AD-A255 978 ,
RREERNRLY

Wait-Free Consensus

James Aspnes

July 24, 1992
CMU-CS-92-164

DTIC

ELECTE

0CT 071992
A School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

Po—

This document ha

‘ s been q
fqr gubh_c release and sulex‘)ri,trsoved
distribution is unlimited.

©1992 James Aspnes.

This research was supported by an IBM Graduate Fellowship and an NSF Graduate
Fellowship.

&:‘7\ 92-26537

Q 79
92 10 5 025 Wl T e

Keywords: distributed algorithms, shared memory, consensus, random
walks, martingales, shared coins

School of Computer Science

DOCTORAL THESIS
in the field of
Computer Science

Wait-Free Consensus

JAMES ASPNES

Submitted in Partial Fulfillment of the Requirements
for the Degree of Doctor of Philosophy

ACCEPTED: .
31; MAJOR PROFES: '9/&! lqa
TZ% ‘244, /2412
DEAN / ! DATE
APPROVED:

ZrA"-‘?b,—!"/?f’-

PROVOST DATE

I{’u{oﬂ./aw

Accesion For

NTIS CRA&I
DTIC TAB
Unannouncead

Justification

o

ety Attt s it o

Avalabiily © o

DIIC QUALITY 11y SPECTED 1

Abstract

Consensus is a decision problem in which n processors, each starting with a
value not known to the others, must collectively agree on a single value. If the
initial values are equal, the processors must agree on that common value; this
is the validity condition. A consensus protocol is wait-free if every proces-
sor finishes in a finite number of its own steps regardless of the relative speeds
of the other processors, a condition that precludes the use of traditional syn-
chronization techniques such as critical sections, locking, or leader election.
Wait-free consensus is fundamental to synchronization without mutual ex-
clusion, as it can be used to construct wait-free implementations of arbitrary
concurrent data structures. It is known that no deterministic algorithm for
wait-free consensus is possible, although many randomized algorithms have
been proposed.

I present two algorithms for solving the wait-free consensus problem in the
standard asynchronous shared-memory model. The first is a very simple
protocol based on a random walk. The second is a protocol based on weighted
voting, in which each processor executes O(nlog®n) expected operations.
This bound is close to the trivial lower bound of (n), and it substantially
improves on the best previously-known bound of O(n?logn), due to Bracha
and Rachman.

Acknowledgments

I would like to begin by thanking the members of my committee. My advisor,
Steven Rudich, has always been willing to provide encouragement. Danny
Sleator showed me that research is better done as play than as work. Merrick
Furst has always been a source of interesting observations and ideas. Maurice
Herlihy introduced me to wait-free consensus when I first arrived at Carnegie
Mellon; his keen insights into distributed computing have been a continuing
influence on my work. ‘

I would like to thank my parents for their warm support and encourage-
ment.

[would like to thank the many other students who lightened the monastic
burdens of graduate student life. David Applegate in particular was always
ready to supply a new problem or a new toy. .

Finally, I would like to thank my beloved wife, Nan Ellman, who waited
longer and more patiently for me to finish than anyone.

Contents

1 Introduction

2 The Asynchronous Shared-Memory Model

2.1 Basicelements. L.

2.2 Timeand asynchrony

2.3 Randomization

2.4 Relation toothermodels

2.5 Performancemeasures
3 Consensus and Shared Coins

3.1 Consensus e e

32 Sharedcoins

3.3 Consensus using shared coins
4 Consensus Using a Random Walk

41 Randomwalks.

4.2 The robust shared coin protocol

4.3 Implementing a bounded counter with atomic registers

4.4 The randomized consensus protocol
5 Consensus Using Weighted Voting

5.1 Introduction,

5.2 The shared coin protocol

53 Martingales L

5.3.1 Knowledge, o-algebras, and measurability
5.3.2 Definition of a martingale
5.3.3 Gamblingsystems.

ii

5.3.4 Limit theorems . . .

5.4 Proof of correctness

5.4.1 Phases of the protocol
5.4.2 Common votes . . .

5.4.3 Extra votes

...................

...................

..................

...................

5.4.4 Written votes vs. decided votes
5.4.5 Choice of parameters

...................

Conclusions and Open Problems

6.1 Comparison with other protocols
6.2 Limits to wait-freeconsensus
6.3 Openproblems

i

List of Figures

3.1

4.1
4.2
4.3
4.4
4.5
4.6

3.1

Consensus from a shared coin. 13
Robust shared coin protocol. 24
Pictorial representation of robust shared coin protocol. 24
The protocol as a controlled random walk. 27
Pseudocode for counter operations. 30
Consensus protocol. L3
Counter scan for randomized consensus protocol. 32
Shared coin protocol. 38

v

List of Tables

6.1 Comparison of consensus protocols. 61

Chapter 1

Introduction

Consensus [CIL87] is a tool for allowing a group of processors to collectively
choose one value from a set of alternatives. It is defined as a decision problem
in which n processors, each starting with a value (0 or 1) not known to
the others, must collectively agree on a single value. (The restriction to a
single bit does not prevent the processors from choosing between more than
two possibilities since they can run just run a one-bit consensus protocol
multiple times.) The processors communicate by reading from and writing
to a collection of registers; each processor finishes the protocol by deciding
on a value and halting. A consensus protocol is wait-free if each processor
makes its decision after a finite number of its own steps, regardless of the
relative speeds or halting failures of the other processors. In addition. a
consensus protocol must satisfy the validity condition: if every processor
starts with the same input value, every processor decides on that value. This
condition excludes trivial protocols such as one where every processor always
decides 0.

The asynchronous shared-memory model is an attempt to capture the
effect of making the weakest possible assumptions about the timing of events
in a distributed system. At each moment an adversary scheduler chooses one
of the n processors to run. No guarantees are made about the scheduler’s
choices— it may start and stop processors at will, based on a total knowiedge
- of the state of the system, including the contents of the registers, the pro-
gramming of the processors, and even the internal states of the processors.
Since the scheduler can always simulate a halting failure by choosing not to
run a processor, the model effectively allows up to n —1 halting failures. The

adversary’s power, however, is not unlimited. It cannot cause the processors
to deviate from their programming or cause operations on the registers to
fail or return incorrect values.

Combined with the requirement that a consensus protocol terminate af-
ter a finite number of operations, the adversary’s power precludes the use of
traditional synchronization techniques such as critical sections, locking, or
leader election: any processor that obtains a critical resource can be killed.
and as soon as any processor or group of processors is given control over the
outcome of the protocol, the scheduler can put them to sleep and leave the
other processors helpless to complete the protocol on their own. In general.
any protocol depending on mutual exclusion, where one processor’s pos-
session of a resource or role depends on other processors being excluded trom
it, will not be wait-free.

Wait-free consensus is fundamental to synchronization without mutual
exclusion and thus lies at the heart of the more general problem of con-
structing highly concurrent data structures [Her91]. It can be used to obtain
wait-free implementations of arbitrary abstract data types with atomic oper-
ations {Her91, Plo89]. It is also complete for distributed decision tasks
.[CM89] in the sense that it can be used to solve all such decision tasks that
have a wait-free solution. Intuitively, the processors can individually simulate
a sequence of operations on an object or the computation of a decision value.
and use consensus protocols to choose among the possibly distinct outcomes.
Conversely, if consensus is not possible, it is also impossible to construct
wait-free implementations for many simple abstract data types. including
queues, test-and-set bits, or compare-and-swap registers, as there exist sim-
ple deterministic consensus protocols (for bounded numbers of processors)
using these primitives {Her91].

Alas, given the powerful adversary of the asynchronous shared-memoty
model it is not possible to have a deterministic wait-free consensus protocol.
one in which the behavior of the processors is predictable in advance. In
fact, in a wide variety of asynchronous models it has been shown there is
no deterministic consensus protocol that works against a scheduler that can
stop even a single processor [CIL87, DDS87, FLP85, Her91, LAAST, TM39].
Though this result is usually proved using more general techniques, when
only single-writer registers are used it has a simple proof that illustrates
many of the problems that arise when trying to solve wait-free consensus.

Imagine that two processors A and B are trying to solve the consensus

2

problem. Their situation is very much like the situation of two people facing
each oher in a narrow hallway; neither person has any stake in whether
they pass on the left or the right, but if one goes left and the other right
they will bump into each other and make no progress. When A and B are
deterministic processors under the control of a malicious adversary scheduler,
we can show the scheduler will be able to use its knowledge of their state and
its control over the timing of events to keep A and B oscillating back and
forth forever between the two possible decision values.

Here is what happens. Since each processor is deterministic, at any given
point in *ime it has some preference, defined as the value (“left” or “right”
in the hallway example) that it will eventually choose if the other processor
executes no more operations [AH90a].! At the beginning of the protocol.
each processor’s preference is equal to its input, because without knowing
that some other processor has a different input it must cautiously decide on
its own input to avoid violating the validity condition. So we can assume
that initially processor A prefers to pass on the left, and processor B on the
right. '

Now the scheduler goes to work. It stops B and runs A by itself. After
some finite number of steps, A must make a decision (to go left) and halt. or
the termination condition will be violated. But before A can finish, it must
make sure that B will make the same decision it makes, or the consistency
condition will be violated. So at some point A must teil B something that
will cause B to change its preference to “left”, and in the shared-memory
model this message must take the form of a write operation (since B can't
see when A does a read operation). Immediately before A carries out this
critical write, the scheduler stops A and starts B.

This action puts B in the same situation that A was in. B still prefers to
go right, and after some finite number of steps it must tell A to change its
preference to “right”. When this point is reached either one of two conditions
holds: either B has done something to neugralize A’s still undelivered demand
that B change it preference, in which case the scheduler just stops B and
runs A again, or both A and B are about to deliver writes that will cause
the other to change its preference. In this case, the scheduler allows both of

IThis unfortunate possibility is unlikely to occur in the real-world hallway situation,
assuming healthy participants, but it is allowed by the asynchronous shared-memory model
since the adversary can always choose never to run the other processor again.

the writes to go through, and now A prefers to go right and B prefers to go
left, putting the two processors back where they started with roles reversed.
In effect, the adversary uses its power over the timing of events to make sure
that just when A gives in and agrees to adopt B’s position, B does exactly
the same thing, and so on ad infinitum.

Fortunately, human beings do not appear to be controlled by an adver-
sary scheduler, so in real life one hardly ever sees two people bouncing in
unison from one side of a hallway to the other for more than a few iterations.
Processors that do not have even the illusion of free will can nonetheless get
some of the same effect using randomization. Imagine in the hallway situa-
tion that A had the ability to tell B to flip a fair coin to set its new preference.
No matter what A’s preference was (or changed to), there would be a 50%
chance that the result of B’s coin flip would match A’s preference. In fact.
if both processors were continually flipping coins to change their preferred
value, a run of identical coin flips would soon occur that was long enough
" that the two processors would be able to notice that they were in agreement,
and the protocol would terminate. Though this rough description leaves out
many important details, it gives the basic idea behind the first randomized
consensus protocol for the asynchronous shared-memory model, due to Abra-
hamson [Abr88|. The only drawback of the approach is that it does not scale
well; the odds of n processors simultaneously flipping heads is exponentially
small, and because agreement is not detected immediately in Abrahamson'’s .
protocol, its worst-case expected running time is only bounded by 20(%*),

The first polynomial-time consensus protocol for this model is described
by Aspnes and Herlihy [AH90a]. The key observation, similar to one made
by Chor, Merritt, and Shmoys [CMS89)] in the context of a different model, is
that the n different local coin flips can be replaced by a single shared coin
protocol that produces random bits that all of the processors agree on with
at least a constant probability, regardless of the behavior of the scheduler.
We showed that it is possible to construct a consensus protocol from any
shared coin protocol by running the shared coin repeatedly until agreement
is reached. (A description of the construction appears in Section 3.3.) The
cost of the resulting consensus protocol is within a constant factor of the cost
of the shared coin. Subsequent work on shared-memory consensus protocols
has concentrated primarily on the problem of constructing efficient shared
coin protocols.

All currently known shared coin protocols use some form of a very simple

4

idea. Each processor repeatedly adds random %1 votes to a common pool
until some termination condition is reached. Any processor that sees a pos-
itive total vote decides 1, and those that see a negative total vote decide 0.
Intuitively, because all of the processors are executing the same loop over and
over again, the adversary’s power is effectively limited to blocking votes it
dislikes by stopping processors in between flipping their local coins to decide
on the value of the votes and actually writing the votes out to the registers.
The adversary’s control is limited by running the protocol for long enough
that the sum of these blocked votes is likely to be only a fraction of the total
vote, a process that requires accumulating Q(n?) votes.

In the original shared coin protocol of Aspnes and Herlihy [AH90a], each
processor decides on a value when it sees a total vote whose absolute value
is at least a constant multiple of n from the origin. For each of the expected
O(n?) votes, O(n?) register operations are executed, giving a total running
time of ©(n*) operations. Unfortunately, both the implementation of the
counter representing the position of the random walk and the mechanism for
repeatedly running the shared coin require a potentially unbounded amount
of space. This problem was corrected in a protocol of Attiya, Dolev, and
Shavit [ADS89], which retained the multiple rounds of its predecessor but
cleverly reused the space used by old shared coins once they were no longer
needed.

A simpler descendent of the shared coin protocol of Aspnes and Herlihy.
which also requires only bounded space, is the shared coin protocol described
in Chapter 4. This protocol, by using a more sophisticated termination con-
dition, guarantees that the processors always agree on its outcome. A simple
modification of this protocol gives a consensus protocol that does not require
multiple executions of a shared coin; which can be implemented using only
three O(log n)-bit counters, supporting increment, decrement, and read oper-
ations; and which runs in only ©(n?) expected counter operations. However.
this apparent speed is lost in the implementation of the counte-, because
©(n?) register operations are needed for each counter operation, giving it
the same running time of ©(n*) expected register operations as its prede-
cessors. Since the consensus protocol of Chapter 4 first appeared [Asp90).
other researcheis [BR90, DHPW92] have described weaker primitives that
act sufficiently like counters to make the protocol work and which use only a
linear number of register operations for each counter operation. Using these
‘primitives in place of the counters gives a consensus protocol that runs in

5

expected ©(n?) register operations.

An alternative to having each processor finish the protocol when it sees a
total vote far from the origin is to simply gather votes until some predeter-
mined quorum is reached. The first shared coin protocol to use this technique
is that of Saks, Shavit, and Woll [SSW91]. 1t is still necessary to gather Q(n?)
votes to overcome the effect of votes withheld by the scheduler, and in fact
the Saks-Shavit-Woll protocol still requires ©(n*) register operations. Fur-
thermore, it is unlikely that any protocol that runs in a fixed number of
total operations can guarantee that all processors agree on the outcome of
the coin; thus it is necessary to retain the complex multiple rounds of the
Aspnes-Herlihy protocol in some form. However, stopping the protocol after
a specified number of votes are collected has a very important consequence:
it is no longer necessary for a processor to check for termination after every
vote it casts.

