
AD-A255 856

Application of CAPS Modeling to Strategy Competition and Flexibility in
Discourse Comprehension

Susan R. Goldman, Sashank Varma, and Julio Ortega
Learning Technology Center

Vanderbilt University

Final Report
August 15, 1992

DT
ELECT,-E

S P 2 3 1992

This project was supported by Office of Naval Research Cognitive Science Program
Grant N00014-91-J-1769. Approved for public release, distribution unlimited.
Reproduction in whole or in part is permitted fro any use of the United States
Government.

DEFENSE TE CHNIcR L INFORMATION CENTERI !L ' ll / ,
92 9. 2Z ,,im 076 mm mmmmm m~mmmmmm



7Form ApprovedREPORT DOCUMENTATION PAGE 0M6 o 074oe

Plzcnc 'eznr :rq t-jren tf:r 1.nts c:!ec-rof at inrri3ct, s r- c ~o j- iq .u =r t ocfrse. mrcU-11r '?!e "'": ev w- , earcr.: c)1I~ ca sourc-s.gatnefing ina mananng rt'e -aca ne-eci. ano c~n-=e1Irnq arc rem :-.e c:-ie-n:cm or 'nr:rmacton. Sernc c-rnnm., rzar-;,*s :urze es..,"re3t rr'. aSI-M:1:~ da'g13 ~~c~~r,~ r e f: ' a -re '::r "C 3" O~e'a " os arc ? .- rs 215 .err-ncn
Da,,I m.p-V. 5.,te 14. Arirq ton- A 2-12-4302. 3 no to cn* Orl~cei ot Maae-e- arc 3u.Cqe!. ?I Derwarx Pecucm on: ca ?ce~7..2as). v.,cn : ZCZ503.
1. AGENCY USE ONLY (Leave Wik) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

8/15/92 Final Report 5/1/91 - 4/30/92
4. TITLE AND SUSTITLE S. FUNDING NUMBEAS

Application of CAPS Modeling to Strategy
Competition and Flexibility in Discourse Comprehension Grant N00014-91-J-1769

(6. AUTHOR(S)

Susan R. Goldman

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) S. PERFORMING GRGAINIZATION
Learning Technology Center REPORT NUMBER

Vanderbilt University
I Box 45, Peabody

Nashville, TN 372.03

9. SPONSCRINGi MON1 rORING AGENCY NJANE(S'i AND ADDRESS ES) 11G. SCNSORING. M1CNITCRING
AGENCY REF-ORT NUMBSER

Cognitive Science Program (1142CS)
Office of Naval Research
800 N. Quincy Street
Arlington, VA 22211-5000

i 11. SUPPLE.iENTAR'( NOTES

I I Z. OISTRB2UTOGNi.AVAILA3:L17Y STAiENMEAT 12b. LOI5T;RI3UT7C,4 CODE

I Unrestricted

13. ASSTRAC-6 (,axirnum 200 .vorcS)

Behavioral data obtained by Goldman and Saul (1990) suggest the need to incorporate competition
amongy reading strategies into text comprehension models. REREADER is a computational model that
does that. The model is implemented within the Collaborative Activation-Based Production System
(CAPS) architecture (Just & Carpenter. 1990). In CAPS. productions must accumulate sufficient
activation to fire and their activations fluctuate depending on other aspects of the system. Total

a activation is limited by working memory capacity; when this limit is reached active elements lose
activation so additional processing can occur. In REREADER, reading strategies are represented as
productions and competition amnong them is governed by activation thresholds. REREADER operates
on a linked set of input propositions that represent the text. Processing occurs in 4 phases. The first
three create a semnantic network of propositions linked on the basis of argument overlap and
propositional embedding and having differential levels of activation. In phase 4, if sufficient levels of
coherence obtain (determined by an evaluation function that includes a motivation parameter),
REREADER continues to process new input; otherwise, a rereading strategy operates. Initial tests of
the system indicate the plausibility of the computational model. Additional development will
incorporate prior knowledge and more sophisticated strategy competition mechanisms.

14. SUBJECT TERMS 15. NUMBER OF PAGES

Computational modeling 34 PIC

Text Comprehension 1.PIECD

17. SECURITY CLASSIFICATION 18. SECURITY CLASWIICATION 19. SECURITY CLASSIF!C-ATION 20. LIMITATION OF ASSTRFACT

-:'.~~~~~- 5-r ac Zrr _9'ev 2-59)



Abstract

Behavioral data obtained by Goldman and Saul (1990) suggest the need to incorporate
competition among reading strategies into text comprehension models. REREADER is a
computational model that does that. The model is implemented within the
Collaborative Activation-Based Production System (CAPS) architecture (Just &
Carpenter, 1992). In CAPS, productions must accumulate sufficient activation to fire
and their activations fluctuate depending on other aspects of the system. Total
activation is limited by working memory capacity; when this limit is reached active
elements lose activation so additional processing can occur. In REREADER, reading
strategies are represented as productions and competition among them is governed by
activation thresholds. REREADER operates on a linked set of input propositions that
represent the text. Processing octuiz in 4 phases. The first three create a semantic
network of propositions linked on the basis of argument overlap and propositional
embedding and having differential levels of activation. In phase 4, if sufficient levels of
coherence obtain (determined by an evaluation function that includes a motivation
parameter), REREADER continues to process new input; otherwise, a rereading strategy
operates. Initial tests of the system indicate the plausibility of the computational model.
Additional development will incorporate prior knowledge and more sophisticated
strategy competition mechanisms.

