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Abstract

This paper examines an inverse problem in thermal imaging, that of recovering a void in a
material from its surface temperature response to external heating. Uniqueness and contin-
uous dependence results for the inverse problem are demonstrated and a numerical method
for its solution developed. This method is based on an optimization approach. coupled with
a boundary integral equation formulation of the forward heat conduction problem. Some

convergence results fer the method are proved and several examples are presented using

computationally generated data.
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1 Introduction

Thermal imaging is a technique of recent interest for the nondestructive evaluation of mate-
rials. This method attempts to characterize the internal structure of a sample (perhaps to
locate flaws—disbonds, bubbles, corrosion, etc.) by using its surface temperature response to
an external heating. Some recent work and techniques in this subject are detailed in [3], [4].
(5], (7] and [9].

In this paper the problem of detecting and identifying an unknown internal void in a
planar domain using thermal imaging i1s examined. The void could represent a defect in the
material, or it could be a feature which is supposed to be present, e.g., a conduit, whose
location or geometry is to be assessed. The focus is on the case in which the thermal
stimulus, an applied heat flux at the boundary of the sample, is periodic. After separating
the temporal and spatial variables, one ¢btains an inverse or domain identification problem
for an elliptic equation. Results concerning the uniqueness and continuous dependence for
the inverse problem will be examined and an algorithm for the numerical recovery of the
void will be presented. This algorithm will be applied to examples using computationally
generated data with and without noise.

The outline of the paper is as follows. Section 2 concerns the mathematical formulation
of the forward heat conduction problem with periodic heating and demonstrates how this
leads to an inverse problem for an elliptic equation. Section 3 coutains an identification
result for the inverse problem and shows that an internal void is determined by the bound-
ary temperature response to external heating. This section also contains results concerning
sensitivity or continuous dependence for estimates of the internal void based on the bound-
ary measurements. These results rely on reformulating the heat conduction problem as an
integral equation on the boundary of the sample. Section 4 examines a numerical method
for the solution of the forward problem based on the boundary integral formulation and its
incorporation into a least-squares routine for solution of the inverse problem. It is shown
that with reasonable hypotheses on the class of voids, the numerical method will converge
to the solution of the least-squares formulation of the inverse problem. Section 5 presents

the results of this algorithm applied to computationally generated data.




2 Mathematical Formulation

The sample (without void) to be tested will be denoted by Q. a bounded region in IR? with
("? boundary. The internal void will be denoted by D, where 1) CC Q with (2 boundary.

The function T(¢.r) will denote the solution to the heat equation

T -
;——HAY’ = 0inQ\D
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aT .
ﬂ.—l:m = glr.t)
v
()TI _ 0
“ou P T

T(e.0) = Ty(e)

where v is the outward unit normal vector field on the boundary of Q\ . & is the thermal
diffusivity of Q. o is the thermal conductivity of 2, Ty denotes the initial temperature of
the region and ¢ is the heat flux at the boundary. Both x and a are assumed to be known
constants. Of course it is assumed that ¢ is not identically zero.
The heat flux g(r.t) will be assumed to be periodic in time with known frequeney 5% so
that
g(r.t) = Re{e™'g(x)}

for some complex valued function ¢g(r). Actually, § would also generally include a steady-
state term as well. but since only the periodic response 1s of interest. this term can be ignored.
Under this assumption one can separate variables to find that T'(w.t) = Re{T (&)™} where

T'(r) satisfies

AT—2T = 0 Q\D
-

JaT

OA—IHQ = !I(J') (2.1)
v

T,

07)7;.:4[) = 0.

at least for time large enongh so that the nitial conditions do not matter. Note that the

function T'(r) solving (2.1) will be complex-valued. consisting of a real. or in phase. and

imaginary. or out of phase part.




The inverse problem of interest is the lollowing: Given a known applied heat flux ¢. can
the shape and location of the void D be uniquely determined from measurements of 17 on
the boundary of Q7 Provided a uniqueness result holds, one wonld also like to know whether
D depends continuously on measurements of T on J€). that is. how sensitive estimates of
D are to noise in the data. Finally. one would like an eflicient computational algorithm for

recovering an estimate of D from actual data.

3 The Inverse Problem

3.1 Uniqueness

A uniqueness result for the inverse problem follows easily from basic facts about elliptic

operators.

Theorem 3.1 (Uniqueness) Let Dy and Dy be two subdomains of Q and Ty and T, the
corresponding solutions (o equation (2.1) with nonzero Neumann data g. Let S be a portion

of JQ with positive measure. Then Ty =Ty on S implies that Dy = 1),.

Proof: The functions 77 and 7, have the same Neumann data ¢ and, since Ty and T,
agree on S, the same Cauchy data. Unique continnation for elliptic operators implies that
T, and T, agree on Q\ (D, U D,). Then. for example, the function T, has a vanishing normal
derivative on the region Dy \ D,. hence is constant on Dy \ Dy. If Dy \ Dy # @ then by the
maximum principle T, must be constant throughout 2\ D,. contradicting ¢ # 0. A similar
argument shows that if Dy\ Dy # 0 then T would be constant on Q\ 1)), again contradicting

g # 0, hence Dy = D,.

