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Abstract

This paper examines an iverse problem tin thermal imaging, that of re-overing it void tin a

material from its surface temperature response to external heating. 17niqueness and cont in-

uous dependence results for the iniverse problem are dlemonstratedl andl a numerical met hod

for its solution developed. This method is based on an optimization approach. coupled with

a b~oundary integral equation formulation of th~e forward heat condhuction problemi. Some

convergence results fer the method are proved andl several examples are presented( usting

com putationally generated dlata.
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1 Introduction

Thermal imaging is a technique of recent interest for the nondestructive evaluation of mate-

rials. This method attempts to characterize the internal structure of a sample (perhaps to

locate flaws-disbonds, bubbles, corrosion, etc.) by using its surface temperature response to

an external heating. Some recent work and techniques in this subject are detailed in [3], [4].

[5], [7] and [9].

In this paper the problem of detecting and identifying an unknown internal void in a

planar domain using thermal imaging is examined. The void could represent a defect in the

material, or it could be a feature which is supposed to be present, e.g., a conduit, whose

location or geometry is to be assessed. The focus is on the case in which the thermal

stimulus, an applied heat flux at the boundary of the sample, is periodic. After separating

the temporal and spatial variables, one obtains an inverse or domain identification problem

for an elliptic equation. Results concerning the uniqueness and continuous dependence for

the inverse problem will be examined and an algorithm for the numerical recovery of the

void will be presented. This algorithm will be applied to examples using computationally

generated data with and without noise.

The outline of the paper is as follows. Section 2 concerns the mathematical formulation

of the forward heat conduction problem with periodic heating and demonstrates how this

leads to an inverse problem for an elliptic equation. Section 3 contains an identification

result for the inverse problem and shows that an internal void is determined by the bound-

ary temperature response to external heating. This section also contains results concerning

sensitivity or continuous dependence for estimates of the internal void based on the bound-

ary measurements. These results rely on reformulating the heat conduction problem as an

integral equation on the boundary of the sample. Section 4 examines a numerical method

for the solution of the forward problem based on the boundary integral formulation and its

incorporation into a least-squares routine for solution of the inverse problem. It is shown

that with reasonable hypotheses on the class of voids, the numerical method will converge

to the solution of the least-squares formulation of the inverse t)roblem. Section 5 presents

the results of this algorithm applied to computationally generated data.



2 Mathematical Formulation

Tlhe sam)le (without void) to be teS e( I wil Ii ,le (no(d I)V ). a I)()eh region in I 2 wit II

2 houndary. The internal voi1 will 1 ) oleiiot,! I1v I). where 1) CC t with ( 2 bonla r'.

The function T(tx) will denote the solution to f le heat eqi lation

T
- hA 7' :0 Q D\l

0 T

010

x 0) -: (')

where v is the outward unit normal vector field onl the 1o)indary of Q \ I). K is the therirmal

diffusivity of Q. o is the thermal conductivitv of 1. 70 denotes the initial temperat ire of

the region and y is the heat flux at the bolndarv. Both K and o are assinne to be known

constants. Of course it is assumed that g is not identically zero.

The heat flux (.r. t) will be assumed to be periodic in t ilne with known freq(pincv( so

thiat

i/(x. ) = .{ Y" )I

for some complex valued function q(,x). Actually, q would also generally include a stea(d-

state terni ac wXell. Im t since only the periodic response is of interest. this teri can be ignored.

IUnde(r this assumption on ('Cal separate varia)les to find that 7(.x. I) whee{re( ) ( t} whire

T(x) satisfies

AT - -T 0 inQ \ D
K

0-~ qx (2.1)

0T
010.

at least for time large enol.iglh so that the initial condilitos (o not maler. Note thai the,

flnction T(xr) solving (2.1) will b(e co01 il('x- val ld. cousistin;g of a real, or ill l)ha'se, and

imainarv. or o t of phase t)art.
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The Inverse probleni of interest is t he fyI lowi rig: Givel it knlown appl~ ))(.;)ai I fux pb C;II

tire shiape and location of tire voi(I 1) b I uiilelY ileterini liled rorii Inisi I rer I iiits of, '1 orI

thie boundary of W? Providedl it irtiiqreress resirh hiolds, one( would also like to knlow% w~liehr

D depends -onltinulolyI\ onl rneasurerneuits ol T oilM? iat is. hoIw% ser isit I e esi ii at es of

D are to noise inl Ohe data. Final. one would like anl offhcient 'orinilui at jolria alg'orit )Ill for

recovering an estimiate of D) fromi act iial data.

3 The Inverse Problem

3.1 Uniqueness

A unuiqueniess result for thle Inverse pi ohh ni follows easi 1 froml ha sic lacts abouit eliptic

op~erators.