NTIS C.Ai

DTvC ]AH,,
U;:j nOu;,Cod

By

Kis ' ..L!~ ,--.. )

D;;

. - .. w i i stLlamlaum mn n n nm numnl u n n n



REREADER Model 1

PART I.
INTRODUCTION AND BACKGROUND

Goldman and Saul (1990a) proposed a Strategy Competition Model for text

processing to account for the individual flexibility in reading that they observed

using specially developed Macintosh software (Goldman & Saul, 1990b). This work

was supported by the Cognitive Science Program of the Office of Naval Research

specifically to examine similarities and differences in the comprehension and

reasoning processes of linguistic minority and native English speakers (Goldman,

Durdn, Murray, Saul, & Smith, 1989).

The initial formulation of the Strategy Competition Model outlined several

components, including knowledge of rhetorical devices for signalling topic change

and importance, processes to achieve local coherence, and monitoring and

evaluation processes. Readers' verbal reports indivated that reading strategies were

r.la ad to various kinds of comprehension problems (Goldman, 1991). Students

reported comprehension problems at multiple levels - word, sentence, across

sentences - and repair strategies of several types. Several conclusions were drawn

from that research:

* Individuals have a repertoire of repair strategies.

" The likelihood that a particular strategy is selected depends on

the type of comprehension problem

the relative strengths of the repair strategies

" Strength values are related to

past history with different kinds of comprehension problems and

resolution of them

task factors, including motivation

text factors (especially surface characteristics)



REREADER Model 2

Testing the implications of the strategy competition model requires the ability

to conduct computational modeling. With such a technique it is possible to

manipulate factors that are extremely difficult to manipulate in human subjects.

These include prior knowledge, including factual and strategic; past history with

texts and structural feature knowledge derived from these experiences; and

motivation. By constructing a comprehender whose "cognitive" features are

"known," specific implications of the model can be tested. The results of the

computational model can then be compared to behavioral data. When good "fits"

are obtained, it is often plausible to assume a mapping between the computational

model characteristics and human learners.

Goals and Objectives

At the inception of this project, two architectures, Kintsch's Construction-

Integration model (CI) (Kintsch, 1988, in press) and Just and Carpenter's

Collaborative Activation Production System (CAPS) (Just & Carpenter, 1992;

MacDonald, Just, & Carpenter, 1992) were being used to model language processing

of single sentences or of short, 2 or 3 sentence passages. Each seemed like an

appropriate starting points for a computational model that might be adapted to

processing longer, connected discourses (text passages) such as those found in

textbooks, magazines, or newspapers. The CI model uses a propositional

representation for text and specifies a matrix of connections among them. The

matrix is integrated in the connectionist manner and the resulting strengths among

the propositions can be used to predict strength in working term and in long term

memory (Kintsch, 1988, in press; Kintsch & Welsh, in press; Kintsch, Welsh,

Schmalhofer & Zimny, 1990).

The CAPS architecture is a production-based system in which the conditions

accumulate activation until their "firing" threshold is reached. Total activation in



REREADER Model 3

working memory is limited by the working memory "cap." The cap varies from

individual to individual. As text is processed, working memory resources are

allocated; once the allocation reaches the cap, activation values of the elements in

working memory decay proportionately to their activation levels. The CAPS model

as used by Just and Carpenter is most sensitive to identifying points of high

processing load during comprehension.

The two types of architectures are differentially applicable to the behavioral

data obtained by Goldman and Saul (1990a; Goldman, 1991, 1992). The CI model can

be used to predict behavioral recall data but it i.- not obvious how it would predict

reading and rereading strategies of the sort observed by Goldman and Saul (1990a).

The CAPS architecture appeared to be extendable to processing text (as opposed to

single sentences) and to have the potential to predict recall and rereading strategies.

However, the extension was a non-trivial project. That extension was the goal of the

current project. It has been realized in REREADER, described in Part II of this final

report. A second goal of this project was to develop a user interface so that

sophisticated knowledge of programming was not necessary to change the

parameters of the system. The User Interface is described in Part III of this final

report.



REREADER Model 4

PART II

REREADER: A COMPUTATIONAL MODEL OF STRATEGIC TEXT

COMPREHENSION

The CAPS Architecture

One of the appealing aspects of the CAPS architecture was that it appeared to

have the potential to address both the working memory issues and strategy

competition. The CAPS architecture developed by Just and Carpenter (1990) permits

one to build "comprehenders" that have (i) different knowledge but the same
"working memory resource" capacities, or (ii) different capacities but the same

knowledge. We could then observe the effects on comprehension processes and on

the products of that process and determine how various aspects of the system

contribute.

A key aspect of the CAPS architecture is that preconditions on actions can

exist at levels of activation rather than as merely present or absent. So a "reader

model" may behave differently depending on the other elements in working

memory, the activation limit for working memory, and the available activation. In

the CAPS architecture when the activation limit is reached, information already in

working memory has to share the activation with new elements that enter working

memory; the "older" elements lose activation to the newer ones. When elements

fall below a minimum level, they are no longer functional in working memory -

they can't connect up with new information. They are, for all intents and purposes,

gone.

Just and Carpenter have been using a parser written in the CAPS architecture -

CCREADER- to simulate high versus low span processing of sentences differing in



REREADER Model 5

assumed processing load. For example, they examined a set of relative clause

sentences that have 'momentary" structural ambiguity if the relative pronoun is

deleted (McDonald, Just, & Carpenter, 1992). (Span is reflected in the value specified

as the upper limit on activation.) They collected time per word data for the words in

the two sentences The lawyer addressed by the judge was held in contempt and The

lawyer that addressed the judge was held in contempt. In the first case the reader

does not know whether addressed is the main verb of the sentence or a verb

participle in the reduced relative clause. CCREADER parses and assigns grammatical

and case role relations among the sentence elements. By manipulating the

activation limits, Just and Carpenter provide evidence that in the absence of high

demand situations, there is little difference in the way these sentences are read by

high and low span readers. However, at points of high processing load in the

sentence, high and low span readers show different empirical patterns; and
"systems" that have high compared to lower working memory activation limits

simulate the effects quite successfully (Just & Carpenter, 1992).