3.2 Boundary Integral Formulation

In order to investigate continnons dependence and numerical methods for the recovery of
D it will conventent to reformulate the heat conduction problem as a bonndary integral

equation. This offers the advantage that one only has to solve for the temperature on the




boundary of the sample, rather than the interior. Since the boundary is the only place the
temperature is measured, this is the only place its value is needed.
Use ['(r) to denote a fundaiuental solution or Green’s function for the operator (A — ’—:i)

Such a fundamental solution is given by
N 1 .
I(r) = —Zr—[s'o(re’"/"\/w/n)

- %(kcr(r\/m) + ikci(rm))

where K is the zero order modified Bessel function of the second kind and ker and kei denote

il

the kelvin functions. Efficient routines for computing the kelvin functions can be found in
(1]. Define

[(z,y) = [(jz — y]).
The function T' satisfies the heat equation in the y variable for fixed z, except at r = y,
where it has a logarithmic singularity. Standard potential theory arguments (see [6], chapter
3) show that the elliptic problem given by equation (2.1) can be formulated as a boundary
integral equation,

1

— =T(: ‘ : S, = ' 3.1
ST+ [ AN ds, = [ T(p)oly)ds, (3.1)

for each € 9(Q\ D) where d,, is the normal derivative in the y variable and dS, is surface
measure. We will use K(x,y) to denote the kernel 9,,T'(x,y) for z,y € 9(2\ D) and use S

to denote the operator

(Se)e) = [ K(z,)é(y)dS,. (3.2)

3(Q\D)

The operator S is bounded and compact on C(9(€2\ D)), the space of continuous functions
on 9(2\ D), hence —11+ S is a second kind Fredholm operator. Uniqueness of the solution
to equation (3.1) follows from uniqueness of the solution to the forward problem. By the
Fredholm alternative, the equation (—%] + S)¢ = g is solvable, at least for smooth enough
g. In particular, (—3 +5)~" exists and is bounded on C(9(2\ D)). The solution to equation
(3.1) yields the temperature T'(x) on dQ2 and dD. If needed, the temperature for £ € Q\ D

can be found from the relation (Green’s third identity)

7(0) = [0 T@T(r9) = Tz p)oly) dS,




3.3 Restrictions on the Domain

In order to obtain continuous dependence results, a few restrictions on the class of voids
and their parameterization are needed. First, let us use C2[0, 1] to denote the space of (2
functions on [0, 1] where the endpoints 0 and | are identified with each other. This space
can be normed by |||l = sup,eo4;1D°¢l, 18] < 2. We assume that D depends on finitely
many parameters, D = D(q) with ¢ € @ CC R™ and where:

(a) ¢1 = q; implies D(q1) = D(q2) (unique parameterization).
(b) D(q) C ¥ CC £ for q € Q (D(q) stays away from 99).

(c) The closed curves 0D(q) are parameterized as x(q,t) = (z1(q,t),z2(q,t)) for ¢ € Q,
0 <t < 1, with ;(q,t) a C?* function of ¢t for each ¢ € @ and -‘fi—? = \/(z})? + (£3)?
bounded away from zero. Also, the map q — (¢, ) is continuous from IR™ to C?[0, 1].

Based on the above assumptions it is not difficult to show that:

(d) For each z € 0D(q) there exists an open ball, B,(x), of radius € around z with
¢ independent of z and ¢ such that the curve 0D(q) N B.(z) is parameterized by

(z1(q,t), z2(q,t)) with ¢ in some connected interval.

The continuity of ¢ — C? and compactness of Q imply that the C? norm of z(q,t) as a
function of ¢ is uniformly bounded over ¢ € Q. Also, for ¢ € @ the families of functions
z(q,t), 2'(q,t) and z”(q,t) are equicontinuous in ¢, where the prime denotes differentiation

with respect to ¢.

Lemma 3.1 The family of functions {K(z(q,s),z(q,t)); q € Q}, are (uniformly) equicon-

tinuous in s and t, that is, for each ¢ > 0 there is a 6 > 0 so that

|K (2(q, 5), 2(q,t)) = K (x(q, 5), 2(q,1'))] < e

for all (s,t) and (s',t") with
s —s'| <8, |t—t]<é,

and & does not depend on s, t or q.




Proof: For brevity let us suppress the dependence of #() and A () on ¢ and write simply
K(s.t) for K(x(s),r(t)). Also, since I'(r,y) = log(lr — y]) + G(o.y) where (4 is smooth in
x and y, we will prove the lemma assuming that I'(,y) = log(|e — y|): 1t 1s casy to check
that the smooth term makes no difference in the proof.

