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Two-dimensional Boussinesq convection is studied numerically using two different meth-

ods: a filtered pseudospectral method and a high order accurate ENO scheme. The issue

whether finite time singularity occurs for initially smooth flows is investigated. The nu-

merical results suggest that the collapse of the bubble cap reported by Pumir and Siggia is

unlikely to occur in resolved calculations. The strain rate corresponding to the intensifica-

tion of the density gradient across the front saturates at the bubble cap. We also found that

the cascade of energy to small scales is dominated by the formation of thin and sharp fronts

across which density jumps.
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§1. Introduction

In this paper, we present the results of a careful and detailed numerical study of the

small scale structures in two-dimensional Boussinesq convection in the absence of viscous

effects. In particular, we address the issue of whether a finite time singularity can form from

a smooth initial data. Recently in their numerical study of the same problem[14 ] , Pumir and

Siggia observed that the cap of a symmetric rising bubble (with smooth density variation)

collapses in a finite time. In contrast with their observations, our results suggest that such

collapse cannot occur in a finite time. The strain rate associated with the intensification

of the density gradient saturates, implying an exponential decay for the thickness of the

front. This is reminiscent of the situation found in vortex reconnection' 13,151: when two

vortex tubes are brought together, the axial strain rate saturates and the core of the tubes

undergoes enormous deformation to avoid reconnection (in the absence of viscosity). Thus

the inviscid solution manages to escape from forming a finite time singularity.

There are two main motivations for the study of the two-dimensional Boussinesq con-

vection. One comes from the potential relevance of this problem to the study of atmospheric

and oceanographic turbulence, as well as other astrophysical situations where rotation and

stratification play a dominant role. The second motivation comes from the fact that from

a comnlputational viewpoint, this is the simplest among the class of incompressible flows

which exhibit vorticity intensification. In particular, it is an open question whether the

baroclinic generation of vorticity leads to a finite time singularity. Such singularities, if ex-

ist, provide an effective mechanism for the cascade of energy to small scales. This scenario

also provides a convenient basis for various turbulence theories which assume, in one form

or another, that the (ensemble average of) rate of viscous dissipation of energy remains

finite in the limit of vanishing viscosity, implying the occurrence of finite time singularities

in many Euler flows[2] .

There is a well-known analogy between the two-dimensional Boussinesq convection

and the three-dimensional axisymmetric swirling flows:

11Vt + U V, + wvt + u v 0

Wj+ U ,+ -w' ,,,, UL- ( = 0



Here u = u er+ , ee+w e, is the velocity, w = uz-wr is the azimuthal vorticity. Comparing

(1.1) with (2.1) - (2.4), we see that the centrifugal force plays a role similar to gravity, and

the azimuthal circulation plays a role similar to density. Grauer and Sideris[9] were the

first to seek finite time singularities in this restricted class. Although their numerical result

still remains inconclusive, it has stimulated a lot of recent work along the same direction,

including the present study.

A related problem was studied earlier by Childress[7 ] where he considered nearly two-

dimensional Euler flows and derived effective equations governing their slow variation using

contour averaging mlethods. Under a change of variables, the effective equation takes a form

similar to the axisymmetric Euler equations with nonstandard connection between circula-

tion, radius and the angular velocity component. Childress went further to study nuieri-

cally a simplified version of his effective equations and observed finite time singularities for

the simplified model. This was interpreted as a signal for the re-three-dimensionalization

of the original (nearly two-dimensional) flow.

This paper is organized as follows. In §2. we formulate the problem and present

some preliminary mathematical remarks. In §3. we describe the numerical methods used

to study this problem. The numerical results are presented in §4. Some discussions and

concluding remarks are made in §5.

§2. Formulation of the Problem:

The equations describing Boussinesq convection are the following:

P+ U. Vp =0

(2.1) ut + u. Vu +Vp- V - )

Here p is the density (this should be the temperature and denoted by 0 or T. But we are

accustomed to calling it density, and therefore denote it by p) , u = (t, v) is the velocity,

p is the pressure. We have normalized the gravitational constant to be 1.
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It is convenient to write (2.1) in the streamfunction - vorticity formulation:

Pt + u. Vp 0
(2.2) wt + u VW -PX

- = W

Here w is the vorticity, 0/ is the stream function:

(2.3) w = vX -u u = ,v =- 1 .