This remarkable fact was observed by Bracha and Rachman {[BR91] and
is the basis for their fast shared coin protocol. In this protocel, as in previous
shared coin protocols, the processors repeatedly generate random 1 votes
and add them to a running total. After a quorum of ©(n?) votes are collected
processors may decide on the output of the shared coin based on the sign
of the total vote. But each processor only checks if the quorum has been
reached after every O(n/logn) votes— so the processors can generate an
additional O(n?/ logn) “extra” votes beyond the “common” votes making up
the quorum. However, by making the number of common votes large enough
compared to the number of extra votes, the probability that the extra votes
will change the sign of the total vote can be made arbitrarily small. Thus.
even if one processor reads the total vote immediately after the quorum is
reached and another reads it after many extra votes have been cast, it is
still likely that both will agree with each other on the outcome of the shared
coin. In addition, because each processor only needs to compute the total
vote once, after it has seen a full quorum, no counters or other complicated
primitives are needed to keep track of the voting. Each processor simply
maintains in its own register a tally of all the votes it has cast, and computes
the total vote by summing the tallies in all of the registers. The result is that
the protocol requires only O(n?logn) expected total register operations.

There is, however, still room for improvement. All of the shared coin
protocols we have described suffer from a fundamental flaw: if the scheduler
stops all but one of the processors, that lone processor is still forced to

6

generate §)(n?) local coin flips. The essence of wait-freeness is bounding the
work done by a single processor, despite the failures of other processors. But
the bound on the work done by a single processor, in every one of these
protocols, is asymptotically no better than the bound on the work done by
all of the processors together.

Chapter 5 shows that wait-free consensus can be achieved without forcing
a fast processor to do most of the work. [describe a shared coin protocol
in which the processors cast votes of steadily increasing weights. In effect. 2
fast processor or a processor running in isolation becomes “impatient” and
starts casting large votes to finish the protocol more quickly. This mechanism
does grant the adversary greater control, because it can choose from up to n
different weights (one for each processor) when determining the weight of the
next vote to be cast. One effect of this control is that a more sophisticated
analysis is required than for the unweighted-voting protocols. Still. with
appropriately-chosen parameters the protocol guarantees that each processor
finishes after only O(nlog®n) expected operations.

The organization of the dissertation is as follows. Chapters 2 and 3 pro-
vide a framework of definitions for the material in the later chapters. Chapter
2 describes the asynchronous shared-memory model in detail and compares
it with other models of distributed systems. Chapter 3 formally defines the
consensus problem and its relationship to the problem of constructing shared
coins. The main results appear in Chapters 4 and 5. Chapter 4 describes the
simple consensus protocol based on a random walk. Chapter 5 describes the
faster protocol based on weighted voting. Finally, Chapter 6 compares these
results to other solutions to the problem of wait-free consensus and discusses
possible directions for future work.

Much of the content of Chapters 4 and 5 also appears in [Asp90] and
[AW92], respectively. Some of the material in Chapter 3 is derived from
[AH90a).

Chapter 2

The Asynchronous
Shared-Memory Model

This chapter gives a detailed description of the asynchronous shared-memory
model. This model is the standard one for analyzing wait-free consensus
protocols [Abr88, ADS89, AH90a, Asp90, AW92, BR90, BR91, DHPW92,
SSWO1]. Though it appears in varying guises, all are essentially equivalent.
The description of the model here largely follows that of the “weak model”
of Abrahamson [Abr88]. The reader interested in a more formal definition of
the model may find one in [AH90a] based on the I/O Automaton model of
Lynch [Lyn88].

2.1 Basic elements

The system consists of a collection of n processors, state machines whose
behavior is typically specified by a high-level protocol. In principle no
limits are assumed on the computational power of the processors, although
in practice none of the protocols described in this document will require much
local computation.

The processors can communicate only by executing read and write op-
erations on a collection of single-writer, multi-reader atomic registers
(Lam77, Lam86b]. Each of these registers is associated with one of the pro-
cessors, its owner. Only the owner of a register is allowed to write to it,
although any of the processors may read from it. Atomicity means that

read and write operations act as if they take place instantaneously: they
never fail, and the result of concurrent execution of multiple operations on
the same register is consistent with their having occurred sequentially.

The assumptions behind atomicity may appear to be rather strong, espe-
cially in a model that is designed to be as harsh as possible. However, it turns
out that atomic registers are not powerful enough to implement determinis-
tically such simple synchronization primitives as queues or test-and-set bits
[Her91], and may be constructed efficiently from much weaker primitives in a
variety of ways [BP87, IL87, NW87, Pet83, SAG87]. So in fact the apparent
strength of atomic registers is somewhat illusory.

2.2 Time and asynchrony

The systems represented by the model may have many events occurring con-
currently. However, because the only communication between processors in
the system is by operations on atomic registers, it is possible to represent
its behavior using a global-time model [BD88, Lam86a, Lam86b]. Instead
of treating operations on the registers as occurring over possibly-overlapping
intervals of time, they are treated as occurring instantaneously. The history
of an execution of the system can thus be described simply as a sequence
of operations. Concurrency in the system as a whole is modeled by the
interleaving of operations from different processors in this sequence.

The actual order of the interleaving is the primary source of nondetermin-
ism in the system. At any given time there may be up to n processors that are
ready to execute another aperation; how, then, does the system choose which
of the processors will run next? We would like to make as few assumptions
here as possible, so that our protocols will work under the widest possible
set of circumstances. One way of doing this is to assign control over timing
to an adversary scheduler, a function that chooses a processor to run at
each step based on the previous history and current state of the system. The
adversary scheduler is not bound by any fairness constraints; it may start
and stop processors at will, doing whatever is necessary to prevent a protocol
from executing correctly. In addition, no limits are placed on the scheduler’s
computational power or knowledge of the programming or internal states of
the processors. However, its control is limited only to the timing of events
in the system— it cannot, for example, cause a read operation to return the

wrong value or a processor to deviate from its programming.

The definition of a wait-free protocol implicitly depends on having such
a powerful adversary. A protocol is said to be wait-free if every processor
finishes the protocol in a finite number of its own steps, regardless of the
relative speeds of the other processors. The adversary in the asynchronous
shared-memory model simply represents the universal quantifier hidden in
that condition. If we can design a protocol that will beat an all-powerful
adversary, we will know that the protocol will succeed in the far easier task
of working correctly in whatever circumstances chance and the workings of
a real system might throw at it.

2.3 Randomization

In order to solve the consensus problem in the presence of an adversary
scheduler, the processors will need to be able to act nondeterministically. In
addition to giving each processor the ability to write to its own registers and
to read from any of the registers, we will give each processor the ability to
flip a local coin. This operation provides the processor with a random bit
that cannot be predicted by the scheduler in advance, though it is known to
the scheduler immediately afterwards by virtue of the scheduler’s ability to
see the internal states of the processors. The timing of coin-flip operations,
like that of read and write operations, is under the control of the scheduler.

2.4 Relation to other models

There are other models that are closely related to the asynchronous shared-
memory model. In particular it is tempting to define the property of being
wait-free as the property that a protocol will finish (that is, one processor will
finish) even in the presence of up to n — 1 halting failures, where a halting
failure is an event after which a processor executes no more operations. Such
a definition would make wait-freeness a natural extension of t-resilience,
the property of working in the presence of up to ¢ halting failures.
However, in the context of a totally asynchronous system this definition
is unnecessarily restrictive. It is true that the adversary is able to simulate
up to n ~ 1 halting failures simply by choosing not to run “halted” proces-

10

sors ever again. However, there is no reason to believe that dead processors
are the only source of difficulty in an asynchronous environment. For ex-
ample, the adversary could choose to put some processor to sleep for a very
long interval, waking it only when its view of the world was so outdated
that its misguided actions would only hinder the completion of a protocol.
As the hallway example in the introduction shows, stopping a processor and
reawakening it much later can be even more devastating stopping a processor
forever. Furthermore, distinguishing between slow processors and dead ones
requires either an assumption that slow processors must take a step after
some bounded interval, or that fast processors may execute a potentially un-
bounded number of operations waiting for the slow processors to revive. The
first assumption imposes a weak form of synchrony on the system, violating
the principle of avoiding helpful assumptions; the second makes it difficult
to measure the efficiency of a protocol. For these reasons we avoid the issue
completely by using the more general definition.

Other alternatives to the model involve changing the underlying commu-
nications medium from atomic registers, either by adopting stronger prim-
itives that provide greater synchronization, or by moving to some sort of
message-passing model. We avoid the first approach because, as always, we
would like to work in as weak a model as possible. However, the question of
how a different choice of primitives can affect the difficulty of solving wait-
free consensus is an interesting one about which little is known, except for
the deterministic case [LAAS87, Her91].

Moving to a message-passing model presents new difficulties. In general.
the defining property of a message-passing model is that the processors com-
municate by sending messages to each other directly, rather than operating
on a common pool of registers or other primitives. Message-passing models
come in bewildering variety; a general taxonomy can be found in [LL90].
Dolev et al. [DDS87] classify a large collection of message-passing models
and show which are capable of solving consensus deterministically.

Among these many models, one has traditionally been associated with
solving asynchronous consensus [BND89, BT83, CM89, FLPS85]. ' In this
model, the adversary is allowed to (i) stop up to t processors and (ii) de-
lay messages arbitrarily. Unfortunately, a simple partition argument shows
that in this model one cannot solve consensus even with a randomized al-
gorithm if at least n/2 processors can fail (BT83|. Intuitively, the adversary
can divide the processors into two groups of size n/2 and delay all messages

11

passing between the groups. As neither group will be able to distinguish
this partitioning from the other group actually being dead, the two groups
will independently come up with decisions that may be inconsistent. On the
other hand, solutions to the wait-free consensus problem for shared memory
can be used to obtain solutions to consensus problems for message-passing
models with weaker failure conditions by simulating the shared memory. An
example of this technique may be found in [BND89]. A general comparison
of the power of shared-memory and message-passing models in the presence
of halting failures can be found in |[CM89].

2.5 Performance measures

It is not immediately obvious how best to measure the performance of a wait-
free decision protocol. Two measures are very natural for the asynchronous
model, as they impose no implicit assumptions on the scheduling of opera-
tions in the system. These are the total work measure, which simply counts
the total number of register operations executed by all the processors together
until every processor has finished the protocol; and the per-processor work
measure, which takes the maximum over all processors of the number of reg-
ister operations executed by each processor individually before it finishes the
protocol.

The per-processor measure is closer to the spirit of the wait-free guar-
antee that each processor finishes in a finite number of its own steps, as it
gives an upper bound on what that finite number is. However, prior to the
protocol of Chapter 5, for every known consensus protocol (see Table 6.1)
the two measures were within a constant factor of each other. As a result
only the total work measure has typically been considered. This usage is in
contrast to what is needed in situations where processors may re-enter the
protocol repeatedly, as in protocols for simulating various shared abstract
data types [AAD*90, AG91, AH90b, And90, DHPW92, Her91, Plo89] or for
timestamping and similar mechanisms [DS89, DW92, IL87]. In these pro-
tocols one is typically interested in the number of register operations each
processor must execute to simulate a single operation on the shared object,
an inherently per-processor measure, and the total work is meaningful only
when interpreted in an amortized sense.

Given the usefulness of the per-processor measure in this broader con-

12

text, I will concentrate primarily on it. However, because the total-work
measure has traditionally been used to analyze consensus protocols it will be
considered as well.

An alternative to these measures that has seen some use in analyzing
wait-free protocols is the rounds measure of asynchronous time [AFL33,
ALS90, LF81, SSW91]. It is used for models that represent halting failures
explicitly. When using this measure, up to n — 1 processes may be designated
as faulty at the discretion of the adversary; once a processor becomes faulty it
is never allowed to execute another operation. A round is a minimal interval
during which every non-faulty processor executes at least one operation. The
measure is simply the number of these rounds. In effect, this measure counts
the operations of the slowest non-faulty processor at any given point in the
execution. If a slow processor executes only one operation in a given interval.
only one round has elapsed, even though a faster processor might have carried
out hundreds of operations during the same interval.

The rounds measure is reasonable if one defines the property of being
wait-free as equivalent to being able to survive up to n — 1 halting failures.
However, as explained above, in the context of a totally asynchronous sys-
tem this definition is unnecessarily restrictive. But once we adopt the more
general definitions we quickly run into trouble. If some processor stops and
then starts again much later during the execution of the protocol, the entire
period that the processor is inactive counts as only one round. As a result
the rounds measure implicitly resolves the problem of distinguishing slow
processors from dead ones by guaranteeing that processors will either run at
bounded relative speeds or not run at all. This is in conflict with the goal of
using a model that is as general as possible, and for this reason the rounds
measure will not be used here.!

1A notion of “rounds” does appear in Section 3.3; these rounds are part of the internal
structure of the protocol described there and have no relation to the rounds measure.

13

Chapter 3

Consensus and Shared Coins

This chapter formally describes the problem of solving consensus and the
closely-related problem of construction a shared coin, and gives an example
of a method for solving consensus using a shared coin. This last technique
will be of particular importance in Chapter 5. ’

3.1 Consensus

Consensus is a decision problem in which n processors, each starting with
a value (0 or 1) not known to the others, must collectively agree on a single
value. A consensus protocol is a distributed protocol for solving consensus.
It is correct if it meets the following conditions [CIL37]:

e Consistency. All processors decide on the same value.

¢ Termination. Every processor decides on some value in finite expected
time.

¢ Validity. If every processor starts with the same value, every processor
decides on that value.

The basic idea behind consensus is to allow the processors to make a
collective decision. For this purpose, the consistency condition is the most
fundamental of the correctness conditions, as it is what actually guarantees
that the processors agree. The termination condition is phrased to apply in

14

many possible models; in the asynchronous shared-memory model it trans-
lates into requiring that the protocol be wait-free, as it requires that pro-
cessors must finish in finite expected time regardless of the actions of the
adversary scheduler.

If it happens that the processors already agree with each other, we want
the consensus protocol to ratify that agreement rather than veto it; hence the
validity condition. From a less practical perspective the validity condition
is needed because its absence makes the problem uninteresting, since all of
the processors could just decide 0 every time the protocol is run without any
communication at all.

If we are allowed to make convenient assumptions about the system, con-
sensus is not a difficult problem. For example, on a PRAM (perhaps the
friendliest cousin of asynchronous shared-memory) consensus reduces to sim-
ply taking any function we like of the input values that satisfies the validity
condition. In general, in any model where both the processors and the com-
munications medium are reliable the problem can be solved simply by having
the processors exchange information about their inputs until all of them know
the entire set of inputs; at this point each can individually compute a func-
tion of the inputs as in the PRAM case to come up with the decision value
for the protocol. It is only when we move to a model, like asynchronous
shared-memory, that allows processors to fail that consensus becomes hard.