The stated regularity for A holds on the compact set {(s.t) € [0, 1] x [0, 1]. |s = 1] > «.
¢ € Q}, where ¢ is any number greater than zero, for on this set A is at least ("2, We need
only to show that A'(s.¢) is uniformly continuous an the set (s,4) € [0.1] x [0.1]. |s —¢] < e

Suppose the boundary of D near a point xy is parameterized by »(t) = (1 (1), xy(t)). By
making an appropriate translation and rotation it may be assumed that ry = ¢(0) = (0.0)
and that the boundary is oriented so that the unmt normal outward vector in (r..ry) coor-
dinates is (0.1). In this case Taylor’s theorem can be used to expand »(f) as

n() = aot+ S+ Rat)
ra(t) = gtz + R,(1)

where

apg = ry(0)
a = x7(0)
b = 2(0)
Ri1) = () =), =12

and ¢ is some point between 0 and . The functions Ry and Ry are functions whose ("2 norms

can be bounded in terms of the norms of r; and x,. The unit normal vectors satisfy

ds , ,
’/l(t)m = .I'.Z(f):[)[-l-H.z(f)
AS'
1/-2([.)d = —xi(t) = —ap— ayt = Ri(t).
dt

The kernel A (s,t) is then given by

ds 1 () = M)l + (r2(s) = a())iall)) dS
dt 27 (rp(s) = ($))° 4 (rp(s) — ap(1))? dt

A, U(r(s),r(1))




Substituting the above expressions for wy ez ) and ) gives for the numerator. after sote
simplification,

b . \
num = —u%(.s — )+ H;(/)(s — 1} {(1“ + (—I)L(s + /)] + I s) = Rt + Ry

o) =

—(Rals) = Bol ) [ao + anl + BY(H)]) — =(s5 — )R (1),

The denominator becomes 27 times

[

, R B b,
[(10(’ — )+ (.171(32 =)+ Ky(s) — 1"1(’)} + {;(5‘ — 1)+ R,(1)

Taylor’s theorem implies that

l ,
H,(‘w) = RJ(I) + (s — f)[{’l([) + _)(s _ l)zl{f,l((.)

for some point ¢ between s and f. Substituting this into the expression for the mumerator
gives

s —t)?
num = (;EJ* [—aob 4+ (bt + RL(D)VRY(¢) = (ap + arl + RUUNBUE) + ay Ry ~ bIy (1]
where ¢ and ¢ are between s and £. Doing the same for the denominator shows

den =2r(s —1)* [(uU + Ry 4 (B + Cus + Oy

where ('; and (% are functions of ~ and ¢ which can he bounded in terins of the €72 porm of
r(t). Cancelling the common (s — 1)? factor. the kernel can be written as

K(s.t) = 1 —agh + [bf + RY{HIRTIG - [os = ad = ByU]RYE) + ay B0 = b1

S : - IR
Ar [0+ RUD)P+ RO+ Cys 4+ Oyl

Since R{(0) = 0. the kernel is bounded through < = f. for the denominator is bounded
away from zero for s and £ in a sufficiently small neighborhood of zero. In fact. by Tavior's
theorem Ri(t) = R(0) + R{(c}t = RY(e)t for some ¢ between zero and £ In addition. since
the functions 7y and (', can be bounded 1 terms of the 2 norm of L0 (which is tself
bonnded uniformly over (). the denominator mav be bounded nniformly away from zero
for s and t in a neighborhood of 0. with the neighborhood and bound independent ol g
and ¢. The families of functions /(1) and 27(1). as well as /() aund RY(1). ave nniformly

equicontinuous for ¢ € (J, and hence so are both the numerator and denominator of equation




(3.4). Since the denominator of K (s.t) is bonnded away from zero. it follows that the family

of functions {K(x(q.s),x(g.1)): ¢ € Q} is uniformly equicontinnons in s and 7. m

By parameterizing 0D (¢q) with r(¢). 0 <t < | asx above and parameterizing € with r(4).
1 <t <2, one can identify the boundary of 3(2\ 1) with the fixed interval [0.2). A solntion
T(x) to equation (3.1) can be identified with a function T'(t) on [0.2) by T(t) = T(e(t)).
For a function ¢ defined on [0,2) let ¢y and o, denote the restriction of o to [0.1) and
[1,2). respectively. We will work in the space of fuuctions o for which ¢, is continnons and
extends continuously to [0, 1] with 0,(0) = (1) and for which o, is continnous and extends
continuously to [1,2] with ¢x(1) = 0,(2). We will denote this space by C10.2] and norn it
with the supremum norm. The solutions T'(#) to (3.1) lie in this space. One can also identify
the operator S (a function of ¢) with au integral operator on (~'[0.2]. Let us write KN(q.s.t)

instead of A'(r(q.s).r(q.t)) and define

dS

2
S'(q)g’j(s):/o I\'(q,.s‘,f)o(f)(l—f(ll. (3.5)

The same argument given in the proof of Lemma 3.1 shows that A'(q.s.¢) is uniformly
equicontinuous for s and ¢ in [1,2), i.e.. for r(s) and »(f) on the boundary of  and ¢ € Q.
(actually, K here is independent of ¢q). For s € [0.1) and ¢ € [1.2) (or vice-versa) K (q.s.t)
is ("2 in s and ¢, since in this case r(s) € @D, r(t) € I and by assumption the boundaries
do not intersect, so again K{q,s,t) is uniformly equicontinuous over ¢ € . The kernel
K will have a jump discontinuity at s = 1 or t = 1. since there r(f) jumps from dD to
AN. In summary, the family of functions {K(q, s,t); ¢ € Q}, is uniformly equicontinnous on
(p,p+1) x[g. g+ 1) p,g = 1,2, with simple jump discontinuities at s = 1 or t = 1.