Introducing the material derivative Dt Ot + u.V, (2.2) becomes simply

(2.4) Dtp = 0, Djw = -px.

It is straightforward to show that if the initial data u(x, y, 0) = uo(x, y) and p(x, y, 0)

po(x, y) are smooth enough, then the solution to (2.1) exists and remains smooth for a

short time. It is not clear whether any solution would loss its regularity at a finite time.

However, following Beale, Kato and Majda[3], one can show that if a solution losses its

regularity, then the density gradient has to blow up. More precisely, we have:

Theorem: Define the norms:

1/2

S J(+2f 2 dxdy
al 1,!2O R

2

If(-)l = m ax If(x,y)l.
(x,Y/)ER

2

Assume that for some m > 2, !IU(',O)Ilm -}-p(',O)1,m is finite, but there exists a T* such

that IIu(',T*)Ilm + IIP(',T*)Ilm = +oo. Then

(2.5) j0 Iw(.,t)loodt =+o

and

(2.6) I jIp.(-,S)l,, dsdt = +oo.

Proof: We will only give a sketch of the proof since it follows closely the argument

of Beale, Kato and Majda[3]. We will use C to denote a generic constant.
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Straightforward energy estimates lead to

d
1P(., t)112 <  IVu (,t)l. 1 1P(.,t)1 2,,

d jju(.'t)l,,, < 7U(-, q . IU(.,t)11,, + jjp(.,t)ll, 2

The logarithmic Sobolev inequality gives us, for ?n > 2

IVu(', t)1 < CLw(., t)0 (1 + log IIu(, t)I,").

Therefore, if we let
Y(t) = llP(',t)1!2 + IIu(',t)11,2

we have

Y(t) < CIw(.,t)Io (1 + log y(t))y(t).

Solving this differential inequality, we get

c ft (,- 1o d,

y(t) C , (0).

On the other hand, since Dtw = -P,, we have

d

Hence

w(.,t)1, _< Ipx(.,s)I. ds + C

and

Y(t) < eeff . (o).

Since y(O) is finite, we conclude that if y(T*) = +oo, then (2.5) and (2.6) hold.

§3. The Numerical Methods:

Computing singular or nearly singular solutions is a difficult task, particularly so in

the context of incompressible flows. To obtain maximum information one has to push the
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numerical method to the point where the flow is only marginally resolved. In this situation

any miunierical method is likely to exhibit its own artifact. Such numerical artifacts may

not go away under sinl)le mesh refinement checks, and they do not necessarily manifest

themselves in scales compara!)le to the grid size. Therefore, there is a real danger of being

mislead by a particulal numnerical result. To avoid this. we have solved (2.1) using two

different numerical methods: a Fourier - collocation niethod and an ENO scheme. Vhen

the solution develops large gradients, the Fourier - collocation method usually exaggerates

the situation, whereas the ENO scheme tends to smear out the large gradients. By com-

paring the numerical results using the two different methods, we can better judge what

phenomena is likely to be physical. Below we will describe separately the two methods.

3.1 Spectral Method with Smoothing

This is the standard Fourier-collocation method [6] with smoothing or de-aliasing.

Roughly speaking, the differentiation operator is approximated in the Fourier space, while

the nonlinear operations such as multiplications are done in the physical space. We used

the intrinsic Cray FFT routines which considerably enhanced the performance of the code.

Since the solutions have large gradients, it is crucial to add filters to the spectral

method in order that the numerical solutions do not degrade catastrophically if some part

of the steep gradients are not adequately resolved. A robust way of adding the filters[2" ]

is to replace the Fourier multiplier ikj for the differentiation operator o,., by ikjp(jkj I),

where

(3.1) p(k) = c N for jkI < N.

Here N is the inumerical cutoff for the Fourier modes, mi is the order of the filter, and n

is chosen so that p(N) = m- ' = machine accuracy. The machine accuracy on Cray-YMP

with single precision is roughly 10- '. Denote by F and F respectively the forward and

backward Fourier transform operators, then the numerical derivative is evaluated as

(3.2) DNf = F-'(il, (jkl))Ff.