One difficulty is that the harsh assumptions of the asynchronous shared-
memory model can amplify the correctness conditions in ways that may not
be immediately obvious. For example, the validity conditions implies that
the adversary can always force the processors to decide on a particular value
by running only those processors that started with that value. Because these
“live” processors are unable to see the differing input values of the “dead”
processors, they will see a situation indistinguishable from one in which ev-
ery processor started with the same value. In this latter case, the validity
condition would force the processors to decide on that common value. So
because of their limited knowledge, the live processors must decide on the
only input value they can see, even though there may be other processors
that disagree with it. This example shows that one must be very careful
about what assumptions one makes in the model, as they can subtly affect
what a protocol is allowed to do.

15

3.2 Shared coins

In order to solve the consensus problem we will need to cope with the con-
siderable power of the adversary. We cannot modify the model to place
restrictions on the adversary; instead, we must find some way of getting the
processors to reach agreement in spite of the adversary’s interference.

One way is to base a consensus protocol on a stronger primitive. the
shared coin. A shared coin is a decision protocol in which each processor
decides on a bit, which with some probability é will be the same value that
every other processor decides on. But unlike consensus, the actual value
chosen will not always be under the control of the adversary. In order to
prevent this control, given the adversary’s ability to run only some of the
processors, we must drop the validity condition and with it the notion of
input bits. What we are left with is the following definition.

A shared coin protocol with agreement parameter! § is a distributed
decision protocol that satisfies these two conditions:

¢ Termination. Every processor decides on some value in finite expected
time.

e Probabilistic agreement. For each value b (0 or 1), the probability
that every process decides on b is at least §.

The probabilistic agreement condition guarantees that with probability
26 the outcome of the shared coin protocol is agreed on by all processors
and is indistinguishable from flipping a fair coin. With probability 1 — 24.
no guarantees whatsoever are made; it is possible that the processors will
not agree with each other at all, or that the adversary will be able to choose
what value each processor dccides on. Some sort of adversary control is
always possible, as it is known that a wait-free shared coin with § exactly
equal to 1/2 is impossible [AH90a].

The agreement parameter is not the only possible parameter for shared
coin, merely the one that is most convenient when building consensus pro-
tocols. If we wish to use the coin directly (for example, as a source of semi-
random bits [SV3S] in a distributed algorithm) a more natural parameter

!Called the defiance parameter in {[AH90a]. The less melodramatic term agreement
parameter is taken from [SSW91].

16

is the bias, ¢, defined by ¢ = [/2 — §. In terms of the bias the agreement
property can be restated as follows:

¢ Bounded bias. The probability that at least one processor decides on
a given value is at most 1/2 + €.

This property says in effect that the adversary can force some processor to
see a particular outcome with ouly € greater probability tl.an if the processors
were actually collectively flipping a fair coin.

In some circumstances we would like to guarantee that all of the pro-
cessors always agree on the outcome of the coin, even though the adversary
might have been able to control what that outcome is. A shared coin that
guarantees agreement will be called robust. As will be seen in Chapter 4.
rcbust shared coins can often be converted directly into consensus protocols
by the addition of only a small amount of machinery. However Chapter 3
describes an intrinsically non-robust shared coin; in this situation moré so-
phisticated techniques are needed to achieve consensus. One approach is
described in the next section.

3.3 Consensus using shared coins

It is a well-established result that one can construct a consensus protocol from
a shared coin with constant agreement parameter [ADS89, AH90a, SSWyl].
This section gives as an example the first of these constructions [AH%0a]. As
we shall see, this construction gives a consensus protocol which requires an
expected O((T(n) + n)/é) operations per processor and O((T'(n) + n?)/§)
total operations, where T'(n) and T'(n) are the expected number ot operations
per processor and total operations for the shared coin protocol.

Pseudocode for each processor’s behavior in the shared-coin-based con- .
sensus protocol is given in Figure 3.1. Each processor has a register of its own
with two fields: prefer and round, initialized to (L1,0). In addition there are
assumed to be a (potentially unbounded) collection of shared coin primitives.
one for each “round” of the protocol. Two special terms are used to simplify
the description of the protocol. A processor is a leader if its round field is
greater than or equal to every other process’s round field. Two processors
agree if both their prefer fields are equal, and neither field is L.

17

1 procedure consensus(inpul)

2 (prefer,round) « (inpul,|)

3 repeat

4 read all the registers

5 if all who disagree trail by 2 and I'm a leader then
6 output prefer

7 else if leaders agree then

8 (prefer, round) — (leader preference, round + 1)
9 else if prefer # L then

10 (prefer, round —~ (L, round)
11 else
12 (prefer, round) — (shared.coin([round|, round + 1)

Figure 3.1: Consensus from a shared coin. -

Let us sketch out the workings of the protocol. The most serious problem
that the protocol is designed to solve is how to neutralize “slow” processors
that have old, out-of-date views of the world. Because such processors end
up with low round values relative to the “fast”. processors, they are effectively
excluded from the real decision-making in the protocol until they manage to
catch up to their faster comrades. _

Intuitively, the decision-making process consists of the leaders running
the shared coin protocol in line 12. It is not necessarily the case that all of
the leaders at each round will take part in the shared coin protocol, as those
that arrive earliest may not see disagreement and will execute line 8 instead.
However, those early arrivals must in fact agree with each other, and so with
probability at least é the others will switch to agree with them at any given
round. It follows that the expected number of rounds until agreement is
0(1/4).

Once the leaders agree, the slower processors are forced to adopt the
leaders’ position by executing line 8. The protocol terminates when the
agreeing processors advance far cnough (2 rounds) to know that any processor
that disagrees will pass through line 8 before catching up and becoming a
leader itself.

This ~planation is informal, and glosses over many important but tedious

18

details of the protocol. The interested reader is referred to [AH90a] for a more
thorough description of the construction including a full proof of correctness.
Alternative constructions with similar performance may be found in [ADS89]
and [SSWI1].

For our purposes it will suflice to summarize the relevant results from

[AH90a]:

Theorem 3.1 ([AH90a]) The protocol of Figure 3.1 implements a consen-
sus protocol that requires an cxpected O(1/8) rounds, where é is the agreement
parameter of the shared coin.

. From which it follows that:

Corollary 3.2 The protocol of Figure 3.1 implements a consensus proto-
col that requires an ezxpected O((1'(n) + n)/8) operations per processor and
O((T"(n) + n?)/8) operations in total; where § is the agreement parameter,
T(n) the ezpected number of operations per processor, and T'(n) the erpected
number of operations in total for the shared coin.

Proof: From the theorem, we expect at most O(1/§) rounds.

In each round, each processor executes at most 2n read operations, one
instance of the shared coin, and two write operations, for a total of 2n + 2 +
T(n) operations.

Similarly, in each round the processors collectively execute at most 2n?
read operations, 2n write opcrations, and one instance of the shared coin. for
a total of 2n? 4+ 2n + T'(n) operations. §

19

Chapter 4

Consensus Using a Random

Walk

All currently-known wait-free consensus protocols that run in polynomial
time are based on some forim ol a shared coin protocol. The key insight
used in constructing shared coins is that it is dangerous to give too much
power over the outcome of the protocol to any one pfocessor at any given
time. Such tyranny, like all tyrannies, runs the risk of a sudden change
in policy following an assassination, and thereby gives control over policy to
potential assassins like our adversary scheduler. In all currently known shared
coin protocols each individual processor’s power is minimized by having the
processors repeatedly cast small random votes for the two decision values.
How this voting process is hest represented depends on the method used
to decide when it is finished. In this chapter we describe a shared coin and
a consensus protocol in which the voting ends when the difference between
the number of 1 votes and 0 volces is large. Under such circumstances the
voting process can be viewed as a random walk in which each vote moves
the total up or down by onc until an absorbing barrier at +K is reached
(where K is a parameter of Lhe protocol). In fact, the original polynomial-
time shared coin of [AH90a] worked on exactly this principle. Unfortunately,
a simple implementation of a random walk does not guarantee agreement,
as the adversary can allow one processor to see a total greater than A and
decide 1, and then, by relcasing negative votes “trapped” inside stopped
processors, move the total down out of the decision range so that with some
nonzero probability the other processors will eventually move it to — K and

20

decide 0. So to use a simple randomn-walk-based shared coin in a consensus
protocol one would need to run it repeatedly as described in Section 3.3.

The protocols described in this chapter avoid the need for such methods
by extending the random walk to incorporate the function of detecting agree-
ment. As a result we obtain a robust shared coin, described in Section 4.2.
which guarantees that all processors agree on its outcome. Because the coin
guarantees agreement, it can be modified in to obtain a consensus protocol
simply by attaching a preamble to ensure validity, as described in Section 4.4.
The resulting consensus protocol (and its variants, obtained by replacing the
counter implementation [BR90, DHPW92]) are particularly simple, as they
are the only known wait-free consensus protocols that do not require the re-
peated execution of a non-robus! shared coin protocol and the multi-round
superstructure that comes with it.

The simplicity of the protocol also allows some optimizations that are
more difficult when using a non-robust coin. The consensus protocol is de-
signed to require fewer total opcrations if fewer processors actually partici-
pate in it, a feature which becomes important when, for example, the protocol
is used as a primitive for building shared data structures which only a few
processors might attempt to access simultaneously.

The chapter is organized as lollows. Section 4.1 describes some properties
of random walks that will be used later in the chapter. Section 4.2 describes
the robust shared coin protocol and proves its correctness. The description of
the robust shared coin protocol assumes the presence of an atomic counter.
providing increment, decrement, and read operations that appear to occur
sequentially; Section 4.3 shows how such a counter may be built from single-
writer atomic registers at the cost of O(n?) register operations per counter
operation. Finally, Section 4.4 describes the consensus protocol obtained by
modifying the robust shared coin.

4.1 Random walks

Let us begin by stating a few basic lemmas about the behavior of random
walks.

Lemma 4.1 Consider a symmciric random walk with step size 1 running
between absorbing barriers al « and b and starting at z, where a < & < b.

Then:

21

1. The ezpected number of steps until one of the barriers is reached is

given by (z — a)(b — z), which is always less than or equal to (%—5)2

2. The probability that the random walk hits b before a is =2

b~g ’

Proof: The random walk described is just a form of the classical gambler’s
ruin problem. See [Fel68, pp. 344-349]. |

Lemma 4.2 Consider ¢ symmetric random walk with step size 1 running
between a reflecting barrier at a and an absorbing barrier at b, starting at
position z, a < ¢ < b. Then the ezpected time until b is reached is (z — (a —

(b—a)))(b—2z) < (b-a)’

Proof: This random walk can be obtained from the random walk with ab-
sorbing barriers at b and a — (b — a) by the transformation z = a + |z — a].

The following critical lemma describes a modified random walk that will
be of great importance in analyzing the shared coin and consensus protocols:

Lemma 4.3 Consider a symmetric random walk with absorbing barriers at
a and b with the following twist: a point ¢, a < ¢ < b is chosen as the center
of the random walk. The adversary chooses the starting position z of the
random walk to be anywhere in the range from a to b. Also, before each step,
the adversary may choose between moving randomly in either direction with
probability 1/2, or moving wway from c with probability 1. No matter what
choices the adversary makes, the ezpected number of steps until one of the
barriers is reached is at most (b — a)?

Proof: The game described can be thought of as a controlled Markov
process [DY75] in which the adversary is trying to maximize the expected
time. Because this process is played over a finite set of states, a standard
result of the theory of controlled Markov proc‘esses can be applied. This
result states that the maximum time can be achieved by an adversary using
a simple strategy, one which chooses the same-option from each state at all
times.

Such a strategy can be specified by listing the points where the adversary
chooses to force the particle to move away from ¢. We can think of these

22

points as dividing the range of the random walk into intervals; between each
pair of points where the adversary forces the particle to move determinis-
tically is a region where the particle moves randomly. The points at the
edge of these random regions act like barriers in a random walk. A point on
the side away from ¢ pushes the particle into a new region and so acts like
an absorbing barrier, while a point on the side toward c pushes the particle
back into the old region and so acts like a reflecting barrier. Thus the region
containing c¢ acts like a random walk with two absorbing barriers, and the
remaining regions act like random walks with one absorbing barrier (on the
side away from c¢) and one reflecting barrier (on the side toward c).

Because each barrier can only be crossed away from ¢, once the particle
leaves a region it can never return. Now, suppose the particle starts in a
region with width w,. After at most w? steps on average (by Lemmas 4.1 or
4.2) it will pass into a new region of width w,; after an additional w? steps
it will pass into a new region of width ws, and so on until either a or b is
reached. Since these regions all fit between a and b, ¥ w; < b — a, and thus
(since each w; > 0) T w? < (b—a)?. 1

Though the bound in Lemma 4.3 is proved for the case of a very powerful
adversary that is always allowed to choose between a random move and a
deterministic move at each step, the bound applies equally well to a weaker
adversary whose choices are more constrained, as the stronger adversary
could always choose to operate within the weaker adversary’s constraints.
This technique, of proving bounds for a strong adversary that carry over to
a weaker one, has great simplifying power. It will be used extensively in the
analysis of the shared coin and consensus protocols.

4.2 The robust shared coin protocol

Figure 4.1 shows pseudocode for each processor’s behavior in the robust
shared coin protocol. The coin is constructed using an atomic counter,
which supports atomic increment, decrement, and read operations. In this
section, these operations are assumed to take unit time. The counter is
initialized to 0. The processor’s local coin is represented by the procedure
local_flip, which returns the values —1 and 1 with equal probability.

A processor’s behavior in the protocol is represented in pictorial form in
Figure 4.2. While a processor reads values in the central range from —K

23

Shared data:
counter counter with range [-K — 3n, K + 3n], initialized to 0

1 procedure shared.coin()

2 repeat

3 ¢ « counter

4 if ¢ < —(K + n) then output 0

5 else if ¢ > (K + n) then output 1

8 else if ¢ < —K then decrement counter

7 -else if ¢ > K then increment counter

8 else

9 if local_flip() = 1 then increment counter
0

1 else decrement counter

Figure 4.1: Robust shared coin protocol.

“K-n _' +K +n

Figure 4.2: Pictorial representation of robust shared coin protocol.

24

to K (where K is a parameter of the protocol) it flips a local fair coin to
decide whether to increment or decrement the counter. This part of the
protocol is essentially the same as the random-walk-based shared coin of
Aspnes and Herlihy [AH90a]. What is new is the addition of a “slope” at
either side of the random walk. On these slopes, a processor does not move
the counter randomly but instead always moves it away from the center.
When a processor reads a counter value in one of the “buckets” beyond the
slopes, it decides either 0 or 1 depending on the sign of the counter.