Theorem 3.1 (U niqiucss) LOt 1 and D2 N twVO Ilbdonains of Q and 7', and TF2 the(

correspoiiding , olutions to cqua/ion (2. 1) wi/h nonzu o Xcrriai dala y. L(0 / S h a poi-ioll

of OQ withl positivicasur. Vu nt T, = 1'2 on S linap/ics that 1), 1)2.-

Proof: The fu nct ions TI ando T.2 lave the samne Nenunn dat a g and, since 7", and 1'2

agree onl S, the samne ('aricho d.ata. UTnique conti uuiat ion for c 11i ptc operators linpiles hlat.

T, and 72 agree onl Q \ (DI1 U 1)2 ). Then. for examiple. thie function 1'2 hias a x'aniisliing nornmal

dlerivative onl the region D, \ D2. hlence Is constant onl DI \ 11)2. If /)I \ 1)2 :# 0 r herr by\ t lie

inaxinimum principle 1'2 mulst be constant t brotighout Q \ D2, cont raulict in ry !/ 0. A slinfl Iar

argumient shiows that If D2 \ 1), #0 ten 7', would be corust ant ol Q \ DI, ag'ain corit radict Ill()'

g $ 0. hence DI = D2 .

3.2 Boundary Integral Formulation

III order to Iinvestigate cord iwuion is depenidenlce and I nut rnerical niietboils for d ie recovery (of

D It wil1) convenient to reformuldate the heat conrduct ion problen i as a bouriiarv linn egral

e(Iuiat ion. Tis offers tle adlvantage 1 hat one( onY Ii as to solvxe for t li t em i('raItune oni t li



boundary of the sample, rather than the interior. Since the boundary is the only place the

temperature is measured, this is the only place its value is needed.

Use F(r) to denote a fundaniental solution or Green's function for the operator (A -

Such a fundamental solution is given by

I Ko7ir/4V/ K
F(r) 27-Ao (r e V/Lw/K)

1I(ker(r/ic) + ikei(rw ))
2r

where K0 is the zero order modified Bessel function of the second kind and ker and kei denote

the kelvin functions. Efficient routines for computing the kelvin functions can be found in

[1]. Define

F(Xy) = F(IX - yi).

The function F satisfies the heat equation in the y variable for fixed x, except at x = y,

where it has a logarithmic singularity. Standard potential theory arguments (see [6], chapter

3) show that the elliptic problem given by equation (2.1) can be formulated as a boundary

integral equation,

-1IT(x) + T(y)OYF(x, y) dS= F(x, y)g(y) dSy (3.1)2 JQ\D) J(n\D)

for each x E ((Q \ D) where o is the normal derivative in the y variable and dS, is surface

measure. We will use K(x,y) to denote the kernel 0,aF(x,y) for x,y E O(Q \ D) and use S

to denote the operator

($0)(X) K(X,y) (y)dSy. (3.2)

The operator S is bounded and compact on C(O(Q1 \ D)), the space of continuous functions

on o9(Q \ D), hence -}!I + S is a second kind Fredhohm operator. Uniqueness of the solution

to equation (3.1) follows from uniqueness of the solution to the forward problem. By the

Fredholm alternative, the equation (-!I + S) = g is solvable, at least for smooth enough

g. In particular, ( ,5) - l exists and is hounded on C(O9(Q \ D)). The solution to equation

(3.1) yields the temperature T(x) on 0Q and OD. If needed, the temperature for x E Ql \ D

can be found from the relation (Green's third identity)

T(x) = (T(y),r(x, y) - F(x, y)g(y)) d,%.

4



3.3 Restrictions on the Domain

In order to obtain continuous dependence results, a few restrictions ol the class of voids

and their parameterization are needed. First, let us use 0"[O, 1] to denote the space of (72

functions on [0, 11 where the endpoints 0 and I are identified with each other. This space

can be normed by 11011 = sUptEto, IDO1, 101 < 2. We assume that D depends on finitely

many parameters, D = D(q) with q E Q CC UVm and where:

(a) q1 = q2 implies D(ql) = D(q2) (unique parameterization).

(b) D(q) C (' CC Q for q E Q (D(q) stays away from df2).

(c) The closed curves OD(q) are parameterized as x(q,t) = (xi(q,t),x 2(q,t)) for q E Q,

0 < t < 1, with xi(q,t) a 02 function oft for each q E Q and - (x) 2 + (x) 2

bounded away from zero. Also, the map q -- x(q, t) is continuous from ]R''L to C2 [0, 1].

Based on the above assumptions it is not difficult to show that:

(d) For each x E OD(q) there exists an open ball, B(x), of radius C around x with

independent of x and q such that the curve dD(q) n B(x) is parameterized by

(xI(q,t),x 2(q,t)) with t in some connected interval.

The continuity of q - 02 and compactness of Q imply that the 02 norm of x(q, t) as a

function of t is uniformly bounded over q E Q. Also, for q E Q the families of functions

x(q, t), x'(q, t) and x"(q, t) are equicontinuous in t, where the prime denotes differentiation

with respect to t.