Another fact worth noting is that the map ¢ — A(q¢,s.?) is coutinuous as a map from
R™ to C[0,2] x C[0,2], that is, for any € > 0 there is a & so that |¢ — ¢ < & implies

sup |K(q.s.t) — K(g,s. 1] < .
s,t€[0,2]

This follows directly from equation (3.4) and the fact that ¢ — ri(q.f). ¢ — 27(q.1).
q— R/(t) and ¢ — R/(t) are all continnous as maps from IR to the space of continu-

ous functions.




3.4 Continuous Depe.adence

Based on the above assumptions it is possible to prove a version of continous dependence.

Theorem 3.2 Let g, be « sequence in QQ and T'(q,) the corresponding solution to ¢quation
(2.1) with D = D(q,). Suppose T(q,) — T(q™) in C(HQN\ D)) for some q= € Q. Then

G — 4.

Proof: The first task is to show that the map ¢ — S(q¢) is contimons. Let S} = S(q) denote
the boundary integral operator for 0 = D(q) (considered as an operator on ("[(). 2]) and
Sz = S{q + o¢). where ¢ €  and éq¢ 1s some small perturbation in ¢. As remarked above,
q — K{q.s,t)1s continnous. It follows that ¢ — S(¢) is also continuous as a map from [R™

to the space of operators on (2[0.2], for if [N {q+ dq.s.t) — K{q.s.8)] < e forall st € [0.2]

then

2
[[(Sz0)(s) = (Sio)(s)|| < /) [N (g + dq.s.t) — K(q.s.i)]o(t)] d
Cefloll.

IN

for some constant (7, that is. | S{¢g + 6¢) — S(g))] < Ce for &g sufficiently small.
The next step is to show that ¢ — (I — S(¢))~ is continnous. The operator (——%/ +5)

is invertible and (—%I + 5;) can be iaverted with a Nenmann series as follows. First note

that
1 ' -1 ] . ' . -1
(—;/‘*’52) = (=50 + 5 = (5 = 5)
l . o C L
= (=51+5) '([+(_;[ + S8 =S
Let R = ~(-%I + S5 = 52)). Given any € > ) one can choose a |ég] suthciently small so

that ||R|] < e and, for ¢ < I,
1 o | o .
(—§l+.s2) = (—5l+507 (1 + k)
|
= (=5l 4+ 507U+ R+ R+
so that

1 1 ,
(=51 + SH T = (=545 =Rt R




and
. i I < -1 II s \’ -1 H/))” : .
fi(”:j S5 - (_,_—) AR rju"h;gi (3.6
¢ 1T
— 19.1)
- . |
Thus the Map ¢ — | - 1-_'[ + ‘\'(,/)j‘] i~ continnons and so the map ¢ = '/'!4/) = { ~'1; + ."'14/),1”'!/

is continmons from R™ 1o (\'fH.'_’}.

1o complete the proof. suppose that the sequence ¢, does not converee to ¢ Sinee ()
is compact. some subsegaence of ¢, convereges to some g = Q. It can be assiumed that this
i~ simply the sequence g0 Howevers contimty of g — 1 0g) means that Tiogy — g

implvine Tog™y = T(qi and contradictineg the unigueness Theoreny 301

4 Numerical Methods

4.1 Nystrom's Method

The following computational approach to the inverse problem is based on a least-squares
formulation. finding the model void parameters which best it the measured data by means
of an optimization method. One drawback to this approach is the need to repeatedly solve
the heat condnction problem (2.0). It is thus advintageons to have an ctlicient method for
solving this equation. The honndary integral equation approach is such a method. and
this section we examine a technigue for its solution.
The boundary integral formulation (3.1) for the solution T to cquation (2.1) can be
written
l e ,
Ty TR = gts) (1.1)

AN
it

where T'(s) means T(r(<)) for the parameterization (<) of QN D). Surface measure
has been inelhided in the kernel A Let 4 and w, j = 1.+« .0 denote the nodes and weights
of a quadrature rule convergent on the <pace C{0.2]0 so that

Yo i) = [ [ty dt

1=1

1

]




if f(t) is smooth enough. Actually, we will consider a family of quadrature rales. indexed by

n, with

n 2

lim > w, f(t) = / Ryt

=1 Y
for continuous f. e.2.. the n-node composite trapezoidal rule. We will also assume that the
quadrature rule converges uniformly over any set F of equicontinnous functions i (7]0.2].

so that if f € F.
[ =3y <
j=1

for n > N(e). N(¢) independent of f. The n-node trapezoidal rule is an example of such a
family. or more appropriatety. the trapezoidal rule applied separately to each interval 10,1
[1.2].