If the slopes are wide enough, once any processor has seen a value that -
causes it to decide, all other processors will see values that cause them to
push the counter toward the same decision. This mechanism eliminates the
possibility that delayed writes might move the counter out of the decision
range and allow the random walk (with small but non-negligible probablhtv)
to wander over to the other side. More formally, we can show:

Lemma 4.4 If any processor reads a counter value v 2> (K + n), then all
subsequent reads will return values greater than or equal to K + 1; in the
symmetric case where v < —(K + n), all subsequent values read will be less

than or equal to —(K +1).

Proof: Suppose that a processor has read v > (K + n) then it immediately
terminates leaving n — 1 running processors. Thus the number d of processors
that will execute a decrement before their next read is at most n — 1. Let
[= ¢ — d where c is the value stored in the counter. Since ¢ > (K + n), it
must be the case that I > K + 1. Now consider the effect of the actions the
scheduler can take. If it allows a decrement to proceed, ¢ and d both drop
by 1 and [remains constant. If it allows an increment to occur, ¢ increases
and ! increases with it. If it allows a read, the valuereadisc > (> K + 1,
and thus d is unaffected. In each case [remains at least K 4+ 1, and the claim
follows since ¢ > [. The proof of the symmetric case is similar. |

The consistency property follows immediately from Lemma 4.4. A similar
argument shows that the counter will not overflow:

Lemma 4.5 The counter value never leaves the range [K — 3n, K + 3n] in
any ezecution of the shared coin protocol.

Proof: Suppose that the counter reaches K + 2n at some point. Then each
processor will execute at most one increment or decrement operation before

25

it reads the counter, at which point it will decide 1 and execute no additional
operations. Thus the counter cannot exceed K + 2n +n = K + 3n. The full
result follows by symmetry. i

Proving the termination and bounded bias properties of the shared coin
requires some additional machinery. Define the true position t of the ran-
dom walk to be the value in the counter, plus 1 for each processor that will
increment the counter before its next read, and minus ! for each processor
that will decrement the counter before its next read. The following Lemma
relates the value read by a processor to the true position of the random walk:

Lemma 4.6 Let ¢ be a value read from the counter by some processor and
t the true position of the random walk in the state preceding the read. Then
le—t|<n-~-1.

Proof: There can be at most n — 1 processors with pending increments or
decrements.

Let us assume hereafter that the scheduler can cause a processor to read
any value between t —(n—1) and t 4+ (n —1). Because such a scheduler could
always choose to simulate any scheduler the protocol will actually face, any
“good” statement we can prove with the assumption will carry over to the
situation without it. The advantage of granting the adversary this additional
power is that it allows us to forget about the vagaries of the counter value.
Instead we can treat the protocol as a controlled random walk using the true
position-t.

Consider the lower part of Figure 4.3 (the upper part simply repeats
Figure 4.2 without the buckets.) If the true position ¢ is in the central region
between —K + (n — 1) and K — (n — 1), then Lemma 4.6 implies that any
processor that reads the counter will see a value between —~K and A and
move t randomly. In the two immediately adjacent regions, any processor
will either read a value between — X' and K, and move ¢ randomly, or read a
value that causes it to move ¢ away from 0. Finally, any processor that reads
a value in the outermost regions where |t| > K + (n — 1) will either make a
decision or move t away from 0. In each of these cases, the scheduler is never
allowed to force that true position toward 0; and if K is large relative to n
much of the execution of the protocol will be spent in the central region where
the scheduler’s control is ineffective. These two properties of the protocol are
the basis of the proof of its termination and bounded bjas, as shown below.

26

Figure 4.3: The protocol as a controlled random walk.

Lemma 4.7 The robust shared coin protocol ezecutes an ezpected O((K +
n)?) total counter operations when K > n.

Proof: If we consider the true position ¢, Lemma 4.6 implies that the sched-
uler can only forcet upift > K —(n—1) > 1 anddownift < =K +(n—-1) <
—1. Furthermore if |t| ever exceeds K + n + (n — 1), each processor will
decide after its next read. Thus the movement of the true position is a
controlled random walk in the sense of Lemma 4.3 with center 0 and bar-
riers at £(K + 2n — 1). The cxpected number of steps until a barrier is
reached is at most 4(K + 2n — 1)? steps, which will be followed by at most
2n operations as the processors each decide. Since each step takes a constant
number of counter operiations‘ the expected number of operations required is

O((K +n)?). I

The time bound of Lemma 4.7 shows that every processor terminates in
finite expected time when K > n. The bounded bias property is a conse-
quence of the following lemma:

Lemma 4.8 Against any scheduler, the probability that the processors in the

robust shared coin protocol will decide 1 is between E=3=1) gnd Etlazll

27

po3

Proof: Suppose the scheduler is trying to maximize the probability of decid-
ing 1. Under the simplifying assumption it can force a decision of 1 as soon
ast = K — (n — 1); however, if it allows t to slip below —K — (n ~ 1) the
processors will eventually decide 0. When —K —(n-1)<t< K - (n—-1)
the scheduler may choose between moving ¢ randomly or forcing ¢ toward
—K — (n = 1). Clearly, forcing the counter toward —K — (n — 1) can only
increase the probability of deciding 0, so choosing to move ¢t randomly max-
imizes the probability of deciding 1. But if the scheduler makes this choice,
the movement of the true position becomes a simple random walk with ab-
sorbing barriers at =K — (n — 1) and X — (n — 1). By Lemma 4.1, the
probability that ¢ reaches k' — (n —~ 1) first is 5_41217_:-_11 The lower bound
follows by symmetry. il :

Combining the lemmas we obtain:

Theorem 4.9 When K > n, the protocol of Figure 4.1 implements a robust
shared coin.

Proof: Consistency follows from Lemma 4.4, termination from Lemma 4.7.
and bounded bias from Lemma 4.8. §

Lemma 4.8 allows K to be chosen to obtain arbitrarily small non-negative
bias. Let the bias of the shared coin be + ¢, then

which gives

= 2
Combining this inequality with Lemma 4.7 gives a bound on the worst-
case expected running time for the protocol of O((n/€)?) total counter oper-
ations. This time is comparable to the worst-case expected running times of
the protocol’s non-robust ancestors. The protocol thus achieves robustness
without paying a significant cost in speed.

28

4.3 Implementing a bounded counter with
atomic registers

The robust shared coin protocol assumes the presence of a shared counter
supporting atomic increment, decrement, and read operations, with the re-
striction that no operation will be applied that will move the counter out of
some fixed range [—r,r]. In practice such a counter is not likely to be avail-
able as a hardware primitive. Fortunately it is not difficult to implement a
shared counter using atomic registers. However, some care must be taken to
guarantee that the counter uses only a bounded amount of space.

Both Aspnes and Herlihy {A1190a] and Attiya, Dolev, and Shavit [ADS39]
describe shared counter implemcntations. The two counter implementations
both assign a register to hold the net increment due to each processor, so
that the counter’s value is simply the sum of the values in these registers.
Both algorithms use simple atomic snapshot protocols to dllow the entire set
of registers to be read in a single atomic action.

Alas, neither implementation does quite what we would like. Even though
the value stored in the counter will never exceed the range [—r,r], the net
increment due to an individual processor is potentially unbounded. The
Aspnes-Herlihy protocol ignores this difficulty by assuming the presence of
unbounded registers (which it also uses to implement the atomic scan.) The
Attiya-Dolev-Shavit protocol uses only bounded registers, but enforces the
bounds by prematurely terminating the shared coin protocol if any proces-
sor’s register wanders out of a limited range. This premature termination
occurs infrequently, and is acceptable in a shared coin that does not need to
guarantee consistency. But it is not acceptable for a robust coin, as it may
allow the scheduler to force soine processor to choose one value (through
premature termination) after another has already chosen a different value
(through the normal workings of the shared coin protocol.)

A simple alternative to premature termination that still allows the size
of the registers to be bounded is to store the remainder of each processor’s
contribution relative to some convenient modulus m greater than the total
range 2r + 1. The counter valuc can then be reconstructed as the unique v
in the range [—r,] that is congruent to the sum of the registers, modulo m.
Pseudocode for the three counter operations using this technique is shown
in Figure 4.4; it assumes the presence of an array of registers which can be

29

Shared data:
scannable array count[0...n — 1], initialized to 0

procedure increment()
v «— count[me]
count[me] — (v + 1) mod m

procedure decrement()
v — count[me|
count[me] — (v — 1) mod m

procedure read()
scan count
v — Y000 countli
return v’ where ~r < v <rand v"=v (mod m)

Figure 4.4: Pseudocode for counter operations.

read in a single operation. Such an array can be simulated using an atomic
snapshot protocol [AAD*+90, All90b, And90]. An atomic snapshot is an
operation that returns a picture of the values in all of the registers in the
array that is consistent with other pictures returned by other snapshots and
with the order of non-overlapping write operations even though it may not
correspond to the actual values in the registers at a particular point in time.
Typically, it is necessary to make writes to registers in the scannable array
be more than just simple writes to individual registers, so taking a snapshot
of the array and writing to an clement of the array will both be expensive.
However, the algorithm of Afck ¢t al. [AAD*90] allows an atomic scan oper-
ation to be implemented with O(n?) bits of extra space and a maximum of
O(n?) primitive read and write operations for each snapshot and each write
to a simulated register in the scannable array. Using their algorithm. 4.4
implements an atomic counter where each counter operations costs O(n?)
register operations.

30

4.4 The randomized consensus protocol

Figure 4.5 shows pseudocode for cach processor’s behavior in the randomized
consensus protocol. The protocol uses three shared counters. The first two
maintain a total of the number ol participating processors that started with
each of the inputs 0 and 1. The last is used as the counter for a modified
version of the robust shared coin protocol. All of the counters have an initial
value of 0.

The protocol is optimized [or Lhe case where few processors participate.
We will define a processor to he active if it takes at least one step before
some processor decides on a value, and denote by p the total number of active
processors in a given execution. T'he protocol uses the counters ag and a;
to keep track of the number of active processors bv having each processor
increment one or the other ol these counters as it starts the protocol.

The protocol depends on being able to take an atomic snapshot of the
counters. Since the first two counters are never decremented, such a snapshot
can be obtained as described in [Figure 4.6. Though the operation defined
there is not wait-free, because it will not finish if ao or a; changes during
some pass through the loop, this event can occur at most p times during any
execution of the consensus protocol. So in fact the time to carry out the
atomic snapshot will be bounded in the context in which it is used.

If the counters are not primitives but are instead constructed as described
in Section 4.3 using an atomic scan operation, the overhead of Figure 4.6 can
be avoided completely by simply reading all three counters in a single atomic
scan of the arrays that implement them.

Several features of the protocol are worth noting. First of all, the same
“slopes” that ensured consistency for the robust shared coin ensure consis-
tency for the consensus protocol, for the same reasons. Second, the counters
ag and a; allow the protocol to guarantee validity, as the random walk is only
invoked if both have non-zcro values. These counters are also used to min-
imize the range of the random walk, by taking advantage of the fact stated
in the following lemma, a modilication of Lemma 4.6:

Lemma 4.10 Let ag,a,,c¢ be the values read from the counters by some pro-
cessor and t the true position of the random walk in the state preceding the
read. Then [c~t| < ap+a; - .

Proof: There are at most ap+a; — 1 processors with pending increments or

31

Shared data:
counter ag with range [0, n], initialized to 0
counter a; with range [0, n], initialized to 0
counter ¢ with range [~4n, 4n], initialized to 0

1 procedure consensus{input)
2 increment Qinput
3 repeat

4 read ag,ay, ¢
5 if ¢ < —=2n then output 0
6 else if ¢ > 2n then output 1
7 else if ¢ < —(ag + «,) or a; = 0 then decrement ¢
8 else if ¢ > (ao + «;) or ay = 0 then increment ¢
9 else
10 if local_flip() = | then increment ¢
11 else decrement. ¢

Figure 1.5 Consensus protocol.

procedure scan.counters()
repeat

aq + read(ao)

a, «~ read(a,)

¢ « read(c)

ag ~ read(ao)

aj ~ read{a,)
until aj = ao and a} = «,
return ao, a,,c

Figure 4.6: Counter scan lor randomized consensus protocol.

decrements. 1

To prove that the consensus protocol is correct, we must establish that it
is consistent, that it terminates, and that it is valid. The proof of consistency
is a straightforward modification of the proof of Lemma 4.4:

Lemma 4.11 [f any processor reads a counter value v > 2n, then all subse-
quent reads will return values > n+1; in the symmetric case where v < —2n,
all subsequent reads will relwrn values < —(n + 1).

Proof: Apply the proof of Lemuma 4.4 with K =n. I

Similarly, the proof that the counter ¢ does not overflow is a straightfor-
ward modification of Lemma -1.5:

Lemma 4.12 The value of ¢ never leaves the range [—4n,4n] in any ezecu-
tion of the consensus protocol.

Proof: Apply the proof of Lemina 4.5 with K =n. I

' Termination is trickier to demonstrate. As in the case of the shared coin,
the key to proving the consensus protocol’s termination is the fact that the
scheduler’s only alternative to moving the true position randomly is to move
it away from the origin. In the shared coin protocol, this condition depends
on fixing the parameter A" > 1. In the consensus protocol the situation
is more complicated, as the prolocol uses its knowledge of the number of
currently active processors Lo scl the inner boundaries of the slope close to
the origin while still preventing the scheduler from being able to force the
true position to move toward Lhe origin,

Lemma 4.13 Let n be the lolal number of processors and p be the number
of processors that take at least one step before some processor decides on a
value. Then the worst-case crpected running time of the consensus protocol
is O(p* + n) total counter operalions.

Proof: We will show that the consensus protocol terminates in O(p? + n)
time by reducing it to a controlled random walk of the true position ¢. Divide
the execution of the protocol into two phases. In the first phase, at most one
of ag, a; is nonzero; if the cxeculion does not leave the first phase before

33

2n increments or decrements have occurred the protocol will terminate after
O(n) additional steps by Lemma 1.11.

In the second phase, both @, and a, are nonzero. Let v be a value read
by some processor from the counter ¢. By Lemma 4.10 we know that |t —
v| < ag+a; —1 < p—1. Now, to force an increment during.the second
phase the scheduler must show a processor a counter value v that is at least
ao + a, possibly by withholding local coin-flips to raise the value of ¢ or
by withholding increments to lower the value of ag + ay. In either case
Lemma 4.10 applies and ¢ must he greater than 0. The case of the scheduler
attempting to force a decrement is symmetric, and thus in either case the

scheduler can only force the true position to move away from 0.