REREADER

When we began to adapt the CAPS architecture to processing text, we initially

tried to expand the CCREADER parser to convert surface structure input into

propositions. We abandoned this effort and decided instead to focus on establishing

connections among propositionalized sentences and on the repair strategies used

when initial linking procedures failed. The user can manipulate the characteristics

of the "reader" through a user-friendly interface. REPEADER is the prototype reader

model that we have developed. Our prototyping efforts were modest and restricted

to one informational passage entitled Distance and shown in Table 1.



REREADER Model 6

Characteristics of the System

1. Representation of the input text.

The system operates on a text base like the one used by Kintsch in

implementing the CI model. A sample is given in Table 2 using the first sentence of

the Distance passage. Sentences are parsed into a verbal predicate with optional and

obligatory arguments (predicate 1) along with the relevant concepts (existence

nodes), and modification propositions. A fourth type of proposition relates

predicates, e.g., cause, contrast, etc. In REREADER the propositions are connected

using three linking strategies: argument overlap, propositional embedding, and

relational reference. There are several variables that can be adjusted: (a) The

weights, or initial activation values assigned to the propositions; (b) The linlng

strategies the system operates with; and (c) The weights assigned to the links. The

four types of propositions that REREADER uses - verbal predicates, concept

propositions, modification propositions, and relational predicates - are assigned

weights. Table 2 shows one set of weights that we have investigated: verbal

predicates are assigned a weight of 2 and everything else is assigned weights of 1.

Links between propositions are weighted equally (a value of 1). The activation

values for propositions and links may be modified through the user interface.

2. System Knowledge.

There are two kinds of "spaces" in the system: one corresponds to human

working memory and the other to long term memory. Working memory processes

incoming input. The results of each processing cycle are accumulated in a "long

term memory" representation. The system also has in long term memory a

dictionary. It contains information classifying the predicates for the specific text, a set

of equivalence elements (translators), and a set of procedural elements such as the



REREADER Model 7

propositional linking strategies and reading strategies.

The variables related to system knowledge are the following: the Activation

Cap, i.e, the capacity of working memory; the amount of prior knowledge in the

dictionary; procedural knowledge available to the system; and motivation, which

affects how the production system behaves.

The working memory cap proportionately degrades all elements when the

system is operating at the limit. The cap for each run is set through the interface (we

have experimented with caps in the 30 to 125 unit range thus far). Different caps

will affect the life of an input proposition in working memory because degradation

to working memory elements occurs when the cap is reached. For example, when

reading the second sentence of a passage, the working memory resources might be

sufficient to handle creation of all requested elements at the targeted initial

activations without stealing activation from elements preexisting in working

memory. On the fourth sentence, however, all available activation might be

allocated and further requests, perhaps to build within-sentence links, would result

in the degradation of all elements (i.e. their activations would be scaled back). Over

many processing cycles at the cap, a working memory element would lose most of

its activation and fall below threshold, thus becoming invisible (unusable) in

further processing unless it is re-activated.

3. Reading Strategies

The system "knows" four reading strategies: Read forward, read backwards,

skim backwards to a problem, skim forward to sentence that initiated a reread.

(Skim - orthographic representations of words get some low levels of activation but

no propositional linking is done and no propositions are reentered in working

memory.) These strategies are based on the behavioral data of Goldman and Saul

(1990a).



REREADER Model 8

The strategies specified in the Strategy Competition Model involved different

numbers of sentences - sometimes a reader read just one sentence back, sometimes

three or four sentences back to a specific sentence. In REREADER, these different

kinds of strategies are a result of evaluations of the current strategy after the

processing of each sentence. These evaluations depend on several aspects of

coherence and the motivation level of the system. The evaluation function is

described below.

4. How REREADER Works.

REREADER operates in four conceplual phases illustrated in Figure 1.

Phase I. Reads the first sentence as a string of propositions and assigns

activation levels according to a weighting framework specified by the user. For the

example set shown in Table 2, weights of I are assigned to concepts, modification,

and relational propositions and 2 to main predicates of the sentence. If the working

memory "cap" or limit is exceeded, elements in working memory "lose" activation

proportionally until the new elements can realize the appropriate values to be

recognized by the system.

The next two phases deal with link construction.

Phase II. Creates within - sentence links. For the sentence shown in Table 2,

P1 would be connected to P4 and to P5. This part of the system operates just like the

CI model of Kintsch. In Phase III, between sentence links are created according to

argument overlap, propositional embedding and relational reference rules.

Phase IV. This phase proceeds in two steps. First, REREADER computes

measures of text coherence using the following five pieces of information:

1. Number of links to the first sentence of the passage if the current sentence

is the first sentence of a paragraph. A higher value equals greater coherence.

2. Number of links to the first sentence of the paragraph if the current sent-



REREADER Model 9

ence is not the first sentence of a paragraph. A higher value equals greater

coherence.

3. Number of links to previous sentence (superseded by 2 or 1). So if the

carrent sentence is second in the paragraph, procedure 2 wiii operate and 3 will not.

For the third sentence in a paragraph, procedure 3 will operate as will procedure 2

but they will be counting different links.