The accuracy of such an approximation scheme depends on the parameter mi . For smooth

functions f(x), we have

(3.3) Ilf'(x) - DNf(X)I I = O(N-1":)

We will denote the Fourier-collocation method with mf-th order filter as SPmf. Unless

otherwise stated, the results presented in § 4.2 were computed with my = 10.

3.2 The ENO Scheme

The ENO (Essentially Non-Oscillatory) scheme is used for the convection (spatial) part

of the flow. We use ENO schemes based on point values and numerical fluxes, developed

by Shu and Osher in [16], [17]; see also [18].

To apply ENO approximations, the equation is first written in a conservation form.

For example the first equation in (2.2) is written as

pt + (up)": + (vp), = 0 (3.4)

The ENO operator is then applied to each of the conservative derivatives in a dimension-

by-dimension fashion: when approximating (up)x, y is fixed. Unlike the compressible flow,

the incompressible flow equations are naturally written in characteristic form. Thus no

expensive characteristic decomposition is needed. Upwinding can be simply determined

by the signs of u and v.

We shall only briefly describe the approximatIon of a single derivative, say f . More

details can be found in [16], [17], and [18].

The conservative approximation is of the form:

1 _+ -(

which, for r-th order ENO scheme, approximates the derivative to r-th order:

1 ^ - fj)f_ = X + O(Ax) (3.6)
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where the nmerical flux fj+ is obtained by interpolating the point values of f on a stencil

of r + 1 consecutive grid points. The stencil is chosen inductively as follows. For 7 1,

we choose the stencil to be [j-I, j] or [j, j+1] depending on the sign of u. For 7 > 1, left or

right neighboring points are added to the stencil at the previous level r - 1 according to

the absolute value of the divided differences they each give. In most of our calculations,

we used r = 3. We will denote this method by ENO3. Notice that the scheme is actually

r + 1-th order in Li norm. That is, the third order ENO scheme we use is actually fourth

order accurate in the Li norm.

The potential equation in (2.2) is solved with a fourth order central differencing (mi-

pleniented in the Fourier space via FFT) plus a fourth order exponential filtering in the

Fourier space described above. This guarantees fourth order accuracy and in most cases

avoids instability. We are not sure whether ENO should or can be applied to this potential

solver, since it is an elliptic equation with possibly a singular right-hand-side. Unlike the

compressible case, some small oscillations can still be seen in the ENO solution, probably

due to this potential solver.

For the temporal discretization, we used Runge-Kutta methods of various order de-

signed in[17]. No major difference between the 3rd, 4th and 5th order methods were found

in the numerical results. It seems to be a general fact that temporal accuracy is much less

important than the spatial accuracy. We used the third order version most often since it

only requires three auxiliary arrays, whereas the fourth order version requires five auxiliary

arrays. We take initial data that is periodic with period D where D = [0, 27r] x [0, 27r]. The

results reported below were computed using CFL equal to 0.5. This is very much within

the stability region of these methods.

We point out that our experience strongly favors the use of high order schemes be-

cause of their small dispersive errors. In a marginally resolved situation, even though the

filtered spectral method does generate small oscillations near the front where the density
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experiences a junl), the oscillations are effectively localized near the front. This is because

the spurious numerical oscillations travel at roughly the right speed which is the speed of

the front. The higher the order of the filter, the more accurate the propagation speed, the

more localized the oscillations. Of course the Gibbs phenonena eventually prevails and

the nmerical result beconies noise.

§4. Numerical Results

4.1 Formation of the front

1,e have nmerically integrated (2.1) with a variety of initial data. The initial density

is usually a perturbation of the uniform state, and the perturbations are localized in each

period. The early tine evolution of such flows is characterized by the formation of a front

across which density varies sharply. As time evolves, the front gets incieasingly sharper

and the tail starts to roll up. Figures 1 - 3 present the time development of such events

for the initial data

(4.1) 0) = - )) 0
1p(x,y,O0) =50p (x,Y)P2 (X, Y)(P - P X )

where

l(, y) exp 7r- 2__ 4 ,t)2 if.1. 2 + (y - r) 2 < 72

pi (x { 0 i 2 otherwise,

p2z(x~y) exp 1I (1.9)25(7.2,r)2) if ix - 27- < 1.957r
0 

otherwise

Figure 1 is the density contour at t = 1.6 computed using SP1O on a 5122 grid. At this

