D-A255 890
\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\ i

92 4 LhH (¢ +o

Technical Document 2313
July 1992

Shipboard Readiness
Reporting System (SRRS)
Software Prototype

Maniel Vineberg

Stan Connors

Tony Sterrett D T l C

Dave Shore CLECTE
SEP 28 1908

Q\ g2-25895
=

TOTIRER
3 d&\‘;h..\\l\\\u\\l\.\.\\.\(\l\bW

Approved for public release; distribution Is uniimited.

Technical Document 2313
July 1992

Shipboard Readiness Reporting
System (SRRS) Software
Prototype

Maniel Vineberg
Stan Connors
Tony Sterrett

Dave Shore

NAVAL COMMAND, CONTROL AND
OCEAN SURVEILLANCE CENTER
RDT&E DIVISION
San Diego, California 92152-5000

J. D. FONTANA, CAPT, USN R. T. SHEARER
Commanding Officer

Executive Director

ADMINISTRATIVE INFORMATION

The study covered in this document was performed from 1 November 1990-
June 1992. It was sponsored and funded by the David Taylor Research Center,
Bethesda, MD, under accession number DN301014, program element 0602233N,
project no. EE03, and subproject no. RM33D61. The work was performed by the

Naval Command, Control and Ocean Surveillance Center, RDT&E Division (NRaD),
San Diego, California.

Released by Under authority of
J. T. Avery, Head J. T. Avery, Head (Acting)
Systems Analysis Group Planning, Intelligence, and

Analysis Office

Specifically, work on the Shipboard Readiness Reporting System was
performed under the following organizations:

Task Shipboard Readiness Reporting System, EE03,
Maniel Vineberg, NRaD, Code 171

Project Advanced Diagnostic Techniques, RM33R61,
Bill Nickerson, ADCD-NSWC, Code 2727

Block Logistics, ND2A,
Ray Brengs, CD-NSWC, Code 0116

Sponsor Mission Support, PE 62233N,
CDR David Bennett, ONT, Code 225.

Accession For

NTIS GRA:&I
DTIC TAB

Unannounced
Justificatio

oog|

By
Distribution/

p—— e By |

Availability Codes

— |Avatl apdfor RBT

Dist Special

]

INTRODUCTION . ..ttt et et e et e et e et e et 1
OVERVIEW ... i et e et e et e e 1
BACKGROUND e e e e ettt 1
RELATED EFFORTSttt ettt e e e 1
SCOPE AND OBJECTIVES ittt et it i 1
DESIGN PHILOSOPHYttt e et et 2
APPROACH ... i e e e e e e e 2

SRRSDESIGN e e e e e 5
ARCHITECTURAL CONTEXT ... ittt it i it i eienennn, 5
SRRS FUNCTIONS ...t e ettt it 6
SRRS SERVICESttt et ettt et iiaaaans 7
SRRS APPLICATIONS i i it i ettt e, 8

Resource Interface Process (RIP)ccoiiiiiiiiiniiiinnnnnn. 8
Tactical Readiness Process (TaRP)cciiiiiiiinennnnn.. 9
Technical-Readiness Process (TERP)c..ciiiiiiniinnnnnnnn. 9
SRRS UTILITTES ... ittt it et et ettt et et 10
SRRS OPERATING SYSTEMottt it iiiaiianns. 10
SRRS RESOURCESttt ittt et e et e, 11
OPERATIONAL EXAMPLE ittt it et 12

SOFTWARE PROTOTYPEo ittt ettt e et e i 15
MULTIPLE-BUILD APPROACHciiiiiiiiiiiit it 15
ORGANIZATION . ..t e ettt e it st ieae e 15
OPERATION . ..o i i et e et e e 16

Input Files o e 16
Modules ... e e e e 17

IMPLEMENTATION APPROACHttt en 21
GENERAL .. e e e e 21
STANDARDS e e e e e e e 21
SAFENET TESTBED i et 21
SUMMARY AND PLANS i et 22

REFERENCES ... i e e e e e e i e 23

CONTENTS (continued)

DEFINITIONS . . e e e e et e et e 25
APPENDIX A - SERVICE PROFILESc0i ittt A-1
APPENDIX B -~ MODULES, OBJECTS, AND RELATIONSHIPS B-1
APPENDIX C - DETERMINATION OF SHIP/SONOBUQOY DATA LINK

ST AT US .t e e e e e C-1
FIGURES

1. SRRS architectureottt ittt et i i anns 5
2. Functions layer i e 6
3. SeIVICES 1ayer .ottt e 7
4. Applications layerttt e e 8
5. Utilities layer i e e i e e e 10
6. Resources layer i e 12
7. First layering example — locate submarines 13
8. Second layering example — report readiness i, 14

ii

INTRODUCTION

OVERVIEW

This document describes a software prototype of a Shipboard Readiness Reporting
System (SRRS) (reference 1). SRRS will provide useful, accurate, concise, and timely
readiness status reports to users who operate and maintain shipboard systems.

SRRS is designed in the context of a layered open architecture, anticipating future
shipboard architectures. The highest layer of the architecture includes both operational
functions (relating directly to the ship’s mission) and readiness reporting functions.
SRRS will collect and synthesize periodic status reports from shipboard resources and
automatically report operational capability and maintenance requirements, based on
resource status, to tactical and technical users.

BACKGROUND

SRRS will ensure continuous measurement and reporting of the operational and
maintenance readiness of the entire surface combatant. A ship comprises systems, and
a system uses combinations of resources to perform functions. A number of shortcom-
ings, documented in reference 1, result from a lack of resource reporting standards
(reference 2) and the absence of support to automatically consolidate and present
status reports.

RELATED EFFORTS

SRRS practices and communication techniques, developed for the combat system,
are compatible with “Condition-Based Maintenance,” developed by the Annapolis
Detachment of the Carderock Division of the Naval Surface Weapons Center
(ADCD-NSWC) for the hull, mechanical, and electrical (HM&E) system (reference 3).

SCOPE AND OBJECTIVES

The objective of this task is to develop an SRRS by combining data processing,
communications, built-in-test (BIT), and calibration hardware and software. SRRS will
provide useful, accurate, concise, and timely readiness status reports to tactical and
technical users responsible for operating and maintaining shipboard systems. The
reports will include the readiness data and information needed to make correct and
timely operational and maintenance decisions.

While battle-force readiness reporting is an SRRS objective, FY-92 work was
restricted to the individual platform. Note that each ship must have complete

knowledge of its own readiness to support battle-force readiness reporting. The SRRS
focus during FY 92 was on the combat system; however, the HM&E system can be
integrated in FY 93.

DESIGN PHILOSOPHY

SRRS is based on five principles. First, SRRS is primarily intended for new systems
rather than for being retrofitted into existing systems. However, parts of SRRS can be
used to identify current problems and to provide temporary corrections for in-service
ships.

Second, SRRS specifies what must be reported; designers of shipboard equipment
determine how reports are generated. This is consistent with the philosophy of open
architecture.

Third, SRRS standards will be established with industry to assure viability and to
promote “commercial dual use.”

Fourth, to successfully assess and report status during combat, SRRS must survive
damage to the resources it uses, particularly the communications media. Graceful degra-
dation will be designed into SRRS to raise the probability of successfully reporting
damage.

Fifth, SRRS must present the “right amount” and “right kind” of information to
tactical and technical users and, upon requests, must also provide timely access to
extensive detail.

APPROACH

The SRRS approach consists of a design—within the context of a layered open ar-
chitecture—and a software prototype. SRRS design includes these features:

a. Interface specifications that define BIT formats and protocols for resource
designers.)

b. A data-distribution system that links resources.

c. A distributed operating system that provides, among other things, protocols to
allow distributed resources to communicate.

d. Resource and file managers that allocate hardware and software.

e. Applications that collect, process, format, and distribute readiness data and
information from resources.

f. Applications that synthesize resource readiness reports to determine operational
capability (what functions can be performed) and maintenance needs (what resources
need repair).

g. Functions and services SRRS provides to the user.
h. Metrics, to assess the quality and the performance of SRRS.

