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FOREWORD

The classical problem of weapons control involves predicting the future position of a

maneuvering target. Critical to successful prediction is the accurate estimation of the current

target state. With the advent of guided weapons, the consequences of threat maneuver are

reduced when accurate estimates of the target state can be obtained. Threat trends indicate

that the conditions under vhi.i hostile targets can be engaged successfully are becoming

more difficult to achieve; hence, any improvement in existing estimation algorithms is of

critical importance.

This report presents the results of an investigation of an approach to the improvement

of an important class of target tracking algorithms. The work was supported by the Naval

Surface Warfare Center Dahlgren Division (NSWCDD) AEGIS Program Office.

This document has been reviewed by Dr. Richard D. Hilton of the Command Support

Systems Division and R. T. Lee, Head, Weapons Control Division.

Approved by:

DAVID S. MALYEVAC, Deputy Department Head

Weapons Systems Department
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ABSTRACT

The two-stage Alpha-Beta-Gamma estimator is proposed as an alternative to adaptive

gain versions of the Alpha-Beta and Alpha-Beta-Gamma filters for tracking maneuvering
targets. The purpose of this report is to accomplish fixed-gain, variable dimension filtering

with a two-stage Alpha-Beta-Gamma estimator. The two-stage Alpha-Beta-Gamma estima-

tor is derived from the two-stage Kalman estimator, and the noise variance reduction matrix

and steady-state error covariance matrix are given as a function of the steady-state gains.

A procedure for filter parameter selection is also given along with a technique for maneuver
response and a gain scheduling technique for initialization. The kinematic constraint for

constant speed targets is also incorporated into the two-stage estimator to form the two-

stage Alpha-Beta-Gamma-Lambda estimator. Simulation results are given for a comparison

of the performances of estimators with that of the Alpha-Beta-Gamma filter.
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CHAPTER 1

INTRODUCTION

While the Kalman filter is known to produce an optimal estimate of the target state

when given the motion model and a sequence of sensor measurements corrupted with white

Gaussian errors, the computational burden of maintaining the Kalman filter may prohibit

its use when many targets are being tracked. A widely used approach to reducing the

computational burden of the filters involves the use of an approximate filter gain instead of

the optimal Kalman gain. The gain is usually based on the steady-state gains of the Kalman

filter and obtained by either using a fixed gain or an easily generated gain schedule. When

these steady-state or approximate gains are used, the resultant filters are called an a filter

for tracking position; an a, # filter for tracking position and velocity; and an a, /3,-y filter

tracking position, velocity, and acceleration.

For tracking systems with a uniform data rate and stationary measurement noise, non-

maneuvering targets can be accurately tracked with an a, # filter. However, when the target

maneuvers, the quality of the position and velocity estimates provided by the filter can de-

grade significantly, and for a target undergoing a large maneuver, the target track may be

lost. An a, fl, y filter can be used to track such a target, but the accelerations of a maneuver-

ing target are seldom constant in the tracking frame during the maneuver. If the a gain of

the a, /, -y filter is chosen small to achieve good noise reduction, the "optimal" -Y of Kalata [1]

will be very small and the acceleration estimates will respond slowly to a maneuver. Thus,

in order for the a, #, y- filter to respond quickly to a maneuver, a must be maintained at a

high level and the filter will provide poor noise reduction (noisy estimates) when the target

is not manuevering. The noisy target state estimates may hinder the sensor pointing, data

association, and other control decisions and computations based on the state estimates.

One approach to overcoming this filtering dilemma is to use a small a until a maneuvcr

is detected. Then a is increased for tracking through the maneuver. This approach was

investigated by Cantrell [2] and Blackman [3]. It has two major problems. First, the response
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of the filter is significantly delayed because the gains are not increased until a maneuver is

detected. Furthermore, in the a, /3 filter, the a gain must be set artificially high to account

for the absence of acceleration from the motion model. Second, after a target has returned

to constant velocity from a maneuver, the decision to reduce a is often delayed because there

is no bias in the higher gain a,/3.filter to detect.

An alternate approach, which seems to be attractive, is to continuously estimate the

target acceleration and correct the position and velocity estimates of the a, /3 filter whenever

a maneuver is detected. The purpose of this report is to accomplish fixed-gain, variable

dimension filtering with a two-stage a, /3, ' estimator, as suggested by Alouani et. al. [4,51

for the two-stage Kalman estimator. In the two-stage a,/3, # estimator, position and velocity

are tracked in the first stage, which is a standard a, /3 filter, and the acceleration is tracked in

the second stage, which is a standard single gain filter. The output of the acceleration filter

can be used to adjust the estimates of the a,/3 filter, as shown in Figure 1-1 when a bias is

detected. This approach to tracking maneuvering targets is similar to input estimation in

[6-81, with the exception that the acceleration is modeled as a stochastic process instead of

a deterministic process as in input estimation. The two-stage estimator has the good noise

reduction associated with the a, /3 filter when the target is not maneuvering, and when a

maneuver is detected, an acceleration estimate is available to compensate the estimates of

the a, /3 filter. Furthermore, since the acceleration is not part of the central filter, the ' gain

can be picked somewhat independent of a to improve maneuver response.

When targets maneuver while maintaining a constant speed, the accelerations vary with

time throughout the maneuver and the estimates of both the a, /3, Y filter and the two-stage

a,/3, ý estimator will be biased. The kinematic constraint for constant speed targets can

be included as a pseudomeasurement in the filtering process to reduce the filter bias as in

[9]. The kinematic constraint for constant speed targets is incorporated into the two-stage

estimator to form the two-stage a, /3, 7, A estimator.

This report is organized as follows. In Chapter 2, steady-state Kalman filters are dis-

cussed, and the a, /3 filter and a, /3, -y filter are summarized. The two-stage Kalman estimator

is presented in Chapter 3. In Chapter 4, the two-stage a, /3, 1 estimator is derived, and proce-

dures for gain selection during initialization and steady-state conditions are presented along

with the concept of a soft switch for maneuver response. The two-stage a, /3, ', A estimator

is presented in Chapter 5. Simulation results for a radar tracking system are presented in

Chapter 6 for the two-stage estimators and the a, /3, -y filter. Some concluding remarks are

given in Chapter 7 along with a discussion of future research.
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Figure 1-1. Two-Stage Estimator for Tracking Maneuvering Targets
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CHAPTER 2

STEADY-STATE KALMAN FILTERS

A Kalman filter is often employed to filter the position measurements for estimating the

position, velocity, and/or acceleration of a target. When the target motion and measurement

models are linear and the measurement and motion modeling error processes are Gaussian,

the Kalman filter provides the minimum mean-square error estimate of the target state.

When the target motion and measurement models are linear, but the noise processes are not

Gaussian, the Kalman filter is the best linear estimator of the target state in the mean-square

error sense. The dynamics model commonly assumed for a target in track is given by

Xk+1 = FkXk + Gkwk (2.1)

where wk - N(O, Qk) is the process noise and Fk defines a linear constraint on the dynamics.

The target state vector Xk contains the position, velocity, and acceleration of the target at

time k, as well as other variables used to model the time-varying acceleration. The linear

measurement model is given by

Yk = HkXk + nk (2.2)

where Yk is usually the target position measurement and nk - N(O, Rk). The Kalman

filtering equations associated with the state model in Eq. (2.1) and the measurement model

in Eq. (2.2) are given by the following equations.

Time Update:

Xkjk-1 = Fk-mXk-ljk-1 (2.3)

Pkjk-1 = Fk-1Pk-Il k-lFT-I + k-lQk-IG Tm(2.4)

Measurement Update:

Kk = PklkIaHk [HkPklk-aHk + Rk]- (2.5)

Xkjk = Xk 1k- 1 + Kk[Yk - HkXklk-1] (2.6)

Pkjk = [I-- KHk]Pklk-I (2.7)

2-1
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where Xk - N(Xklk, Pkjk) with Xkjk and Pkjk denoting the mean and error covariance of the

state estimate, respectively. The subscript notation (klj) denotes the state estimate for time

k when given measurements through time j, and Kk denotes the Kalman gain. Using the

matrix inversion lemma of [10] and Eqs. (2.5) and (2.7), an alternate form of the Kalman

gain is given by

H= Pkjk-j H[HkPk 1k-4HT + R-11-1
= [I- PkjlkHTRj 1 1k1 -1PkIkiHTR-1

=1- PkIk_.Hr(HkPklkIHk + R-I)-IHk]Pklk_,kItR-j

[I KkHk]Pklk 4 HjR-'

= PkIkHTR- 1  (2.8)

The steady-state form of the Kalman filter is often used in order to reduce the computa-

tions required to maintain each track. In steady-state, Pkjk = Pk-ilk-1, and Pk+ lk = Pklk-1,

and Kk = Kk-1. For a Kalman filter to achieve these steady-state conditions, the error pro-

cesses, wk and nk, must have stationary statistics and the data rate must be constant.

When the noise processes are not stationary or the data rate is not constant, a filter using

the steady-state gains will provide suboptimal estimates. The a, 3 and a,'3, -Y filters are the

steady-state Kalman filters for tracking nearly constant velocity targets and nearly constant

acceleration targets, respectively. First, the a filter for tracking nearly constant position

targets will be considered. Then the a, 0 and a, /3, filters will be considered.

ALPHA FILTER

The a filter is a single coordinate filter that is based on the assumption that the tar-

get position is constant plus zero-mean, white Gaussian acceleration errors. Given this

assumption, the filter gain a is chosen as the steady-state Kalman gain that minimize the

mean-square error in the position estimates. For the a filter,

Xk = [Xk ]T (2.9)

Fk = [11 (2.10)

Gk = T2 ] (2.11)

Hk =[11 (2.12)

Rk = o' (2.13)

Qk = oW2 (2.14)

2-2



NSWCDD/TR-92/297

Kk = [a]T (2.15)

The steady-state error covariance of the filtered estimates for the a filter can be expressed

as a function the Kalman gain using Eq. (2.8) to be

Pk+llk+l = Pklk = P = an 2  (2.16)

Using Eq. (2.4) in Eq. (2.7) and inse:ting Eq. (2.16) for P gives

T4
a = [1- a][aO + T 2 1  (2.17)

Thus, Eq. (2.17) gives

2 T4,2 4a 2
T ,- 4a(2.18)
V0 1- a

where r is the Tracking Index of [11], and a,2 is the variance of the acceleration modeling

error. Thus, the a gain is determined as in [11 from r by solving the Eq. (2.18). Note the

these steady-state relationships result from the assumption that the model error process is

acceleration errors that are constant through each measurement sample period.