Lemma 3.1 The family of functions {K(x(q,s),x(q,t)); q E Q}, are (uniformly) equicon-

tinuous in s and t, that is, for each e > 0 there is a 6 > 0 so that

IK(x(q, s), x(q, t)) - K(x(q,.s'), x(q, t')) I < 5

for all (s,t) and (s',t') with

is- s'I < It - t'I _ 6,

and 6 does not depend on s, t or q.

5



Proof: For brevity let us suppress the dependence of .x() and K() on q and write simply

K(s, t) for K(x(s), x(t)). Also. sinlce l(x y)= log( ."- /I)+ ((a. ;) where ( is smiooth iII

x and y, we will prove the lemma assuming that I'(r,y) = log(Ix- !11): it, is easy to check

that the smooth term makes no difference in the proof.

The stated regularity for K holds on the compact set {( . C.) - [0, 1] x [0, 1]. - > _

q E Q }, where ( is any number greater than zero, for on t his set K is at least (2. We need

only to show that l(s, )is uniformly continuous (,n the set (.s E ) ( [0. 1] x [1. 1]. 1., - _

Suppose the boundary of D near a point x0 is parameterized IY .r(/) = (xi (l). . 2(t)). By

making an appropriate translation and rotation it may be assumed thati t 0 = .(0) = (0.0)

and that the boundary is oriented so that the unit normal outward vector in (.r, a.a2 ) coor-

dinates is (0, 1). In this case Taylor's theorem can be used to expand x(I) as

X I,(f.) = aot + (11t2 + R, (t)

X:'(t) bat1 + +f~I
2 + I?(I)

where

a0 = r(0)

(11 = X'(0)

2x"'(0)
b2

RM(t) = (,r (c)- Xr'(O))/ 2  j- 1,2.

and c is some point between 0 and t. The functions ft1 and R2 are functions whose ('2 tiorrls

can be bounded in terms of the norms of a, and r2 . The uit normal vectors salisfX

,((f) -= b + H" (t)

(1S f _

,,2 r(t ) = -(I() - (I]/

The kernel K(s, t) is then given by

-d. 1 (.rx() - I r (l))vI(t) + (,' 2 (s) - .r2(I))v2())d t 2 , ' x .'l -., 1 ( ) ) " + ( ." 2 .) - . . ( ) ) 2
I (.r (.K - .X ,(I)) .4 (1 ) - (x ,.(. ) - .,. ( )) .,.'(t)) (

'2w" (.'(.) -. ru())2 (."2(.) - .12( P)) t

2 ))



Substitutingl the ab~ove exp~ressionls for a nd ~'~.~ i x" 'give", for d ie 1ililinerat r. aftc (I Wii('

si 11) pi i cat 1011.

nL~ a) In + H-2 1 ) + + [u li.) - l +i~/)(u H I)

Tile dieno~minator btieomes 2-. t innIS

a ('2 /2 U)f) + -22
[(0 + + ~ 12 +( /2) I)

Taylor 's theorem implies t hat

R()+ +. - I)i'I /J{((*

for somfe point c b~etween s~ andt I. .Sliist it iti ng I h1is i Fit thle e'xpressio ni for ln1c 111in ieral or

gives

M711 (-a~ +) (1f + R' t))? 1 (c) - ((a0 + all + l?' (1I(1 /;' (ti1 h I (I

where c and c itre b~et ween -S and( t. Dioi iig I lhe samei for ile ( lioi i at or shows

du~ 27(. -) K ± l())±(J(2 + ± ('21]

where ('l and( ('*2 are functlowe I1"411I''l(l ali)'i~iIi'liit'I1 of t Ie(2 or of

X(t/) . C anceiling t liecomn . 1)2 fact or. tie kernel c-an b e writ t (II as

1 -1iob + [bt + Hftlll -[ - flit +'()Ij~ -1-8 'i1) -H1t

Ix(~i~t) -~-- [z ) + 1?1(/)12) + [H M(I) 2  + +> 4 ~ _ _ _ :

Since ' (0) 0. the kernel is hoilidoed t lrolili .s I . for- Ow lie (loiilatur is hotitided

away from zero for .s andl I inl a stifliciejt IN, "'iial ivi Ieh orilood of, Zero. Ill fact . I)% vl or s

theorem f?'(I) = H(0) + J?'(')/ =H''(c)I for some c' bet weeli Zero anid I. Ill addit ion. it'

the functions (l and C2 (canlh b ude i i Itlel i erinls of t1c lie ' orm of x'(I) ( wich Is Itel

bl)Olnded lilniforliiiv over Q2). 1 lie doliiiiiator mlay be bounided iitiforlv11 awaY fronm Ze'ro

for .si and t Ill a niieghblorhoodl of' 0. withI th lit' i'llborliooil anid liornl iiW'epemndet of x"'

and)( q. The failes (if functilons I- ( ) an ld a''' I). aswelts H) I) ait I''(/ I). are IIill forilv .\

L'(jli('onIiliiols for q/ E Q,. andl hience So are hot 11 t lhe 11iiiin'rit or anid t (lI ilal or of eiiiat ioll



(3.4). Since the denominator of K(s, t) is bounded away from zero. it follows t hal t tic fallilv

of functions { K(x(q, s), .r(q. I)); q (2} is irniforInly eruicontin,,oustIII rn and /. m

By parameterizing i )(q) wit h x(t). 0 < I < I as ahlove and! parall t crizirig (A wit hi 1-(/

1 < t < 2, one (can identify the boundary of d(Q \ I)) wit I tre fixed interval [0. 2). A solurt ion

T(x) to equation (3.1) (-an be ilentified with a function 7'() on 10.2) IN I ) = a(.I)).