4. Number of propositio.Lal arguments referenced in the current sentence

that are still present in working memory.

5. Number of propositional arguments referenced in the current sentence

that are missing irom working memory. This measure reflects problems integrating

the current input with elements already in working memory; in other words,

failure to find overlap.

The second step is to evaluate the current reading strategy, using the

measures of text coherence as inputs, and returning the "next" reading strategy.

"Read forward" will be selected if there is a positive value returned by the

evaluation function. "vark problem" will be selected if there is a zero value

returned by the evaluation function. "Read backward" will be selected if there is a

negative value retu. ed by the evaluation function. How REREADER proceeds

given each of these outcomes is described following a discussion of the evaluation

function.

The formulh Cor the Evaluatik, i Function reflects competition between

reasons for believing adequate coherence exists and reasons for believing it does not,

with motivation weighting the latter. More precisely, it is the sum of measure 1

(above) plus measure 2 plus (measure 3 divided by 5) less (measure 5 + motivation).

The reason measure 3 is divided by 5 is so that local links will not totally dominate

reading. The denominator of 5 allows the system to take into account more global



REREADER Model 10

aspects of coherence as well as coherence with the just - prior sentence.

Motivation has a direct effect on the likelihood of rereading. With high

motivation going back will be more likely than if motivation is low. In fact, with

this evaluation function, two readers with the same number of missing arguments

would behave differently depending on their motivation levels. (Note that measure

4, the number of propositional arguments active in working memory, does not

figure in the evaluation function. We spent two weeks searching for a suitable

function, one which seemed plausible and produced reasonable behavior. Altnough

the present evaluation function does not include measure 4, replacing measure 5 in

the evaluation function given above with (measure5 - (measure4 + measure5)), i.e.,

the proportion of missing arguments, yields similar performance.)

Strategy selection depends on the evaluation function in the following

manner. If the evaluation function returns a positive or zero value strategy

selection is relatively trivial. A positive value means that there is sufficient

connection between the current sentence and propcsitions still active in working

memory. In other words, coherence is okay so reading continues forward. A zero

value indicates that the sentence is partially connected but that there are a number

of potential connections that were not made. The sentence will be marked as a

problem. If sentences are marked, the marker becomes important if the system

decides to read backwards. In the future, we intend to use these kinds of markers for

decisions at the end of text about general level of understanding and

comprehension.

A negative value results in the system reading backwards. This is essentially a

judgment that the current sentence lacks coherence with the propositions active in

working memory. If the system decides to read backwards, there are two possibilities:

it can skim back to a marked-problem sentence or it can read backward sequentially



REREADER Model 11

from the current sentence.

a. The Marked-problem case: This case occurs when there is a

proposition active in working memory that has been marked as a problem. (These

will tend to be within 3 or 4 sentences back for most normal activation caps.) The

system skims back to that sentence, reads it and then evaluates. If the evaluation

function returns a positive value or a zero value the problem was resolved

sufficiently. REREADER skims forward to the sentence that initiated the rereading

and continues reading forward (i.e., reads in the next sentence). However, if the

evaluation function returns a negative value, the problem remains; the system then

proceeds backwards from the marked problem sentence. It stops going backwards

when the evaluate function returns read forward. (Note that in this case,

REREADER skips over sentences between the marked problem sentence and the

sentence that initiated the rereading. This is reasonable because in most cases if

those "skipped over" sentences had had a lot of coherence with the sentence that

initiated the rereading there would not have been a coherence problem to begin

with, i.e., the "skipped over" propositions were available for integration the first

time around.)

If there are multiple, marked sentences active in working memory,

REREADER goes through them sequentially in the following way: If there are

multiple marked problems in memory, go to nearest one and read it. Evluate. If

there is still lack of coherence and there are more marked problems go to the next

one. Evaluate. If coherence is still lacking and there are no more marked problems,

read backwards.

b. Read backward sequentially. This case occurs when there are no or

no more "marked-problem" sentences in working memory. After each sentence is

read, there is an evaluation. When Evaluate does not return read backwards, skim



REREADER Model 12

forward again to sentence that initiated the backtrack and read the next sentence.

In cases of read backwards, if the first sentence of the passage is reached

and the evaluation function is still returning read backwards, REREADER skims

back to the sentence that initiated the rereading, marks it as a problem, and resumes

reading forward. One additional special case may occur: During rereading it is

possible for the REREADER to "lose it's starting place" (initiating sentence). If it

does, it begins reading forward from the current sentence.

In summary, the evaluation function and rereading work in the following

way: REREADER reads forward and at the end of each sentence evaluates how well

it integrates with information active in working memory. If there are small

problems, REREADER marks the sentence and continues reading forward. If there

are larger problems, REREADER proceeds backwards. If any sentences are marked,

REREADER skims back and reads each one starting at the closest one. If none are

marked, REREADER reads backwards sequentially. When the evaluation function

no longer returns read backwards, the problem has been solved; and REREADER

skims forward to where the problem occurred and resumes reading forward.

Long term memory strengths are summed on the basis of the activation

levels for each proposition at the conclusion of each input cycle. These are

cumulated and saved for later reference.

Initial Runs of the Prototype

Initial runs of REREADER have produced some interesting variations of

reading traces. The Distance passage was parsed into 167 propositions following the

principles that Kintsch uses for constructing a propositional text base. This parse was

the input to the REREADER simulation.

Figure 2 provides two reading traces generated by our REREADER system.