The input-output relationships between the measurements Yk and Xk1 k can be expressed

as a linear system that is given by

Xk1k = (1 - a)Xk-Ilk-1 + ayk (2.19)

Using Eq. (2.19) provides the error covariance of Xklk that results from the measurement

errors. Let Yk be a white noise stationary sequence with zero mean. Then E[XkXk] = k=

Sk-1 = S,, which is given by
- _ oa
So(- 2' (2.20)

2-2
The variance reduction ratio of the filter is given by Eq. (2.20) when au = 1.

Since during initialization the a filter is not in a steady-state condition, Eq. (2.16) cannot

be used to determine a. Using least-squares estimation in conjunction with a constant state

model, a simple gain scheduling procedure for a during initialization is given by

ak = Max{(k 1 (2.21)

with Xo1_1 = [0 1T. The derivation of Eq. (2.21) follows closely the derivation for the gains

for initializing the a, 0 filter in Appendix A.
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ALPHA-BETA FILTER

The a,,3 filter is a single coordinate filter that is based on the assumption that the target

is moving with constant velocity plus zero-mean, white Gaussian acceleration errors. Given

this assumption, the filter gains a and 3 are chosen as the steady-state Kalman gains that

minimize the mean-square error in thc position and velocity estimates. For the a, 13 filter,

Xk = [xk ikIT (2.22)

Gk= [ T] (2.24)

Hk = [1 01 (2.25)

Rk = Orv (2.2-,)

Qk = aOw (2.27)

Kk== a (2.28)

The a, 13 gains are determined as in [1,3,8] by solving the simultaneous equations

rF2 = T _4 w 13 (2.29)

3 = 2(2 - a) - 4v'1 -a (2.30)

where ow2 is ._e vwiance of the acceleration modeling error.

The steady-state error covariance of the filtered estimates for the a, 3 filter is given in

[1,81 as

0,2 T (2.31)

T 2(1 - a)T 2

The steady-state gains and error covariance in Eqs. (2.29) through (2.31) are derived in

Appendix A. Note that theie steady-state relationships result from the assumption that

the model error prrcess is acceleration errors that are constant through each measurement

sample pcric'.

In target tracking, a conflict arises between the goals of good noise reduction which

requires small a (and thus, small 13), and good tracking through maneuvers which requires

a larger a. For good noise reduction, heavy filtering is used and a filter with slow system

2-4
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response (i.e., a large time constant) and a narrow bandwidth results. For good tracking

through a maneuver, light filtering is performed and a filter with fast response (i.e., a short

time constant) and a wide bandwidth results. The a and # are chosen with the "optimal"

relationship in Eq. (2.29) to obtain a compromise between these two goals that meets the

design requirements.

The input-output relationships between the measurements Yk and Xklk can be expressed

as a linear system that is given by

Xklk = FXk-Ilk-l + GkYk (2.32)

where

F = - (2.33)
T

G = •(2.34)

Using Eq. (2.32) provides the error covariance of Xk1 k that results from the measurement

errors. That error covariance Sk is given by

Sk = F Skl-fT - v (2.35)

Since Sk = Sk-1 = S,6 in steady-state conditions, Eq. (2.35) can be used to solve for Saf

in terms of the filter gains, measurement period, and the measurement error variance. As

derived in Appendix A,

0,.2 12a2±+#(2 -- 3a) ý(2a -~(.6
ad2 (2a-,3)2 (2236)

where di = 4- 2a -0. The variance reduction ratios of the filter are given by Eq. (2.36) when
2 = 1 with the (1,1) and (2,2) elements. of S3f denoting the position variance reduction

av

ratio and velocity variance reductior, ratio, respectively [3].

Since during initialization the a, 1 filter is not in steady-state conditions, Eqs. (2.29) and

(2.30) cannot be used to determine a and 13. Using least-squares estimation in conjunction

with a constant velocity motion model, a simple gain scheduling procedure for a and 13

2-5
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during initialization is given by

2(2k + 1)
ak = maxi (k + 1)(k + 2)a} (2.37)

max{ (k + 1)(k + 2)'/Il (2.38)

with X01_1 = [0 0 iT. Note that if Yo/T can be extremely large relative to the dynamic

range of the compute., the first two filter iterations should be computed analytically to use

a two-point initialization procedure.

ALPHA-BETA-GAMMA FILTER

The a, #, -y filter is a single coordinate filter that is based on the assumption that the tar-

get is moving with constant acceleration plus zero-mean, white Gaussian acceleration errors.

Given this assumption, the a, #, -1 filter gains are chosen as the steady-state Kalman gains
that minimize the mean-square error in the position, velocity, and acceleration estimates.

For the a, -,y filter,

Xk= [xk ik -k IT (2.39)

[1T 0.5T 2 ](40

Gk= T2 T ]T (2.41)

Hk =[1 0 0] (2.42)

Rk = av (2.43)

Qk = aw (2.44)

S= , L(2.45)

The a, -,t• gains are determined as in [1,3,81 by solving the simultaneous equations

o2 2F 2 =T 4 aW
r2 (1-0) (2.46)

/= 2(2- a) V14V - a (2.47)
Y = (2.48)

2ai

The steady-state error covariance matrix of the filtered estimates for the a, /, 1 filter is given

2-6



NSWCDD/TR-92/297

in [1,81 as

a TT

Pk 2 I= 4a,3+ -t-(P - 2a - 4) 3(,3 - -y) (2.49)P =a 4(1 - a)T 2  2(1 - a)T 3

T2 2(1 -a)T 3  (1 -a)T 4

The steady-state gains and error covariance in Eqs. (2.46) through (2.49) are derived in

Appendix B.

The input-output relationships between the measurements Yk and filtered state Xktk can

be expressed as a linear system that is given by

1 -a (1 -a)T (1- a)--2 a

/3 (1 x + ] Yk (2.50)

T 2
"7 -7 1 - L72

Using Eq. (2.50) provides the steady-state error covariance of Xklk that results from the

measurement errors. That error covariance S3,f as given in [11] is

\did2/

2ad2 -2(6a - 4) + a/3y (2a - )(2/ - --) T2-(2d 2 + 0(-y - 20))
(2- )(2- 7) --2(72(2 - a) + 2#2(p _- 7)) 2T( ).

~((2 V~-(/ (2.51)
2/3• 4/37 2

- (2d2 + 0(-y - 20)) -1 (20-7)
L TiV

where dI = 4 - 2a - # and d2 = 2a# + -y(a - 2). The measurement error variance reduction

ratios of the filter are given by Eq. (2.51) when o2 = 1 with the (1,1), (2,2), and (3,3)

elements of Sa.- denoting the position variance reduction ratio, velocity variance reduction

ratio, and the acceleration variance reduction ratio, respectively.

Using least-squares estimation in conjunction with a constant acceleration motion model,

a simple gain scheduling procedure for a, / and 7 during initialization is given by
ak = max( 3(3k2 + 3k + 2) ,al (2.52)

(k + 1)(k + 2)(k + 3)

=max{ 18(2k + 1) , 0} (2.53)8k max(k•" + 1)(k + 2)(k + 3)

7k = max{k ,03 7} (2.54)
+ 1)(k + 2)(k + 3)

2-7
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with X01-1 = [0 0 0 ]T. Note that if Y0,1/T 2 can be extremely large relative to the

dynamic range of the computer, the first three iterations of the filter should be computed

analytically to use a three-point initialization procedure.
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CHAPTER 3

TWO-STAGE KALMAN ESTIMATOR

Consider the problem of estimating the state of a linear system in the presence of a

random bias that influences the system dynamics and/or observations. The bias vector may

represent a part of the augmented system state as suggested in [12]. The idea of using a

two-stage filter to implement an augmented state filter was introduced in [12]. The idea is

to decouple the central filter into two parallel filters. The first filter, the "bias-free" filter,

is based on the assumption that the bias is nonexistent. The second filter, the bias filter,

produces an estimate of the bias vector. The output of the first filter is then corrected

with the output of the second filter. It was shown in [12] that if the bias is deterministic

and constant, but unknown, the two-stage filter is equivalent to the augmented state filter.

It was shown in [4,13] that under an algebraic constraint on the correlation between the

state process noise and the bias process noise, the proposed two-stage Kalman estimator is

equivalent to the augmented state Kalman filter.

Consider a linear system whose dynamics is modeled by

Xk+j = FkXk + Gkbk + GXWX (3.1)
bk+1 = bk + GW' (3.2)

where Xk is an n dimensional system state vector, bk is a p dimensional bias vector. This

system may represent the dynamics of a maneuvering target, where the position and velocity

are the system state and the bias represents the target acceleration. The WX and Wb are

white Gaussian sequences with zero means and variances given by
E[W (wX) T ] - Q•,kl (3.3)

E[Wb(wb) T] b Qb6k (3.4)

E[Wx(WP)T] = QTXb , (3.5)

The state measurement model at time k is given by
Yk = HkXk + Ckbk + vk (3.6)

3-1
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where Yk is the measurement and vk - N(O, Rk) is the measurement error. The standard

approach to estimating the state and bias is to form an augmented state model which includes

both the bias and the state. With this augmented state model, a Kalman filter may be used

to produce the optimal state estimates.

If the bias term is ignored, (bk = 0), the bias-free filter is the Kalman filter based on the
-xmodel in Eqs. (3.1) and (3.6), where fictitious statistics are used for Wx (i.e., Qk is used

instead of G Qj (GX)T). The bias-free filter is given by

Xkjk- 1 = Fk-.1X`-1t,-1 (3.7)
_x

Xkjk = Xkjk-1 + Kk [ _ - 1 kXklk-11 (3.8)
x -x T x

Pkk-i = FklPk- 1 klF7Il + Qk-_ (3.9)
-X -X -x
Pkjk = (I - Kk Hk)PFkl,1k- (3.10)
-yX =_---Xk_ T -X fT -

PklkjA; [HPlk,_lHkT + Rkd- (3.11)
--X

where Qk-U is defined later in this chapter. The k- Xkjk represents the estimate of the state

process when the bias is ignored, and Pklt, is the error covariance of Xklk.