‘ Furthermore, since p is an upper bound both on the distance between c
and t and on the value ol «ay + «,, il |{| > 2p then |v| > a¢ + a; and the
true position will move away lvom) therealter. Thus the second phase of the
execution can be modeled as a controlled random walk in the sense of Lemma
4.3 with center 0, barriers at. £2p, and a starting position equal to the true
position at the end of the first phase. By Lemma 4.3, this random walk will
take an expected O(p?) steps, each consisting of a constant number of counter
operations; to this value must be added O(n) steps until termination, up to
O(n) steps from the first phasc, and O(p?) extra read operations due to extra
passes through the loop in scan_counters(). The total expected number of
counter operations is thus O(p?* + n). |l

Note that the expected running time of O(p® + n) is expressed in total
counter operations. If the counter is implemented as described in Section 4.3
the total number of register opcrations will be O(n%(p? + n)).

Lemma 4.14 The protocol of l'igure {.5 satisfies the validity condition.

Proof: Suppose every processor starts with the input 1. Then ag is never
incremented and so retains its initial value of 0 throughout the execution
of the protocol. Thus each processor will increment ¢ until it reads a value
v 2 2n at which point it will decide 1. The case where every processor has
input 0 is symmetric. i

Combining the lemmas gives:

Theorem 4.15 Figure 4.5 implements a consensus protocol.

34

Proof: Lemmas 4.11, 4.13, and 4.14. &

It is worth looking at the hehavior of the shared coin implicitly embedded
in the consensus protocol of IMigure 4.5. Because the function of detecting
agreement is implemented in the shared coin itself, limiting scheduler con-
trol over the outcome of the shared coin is no longer necessary to achieve
consensus. Thus the parameter /' of the shared coin protocol can be set to
minimize the time taken in the random walk without regard to its effect on
the agreement parameter é. In the protocol of Figure 4.5 the shared coin has
an effective agreement parameter of ;‘;, as low as is possible without setting
K <p.

At the same time, the simplicity of the protocol allows the number and
size of the shared counters to be very small. Unfortunately, when the avail-
able primitives are limited to atoimic registers this small size is lost in the
O(n?) space overhead of the alomic scan operation. It is not immediately
clear that this overhead is a nccessary feature of an atomic counter imple-
mentation; much work remains to be done in this area.

35

Chapter 5

Consensus Using Weighted
Voting

5.1 Introductiqn

In the previous chapter we buill a consensus protocol that directly incorpo-
rated a robust shared coin. llere we will show how to construct a faster but
non-robust shared coin which gives consensus using standard constructions
such as the one of [AH90a] descrihed in Section 3.3.

This shared coin protocol requires a departure from previous practice. As
in the protocols of the previous chapter, the fundamental technique behind all
shared coin protocols since [Al190a] has been the use of repeated, equally-
weighted votes to reduce the impact of any particular processor’s private
knowledge and with it the adversary’s ability to affect the outcome of the
coin. There are many advantages to this approach. The processors act as
anonymous conduits of a stream of unpredictable random increments. If
the scheduler stops a particular processor, at worst all it does is keep one
vote from being written out to the common pool—the next local coin flip
executed by some other processor is no more or less likely to give the value
the scheduler wants than the next one executed by the processor it has just
.stopped. Intuitively, the scheduler’s power over the outcome of the shared
coin is limited to filtering oul np to n — | local coin flips from this stream
of independent random variables. But the effect of this filtering is at worst
equivalent to adjusting the final tally of votes by up to n — 1. If a constant

36

multiple of n? votes are cast, Lhe total variance will be (n?). Because the
total vote is approximately normally distributed, the protocol can guarantee
that with constant probability Lhe total vote is more than n away from the
origin, rendering the scheduler’s adjustment ineffective.

Alas, the very anonymily of the processors that is the strength of the
voting technique is also its greatest weakness. To overcome the scheduler’s
power to withhold votes, it is necessary that a total of Q(n?) votes are cast—
but the scheduler might also choose to stop all but one of the processors,
leaving that lone processor Lo gencrate all Q(n?) votes by itself. It follows
that, for all of the polynomial-time wait-free consensus protocols based on
unweighted voting, the worst-case expected bound on the work done by a
single processor is asymptotically no better than the bound on the total
work done by all of the processors together.

In this chapter we show how Lo avoid this problem by modifying a pro-
tocol of Bracha and Rachman [I3R91] to allow the processor to cast votes of
increasing weight. Thus a fast processor or a processor running in isolation
can quickly generate votes of sufficient total variance to finish the protocol.
at the cost of giving the scheduler greater control by allowing it both to with-
hold votes with larger impact and Lo choose among up to n different weights
(one for each processor) when determining the weight of the next vote.

There are two main difficultics that this approach entails. The first is that
careful adjustment of the weight [unction and other parameters of the pro-
tocol is necessary to make surc thial it performs correctly. More importantly,
allowing the weight of the i-th vote to depend on the particular processor
the scheduler chooses to run, which may in turn depend on the outcomes
of previous votes, means thal we cannol treat the séquence of votes as a
sequence of independent random variables.

However, the sign of cach vole is determined by a fair coin flip that
the scheduler cannot predict in advance, and so despite all the scheduler’s
powers, the a2xpected value ol cach vote belore it is cast is always 0. This
is the primary requirement of 4 martingale process [Bil86, Fel71, Kop34].
Under the right conditions, martingales have many similarities to sequences
of sums of independent randow variables. In particular, martingale analogues
of the Central Limit Theorem and Chernoff bounds will be used in the proof
of correctness. ~

The rest of the chapter is organized as follows. Section 5.2 defines tne
shared coin protocol and gives an overview of its operation. Section 5.3

37

1 procedure shared_coin()

2 begin
3 my.reg(variance, vote) — (0,0)
4 t -1
5 . repeat
6 for i =1tocdo
7 vote « local [lip() x w(l)
8 my.req «— (my_reg.variance + w(t)?, my.reg.vote + vote)
9 te—t+1
10 end
11 read all the registers, summing the variance fields into the
local variable lolal_rariance
12 until total.variance > K
13 read all the registers, summing the vote fields into the local vari-
able total_vole
14 if total.vote > 0
15 then output |
16 else if total_vole < ()
17 then output 0
18 else fail
19 end

Figure 5.1: Shared coin protacol.

contains a brief definition of martingales and describes some of their proper-
ties. Finally, Section 5.4 proves the correctness of the protocol for two sets
of parameters, one of which allows it to simulate the equally-weighted vot-
ing protocol of [BRS1], and one which gives a bound of O(nlog?n) on the
expected number of operations cxccuted by a single processor.

5.2 The shared coin protocol

Figure 5.1 gives pseudocode for cach processor’s behavior during the
shared coin protocol. Each processor repeatedly flips a local coin that re-
turns the values 41 and —1 with cqual probability. The weighted value of

38

each flip is w(t) or —w(t) respectively, where ¢ is the number of coins flipped
by the processor up to and iucluding its current flip. Each weighted flip
represents a vote for either the output value 1 (if positive) or 0 (if negative).
After each flip, the processor updates its register to hold the sum of the
weighted flips it has performed, and the sum of the squares of their values.
After every c flips, the processor rcads the registers of all the other proces-
sors, and computes the sum ol all the weighted flips (the total vote) and the
sum of the squares of their values (Lhe total variance). If the total variance
is greater than the quorum N, il stops, and outputs 1 if the total vote is
positive, and 0 if it is negative (il treats a total vote of zero as a failure to
avoid introducing asymmetry between the two outcomes). Alternatively, if
the total variance has not ycl reached the quorum K, it continues to flip its
local coin.

As in the previous chapter, the function local_flip returns the values | and
—1 randomly with equal probability. The values K and ¢ are parameters of
the protocol which will be sct. depending on the number of processors n to
give the desired bounds on the agreement parameter and running time. The
weight function w(t) is used to make later local coin flips. have more effect
than earlier ones; so that a processor running in isolation will be able to
achieve the quorum K quickly. 'I'he weight function will be assumed to be
of the form w(t) = t* where « is & nonnegative parameter depending on n:
though other weight functions arc possible, this choice simplifies the analysis.

We will demonstrate that for suitable choice of I, ¢ and a all processors
-return 1 with constant probability; the case of all processors returning 0
will follow by symmetry. The structure of the argument follows the proof of
correctness of the less sophisticated protocol of Bracha and Rachman [BR91],
which corresponds to Figure 5.1 when w(t) is the constant 1, K = ©(n?),
and ¢ = O(n/logn). Votes cast before the quorum K is reached will form
a pool of common votes thal all processors see.! We will show that with
constant probability (i) the total ol the comnmon votes is far from the origin
and (ii) the sum of the extra votes cast hetween the time the quorum is
reached and the time some processor does its final read in line 13 is small.
so that the total vote read by cach processor will have the same sign as the
total common vote. ’

1The definitions of the common and extra votes we will use differ slightly from those
used in [BRO1]; the formal definitions appear in Scction 5.4.

39

This simple overview of the proof hides many tricky details. To simplify
the analysis we will concentrate nol on the votes actually written to the
registers but on the votes whose values have been decided by the processors’
execution of the local coin {lip in line 7; conversion back to the values actually
in the registers will be done by showing a bound on the difference between
the total decided vote and the total of the register values. In effect, we are
treating a vote as having been “cast” the moment that its value is determined,
instead of when it becomes visible Lo the other processors.

Some care is also needed to correctly model the sequence of votes. Most
importantly; as pointed out above, allowing the weight of the i-th vote to
depend on which processor the scheduler chooses to run means the votes are
not independent. So the straightforward proof techniques used for protocols
based on a stream of identically-distributed random votes no longer apply.
and it is necessary to bring in the theory of martingales to describe the
execution of the protocol.

5.3 Martingales

A martingale is a sequence of random variables Sy, S;, .. ., which informally
may be thought of as representing the changes in the fortune of a gambler
playing in a fair casino. Becausc the gamnbler can choose how much to bet or
which game to play at each instant, cach random variable S; may depend on
all previous events. But becanse Lhe casino is fair and the gambler cannot
predict the future, the expected change in the gambler’s fortune at any play
is always 0.

We will need to use a very general delinition of a martingale [Bil86, Fel71,
Kop84]. The simplest definition of a martingale says that the expected value
of Siy1 given 51, S;,...,S; is just S;. To use a gambling analogy, this defini-
tion says that a gambler who knows only the previous values of her fortune
cannot predict its expected future value any better than by simply using its
current value. But what if the gambler knows more information than just
the changing size of her bankroll? For example, imagine that she is placing
bets on a fair version of roulctie, and always bets on either red or black.
Knowing that her fortune increasced alter betting red will tell her only that
one of eighteen red numbers came up; but a real gambler will see precisely
which of the eighteen numbers it was. Still, we would like to claim that this

10

additional knowledge does not allect her ability to predict the future. To
do so, the definition of a martingale must he extended to allow additional
information to be represented explicitly.

The tool used to represenl Lhe information known at any point in time
will be a concept from mcasure Lheory, a g-algebra® The description given
here is informal; more complete definitions can be found in [Fel71, Sections
IV.3, IV.4, and V.11] or [BilS6].

5.3.1 Knowledge, o-algebras, and measurability

Recall that any probabilistic statcment is always made in the context of some
(possibly implicit) sample space. The elements of the sample space (called
sample points) represent all possible resuits of some set of experiments,
such as flipping a sequence ol coins or choosing a point at random from the
unit interval. Intuitively, all randomness is reduced to selecting a single point
from the sample space. An event, such as a particular coin-flip coming up
heads or a random variable taking on the value 0, is simply a subset of the
sample space that “occurs” il one of the sample points it contains is selected.

If we are omniscient, we can sce which sample point is chosen and thus
can tell for each event whether it occurs or not. However, if we have only
partial information, we will not be able to determine whether some events
occurred or not. We can represent the extent of our knowledge by making
a list of all events we do know about. This list will have to satisfy certain
closure properties; for example, if we know whether or not A occurred, and
whether or not B occurred, then we should know whether or not the event
“A or B” occurred.

We will require that the set of known events be a o-algebra. A o-algebra
F is a family of subsets of a sample space Q that (i) contains the empty set:
(ii) is closed under complement: if F contains A, it contains 2\ A (the com-
plement of A); and (iii) is closed under countable union: if F contains all of
Ay, Ay, .. ., it contains U2, Ai.* An cvent A is said to be F-measurable if it
is contained in F. In our context, Lhe term “measurable,” which comes from
the original measure-theorctic use of g-algebras to represent families of sets
on which a probability distribution is well-defined, simply means “known.”

2Sometimes called a o-field.
3Additional properties, such as being closed under finite union or intersection, follow
immediately from this definition.

We “know” about an cvent il we can determine whether or not it occurred.
What about random variables? A random variable X is defined to be F-
measurable if every event of the forin X < ¢ is F-measurable. (The closure
properties of F then imply that such events as a < X < b, X = d, and
so forth are also F-measurable.) Looking at the situation in reverse, given
random variables X, X;,... we can consider the minimum co-algebra F for
which each of the random variables is F-mmeasurable; this o-algebra, written
(Xi), is called the o-algebra generated by X;, X,,..., and represents all
information that can be inferred from knowing the values of the generators.

A o-algebra gives us a rigorous way to defline “*knowledge” in a probabilis-
tic context. Measurability and generated o-algebras give us a way to move
back and forth between the abstract concept of a o-algebra and concrete
statements about which random variables are completely known. To analyze
random variables that are ouly partially known, we need one more definition.
We need to extend conditional cxpectations so that the condition can be a
o-algebra rather than just a collection of random variables.

For 2ach event A let I, be the indicator variable that is 1 if A occurs
and 0 otherwise. Let U = Ii[X | F] be a random variable such that (i) U
is F-measurable and (ii) E[l//,] = Ii[X1,4) for all A in F. The random
variable E[X | F] is called the conditional expectation of X with respect
to F [Fel7l, Section V.11]. Intuitively, the first condition on E[X [F] says
that it reveals no information not already found in . The second condition
says that just knowing that some event in F occurred does not allow one
to distinguish between X and E[X | F]; this fact ultimately implies that
E[X | F] uses all information that is found in F and is relevant to X.

. If F is a generated by random variables X, X,.. ., the conditional expec-

tation E[X | F] reduces to the simpler version E[X | Xy, X3,...]. Some other
facts about conditional expectation that we will use (but not prove): if X is
F-measurable, then E[XY | F| = X K[} | F] (which implies E[X | F] = X))
and if 7' C F, then E[E[X | F] | F'| = [X | F]. See [FelT1, Section V.11].