The software prototype is an unambiguous characterization of SRRS design
intended to enable

a. Validation of the operational concept.

b. Performance measurement.

¢. Demonstration and review.

d. Cost-effective revis,on and test.

e. Subsequent installation of SRRS on a hardware testbed.

The remainder of this document is organized into two parts: SSRS design; and, the
software prototype, the primary focus of the document.

SRRS DESIGN

The architecture is described first. Then, major elements of SRRS are described
within the context of the architecture.

ARCHITECTURAL CONTEXT

SRRS architecture, depicted in figure 1, is based on the Battle Management Archi-

tecture (reference 4).
[Functions [Ensage Fcommunicate 1]
I
[Services %

[Applications [Fire-conlrolAlgorithm! Controller hl

]
@tmties [_Manage Files_1—pams 1]

|

&)perating System [inter-Process °°'“'“2<rhed;unej_—ﬂ
|

&Resources [__Workstation !Transceiver b]

Figure 1. SRRS architecture.

Each layer in the a2-chitecture supports the next higher layer, and interfaces
between layers are standardized. The layering allows one layer to be changed with
minimal effect on other layers. The various layers carry the following meanings:

Functions are system operations a user may request.
Services are primitive system operations used for implementing functions.

Applications and utilities are special-purpose and general-purpose software processes,
respectively, that support the services.

The operating system is software that makes the resources usable.

Resources, including both special-purpose (weapons, sensors, etc.) and general-
purpose (workstations, networks, etc) hardware, are the hardware devices that host the
applications and utilities.

The architecture enables readiness functions to be defined that portray operational
capability with respect to the sets of operational functions and services the system
can—or cannot—perform with the resources available.

SRRS FUNCTIONS

A function is an operation a user may request of the system, as shown in figure 2.
To each request, the user assigns a unique priority, carried by the system throughout
all operations related to that function and used to resolve contention for resources.

Functions layer

requests request

Figure 2. Functions layer.

SRRS perceives three classes of functions:
administrative functions that allow users to configure the system,;
operational functions that directly support the mission of the ship; and

readiness functions that support assessment of operational capability and mainte-
nance requirements. Currently defined are one readiness function, report readiness,
and two operational functions, locate submarines and determine ownship course and speed.

A controller within the functions layer accepts user function requests and translates
these into one or more service requests that it passes to the services layer. If that layer
cannot ensure that it can perform all requested services (e.g., for lack of available
resources), the controller either cancels or delays the function (according to user pref-
erence). This satisfies an underlying design rule that no single function request can
cause system deadlock. This rule, together with a mechanism to ensure that every
active function carries a unique priority, will prevent system deadlock. Canceled func-
tions may be resubmitted at a higher priority.

SRRS SERVICES

Services are system primitives that implement functions. In general, several serv-
ices .mplement a function; one service may be used to implement more than one func-
ion. Services are grouped into five elements as shown in figure 3. The decision support
element includes services related to command planning and decision making through
assessment and evaluation such as decision aids, tracking algorithms, planning aids,
etc. Readiness reporting falls within the decision-support element: two services have
been defined, report operational capability and report maintenance requirements.

Service requests Responses
from to
functions layer functions layer
Requests
])]] |
esPRDSES.

1 i) !

r] | 1] | 1
Decision . N e
support Sensing | |Engagement | | Navigation | |Communication
element element element element element

Services layer

Figure 3. Services layer.

The sensing element includes services to detect and characterize objects and to char-
acterize the environment external to the node. Services defined for the sensing ele-
ment that supports the function find submarines are deploy sonobuoys and process
sonobuoy data. Appendix A shows dependency trees illustrating resources that can per-
form these services.

The navigation element includes services to (1) supply navigation information (maps,
tracks, etc.), (2) permit all navigation modifications, and (3) support mode switching
(from manual mode to automatic and vice versa). Services defined for the navigation
element that support the function report current platform position and velocity are deter-
mine platform course and position and determine platform speed; Appendix A shows
dependency trees that illustrate combinations of resources that can perform these
services.

The engagement element includes services for neutralizing external threats to the
platform. The communication element provides interplatform communication at force
level (intraplatform communication is provided by the platform data-distribution system
and the operating system).

A controller within each element handles the service requests. To perform a serv-
ice, a controller may issue requests to other controllers. Element controllers must be
active at all times during system operation to accept and process requests for service.
A controller determines if a service request can be honored; included in that determi-
nation is whether supporting service requests can be honored. Once it has been deter-
mined that all services required to implement a function can be performed, element
controllers gain control of the nceded resources. Elements retain control of those
resources during the service session (as long as needed) and relinquish control after-
ward.

SRRS APPLICATIONS

Applications, portrayed in figure 4, are software processes that support services.
Several applications may be required to support a single service. Readiness applica-
tions, discussed below, must be active at atl times; an approach to increasing process
survivability is discussed under utilities later in this document.

Tactical-
Readiness
Process

Technical-
Readiness
Process

I [l

Resource Resource Resource
Interface o000 Interface (X XN) interface
Process Process Process

Figure 4. Applications layer.

Resource Interface P’rocess (RIP)

Resource Interface Processes (RIPs) comprise a class of readiness applications, one
for each resource. A RIP accepts the results of tests within the resource and reports
them (in a standard way to be established) to the Tactical Readiness Process (TaRP)
and the Technical Readiness Process (TeRP), discussed below.

Typically, a resource status report will include the following:

1. Resource name - each report is for a single resource. Synthesis will be done by
the TaRP and the TeRP (see below).

2. Capability - the basic categories are up and down, however, partial capabilities
will be reported concerning support of services; i.c., completely, partly, or not at all.
Expected times to recover to up are included for resources not yet up.

3. Failures - the basic categories are none and total. The categories redundant and
nonredundant are used to report failures that do not cause capability to be reported as
none. If not none, expected times to repair are included.

4. Initialization - categories are on, standby, energized, support, and off. If not
already on, expected time to on is included.

5. Configuration - categories are normal, alternate, casualty, or unavailable. If not
already normal, expected time to normal is included.

6. Remarks.

Tactical Readiness Process (TaRP)

The TaRP is a readiness application that synthesizes reports from RIPs to determine
operational status. Operational status is characterized by what services and functions
the system is capable of performing, separately or in combination. This information is
directly available to the tactical user who may use it to establish priorities for repairing
resources or changing the system configuration.

In addition to resource status reports, inputs to the TaRP generally include the fol-
lowing: (1) a correlation between services and required resources; (2) proposed
changes to resources or services; and (3) the present configuration of active services.

The TaRP supports these services: (1) “report system status,” (2) “assess impact of
resource change,” and (3) “recommend resource change to restore service.” For the
thrce services, the TaRP produces the following: for 1 and 2, reports of services that
cannot be performed at all, that cannot be performed if other services are ongoing,
and that cannot be initiated under the present configuration of services; for 3, alterna-
tive modifications to resources to restore requested service.

Technical-Readiness Process (TeRP)

The TeRP is a readiness application that uses reports from the RIPs and priorities
from the TaRP tc provide reports to technical users to support scheduling of mainte-
nance actions. The technical user may initiate repair actions in response to faults—
with respect to priority (as determined by tactical users) and expected time to repair.
Some repairs may be in collocated cabinets and may therefore be scheduled on the
basis of convenience rather than operational priority. Others may be less urgent
because they are in cabinets protected by fault tolerance. The outcome of all repair

actions are reported to the TeRP; i.e., successful, incomplete (and expected time
required to complete) or unsuccessful (and reason, e.g., requiring external support).
The TeRP must accept “special conditions,” such as sea state or emission control, that
may influence tolerances or use.