Nystrom's method consists of replacing the integral in equation (4.1) with the quadrature
rule to obtain

l n . )

j=1

Now let s = fy.f,,-+- to obtain the n x » linear svstem
l ri . , .
= 5Tt + 20 K(tit ), Tl1)) = g(t). (1.3)
-~ J=1

The idea s that T, (#)) = T'(t;). As shown in [2], each solution to equation (1.2) leads to
a solution to equation (.1.3) and moreover, each solution to equation (4.3) corresponds to a
unique solution to equation (4.2) with which it agrees at the nodes (.- <+ /1, Equation (1.3)
1s the system which is solved numerically although (-1.2) is the equation we will use for the
error analysis.

Write equations (1.1) and (1.2) as

where S, 1s the operator in equation (:1.2). Note that S, is compact since 1t is a finite rank

operator on (70, 2]. Recall that S and S, depend on the parameter .

Theorem 4.1 T, > T in ("[0.2) as n — . The convergence is unifornc over g € Q).

b




In proving this theorem the following result will be useful. It can be found in {2], section 3.0.

Theorem 4.2 Let X be a Banach space, let S and (A — S)7' be bounded linear operators
on X, with A # 0. Let T be a bounded linear operator on X with the property that either A
is an eigenvalue of T or (A —T)™" exists (if T is compact, this is satisfied). Further, assume

A

(T = )T < ==
(A =571
Then (A —T)7! exists on X and

L+ [[(A = S)7HITY
A=A = $)=H (T = )T

Furthermore, if (A — S)f =g and (A — T)h =y then

(T = SYTHLA + I(T = S)gll
IAL= A= S)=1IIT = ST

A =1)71I <

I1f = Rl < I(A =$)77)]

Proof of Theorem 4.1 The proof of Theorem 4.1 is simply an application of Theorem 4.2

with X = C[0,2], A = =1/2, S = =S and T = —S,. In the previous section it was shown

that the map ¢ — (=37 + S(q))~" is continuous, hence || — 1/ + S(¢))~"|| can be uniformly
bounded over ¢J. In order to complete the proof of Theorem 4.1 it must be shown that

IS = S8 — 0 (4.4)

(S —=Su)gll — O (4.5)

as n — oo, uniformly for ¢ € @. This, in conjunction with Theorem 4.2, will show that

|T — T,)] — 0 uniformi; in q.
From the argument given in section 3, for s € [0,2] and ¢ € @, the kernel K(q,s,t) is
uniformly equicontinuous in the t variable. The uniform convergence of ||(.S — Sy)g|| to zero

follows from

2 n
(S=Sgs) = [ (K (s.0g(0)dt = 3 K (st gt
J=1
< e(n)
with €(n) — 0 as n — oo, independently of ¢ and s. Here we have used the fact that A is

equicontinuous in ¢ and the assumption that the integration rule converges uniformly over

equicontinuous sets in C[0, 2].

12




The case for the convergence of ||(S — S, )Sn| is similar. Let ¢ be a function in C[0,2)]

with ||#]| = 1. Since K is uniformly equicontinuous in s and ¢,

n

Snd(s + As) — S, d(s) = Z(l\'(s + As, tj) — K(s.t;))w;d(t;)

=1
< e(As)lgll 3 lwsl
i=1

where €¢(As) does not depend on s, ¢ or ¢. For convergent integration rules the sum 3°%_; |w;|
is bounded in n (see [2], part I, section 4, theorem 7), so that S,¢ is an equicontinuous
function, independent of q. The rest of the argument is as in the previous paragraph but
with g replaced by S,¢. This shows that ||(5 — S5,,)9.l — 0 uniformly for ¢ € @ and
completes the proof of Theorem 4.1.

4.2 Application to Inverse Problem

Let us suppose that the temperature data for the inverse problem consists of point measure-
ments 7; at points z; on the boundary of Q, 2 =1,---, M. A reasonable way to attempt a

recovery of the unknown region D is to define the functional
M

J(q) =2 _(T(q9)(x:) — T:)’

=1

and seek an estimate of D(q) as the solution to

(IDP) minimize J(q) for q € Q

In practice the solution to this problem will involve not the true temperature T'(q), but

the n-node Nystrom approximation T,(q). The actual minimization problem solved will be

(IDP)* minimize J"(q) for q€ @
where
M B
J"(q) = D (Tu(q)(x:) = Ti)*. (4.6)
i=1

Based on the analysis of the convergence of T,, to T, the following theorem can be stated.

13




Theorem 4.3 Let g, be a solution to (IDP). Then as n — oo, some subscquenee of g,

converges to ¢ € Q. Morcover, ¢= is a solution to (1DP).

Note that il the boundary data T} are consistent with some D(g™) for ¢* € () then. sinee
there is a unique such ¢”, one can talk about the unigue solution to (IDP) and a subsequence

of ¢, will converge to this ¢~.