As in [121, a separate filter may be used to estimate the bias vector from the residual

sequence of the bias-free filter. The bias filter is given by

bkk-1 = bk.-llk-1 (3.12)
bklk = bkjk-1 + K'[r, - Skbkjkt.l] (3.13)

Pbl, Pb lb l b _ )T
Pk-k-1 = Il-I + G' -(G (3.14)

K• b p T Skb sT X T
k _k [S-iPk k`_I1T + Hk kik-_lHT + Rd]- (3.15)

Pb -b
I - KkSk)P•,ltI_ (3.16)

where

Sk= HUk + Ck (3.17)

Uk = Fk_, Vk_1 + Gk.•1 (3.18)
vt ( -x 7xc 3.)

Vk= (I-Kk Hk)Uk -KkCk (3.19)

and rk is the residual of the bias-free filter. Initialization of this bias filter is discussed later

in this chapter.

The algorithm for compensating the output of the bias-free filter with the output of the

bias filter is given by

Xkik = E[XS] = Xkjk + Vkbklk (3.20)
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Pkjk = E[(Xk - Xklk)(Xa - Xkak) T ] = Pk_ + VkPkV[ (3.21)
Pflkb = EI(Xk - Xklk)(bk - bklk)T] = VkPkIk (3.22)

P bk = E[(bk - bklk)(bk - bklk)] = Pkbj (3.23)

The structure of the two-stage Kalman estimator is shown in Figure 3-1.

Theorem: If
GXQXbb(Gb)T Uk+G bQb (Gb )T (3.24)

k •€k k-a k-a- k, • k}

-Xand the error covariance Qx of the process noise of the bias-free filter model given by
_- XT XX b b b TukT

Qk = GkQk(GX) - Vk+lGaQa(G ) V.,+, (3.25)

is positive semidefinite, then the filter given by Eqs. (3.20)-(3.23) is equivalent to the aug-

mented state filter.

Proof: See [4,13].

While the algebraic constraint of Eq. (3.24) will not be .2atisfied by almost all real

systems, the theorem provides a basis for assessing the degree of suboptimality of a two-

stage estimator when applied to specific problems. For example, let the algebraic constraint

of Eq. (3.24) be expressed as

- (G -a < + )U+GQ(G) T  k > 0 (3.26)

Then for a given system, the smallest positive e that satisfies Eq. (3.26) indicates the degree

of suboptimality of the two-stage estimate with respect to the augmented state filter.

For initialization of the two-stage estimator, PXb = 0 if the initial estimate of the bias010
is uncorrelated with the initial estimate of the bias-free state. If PXb = 0 Eqs. (3.22) and010
(3.19) imply that V0 = 0 and UO = 0. Note that as shown in [4,13] the initialization does

not require PXb = O.

For the system and bias models given in Eqs. (3.1) and (3.2), the process noise covari-

ances are given in Eqs. (3.3) through (3.5). However, for tracking targets with the two-stage

estimator, the process noise covariances in Eqs. (3.3) through (3.5) are design parameters.

When designing the two-stage estimator for tracking maneuvering targets, Qk can be chosen

to obtain the desired response of the constant velocity filter and Qb can be chosen for ma-
-- X

neuver response. In this type of design procedure, Qk is chosen to be positive semi-definite

and Qx is allowed be a free parameter that depends on the selection of _x and Qb.
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Figure 3-1. Structure of Two-Stage Kalman Estimator
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CHAPTER 4

TWO-STAGE ALPHA-BETA-GAMMA ESTIMATOR

For a uniform data rate and stationary noise processes, the single coordinate version

of the two-stage Kalman estimator can be approximated with a filter including three fixed

gains. In this fixed-gain filter, the two-stage a, P3, I estimator, the position and velocity are

tracked in the first stage, which is a standard a, #3 filter, and the acceleration is tracked

separately in the second stage, which is a standard single gain filter. The output of the

acceleration filter can be used to adjust the estimates of the a, fl filter, as shown in Figure

4-1, when a maneuver is detected. The parameters K1 , K2 , and 1K3 will be defined later.

The bias-free filter of Eqs. (3.7)-(3.11) corresponds to the standard constant velocity

filter in a single coordinate when

Fk=[I aT] (4.1)
_-X

Qk = q--Lk(4.2)

Gk = Gx= TI T  (4.3)

Hk=[1 0], Ck= 0  (4.4)

TX = ýk T
Kk ak (4.5)

for scalar acceleration error variance /. The bias filter of Eqs. (3.12)-(3.16) corresponds

to the standard constant state filter with residuals of the bias-free filter, rk, as the input

and G1 = 1. Since the bias corresponds to a scalar acceleration, the bias filter gain will be

a scalar. Let the bias filter gain be denoted as

-- -S , k > 0 (4.6)

where lk are Sk are positive scalars obtained from Eqs. (3.15) and (3.17). Letting bk = Ak

and inserting Eq. (4.6) into Eq. (3.13) gives

Aklk = AkIk-1 + 7k[Sk-Irk - AIk.-l] (4.7)
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Figure 4-1. Two-Stage a,# fl, Estimator
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Using Eqs. (4.1) through (4.7) in the bias-free and bias filters gives the two-stage a,#,

estimator as summarized by the following equations:

Prediction

"Xkjk-1 = Fk.-1Xk- 1k- 1  (4.8)

Akljk_j = Ak-llk_1 (4.9)

1a-1 A3 -1 T

Uk = A-1 UI+ Gk- (4.10)

T1

Measurement Update

Xkjk = Xkjk-a + Kk(y - H:X 1y.a) (4.11)

Aklt = (1 - k)Akjkl +IUSkirk (4.12)

Output Correction

Xkjk = Xkjk + VkAklk (4.13)

Vk[Ik l]Uk (4.14)
ST

where the gains are a function of time. In steady-state conditions, ak = a, lk = /3, and

7k = -. Also, the bias filter is initialized with A01- 1 = 0 and U- 1 = [0 0 ]T.

STEADY-STATE RELATIONSHIPS

If the measurement rate is uniform (i.e., T is constant), the measurement error statistics
are stationary (i.e., R, = oa2), and the acceleration error statistics are stationary (i.e., '=

&.,), then the bias-free filter in steady-state conditions corresponds to an a, /3 filter with

ak = a and /3k = 3. Then a and / are given by Eqs. (2.29) and (2.30) for the a, /3 as
-2 #2

-=T4 I-2 (4.15)

3 = 2(2 - a) 4Vi -- a (4.16)

where V' denotes the tracking index for the bias-free filter.

Since the statistics of the residuals rk in the a, /3 filter will be stationary in steady state,

the bias filter will achieve steady-state conditions if the statistics of Wkb are stationary (i.e.,

Qb= a2). The bias filter in steady-state conditions corresponds to a single gain filter with

Kb = Kb = ýS-l (4.17)
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Qb = a2 ). The bias filter in steady-state conditions corresponds to a single gain filter with

K6 = K=b S (4.17)

where S is a constant scalar in steady-state conditions. Using Eqs. (4.10) and (4.14), the

steady-state parameters are

Uk+l = Uk = U = (T + 0.5)T] (4.18)I #o
Vk+ = V = V = -)-O.T2 I

The steady state values of K 1, K2, and K 3 in Figure 4-1 are given by

K1 = S-1 = (HkU)- 1  T (4.20)

[KK2]=V (4.21)

Since the two-stage a, 3, 5• estimator is an a, /3 filter when the switch is open, the steady-

state error covariance Pkk =P is provided by Eq. (2.31) as

-- X -. X 2 a T (4.22)Pklk = P = Ov /3 0(2a - 0)

T 2(l - a)T2

The variance of the residuals of the bias-free or a, 3 filter is given by

2 -T X T T +2(4.2aURES = Hk FkPi Fki Hk + qkHkGkGGk Hk + (4.23)

Inserting Eqs. (4.1) through (4.4) and (4.22) into Eq. (4.23) gives

2 2[1 a +3(3 - ) TV 22=(1 + +T& . (4.24)a2RS =aS[ + +2(l - ] a) 4

Using Eq. (4.15) to eliminate &2 from Eq. (4.24) and using a 2 - 2/3 + a/3 + 0.25/3 = 0 of [8]

gives

2 _ a2
aaRES - (4.25)

S-(1 -

Thus, using Eq. (4.25) in conjunction with Eq. (4.20) gives the variance of the input to the

second stage or bias filter as (KI) 2a3RES. Using Eqs. (2.8) and (4.15) gives the steady-state

gain for the second stage as

pb ( -2 -1 Pb( /32 2 = ,'(T4( ) pb&W2 (4.26)
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Thus, the steady-state error covariance of the second stage is given by

pb = 1 ( "' ) 2 -- 2 (4.27)

Inserting Eq. (2.4) into Eq. (2.7) for the bias filter gives
pb = l-q]pl + 0,2,!(.8

p6 [1~[P+. 2  (4.28)

Thus
pb(1-) 2 (4.29)

Eqs. (4.27) and (4.29) give
W - (4.30)

S(1

Using Eqs. (4.19) and (4.27) in Eq. (3.22) gives

pXb =pXb - Vpb 2 T2 (4.31)
k~k -a (ab 0.0v

(1 a)T 3

Using Eqs. (4.19) and (4.31) gives

a (a -0.513)1
VPbVT -2 T

(a - 0.513) (a - 0.503)2 (4.32)

T (I - a)T 2

Since the output error covariance of the two-stage estimator is dependent on the maneuver

switch, let the switch gain be denoted by

(0, switch openGs = (4.33)

', switch closed

Using Eqs. (4.22), (4.27), (4.31), and (4.32) in Eqs. (3.21) through (3.23) gives the output

error covariance of the two-stage estinmator as a function of the maneuver switch to be

Pklk(1, 1) -= a24) s
,-[(a + (1 - a)Gs) (4.34)

0.2,
Pkk(1,2) = -#[0 + (a - 0-50)Gs] (4.35)

Pklk(1, 3 ) = a,213 (4.36)
Pklk(2,2) = a 0 ( .51 3)11 5 + (a - 0.50)Gs] (4.37)

2  (1 - 05)T2

Pkjk( 2 , 3 ) = 0,, (1 -_ 0 a s (4.38)

1)32

Pklk(3,3) = a )T4 Gs (4.39)
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where Pklk(i,J) denotes the (i,j) element of the error covariance.