5.3.2 Definition of a martingale

We now have the tools to define a martingale when the information available
at each point in time is not limited to just the values of earlier random
variables. A martingale {S;,F;}.1 < i < n, is a stochastic process where
each S is a random variable representing the state of the process at time : and

12

F: is a o-algebra representing the knowledge of the underlying probability
distribution available at time i. Martingales are required to satisfy three
axioms, for all ::

1. F; © Fiy1- (The past is never forgotten.)

o

S; is F;-measurable. (T'he present is always known.)

w

. E[Sis1 | Fi] = Si. (The luture cannol be foreseen.)

Often F; will simply be the a-algebra (S,...S;) generated by the vari-
ables S; through S;; in this case axioms | and 2 will hold automatically.

To avoid special cases lel. Fy denole the trivial o-algebra consisting of the
empty set and the entire probability spacc. The difference sequence of a
martingale is the sequence X, X,,... X, where X; = 5, and X; = S — Si,
for i > 1. A zero-mean martingale is a martingale for which E[S;] = 0.

5.3.3 Gambling systems

A remarkably useful theorem, which has its origins in the study of gambling
systems, is due to Halmos [Hal:39]. We restate his theorem below in modern
notation:

Theorem 5.1 Let {S;,F:},! < i < n be a martingale with difference se-
quence {X;}. Let {¢;},1 < i < n be random variables taking on the values
0 and 1 such that each (; is F,. -measurable. Then the sequence of random
variables S! = £_, (; X; is a mariingalc ivlative to F;. »

Proof: The first two properlies are casily verified. Because (; is Fi_;-
measurable, E[(; X; | Fi-1] = (1[N, | Fi-i] = 0, and the third property also
follows. B

5.3.4 Limit theorems

Many results that hold for sums ol independent random variables carry over
in modified form to martingales. For example, the following theorem of
Hall and Heyde [HH80, Theorem 3.9] is a nmrtmgale version of the classical
Central Lxmnt Theorem:

43

Theorem 5.2 ([HH80)) Le! {S:, F;} be a zero-mean martingale. Let V* =

mLE[X?| Fia] and let 0 < 6 < 1. Define L, = Ty E[IX:*¥] +
E[IV,‘2 - ll“"sl. Then there crisls a constant C depending only on § such
that whenever L, < 1,

. 1
— & o[1/ (3420) .
IPr(Sa < 2} ~ @(2)| < ('L, g lx|4(1f6)2/(3+25)] ' (3.1)
where ® is the standard unit normal distribution with mean 0 and variance
1.

If we are interested only in the tails of the distribution of S,, we can
get a tighter bound using Azuma's inequality, a martingale analogue of the
standard Chernoff bound [('i¢52] lor suins of independent random variables.
The usual form of this bound (see [AS92, Sped8T]) assumes that the difference
variables X satisfy |.X;| € L. 'T'his restriclion is too severe for our purposes.
so below we prove a generalizalion of the inequality. In order to do so we
will need the following technical lermma.

Lemma 5.3 Let {S;,F;},1 < < n be a zero-mean martingale with dif-
ference sequence {X;}. Let Fo C F, be a (not necessarily trivial) o-algebra
such that E[S, | Fo] = 0. If there ezists a sequence of random variables
wy, Wy, ... Wn, and a random variable W, such that

1. W is Fo-measurable,

2. Each w; is F;_;-measurablr,

3. For all 1, | X;| < w; wilh)nnl:hbility [, and
4. T w? < W with probability 1,

then for any a > 0, ‘
B[| Fo g oW (5.2)

Proof: The proof is by induction on n. Using the convexity of ¢°* and the
fact that E[X, | o] = 0, we have

E[eax' | fo] < é (("""" + r:""") = cosh aw, < e i/,

44

If n = 1 we are done, since wf < W. I n is greater than 1, for each : <
n—1let §! = Sisi— X1 and F! = Fiyi. Then {S, F/},1 < i < n—1 satisfies
the conditions of the lemma with F, = F,, w! = wis; and W’ = W — w?, so
by the induction hypothesis l‘)[r'"""'-' |.7"(’,] < e**W-ui)/2 Byt then, using
the fact that E[.X | F] = E[lJ[X' | '] | F] when F C F', we can compute:

E[eas" | .7'-0]

L[1s[enS1eat3=X | 7] | o
E[(JaxlE[eaS;_l l]:(;] |J;-0]

< BlerMertv-ediz g g
A Bl oY
< (,..-’(;v-u:f)/:c.ﬂwf/z

" p
(Wl

Theorem 5.4 Let {S;,F:}.1 < i < n be a zero-mean martingale with
difference sequence {X;}. [If lhere exists a sequence of random wvariables
Wy, Wa, ... W,, and a constan! W, such lhal

1. Fach w; is F;_i-measurablc.
2. For all i, | Xi| < w; with probabilily |, and
3. T, wl < W with probability |,
then for any A > 0,
Pr(s, > A] < o7V (5.3)

Proof: By Lemma 5.3, for any o > 0, I [(‘] < e@*W/2 Thus by Markov's
inequality
pr[Sn Z A] = l)l. [(.uv,\'.. ->- (‘.v.\] S ea2W/'Ze—a,\'

Setting a = A/W gives (5.3). B

Symmetry immediately gives ns:

Corollary 5.5 For any martingale {S;, F;} satisfying the premises of The-
orem 5.4, and any A > 0

Pr(s, < —A] < =V, : (5.4)

Proof: Replace each S; by —.5; and apply Theorem 5.4. §

5.4 Proof of correctness

For this section we will fix a particular scheduler. We may assume without
loss of generality that the scheduler is deterministic, because any random
inputs the scheduler might use cannot depend on the history of an execution
and therefore may also be fixed in advance.

Consider the sequence of random variables X, X3, ... where X represents
‘the i-th vote that is decided by some processor executing line 7, or 0 if fewer
than i local coin flips occur. For cach i let F; be (X ... X)), the o-algebra
generated by X, through X,. Because the scheduler is deterministic, all of
the random events in the system preceding the i-th vote are captured in the
variables X through X;_,, and the o-algebra F;_; thus determines the entire
history of the system up to but not including the i-th.vote. Furthermore.
since the scheduler’s hehavior depends only on the history of the system.
Fi-1 in fact determines the scheduler’s choice of which processor will cast
the :-th vote. Thus conditioned on F,_y, X, is just a random variable which
takes on the values £w with cqual probability tor some weight w determined
by the scheduler’s choice of which processor to run. Hence E[X; | Fi_4] = 0.
and the sequence of partial sums S; = £'_| X; is a martingale relative to
{F:}. ,
We are not going to analyze {S;, F;} directly. Instead, it will be used as
a base on which other martingales will be built using Theorem 5.1. '
Let k; = 1if Z;=1 Xf < K and 0 otherwise. Votes for which x; = 1 will be
called common votes. For each processor P let (p; = 1 if the vote X; occurs
before P reads, during its final rcad in line 13, the register of the processor
deciding X;, and let {p; = 0 otherwise. In effect, {p; is the indicator variable
for whether P would see X, il il were written out immediately. Observe
that for a fixed scheduler the valnes of both », and (p; can be determined by
examining the history of the system np to but not including the time when the

16

vote X; is cast, and thus both «; and {p; are F;_,-measurable. Consequently
the sequences {Z;=1 IC]'XJ‘} and {Z;._.l ('p,jX,-} are martingales relative to
{F:} by Theorem 5.1. Votes for which {p; = 1 but x; = 0 will be referred to
as the extra votes for processor P. (Observe that (p; > &; since P could
not have started its final read until the total variance was at least X'.) The
sequence {Zi'=1(Cp,i - n;)Xi} of the partial sums of these extra votes is a
difference of martingales and is thus also a martingale relative to {F;}.

The structure of the proof of correctness is as follows. First, we show
that the distribution of the total common vote, Y ;X;, is close to a normal
distribution with mean 0 and variance K for suitable choices of a and K
in particular, for n sufficiently large, the probability that ¥ x;X; > zvVK
will be at least a constant for any fixed z. Next, we complete the proof by
showing that if the total common vote is far from the origin the chances
that any processor will read a total vote whose sign differs.from the common
vote is small. This fact is itself shown in two steps. First, it is shown
that, for suitable choice of ¢, the total of the extra votes for a processor P.
Y ({p; — x:)Xi, will be small with high probability. Second, a bound A is
derived on the difference between Y~ (p;X; and the total vote actually read
by P.

It will be necessary to select values for a, K, and c that give the correct
bounds on the probabilities. However, we will be in a better position to
justify our choice for these parameters after we have developed more of the
analysis, so the choice of parameters will be deferred until Section 5.4.5.

5.4.1 Phases of the protocol

We begin by defining the phases of the protocol more carefully. Let ¢; be
the value of the i-th processor’s internal variable ¢ at any given step of the
protocol. Let U; be the random variable representing the maximum value of
t; during the entire execution of the protocol. Let T; be the random variable
representing the maximum value of ¢; during the part of the execution of the
protocol where x; = 1.
In the proof of correctness we will encounter many quantities of the form
121 E(T) or iy €(U;) for various functions . We will want to get bounds
on these quantities without having to look too closely at the particular values
of each T; or U;. This section proves several very general inequalities about

47

quantities of this form, all of which are ultimately based on the following

constralint:
T 2a+1

K>ZZJ“>Zf =3 (55)

i 7=1

\Jl

The constant 2a + 1 will reappear often; for convenience we will write it as
A. As noted above, a > 0, and hence A > 1.

: A
Define Ty = (%‘-)1/ , so that K = "—ﬁﬁ The constant Tx represents
the maximum value of each T; if they are set to be equal while satisfying
inequality (5.5). Note that Tk need not be integral. Now we can show:

Lemma 5.6 Let y(z) = z4/A and let x be any strictly increasing function
such that xy~! is concave. Then for any non-negative {z;}, if ¥, w(z;) <
K, then 7, x(z:) £ nx(Tx).

Proof: Since xy~! is concave, we have

() e (22

(HLP52, Theorem 92]. Simple algebraic manipulation yields

¥ x(z:) < nx (,,,—1 (Z _zg(ng»

But

y! (Z ﬂ’—)) =y (3 > 1}) <y (2) =7«

n n
Hence ¥ x(z:) < nx(Tk). B

Letting x be the identity function we have yv~!(z) = (Az)"*, which is
concave for A > 1. Hence:

Corollary 5.7
) T: < nTx. (5.6)

1=1

In the case where xy~! is convex, the following lemma applies instead:

48

Lemma 5.8 Let y(z) = /A and let x be any strictly increasing function
such that xi~! is convez. Then for any non-negative {z;}, if =7, z2/4 <
K; then Z?:l X(I“) < (Tl - l)X(O) + X(nl/ATf\")'

Proof: Let Y = 3" ¢(z:). Now x(z:) = xy~'4(z:) or

o ((-252) - 2529

which is at most

(1- 42 w0 + U2y

given the convexity of x3~'. Hence

Sxa) < w0 - (552 w0+ (5 282wy

i=1 =1

= (n=1)x¥~"0) + xy~!

< (n=1x¥~H0) + x¥~(K)

I~
.Ma
=
3

which is just (n — 1)x(0) + x (n'/4Tx). B

The quantity n'/ATy is the maximum value that any z; can take on
without violating the constraint on ¥ ;. So what Lemma 5.3 says is that
if x¥~! is convex, 3_ x(z;) is maximized by maximizing one of the z; while
setting the rest to zero. ‘

For the variables U; we can show:

Lemma 5.9 Let ¥(z) = z4/A and let x be any strictly increasing function
such that x(¥~'(z)+c+1) is concave in . Then for any non-negative {r,}.
if Sy w(z:) < K, then

=1

n

Yox(U) Snx(Tk +c+1) (5.7)

=1

49

Proof: Let W; be the number of votes written to the registers during the part
of the execution where the total of the register variance fields is less than or
equal to K. The set of variables { W} satisfies the inequality 3" WA/4A < K
using the same argument as gives (5.5). Furthermore U; < W;+1+c¢, because
after the i-th processor’s next vote the total variance in the registers must
exceed K and it can cast at most ¢ more votes before noticing this fact.
Define x'(z) = x(z +c+1). Then x(U;) £ x(W; +c+l) = x'(W;). But w. '
satisfy the premises of Lemma 5.6 and thus i, x(U:) € T X(W,) <
nx'(Tg) = nx(Tk +c+1). B

Setting x(z) to = gives
Corollary 5.10
Zu,<nT,\+c+1) (5.8)

=1
Proof: x(¥~'(z)+c+1) = Az'/? + ¢+ 1, which is concave since A > 1. |

Define g = 1 + —t- then gTx = Tk + ¢ + 3 will be an upper bound for
Tk + c+ 1 as well a.s a number of closely related constants involving ¢ that
will appear later.

5.4.2 Common votes

The purpose of this section is to show that for n sufficiently large, the total
common vote is far from the origin with constant probability. We do so by
showing that under the right conditions the total common vote will be nearly
normally distributed.

Let Sk, = E;=1 k;X;. As pointed out above, {SK,; = Z;=1 fc].\"J,}',} s
a martingale. Let N = [nTx]. It follows from Corollary 5.7 that s, = 0 for
1 > NV and thus Sk N = lim;—. Sk, is the sum of all the common votes. The
distribution of Sk v is characterized in the following lemma.

Lemma 5.11 If

G6A? -
TUAT, <1, . (5.9)
then for any z,
A 1/5
|Pr[SK,N < :r\/K] - ‘I’(J:)I < C (m) (3.10)
50

where C, is an absolute constant.

Proof: The proof uses Theorem 5.2, which requires that the martingale be
normalized so that the total conditional variance V33 is close to 1. So let
Yi= 5\7‘%} and consider the martingale {Z;=l Yj,f-',-}. To apply the theorem
we need to compute a bound on the value Ly. We will fix § = 1.

We begin by getting a bound on the first term 3 E[]Y;l“”}. We have

N N 1 N 1 n T,
ZE[IY:‘I"] = E[ZIY:'I“J = —-—ZE[ZWX:']“J =—=E[3"3Y"j* (5.11)
i=1 i=1 A i=1 K i=1 j=1
Now,
T; T, Tda+1
jda ;da & T_'-Ia = THda
;J “'/oj G+ 4a+1+‘
Define 9(z) = z#/4,x(z) = 2™ + I, taking 0° = 1. Then yv~'(y) =

T{a+l

(Ay)te/a 4 (Au=tDi? convex, and hence "™ (Tf“ + -4-—> is at most

da+1. =1 4a+1
(nY ATk)4 + "I/:Z;'l““ +(n —1)x(0) using Lemma 5.8. If a is positive then
x(0) is zero; however if a is zero y(0) will be 1. In either case (n=1)¢(0) <
n — 1. Plugging everything value back into (5.11) gives

4a (nI/ATK)‘la-i-l n—1
K*4a +1) K?

N I/AT_,)
4] < (n K
EE[M] - K?
For the second term E[IV,?, - ll“"s], observe that

Al 1
Vi=TEN FL] = 2

=1 ¢

E[(x.X)? | Fiua] .