For a function 0 defined on [0,2) let 6, and 02 dlenote tIhe restr iction of ( o [0. 1) and

[1,2), respectively. Ve will work in tire space of functiros o for which ol is continuous aild

extends continuously to [0, 1] with o (0) = O( 1) and for which 02 is contItiuolis adil ext ends

continuously to [1,2] with (2(1) 02(2). We will denote t his space 1,Y ("1. 2] anid nrorm it

with the suprernum norm. The solutions T(t) to (3. 1) lie in t his space. One can also ident ifv

the operator S (a function of q) with an integral operator on ([0. 2]. Let us write K(q. -.. t)

instead of K(.(q..s), x(q, t)) and define

2 (IS
.q~q)O ) Aol'((I,.,, t)o(t) -dt. :.)

The same argument given in the proof of Lemma 3.1 shows that A'(q.s.t) is uniforinlv

equicontinuous for s and t in [1,2), i.e.. for .r(s) and x(t) on the boundary of 1 aid q E Q.

(actually, K here is independent of q). For .s E [0. 1) and t E [1,2) (or vice-versa) K(q.,O,)

is (72 in s and t, since in this case x(s) E aD, x(t) C JQ and by assumption the boundaries

do not intersect, so again K(q,.s,t) is uniformly equicontinuous over q E Q. The kernel

K will have a jump discontinuity at s = 1 or t = 1. since there .r(t) juips from )D to

dQ. In summary, the family of functions {K(q. .s, t); q I Q}, is uniformly equicontinuous on

[p,p + 1) x [q, q + 1) p, q = 1,2, with simple jump discontinuities at S = 1 or t = 1.

Another fact worth noting is that the map q -+ K(q,.s, t) iN cont inuous as a map from

IR' to (7[0, 2] x C[0, 2], that is, for any c > 0 there is a 6 so that Iq - ql < 6 implies

sup IK(q. ,,t.) - K(4, ,. t <
s,tE[0,21

This follows directly from equation (3.4) and the fact that q ---> .r(q. ). q -, .(q. t).

q -+ R'(t) and q --+ R'(t) are all continuous as maps fromi IR'" to the space of coirtinm-

ous functions.



3.4 Continuous Depe.idence

Based on the above asstiptioins it is possible it) prove' a versiol! of coIII ititits depelt'h(iie.

Theorem 3.2 Lt 1 N, a squtnc in Q and 7'(q,,) ti cornw.powidt . h()ion to tquat1i()

(2.1) with 1) = D(q,)., ,uppo.,4( 1'(qj) - T(' ) 1n C'(O(I \ 1)) for S(fl( ( E Q. ]h,(

q7 --* q.

Proof: The first task is to show that tlie map q --+ S(q) is cont i ntol s. Let , 1 = ,) enot e

the houtidary integral operator for ) = )(q) (,considered tas art operator itt ('[0. 2]) ant

S2 = '(q + hq). whjere q E Q and q is sonie small perturlatiot ii ,/.. As remarked alove.

q --+ I'(q, ,, t) is conti noous. It follows that q -+ S(q) is also uc it tiloUis as a map front N",

to the space of operators on ("[O, 2], for if Ik'(q + bq.. s - K(q.. 1 ) K for itll ., [0, 2]

then

I(.S'20)(.N)f- (I o)(.K) /< jA'(q+ .,- lS(q..s/.)jo( ) dt

*+ K ('It --

for some constant ( that is,. >'( + b q) - ,'( q) 1 < (U for q sufilicientlv stall.
Ther(f next step is to show that (I - (1 -. ;(q))- is contin ioius. lie operat or (-11 + |

2

is invertile and ( S- 4-,2 ) ('an ibe in verte I withI a Neumann serie s ai follows. Ftirsl not t'

that

+ I(-71/+ ,S'_)t-' (-71l + ,s' - -,' _/2))-
2 2
I(-1 + .' t)-(/+ (-71 + .',)(., - ,2)-

Let H = -(-!1 + .i )(,'' -. S')). (;iv,' any ( > 0 one 'an h,oosc a ql sttlicietTtlv small so

that II 11 < ( and, for < 1.

