of experts in the
field (Chi, Feltovich, & Glaser, 1981). In our work, when assessing college
classroom knowledge, course instructors naturally serve as experts. Often we
have averaged the instructor's ratings with a number of other faculty and
graduate students who have taught similar courses. We find that a referent
structure based on the averaged ratings of a number of experts is usually a
better predictor of exam scores than one based only on the ratings of the
individual instructor for the course (Acton, 1990). This finding has some
important implications. Specifically, it allows for the possibility of moving
towards an idealized referent structure that transcends the various
idiosyncrasies of individual experts. We must emphasize that the idea of an
idealized referent structure does not in any way constrain individual
creativity. The fact is, although expert structures are more similar to one
another than novice structures, each expert's organization has unique
characteristics.

Precisely how the comparison between student and expert representation is
carried out depends, in part, on the type of representation being compared.
To begin, we can take the relatedness ratings matrix itsalf as a raw
representation of an individual's knowledge. The most obvious and direct way
to assess the similarity between two proximity matrices is simply to compute
the correlation between the two sets of ratings. We have found this measure
of similarity to be a good predictor of classroom exam performance with
correlations between similarity and total points on exams ranging from .45 to
.83 across different semesters and different courses.

Although the correlations on raw ratings may perform quite well as a
predictor, it does not fare well on the other two criteria by which we
evaluate representations. First, a matrix of ratings is not easily
comprehended, and second, it is not motivated from any explicit theoretical
perspective. If we adopt a structural approach, we want to look at
representations and methiods of comparing representations that emphasize
structural properties. Recall that our definition of structure focused on the
interrelationships among concepts, which we believe is best captr ---d by
network representations. We also hypothesized that the meaning of an
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individual concept is defined in terms of the concepts that are closely
related to it. This has some important implications for how we evaluate the
similarity between two networks.

Wien evaluating Pathfinder derived network representations, it is quite
possible to quantify the similarity between a student and expert network grap±h
by simply correlating the graph distances between respective pairs of
concepts. However, this correlational measure of similarity does not capture
the more global properties of our definition of structure (viz., a concept
which is defined by its neighbors). To overcme this limitation, we
developed (Goldsmith & Davenport, 1990) a set theoretic measure called C that
reflects the similarity in neighborhoods between two concepts. For example,
assume that concept A in a student's network is directly linked to concepts
B, C, and D, whereas concept A in the expert's network is linked to concepts B
and C. The measure C is the ratio of the size of the intersection (B and C)
over the size of the union (B, C, and D) or .67. We do this for each concept
and then simply average the ratios over all the concepts. We have found the
similarity measure C of Pathfinder networks to be a better predictor of exam
scores than correlational measures on raw proximity data, network distances,
or Eucliidean distances derived fram MDS scaling (Goldsmith, Johnson, & Acton,
1991).

The point is not that using _ on Pathfinder networks was necessarily a
better predictor, but that our methods of assessment are consistent with our
view of domain knowledge. It is quite possible that other measures and other
domains may yield different outcomes. Although we expect that methods
emphasizing structural properties of knowledge w, 11 generally do a better job
of assessing domain knowledge, the important point is for researchers and
practioners to adopt a coherent and theoretically principled approach to
assessment.

Referent Free Assessment. Most methods for evaluating domain knowledge
involve an external criterion or referent. For example, in conventional
testing there is the externally defined "correct answer" against which
performance is evaluated. In contrast, we might look for intrinsic properties
of behavior that are indicative of expertise. Once again, the specific
intrinsic properties we look for should be consistent with our theoretical
conceptions of domain knowledge.

In our structural approach to knowledge assessment we have assumed that a
concept's meaning is contained in its relationships to other concepts (i.e.,
its neighbors) within the domain. Therefore, if concepts A and B are
neighbors, and concepts B and C are neighbors, there is an increased
likelihood that concepts A and C are also neighbors. As an individual becomes
more knowledgeable we would expect her judgments of relatedness to become more
constrained by these neighborhood factors. How might one go about quantifying
this type of constraint? Our approach is to first, use the C measure
described above to compute a derived distance between all pairs of concepts on
the basis of neighborhood similarity. Next, we compute the correlation
between the raw ratings and the derived ratings for all pairs of concepts. We
call this measure coherence. We have found coherence to be a reliable
predictor of student's classroom knowledge. In addition, coherence increases
across levels of expertise ranging from naive student to knowledgeable
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undergraduate to graduate student to professor (Acton, 1990).