SELECTING GAMMA

Since the algebraic constraint of Eq. (3.24) will not be satisfied, the two-stage estimator

with the maneuver switch closed will not be identical to the augmented state filter (i.e.,

the a, 3, -/ filter). However, the position, velocity, or acceleration variances of the two-stage

estimator and the a, ,3,y filter can be matched through the selection of Y. Using the (1,I)

elements of Eqs. (2.49) and (4.34), a match between the position variances is given by

a-a (4.40)
(1 -a)

where & denotes the alpha gain of a standard a, /, y filter that is desired for tracking through

maneuvers. Using the (2,2) elements of Eqs. (2.49) and (4.37), a match between the velocity

variances is given by

+[ - ( +0.25Y(/- 2& - 4)) (4.41)= .(1-----• B (-a -- 0.5# )2 0 .50• 4.1

where &, /, j denote the gains of a standard a, /#, -1 filter that is desired for tracking through

maneuvers. Using the (3,3) element of Eq. (2.49) and Eq. (4.39) gives a match between the

acceleration variances as

/32ji.[I.-a] (4.42)

Fig. 4-2 gives various values of , versua& & for matching the position, velocity, or accel-

eration variances when & - a = 0.1. Using Fig. 4-2, consider the two-stage estimator with

a = 0.3 and ' = 0.2 and the a, /, y filter with & = 0.4. Then the position and velocity esti-

mates of the two-stage estimator with the maneuver switch closed will closely match those

estimates of the corresponding a, i, y filter, while the acceleration estimates of the two-stage

estimator will be filtered more heavily than those of the a, /, -y filter. Fig. 4-2 also shows

that the estimates of two-stage estimator for & - a = 0.1 will more closely match those of

the augmented state filter, the a, /,7 filter, when 0.4 < a < 0.5 and 0.25 <_ <0.5.

MEASUREMENT VARIANCE REDUCTION MATRIX

The variance reductions between position, velocity, and acceleration estimates and the

measurements are often considered in the design and analysis of fixed-gain filters. The
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Figure 4-2. ý Versus & for a - a = 0.1

variance reduction matrix for the two-stage a, #,,;y estimator is derived by considering the

estimator with the maneuver switch open as a linear system with a white noise input. The

variance reduction matrix for the estimator with the maneuver switch open is used to com-

pute the variance reduction matrix for the estimator with the maneuver switch is closed.

The input-output relationships between the measurements YI and T Aklk when the

maneuver switch is open can be expressed as a linear system that is given by

klk L [Ak-llk-1 + GYk (4.43)

where

"1-a (I - a)T 0

7/. -• (1-/3) 0 (4.44)

- -.2 T 1 -j

T (4.45)

Using Eq. (4.43) provides the error covariance of [XTk AkIkT that results from white
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noise measurement errors. That error covariance is denoted as

and given by
S100o = F ftTF + G GTav (4.47)

where a• is the variance of the input Yk. Eq. (4.47) can be used to solve for elements of So

in terms of the filter gains, measurement period, and the measurement error variance. Let

CO = 11 812 S13 ]
=af- S12 S22 S23 (4.48)

S £13 S23 S33

Since the position and velocity estimates of the two-stage estimator with the' maneuver

switch open are equivalent to those of the a,,3 filter, s1l, £12, S22 are given by those of the

a,/3 filter in Eqs. (A.43) through (A.45) as

2a 2 +,3(2 - 3a 2

a = [4 - 2a - 3] a, (4.49)

S12 = (2a - ]#)o a,2 (4.50)

a4- 2a3 - # 2

522 = 21 2 a 2 (4.51)22 a[4 - 2a - tilT v

Equating the (1,3), (2,3), and (3,3) elements of Eq. (4.47) gives
=(a- 1)•[Sl cx/3 2

S13 T- Isl + 2Ts 12 + T 2s 22] + (-I - 1)(a- 1)[S13 + TS 23] + 2ý- a (4.52)

23 [S + 2Ts12 + T S221 1) [S13 + TS231 + " a__2o'/ (4.53)
-T+ 3 +T

S33(2 - = !-'-[s1 2 T12 + T8221 /(j 1) [313 + TS 2 3] + "--- (4.54)
- T4 [T1 V VTj ~ 2 ]± T

Using Eqs. (4.49) through (4.51) gives
2 2 [2ci + a# + 23]S£l + 2Ts 12 + T 2 s 2 2 - , [a4 -- 2a -T] 1 (4.55)

2. ([4 + 2a) -

S12 + Ts22 (v +a[4 - 2a) - fl1T (4.56)

Adding Eqs. (4.51) and (4.52) and using Eqs. (4.55) and (4.56) gives

£13 +! Ts23 =- /3[13±-}-(a -1)] T/2] 3s1 s2
T2 [£11 + 2TM12 + T 2S22 1 --[S12 + TS22]

+ (I - 1)[I(a - 1) + 1]'S13, -+ TS231 + OP/ + a!) 012 (.7

ST
2  0V (4.57)

= a7 20 21a2 + (;ý + 2)a)3 + fl(fl - 21) (45823Y ] (4.58)
'VT2 I 0[(l - o)12 + (a -#/j + 0](4 - #-]
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Inserting Eqs. (4.55) and (4.58) into Eq. (4.52) gives
5 2 13= [ 21a'_+ (2 - 1)a +[(. -2)1 -- 0] (459)

s13 -- v-"T I a[(l - a)ý2 + (a - /3)' + 3][4 - 2a- (5)

Inserting Eqs. (4.55) and (4.58) into Eq. (4.53) gives
S 23 = [ 1(2a -/) + 2/3(

23 T [a[(1 _a);2 + (a - #)I + ]][4- 2a- ](4.60)

Inserting Eqs. (4.55) and (4.58) into Eq. (4.54) gives

233 2•2  %2a(-2P)+2P (4.61)S3 = (r 2 -- _)T4 I [(1j - a)1•2 + (a -- #)I/+ 0)[4 -- 2a -- ](.1

Inserting Eqs. (4.49) through (4.51) and Eqs. (4.59) through (4.61) into Eq. (4.48) provides

the steady-state error covariance of the filter output that results from the measurement errors

when the maneuver switch is open. The elements of S°0 are summarized as

S,,1 [a 2 +3(2 - 3a)] (4.62)

ad2
Sa#'(1,2) = 2# (2a -/3) (4.63)

adldT

Sý61(1,3) -[21a +a(2- )+ -2) - (4.64)

So(22) = v 2#2 (4.65)

ad1 T 2

S,(2,3) ad ( a - /3) + 2/0) (4.66)
O2-2

3 Va20,2/3

S°1(3,3) = a(2 - j)djd3 T 4 (%(2a - /) + 2/) (4.67)

wheredl =4-2a-#3 and d3 = (1 - a)ý2 + (a - #)1 +/3.

The input-output relationships between the measurements Yk and filter output when

the maneuver switch is closed can be expressed as

[ X Ik (4.68)

where

D = (4.69)
0 (1 b0.5)T]

0 0 1
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Using Eq. (4.68) provides the steady-state error covariance that results from the measure-

ment errors when the maneuver switch is closed. That error covariance is given by
SZc, = DS°?,6DT (4.70)

INITIALIZATION

A gain scheduling procedure is needed to facilitate the settling of the estimates of the
two-stage a, /3, ' estimator. A gain scheduling procedure that produces estimates that are

equivalent to those of a quadratic least-squares fit is developed. The estimates will be shown

to be equivalent to those produced by an a, P3, -7 filter that is initialized with gains scheduled

with Eqs. (2.52) through (2.54).

Since the bias-free filter is an a, #3 filter, Eqs. (2.37) and (2.38) will be used to schedule

ak and flk as

2(2k + 1)
c'k = max{ (k + 1)(k + 2 ) a1 (4.71)

k =m { 6
ma{(k + 1)(k + 2 )} (4.72)

with Xo1l- = [0 0 ]T. Inserting Eqs. (4.71) and (4.72) into Eq. (4.10) gives

k-

Uk 6 Uk-l + (4.73)
k(k + 1)T IT

A solution to the time-varying difference equation in Eq. (4.73) is

(k + 1)(k + 2)T 2

Uk= 12 (4.74)(k + 1)T

2

Inserting Uk-i from Eq. (4.74) into Eq. (4.73) confirms that Eq. (4.74) is a valid solution

of the difference equation. Using Eqs. (4.71), (4.72), and (4.74) in Eq. (4.14) gives[ k(k-l1) _"____-__T

Vk 6 Uk 12 (4.75)

(k + 1)(k + 2)T -k
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Using Eq. (4.75) with Eq. (4.13) gives

Xkjk = [k~ I - Nk + VkAkIk 4= + k2T ki (4.76)
X lk k] 41k + kT-AkIk

Delaying the time index in Eq. (4.76) gives

+ (k - 1)(k - 2)T2

= 12 (4.77)
(k- 1)T

b-I±k-+ 2 'Ak-ilk-I

Also,

Xk-11k-1 + Tik-11k-.+.1 2 -Ak-l1k-, = (kk-1k-1 + T±t-k-, 2)(k13)T2 Ak-1-

(4.78)

Using Eqs. (4.74) and (4.78) in Eq. (4.12) gives

AkIk = (1 - jk)Ak-1jk-i + ±k(HkUk)- [Yk - 4k-ilk-i - Tk-,Ilk-,1

= Ak-Ilk1k.. +Y(k 12 X.