(- /+ ',' I + Hl' )-'(/ t -

--I ' -+ +I l + . . -2

so that

I I I I +

22
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if f(t ) is smooth enough. Act ually, we will considler a family of (lliadr-a lire rutles. iitdexed bY

11, with

for coniniulouis Ie.i thle ii-node composite trapezoildal ruie. WCe %viIH ilso assill Iie1 hai t he

quadrature ride converges u ilform lY over all.%v set F of equiicolnt iiis flintiollls fit (10. 2).

so that if f E F.

for 71 > .V(), A,( ) Independent of' f. 'rie ii-flode t rapezoidal it11le Is all exam ple of Such it

family. ormr prpitl.teIrapezoida I rulle applied separatI el 0 each 1i erval 11).

[1. 2].

Nvstrom 's method consists of replacing the integral Ii equation (4. 1) witt If( lieqiia I rat tire

rule to obtainl

-?T,,(.,) + E3 Ix(s. tj)w-ThXtJ) = f(.s).(.)
j~i

Now let *s = t. t2-to obtain the n x 1i linear' systemI

I U

'F1t( idIea is t hat Tj;tj) T(i). .As shown Ii [2], each soluition t o (Tiat ion ( 1.2) leads Ito

a. solution to equlation (1.3) an(I moreover, each solut ion to equiat ion (4.3) corresponds to at

liuiici solution to equation (4.2) with which it agrees at the( nodes It . F .I pi at iou ( 1.3)

is the systemI wh wit is Solved numerically althoug (12istheuaiowexi Iiefrtle

error analysisl.

W\ri te equations) (.1.1 ) anid ( 1.2) as

where S, Is the operator fin equat iont (.1 .2), Note t hat >,is coinpact s ice it isa Iiliii e rank

operator onl ('[0,21. Riecall that '> and~ dc(Ilwilt oil l ife parameter q/.

Theorem 4.1 T, -- 7 in (4[0. 2] aws ii - . Ili cnn t'r up n cr i.,~ tn im on ur (I Q(.



In proving this theorem the following result will be useful. It can be found in [2], section :3.0.

Theorem 4.2 Let X be a Banach space, let S and (A - 5)' be bounded linear operators

on X, with A $ 0. Let T be a bounded linear operator on X with the property that either A

is an eigenvalue of T or (A - T) - ' exists (if T is compact, this is satisfied). Further, assume

II(T- S)TII < II(A - A)111

Then (A - T)- 1 exists on X and

(A - T) 1 :S 1 + II(A - S)-'11111T1
AI - II(A - 8)-' IfI(T - S)TIJ

Furthermore, if (A - S)f = g and (A - T)h = y then

If - hil < II(A - S)y'JJ HI(T - S)TIJI f 11 + 11(T - S)gI

AI - II(A - H)-1III(T - S)TII

Proof of Theorem 4.1 The proof of Theorem 4.1 is simply an application of Theorem 4.2

with X = C[0,2J, A -1/2, S = -S and T -Sn. In the previous section it was shown

that the map q -* (-!I + S(q))-' is continuous, hence II- !I + S(q))-1 ll can be uniformly

bounded over Q. In order to complete the proof of Theorem 4.1 it must be shown that

I(,S- & ),5,11 ---4 0 (4.4)

i(S - SQg1 - 0 (4.5)

as n - oc, uniformly for q E Q. This, in conjunction with Theorem 4.2, will show that

JIT - T,J -- 0 uniformi, in q.

From the argument given in section :3, for s E [0, 2] and q E Q, the kernel K(q, s, t) is

uniformly equicontinuous in the t variable. The uniform convergence of I(,- S,)gJJ to zero

follows from

(S - S,)g(s) = ( K(s. t)g(t) dt - K(s, t,)wjg(tj)
0 j=1

< e(n)

with (n) - 0 as n -- cc, independently of q and s. Here we have used the fact that h" is

equicontinuous in t and the assumption that the integration rule converges uniformly over

equicontinuous sets in C[0, 2].

12



The case for the convergence of I(- - ,-)S j1 is similar. Let 0 be a function in ('[0,2]

with 11€ 1. Since K is uniformly equicontinuous in q and t,
fl

S,(s + As) - 5.4) = Z(K(s + As, tj) - A'(S, tj)) jq(tj)
j=1

_< (As.)llI Z Iwil
j=1

where c(As) does not depend on s, t or q. For convergent integration rules the sum E=, wjI

is bounded in n (see [2], part I, section 4, theorem 7), so that .5,,0 is an equicontinuous

function, independent of q. The rest of the argument is as in the previous paragraph but

with g replaced by S,,O. This shows that I(S - S),jI .' 0 uniformly for q C Q and

completes the proof of Theorem 4.1.

4.2 Application to Inverse Problem

Let us suppose that the temperature data for the inverse problem consists of point measure-

ments Ti at points xi on the boundary of Q, i = 1,-.., M. A reasonable way to attempt a

recovery of the unknown region D is to define the functional

M

J(q) = (T(q)(xi) - T,)2

i=1

and seek an estimate of D(q) as the solution to

(IDP) minimize J(q) for q E Q

In practice the solution to this problem will involve not the true temperature T(q), but

the n-node Nystr~m approximation T,(q). The actual minimization problem solved will be

(IDP)' minimize J'(q) for q E Q

where
M

J'(q) = j(T(q)(xj) - Tj) 2. (4.6)
i=1

Based on the analysis of the convergence of T, to T, the following theorem can be stated.