Comparison of the traces illlustrates the effects of working memory capacity when



REREADER Model 13

motivation is held constant and relatively high. Trace75 is a low capacity simulation

and Trace 125 a high capacity (75 and 125 units of activation, respectively). The traces

show the path through the Distance passage or the order in which the sentences

were processed. Cycle by cycle information can be used in conjunction with the path

data to gain a detailed understanding of the effects of capacity differences on

processing activity. These sources of difficulty can subsequently be compared to

sources of difficulty experienced by human readers.

The first thing to notice is that the higher capacity trace has fewer backtracks

than the lower capacity; as well the sentences that trigger a backtrack and the nature

of the backtracking differ. For example, the low capacity trace shows that reading

proceeds forward until sentence 11. At this point, there is insufficient coherence,

largely because a main referent in the sentence,distance, has fallen below threshold.

There is a backtrack to sentence 7 which had been marked as problematic previously.

However, the missing concept proposition is not found in sentence 7 and there is

systematic rereading back to the beginning of the passage. When sentence 1 is reread,

the missing concept proposition is reactivated allowing REREADER to skim ahead

to sentence 12 and continue reading forward. When sentence 12 is read it is marked

as problematic and in sentence 13 there is another missing referent that causes a

negative evaluation function to be returned. REREADER reads backward to

sentence 3, where the rereading activates the missing concept. Having resolved the

problem, REREADER resumes reading at the sentence that triggered the backtrack.

However, on the very next sentence, 14, the concept distance is once again

needed but because of low capacity, the intervening processing has resulted in

distance falling below threshold once again. REREADER reads back to sentence 1

again to reactivate the missing argument; it then picks up at sentence 15. At

sentence 16, the concept movement is missing and REREADER starts to read



,EREADER Model 14

backwards. When sentence 14 is reread, links are created between its propositions

and those in sentence 16. These links produce sufficient coherence for the

evaluation function to return a positive value, and no further rereading goes on,

despite the fact that the missing movement concept was not reactivated. This

illustrates the nondeterministic, competitive nature of the system. Sentence 17 is

processed and the below-threshold activation of the conceptdistance again produces

rereading behavior: REREADER skims back to the first sentence marked as

problematic (15) but the problem is not resolved and rereading continues back to

sentence I where distance is reactivated. However, by the time REREADER has

gotten back to sentence 1, many of the original propositions from sentence 17 have

fallen below threshold. Thus, sentence 17 never really gets successfully integrated

with the rest of the text base and is marked as problematic. Having gotten to the

beginning of the text, the system skims back down to sentence 18 and resumes

reading forward. A number of propositions in sentence 18 first occurred in sentence

17. However, because of the long reread triggered by sentence 17, many of these are

below threshold when sentence 18 is read. A reread of 17 reactivates the missing

arguments and satisfies the coherence constraints permitting reading to proceed

with sentence 19.

In summary, with low capacity the theme concept of the passage, distance,

fell below threshold by sentence 11. This created several rereading events.

Coherence could be established through rereading so long as the number of

intervening sentences was kept relatively low. When almost the entire passage was

reread, capacity was exceeded and when the missing concept was located, the

sentence that had initiated the rereading had lost too much activation for a link to

be established. The lengthy reread also interfered with coherence between

contiguous sentences and the system had to reread 17 after it read 18 in order to



REREADER Model 15

establish coherence.

In contrast to the persistent need to reread (5 occasions) in the low capacity

simulation, the higher capacity simulation produces only 2 rereads and these tend to

be more efficient because problematic markers are retained longer in the higher

capacity simulation. Trace125 in figure 2 shows that no rereading occurs until

sentence 13, where the high capacity simulation encountered the same problem as

the low capacity, a missing referent. REREADER skims back to sentence 7 that had

been marked as problematic and, not finding the missing referent, reads back until it

is activated (sentence 3). The system continues reading sentence 14 but the concept

distance is below threshold and it rereads until distance is found in sentence 1.

Reading continues at sentence 15 and, in contrast to the low capacity trace, no other

problems were encountered.

Although these traces produced plausible reading and rereading behavior

and sensible differences between high and low capacity "readers" there were a

couple of features of the traces that were somewhat at variance with the behavioral

data collected by Goldman and Saul (1990a, 199c). In both the Trace75 and Trace125

simulations the majority of the rereads lasted ten to fifteen sentences. However, the

behavioral data indicated that the about 50% of rereads were one or two sentences

back. By lowering the activation cap and motrivation level, we hoped to shift

REREADER's behavior into a similar pattern. A lower capacity would increase the

decay rate of propositions, causing propositions to lose arguments which lay in

sentences just a few sentences back. Because this would result in a tremendous

amount of rereading we adjusted the motivation level as well. We wanted to create

simulation conditions that would lose more propositions than in our first runs but

would be more tolerant of small comprehension problems: Only when coherence

was really poor would REREADER reread and it would resume reading forward



REREADER Model 16

when minimal rather than absolute coherence was achieved. We had observed that

in Trace75 and Trace125 the simulation would reread when even a single argument

was missing and did not resume reading forward until all missing arguments had

been re-activated.

We conducted new simulations using 30 (low) and 50 (high) for capacity

values and setting motivation levels of 0 and 1. Tracel in Figure 3 shows the

reading path for a low capacity, high motivation simulation. The overall shape of

the path indicates more localized backtracking than in Trace75 or Trace125. In

addition, when rereading occurred, the simulation often satisfied coherence

requirements within one or two sentences back. This rereading left some "missing"

referent concepts among the propositions but satisfied enough of the possible links

that the evaluation function returned a positive value and forward reading

resumed. One of the interesting things about Tracel is that the simulation did not

keep returning to the distance concept from sentence 1 the way it did in Trace75 and

Trace125 to some degree. Rather, in a number of sentences that had distance as an

argument, sufficient coherence was achieved that no links were created between the

concept distance (from sentence 1) and the arguments. This would lead to a

representation of the information that is less tightly connected to a passage theme,

an outcome that seems plausible for readers with relatively low working memory

capacities.