Proof of Theorem 1.3: Some subsequence of ¢, converges to a point ¢* € ) by virtue of
the fact that Q) is compact. Let ¢, be anv sequence in () converging to ¢™. From the uniform

convergence of 75, to 7" over 2 we can conclude that

m  J"(gm) = J(q7). (1.7)

For any ¢ € Q we have
J*(q.) < J"(q).

Taking the limit over n and using (4.7) shows that
J(q7) < J(q)

for all ¢ € Q, i.e., ¢" solves (IDP).

5 Implementation and Examples

5.1 Introduction

In this section the recovery algorithm is implemented and the results of some numerical
experiments are described. One modification is made to the assumptions of the previous
sections: for experimental work it is more convenient to use a sample  which is rectangular.
thus the boundary of Q will not he ("2, This make little difference to the integral equation
formulation, for the operator (I — S(q)). while no longer a second kind Fredholm operator.
is in fact a small perturbation of such an operator. One can still establish the existence and
boundedness of the inverse (I — S(q))~': see [10] for more details. The rest of the arguments

are unchanged. The solution T on the bonndary of @ is still continnous, although it will have

B




“corners” at the corresponding corners of Q. For numerical purposes it is thus beneficial to
use a quadrature rule which allocates more nodes near these corners, rather than uniformly
over the boundary of . Note that it is still assumed that 9D is (™.

One other modification will also be made: The heat flux ¢ will be a point heating source,
so that g(.r) = ép, a delta function, where P is the point at which the heat is applied. While
this flux g does not live in the space of functions in which we have been working, as will
be shown one can analytically remove the singularity from the problem and work with a
smooth remainder term which fits the hypotheses made so far. In the examples that follow
we use only the imaginary or out of phase portion of the periodic temperature response T.
This part of the temperature is continuous, even through the singularity at the point heating
source. The real or in phase part of T, however, has a logarithmic singularity at the point
source. In reality one does not have a point source, but for a heat source concentrated in
a small region the in phase response in the region of the source varies radically with the
heat source “footprint™, which causes problems in a reconstruction algorithm. In practice
therefore, one excludes the in phase data near the source. For convenience, we simply work
only with the out of phase portion.

One final remark: The linear system obtained via the n-node Nystrom's method can be

written
A(g)T(q) = flq) (5.1)

where A(q) is the matrix generated by the discretization and b(q) is the right hand side of
the discretized integral equation; both depend on the parameter ¢ which defines the void.
As a result, the temperature T,, also depends on q. The Levenberg-Marquardt optimization

routine used requires the derivatives of the functional J(q) with respect to ¢ which in turn

requires %" On can obtain these derivatives by differentiating equation (5.1) with respect

to ¢ to obtain
or, Jf 0A
Alg)—— = — — —T,(q). 5.2
(7) 90~ ¢ 9q (¢) (5.2)
Both A(q) and f(q) are differentiable with respect to ¢ and if A(q) is not singular then the
above computation is valid, that is. 3,,1{;1 exists and therefore satisties equation (5.2). Once

~

T, has been obtained, lTJl can be obtained from (5.2); in fact, the work done in solving the

19

equation (LU decomposition) can be re-used in computing the derivative. It should be noted
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that the temperature satisfies equation (5.2) at both the finite-dimensional (matrix) level

and infinite dimensional (integral equation) level, i.e., % also exists.

5.2 Sample Geometry and Implementation

he geometry used for the examples is illustrated in Figure I. The lower left corner of the
rectangular sample has (i), z;) coordinates (0,0). We will examine the case where the voids
are disks of unknown center and radius, D = D(q) with ¢ = (a, b, r) where (a, b) is the center
of the disk in (z,,z2) coordinates and r is the radius. The boundary of D is parameter-

ized by z1(t) = a+rcos(2nt), z,(t) = b+rsin(27rt), 0 <t < L. Ifthe length (i axis) of Qis L

Point heat source

Figure 1: Sample geometry.

and the height (z, axis) is H then the boundary of Q is parameterized from ¢t =1 to t = 2

by

(
(4L¢,0) 1<t<?
(L,4H(t — 2)) S<t<d
f($)= 4 4 2
(L-(t-%),H) 3<t<I
L (0,H-4H(t-1)) I<t<2

With appropriate bounds on the range of a, b and r, it is simple to check that this class of

voids and parameterization satisfies the properties of section 3. The dimensions of the sample
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for the present example will be 1.27 cm in length by 0.32 cm in height. All references to
coordinates and sample geometry will be in centimeters. The thermal parameters correspond
to aluminum. As mentioned above, the heat flux will be a point source applied at a points
with (ry,x;) coordinates (xy, 0.32 cm) on the top of the sample. This source will have
unit (one watt) power. Note that for the full time-dependent problem this means that the
variation in heat flux is one watt.

The quadrature rule used for Nystom’s method for the solution of equation (3.1) is just
a version of the midpoint or trapezoidal rule with variably spaced nodes. Specifically, let
f(z) = 2°71z% for 0 < z < L. The variable p is a parameter to adjust the spacing of the

1
3
nodes. Allocate N nodes ¢; (N even) and weights w; on the interval [0, 1] by

L~ tnoip, 1=2+1,..,N
The corresponding weights are

1ty + t2), i =1

Wi =\t — ticy), 1=2,...,N

1~ %(t/v_l -+ tN), 1= N.