[Yk - Xk-ilk-i - T~k-11k-1 -(k + 1)(k + 2)T 2 Ak-llk-..i
/ 12

= Ak-.lk-1 + ((k + 1)2% 2)12) TYk - Xk-lki - Tik-Ik, - T2Ak.ik.1] (4.79)

(k + 1)(k + 2)T klk1

which is in the form of the acceleration update of the a, /, y filter. Setting the gain equal to

the acceleration gain of the a, /, -t filter in Eq. (2.54) gives

12______ 6012=6 (4.80)
(k + 1)(k + 2) (k + 1)(k + 2)(k + 3)

Thus,

%= (4.81)
(k +3)

Inserting Eq. (4.81) into Eq. (4.79) gives
60 )TY k 1k 1 i -j - 2Ak 1k

Akjk = Ak-ilk-i + ((k + 1)(k + 2)(k + 3)T2) [Y2 - k-llk-1- T zk11 -

(4.82)

which is the acceleration update equation for the a,/3, - filter when using Eq. (2.54) for

initialization.
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Using Eqs. (4.11), (4.12), and (4.74) in Eq. (4.77) gives

Xklk = Vklk + kAklk
- /3k

= vkk-.l.-I - Lk [Yk - k-Ilkt-I - Tftk-Ilk-11

+ 2(1- i•k)Akjlk_I + 2k( H!kUk)-I[Yk - 4xk._.I_- TlkIlk_,]

= ik-11k-1 + (k- 1)TA 3 (2 k +I)TA ,
2 (-ilk-i + TAk-..i-1 2 3) k-ilk-i

+ 6 + 30k ) 2(+ - ik-.lk-. -
(k + 1)(k + 2)T (k + 1)(k + 2)(k + 3)T

=k.ilk-1 + TAk.Ilk.1 + ( 18(2k + 1)
k (k + 1)(k + 2)(k +3)T)×

[Yk - k-1lk-i - TVik. 1 k. -1 (k + 1)(k + 2)T2 Ak-llk-]
= k -+k-I k-I + ,-I-- T +-18(-1 -- 1)2

= Xklk-.-i + TA~Ik--i + ( + (k + 1)(k 2)(k +3)T)

T1
[Yk - Xk-Ilk-, - Tik-.lk-I - T2 Ak-llk-I (4.83)

2 -i-i
which is in the form of the velocity update of the a, 13, y filter when using Eq. (2.53) for

initialization.

Using Eqs. (4.11), (4.12) and (4.74) in Eq. (4.77) gives
k(k - 1)r72

Xklk = Xklk + 12 Al,

= ik-Ilk-I + Ti)k-Ilk-I + 12  (1 - "k)Ak-llk-1

+ (ak + k(k - 1)T2 z.k(H,) ) [Yk - Xk-,ilk-, -Tk-llk-I

12 k k(H(k + 1)(k + 2)T2 3(3k 2 + 3k + 2)T 2

=k.:.-lk-i + T~k-ilk-.1 + 12 Aill - 12(k + 3)

+ 3(3k 2 + 3k + 2) T)[Yk -tk-Ilk- - Ti0k-Ilk-I]
(k + 1)(k + 2)(k + 3)T -

+T2 + 3(3k 2 +3k +2) x
, + i " +(k + 1)(k + 2)(k + 3)T×

[Yk - kIlk-I - Tbk~llk -1 (k + 1)(k + 2)T2 A•_lIY1 -5k •• •-T -I- 12

1T2 ( 3(3k2 + 3k + 2) TI
2Xl+ __+(( + 1)(k+2)(k 3)T

[Yk - xk_jlk_I - TikIlk•, - -- 2A ]_Ilk-I (4.84)
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which is in the form of the position update of the a,/3, - filter when using Eq. (2.52) for

initialization.

Using the definitions of the parameters K 1, K 2, and K3 in Eqs. (4.20) and (4.21) and

Eqs. (4.71), (4.72), (4.74), (4.75), and (4.81), the gain scheduling is summarized as

2(2k + 1)
/ =max( (k + 1)(k+2)

6(4.86)(mx~k + 1)(k + 2)'/}(.6

5
lk = max{ I -k-,3 ),} (4.87)

=1 max{(k 12( 2 ),/3} (4.88)T2 =(k + 1)(k +2)

K 2 = T 2 min{k(k -1) (1 -a)(4.89)12 ' 3 }(.9

K3 = T min{2, k a - 0.5} (4.90)

with X01 _=[0 0 0 ]T.

Figure 4-3 gives a comparison of the Root-Mean Square Errors (RMSE) during intial-

ization of the two-stage a, /3, I estimator with Eqs. (4.85) through (4.90), and the a, /3, -1
filter with Eqs. (2.52) through (2.54). For the a,/3,8 filter, the steady-state gains were

chosen with a = 0.45. For the two-stage estimator, the steady-state gains were chosen with

a = 0.35 and ' = 0.15 to match the position variances. The errors are the average over 50

experiments. The target trajectory began at 12 km with an initial velocity of -100 m/s and

the acceleration remained constant at 10 m/s/s. The measurement period was 0.25 sec and

a,, = 8 m. The RMSE of the two filters a. losely matched in the transient region from 0

to 4 sec, while the RMSE in position are clos,_,y matched in steady-state.

When Eqs. (4.85) through (4.90) are used to initialize the two-stage estimator, the

maneuver switch can be left open until enough measurements are received so that the accel-

eration estimate is settled before it is used.

EXAMPLE

A simple tracking system is considered to illustrate the operation of the two-stage es-

timator. The tracking system measures a target's position at 4 Hz with errors that have a

standard deviation of 8 m. The target is expected to perform maneuvers with up to 2 g of
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Figure 4-3. RMSE During Initialization
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acceleration. For an a,/3, -y filter, a = 0.45, / = 0.13 and 7 = 0.02. For the two-stage esti-
mator, a = 0.35,,3 = 0.075 and I = 0.15, where Eq. (4.40) was used to compute '. While

various techniques can be used for maneuver detection, a soft switch approach was chosen.

For the soft switch approach, the bias filter is duplicated in the maneuver detector with bk
as the filter output. Then the gain of the maneuver switch in Eq. (4.33) is augmented by

0, IbkI < 4.0

Gss 1.0, IbkI > 6.0 (4.91)

0.5({bk - 4.0), otherwise

Also, to improve maneuver response, the magnitude of bk is restricted so that IbkI _< 6.2.

Using the soft switch approach, the correction of the output of the bias-free filter with the
acceleration estimates is multiplied by Gss. Simulated tracking results from a Monte Carlo
simulation with 200 experiments are given in Figure 4-4 for the two filters, where the target

moved with constant velocity except for a 2 g maneuver from 15 to 30 sec. A critically

damped, second order system with an approximate time constant of I sec was used to model
the dynamics of the target. As indicated in Figure 4-4, the two-stage estimator provides
significantly better tracking when the target moves with constant velocity, while matching

the tracking performance of the a, fl, -y filter during the maneuver.
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CHAPTER 5

TWO-STAGE ALPHA-BETA-GAMMA-LAMBDA ESTIMATOR

In the two-stage a, /0, 1 estimator, the position and velocity are tracked in the first stage,

which is a standard a, /P filter, and the acceleration is tracked separately in the second stage,

which is a standard single gain filter. However, when tracking two or three dimensional

target motion with two-stage a, 3, ' estimators operating separately in each coordinate,

the state estimates will be biased for targets maneuvering with constant speed because the

accelerations are time-varying. This bias in the state estimates can be reduced through the

use of the kinematic constraint for constant speed targets as in [9]. The speed of a target is

given by
S = ( + + i2½(51

For a target moving at constant speed,
dS-= 0  (5.2)
dt

or

(i + ý + ii) = 0 (5.3)

This kinematic constraint can be incorporated in the system state of Eq. (2.1) or used as a

pseudomeasurement in conjunction with the measurement equation. While both approaches

are feasible, the second approach is more attractive because the first changes the state

equation from linear to nonlinear. In the implementation of the extended Kalman filter,

including nonlinearities in the measurement equation is computationally less expensive than

in the state equation [9]. Thus, the kinematic constraint of Eq. (5.3) is incorporated into the

filter through a pseudomeasurement as discussed in [9]. The pseudomeasurement equation

is given by
Vklk • Ak + P'k = 0 (5.4)
Skik

where

Vk•k = [ ýI kIk 4k1k Zklk ] (5.5)
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Skfk = ( ±lk +2k +k k) (5.6)

and Ak - N(0, R'). The Vk~k and SkIk are the filtered velocity and speed, respectively, for

time k given measurements through time k. The Yk is a white Gaussian error process that

accounts for the uncertainty in both Vklk and the constraint. Since the initial estimate of Vklk

may include a significant error, R' is initialized with a large value and allowed to decrease

as

R = ri (6)k + r0 (5.7)

where 0 < 6 < 1, r, is a constant chosen large for initialization, and ro is a constant chosen

for steady-state conditions.

The two-stage a,/3, ' estimator utilizing this constraint in the second stage will be called

the two-stage a,c/, A, A estimator. Eq. (5.4) can be written as

Wlkik + ZkIkik) = Xkl--ik + Ik (5.8)
Skjk SkIk

Thus, the filtered acceleration estimates can be inserted into the left side of Eq. (5.8)
to compute a measurement for updating the x-coordinate acceleration. For the two-stage

approach, the measurement equation for the z-coordinate is given by Eq. (3.6) with bk = Ak

as

[~-1kk~~ +Zk kkk) [ Xk + [C]Ak + [ VJ (5.9)

Skik (5.10)

where Yk is the x-coordinate position measurement, vk - N(0, Rk) is the measurement error,

Yk - N(0, R") is the constraint error, and Ak is the x-coordinate acceleration.

Since the bias-free state is not observed through the pseudomeasurement, its gain in the

bias-free filter can be shown to be zero. Thus, the bias-free filter can be defined as if the

kinematic constraint is not being used. Thus, as in Chapter 4, the bias-free filter of Eqs.
(3.7)-(3.11) corresponds to the standard constant velocity filter when defined as in Eqs.