The results for the high capacity simulation, Trace2 shown in Figure 4, differ

from Tracel in sensible and plausible ways. Trace2 REREADER goes twice as far as

Tracel before backtracking (at sentence 14) where there is insufficient coherence

with the active propositions. However, three prior sentences have been marked as

problems. The simulation goes back to a marked sentence and then reads all the way

back until sufficient overlap is established with the concepts in sentence 5. Then



REREADER Model 17

reading proceeds forward from the point of the backtrack. There is only one other

rereading incident - at the end of the passage, although each of the three prior

sentences were marked as problems. After reading sentence 19, REREADER goes

back and rereads sentence 18, where it finds a missing argument. Having satisfied

coherence requirements, the simulation skims 19 again and quits. Thus, in contrast

to Tracel, Trace2 simulation indicates 2 rereads. When compared to Trace125,

which had a higher motivation value, Trace2 is similar except that it quit reading

earlier (after cycle 40 as compared to 65 for Trace125).

To summarize, the prototype CAPS REREADER Model allowed us to

implement all but one of the five components of the Strategy Competition Model.

We have simulated procedural rules for establishing local coherence, procedural

rules for establishing global coherence, strategy selection based on competition

among the strengths of propositions and procedures in working memory, and

coherence monitoring and evaluation. The REREADER prototype does not use

procedural rules for reacting to features of the text, however we can see how to

implement this feature in a "smarter" REREADER. In that version of the system,

which is currently under development, prior knowledge will also be incorporated

and we hope to explore some mechanisms that simulate how individuals add new

information to a permanent knowledge base.



REREADER Model 18

Part LII

User Interface for REREADER

The User Interface for REREADER guides the user through the operation of

REREADER. Running REREADER involves specifying a text file and "dictionary"

for the text, setting parameter values (including a path), and selecting desired output

files. Each of these is briefly described here. Expanded information on the user

interface is available in the CAPS REREADER Manual.

Specifying the text file and "dictionary"

The text to be read must be in text file format but can be produced by any

number of word processing applications. A specific format is required as illustrated

here for a one sentence text:

(convert-text '(
(sentence 1)
(start paragraph 1)
distance is simply the space between 2 points
(1 is (pp4,pp5)
(2 isAbetween (pp5 pp6))
(3 quant (pp6 2))
(4 distance)
(5 space)
(6 points)

The format is basically similar to that used frequently in propositional analysis (e.g.,

Kintsch, 1988; Turner & Green, 1978). The first element in the parentheses is the

proposition number. This is followed by the verbal for the proposition. We

combine certain surface elements into one by linking them, as in is" between.



REREADER Model 19

Sentence elements appearing by themselves, as in line 8, indicate concepts. The

sentence number and sentence (see lines 2 and 4 in the example) are included in the

file. Line 3 indicates that this sentence starts a paragraph. Inclusion of this

information makes it possible to subsequently implement different activation

depending on the position of a sentence in a paragraph.

The "Dictionary"

This is essentially REREADER's knowledge base. In the present

implementation, it contains information about the assignment of each proposition

to one of four types (predicate, relational, concept/existence, or modification).

Equivalences among concepts are also specified here. Future versions will also

incorporate propositions representing lexical and schematic knowledge relevant to

the passage.

Setting Parameter Values

CAPS REREADER depends on a number of parameter values, some of which

may be modified through the User Interface and other of which may not be.

Parameters Accessible through the User Interface

The parameters that may be altered by the user are shown in Figure 5, which

is a copy of the CAPS REREADER Initialization screen. The user may decide to force

REREADER to proceed through a text using a specific sentence order or permit it to

run normally. In the former case, a path file must be specified in advance and

referenced on the initialization screen. Other parameter values include the

activation cap, motivation, constituent activations, strategy link options and

coherence criteria options. The default values for constituent activations were

described above. Strategy link options allow the user to choose the set of linking

rules that operate on a given run. The default is for all three to operate (argument

overlap, propositional embedding and relational reference). At the same time, the



REREADER Model 20

default link activation value of 1 can be altered. The default for coherence criteria is

for all five measures described above to be computed and used in the evaluation

function. However, the user can deselect one or more of these indices of coherence.

Parameters Modifiable through Changes to the Source Code

Several system variables are not accessible from the User Interface and can be

modified only by directly changing the source code. This code is entirely contained

in the text files INITIALIZE.L (Psylisp code) and REREADER.L (CAPS productions

and commands). All parameters described in this section can be found in the latter

file.

1. Activation-Capping Scheme: CAPS REREADER supports three activation-

capping schemes. Each was developed after flaws in a predecessor were discovered.

REREADER, like most CAPS production systems, runs under the third one. This is

specified early in the source file with the command (turn pre-spew-adjustment 3.0).

2. Activation Threshold: Working memory elements in CAPS have

activations. For an element to match a production, it must match symbolically and

have an activation greater than the specified threshold. When not explicitly stated

in a production, this threshold defaults to 0.1. This can be changed by modifying the

line (turn default-production-threshold 0.1) early in the source file.

