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PREFACE

An international conference entitled "Simulation of Adaptive Behavior: From Animals to
Animats" took place in Paris on September 24-28,1990. The object of the conference was to bring
together researchers in ethology, ecology, cybernetics, artificial intelligence, robotics, and related
fields so as to further our understanding of the behaviors and underlying mechanisms that allow
animals and, potentially, robots to adapt and survive in uncertain environments.

"SAB90", as we called it, was the first major conference to test the hypothesis that people in-
terested in understanding animal behavior, and people interested in simulating or constructing
autonomous robots, would have important common interests and would welrome the chance to
listen to and learn from each other. The conference further tested the somewhat more radical hy-
pothesis that its focus constituted not only an intersection but a growing new field concerned, in
both animals and "animats", with adaptive behavior.

By a variety of measures including size and international range of attendance, intellectual
enthusiasm, quality and diversity of contributions, and degree of interaction among the partici-
pants, SAB90 offered strong support for both these hypotheses. Furthermore, the emergence of
a field in its own right was signaled by the fact that while there was lively debate along many
axes--e.g., top-down vs. bottom-up, learning vs. reflexes, hierarchical vs. flat, simulate vs. build,
to mention a few-it was striking how people everywhere along the animals to animats axis were
thinking about similar sets of problems.

These proceedings- contain 62 papers, 59 that were actually presented at the conference, plus
three whose authors could not attend. The book is divided into sections corresponding to the
conference sessions. In each section, papers presented as talks are followed by related papers that
were presented as posters.

The first section, The Animat Approach, contains papers on artificial animal research as a tool
for understanding adaptive behavior and, indeed, as a new approach to artificial intelligence.
The next sections-Perception and Motor Control, Cognitive Maps and Internal World Models,
Motivation and Emotion, Action Selection and Behavioral Sequences, Ontology and Learning,
Collective Behaviors, and Evolution of Behavior--contain papers on these themes from both the
animal and animat perspectives. There follows a large section on Architectures, Organizational
Principles, and Functional Approaches, containing several strong-and differing-theses on
how to understand or achieve natural or artificial systems with adaptive behavior. The book
concludes with a two-paper section, Animats in Education, that describes novel and uncompli-
cated robot and simulation technologies designed for teaching and research.

SAB9O could not have taken place without the assistance of many people and organizations.
We are especially grateful to members of the Program Committee, whose conscientious review-
ing selected the papers here from the more than 90 submitted, and who ably chaired the confer-
ence sessions. The Committee members were

Lashon Booker, MITRE Corporation, USA
Rodney Brooks, MIT Artificial Intelligence Lab, USA
Patrick Colgan, Queen's University at Kingston, Canada
Patrick Greussay, Universits Paris VIII, France
David McFarland, Balliol College, Oxford, UK
Luc Steels, VUB AI Lab, Belgium
Richard Sutton, GTE Laboratories, USA
Frederick Thates, The Open University, UK
David Waltz, Thinking Machines Corp. and Brandeis University, USA
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Ecole Normale Sup~rieure
The Rowland Institute for Science
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Schemas for Prey-Catching in Frog and Toad'
Michael A. Arbib and Alberto Cobas 2

Center for Neural Engineering
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arbib@pollux.usc.edu