SRRS UTILITIES

Utilities (figure 5) are general-purpose processes that support applications. A Data-
base Manager maintains user profiles and mailboxes; eventually, the Database Manager
will manage application-specific data such as tracks. A Resource Manager determines
resource availability, with respect to specified services, and allocates resources on
demand.

user profiles, Bootstrap, Status to
mailboxes, recovery TaRP, TeRP,
et cetera files controllers

Database File Resource
Manager Manager Manager

Figure 5. Utilities layer.

A File Manager distributes all applications and utilities to where they are needed.
To initiate a system bootstrap, a copy of the File Manager is loaded externally. This
File Manager controls the loading of all utilities, controllzrs, and readiness applica-
tions; it loads a primary and a backup copy of all such processes to support eventual
recovery from loss. Copies communicate with each other periodically, via “I am OK”
reports. A copy that has not heard from its mate for a given interval assumes a fail-
ure, takes the role of primary copy, and requests the File Manager to install a new
backup copy. This approach to recovery is open to study and refinement.

SRRS OPERATING SYSTEM

The operating system is the software that makes resources usable by supporting the
following tasks:

Scheduling intraresource operations;
Allocating and deallocating low-level resources (peripherals);

10

Allocating and deallocating main, secondary, and archival memory;
Managing interprocess communication using LAN protocols;
Managing intraplatform circuit switching using LAN protocols;
Monitoring and measuring performance;

Maintaining logs, system state, and backup information;
Managing system initialization and recover (warm and cold
system start);

Managing intraplatform electronic mail;

Maintaining user profiles;

Maintaining user mailboxes and supplying them when and where
needed;

Initiating user sessions using login procedures, account and
password verification, and user profiles;

Terminating user sessions using logout procedures, saving files
and any user-profile information.

The Next Generation Computer Resources (NGCR) program has identified the Port-
able Operating System Interface for Computer Environments (POSIX) (reference 5), as
a Navy standard. No SRRS development is anticipated in this area.

SRRS RESOURCES

Many devices now common in the commercial sector will be useful in constructing
Navy systems. Extensive use of these general-purpose resources will (1) facilitate
- building systems, (2) simplify special-purpose resources, and (3) support evolution (as
the commercial sector continues to provide more capable versions of these devices).
Several of these resources—L.ANs, workstations, mass memories—make SRRS feasible.
A sample connection scheme is illustrated in figure 6. For example, the LAN is not
only the means by which a distributed system is linked; it is the mechanism by which
status reports are sent from resources (RIPs) and collected for synthesis (at a TaRP or
a TeRP).

11

Network

[1T 1T

gpres | (spres) (spres) [apres| (spres)

Switch

Figure 6. Resources layer.

Prototyping has shown a need for inventoried boxes, that are on the network and
contain numbers and types of things (e.g., buoys, torpedoes, or missiles).

The Navy requires mission-specific or Navy-unique special-purpose resources, such
as specialized communications and navigation equipment, sensors, and weapons.
These can be simplified by unbundling the general-purpose components (e.g., by using
a high-speed switch to separate the processor from the sensor, to allow connectivity
when required, and to support sharing and exploitation of redundancy). However,
special-purpose resources are not generally available off-the-shelf. To assure that they
can be integrated into the host systems when delivered, the resources must be built
according to the interface specifications of the architecture. Each must connect into
SRRS via a RIP.

The resource layer is a leverage point for the government with respect to resource
cost and ease of system configuration. Interface standards at this level, between
resource BIT and the RIP, will constitute guidance to resource builders. That is, to be
in compliance with SRRS (and combat system) guidelines, a resource must comply
with the the BIT-RIP interface. This interface has yet to be defined, but information
across it must be sufficient to support RIP reports as described previously (under
applications).

OPERATIONAL EXAMPLE

Figure 7 shows an example of how layering applies to an operational function. At
the functions layer, locate submarines is requested by a user. This function is decom-
posed at the services layer into deploy sonobuoys and process sonobuoy data. Those two
services are partly implemented at the applications layer. For example, a signal analy-
sis application is needed to process data. At the utilities layer, the file manager installs
applications and utilities where they are needed. In the example, the file manager
loads the signal-analysis application into a signal processor. At the same layer, the

12

~

resource manager first verifies that resources needed to perform the services are avail-
able and then allocates resources as appropriate. At the operating-system layer, mes-
sages are used to allow status checking and resource allocation by the resource man-
ager and to transfer the signal-analysis application from the file manager to the signal-
processor. At the resource level, a signal processor, an interface signal-switching unit, and
a radio receiver implement the process-sonobuoy-data service.

In general, resources may be dedicated, scheduled, or shared. In this example,
-resources are dedicated to the process-sonobuoy service, to be deallocated when the
respective service sessions are complete. Note that not all processes and resources are
shown in figure 7.

Layers
E . Locate
unctions Submarines
. Deploy _E Process Sonobuoy
Services Sonobuoys ' Data Within Ownship
Applications Analyze sonar
signals
Utilities (File o Resource
Manager L Manager
- e an //\‘
Op System C " Message passing capatilities D
Resources Signal Interface Signal Radio
Processor Switching Unit Receiver

J——
frrerrrj Operation) Process Resource

Figure 7. First layering example — locate submarines.

Figure 8 shows an example of how layering applies to a readiness function. At the
functions layer, report readiness is requested by a user. This function is decomposed at
the services layer into report operational capability and report maintenance requirements.
Those two services are partly implemented at the applications layer. Report operational
capability is partly implemented via the tactical-readiness process; report maintenance
requirements is partly implemented via the tactical-readiness process. These two applica-
tions receive reports from the resource interface processes. At the utilities layer, the file
manager installs the tactical- and technical-readiness processes on available workstations;

13

resource interface processes are installed on the respective resources. The resource man-
ager also receives those reports it uses to check and allocate resources. At the operat-
ing-system layer, messages are used to interconnect the applications and utilities. At
the resource level, workstations are used to host the tactical- and technical-readiness

processes.

Layers

Functions

Services

Applications (

Utilities
Op System

Resources

Report
Readiness

)
.
]

l

Capability

Report Opera.tional":

Report Ma

Requirements

intenance

-
1
1
13
L]

Resource Inter-
face Processes

Tactical-Readi-
ness Process

j

Technical-Readi-
ness Process

1

Resource .. File o
Manager “Manager-”
it D
l Message-passing capabiiities . l
= | AN
Work Work
Resources Station Station
Operation CD Process Resource

Figure 8. Second layering example—report readiness.

14

SOFTWARE PROTOTYPE

The SRRS software prototype is being developed to expose and confront issues
inherent in designing a multiuser, priority-driven SRRS that is also a distributed, sur-
vivable, hierarchical, service-based, shared-resource system.

The software prototype is written in MODSIM 1I (reference 6) (a product of CACI
Products Co.). MODSIM 1II is an object-oriented, discrete-event simulation language
based on MODULA II (reference 7), linked to a color-graphics package. The software
prototype is hosted on a SPARCstation 2 (a product of Sun Microsystems).

The word “system” will be used to refer to the set of hardware resources and soft-
ware processes resident on the platform. The purpose of the system is to perform
functions for the user on command.

MULTIPLE-BUILD APPROACH

A “two-build” approach is taken to develop the software prototype. Build 1, the
FY-92 prototype, accepts scripted input. User interaction with the operating prototype
is limited to obtaining graphical information concerning the simulation state. All
events—user logon, requests for service, and damage—must be specified before
initiating a prototype session and cannot be altered during that session. HM&E system
operation is omitted from Build 1.

Build 2—the planned FY-93 prototype—will allow a user at the host workstation to
interact with the prototype to log on, boot the system up, request functions, and read
the resulting SRRS reports. In addition, the user can cause damage (i.e., to inject
faults or to destroy resources) and evaluate the general SRRS response as well as the
system reconfiguration. HM&E system operation will be included in Build 2.