time, the flow looks roughly like a rising bubble. Figure 2 presents the sanle information

at t = 2.5. By now the outer boundary of the bubble has becone a sharp front. We notice

that as the bubble rises, it leaves behind a long and thin filament of light fluid. This is a

cieck on the anmount of nuimerical diffusion present in the scheme. A low order miethod

with ininerical viscosity (needed to stabilize the front) will destroy the thin filament. In
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Figure 3a and T) we present respectively. the conltouirs of denisity andl vorti('ity at t =2.9.

Now the filaienvt of li ght filuid is thinnier and longer, and the trailing edge of the fronlt

lias rolled l up. From Figurc 3b) we see that mlost of the vort r'itv resides oil the fronit, the

res't of the flowN (loinlaill has very lit tie vorticity. This fact is more dlrastically dlisplayedl inl

Fi'gure 4a and 41) where we plot resp~ectively. the slice of ,' anil ,~ at y = ,,. Since & and1

-pr have the samne signi, from the vorticItv' equation (2.2) we see that the vorticitv peaks

will 1 v increasingly anld monotonically s;harper. However, it app1ears that this miechisi

of barocic votcf geeaio ny ie rise to anl exponeintial growth of vorticity. W(V

will come back to this poinit later.

To b~etter appreciate the nearly singular behavior andl the computational (ifhculties

we face, we.( will shlow a fewv more plots for the profiles of the dIensity and( theveoi.

Figure 5a displays, the evolution of the density along the symmnetry axis xr7 at tunes,,

t =0.3. 1. 1.3. 2 and 2.3. It shows clearly the formation of a front, similar to the formnationl

of shlock froits inl the solutions of the Burgers equation. At t = 3.5 SPI10 onl the 3122 g-rid is

not resolving the flow anld small numerical oscillations applear onl the p)rofile. Howeve'r the

llllneri('al oscillations dlie out onl the refined gridl 1024 2. Tile result of the latter calculationl

is suhperilnlpose(h ill Figure 3a onl the solution of the 312 2 grid. Inl Fieure 51b and 53- we

show the slices of p) and r respectively, at y = 7,, 1 2.3. From these graphs one might be

temlptedl to 'onluhtde that Jumplls have oc'ci ied inl p andl (lisps have occurredl inl v. However.

a closer look suggests that the ('lsp-like behiavior inl r anid the discontinuous behavior inl

p go away uinder refinemeinit. Inl Figure 3d we compare the numerical resuilts for 1, onl the

3122 and 1024 2 grids inl the m'u5 1 -like regions. It is seen that onl the 1024 2 gridI the solutlin

looks mulch less singular. Similar p1 )henonleiia were ob~servedl for 1).

Thiese resu~lt s. part icularly' Figure 2 and 3a miotivate the following question: Is

h)sille that the sollitioli losses its regularity at the same time at the entire front? For

this to happeni there are only two possibilities. Onle is that while r (develops culsps. p stays
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smooth across the front. This is ruled out by Theorem 1 since it dictates that p and w

must Lercome singular at the same time. The second possibility is that p develops jumfps

across the entire front. In this case it is necessary that fluids with intermediate densities

are suddenly swe)t to the back of the luW)le. Clearly this requires infinite velocity whereas

zal of our mumerical results give velocities that are very well bounded.

Before ending this subsection, we present the comparison of the numerical results

comiilted using the two different methods descril)ed in §3. Figure 6a and 6b display

re~ijectively, the time history of the maximum and minimuni density computed using SPlO

on 2562, 5122, and 10242 grids and ENO3 on the 5122 grid. These quantities should l)e

conserved Iby the exact ;olutiios. As expected, ENO does a much )etter job in avoiding

overshoots and undershoots. Figure 6c compares the numerical results for p at y = 7r, t =

2.5, conimputed using SP1O and ENO3 on 5122 grid. The result of SP1O undershoots much

more than the result of ENO3, although the latter also contains some small numerical

oscimiatio:,s. On the other hand, although not shown here, ENO is usually less accurate

than the Fourier-collocrtim method and contains more numerical dissipation.