N
=1

which is just 1/K times the sum of the squares of the weights |.X,| of the
common votes. But the total variance of the common votes can differ from
K by at most the variance of the first vote X, for which x; = 0. Since the
processor that casts this vote can have cast at most n!/AT} votes beforehand. .

the variance of this vote is at most (n‘/ AT + 1)%, giving the bound
q 1 2a
V2 —1'* < = (nV/ATy + 1), (5.13)

5\

Combining (5.12) and (5.13) gives

2a
(nVATYe (pVATx)%' n—1 (nI/ATK + 1)

‘ s g — + .
N = I<2 [\ 2(4a + 1) 1‘2 I‘
_ nie/AT e N pla+1)/ATdatt . An—1)
[\’2 [\'2(4(1 + 1) nzTﬁ_A
nza/ATj%a(l-Fn‘l/ATl'\;‘)?a
%
2, -1/A=1
< gy AR | e
da + 1
+ An—l/ATEle"—“/'\TE“
2
< 6A
= RUAT.

The second-to-last step uses the approximation (1+z)® < €** for non-negative
b and z. The exponential term is serendipitously bounded by e if (5.9) holds.
since 6A4%(n!/ATx)™! < 1 implics that (n'/4Tx)™* is also at most 1.

A more direct application of (5.9) shows that Ly < 1, and thus Theorem

5.2 applies. Hence _
N
Pr {Z Y.<z

|Pr[2 K; X; < z\/ﬂ - ¢(;z)l =
i=1

< C 642 \'° 1
= nt/ ATy 1 + |z|16/5

A2 1/5
()"

- &(z)

IN

5.4.3 Extra votes

In this section we examine the extra votes from the point of view of a par-

ticular processor P. " :
Recall that (p; is defined to he 1 if the vote X; is cast by some processor Q

before P’s final read of Q’s register and 0 otherwise. Clearly, ¢p, 2 &, since P

52

could not have started its final rcad until the total variance exceeded K. As
discussed above, both (p; and ~; are F;_;-measurable. Thus & = (p; — «; is
a 0~ 1 random variable that is F;_,-measurable, and {Sp; = T, §X;, Fi}
is a martingale by Theorem 5.1.

Define A = n(gTk)*. The lollowing lemma shows a bound on the tails of

Zfi.{Y;‘.
Lemma 5.12 For anyz > 0, ¢f

¢ <d I (5.14)
nA

holds for some positive d < z, and

- d)? -
pgpp 2 d 5.13)
-9 2log(n/p) (
holds for some positive p < n, lhen for each processor P,
Pr[Z(Cp_,- -r)N;i<A - z\/E] < p/n. ~ (5.16)

Proof: The proof uses Corollary 5.5, so we proceed by showing that its
premises (stated in Theorem 5.4) are satisfied.

By Corollary 5.10, X; and thus &.X; is zero for i > n(Tx + ¢+ 1). So
Y& X = Spm where M =n(1Ty +c+1).

Set w; = |£;X;|. Then the first premise of Corollary 5.5 follows from the
fact that for each 7, &; and | Xl are both F;-measurable. The second premise <
is immediate. For the third pretnise, notice that

Z 1€:X:))? Z{, Xt = Z CpiXE- Z K X? < Z X? - Z X2
The first term is

n U,
TX=Y Y

=1 j=1

Z M XEP> K -2

The second term is

33

for some t which is at most U; for some 7. Thus

n Ui
S(aXd)? € -K+t2+3 3 5%

i=1 j=1
n Ui+t

< =K+ > 5%

=1 3=1

< =K+ Y (Ui+2)%/A.

=1

Let x(z) = (z + 2)4/A. Th('.n

AV 3"
) et 1) ((Ay) /-:c-l-)

= AZ()Ay)"”‘c+3)"‘

k=0

= (Ui +2)4 n(Tx +c+3)* _ n(gTw)?
—_— < c+e+l)= < ;
§ T Sax(Tx +c+1) - < ==
It follows from (5.17) and (5.18) that
Slexir < L0 - k= gt -

Applying (5.4) from Corollary 5.5 now yields, for all A > 0,
| PrlSpm S -A] S e VRGN,
If (5.14) holds, then A < dv/A by Lemma 5.13. So
Pr[z EXi <A - Jt\/ﬂ < Pr[SpM < —-(z-d)VK

< e-lz=d1*K/2K(s4-1)
= e-fa=dP/2g?-1).

(44
N

For y > 0, the second derivative of each term is either 0 (when & = A4) ot
negative; thus x(¢¥~'(y) + ¢ + 1) is concave and Lemma.3.9 gives

(5.18)

(3.19)

But if (5.15) holds then

N2
1< (2 —d)
: 2log(n/p)

and, since log(n/p) > 0 and g > |,

_(a—dp

2GT=T) < —log(n/p) = log(p/n),

From which it follows that

e-(t—d)‘/'l(!l"‘-l) < elostp/n) = p/n.

5.4.4 Written votes vs. decided votes

" In this section we show that the difference between 3 (p;X; and the total
vote actually read by P is bounded by A = n(gTk)*.

Lemma 5.13 Let Rp be the sum of the votes read during P’s final read.
Then
iZCp_,-X,- - R"'l Su(ly+c+ 1) <n(gTg)*=4A (3.20)

Proof: Suppose (p; = 1, and suppose X, is decided by processor P;. If the
vote X; is not included in the value read by P, it must have been decided
before P’s read of P;’s register but written afterwards. Because each vote
is written out before the next vole is decided there can be at most one vote
from P; which is included in 3 (2, Xi but is not actually read by P. This
vote has weight at most U?. So we have |2 (p, Xi — Rp| < 0., U2 Now let
x(z) = z*. Then

x (07 +e+1) = (A" + e+ 1) = i (a)(Ay)"'/"‘(c+)=k

k=0 k

which is concave since the sccond derivative of each term of the sum is neg-
ative. The rest follows from Lemma 5.9. B

39

5.4.5 Choice of parameters

Let us summarize the proof of correctness in a single theorem:

Theorem 5.14 Define

A = 2a+1
AR\ YA
e - ()
n
c+3
= |
/] + T

and suppose there exist d > 0, + > d and positive p < n such that all of the
following hold:

Tl\'

gt < dy = (3.21)
nA
\ (z = d)?
g° < —— (5.22)
2log(n/p)
6A? :
T < 1 (5.23)

Then the protocol implements a shared coin with agreement parameter at least

A* \'°
1= 1d(r)+ ("| (—_—‘nl/"'l';\‘) +p | (5.24)

where C; s the constant from lemma 5.11.

Proof: To show that the agreement parameter is at least (5.24) we must
show that for each z € {0,1} the probability that all processors decide = is
at least (5.24). Without loss of generality let us consider only the probability
that all processors decide 1; the case of all processors deciding 0 follows by

symmetry. . :
' Recall the definition A = n(y/))*. Suppose that T ;. X; > zvK, and
that for each processor P, T"((s; — x:)X; > A — zv/K. Then for each P we
have T (p;X; > A and by Lemma 5.13 P reads a value greater than 0 during
its final read and thus decides 1. :

56

Now for this event not to occur, we must either have 3 x;X; < VK
or S(Cpi — ki)Xi < A = zV/IN for some P. But as the probability of a
union of events never exceeds the sum of the probabilities of the events. the
probability of failing in any ol these ways is at most

Pr($ wiXi < oVR| + 3 P (¢pi — m) X < & = aVE]
P

sz 1/8
S Q(;L‘) + (,'| (m)

by Lemmas 5.11 and 5.12. So the probability some processor decides 0 is at
most (5.25), and thus the probability that all processors decide 1 is at least
1 minus (5.25). 1

The running time of the protocol is more easily shown:

+ n(p/n) (5.25)

Theorem 5.15 No processor crccules more than (AK)Y4(2+n/c)+2c+2n
register operations during an crcculion of lhe shared coin protocol.

Proof: First consider the maximum number of votes a processor can cast.
After (AK)'/4 votes the total variance of the processor’s votes will be

(AR (AR ((aKyv4)*

'2“>/ P dr = e——— = K,
:;l T o U ux) 1

so after at most an additional ¢ votes the processor will execute line 11 of
Figure 5.1 and see a total variance grealer than K. Thus each processor
casts at most (AK)4 + ¢ votes. But cach vote costs 1 write operation in
line 8, and every ¢ votes costs 1 rcads in line 11, to which must be added
a one-time cost of n reads in linc 13. The total number of operations is
thus at most ((AK)‘/" + c) (14 [n/c])+n < ((AK)Y4+c)2+n/c)+n =
(AK)YA(2+n/c) +2c+2n. B

[t remains only to find values for @, A, and ¢ which give both a constant
agreement parameter and a rcasonable running time. As a warm-up. let us
consider what happens if we cmulate the protocol of Bracha and Rachman

[BRI1]: :
Theorem 5.16 Ifa =0, K = 4n?, and ¢ = =2— -3, then for n sufficiently

’ 4logn
large the protocol implements a shared coin with agreement parameter at least

0.05 in which each processor cxecules at most O(n?logn) operations.

37

Proof: For the agreement parammcter, we have A = 1, Ty = 4n, and ¢ =
1+ 1/16logn. Let d = 1/2, & = 1, and p = 1/10. Then (5.21) holds since
g* =1 <dy/Tx/nA = 1. Furthermore,

PLCAL) i N 1
2 log(n/p) - 3(logn — log p)
1
+ 16logn

when n? > 1/p. Thus (5.22) holds. The remaining inequality (5.23) holds
for n > 2, so by Theorem 5.1'1 we have a probability of failure of at most

® ’ { 1/5
(1) + (' (m) +p

l
< 0.342 —_— .
0812+ 0 () +0.1
which is not more than 0.942 + ¢ for n sufficiently large. In particular for -
n greater than some ng this (uantity is at most 0.95, and the agreement
parameter is thus at least | —().95.
The running time is immediake from Theorem 5.15. B

Now consider what happens if @ is not restricted to be a constant 0.

Theorem 5.17 [fa = (logn — 1)/2, K = (16nlogn)'*8™(n/logn). and ¢ =
n/logn -3, then for n sufficiently large the protocol implements a shared coun
with constant agreement paramncter in which each processor executes at most
O(nlog® n) operations.

Proof: We have A = logn, Iy = lGnlogn. and g = 1+Tl°‘s-y;. Letd = 1/2.
z=1,and p=1/10.

We want to apply Theorcm 5.1, so first we verify that its premises are
satisfied. To show (5.21). compute

l (log rn=1)/2
ga - (1 +] -) < (T(lugn—l)/SQIogzn < el/32logn
16 log”n - =

which for n > 2 will be less than dy/Tr/nA = 2. To show (5.22), note that

| log
A _ 1/16logn
=+ —— <e
I (C 16 log? n) -

and thus log(g?) < 1/16log n. Bul

log <1 + M) = log (l + —l——-)
2log(n/p) 8 log(n/p)
1 1
Slog(n/p) 128 log*(n/p)
1 1

3(logn —logp) 128(logn — log p)?

(using the approximation log(l +) 2 & — iﬁ). For sufficiently large n
this quantity exceeds 1/16 logn and (5.22) Lolds. The remaining constraint
(5.23) is easily verified, and thus Theorem 5.1 applies and the agreement
parameter is at least

log?n 1e
n'/lgn(16nlogn)/

o
J
<1l - (().81!2 + 0 ((l()g n,’n)l/s) + 0.10)

1- [@(1) +C (

which is at least 0.05 for sufficicntly large n. Thus the protocol gives a
constant agreement paramcter. _

Now by Theorem 5.15, the number of operations executed by any single
processor is at most (AR)/N(2+ n/c) 4 2¢ + 2n. or

(log n)!/ 18" (16n log n)(n/ log 1:)!/'*¢*O(log n) + O(n)
which is O(nlog®n). B

It follows immediately that plugging a coin with the parameters of The-
orem 5.17 into the consensus prolocol construction of Chapter 3 gives a
consensus protocol that requires an expected O(n log? n) operations per pro-
cessor. It is not difficult to sce thal the best bound we can place on the total
number of operations is in facl n tiines this quantity, or O(n?log?n). The
worst case is when each processor casts the same number of common votes.

19

Chapter 6

Conclusions and Open
Problems

In this thesis [have shown:

o A simple algorithm for a robust wait-free shared coin with bias at most
€ which runs in an expected O(n'/e?) total register operations.

e A modification of this algorithm that achieves consensus in an expected
O(n*) total register operations, and which can be implemented using
only three atomic counters.

e The asymptotically fastest known wait-free consensus protocol in the
per-processor measure, based on a shared coin that requires only an
expected O(n log?® n) register operations per processor to achieve a cori-
stant agreement parameloer.

This chapter discusses how these results At into the history of wait-free
consensus, and what difficultics need to be overcome to make further im-
provements. [t concludes with a list ol open problems.

6.1 Comparison with other protocols

Table 6.1 gives a comparison of the running times of wait-free consensus
. protocols for the shared-memory model. In this table the quantity p is the

60

Expected operations

Per processor Total
Abrahamson [Abr88] 20(2%) 20(n%)
Aspnes and Herlihy [AH90a] O(n') O(n?)
Attiya, Dolev, and Shavit [ADS89] O(n?) O(n*)
Chapter 4 ([Asp90}) O(n?(p* +n)) O(n*(p*+n))
Bracha and Rachman [BR90] O(n(p* +n)) O(n(p® +n))
Dwork et al. [DHPW92] O(n(p?* +n)) O(n(p*+n))
Saks, Shavit, and Woll [SSW91] O(n') O(n*)
Bracha and Rachman [BR91] O(n*logn) O(n®logn)
Chapter 5 ([AW92]) O(nlogin) O(n?log®n)

Table 6.1: Comparison of consensus protocols.

number of active processors as defined in Section 4.4. The first known pro-
tocol was the exponential protocol of Abrahamson [Abr88]. The first known
polynomial-time protocol was thal of Aspues and Herlihy [AH90a]. Attiya.
Dolev, and Shavit [ADS89] described a modification of this protocol which
required only a bounded amount of space, but which retained the spirit of
the rounds-based structure of the Aspnes-Herlihy protocol.

The protocol of Chapter 1, which also appears in [Asp90], was the first to
eliminate the use of rounds by using a robust shared coin. Since its first ap-
pearance its performance was improved by a factor of n by Bracha and Rach-
man [BR90] and by Dwork et al. [DHPW92]. Both groups achieved the im-
provement by replacing the O(n?) implementation of an atomic counter with
a weaker primitive that required only O(n) register operations per counter
operation, and acted sufficiently like a counter to make the consensus proto-
col work.