3. Tracing: REREADER's path through a passage is reported at the sentence

level. That is, every time a sentence is processed, several bits of information are

displayed including the sentence being scanned, whether it's being read or skimmed,

whether it was reached by moving forwards or backwards, the values of the

measures of text coherence and evaluation function, what course of action

REREADER decides to take next based on the value of the evaluation function, the

markers of problematic sentences that are still active (above the Activation

Threshold described above), and the total number of CAPS cycles used to process the



REREADER Model 21

sentence and passage so far. The last two quantities hint at the underlying truth that

REREADER takes tens of internal cycles to process each sentence. The processing

over these cycles in the form of production firing and the activation constrainment

can be viewed in detail by changing selected 'off' parameters in the following

command (found early in the source file) to 'on': (turn trace-productions off trace-

cycles off trace-all-spews off trace-cap off).

4. Starting Information: REREADER currently begins processing by reading

forward from the first sentence of the passage. The initial task, reading or skimming,

can be changed by altering the RHS action (<add> (current-task read)) in the first

production, called initialize-system. The initial direction is set by the RHS action

(<add> (current-direction forward)) in the same production. To begin processing at a

sentence other than the first one, modify the RHS action (<add> (current-phase

(start (<tok> sentence 1)))) in the next production, called read-freely. This

modification has no effect when a fixed path is supplied because the first sentence

on the path is the first sentence that will be read.

5. Phase Sequencing: CAPS is fully parallel, capable of firing all matched

productions on each cycle. This allows several lines of processing to occur at the

same time. REREADER currently processes sentences by cycling through several

phases. The sequence in which these phases occur (or co-occur) is specified by

working memory elements of the form (:ltm task direction phase-i :becomes phase-

j) where the italics indicate variables. These elements are created in the production

read-freely and read-path depending on whether REREADER is evaluating the

coherence of the text after each sentence and deciding what to do next based on the

evaluation or reading a predetermined path through the passage. For instance,

freely reading a sentence while moving forward requires cycling through six phases,

one at a time, as indicated by the following working memory elements:



REREADER Model 22

(:ltm read forward start :becomes scan-sentence)

(:ltm read forward scan-sentence :becomes link-with-sentence)

(:ltm read forward link-within-sentence :becomes link-between-sentences)

(:ltm read forward link-between-sentences :becomes fire-demons)

(:ltm read forward fire-demons :becomes evaluate-current-reading-strategy)

(:Itm read forward evaluate-current-reading-strategy :becomes end).

To change the "read forward" behavior so that scan-sentence, link-within-sentence,

and link-between-sentences occur simultaneously, change the second and third

elements above to:

(:ltm read forward start :becomes link-within-sentence)

(:ltm read forward start :becomes link-between-sentences).

To flip the order in which within-sentence and between-sentence links are created,

alter the second, third, and fourth elements above to:

(:ltm read forward scan-sentence :becomes link-between-sentences)

(:ltm read forward link-between-sentences :becomes link-within-sentence)

(:ltm read forward link-within-sentence :becomes fire-demons)

There are three additional parameters that, like the first five, are not currently

modifiable from the User Interface. However, we plan to provide access to them

from the User Interface in a future version.

6. Linking Boost: When a link is created, a small amount of activation is

kicked back to the propositions being joined. This number is set by the RHS action

(<init-propositional-link-boost> 0.1) in the production initial ize-system.

7. Number of Words to Scan: REREADER scans a sentence in one pass if it is

skimming and two passes if it is reading. The first pass (which both modes share)



REREADER Model 23

activates an orthographic representation of each word (called a percept). The

additional pass associated with reading is used to activate the propositions

representing the semantic content of the sentence. Initially, it took one CAPS cycle

to activate a percept and one to activate a proposition. Because propositions

presumably require deeper processing, and thus more time 1o activate, REREADER

was changed to activate multiple percepts on each cycle. The RHS action (<number-

of-words-to-scan> 3) in the production initialize-system sets this number. The

default setting ensures that percepts are activated three times as quickly as

propositions.

8. Evaluation Function Threshold: The evaluation function returns a

number based on the measures of text coherence. REREADER compares this

number with the Evaluation Function Threshold and returns an evaluation (read

on, mark problem, proceed ackwards) depending on whether it is less than, equal

to, or greater than the threshold. To set this threshold, alter the (<init-new-reading-

strategy-threshold> 2) RHS action in the production read-freely.

The default values for these variables were determined based on procedures

for tuning the operation of REREADER, following standard simulation techniques.

Selecting Output Files

The Initialization screen requests information regarding the names of files in

which trace information for the simulation run will be stored. These files are used

to construct a variety of reports, as indicated in Figure 6, Report Selection Menu. As

can be seen on this menu, a variety of analyses can be requested, including a listing

for each cycle as well as various summaries. As well, an automatic edit feature based

on activation strength (threshold) is included. Only propositions that exceed the

threshold are included in the report information. A. Figure 6 indicates data are

formattee in the Excel spreadsheet and can be directly imported to that application.



REREADER Model 24

References

Goldman, S. R., Durin, R. P., Murray, J., Saul, E. U., & Smith, M. (1989, August).

Reasoning and comprehension processes of linguistic minority persons

learning from text. Final Report to Cognitive Science Program, Office of Naval

Research. Santa Barbara, CA: University of California.

Goldman, S. R. & Saul, E. U. (1990a). Flexibility in text processing: A strategy

competition model. Learning and Individual Differences, 2, 181-219.

Goldman, S. R. & Saul, E. U. (1990b). Applications for tracking reading behavior on

the Macintosh. Behavior Research Methods, Instruments, and Computers, 22,

526-532.

Goldman, S. R., & Saul, E. U. (1990c, November). Paragraphing and task effects on

reading strategies. Paper presented at the Psychonomics Society Meetings, New

Orleans, LA.