This rule allocates nodes and weights to (0, 1), excluding the endpoints. For p = 1 it is just
the midpoint rule on {0,1]. Choosing p > 1 causes the nodes to “bunch up” near 0 and 1.
For each of the four sides of 02 the nodes are allocated by mapping the above nodes on
[0,1] to the corresponding interval in ¢, e.g., the nodes are allocated on the bottom of Q by
transforming the nodes on [0,1] as t — £ 4+ 1 with the corresponding change in the weights.
The parameter p is chosen to be 2.0; this allocates more nodes close to the corners of 2.
On the void boundary 0D the nodes are evenly spaced with weights corresponding to the
trapezoidal rule on [0,1]. The typical number of nodes used is 10 to 30 on each side of
and 20 to 40 on the void boundary.

In order to deal with the singular boundary heating, first note that if I'(x,y) is a funda-

mental solution to L = (A — *%) then L,I'(x,y) = 0 for y # z, where L, means the operator

K
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applied in the y variable Moreover, if P € 9Q and T(y) = —=20(P.y)/a then it can be shown
that
a('),,yT(y) =ép —20,,[(Py) on Q.

that is, for delta function heating T is the solution up to a nonsingular remainder term.
The remainder term on the right hand side is actually continuous on 42, or, more precisely.
extends continuously through y = £. Thus one can analytically remove the singularity
associated with the point heating and simply solve for the smoother remainder term. The
forward heat conduction problem for the example is then

(A — i—bf))T

K

ad,T = 20, (P,y) on 0O(Q\D).

0 im Q\D (5.3)

The full solution with delta function heat flux would be given by the sum 7'(y) + T(y). This
solution has a logarithmic singularity in its real part and has smooth imaginary part.

For reconstruction purposes, the temperature in the present examples will only be mea-
sured along the top of the sample, so that the least squares fit functional (4.6) includes only
this data. The heating frequency is in the range of 1 to 5 Hz. For each heating source the

temperature response is measured at 40 equispaced points along the top of the sample.

5.3 Strategy

One of the necessities of an optimization approach is that one have a reasonable initial guess
at the true void before beginning the optimization procedure, or else risk become trapped in
a local minimum far from the “true” solution. This is particularly applicable in the present
case, as illustrated by the following figures. The sample with void 1s shown in Figure 2. The
sample is again aluminum with the same dimensions as in Figure 1. The true void D~ (solid
outline) has a radius of 0.06 cm and is centered at (i, r;) coordinates (0.88 cm. 0.24 em).
The heat source is applied directly on top of D* at 3 Hertz. The prospective void [ is fixed
to have the same radius and x, coordinate as D*; its r; coordinate is allowed to vary from
0.15 em to 1.15 cm. The value of the functional J(q) as a function of 2y is shown in Figure

3. The functional is of course zero when the r; coordinates of D and D* coincide and the

18
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0.32 cm D
ol Y
— 1.27 cm 1

Figure 2: Sample geometry for least-squares functional example.

xesiauai vs. void x—coordingte

| L |

0.2 0.4 0.6 0.8
D x—ccordinate, ¢cm

1.0

Figure 3: Functional J(q) versus D i, coordinate.

functional rises steeply as one moves away from the minimum. However, if one used an
optimization method with an initial guess which was far from the correct value (x, < 0.5
cm) then the optimization routine would probably not be successful, for in this region the

functional is almost flat-actually, it slopes slightly away from the minimum. This illustrates

the need for a reasonable initial guess at the z; coordinate of the void D*.

In the previous example the heat source wa< applied directly on top of the true void

D*. In reality if a single heat source is applied it will not likely fall on top of or even near
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D*. Figure 4 illustrates the same situation as Figures 2 and 3 but with the heat source
far (z; coordinate 0.35 cm) from D*. Here the situation is even worse, for now the least-
squares functional has many local minima to trap any optimization method started with
an r; coordinate far from D*. Also, since the heat source does not “illuminate”™ D>, the
functional is very flat near the minimum. In the presence of noise one would not be able to

locate this minimum with any accuracy.

Residual vs. veoid x—coordinate

c o o o
N s
! T

Degrees C

©
T

{ i B —

0.2 0.4 0.6 0.8 1.0
D x—coordinate, cm

©
o

Figure 4: Functional J(q) versus D x; coordinate.

This leads to the following strategy for locating a void, illustrated in Figure 5: Apply
the heat source at a number of different points along the top the sample. For each different
heating location, take the corresponding temperature measurements along the top of the
sample. As one passes the heating source over a void it will be detected by a change in the
temperature response. Suppose this occurs when the heating source has an z, coordinate
equal to a. Then begin the optimization with initial guess ; = a and r, and r anything
reasonable. This should provide a reasonable approximation to the correct x; coordinate of

the void; the initial guess at x; and r is much less crucial.
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Figure 5: Strategy for applying heat sources.