4.2 Evolutions f the bubble cap and other aspects of the flow.

When the bubble rises, lighter fluid has larger acceleration and heavier fluid has smaller

accehration. This results in the formation of fronts. However, once the front is formed,

the pressure gradient ,ecomes important across the front. In fact, as is shown in Figures

7a and 7b. the formation of increasingly larger pressure gradients may reverse the initial

pi(tuire. In Figures 7a and 7b. we plot the slice of -py., p, and the acceleration -(p + py)

along the symmetry axis r = 7r at two different times t = 0.5 and t = 2. At t = 0.5, the

acceleration -(p -L p.) decreases across, the front, whereas at t = 2 it increases across the

front. (The density 1) always decreases across the front, see Figurr 5a) This implies that

the velocity difference betweei the fluid 1)articles at the tip and the back of the front will

not increase further after t = 2, assuming that the picture remains valid.
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From another viewpoint, the fluid on the symmetry axis satisfies

Pt + vpy = 0

(4.2) 1 = 0
t + VVY = -(p + py).

Let { = py, t = vy. Then we have

(4.3) 6 + v = -7.

The growth of is controlled by the strain rate ij. In Figure 8a we exhibit the time history

of the maximum of It71. During the time interval displayed, the maximum of 1711 always

occurs at the bubble cap. The results of several different calculations agree remarkably

weXi; the strain rate il saturates at about t = 1.7. Consequently, the maximum of I 1 can

at most grow exponentially. This is indeed so, as can be seen from Figure 8b. Other

quantities, such as w and p,, also grow at an exponential rate.

We have also done calculations with other sets of data. Here we will briefly report the

results of a few cases.

Figures 9a -- 9c display the results for initial data

W(x,y,0) = 0

(z-w)2 +(Y- w)2{ (27r - x) e 25 z-W2-( )
p(x,y,O) = p3(X,y) = if(x - r)2 + (y - r)2 < 2.52

S0, otherwise.

The contour curves of p at t = 4.5 and t = 5 are shown respectively in Figures 9a and

9b, whereas Figure 9c shows the time history of the strain rate jiq[ at the bubble cap. We

observe that the strain rate begins to saturate at t ; 4.25 and then increases quickly at

t - 4.8. This corresponds to the time when a mushroom forms out of the bubble cap, and

the front changes its global configuration. We see that eventually the strain rate saturates

again at about t = 5.25. We expect that the strain rate at the cap will not increase unless

the flow changes its geometry at the cap.
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Figures 10a - 10c 1)rtselt the numerical results for a set of more conipbicatedl initial

(lata. The dlata is, designed 5() that at later timles the bubble front will develop two buimps

ins'teadl of one as in Figure 91b. Again the increase of thle strain rate at tihe cap is accom-111

pained by a chiange of the fronlt configuration: after t =--3.5. thec front is no longer conivex

(as it was before t = 3.5). W~e were not able to carry this computation further to see the

evenitual saturation. since the sidle arms of the b~ubble become so thin that they cannot be

resolvedloil a 1024 2 Aridl. It is not clear whether a plincll ac'tually occurs at thle sidhe arms.

§5. Discussions and Conclusions

Our numerical results strongly suggest that the collap~se of tihe bubble cap observed by

Pumir and~ Siggia[1 4] is unlikely to oc'cur 11n a resolvedI calculation. The increase of the strain

rate is always associated with a giolbal chlange of the flow character. The contribution of the

local straini tends to saturate. The glob~al character of the flow is important. Consequently

any inuimerical p~rocedulre .Nhich emloys sonic sort of local apphroximlation is openl to seriolis

suslpicion. This inicludes the ones presented in "I. However. we didl not adIdress the issue

whet her ot her types of singularities cain oCCulr.

Let uis reiterate the argument p~resenltedI in §4.2. Along the symnmetry axis xr= ~ we

have

(5.1 { l = -(y~ + pyy) - 1

where p~y qf=b,. are bo0th negative at the front. From (2.1) we also have

(3.2) p- Ap .2 ± c2 + 2u~ 1r.
(3.2 -P~ - !,p u 2

Oin the svinxiiietrv axis, this reduces to

(3.3) -/), - y = P~.2 + 211j
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Therefore, we have

(5.4) { Dt{ = - z1
Doi, = pxx + i.