Abstract parameters that define the stimulus position

(horizontal eccentricity, elevation and dis-
This paper first outlines the methodology of tance). The model, which emphasizes action
schema theory (Arbib 1981), which integrates generated by the concurrent activiLy of
perception and action by decomposing an multiple motor schemas rather than the serial
overall behavior into the interaction of activity of such schemas. predict new behav-
functional, neurally explicable, units called iors for experimental test.
schemas. It offers comparisons with other
methodologies from Artificial Intelligence (Al)
and Brain Theory (BT), and reviews the RS 1. An Introduction to Schema Theory
(Robot Schema) language and the Arbib and
House (1987) model of detour behavior in Rana Schema theory (Arbib 1975, 1981) provides a way to
computatrix which associates potential fields tame the complexity of large systems that are to func-
with objects - an attractant for the prey; a re- tion in the real world, offering an approach explic-
pulsor for the fencepost; and a forward field itly designed to bridge between cognitive science and
for the toad itself - which are then combined to brain theory (BT), as well as to contribute to dis-
create more complex fields which determine tributed artificial intelligence (DAI). Schemas are
the trajectory of the animal. active modular entities, each involving data struc-
However, rather than analyze detour behavior tures and control:
here, the remainder of the paper presents a a) Schemas serve to represent, at least, perceptual
schema-theoretic model for the decision- structures and distributed motor control. Schemas are
making mechanisms which control prey- ultimately defined by interaction with a physical
catching behavior in frog and toad; the exten- environment rather than (as in most Al systems) by
sion of the work to model predator-avoidance cross-references in some logical formalism.
is discussed elsewhere. It thus contributes to b) Schema theory provides a distributed model of
Rana computatrix, an evolving set of models of computation. The brain can support many concurrent
anuran visuomotor coordination (e.g., Arbib activities for recognition of different objects, and the
1987). Our new model of prey-catching is planning and control of different activities. Thus
rooted in recent experimental data on the schema theory views the use, representation, and
behavior of animals with and without brain recall of knowledge as mediated through the
lesions. These data motivate the model's use of activity of a network of interacting computing agents,
independent processing of the different schema instances. This activity may involve passing

of messages, changes of state (including activity
level), instantiation to add new schema instances to

1 The research described in this paper was supported the network, and deinstantiation to remove instances.
in part by grant no. IROI NS 24926 from the National c) The activity level of an instance of a perceptual
Institutes of Health (M.A.Arbib, Principal Investiga- schema represents a "confidence level" that the object
tor) and Fulbright/MEC fellowship FU88-35011116 represented by the schema is indeed present; while
(Spain) to A.C. that of a motor schema may signal its "degree of
2 Present address: Center for the Neurobiology of readiness" to control some course of action. A schema
Learning and Memory, University of California at network does not, in general, need a top-level executor
Irvine, Irvine, CA 92717, USA. since schema instances can combine their effects by

distributed processes of competition and cooperation



Biological and Computational Stereo Vision

Stephen T. Barnard
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Abstract

A computational model of stereo fusion is exam-.
ined in the light of biological and psychophysical P
knowledge of stereo vision in humans and other vlem ,ercircie
mammals. Several analogies are suggested, in- V
cluding the use of independent spatial-frequency
channels with one-octave separation, the role of
vergence and the limits of fusion, sensitivity to
vertical disparity, and the use of 3 pools of dispar-
ity detectors. It is argued the similarity between
the morphology of the visual cortex and the fine-
grained, SIMD architecture exploited by the com-
putational model leads to similar constraints on
the computation of stereo disparity in both mi-
lieus, and therefore naturally leads to processes
with similar properties. c r

1 Introduction L cyclopean orisin

Scientific investigation of stereo vision in humans and
other animals has an extensive history in neurobiology pr
ant psychology, dating from Wheatstone's discovery of
the phenomenon in 1838 [19]. Recently computational Fiure 1: Basic Stereo Geometry
modelers have made substantial progress in simulating
the process of stereo fusion on the computer. This pa-
per examines one such model in detail, and in particular The geometrical principle behind stereo vision, illus-
points out some striking similarities between the model trated in Figure 1, is quite simple. Assum-. that two
and current knowledge of stereo vision in higher mami- cameras form images through left and right centers of
mals. perspective 1 and r, onto planes L and R. (In practice

these would be imperfect optical lens systems, but for
this discussion we assume ideal "pinhole" projections.)1.1 Stereo geometry Furthermore, assume that the cameras are fixed upon

Stereo vision is a way of interpreting and exploiting vi- point v, which is to say that the two rays perpendicu-
sual information that is relatively well understood, in lar to the image planes passing through the centers of
animals as well as machines. The reason is clear: cam- perspective (the principle rays) intersect at v. Let 9, be
pared to other perceptual cues for depth, the problem is the angle between these principle rays. We say that the
well defined. Once the images are brought into point-to- absolute disparity of v is 0.. Now consider another point
point correspondence, recovering the third dimension is p projected onto image planes L and R as shown, and
a straightforward ap plication of trigonometry, let the angle between these rays be #p. We say that the

relative disparity of p with respect to v is 6P,. = 9p - 9,.
"The work described in this article was supported under Relative disparit is the more commonly used definition.