(4.1)-(4.5). Using Eqs. (3.17)-(3.19) in conjunction with Eq. (5.2), Uk, Vk, and the first

element of Sk can be shown to be independent of the constraint and equivalent for both the
two-stage a, I3, estimator and the two-stage a, 3, ý, A estimator. The second element of Sk is

given by S1 = C1. Also, since the errors on the measurement and the constraint are assumed

to be independent, the measurement update and the constraint update of the bias filter will
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be performed separately with the measurement-updated acceleration estimates being used

to compensate the velocity estimates in the pseudomeasurement. Thus, the bias filter of

Eqs. (3.12)-(3.16) corresponds to the standard constant state filter with the residuals of the

bias-free filter rk and the pseudomeasurement as the inputs. Since the bias corresponds to a

scalar acceleration, the bias filter gain includes a scalar gain for the bias-free filter residual

and a scalar gain for the constraint. Let the bias filter gain for the bias-free filter residuals

be represented by
Kb = 7k(Sk), k > 0 (5.11)

where ýk and S' are positive scalars obtained from Eqs. (3.15) and (3.17) with SI being the

first element of Sk. Let the gain for the constraint be represented by

h'I = AkCk, k > 0 (5.12)

where Ak is a positive scalar. Letting Ak = bk, the two-stage a, ,3, 1, A estimator is giv-n in

the following equations:

Prediction

XkIk-l = Fk-lXk-ljk-1 (5.13)

Aktk_1 = AkcIlkI (5.14)

1 k1- A3 -1 T
Uk = A3k-1 Uk_ + ak- (5.15)

T

Measurement Update

ExXkIk = XkIk_, + k (Yk - HkXklk_ 1 ) (5.16)

AkIk = (1 - fk)Akjk}- + !k(SkI)-'(rk) (5.17)

Constraint Update

Ackk - AkIk - Ak - 4Lk (xklkxk -+- tkj&kYIk + iklkiklk) (5.18)

Output Correction

Xkjk = Xkjk + VkAklk (5.19)

Vk -4Tk 0]Uk (5.20)
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The velocities of Eq. (5.18) are temporarily compensated with the acceleration estimates as

in Eq. (5.11) before updating the acceleration with the kinematic constraint. The bias filter

is initialized with A01-1 = 0 and U- 1 = [0 0]T.

If the measurement rate is uniform (i.e., T is constant) and the statistics of the measure-

ment and acceleration errors are stationary (i.e., Rk =U and = t h

filter in steady-state conditions corresponds to an a, 3 filter with ak = a and 1k = 0. The

steady-sta~e values of Uk and Vk are given by Eqs. (4.18) and (4.19), respectively. Using

Eqs. (3.17) and (5.9) gives

[ C_ ]T (5.21)

where the first element of Sk reaches a steady-state value. The bias filter is a two-gain filter

with the residual of the bias-free filter multiplied by (S')- 1 and the pseudomeasurement as

inputs. Using Eq. (2.8) for the Kalman gain gives

S pb pz-2]

=k [P l: ;&W (5.22)•kC klk k 1,

where -2 is the variance of the residual errors entering into the bias filter as shown "n Eq.

(4.27), and a2 is the variance of the constraint errors. Thus, using Eq. (5.22) gives

-2
Ak = 77 (5.23)

and the output variance of the second stage is given by

Pb -- 2 l
lk = Ika?1 = T4 (- - a) (5.24)

If the statistics of rk are stationary, the bias filter will achieve steady-state conditions when

the statistics of 1Vb are stationary (i.e., Qb = 0,) and the kinematic constraint is not

included. Thus, for simplification, the gain Yk will be assumed to reach a steady-statte value

1. Thus, the covariance matrix of the output of the two-stage a,,3,1, A estimator will the

equivalent to that of the two-stage a, 0, ' estimator given in Chapter 4.

When selecting A, the scalar relationship between A and ý of Eq. (5.23) can be adjusted

through ao,2 to tune the filter. The gain scheduling technique for initializing the two-stage

a, 13, 5 estimator given in Chapter 4 can be used for the two-stage a, 0, ),)A ectimator with

a0A v1 6 k+ II < 1 (5.25)

where ro is chosen for steady-state conditions, ri is chosen large for initialization, and b is

chosen for the desired settling time.
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CHAPTER 6

SIMULATION RESULTS

As an example, a tracking system that measures a target's position at 2 Hz with errors

that have a standard deviation in range of 6 m and standard deviation in bearing and

elevation of 2 mrad. For an a, fl, -y filter, a = 0.40, / = 0.1 and y = 0.013. For the two-stage

estimator, a = 0.3, / = 0.053, and Eq. (4.41) was used to compute • = 0.19 to match the

velocity variances of the filters. For Eq. (5.25), ro = 0.75, r, = 400, and 6 = 0.75. Thus,

in steady-state conditions A = 0.14. While various teciniques can be used for maneuver

detection, a soft switch approach was chosen. For the soft switch approach, the acceleration

filter in each coordinate is duplicated in the maneuver detector with bk as the filter output.

As a result, the gain for compensating the a, / filter in each coordinate is given by

0, IbkI < 4.0

Gss= 1.0, Ibkl > 6.0 (6.1)

0.5(bkl - 4.0), otherwise

Also, to improve maneuver response, the magnitude of bk is restricted so that IbkI < 6.2.

Using the soft switch approach, the correction to the output of the bias-free filter with the

acceleration estimates is multiplied by GsS. Simulated tracking results from a Monte Carlo

simulation with 200 experiments are given in Figure 6-1 for the a, /3, 7Y filter and the two-

stage estimator with and without the kinematic constraint. For this example, the target

moved with constant velocity except for a 4 g, constant speed turn from 12 to 24 s. The

target began at a range of 17.5 km and moved at a constant speed of 300 m/s to a final range

of 9.3 km. A cr -ically damped, second order system with an approximate time constant

of 1 s was used to model the dynamics of the target. Both two-stage estimators provide

better tracking than the a, 3, - filter when the target moves with constant velocity, while

the two-stage estimator with the kinematic constraint provides the best tracking through

the maneuver.
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CHAPTER 7

CONCLUSIONS AND FUTURE RESEARCH

The tracking performance of the two-stage estimator can be achieved by operating an
a, 0 filter in parallel with a a, P, -v filter and selecting the output of one of the filters. However,
when using the soft switch approach to maneuver detection and response as presented in

Chapters 3 and 5, a second a, 0, -y filter is required so that its acceleration estimate can
be restricted during a maneuver to improve detecting the end of a maneuver. While this
multiple filter approach is feasible, it requires approximately three times the number of
computations for essentially the same tracking performance.

Since the two-stage a, p, ' estimator is simple, it can be implemented in current sys-
tems with a modest increase in the computational burden and memory. The two-stage
a, ,, 7 estimator has the potential to provide significant performance gains in the tracking of

maneuvering targets within systems that are responsible for tracking and engaging a large
number of targets. Also, since the two-stage a, /3, ' estimator maintains an a, # filter track
at all times, the command and control decisions, as well as maneuver detection, can be
made with greater consistency with the two-stage estimator than other adaptive filtering
techniques where the gains are increased during maneuvers.

Further research is needed to develop improved maneuver response procedures for the
two-stage estimator. Also, further research is needed to compare the tracking performances of
the fixed-gain, two-stage estimators with other simple, adaptive tracking algorithms. When
using the two-stage estimator, the kinematically constrained second stage can be paralleled
with the standard second stage so that constant speed and variable speed targets can be

tracked by selecting the more accurate second stage. However, research is needed to develop

procedures for selecting the more accurate second stage.
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A Kalman filter is often employed to filter the position measurements for estimating the

position, velocity, and/or acceleration of a target. When the target motion and measurement

models are linear and the measurement and motion modeling error processes are Gaussian,
the Kalman filter provides the minimum mean-square error estimate of the target state.

When the target motion and measurement models are linear, but the noise processes are not

Gaussian, the Kalman filter is the best linear estimator of the target state in the mean-square

error sense. The dynamics model commonly assumed for a target in track is given by

Xk+1 = FkXk + Gkwk (A.1)

where wk "-, N(O, Qk) is the process noise and Fk defines a linear constraint on the dynamics.

The target state vector Xk contains the position, velocity, and acceleration of the target at

time k as well as other variables used to model the time-varying acceleration. The linear

measurement model is given by

Yk = HkXk + nk (A.2)

where Yk is usually the target position measurement and nk -, N(O, Rk). The Kalman

filtering equations associated with the state model in Eq. (A.!) and the measurement model

in Eq. (A.2) are given by the following equations.

Time Update:

XkIkI = Fk.lXk-Ilkl1 (A.3)

PkIk-I = Fk-IPk-llk-.FT 1 + Gk.lQk-IG.lGT (A.4)

Measurement Update:

gk = Pkk_.lHk [HkPklk-.HT + R•]-i (A.5)

Xkjk = XkIk_-'I + Kk[Yk - HkXklk-l (A.6)

PkIk = [I - KkHk]Pklk-l (A.7)

where Xk ": N(Xklk, Pkjk) with XkIk and Ptkk denoting the mean and error covariance of the

state estimate, respectively. The subscript notation (klj) denotes the state estimate for time

k when given measurements through time j, and Kk denotes the Kalman gain. Using the

matrix inversion lemma of [A-l1 and Eqs. (A.5) and (A.7), an alternate form of the Kalman

gain is given by
kT[HT -1

Kk Pklk-k H [HkPkIk-lHk + Rk
PkkIHT R-1 k-1Plk T ?-1

- [I- Pk1t 1 H Rk Hk 1 Pklk luHjjRj
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PkJk.lHT(HkPklk-lHkT + Rj 1)-kHkkPklIHTR' 1

= [I - KKHk]PklkIHTR' 1

PklkHkTRk (A.8)

The steady-state form of the Kalman filter is often used in order to reduce the
computations required to maintain each track. In steady-state, PkIk = Pk-ljk-1, and

Pk+1jk = P•i1k-1, and Kk = Kk-1. For a Kalman filter to achieve these steady-state

conditions, the error processes, wk and nk, must have stationary statistics and the data

rate must be constant. When the noise processes are not stationary or the data rate is not

constant, a filter using the steady-state gains will provide suboptimal estimates. The a,/3

filter is the steady-state Kalman filter for tracking nearly constant velocity targets.