As long as the front remains relatively smooth, px, is negligible compared to 712. Conse-

quently and 7 will stay bounded. In fact since near the cap p. < 0, pyy < 0, we obtain

a necessary condition for collapse at the cap:

(5.5) -2112 < Pzx < _-712.

In particular, the front itself has to develop infinite curvature. This is consistent with the

argument presented in section 5 of [14 ].

The key difference between the computations reported in[14 1 and the computations

reported here, is that in[14] a high frequency instability (with a scale that is comparable to

the thickness of the front) is observed at the cap, whereas in all our resolved calculations

we have not seen the manifestation of such an instability. Since the front is extremely thin,

near the cap the situation resembles that of the Rayleigh-Taylor instability. Therefore a

linear stability theory will indeed predict that the front is unstable to short wavelength

perturbations. However, the relevant question here is not whether perturbations can grow,

but whether short wavelength perturbations can exist in a dynamic context. In other

words, the issue is whether the exact solutions of (2.1) can supply perturbations with

wavelength on the scale of the thickness of the front.

We want to emphasize that the question we are asking is a rather academic one. In

actual physical experiments, various external noises provide ample sources of such pertur-

bations. The solution we are seeking numerically may hardly occur in experiments. (This

is yet another argument for the importance of scientific computing: It has the potential to

carry out much more controlled experiments.)

Before discussing the question raised above, let us recall two problems that bear

some similarity with the case we are studying. The first is the classical Kelvin-Helmholtz
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instability of a vortex sheet. The braid that connects two consecutive rolls in a Kelvin-

Helmholtz roll-up is still subject to Kelvin-Helmholtz instability, although the local vortex

sheet strength is decreasing in time and the braid is under straining. This kind of instability

manifests itself in numerical computations in such a, way that the round-off error causes

snall spurious roll-ups along the braids. This phenomenon is studied very carefully by

Krasny[1 11 and is cured by introducing a nonlinear filter that keeps the numerical solution

effectively analytic.

The second problem is the behavior of an expanding bubble in a Hele-Shaw cell with

very small surface tension. The presence of the surface tension makes the interface between

two viscous fluids linearly stable. Nevertheless, the interface is nonlinearly unstable and

prefers to develop the characteristic viscous fingers and the tip-splitting of these fingers

observed in experiments. For example the amount of perturbation needed to upset the

linear stability of a viscous finger and cause it to split is exponentially small in terms of

the surface tension ['1 . In the numerical studies of Dai and Shelley['], the lower precision

calculations give rise to finger-like behavior. One might argue that such fingers are physical,

on the basis that they are observed in experiments. But they are not faithful solutions

of the original dynamic problem. Indeed as was shown by Dai and Shelley, the initial

instability go away in the high precision calculations (128 bits).

Returning to the problemn we are studying, the linear stability of the cap of a rising

bubble is investigated by Batchelor et. al.[2,14I. In particular, Pumir and Siggia show that

perturbations with wavelength 6 (the thickness of the front) can amplify by a factor of "6

(where -, is the radius of curvature at the cap) if

(5.6) 1 2(( 26-62(5.6)6 - -"

Heme s is the strain rate at the cap. We remark that an infinitesimal disturbance eventually

decays since the local strain increases its wavelength exponentially.
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Although in some cases we have carried out the computation well beyond the limit

set by (5.6), we have not observed the kind of instability at the cap reported by Pumnir

and Siggia[14]. One such instance is displayed in Figure 11 where we have roughly 6
I 1

256' s = 2. (5.6) becomes 2048 < 1.109 x 10 4 and is very well satisfied. Still no

instability on the front is observed.

A similar situation occurs in the classical Rayleigh-Taylor problem. The interface

between a heavy fluid on top and a light fluid at the bottom is linearly unstable and

typically evolves to mushroom-like or plunme-like structures. The tips and tails of the

structure are still subject to linear instability. But no instability at the tips or tails has

been reported, even though the problem has been extensively studied 1 ' 19 ].