13



Theorem 4.3 Let q1, b( a so/ution to (IMP)". ten a.,; ii --* c .sojni sub.sf qii nc( of q,

conlrcrq s to q* E Q. .Aore oi r. q is a Nota~tion to (II)I').

Note that if tile hoindarv data 7i, are( conisistent wit Ii soin 1)(q-~) for q* C Q2 t lie . ,IIjICC

thjere is a unique suchi q( one( c'an talk abouit tilie uniiquie solittloll to (11R P) and I a suibsequ ence

of (/,, will converge to this q-.

Proof of Theioremi 4.3: Somie sublsequience of q,, ConlVerges to a poi nt q' E Q hyI virtuie of'

thle fact. th~at Q is colipact . Let q772 he anyv sequence In Q2 coniverginhg to q~.Fromt tilie 111ii,0uri1

convergence of T, to 7' over Q we c-ani coniclude thiat

min-'x q.,Jq'.(17

For any q E Q we hiave

Taking the limrit over n and using (41.7) shiows that

for all q E Q', i e. q* solves (IDP).

5 Implementation and Examples

5.1 Introduction

fit tills sect ion thie recoveiy algoiritliiin is i in plelnentedl and( thle resulIts of somne wn nrical

exIperiinelits are dlescribhed. One iodificat ion is inadle to tilie assuni Pt ions of t lie previOlis

sections: for experimiental work it is miore conveiiient to uise at sainple 11 wich is rectangular.

ins tilie blindlarv of Q will not he (,2. Tliii s ake little diflferenice to tilie init elra equiat)ion

formilat ion, for tie operator (I -(q)).wifle no longer a second~ kind1( Fred hot in operat or.

is inI fact at smiall pertuirbat ion of suchi ani operator. One( c-aii still e'st allisli H ie existenice anid

houinded ness of tilie in verse (I ~( see [10] for iore details. Thle rest of tihe argiiineni s

are iinclia uged . Thiesol ut ion 7' on the boiu darv o~f Q Is still cont iiiouis. aIt liouiuji it will hiave



'"corners" at the corresponding corners of Q. For numerical purposes it is thus beneficial to

use a quadrature rule which allocates more nodes near these corners, rather than uniformly

over the boundary of Q. Note that it is still assumed that 0D is C'2 .

One other modification will also be made: The heat flux g will be a point heating source.

so that g(x) = 6 p, a delta function, where P is the point at which the heat is applied. While

this flux g does not live in the space of functions in which we have been working, as will

be shown one can analytically remove the singularity from the problem and work with a

smooth remainder term which fits the hypotheses made so far. In the examples that follow

we use only the imaginary or out of phase portion of the periodic temperature response T.

This part of the temperature is continuous, even through the singularity at the point heating

source. The real or in phase part of T, however, has a logarithmic singularity at the point

source. In reality one does not have a point source, but for a heat source concentrated in

a small region the in phase response in the region of the source varies radically with the

heat source "footprint", which causes problems in a reconstruction algorithm. In practice

therefore, one excludes the in phase data near the source. For convenience, we simply work

only with the out of phase portion.

One final remark: The linear system obtained via the n-node Nystr5m's method can be

written

A(q)T,,(q) = f(q) (5.1)

where A(q) is the matrix generated by the discretization and b(q) is the right hand side of

the discretized integral equation; both depend on the parameter q which defines the void.

As a result, the temperature T,, also depends on q. The Levenberg-Marquardt optimization

routine used requires the derivatives of the functional J(q) with respect to q which in turn

requires --. On can obtain these derivatives by differentiating equation (5.1) with respect

to q to obtain
aT, df O A

A(q) , -Of - T, (q). (5.2)
dq dq Oq

Both A(q) and f(q) are differentiable with respect to q and If A(q) is not singular then the

ITIab~ove computation is validl, that is. exists and therefore satisfies equation (5.2). Once

T, has been obtained, f can be obtained from (5.2); in fact, the work done in solving the

equation (LIT decomposition) can be re-used in computing the derivative. It should be noted

15



that the temperature satisfies equation (5.2) at both the finite-dimensional (matrix) level

and infinite dimensional (integral equation) level, i.e., L also exists.

5.2 Sample Geometry and Implementation

The geometry used for the examples is illustrated in Figure 1. The lower left corner of the

rectangular sample has (xi, x2) coordinates (0, 0). We will examine the case where the voids

are disks of unknown center and radius, D = D(q) with q = (a, b, r) where (a, b) is the center

of the disk in (xl,x 2) coordinates and r is the radius. The boundary of D is parameter-

ized by :rl(t) a+icos(2rt), x2(t) = b+rsin(2irt), 0 < t < 1. If the length (x i axis) of Q is L

Point heat source

Figure 1: Sample geometry.

and the height (x 2 axis) is H then the boundary of Q is parameterized from t = I to t = 2

by

(4L, O) 1 < t <

(L,4Y(t - < t-
fPx) 4

(L -(t - ), H) 2 < t -<

(0, H- 4H(t - Z) < t < 2.