The effort required to merge graphical interaction with the model of SRRS opera-
tion is expected to be tractable because the process has been broken into two builds.
Because introducing a user into the process will yield new information, it should also
be valuable.

ORGANIZATION

Under Build 1, the software prototype is organized into these parts: a parameter file
is a user-created specification of all initial system-configuration information; an event
file is a user-created specification of events—startups, user logons or logouts, function
entries, or damage—and respective event times; a main module drives the prototype by
first reading in the parameter and event files to initialize the prototype and then starts

15

a prototype run; and various program modules embody SRRS. Under Build 2, the
event file will be eliminated in favor of user interaction.

Each program module contains two parts: a definition part specifies variables, proce-
dures, and objects in that module and the calling conventions for the procedures and
object methods; an implementation part contains the code that is executed when proce-
dures and object methods are called.

OPERATION

To operate the prototype under Build 1, the user simply enters the command “srrs”
from the host SPARCstation keyboard. The main module initializes the prototype from
the parameter and event files—and then starts it. Graphical aids are available to
observe execution progress, however, the user cannot intervene to change the outcome
of the run. Under Build 2, a graphical interface will support user intervention.

In each build, the software prototype represents a distributed system. In general,
software processes that must communicate with each other are on separate resources.
A message-passing scheme is used to allow processes to communicate; messages trig-
ger most otject activity. The distinction between a primary and a backup copy of a
process is as follows. Although both copies may create outgoing messages in response
to an incoming message, a primary copy actually transmits outgoing messages, while a
backup copy simply logs them for use in case the primary copy is destroyed. Later, the
backup copy deletes those messages that match messages received from the primary
copy. The SRRS message-passing scheme will eventually be mapped onto a client-
server model that supports various qualities of service (e.g., assured delivery).

Input Files
Parameter File. Parameters are entered into the parameter file to specify

e User names and areas of responsibility

Network names and tap numbers

Network interface unit (NIU) names and network taps

Resource names, numbers, and NIU connections

Service names and required resources, applications, and utilities
Element names and services

Function names and supporting services

Message priorities

e Prototype switches (to enable debug features).

Event File. Time-related events are specified in the event file. The simulation run-time
limit and intervals are specified for reading from networks and writing to them, and
updating status. These events can be specified:

1. Resource startup

16

Resource turnon

Operator logon (before a system boot)
System boot

User logon

User logout

User function entry

e U o T B

Resource damage.

Modules

Main Module. The main module reads the parameter file and enters the appropriate
parameter values, reads the event file and loads the event queues (by telling various
object methods when to execute), and starts the simuiation.

Cowmon Module. Certain objects are specified in the common module for use
throughout the program. A message object has a type, a priority, an origin, and a desti-
nation. It also has a content queue that can contain zero or more content objects (data
words). A content object can contain a string, a Boolean value, an integer, an object,
or a combination of these. A mailbox object can contain a set of message objects,
ordered by priority. A subscriber object has a name and a mailbox and can send and
receive mail. A driver object has a timeout method that halts the simulation as soon as
the run time has expired. A variety of types, variables, constants, and procedures is
defined for common use. Common module objects are shown graphically in Appendix
B.

Platform Module. A platform is the space within which all SRRS prototype activity
takes place. All resources available to the prototype are on the platform at system-
start time. No resources may be imported into the platform after system start.

User Module. A user is the commanding officer or a subordinate authorized by the
commanding officer to issue commands to the system. A tactical user needs to know
ship operational readiness. A technical user needs to determine maintenance
requirements.

Within the user module, a user object is defined as a subscriber object (see common
module) and inherits all subscriber object attributes and methods. Additional user
attributes include a host (workstation), indicating if and where a user is logged on, and
various trigger objects that cue the user to action. Key methods allow the user to boot-
strap the system, log on and off, request functions, watch the workstation monitor for
cues, and read mail. User module objects are shown graphically in Appendix B.

17

Function Module. A function module defines operational functions and readiness func-
tions. Ship operational readiness is expressed in terms of the readiness to perform op-
erational functions. Likewise, the maintenance requirements are based on what is
needed to achieve a desired state of readiness to perform each operational function.
Resource allocation is performed such that no function can cause a deadlock.

An array of function records, initialized by the main module as indicated in the
parameter file, shows the services that support each function. A function object, needed
for function instantiation, has attributes indicating the function type, priority, creator (a -
user), and a list of required services.

Three functions have been defined for Build 1: (1) locate submarines, (2) report cur-
rent platform position and velocity, and (3) report readiness. The first two functions are
operational functions; the third is a readiness function. In addition, a nil function is
defined to allow a user to directly request a defined service. Function module objects
are shown graphically in Appendix B.

Service Module. Within the service module, a service object is defined. Attributes of a
service object include name, parent function, parent service, child services, and ele-
ment. A check field is used to indicate whether or not a service can be performed.
Service requests go to the responsible element controller. Service-module objects are
shown graphically in Appendix B.

Application Module. Within the application module, a basic application object is defined
as a subscriber object (see common module) and inherits all subscriber object attrib-
utes and methods. Key additional application object attributes include host (a re-
source).

A resource interface object (a RIP is of this class) is defined as an application object.
Every resource that is not a workstation has a RIP whose primary duties are to receive
mail for that resource and to report the resource status. Workstations have their own,
more capable managers. RIP methods receive, analyze, and report the results of the
resource built-in-test (BIT) to the TaRP and the TeRP.

A workstation manager object is defined as an application object. Every workstation
has a manager whose primary duties are to receive mail for that workstation, report
workstation status, log users on and off, load software processes (applications and utili-
ties) onto the workstation on request, and to control the monitor (the interface between
the user and the workstation).

A tactical readiness object (TaRP) and a technical readiness object (TeRP) are defined
as application objects. TaRP and TeRP methods receive and synthesize reports from
resource interfaces for use by the tactical and technical users respectively.

Application module objects are diagramed in Appendix B.

18

—

Utility Module. Within the utility module, a basic utility object is defined as a sub-
scriber object (see common module) and inherits all subscriber object attributes and
methods. Additional utility object attributes include a copy (all utilities will run with a
primary and a backup copy), a station (a host workstation), a twin update time show-
ing when the other copy last reported to it, and a message log to be used by a backup
copy to recover from the loss of the primary copy.

A file manager object is defined as a utility object. The file manager has attributes
describing active workstations and triggers used during system bootstrap. The file
manager controls the system bootstrap, allocating primary and backup copies of utili-
ties and certain applications to operational workstations. If possible, it also restores
utility and application copies when necessary.

A dbms object is defined as a utility object. The database manager (a dbms object)
has attributes detailing active users and workstations. It correlates user logons and
logouts and updates mailboxes for users who are not logged on.

A resource manager object is defined as a utility object. In response to a service
request from an element, the resource manager checks and reports resource availabil-
ity. In response to an allocate request from an element, the resource manager
allocates resources to a service at the given (service) priority and marks those
resources unavailable. A resource shadow object has been defined to allow the resource
manager to locally record and retrieve the status of each resource based on resource
interface reports.

A command and control interface object includes a list of functions ordered according
to priority. A function execution method is supported by methods to request service
checks, resource allocation, service performance, and service preemption.

A controller object is defined as a utility object. Methods defined under this object
allow an individual service to be checked, resources to be allocated, and a service to
be preempted, in response to mail requests. Element controller objects, one for each of
the five elements, are defined as controller objects. These objects have methods that
perform the services unique to the element.

Resource Module. Within the resource module under Build 1, resources are character-
ized only to the extent required to determine availability.

A network interface unit (NIU) object is defined. Attributes include name, port (an
object that in turn identifies a network and a tap), a send (outgoing) message queue, a
resource, a user (for those instances when a user is logged on to a workstation con-
nected to the respective NIU), and a list of mailboxes (belonging to subscribers on the
resource). An NIU buffers mail for subscribers on the resource and receives mail
from the network for those subscribers.