The a, P filter is a single coordinate filter that is based on the assumption that the

target is moving with constant velocity plus zero-mean, white Gaussian acceleration errors.

Given this assumption, the filter gains a and # are chosen as the steady-state Kalman gains

that minimize the mean-square error in the position and velocity estimates. For the a,/3

filter,

Xk=[xk k]IT (A.9)

Fk= [I T] (A.10)

G k= [T ' T (A. 11)

Hj;= [1 0) (A.12)

Rk -= 0V (A.13)

Qk = 02W (A.14)

Kk = [a A]T (A.15)

The a,/3 gains are determined as in [A-21 by solving the simultaneous equations

02
r = T 4 w 2(A.16)a2 (1 -a) (.6

,3= 2(2 - a)- 4V/• - ct (A. 17)

where F is the tracking index of [A-2], and a2,,, is the variance of the acceleration modeling

error.

STEADY-STATE ERROR COVARIANCE AND GAINS
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Let the steady-state error covariance matrix of the filtered estimates for the a, # filter

be denoted as

P1l P121

Pk+llk+l = Pkjk = P P12 P22 (A.18)

Using Eqs. (A.8), (A.12), and (A.13) gives the steady-state gain

K = pH1To' 2 = PH (A.19)
LP12 i

Thus using Eq. (A.15) gives

Pll = aO2 (A.20)

P12 = (A.21)

Inserting Eq. (A.4) into Eq. (A.7) and setting Pkik = Pk-1lk-1 = P for steady-state gives
[I - KHk]-'P =FkPFL T T 1.2 (A.22)[I - ~k]-I = FtIpFT_ + Gk-,Gk-1

Then
1 0

-1 a (A.23)
I- K~k-1- 1 ct 1

2 T

[I - K.kl-'P 'v ° ]2P2(.4
T T 2 (A.24

2Tp12 + T2p22 P12 + Tp22

FkPFT = P12 + Tp22  P22 ]
(A.25)

T4 T3'

T 2 2 4 ] (A.26)GkG~kOaw = aw T 2(.6

Equating the (2,2) elements of Eq. (A.22) gives

j22 Tc _ (A.27)

1- a -5
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Equating the (1,2) elements of Eq. (A.22) and using Eq. (A.27) to eliminate a,, gives

,0(2a-/3) 2 (A.28)
P22- (= -_- )T2-a T2or

Equating the (1,1) elements of Eq. (A.22) and using Eqs. (A.20) through (A.21) and Eqs.

(A.27) through (A.28) gives

I3 = 2(2-c)- 4vf--a (A.29)

Eqs. (A.27) and (A.30) give the steady-state gain relationships in Eqs. (A.16) and (A.17).

The steady-state error covariance in Eq. (A.18) is given by [1,81 as

S= (2a-#) (A.30)
T 2(1 - a)T 2

MEASUREMENT VARIANCE REDUCTION MATRIX

The variance reduction between position and velocity estimates and the measurements

are often considered in the design and analysis of a, / filters. The variance reduction

matrix for the a, P3 filter is derived by considering the filter as a linear system with a white

noise input. The input-output relationships between the measurements Yk and XkIk can be

expressed as a linear system that is given by

Xkjk = FXk-ilk-l + GkYk (A.31)

where

1-a (1-a)T(

T

(A.33)

Using Eq. (A.31) provides the error covariance of Xkjk that results from white noise

measurement errors. That error covariance E[XklkXlk] = Sk is given by

-- T +-0-O~a2

Sk =FSkF +G G V (A.34)
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where ao2 is the variance of the input Yk. Since Sk = Sk-1 = S3# in steady-state conditions,

Eq. (A.34) can be used to solve for elements of S,8 in terms of the filter gains, measurement

period, and the measurement error variance. Eq. (A.34) can be rewritten as

+ +ro T (A.35)

where

F [1 - /3 (1 2- ] (A.36)

-T ~2 ~ (a - #)a (a ~ 1(.7F-1 G av 82 1T•a (A.37)

Let

So-- 11 S21 (A.38)
L S21 S22 J

Then, equating the (1,1), (2,1), and (2,2) elements of Eq. (A.35) gives

1(2 - a) - /3sii - (2 - a)(1 - a)Ts•2 = (a - /3)aav (A.39)

/3s1 + a(1 - a)Ts1 2 - (1 - a)2T 22 = = aa2, (A.40)

(2 - a)sl2 + (1 - a)Ts2 2 = =- _ (A.41)T

Multiplying Eq. (A.41) by (1 - a)T and adding it to Eq. (A.40) gives

= -2(1 - T 2 (A.42)811--- -21 -a)'•s 1 2 +t O~,,

Inserting Eq. (A.42) into Eq. (A.39) gives
S12 = (2a-03)03 a2 (A.43)

a[4 - 2a - #3]T (A43

Inserting Eq. (A.43) into Eq. (A.42) gives

2a 2 + /(2 - 3a) 2 (A.44)
s= -2a- - a -

Inserting Eq. (A.43) into Eq. (A.41) gives

2222 2 (A.45)
a[4 - 2c - O]T; •
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Eqs. (A.43) through (A.45) with Eq. (A.38) gives

[22a2 + #3(2 - 3a) ý(2a - /)(.62/•__T 22 ] (A.46)
ad,~~- ~(2a - P) 2

where dl = 4-2a-fl. The variance reduction ratios of the filter are given by Eq. (A.46) when

a2 = 1 with the (1,1) and (2,2) elements of S3, denoting the position variance reduction

ratio and velocity variance reduction ratio, respectively [A-3].

INITIALIZATION GAINS

For tracking systems with a uniform data rate and stationary measurement noise,

nonmaneu- .-ring targets can be accurately tracked with a steady-state Kalman filter.

However, between filter initialization and steady-state conditions, the Kalman gain and

state error covariances are transient. If steady-state gains are used from initialization, the

settling time of the state estimates may be extended significantly. While the initial gains can

be approximated as decaying exponentials as suggested in [A-2], identifying the constants

for the exponential can be quite cumbersome. The purpose of this section is to present a

simple gain scheduling procedure for initializing a, #3 filters.

The gain scheduling procedures are developed by using the motion and measurement

models to formulate a batch least-squares estimation problem for an arbitrary number of

measurements. An analytical form is then obtained for the resulting error covariance that is

used in conjunction with Eq. (A.8) to obtain an analytical form for the Kalman gain.

For linear least-squares estimation, an equation formulating the measurement vector

Z as a linear function of the parameter vector X to be estimated is given by

Z= WX+V (A.47)

where E[V] = 0 and E[VVT] = a 2IN for N measurements with IN denoting the N x N

identity matrix. The least-squares estimate X is given in [A-4] as

c -= (WTW)-IWTZ (A.48)

with error covariance

PN = COV[.k] = a 2(WTW)-y (A.49)
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A current state estimate of X denoted by Xo = [x0 io] can be obtained from the
current measurement plus the N previous measurements as

ZN = WNXO + VN (A.50)

where

ZN = [y-N Y-N+I ... Y-1 YO (A.51)

VN = iv-N V-N+i ... V-1 vo]T (A.52)

1 1T
-NT (-N+1)T ... -T 0(A.53)

with E[VN] - 0 and E[VNVk] = a2gIN. The error covariance of the least-squares estimate

Xo is given by

COV[Xo] = = a,(WNTWN) (A.54)

First,

N

N + 1 TE(-N + i)/=0(WNTWN)= Nv N

TE(-N + i) T2E(N- i)2

i=O i=o

N
N + I -TEJ

j=0 (A.55)
N N

-TI:j T2 Zj 12

j=0 j=0

Evaluating the finite summations of Eq. (A.55) gives

1 -N T

2

Then

COV[Xo] = PN

222N+l IaI T (A.57)
(N + 1)(N + 2) 3 6

T (N- l)T 2
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Let the Kalman gain be denoted by

Kk=[k -]T (A.58)

Letting PkIk = Pk in Eq. (A.8) provides a simple gain scheduling procedure for a and •

during initialization that is given by

2(2k + 1) (A.59)
aj = max{(k +( 2)(k +A.

=k max{(k + 1)(k +2)'•} (A.60)

with X01-1 = [0 0 ]T. Note that if Yo/T can be extremely large relative to dynamic range

of the computer, the first two filter iterations should be computed analytically to use a

two-point initialization procedure.
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A Kalman filter is often emplced to filter the position measurements for estimating the

position, velocity, and/or acceleration of a target. When the target motion and measurement

models are linear and the measurement and motion modeling error processes are Gaussian,

the Kalman filter provides the minimum mean-square error estimate of the target state.
When the target motion and measurement models are linear, but the noise processes are not

Gaussian, the Kalman filter is the best linear estimator of the target state in the mean-square

error sense. The dynamics model commonly assumed for a target in track is given by

Xk+j = FkXk + Gkwk (B.1)

where wk - N(O, Qk) is the process noise and Fk defines a linear constraint on the dynamics.

The target state vector Xk contains the position, velocity, and acceleration of the target at

time k, as well as other variables used to model the time-varying acceleration. The linear

measurement model is given by

Yk = HkXk +flk (B.2)

where Yk is usually the target position measurement and nk - N(O, Rk). The Kalman

filtering equations associated with the state model in Eq. (B.1) and the measurement model

in Eq. (B.2) are given by the following equations.