With appropriate bounds on the range of a, b and r, it is simple to check that this class of

voids and parameterization satisfies the properties of section :3. The dimensions of the sample

16



for the present example will be 1.27 cm in length by 0.32 cm in height. All references to

coordinates and sample geometry will be in centimeters. The thermal parameters correspond

to aluminum. As mentioned above, the heat flux will be a point source applied at a points

with (xi,x 2) coordinates (xl, 0.32 cm) on the top of the sample. This source will have

unit (one watt) power. Note that for the full time-dependent problem this means that the

variation in heat flux is one watt.

The quadrature rule used for Nystim's method for the solution of equation (3.1) is just

a version of the midpoint or trapezoidal rule with variably spaced nodes. Specifically, let

f(x) = 2P-'x P for 0 < x < !. The variable p is a parameter to adjust the spacing of the

nodes. Allocate N nodes ti (N even) and weights wi on the interval [0, 1] by

1i1,

N

1tN-i+l, I +T + , ' ' '. , N

The corresponding weights are

(ti + t2), 1
wi = 2t~ - ti-I), 1 2,.., N

1 - I(tN1 + tNv), I N.

This rule allocates nodes and weights to (0, 1), excluding the endpoints. For p = 1 it is just

the midpoint rule on [0, 1]. Choosing p > I causes the nodes to "bunch up" near 0 and 1.

For each of the four sides of aQ the nodes are allocated by mapping the above nodes on

[0, 1] to the corresponding interval in t, e.g., the nodes are allocated on the bottom of Q by

transforming the nodes on [0, 1] as t -- i + 1 with the corresponding change in the weights.

The parameter p is chosen to be 2.0; this allocates more nodes close to the corners of Q.

On the void boundary OD the nodes are evenly spaced with weights corresponding to the

trapezoidal rule on [0, 1]. The typical number of nodes used is 10 to :30 on each side of Q1

and 20 to 40 on the void boundary.

In order to deal with the singular boundary heating, first note that if F(x,y) is a funda-

mental solution to L = (A - ) then LF(x, y) = 0 for y =4 x, where Ly means the operator
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applied in the y variable Moreover, if P C OQ and j'(!) = -21F(P. i)/o then it call be sho ii

that

aO1 T(y) p - 20,,r(P,!j) oi, adQ.

that is, for delta function heating T is the solution Ill) to a nonsingular remainder term.

The remainder term on the right hand side is actually continuoui on il)Q, or, more precisely,

extends continuously through y = '. Thus one can analytically remove the singularity

associated with the point heating and simply solve for the smoother remainder term. The

forward heat conduction problem for the example is then

(A- )T = 0 in Q \ D (5.3)

aadT = 20,F(P,y) on O(Q \D).

The full solution with delta function heat flux would be given by the sum 7 '(y) + T(y). This

solution has a logarithmic singularity in its real part and has smooth imaginary part.

For reconstruction purposes, the temperature in the present examples will only be mea-

sured along the top of the sample, so that the least squares fit functional (4.6) includes only

this data. The heating frequency is in the range of 1 to 5 Hz. For each heating source the

temperature response is measured at 40 equispaced points along the top of the sample.

5.3 Strategy

One of the necessities of an optimization approach is that one have a reasonable initial guess

at the true void before beginning the optimization procedure, or else risk become trapped in

a local minimum far from the "true" solution. This is particularly applicable in the present

case, as illustrated by the following figures. The sample with void is shown in Figure 2. The

sample is again aluminum with the same dimensions as in Figure 1. The true void D- (solid

outline) has a radius of 0.06 cm and is centered at (,r1 ,a'2 ) coordinates (0.88 cm, 0.24 cm).

The heat source is applied directly on top of D* at :3 Hertz. The prospective void D is fixed

to have the same radius and x-2 coordinate as D*; its r, coordinate is allowed to vary from

0.15 cm to 1.15 cm. The value of the functional J(q) as a function of xr1 is shown in Figure

3. The functional is of course zero when the x1 coordinates of D and D* coincide and the
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Heating

0.32 cm D D

I
1.27 cm

Figure 2: Sample geometry for least-squares functional example.

AesrauoJ vs. vo)id x-coordnote
0.5

0.4 "

S0.3

C)0. 2

0.1

0.0 I

0.2 0.4 0.6 0.8 1.0

D x-coordinnie, cm

Figure 3: Functional J(q) versus D x, coordinate.

functional rises 'steeply as one moves away from the minimum. However, if one used an

opti"nization method with an initial guess which was far from the correct value (xl < 0.5

cm) then the optimization routine would probably not be successful, for in this region the

functional is almost flat-actually, it slopes slightly away from the minimum. This illustrates

the need for a reasonable initial guess at the xl coordinate of the void D*.