19

A resource object is defined. Attributes include name, interface, NIU, class, status,
and condition (on, of:. etc.). Resources can enter and monitor status and condition.
A BIT method periodically checks for faults. Those that it finds (typically less than
100 percent of those present) are classified as redundant or nonredundant. BIT results
are available to the resource RIP.

A workstation object is defined as a resource object. An additional method allows a
workstation to load a file manager (in preparation for a system boot).

A monitor object is defined. Attributes include station and input and output buffers.
Monitor methods allow it to act as the interface between a user and a workstation.

A network object is defined. Attributes include name, first and last tap, and a list
of connected NIUs. The key network method supports transmission and reception of
messages by NIUs.

A buoy-box object is defined as a resource object. A buoy box can keep an inven-
tory of buoys.

Display Module. Under Build 1, two objects within the display module support graphi-
cal display of status information.

A box object can represent a function, service, resource, or logical gate (AND or
OR) for display purposes. Attributes include name, position in the window, color, and
type (used to determine the box shape).

A graphic manager object manages the graphic window. Attributes include window,
a window object (provided by MODSIM 1II as part of the graphics package) and
“boxes,” an image object (also provided by MODSIM 1I as part of the graphics pack-
age) that in turn contains box objects. Methods allow the creation and display of a
box, connection of one box to another, change of color (indicating condition) of a box,
and deletion of a box. Another method allows the window to be reset in preparation
for a new display.

20

IMPLEMENTATION APPROACH

GENERAL

This chapter proposes an approach for developing SRRS.

STANDARDS

The Next Generation Computer Resources (NGCR) program, directed by the Space
and Naval Warfare Systems Command (SPAWAR 231), is defining standards for utili-
ties and general-purpose resources. The NGCR program uses Navy-industry working
groups to establish standards that are functionally useful and commercially viable.
Sample NGCR standards are SAFENET (see below) and FutureBus (a computer back-
plane standard that will evolve from VME, a bus currently in wide commercial use).
Other NGCR areas for standardization include graphics, operating systems, higher
order languages, and high-speed data transfer networks.

As stated earlier, part of the SRRS philosophy is to specify what information
resources must report rather than how to design those resources. This is the reason
for establishing interface standards that satisfy both government and vendor needs.
The NGCR program provides a good model for accomplishing this goal. Appendix C
shows examples of specifications a vendor might work from to implement required
reporting from resources.

Currently being studied is the subject of standards for reporting information to tac-
tical and technical users. Prototype results in this area have potential value.

SAFENET TESTBED

The reasons for developing a software prototype are to characterize and document
SRRS, debug the algorithms needed to make the SRRS work, and validate the SRRS
concept. A natural next step in the prototyping process is to move SRRS to a hard-
ware testbed.

The Survivable Adaptable Fiber-Optic Embedded Network (SAFENET) (reference 8)
is a leading candidate for a standard shipboard local area network (LAN). SAFENET
y uses the Fiber-Optic Distributed-Data Interface (FDDI) protocol, a commercial stan-
dard. SAFENET development has attracted industry and triservice participation, a
positive step toward joint and commercial dual use.

Two SAFENET testbeds are currently under development at NRaD. One of these
will be chosen as the environment in which to refine SRRS concepts, once those con-
cepts have been implemented, debugged, and shown to have merit in the software

21

“

prototype. The focus in this stage of development will be to make SRRS an integral
tool for using and troubleshooting the testbed. SRRS will be refined to production
quality to enhance—rather than degrade—testbed operation.

SUMMARY AND PLANS

This document has described an SRRS concept and an architectural framework,
consisting of an open, service-oriented architecture that supports a hierarchical organi-
zation. Work remains to be done in defining functions and in decomposing them into
services. In addition, standards must be -leveloped for specifying resource interfaces
and for producing user readiness reports. During the current fiscal year, a Build 1
software prototype has been developed characterizing an important subset of SRRS.

Future work will include developing a Build 2 software prototype and a hardware
prototype: the former will improve upen Build 1 by adding ar interactive capability
that will allow users to log on, boot the system, request system functions, and access
readiness reports; the latter will be based on the SAFENET LAN and will address
issues of timing, performance, and extensibility.

REFERENCES

. Vineberg, M., and S. Connors. 1991. “Shipboard Readiness Reporting System
(SRRS).” NOSC TD. 2154 (Aug). Naval Ocean Systems Center, San Diego, CA.

. Naval Sea Systems Command, PMS-400. “Readiness Standards: Combat System
Equipment Readiness Assessment and Reporting.” S9410-AN-STD-010/AEGIS.

. Nickerson, W. 1990. “System Study of Condition-Based Maintenance System for
Shipboard High Pressure Air Compressors.” DTRC-PASD.A-91 (Dec).

. Vineberg, M. 1991. “A Proposed Navy Battle-Management Architecture,” BRG C2
Research Symposium, National Defense University. June 1991, Washington DC.

. “Portable Operating System Interface for Computer Environments (POSIX),”
1003.1-1988, IEEE, September 1988.

. “MODSIM 11, The Language for Object-Oriented Programming.” CACI Products
Company, La Jolla CA. January 1992.

. Wirth, N. 1985. “Programming in MODULA--2.” Third, corrected edition, Sprin-
ger-Verlag, New York, NY.

. “Survivable Adaptable Fiber-Optic Embedded Network II, SAFENET II. Military
Handbook (MIL-HDBK-0036, Draft).

23

DEFINITIONS

Allocation — see resource allocation.
Application — a process that directly supports one or more services.

Architecture — a set of functions, the processes and resources that perform those func-
tions, and the interrelationships among those functions, processes, and resources.

Backplane — a panel, generally located at the rear of an integrated-circuit-card
enclosure, housing one or more (backplane) buses that support communication among
the cards in the enclosure.

Backup — the passive copy of a process, identical to the primary, that communicates
with the primary and operates so it can assume primary duties and request a new
backup if the primary should be lost.

BIT — see built-in-test.

Built-in-test (BIT) — artifact (hardware and software) included within a resource to test
and report the status of that resource.

Capability — the ability of a system resource to perform according to design specifica-
tions as derived from the initialization, configuration, and failures readiness categories
and from such variables as expendables (ammunition, sonobuoys, etc.), the environ-
ment, and doctrine in use, qualified as follows:

up — available for use, as required, to all specified services without
degradation; stores of expendables are at or near capacity;
failures is none or redundant, initialization is on, configuration is
normal or alternate (or possibly even the casualty).

partial — can perform a subset of specified services; faults causing
certain services to be partially supported or unsuported.

down — cannot perform as specified as a result of exhausted
expendables — or various combinations of states in the
failures, initialization, and configuration categories.

C2 interface — see command and control interface.

Central processing unit (CPU) — that part of a computer that performs data transfor-
mation.

Client-server model — a paradigm for network applications, well supported in the com-
mercial sector, where a client (a process on one resource) may request service from a
server (a process on another resource).

Combat system — the shipboard system that provides military attack or defense capabili-
ties required by the ship’s mission, including command and control, decision support,
engagement, sensing, navigation, and communication.

25

Command and control interface (aka C2 interface, function controller) — an interface that
enables a user to (1) request functions, (2) assign priorities to functions, (3) partition
function repertoires into subsets, (4) delegate function subsets to subordinate users,
and (5) delegate user priority-range subsets to subordinate users.

Communication element — the element that exchanges information with other nodes.