Time Update:

XkIk..1 = Fk.lXk-Ilk-. (B.3)

PkIk-, = Fk-,1Pk-Ik..F Tl + Gk..Qk-.GT (B.4)

Measurement Update:

Kk = PkIk_,H T[HkPklk_,H' + Rk]' (B.5)

Xkjk = XkIk-l,+ Kk[Yk - HkXklk-,] (B.6)

PkIk = [I - KkHk]Pkk-. (B.7)

where Xk - N(Xklk, Pkjk) with Xkjk and PkIk denoting the mean and error covariance of the

state estimate, respectively. The subscript notation (klj) denotes the state estimate for time

k when given measurements through time j, and Kk denotes the Kalman gain. Using the

matrix inversion lemma of [B-1 and Eqs. (B.5) and (B.7), an alternate form of the Kalman

gain is given by
T fT +R1

Kk = Pklk-IHk [HkPklkIHLk + k

= [I- P- k_,HTRk 'Hk]-'Pklk_,HT-'
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Pklk-lHkj(HkPkIk-.lHT + R-k1)'H]PkiklHkRio

= [I - KkHk]Pkik_,HjR-j 1

= PkjkIHTR-1  (B.8)

The steady-state form of the Kalman filter is often used in order to reduce the
computations required to maintain each track. In steady-state, PkIk = Pk-Ilk-1, and

Pk+Ilk = Ptkk-1, and Kk = Kk-I. For a Kalman filter to achieve these steady-state
conditions, the error processes, wk and nk, must have stationary statistics and the data
rate must be constant. When the noise processes are not stationary or the data rate is not
constant, a filter using the steady-state gains will provide suboptimal estimates. The of, /, 7

filter is the steady-state Kalman filter for tracking nearly constant acceleration targets.

The a,/3, - filter is a single coordinate filter that is based on the assumption that the
target is moving with constant acceleration plus zero-mean, white Gaussian acceleration
errors. Given this assumption, the a, 3,7y filter gains are chosen as the steady-state

Kalman gains that minimize the mean-square error in the position, velocity, and acceleration
estimates. For the a,/3, y filter,

x=[= k Xk k ik (B.9)

[1 T 0.5T 2 1
Fk= 0 1 (B.10)

0 0

Gjk= --2 T 1 (B.11)

Hk=[1 0 0] (B.12)

Rk = a.2 (B.13)

Qk = arW (B.14)

Kk=a = A ]T (B.15)

The a,/3, -y gains are determined as in [B-2] by solving the simultaneous equations
T 2 •2
T, -, (1 2 •)(B.16)
U2V (1a)

0 = 2(2 - a) - 4v/ -.,1 (B.17)
=32 (B.18)

2a

where F Tw is the tracking index of [B-2].
Ov
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STEADY-STATE ERROR COVARIANCE AND GAINS

Let the steady-state error covariance matrix of the filtered estimates for the a,/3,3"
filter be denoted as

r P11 P12 P13]

P= [P12 P22 P23 (B.19)

.P13 P23 P33.

Using Eq. (B.8), (B.12), and (B.13) gives the steady-state gain

[P11

K =PHku7 v 1 (B.20)

SP13

Thus using Eq. (B.15) gives

P11 = av (B.21)

P12 = A2 (B-.22)

P13 = 02V (B.23)

Inserting Eq. (B.4) into Eq. (B.7) and setting Pkj- P=lk-11-1 = P for steady-state

gives

[I - KHk] 1-P = Fk_iPFT_ + (B.24)

Then

1 0 0

[I-KH 1  1 - a 0 (B.25)

a TT -
[I- KHk]-~1 P=1 T- 2  ' .

f. 0 1-a)a
T2

[I- ~k-' ý _CL2 0- + (I -a P2 (B.26)
-- -- 2 + or) f3-0,2

f_ + _' a)P23 + I a23
T2 T3 0+ r2-- T4 -t ]-, 3a2
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T4P11 + 2T9p12 + T2 (pi3 + P22) + T3p23 + --•- 33 ..

FkPF[T P12 + T (p13 + P22) + 3T2-P23 + T 3  P22 + 2Tp23 + T 2p33 ...

T2

P13 + Tp23 + -P33 P23 + Tp33 P33

(B.27)

T 4  V3 T2

4 2 2

GGkkOf,2 cr2-T T' (B.28)-TiG*Gtaw a2 T2 T (B28

2

Equating the (3,3) elements of Eq. (B.24) gives

=72 =c F2 (B.29)
1- a t F2

Equating the (2,3) elements of Eq. (B.24) and using Eq. (B.29) to eliminate acw gives

733 ( -Y) o2 (B.30)
(1 -c x)T 4

Equating the (2,2) elements of Eq. (B.24) and using Eq. (B.29) to eliminate a2 gives

P23 = f(0-f) O2 (B.31)

Equating the (3,1) elements of Eq. (B.24) and using Eqs. (B.20), (B.29), (B.30), and (B.31)

gives
- =2 (B.32)

Equating the (2,3) elements of Eq. (B.24) and using Eqs. (B.20), (B.29), and (B.31) gives

P 4a/3 + y(/O - 2c - 4) 2 (B.33)P22 - 4(1 -- a)T 2  (B.33

Equating the (1,1) elements of Eq. (B.24) and using Eqs. (B.21) through (B.23) and Eqs.

(B.29) through (B.33) gives

2= 2(2 - or)-4 VT(B.34)
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Eqs. (B.29), (B.32), and (B.34) give the steady-state gain relationships in Eqs. (B.16)

through (B.18). The steady-state error covariance in Eq. (B.19) is given by

j3 -

T T

P 2 1 4 a + -y(#- 2a- 4 ) 1(1-,)
P T 4(1 - T2 2(1 - a)T 3  (B.35)

7 NO - -Y) ( - -y)
T2 2(1 - a)T3 (I -a)T 4

INITIALIZATION GAINS

For tracking systems with a uniform data rate and stationary measurement noise,

nonmaneuvering targets can be accurately tracked with a steady-state Kalman filter.
However, between filter initialization and steady-state conditions, the Kalman gain and

state error covariances are transient. If steady-state gains are used from initialization, the

settling time of the state estimates can extended significantly. While the initial gains can be

approximated as decaying exponentials as suggested in [B-2], identifying the constants for

the exponential can be quite cumbersome. The purpose of this section is to present some

simple gain scheduling procedures for initializing a, P, -t filters.

The gain scheduling procedures are developed by using the motion and measurement

models to formulate a batch least-squares estimation problem for an arbitrary number of

measurements. An analytical form is then obtained for the resulting error covariance that is

used in conjunction with Eq. (B.8) to obtain an analytical form for the Kalman gain.

For linear least-squares estimation, an equation for:nulating the measurement vector

Z as a linear function of the parameter vector X to be estimated is given by

Z = WX + V (B.36)

where E(V] = 0 and E[VVTI = a2 IN for N measurements with IN denoting the N x N

identity matrix. The least-squares estimate X is given in [B-3] as

X = (WTW)-'WrZ (B.37)

with error covariance

PN = COV[X] = a4 2(WTW)- (B.38)
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A current state estimate of Xo = [xo jo io] can be obtained from the current

measurement plus the N previous measurements as

ZN = WNXO + VN (B.39)

where

ZN = [Y-N Y-N+1 ... Y_1 Yo]T (B.40)
VN =[v-N V-N+, ... v_, vO]T (B.41)

11 ... 1 1I]

WN = -[ T +(- 1)T ... -T 20 (B.42)
[0.5(NT)2 0.5(-N + 1)2T2 ... 0.5T 0

with E[VNI - 0 and E[VNV T ] - 021N. The covariance of the least-squares estimate Xo is

given by

COV[XIo] = PN = a,(WNTWN)' (B.43)

First,

N T2 NNY+lI TE(-N +i) 2-E(N-i)

i=O i=0

TN N 2 T3 N

(WWN)= TE(-N + i) T2E(N -)2 (-N + i)3
i=O i=O i=O

T2 N -2T3 N T4 N -4
-2 E(N - )2 E(-N + i) 4 E(N-i)

L i=0 i=0 i=0

N 2 N

N + 1 -TEJ T EjN
j=o j=o

N N _T 3 N

- TZJ T 2 ,j 2  2 E- 3  (B.44)
j=O j=O j=O

T 2 N _T 3 N T4 N-j 4sE Ej4
j=0 j=o i=o
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Evaluating the finite summations of Eq. (B.44) gives

(WTWN) = (N + I).

-NT 
N(2N + 1)T2

2 12
-N T  N(2N + 1)--2 -N2(N + 1)-- (B.45)

T22 T3 224
N(2N + 1)- -N 2 (N + 1)T N(2N + 1)(3N 2 + 3N- I)--j

L12 8120-

Then

(WNrWN)PN = 0'2I3 (B.46)

Let the error covariance be denoted as

[all a12 a13 1
PN = a2 '22 a23 (B.47)

a13 a 2 3 a 3 3.

Equating the elements of Eq. (B.46) gives the following six equations t, solve for PN:

1 72 722 2__ (.48-all - -a12 + (2N + 1) -Ta13 = V + B1)
N 2 12 N'N +1
1 T T2

-a 12 - -a22 + (2N + 1)--2-a23 = 0 (B.49)

1 72 722
-a 1 3 - T-a23 + (2N + 1)-a 33 = 0 (B.50)
N 2 12T T2 T3 a,2 (.1a2 + (2N + 1)-"a22 - N(N + 1)78-a23 =

-~~ N(N +1-2 1)

T T2 T3a3=0
-ja13 + (2N + 1)- 6a 23 - N(N + 1)-a 3 3 = 0 (B.52)

72 r3 T4 a2
(2N + 1)-Ta13 - N(N + 1) -a23 + (2N + 1)(3N 2 + 3N - 1)(12 -. 53)

12 8 + 1 20  N(N-+ 1)

Solving Eqs. (B.48) through (B.53) gives

COV(XOJ = PN -

3N 2 + 3N + 2 6(2N + 1) 20
T T2

3a_ 6(2N + 1) 4(2N + 1)(8N- 3) 120

(N + 1)(N + 2)(N + 3) T (N - 1)NT 2  (N - 1)T (
20 120 240
72 (N- 1)T 3  (N- 1)NT4
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Let the Kalman gain be denoted by

K [ A • ]T (B.55)

Letting PkIk = Pk in Eq. (B.8) gives a simple gain scheduling procedure for ak, 13k and 7k

during initialization that is given by

3(3k 2 + 3k + 2)
= max{ (k + 1)(k + 2)(k + 3)' (B.56)

flk = maxI l1(2k + 1) (.7
=t max{(k + 1)(k + 2)(k + 3)'3 1  (B.57)

60
k max(k + 1)(k + 2)(k+ 3)'7} (B.58)

with X0-, = 0 0 0T . Note that if Yo, 1/T 2 can be extremely large relative to the

dynamic range of the computer, the first three iterations of the filter should be computed

analytically to use a three-point initialization procedure.
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