We remark that for the collapse to occur, a cascade of instabilities has to develop at

the cap with increasingly smaller temporal and spatial scales. We have argued that such

an instability is unlikely to arise for the true exact solutions of (2.1). However, since the

front is very sensitive to numerical errors., any uncontrolled truncation can easily trigger

the instability and lead to erroneous results.

With respect to the issue of formation of small scale structures, our calculation sug-

gests that the cascade of energy to small scales is dominated by the formation of thin

fronts. Roll-ups that are characteristic of two-dimensional Kelvin- Helmholtz instability

also occur but play a less important role. Occasionally we also observe small rolls formed

out of big rolls, evidence of what is suggested in Richardson's well-known quote. But these

rolls carry a very small amount of energy. The scenario of a cascade through a sequence

of roll-ups on increasingly smaller scales, if at all possible, has negligible contribution to

the overall cascade mechanism.

The evolution of the energy spectrum for the first set of data is plotted in Figure

12. There is an apparent similarity to the spectrum observed by Brachet et. al. for the

Taylor-Green vortex[N1 . The near singular behavior creates an algebraically-decaying part
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in the bulk of the spectrum. However the spectrum does not seem to settle down to any

stationary state.

To conclude, let us emphasize that the ultimate answer to the question addressed here

must be analytical. Numerical studies can at best provide partial evidence. For incom-

pressible flows, it has proven very difficult to obtain analytical results on the regularity of

the solutions. As a result, considerable efforts were devoted to the numerical approach.

However, computing singular or nearly singular incompressible flows is also an extremely

difficult task. Not surprisingly, the subject of seeking singularities numerically for incom-

pressible flows is full of controversy. The contradicting conclusions reached in the present

paper and the work of Pumir and Siggia[4] certainly adds one more to the list of many

unsettled issues. It is our intention that these numerical work will generate sufficient inter-

est for further analytical study and the evidence presented will contribute to the ultimate

resolution of the issue raised.
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Figure 1. Density contour at t=1.6 for initial data (4.1).
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Figure 2. Density contour at t=2.5 for initial data (4.1).
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Figure 3a. Density contour at t=2.9 for initial data (4.1).
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Figure 3b. Vorticity contour at t=2.9 for initial data (4.1).
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Figure 4a. The slice of w at y =7r, t = 2.5.
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Figure 4b. The slice of -p, at y = 7r, t 2.5.
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Figure 5a. Evolution of density along the symmetry axis x = 7r at t =0.5.,1. 1.5,2.

an(1 2.3. computed using SP10 on a 3122 grid. The result at t = 2.5 computed on a 10242

grid is also superimposed. Notice that the small numerical oscillations disappear on the

refined grid.
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Figure 5b. Slice of p at y ir, t 2.5.
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Figure 5c. Slice of v at y 7r, t 2.5.
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Figure 6a. Time history of the maximum density from different computations.
From top to bottom: SPlO on the 2562 grid, SP1O on the 5122 grid, SP10 on the 10242

grid and ENO3 on the 5122 grid.
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Figure 6b. Time history of the minimum density from different computations.

From bottom to top: SP10 on the 2562 grid, SP1O on the 5122 grid, SPlO on the 10242

grid and ENO3 on the 5122 grid.
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Figure 7a. Slice of -py,,p and -(p+py) at t = 0.5 along the symmetry axis x = 7r.

The acceleration -(p + py) decreases across the front.
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Figure 7b. Slice of -pv,p and -(p +py) at t = 2 along the symmetry axis x = ir.
The acceleration -(p + py) now increases across the front.
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Figure 8b. Time history of the maximum of I I . From top to bottom: SP10 on
10242 grid, SP1O on 5122 grid, and SP1O on 2562 grid.
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Figure 9a. Density contour at t = 4.5 for the initial data (4.4).
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Figure 9c. Time history of the strain rate at the cap.
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Figure 10a. Density contour at t = 3.5 for another set of initial data.
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Figure 10b. Density contour at t = 5 for the same data.
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Figure 10c. Time history of the strain rate at the cap.
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Figure 12. Evolution of energy spectrum for the initial data (4.1) at times: t=t.5,

1, 1.5, 2, and 2.5 calculated using SP10 on the grids: 2562, 5122 and 10242. Only the

spectrum at t=2.5 is shown for the calculation on the 10242 grid..
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