Configuration — the way a resource or system is interconnected and the applications
and utilities are loaded; this category can be affected by failures and initialization, quali-
fied as follows:

normal — up and fully integrated for the appropriate condition of
readiness; the combat system may be in “Battle Short”;

alternate — a configuration different from normal has been selected;
capability may be slightly reduced, however, it is possible
to move to normal (the combat system may be “Battle
Short”);

casualty — a fault has forced a move to this configuration, and
capability may be reduced; corrective maintenance is
required to enable a move to normal or alternate;

"unavailable — broken and not configured for tactical use, off-line
for maintenance or training, not fully initialized, or not
authorized for use.

CPU — see central processing unit.

Database management — storing, updating, and retrieving related sets of data, generally
accomplished by a database management system (DBMS).

Deadlock — a condition where, in a set of two or more services, each is halted, waiting
for one or more resources controlled by one or more other members of the set.

Decision-support element — the element that supports command planning and decision
making through assessment and evaluation and that accepts commands, provides sys-
tem services, and returns responses.

Dependency tree — a tree including logical (AND and OR) nodes, illustrating the
resources (represented by leaf nodes) required to perform a service (represented by an
explanatory node).

Element — an entity defined according to a set of services it provides and that incorpo-
rates an element controller.

Element controller — an application within an element, active at all times, that handles
interelement communication, service scheduling, and resource allocation and control
during service sessions.

26

Engagement element — the element that destroys or neutralizes external threats.

Failures — the degree to which faults affect the ability of a resource or system to per-
form to specification, qualified as follows:

none — no faults; designed redundancy is intact;

redundant — faults affect redundancy only; loss of redundancy does
not result in loss or reduction of any capability;

partial — faults prevent full performance of certain services;
total — faults prevent performance of all services.

File manager — a utility that stores and retrieves files, and transmits them on request,
generally over a LAN, to a requesting device, such as a workstation.

Function — a system operation a user may request.

Function-based resource allocation policy — a scheme to prevent deadlock where a func-
tion cannot begin until complete resource control has been established by all elements
concerned with all services needed to support the function.

General-purpose resource — a resource that supports a broad range of applications and
utilities.

Graceful degradation — in response to damage, reconfiguration of a system to continue
operation, although at a lower level of performance.

High-speed switch — a general-purpose resource capable of directly connecting two
resources, e.g., a sensor or weapon and a processor.

Initialization — the degree to which a resource or system is turned on and its support
services are available (can be affected by failures and configuration), qualified as fol-
lows:

on — the highest level of initialization; no further operator action is
required to make the resource or system ready to respond to
commands to operate;

standby — energized, available for use, all parameters are entered,
and the necessary interfaces are made; further operatcr
action is required to move to the on condition;

energized — all required power has been applied; operator action
is required to move to the standby state.

support — power and all necessary support services are available;
temperature, flow, pressure, etc., are within normal
operating ranges;

27

off — not all required support services (power, air, cooling water, etc.)
have been supplied.

LAN — see local area network.

LAN interface — the hardware and software that allows a device to connect to a local
area network and use it.

Layered architecture — an architecture, partitioned “vertically” into layers, so that each
layer supports the next higher layer.

Local area network (LAN) — a general-purpose resource, including one or more cables
and the associated interfaces (hardware and software), allowing devices that observe
interface specifications to connect (to the LAN) and to communicate (via the LAN).

Memory — that part of a computer that holds instructions and data directly accessible
by the CPU.

Monitor — that part of a computer that includes a display screen and that is generally
interactively controlled by a keyboard, a mouse, a touch panel, etc.

Navigation element — the element that plans, records, and controls platform position
and velocity. -

Open architecture — a layered architecture whose interfaces are defined by industry
standards, controlled by recognized standards organizations (ISO, ANSI, IEEE, SAE,
etc.).

Operating system — general-purpose software that enables the utilities and applications
to use the hardwarc resources.

. Operational capability — the ability of equipment systems to perform their intended
functions, i.e., the material readiness; SRRS provides information about operational
capabilities.

POSIX — IEEE Standard 1003.1-1988, Portable Operating System Interface for Com-
puter Environments.

Preempt — withdraw resource access from one clement and grant it to a second ele-
ment to support a higher priority service.

Preemptable — characteristic of a resource that can be preempted if the priority of a
newly requested service exceeds the priority of the service currently supported by the
resource.

Primary — the active copy of a process, identical to the backup, that communicates
with the backup and operates so it can request a new backup if that copy should be
lost.

Priority — a characteristic of a command, supplied by the user, inherited by all sup-
porting requests and services, and used to resolve contention for resources.

28

Priority range — a set of priorities, assigned to a user, that limits the priorities that
user may attach to commands.

Process — software, capable of executing on ene or more resources, designed to sup-
port one or more functions.

Readiness — the capability of the combat system, or portions of the combat system, to
perform their intended functions when called upon to do so under prevailing tactical
circumstances and environmental conditions; this refers to the capabilities of equipment
and computer programs (material) and to the availability of tactically functional expen-
dables and does not include consideration of factors relating to personnel readiness,
logistic readiness, ship-engineering readiness (except as it pertains to provision of sup-
port services).

Readiness assessment — the collecting of data or information about the condition and
state of equipment, computer programs and expendables, and the processing of those
data or that informatior to determine the extent to which the equipment and systems
can perform their intended functions or missions.

Readiness control — those activities responsible for providing or restoring specific com-
bat system capabilities through initialization, configuration, reconfiguration, or mainte-
nance and repair procedures.

Readiness status — the services available from a system, described in terms of capabil-
ity (i.e., “up,” "partial,” “down”).

Reply - information (acknowledgment, “cannot comply,” etc.) returned by an element
controller in response to a request.

Request — an order for service placed on an element by the C2 interface or by an ele-
ment for which the performing element can supply a corresponding service.

Resource — hardware, either special-purpose (sensor, weapon, etc.) or general-purpose
(local area network, workstation, etc.), needed to support processes.

Resource allocation — the granting of resource access.

Resource interface process (RIP) — an application, residing on each resource, designed to
(1) determine the status of the resource based on BIT reports and (2) to report that
status to the TaRP and the TeRP.

Response — information (acknowledgment, “cannot comply,” etc.) returned from the
services layer (the decision support element) to the functions layer in response to a
command.

RIP — see Resource Interface Process.

Sensing element — the element that detects and characterizes objects and characterizes
the environment external to the node.

29

Service — the mechanism by which support is supplied by the system in response to a
request to implement a function. One service type may be used to implement more
than one function type.

Service session — the period during which an element performs a service and retains
control of the necessary resources.

Shipboard Readiness Reporting System (SRRS) — a system that combines data process-
ing, communications, BIT, and calibration hardware and software to provide useful,
accurate, concise, and timely readiness status reports to tactical and technical users
responsible for operating and maintaining shipboard systems; the reports include the
readiness data and information needed to make correct and timely operational and
maintenance decisions.

Signal processing — transforming an incoming signal through numeric processing to
extract information (signal processing tends to be computation intensive).

Signal processor — a device designed to perform (computation-intensive) signal process-
ing.

Special-purpose resource — a resource that directly supports particular element services.
SRRS — see Shipboard Readiness Reporting System.

Subordinate user — a person authorized by a user at a node to access the BMA via the
C2 interface and who the user provides with a command repertoire and a priority
range.

System status — the condition or state of a system or part of the system described in
terms of failures, initialization, and configuration.

Tactical user — a user responsible for employing the combat system, or its elements or
components, to accomplish the tactical purposes for which the system was installed; his
decisions require considering reaciness information in light of the immediate tactical
situation.

Tactical readiness process (TaRP) — an application that gathers a picture of system
operational status characterized by those services the system can perform, separately or
in combination, based on the current or projected status of system resources.

TaRP — see tactical readiness process

Technical readiness process (TeRP) — an application that gathers a picture of system
operational status and supports scheduling of maintenance actions.

Technical user — a user responsible for ¢. iring that the combat system will meet the
needs of the tactical users (1) for reconfiguiing the system in an emergency to limit
damage (according to previously adopted procedures) and (2) to coordinate required
maintenance with the needs of the tactical users.