In the previous example the heat source wa- applied directly on top of the true void

D*. In reality if a single heat source is applied it will not likely fall on top of or even near
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D*. Figure 4 illustrates the same situation as Figures 2 and 3 but with the heat source

far (xj coordinate 0.35 cm) from D*. Here the situation is even worse, for now the least-

squares functional has many local minima to trap any optimization method started with

an x, coordinate far from D*. Also, since the heat source does not "ilhminate" D*, the

functional is very flat near the minimum. In the presence of noise one would not be able to

locate this minimum with any accuracy.

Residual vs. void x-coordinate
0.5

0.4

U
0.3

0.2

0.1

0.01
0.2 0.4 0.6 0.8 1.0

D x-coordinate, cm

Figure 4: Functional J(q) versus D x, coordinate.

This leads to the following strategy for locating a void, illustrated in Figure 5: Apply

the heat source at a number of different points along the top the sample. For each different

heating location, take the corresponding temperature measurements along the top of the

sample. As one passes the heating source over a void it will be detected by a change in the

temperature response. Suppose this occurs when the heating source has an x, coordinate

equal to a. Then begin the optimization with initial guess xl = a and x2 and r anything

reasonable. This should provide a reasonable approximation to the correct x, coordinate of

the void; the initial guess at x 2 and r is much less crucial.

20



9 8 7 6 5 4 3 1 Hetn

~Heating

Figure 5: Strategy for applying heat sources.

5.4 Results

This procedure is illustrated by the graphs in Figure 6. The actual void D* is located at

(x1 ,x 2) coordinates (0.77 cm, 0.24 cm) with radius 0.06 cm. A total of 9 point heating

sources at :3 Hertz were applied ol the sample top surface, equispaced, spanning one half

of the sample length, with source 5 centered on the top surface. The graphs show the out

of phase or imaginary portion of the temperature response for each source location. The

temperature response changes most rapidly and peaks between heating locations 3 and 4.

Contrast this to the temperature response when no void is present, shown in Figure 7; the

response does not change, since nothing under the heating source changes as the source

moves. A Levenberg-Marquardt algorithm implemented along the lines in [8] was used to

recover an estimate of the void D*, using only the peak temperature response data, heating

sources 3 and 4. The initial guess at the x, coordinate was halfway between these sources

at 0.75 cm. The x2 and radius initial guesses were 0.16 cm and 0.1 cm, respectively. The

optimization code converges to the correct void in II iterations, reducing the residual from

0.154 to less than 0.002. However, no noise was present.

As a more realistic example, we take the same geometry and void as the previous ex-

ample but with 20 percent zero-mean gaussian noise (measure as percent of signal RMS

value) added to the temperature response. The responses are shown in Figure 8. The largest

response is for position 3. The data for heating positions 2, 3 and 4 were then used in the

optimization with initial guess x, = 0.79 cm (the x, coordinate for source 3), x2 = 0.16 cm
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and r = 0. 1 cm.L The initial residual is 0.406. Thie opt li iizat ion rout nc re( u ces t ti is to(.,, I

in 12 iterations. The final estimate for thle vojld is x.r= 0.755 (.Ill- X1) (1-.22 c-iii. r = 0.U67

cm. The true void Is shown as the solid out li ill F.igi ire. 9 and thle aml recmovered ('5 iiii ate

as the dotted outline.
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Figure 6: Out of p~hase temperature for varying heat source lo(-at (IoIi.
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6 Conclusion

The problem of recovery a void in a material sample based on the sample's surface tem-

perature response to external heating has been considered. Uniqueness and continuous

dependence results have been shown, and an optimization based algorithm for recovering

an estimate of the void has been demonstrated. Much of this work rests on reformulating

the heat conduction problem as a boundary integral equation, which provides a means of

rapidly solving the heat conduction equations. The algorithm was run for the simple case

of a circuiar void and computationally generated data. This algorithm exhibits some of the

problems that optimization appioaches are heir to, specifically, the likelihood that a poor

initial guess will not converge to a global minimum, and some strategies for overcoming this

have been described.

Collection of actual data from a experimental setup at NASA Langley Research Center

has already been performed. Preliminary analysis of this data shows good agreement with

the heat conduction model and the ability to actually recover subsurface voids. The analysis

of this experimental data will be reported elsewhere. Of interest for future research is a study

of the sensitivity of this thermal technique, e.g., the size of voids which can be detected at

various depths. Techniques for voids of different shapes (especially cracks or disbonds) should

also be examined. The heat conduction model could also be improved; zero boundary flux

away from the source becomes unrealistic at low frequencies. We would also like to pursue a

full three-dimensional heat conduction model leading to a two-dimensional boundary integral

formulation. Such a formulation would require a finite or boundary element technique for

the, nei ical solution, rather than Nystr6m's method.
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