Another type of referent free property of relatedness ratings is the
consistency with which repeated pairs of concepts are rated. In our rating
task we usually repeat approximately 10% of the pairs, and then compute the
correlation between repeated ratings for each individual. We find that this
index of reliability is significantly correlated with exam performance. Not
surprisingly, it is easier to be consistent when you are knowledgeable of the
concepts you are rating.

To summarize, we have proposed two methods of evaluation, referent based
and referent free. In the case of referent based evaluation we noted the
advantages of using expert referent representations based on the averaged
ratings of several experts and alternative methods of quantifying the
similarity between two representations. In our discussion of referent free
methods we introduced the measure of coherence, which reflects internal
consistency of the ratings. It was noted that reliability may also be used as
a referent free evaluation. The ideal "good" student is realized when all
three measures (C, coherence, and reliability) are high.

Implications for Curriculum Design and Instruction
The value of assessment is contained in how it is used. If it goes no

further than informing a student that she is in the bottum quartile of the
class it is of little constructive value. Therefore, it is appropriate to
consider sane of the important irplications of the structural approach for the
design of curriculum and methods of instruction.

Because the structural approach that we have proposed involves a
comparison between student and expert network representations, it permits the
identification of organizational differences at any level of detail. We can go
from looking for the presence or absence of specific links between concepts,

to looking at more global organizational properties of the two networks. This
offers the possibility of providing students with extremely comprehensive
feedback, however, it raises the question of how the feedback is to be used.
More to the point, what are the instructional implications for differences
between student and expert networks?

On the one hand, it is relevant to know that a majority of students in
your class do not see the relationship among a certain cluster of concepts on
which you have just completed lecturing. Clearly, it is important to have
identified this subset of students, but given this information, what do you do
about the apparent deficit in their knowledge? It is unlikely that the deficit
can be corrected by simply informing the students that concepts A, B, C, and D
are all closely related. Presumably they need more information on how these
concepts are interrelated, and when that information is provided in an
appropriate manner we will see the changes in their network representations.
Some support for this is provided in a study by Brown and Stanners (1983).
They showed that an MDS representation of a student's organization of concepts
in an introductory psychology class could be modified by focused training on a
small subset of concepts. The training involved having students make the
rating judgments, then publicly defend their rating to the class and the
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instructor. In some instances the instructor would then spend several minutes
discussing the relationship between specific pairs of concepts.

Another potential advantage of adopting a cognitive structural approach
to assessment is that the students can be given an objective goal that has
face validity and is theoretically grounded. Moreover, the referent structure
itself, represented as a graphic network of interconnected concepts, can
serve as a type of organizational schema for readings and lectures. Unlike
the conventional outline that forces a linear organization, a network
structure can explicitly represent all the important relationships that need
to be grasped. With computer software environments such as hypertext it
would be possible to implement the empirically derived structure of experts
within a domain (Jonassen, 1988). This would allow for intelligent nonlinear
browsing through the domain by novices.

General Conclusion and SuJ
Our primary motivation in writing the paper was to facilitate

communication between traditional test theory and cognitive theory.e The
central theme addressed the relation between how knowledge is represented and
how it is assessed. If our representation of knowledge is organized or
structured then our assessment of knowledge must capture this structure and
our instruction must reflect the structure. We then outlined how a structural
approach to assessment could be implemented and summarized some of the
encouraging findings in the area.

In closing, we quickly summarize soe of the advantages of the structural
approach to assessment. First, a most basic requirement of any assessment
technique is that it can be applied to individuals, as can be done with the
structural approach. Second, the administration and scoring are completely
objective and efficient. Once the concepts or pairs have been selected the
entire process can be easily automated on computers. In regard to ease of
administration it should also be noted that the program that presents the
pairs always randomizes the order of presentation for each subject, thus
minimizing order effects and the risk of cheating when administered in groups.
Also, it is a simple matter to create multiple versions of the rating task by
changing a proportion of the concepts that are paired. This, of course, allows
repeated administrations of the task over the duration of a course, which
would provide a picture of structural change as learning progresses. Third,
although the knowledge that directs our judgments of relatedness is sometimes
entirely explicit, it appears, on the basis of students' introspections, that
the judgments are often intuitively based and dependent on implicit knowledge.
In this regard the approach may nicely ccmplement some conventional exams
(e.g., essay) that depend more on explicit knowledge. Fourth, the results not
only indicate how much a student knows (e.g., relative similarity to an
expert referent structure), but also what specific relationships are
misunderstood, and whether the individual is internally consistent
(i.e.,coherent) in her judgments of relatedness. Fifth, and most important
in our opinion, the entire process, involving both training and assessment,
is grounded in a common theoretical framework. This should foster greater
communication and compatibility between the historically distant areas of
psychometric assessment and cognitive theories of representation. Both should
benefit from this common orientation.
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