30

TeRP — see technical readiness process.

User — a commanding officer of a node or a subordinate authorized by the command-
ing officer to interact with the BMA via the C2 interface.

Utility — a process that supports a broad range of applications.

Workstation — a device (used primarily for data processing) — that includes a back-
plane, a memory, a CPU, a monitor, and a LAN interface.

31

APPENDIX A
SERVICE PROFILES

The following dependency trees use this symbology:

Logical node

. Explanatory
. . node

Leaf node

The highest level of each tree is an explanatory node representing the service. The
leaves of the tree represent resource requirements. When a service is requested, the
respective dependency tree is evaluated in two major steps.

First, each leaf node is examined: if at least one resource is available to
meet the resource requirement, the node takes value TRUE; otherwise, the
node takes value FALSE.

Second, higher nodes are assigned values: an AND node takes value TRUE,
if all direct descendants have value TRUE - otherwise, it takes value
FALSE; an OR node takes value TRUE, if any direct descendant has value
TRUE — otherwise it takes value FALSE; an explanatory node takes the
value of its (only) descendant.

If the resulting value of the highest level explanatory node (the service) is TRUE, the
service can be performed; otherwise, it cannot.

REPORT SYSTEM STATUS

At least one workstation is required (two are preferred) to run a TaRP and a TeRP.

RECOMMEND RESOURCE CHANGE

At least one workstation is required (two are preferred) to run a TaRP and a TeRP.

Deploy sonabuoys

Carrier-
Based Helo

Ownship

LAMPS | iFixed-Wing { |LAMPS
MKI | & | MK
P-3C S-3A

Process sonabuoy data

! Process Sonobuoy
: Data Within Ownship ;

AN/SQQ-28
Sonobuoy
Signal
Processing
Set

Interface

Switching Unit

Signal

e

[

Radio
Receiving
Set
AN/ARR-75

Telemetric
Data
Receiving
Set
AN/SKR-4

Radio
Terminal
Set
AN/SRQ-4

A-2

Determine platform

i Determine course
' and position

course and position

1
tUseknowni | Dead | | Celestial { ! Electronic i
i objects : i reckon i i navigation ; i navigation ;
.----.---------. .-----------.--' .--------------' .--------------'
The explanatory boxes above are expanded below.
§ Use known mi
: objects '
8 1
Gun fire Surface
control radar search radar
— _l
Gyro repeat- _ o, Magnetic
ers/pelorous OR .OR. compass
Master Auxiliary Stadi- Sextant Depth
gyro gyro meter sounder

NC-2 plotting Satellite DRA-DRT ‘ AND .
system receiver combination
Watch/
‘AND - Chrono- OR Speed
meter
Plotting Dead Dead Dead
table reckoning reckoning reckoning Parallel Protrac-
analyzer- analyzer tracer rulers tor
indicator
oSS asssceSEsoOEsSeESESSe)
: Celestial :
: navigation !
Lanscannsraaprennanannanl
Sight reduc- Sextant Chronometer/ Star finder,
tion tables watch identifier

mm———y

Electronic
navigation

\

N

——
OR Y —

S

Surface- 1}

DECCA OMEGA

NTDS Air-scarch

search radar |

radar

Sateilite Ship inertial
navigation nav system

Air-search ‘—Qb—
radar

AND

[gps | | Transit

Determine platform speed

Radar repeator PPI (relative
gyro (true bearing) bearing)
r---.--.------ﬂ.---- ----- :
! Determine !
5_ speed '
]

N
AND\ Engine
revolution
counter
Underwater OR)
logs
(seagoing
speedometer)
Plot static Propeller
(differential (electro- E|ectro; Doppler
pressure) mechanical) magne sonar
A-5

APPENDIX B
MODULES, OBJECTS, AND RELATIONSHIPS

Important prototype modules and most of the objects in those modules are
diagramed below. This is a pictorial representation of the relationships among parts of
the prototype rather than a detailed programmer’s reference guide.

Unshaded boxes within objects indicate attributes (data); shaded boxes refer to
methods (operations). Arcs indicate the objects used as attributes either directly or as
members of queues. In the diagram under the common module, a subscriber object
may be a mailbox owner; a content object may be added to a message content queue.

Common Module

SUBSCRIBER OBJ MESSAGE OBJ
s — - N
[name | Ltype |
[mailbox +— [priority]
[origin]
[| destin |
| content queue }*—
__ Y, .),
MAILBOX OBJ CONTENT OBJ
(a - N
Lowner +— | string |
| message queue [boolean 1
Linteger]
[object]
___ J _ _J
B-1

User Module

SUBSCRIBER OBJ

from
common
module

inherit
USER OBJ

()
[host B

triggers

[boot system
[logon]
[logoff |

| do function]

| watch monitor |

B-2

Function Module

USER OBJ
from
user
module
FUNCTION OBJ
~ ~
Ltype H
| priority]
SERVICE OBJ
| creator]
[7 from
| services - service
L) L module

B-3

Service Module

FUNCTION OBJ

from
function
module

SERVICE OBJ
([name |

j

{ parent function =

SERVICE OBJ

[parent service #\\\[
Lchild services 1«

! L
| element |

\— J/

B-4

Application Module

SUBSCRIBER OBJ

from
common
module
APPLICATION OBJ
inherit
APPLICATION 0OBJ
f j RESOURCE OBJ
L copy
(from
[host I resource
L module
[update time |
[message log }_ MESSAGE OBJ
- _/
from
common
module

APPLICATION OBJ

L

inherit

RES INTERFACE OBJ

™~

| report status |

read message
- allocate -
- change cond.

— _

B-5

Utility Module

SUBSCRIBER OBJ

from
common
module
) UTILITY OBJ
inherit
UTILITY OBJ
[? WORKSTATION OBJ
| copy
(from
| station I resource
L module
Lupdate time]
[message log 1.\ MESSAGE 08J
\. y
from
common
module

B-6

UTILITY OBJ
inherit
STATION OBJ
FILE MGR OBJ
(" A " from
[stations e resource
L module

| triggers]

[bootsystem |

UTILITY OBJ
inherit
STATION OBJ
DBMS OBJ
4) [from
| stations fe resource
L module
| users |\\
| add station | USER OBJ
from
user
module

B-8

UTILITY OBJ

inherit

RES MGR OBJ

(

[shadows f=

RES SHADOW OBJ

Icheck

allocate

‘deallocate |

d message |

= allocate

- deallocate

\—

(
_

from
utility
module

UTILITY OBJ

inherit

C2 INTERFACE OBJ
S)

le

FUNCTION OBJ

[functions !

- performed
= preempted

_ J

B-10

(
L

from
function
module

UTILITY OBJ

inherit

FUNCTION OBJ

CONTROLLER OBJ
(N

from
ol

| services 1 [E service

module

B-11

Resource Module

NIU OBJ
(mame |)
Lport |
| sendQ P
[mailboxes i

| connect to net |

Lenter resource |

| start resource |

[add mailbox]

| enter user |

Lenqueue msg |

| resource l\\

{user I\

MESSAGE OBJ

from
common
module

N

MAILBOX OBJ

from
common
module

RESOURCE OBJ

from
resource
module

USER OBJ

el

from
user
module

|
|
}
|

\[Leceive msqg |)

B-12

RESOURCE OBJ
(rname |)
| resource mgr j\
L niu
[class]
[status]
[condition]
[priority]

[enter status |

{change cond |

Lrepair]