The first protocol to use the idea of casting votes until a quorum is reached
(instead of until a sufficiently large margin of victory is reached) was that
of Saks, Shavit, and Woll [SSW91]. Their protocol was optimized for the
special case where nearly all of Lhe processors are running in lockstep. Bracha
and Rachman [BR91] noticed that the protocol could be sped up by having
each processor read all the registers only aller every O(n/ logn) votes; the
resulting protocol is a special case of the protocol of Chapter 5 obtained by
setting a to 0. The protocol of Chapter 5, which also appears in [AW92]. is
the first to use votes of unequal weight, and as a result is the first for which

61

the maximum expected number of operations executed by a single processor
is more than a constant factor less than the maximum executed by all of the
processors together.

6.2 Limits to wait-free consensus

The table shows a considerable cvolution of wait-free consensus protocols
since Abrahamson's exponential solution. [t is natural to ask how much
better consensus protocols can still get.

One limitation we quickly run into is the following. If a processor is run-
ning by itself, it must read every other processor’s register at least once. If
not, it cannot distinguish the situation where it really ran first all by itselt
from the situation where some olher processor (whose register it has not read)
ran to completion before it started. In the latter case the processor would be
required by the consistency condition to agree with its unseen predecessor:
but without reading that predecessor’s register it would have no way of know-
ing which value to choose. Thus in any wait-free consensus protocol some
processor can always be forced to execute at least n — 1 read operations.
This 2(n) lower bound is unaflected even if the adversary is substantially
weakened; the argument remains valid, for example, if the adversary is not
allowed to see the internal staltes of processors or even if it is required to
specify all of its scheduling decisions before the protocol starts. So in fact
the O(n log? n) protocol we have described here is close to the best we can
hope for in the per-processor measure, given the assumption of single-writer
registers, even against relatively weak adversaries.

On the other hand, the guestion of how far the total number of opera-
tions can be reduced does nol have as easy an answer. That some processor
can be forced to execute d(n) opcrations does not mean that all processors
can be forced to; it could be the case that if the processors cooperate they
could collectively gather information about the state of the system faster
than they would independently. In fact, the best known lower bound for
expected total operations is only {}(nlogn), based on the minimum num-
ber of operations needed to commnutnicate cvery processor’s state to every
other processor [SSW91]. Furthermore, the fact that the protocol of [BRI1]
achieves a bound of O(n?logn) on total work shows that some improvement
is possible on our protocol, though possibly only at the expense of increasing

62

the per-processor bound.

However, to get below §2(n?) operations will require at least two break-
throughs. The first problem is that all of the algorithms we currently have
require that every processor read cvery other processor’s register directly at
some point, which takes ©(n?) tolal operations. It seems likely that some
sort of randomized cooperative technique could allow this dissemination of
information to proceed more quickly (possibly at the cost of using very large
registers); but at present no such technique is known.

The second problem is that to reduce the total number of operations below
Q(n?) it will be necessary Lo reduce the number of local random choices below
Q(n?), as local coin-flips that have no writes between them effectively con-
solidate into a single random choice [rom the point of view of the scheduler.
This problem appears more dillicult than the first, as it requires abandoning
the voting technique at the heart ol all currently known wait-free consen-
sus protocols. The reason is that in these protocols, the scheduler’s power
only becomes limited when the standard deviation of the total vote becomes
comparable to the sum of the votes that the scheduler can withhold. With
unweighted votes, 2(n?) votes are required; for weighted votes the situation
is only made worse, as increasing the weight of some votes increases the sum
of the withheld votes more quickly than it increases the standard deviation of
the total vote. It appears that it. will be dilficult to get below Q(n?) without
adopting some decision method Lhat takes more account of the ordering of
events in the system.

6.3 Open problems

The consensus protocol described in Chapter 5 comes quite close to the limits
of current methods for solving wait-lree consensus. Aside from optimizations
such as eliminating the log 7 lactors from the per-processor bound or reducing
the value of n at which the protocol becomes practical, essentially the only
question remaining is whether the total number of operations can be reduced
substantially. There are several questions whose answers would shed light on
this problem, as well as many other problems in the area:

1. Is it possible in the asynchronous shared-memory model for n proces-
sors to collectively read n registers in fewer than O(n?) total operations?

63

a2

2. Does every consensus protocol contain a shared coin?

3. Can a shared coin with constant agreement parameter be built that
requires less than Q(n?) total operations? (A closely related question:
can a shared coin of arbitrarily small bias € run in less than Q(n?/e?)
total operations?)

6t

Bibliography

[AAD*90] Yehuda Afek, Hagit Attiya, Danny Dolev, Eli Gafni, Michael

[Abrss]

[ADS89]

[AFLS3]

[AG91]

[AH90a]

Merritt, and Nir Shavit. Atomic snapshots of shared memory. In
Proceedings of the Ninth ACM SIGACT-SIGOPS Symposium on
Principles of Distribuled Compuling, pages 1-14, August 1990.

Karl Abrahamson. Ou achicving consensus using a shared mem-

~ory. In Proceedings of the Seventh ACM SIGACT-SIGOPS Sym-

positum on Principles of Distributed Computing, pages 291-302,
August 1988. . :

H. Attiya, D. Dolev, and N. Shavit. Bounded polynomial ran-
domized consensus. In Procecdings of the Eighth ACM Sym-
posium on Principles of Distribuled Computing, pages 281-294.
August 1989.

Eshrat Arjomandi, Michael J. Iischer, and Nancy A. Lynch. Ef-
ficiency of synchronous versus asynchronous distributed systems.
Journal of the ACM, 30(3):449-156, July 1983.

James H. Anderson and Bojan Groselj. Beyond atomic registers:
Bounded wait-free implementations of non-trivial objects. In

. Proceedings of the Fijth [nternational Workshop on Distributed

Algorithms, pages 52 70. Springer-Verlag, 1991.

James Aspnes and Maurice Herlihy. Fast randomized consen-
sus using shared memory. Jouwrnal of Algorithms, 11(3):441-461.
September 1990.

65

[AH90b)
[ALS90]
[And90]

[AS92]

[Asp90]

[AW92)

(BD8S]

(Bil86]

[BNDS]

[BPS7]

James Aspnes and Maurice [lerlihy. Wait-free synchronization in
the asynchronous PRAM model. In Second Annual ACM Symn-

- posium on Parallc! Algorithms and Architectures, July 1990.

Hagit Attiya, Nancy Lynch, and Nir Shavit. Are wait-free al-
gorithms fast? In /st Annual Symposium on Foundations of
Computer Science, pages 55-64, October 1990.

James H. Anderson. Composite registers. In Proceedings of the
Ninth ACM SICACT-SIGOPS Symposium on Principles of Dis-
tributed Compuling, pages 1529, August 1990.

Noga Alon and Joel 1. Spencer. The Probabilistic Method. John
Wiley and Sons, 1992,

James Aspnes. Time- and space-efficient randomized consensus.
In Proceedings of the Ninth ACM SIGACT-SIGOPS Symposium
on Principles of Distributed Computing, pages 325-331, August
1990. To appear, Journal of Algorithms.

James Aspnes and Orli Waarts. Randomized consensus in ex-
pected O(n log®n) operations per processor. To appear, Thirty-
Third Annual Symposiutn on Foundations of Computer Science.
1992.

Shai Ben-David. 'The global time assumption and semantics
for concurrent systcmns. In Proceedings of the Seventh ACM
SIGACT-SIGOPS Symposium on Principles of Distributed Com-
puting, pages 223-231, August 1988.

Patrick Billingsley. [’robabililty and Measure. John Wiley and
Sons, second cdition, 1986.

Amotz Bar-Noy and Danuny Dolev. Shared-memory vs. message-
passing in an asynchrouous distributed environment. In Proceed-
ings of the Eighth AC’M Symposium on Principles of Distributed
Computing, pages 307-318, August 1989.

James E. Burns and Gary L. Peterson. Constructing multi-reader
atomic values from non-atomic values. In Proceedings of the Sizth

66

[BR90]

[BR91]

[BTS3]

[Che52]

[CIL87]

[CMS9)

[CMS89]

~ [DDS87]

[DHPW92]

ACM Symposium on Principles of Distributed Computing, pages
222-231, 1987.

Gabi Bracha and Ophir Rachman. Approximated counters and
randomized consensus. Technical Report 662, Technion, 1990.

Gabi Bracha and Ophir Rachiman. Randomized consensus in ex-
pected O(n?log n) operations. In Proceedings of the Fifth Inter-
national Workshop on Distributed Algorithms. Springer-Verlag,
1991.

Gabriel Bracha and Sam Toucg. Asynchronous consensus and
byzantine protocols in faulty environments. Technical Report 33-
559, Department of Computer Science, Cornell University. 1933.

H. Chernoff. A measure of asymptotic efficiency for tests of a
hypothesis bascd on the sum of observations. Annals of Mathe-
matical Statistics, 23(-1):493-407, December 1952.

Benny Chor, Amos Isracli, and Ming Li. On processor coordi-
nation using asynchronous hardware. In Proceedings of the Sizth
ACM Symposium on Principles of Distributed Computing, pages
86-97, 1987.

Benny Chor and Lior Moscovici. Solvability in asynchronous
environments. In 3L Annual Symposium on Foundations of
Computer Science, pages 122-427, October 1989.

Benny Chor, Michael Merritt, and David B. Shmoys. Sim-
ple constant-time consensus protocols in realistic failure models.
Journal of the AC'M, 36(3):591 -614, July 1989.

Danny Dolev, Cynthia Dwork, and Larry Stockmeyer. On the
minimal synchronisim needed for distributed consensus. Journal
of the ACM, 34(1):77 97, January 1937.

Cynthia Dwork, Manurice Herlihy, Serge Plotkin, and Orli
Waarts. Time-lapse snapshots. [n Proceedings of Israel Sym-
posium on the Theory of Computing and Sustems, 1992.

67

(DS89]

[DW92]

(DY)

[Fel68)

[Fel71]

[FLPS5]

[Hal39)

[Her91]

(HHSO]

[HLP52]

Danny Dolev and Nir Shavit. Bounded concurrent timestamp
systems are constructible! In Proceedings of the Twenty-First
Annual ACM Symposium on the Theory of Computing, pages
454-465, 1989.

Cynthia Dwork and Orli Waarts. Simple and efficient bounded
concurrent timestamping or bounded concurrent timestamp sys-
tems are comprehensible! In Proceedings of the Twenty-Fourth
Annual ACM Symposium on the Theory of Computing, pages
655-666, 1992.

E.B. Dynkin and A.A. Yushkevich. Controlled Markov Processes.
Springer-Verlag, 1975.

William Feller. An Introduction to Probability Theory and [ts
Applications, volume . John Wiley and Sons, third edition.
1968."

William Feller. An [ntroduction to Probability Theory and [ts
Applications, volume 2. John Wiley and Sons, second edition.
1971.

Michael J. Fischer, Nancy Aun Lynch, and Michael S. Pater-
son. Impossibility of distributed commit with one faulty process.
Jowrnal of the ACM, 32(2):371 382, April 1983.

Paul R. Halmos. Invariants of certain stochastic transformations:
The mathematical theory of gamnbling systems. Duke Mathemat-
ical Journal, 5(2):461-478, June 1939.

Maurice Herlihy. Wait-free synchronization. ACM Transactions
on Programming Languages and Systems, 13(1):124-149, Jan-
uary 1991.

P. Hall and C.C. leyde. Martingale Limit Theory and Its Ap-
plication. Academic Press, 1930. :

G. Hardy, J.E. Littlewood, and G. Pélya. Inequalities. Cam-

bridge University Press, second edition, 1952.

63

[IL37]
[Kop84]

[LAAST

{Lam77)
[Lam86a]
[Lam36b]

[LF81]

[LL90]

[Lyn38]

[NWS7]

Amos Israeli and Ming Li. Bounded time stamps. In Proceed-
ings of the 28th Annual Symposium on Foundations of Computer
Science, pages 371 -332, 1937.

P.E. Kopp. Martingales and Slochastic Integrals. Cambridge
University Press, 1934.

Michael C. Loui and llosame II. Abu-Amara. Memory require-
ments for agrecment among unreliable asynchronous processes.
In Franco P. Preparala, editor, Advances in Computing Research.
volume 4. JAL Press, 1987,

Leslie Lamport. Concurrent reading and writing. Communica-
tions of the ACM, 20(11):806-311, November 1977.

Leslie Lamport. On interprocess communication, part [: Basic
formalism. Distributed Computing, 1(2):77-85, 1986.

Leslie Lamport. On interprocess communication, part II: Algo-
rithms. Distribuled Compuling, 1(2):86-101, 1986.

.Na.ncy A. Lynch and Michael J. Fischer. On describing the be-
havior and implementation of distributed systems. Theoretical
Computer Science, 13:17-43, 1931.

Leslie Lamport and Nancy Lynch. Distributed computing: Mod-
els and methods. In Jan Yan Lecuwen, editor, Handbook of The-
oretical Compuler Secience, volume B, chapter IX, pages 1157
1199. MIT Press, 1990.

Naricy Lynch. /0O antomata: A model for discrete event sys-
tems. Technical Report MIT/LCS/TM-351, MIT Laboratory for
Computer Science, March 1938.

Richard Newman-Wolle. A protocol for wait-free, atomic, multi-
reader shared variables. In Proceedings of the Sizth ACM Sym-
posium on Principles of Distributed Computing, pages 232- 249,
1987.

69

[Pet83]

(Plo89]

[SAGS7]

[Spe8T]

[SSW91]

[Svse]

[TMS9]

Gary L. Peterson. Concurrent reading while writing. ACW
Transactions on Programming Languages and Systems, 5(1):46-
55, January 1983.

Serge A. Plotkin. Sticky bits and universality of consensus. In
Proceedings of the llighth ACM Symposium on Principles of Dus-
tributed Computing, pages 159- 176, August 1989.

Ambuj K. Singh, James H. Anderson, and Mohamed G. Gouda.
The elusive atomic register revisited. In Proceedings of the Sizth
ACM Symposium on Principles of Distributed Computing, pages
206-221, August 1Y87.

Joel Spencer. Ten Lectures on the Probabilistic Method. Society
for Industrial and Applied Mathematics, 1987.

Michael Saks, Nir Shavit, and tHeather Woll. Optimal time ran-
domized consensus making resilient algorithms fast in prac-
tice. In Proceedings of the Second Annual ACM-SIAM Sympo-
sium on Discrete Algorithms, pages 351-362, 1991.

Miklos Santha and Umesh V. Vazirani. Generating quasi-random
sequences from semi-random sources. Journal of Computer and
System Sciences, 33:75--87, 1986.

Gadi Taubenfeld and Shlomo Moran. Possibility and impossi-
bility results in a shared memory environment. In Proceedings
of the Third International Workshop on Distributed Algorithms.
pages 254-267. Springer-Verlag, September 1989.