5.4 Results

This procedure is illustrated by the graphs in Figure 6. The actual void D* is located at
(zy,x2) coordinates (0.77 cm, 0.24 cm) with radius 0.06 cm. A total of 9 point heating
sources at 3 Hertz were applied on the sampie top surface, equispaced, spanning one half
of the sample length, with source 5 centered on the top surface. The graphs show the out
of phase or imaginary portion of the temperature response for each source location. The
temperature response changes most rapidly and peaks between heating locations 3 and 4.
Contrast this to the temperature response when no void is present, shown in Figure 7; the
response does not change, since nothing under the heating source changes as the source
moves. A Levenberg-Marquardt algorithm implemented along the lines in [8] was used to
recover an estimate of the void D*, using only the peak temperature response data, heating
sources 3 and 4. The initial guess at the x; coordinate was halfway between these sources
at 0.75 cm. The z; and radius initial guesses were 0.16 cm and 0.1 cm, respectively. The
optimization code converges to the correct void in 11 iterations, reducing the residual from
0.154 to less than 0.002. However, no noise was present.

As a more realistic example, we take the same geometry and void as the previous ex-
ample but with 20 percent zero-mean gaussian noise (measure as percent of signal RMS
value) added to the temperature response. The responses are shown in Figure 8. The largest
response is for position 3. The data for heating positions 2, 3 and 4 were then used in the

optimization with initial guess r; = 0.79 cm (the z; coordinate for source 3), r; = 0.16 cm
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and r = 0.1 cm. The initial residual i1s 0.406. The optimization routine rednces this to 0.381

in 12 iterations. The final estimate for the void is ry = 0.755 cm., oy = 0.22 cm. = 0,067
cm. The true void is shown as the solid outline in Figure 9 and the and recovered estimate

as the dotted outline.

Fos. 1 “os. 7 .‘,
0.10 0.0 C 070
< [” [SIa) ¢ AR
9O 000"~ CEENORO o - SO
N . .
0 - _ n o 7
9] ] \ / ] PR \‘ 7/
o -0.10p 9 ~C.0 4 ¢ =00 N
g I g ' s W/
. < .
a -0.20} o) —ro,zst O -0.20
-0.30 ——~——~—=- -0.30 bt C.ac
0.0 0.6 27 C.C 0.6 2 C.0 o J
Top of sample, cm cp cf samrpie, ¢ Tap of wommooe, o
Pps. 4 Pes. 5 o oh
010 0.0 o'
©  0.00fF - (S ENORUN & = (SR ORCION BN .
g L / . | 7 \\ 7
@O 3 i
-0.10F o -3 °"0F o o /
526)‘ 0. Or— ! *(:; . %T . \\7/
o D n o o o
o -0.20F oy ~0.Z20F - 3.7C
-0.30 ————— -0.20 —L 0.30
0.0 0.6 T2 c.0 06 1.7 0. NS J
Too of somple, cm sp of sgmpe, cm o Gutt o e .
Pos. 7 Pos. 8 : 9
0.10 0.16 0.°0
- |
© 000 -~ © 0.0Ck el O 000 )
0] o 0 - [l I~ /
AN
[19] . 5] [¢3] - "
o —o.wov kg ~c.w0»\/ ¢ ~0.0 N\
o - o - IS8
@ -~ % ~
& ~o_2ot S 020} 8 -0.20
-0.30—— —— ~-0.30 b ~0.30 <
0.0 0.6 1.2 0.0 0.6 1.2 O 0.t z
Top of sampie, cm Top of sgmpie, cm Tco of sgmicoe, U

Figure 6: Out of phase temperature for varying heat source locations.
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6 Conclusion

The problem: of recovery a void in a material sample based on the sample’s surface tem-
perature response to external heating has been considered. Uniqueness and continuous
dependence results have been shown, and an optimization based algorithii for recovering
an estimate of the void has been demonstrated. Much of this work rests on reformulating
the heat conduction problem as a boundary integral equation, which provides a means of
rapidly solving the heat conduction equations. The algorithm was run for the simple case
of a circuiar void and computationally generated data. This algorithm exhibits some of the
problems that optimization approaches are heir to, specifically, the likelihood that a poer
initial guess will not converge to a global minimum, and some strategies for overcoming this
have been described.

Collection of actual data from a experimental setup at NASA Langley Research Center
has already been performed. Preliminary analysis of this data shows good agreement with
the heat conduction model and the ability to actually recover subsurface voids. The analysis
of this experimental data will be reported elsewhere. Of interest for future research is a study
of the sensitivity of this thermal technique, e.g., the size of voids which can be detected at
various depths. Techniques for voids of different shapes (especially cracks or disbonds) should
also be examined. The heat conduction model could also be improved; zero boundary flux
away from the source becomes unrealistic at low frequencies. We would also like to pursue a
full three-dimensional heat conduction model leading to a two-dimensional boundary integral
formulation. Such a formulation would require a finite or boundary element technique for

the * neiical solution, rather than Nystrém’s method.
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