[self destruct |

APPLICATION OBJ

from
application
module

inherit

RES MGR OBJ

rlre'lm’)rt status - |

read message
- allocate
-change cond

J

RESOURCE OBJ

™~

~ —/

NIU OBJ

MONITOR OBJ

/ WS MANAGER OBJ

inherit
WORKSTATION OBJ
monitor om
utility
Lws manager module

/

MONITOR OBJ
\
[station e

WORKSTATION OBJ

[input butfer j\

[output butfer j\

{ enter station]
Laccept input]
Lreturn input |
Laccept output | |

(

\

(
i

CONTENT OBJ

from
common
module

NIU OBJ

Lreturn output |
\ J
NETWORK OBJ
| name])
[first tap]
Llast tap Il
| nius -
{add NIU N
{ xmit messages |

J

B-14

()

RESOURCE OBJ

inherijt
BUQY TYPE OBJ

BUOY BOX OBJ

(lbuoytjpe]
L@. of buoys |

Lbuoy types I~

| add buoys B

B-15

Display Module

WINDOW OBJ
from
MODSIM
window
module
WINDOW OBJ
inherit
from
MODSIM
GRAPHIC MGR OBJ window
r ™\ module
[window udl
Lboxes \ BOX OBJ
—
[create box | [[name]
[display box_ | [xpos |
[change color | [ypos |
{ connect bo ‘es | [color |
mset SR T i:.]
L y _Ltype)

B-16

APPENDIX C
DETERMINATION OF SHIP/SONOBUOY DATA-LINK STATUS

This is an example of how a designer could decide what means a particular
resource had for reporting its readiness (and then how to build in that reporting capa-
bility). In other words, the example demonstrates how a designer could meet readi-
ness requirements for reporting and assessment.

The three tables below show how readiness decisions are made for the AN/ARR-75,
AN/SKR-4, and AN/SRQ-4 respectively. These tables differentiate among failures, in-
itialization, and configuration and reveal how the lower level terms are used under
each category.

AN/ARR-75
1. Failures
a. none - All 4 channels up
b. redundant - Not applicable
c. minor - 1 channel down
d. major - 2 or 3 channels down
e. total - All 4 channels down, power supply down, or

power converter down.

2. Initialization
a. on - All power switches on (bulkhead, circuit breaker
on the radio receiver group, and a toggle
switch of the radio set control).

b. standby - Not applicable
c. energized - Not applicable
d. support - Bulkhead switch on.
e. off - Bulkhead switch off.
3. Configuration - Not applicable
C1

AN/SKR-4
1. Failures
a. none
b. redundant
c. minor - Any one channel down, discriminator not
functioning, trigger failed, demultiplexer not
functioning (active out, but passive OK),
loss of voice.
d. major - Loss of 12-dB attenuator, loss of post amplifier.
e. total - Either or both 28-volt power supplies, loss of
preamplifier.
2. Initialization
a. on - All power switches on (bulkhead and front panels
of SKR-4A), preamp of channel to selected
helo on.
b. standby - Preamp not on, but all power on at receiver and
bulkhead.
c. energized - Not applicable .
f. support - Bulkhead switch on, switchboard set up properly.
e. off - Bulkhead switch off.
3. Configuration
a. normal
b. alternate - Test underway, test equipment set up, recorder
connected.
c. casualty - Not applicable
d. unavailable
AN/SRQ-4
1. Failures
a. none - Uplink and downlink both working
b. redundant - Not applicable
c. minor - Loss of voice communications with Lamps MK-III
Helo
d. major - Loss of uplink
e. total - Loss of downlink, over temperature conditions

2. Initialization
a. on - Bit cycle activated and running (approximately 2
minutes to complete).

C-2

b. standby - Not applicable

C. energized - AN/SRQ-4 turned on (power applied); bit cycle
not activated.

d. support - Bulkhead switch on but nothing at AN/SRQ-4 is
on.

e. off - Bulkhead switch is at off.

3. Configuration

a. normal - Transmit-receive/receive switch at transmit-receive

b. alternate - Not applicable

c. casualty - Directional antenna failed, omniantenna can be
used (operational limitations).

d. unavailable - Built-in-test activated (not during initialization) or
umbilical cord connected to Lamps MK-III
Helo.

C-3

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

Pubiic reparting burden for this collection of information Is estimated to average 1 hour pef response, Including the time for reviewing Instructions, searching existing data sources, gathering and
maintaining the dala needed, and completing and reviewing the collection of Information. Send comments regarding this burden estimate or any other aspect of this collection of Informatlon, including
suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jetferson Davis Highway., Sulte 1204, Arlington, VA 22202-4302,

1. AGENCY USE ONLY (Leave biank) 2. REPORT DATE
July 1992

3. REPORT TYPE AND DATES COVERED
Final FY 91 - FY 92

4. TITLE AND SUBTITLE

SHIPBOARD READINESS REPORTING SYSTEM (SRRS) SOFTWARE
PROTOTYPE

6. AUTHOR(S)
M. Vineberg, S. Connors, A. Sterrett, D. Shore

5. FUNDING NUMBERS

PR: EE03

ACCESS NO: DN301014
PE: 0602233N

SUBPR: RM33D61

7. PERFORAMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Naval Command, Control and Ocean Surveillance Center (NCCOSC)
RDT&E Division (NRaD)
San Diego, CA 92152-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

NRaD TD 2313

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

David Taylor Research Center
Bethesda, MD 20084-5000

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

A software prototype of the Shipboard Readiness Reporting System (SSRS) is described. SRRS will ensure that the
operational and maintenance readiness of the entire surface combatant is continuously measured and reported. It will col-
lect and synthesize periodic status reports from shipboard resources and automatically report operational capability and
maintenance requirements, based on resource status, to tactical and technical users. This system is designed in the context
of alayered open architecture in anticipation of future shipboard architectures. The highest layer of the architecture
includes both operational functions (relating directly to the ship’s mission) and readiness-reporting functions.

14. SUBJECT TERMS

readiness reporting
local area network

15. NUMBER OF PAGES

62

16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION
OF REPORT OF THIS PAGE

UNCLASSIFIED UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

SAME AS REPORT

NSN 7540-01-260-5500

—_

Standard form 288 (FRONT)

UNCLASSIFIED
212 NAME OF RESPONSIBLE INDIVIDUAL 21b, TELEPHONE (include Area Code) 21c. OFFICE SYMBOL
M. Vineberg (619) 553-6557 Code 171
NSN 7540-01-280-5500 Standard form 298 (BACK)

UNCLASSIFIED

E—

INITIAL DISTRIBUTION

Code 01 R. T. Shearer (1)
Code 144 V. Ware (1)
Code 17 J. Avery (1)
Code 171 M. Vineberg (30)
Code 405 C. Mirabile (1)
Code 41 A. Justice (1)
Code 411 A. Sterrett (10)
Code 423 L. Peterson (1)
Code 432 S. Connors (5)
Code 432 T. Tiernan (1)
Code 7502 R. Walker (1)
Code 753 H. Quesnell (1)
Code 82 P. Adams (1)
Code 82 R. Kochanski 1)
Code 821 R. Reed 1)
Code 954 D. Shore (5)
Code 952B J. Puleo (1)
Code 961 Archive/Stock (6)
Code 964B Library (2)

Office of Asst Sccretary of Defense
Washington, DC 20301-8000

NCCOSC Washington Liaison Office
Washington, DC 20363~5100

Navy Acquisition, Research & Develop-
ment Information Center (NARDIC)
Washington, DC 20360~5000

Naval Surface Warfare Center
Bethesda, MD 20084-5000

Naval Sea Systems Command
Washington, DC 20362-5101

Naval Ship Systems Engineering
Station
Philadelphis, PA 19112-5083

Defense Technical Information Center
Alexandria, VA 22304-6145 %)

Center for Naval Analyses
Alexandria, VA 22302-0268

Office of Naval Technology
Arlington, VA 22217-5000

Naval Surface Warfare Center

Annapolis, MD 21402-5067 (5)

Space & Naval Warfare Systems Command
Washington, DC 20363-5100

Naval Postgraduate School

Monterey, CA 93943-5000 (3)
Systems Exploration
San Diego, CA 92117 (2)