Just, M.A., & Carpenter, P. A. (1992). A capacity theory of comprehension: Individual

differences in working memory. Psychological Review, 99, 122-149.

Kintsch, W. (1988). The role of knowledge in discourse comprehension: A

construction-integration model. Psychological Review, 95, 163-182.

Kintsch, W. (in press). How readers construct situation models for stories: The role

of syntactic cues and causal inferences. In A.F. Healy, S. Kosslyn, & R. M.

Shiffrin (Eds.), Essays in honor of Wiiliam K. Estes (pp. ). Hillsdale, NJ:

Erlbaum.

Kintsch, W.,Welsch, D., Schmalhofer, F., & Zimny S. (1990). Sentence memory: A

theoretical analysis. Journal of Memory and language, 29, 133-159.

Kitsch, W., & WE .;,oh, D. (in press). The construction-integration model: A

framework for studying memory for text. In W. E. Hockley & S. Lewandowsky



REREADER Model 25

(Eds.), Relating theory and data: Essays on human memory. Hillsdale, NJ:

Erlbaum.

MacDonald, M. C., Just, M. A., & Carpenter, P. A. (1992). Working memory

constraints on the processing of syntactic ambiguity. Cognitive Psychology, 24,

56-98.

Turner, A. & Greene, E. (1978). The consturction and use of a propositional text base.

JSAS Catalog of Selected Documents in Psychology, 8, 58.



REREADER Model 26

Table 1

Distance Passage

Distance is simply the space between two points. Measured with a standard

unit such as the kilometer or mile, the result is called absolute distance and is what

most persons probably think of when they think of distance. However, there is also

something called relative distance, which is when absolute distance is influenced by

other factors.

There are a number of factors that affect distance measurement. Economic

distance is measured in relation to the cost of movement from one place to another.

There is a cost involved in any movement, in terms of either money or energy.

The cost of shipping something by water is usually about one-tenth the cost over

land, despite the fact that land routes are usually shorter.

Distance can be measured relative to time. Maps that use travel time instead

of mile markers as the units of measure distort the usual spatial relations among

locations. Travel time from a single point, such as the central business district, to a

location 10 miles north may be the same as travel time to a location 30 miles south.

Psychological distance is measured relative to our perceptions, which may vary.

What may seem like a long trip to some individuals may seem short to others. Even

the same route going and coming can seem different to a single traveler, depending

on road conditions, time of day, or anticipation of the end of the trip.

Distance can be measured relative to direction of movement. When 2 points

are located at different elevations, movement from point A to point B may not be as

easy as from B to A. The mileage between the points may be equal but uphill

movement is harder than downhill.

Distances in geographic space can seem longer due to friction with obstacles. For



REREADER Model 27

example, large crowds or heavy traffic are considered friction because they slow down

our movement. Often we are willing to travel farther in order to reduce friction, such

as when we go to a suburban mall rather than to a downtown store to avoid traffic and

crowds.



REREADER Model 28

Table 2

Sample Propositional Parse for the First Sentence of the Distance Passage

Sentence: Distance is simply the space between two points.

Proposition Type of Proposition Activation

p0 sirmply(pl) modification I

pl Is(p4,p5) verbal predicate 2

p2 isAbetween(p5,p6) modification 1

p3 quant(p6,2) modification 1

p4 distance concept 1

p5 space concept 1

p6 points concept 1



Figure 1: Sentence Processing Procedure

Input SentencePhase I Propositions

Construct Unks
Phase II Within Sentence

Consuct Unks
Phase III Across Sentences

Compute Measures
ot Text Coherence

Phase IV

Current Reading NOT OKAY

OKAY

READ
FORWARD



LflM

LO.

LflO

ullu

00 0

ID 14% r

V4 r- 4 -4 -4 -1 v "4 94 V4N en-W LOb r do c " -4 4 -4V -1



Figure 3: Trace I

Sentence

13

2
3
4
5
6
7
8
9
10

12

13
14

16v
17

19

5 10 15 20 25 30 35 40 45

Cycle



Figure 4: Trace2

Sentence

1
2
3
4
5

7

9
10%
11 '

12 '

13
14
15
16
17
18
19 '

5 10 is 20 25 30 35

cycle



CAPS REREADER lniti:alization

Passage File: jtext.psg

Predicate File: predicates.prd

SDon' t save sentence data

~Save sentence data in the sentence trace f ile

Sentence Trace File: Isentence dump. son

4-Don' t save memory data

-^--.Save memory data in the memory trace file

Memory Trace File: jmemory d.inp.meni

L.-Use reading strategies

,!!'.-Follow fixed path specified in Path file

Path File: jpath.pth

501

Activation Cap Motivation

Cl ick he re t ochang. Link.S trate gy.0pt io ns

Click here to change Coherence Criteria Options -

Click here for HELP :Quit :Go on and Simulate

Figure 5: Main Window for ReReader Simulator



IREREADER Report Selection

-1 Propositional Activation over all cycles (Excel format)

>Active Cycles and Re-instantiations (Excel format)

V Summary of Long Termi Memory Strengths (Excel format)

.,,Detailed Long Term Memory Strengths

v ,Detailed Short Term Memory Activations

~.Reading Behavior Summary (Excel format)

~Reading Behavior Graph (Displayed)

Sentence Trace File: lSE11TENCE__DUHP. SEN

Memory Trace File: MEOYDI4PHEN

Report Output File: LIrTXXCL

* 100

Threshold

0
........... .
Cycle (Use 0 for last cycle)

Click here for HELP !Just quit 'Go ahead and do report

Figure 6 :Report Interface menu