DARPA contracts MDA903-86-C-0084, DACA76-85-C-0004, and
89F737300. Use of the Connection Machine was provided by The circle through 1, r, and v (actually a sphere)
DARPA. is called the Vieth-Miller circle (closely related to the
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The Neural Basis of Behavioral Choice
in an Artificial Insect

Randall D. Beer1' 2 and Hillel J. Chiel2

Departments of 1Computer Engineering and Science, and 2Biology
and the Center for Automation and Intelligent Systems Research

Case Western Reserve University
Cleveland, OH 44106 USA

Abstract els. In a similar vein, Maes (1989) has proposed an
approach to action selection in which a collection of

As its internal state and external environment continu- simple agents interact by passing activation along a va-
ously change, any truly autonomous agent must choose riety of special-purpose links.
actions which are most appropriate to its immediate Our own approach is grounded in the study of the
circumstances. This paper explores the idea that neu- neuronal mechanisms underlying the behavior of sim-
robiological design principles can be applied to the flex- pler natural animals, a field known.as neuroethology
ible control of autonomous agents. We describe a simu- (Camhi, 1984). We have been exploring the idea that
lated insect whose behavior is controlled by an artificial neural network control architectures for autonomous
nervous system. In particular, we focus on the neural agents can be designed using principles drawn directly
basis of two different examples of behavioral choice in from biological nervous systems. This approach has the
this artificial insect. advantage that more direct interactions between biolog-

ical and artificial mechanisms for autonomous behavior
are possible. This style of modeling was first proposed

1 Introduction by Braitenberg (1984). In this paper, we describe an
artificial nervous system we have designed for control-

One of the most fundamental problems faced by any ling the behavior of a simulated insect. The design
agent, either natural or artificial, which must function of this insect is based in part upon specific behaviors
autonomously in the real world is deciding what to do and neural circuits drawn from several natural animals.
next. As both its external environment and internal We focus here on two different examples of behavioral
state continuously change, an autonomous agent must choice in this artificial insect.
constantly choose actions which lead to global behav-
ior most appropriate for the current situation. Broadly
speaking, the problem of behavioral choice encompasses 2 The Artificial Insect Project
the entire spectrum from minor adipstments of ongoing
behavior to discrete switches between different behav- The artificial insect project is aimed at exploring the
iors. In addition, it involves the generation of groups of use of neuroethological principles to design artificial
related behaviors with the appropriate timing and se- nervous systems for controlling the behavior of com-
quencing to accomplish specific objectives (McFarland, plete autonomous agents, an endeavor which we have
1981, pp. 118-121). termed computational neuroethology (Beer, 1990). We

How should the control system of an autonomous have developed a simulated insect, a simulated envi-
agent be organized to support such behavioral choice? ronment with which it must cope, and an artificial ner-
Recently, there has been a trend toward more dis- vous system for controlling its behavior. The insect is
tributed approaches. For example, Brooks (1986) has capable of locomotion, wandering, edge-following, and
been exploring the subsumptwn architecture for au- feeding, as well as properly managing the interactions
tonomous agent control. This architecture consists of between its various behaviors. In order to understand
layers of task-achieving behaviors each of which is im- behavioral choice in this artificial insect, it is essential
plemented as a network of finite state machines aug- to understand the details of its design, which we briefly
mented by timers and registers. Interactions between review below.
behaviors are handled by allowing machines in one layer The artificial insect is a two-dimensional abstraction
to suppress interactions between machines in lower lev- of a biological insect (see Figure 5). Its body consists



MODELING AND SIMULATION OF ANIMALS' MOVEMENTS (*)

Simon BENHAMOU & Pierre BOVET
Centre National de la Recherche Scientifique

Laboratoire de Neurosciences Fonctionnelles

F-13402 Marseille Cedex 9 (BOVET@FRMOP11)

Abstract it spends in the various areas of the environment) and

Probabilistic models were developed to represent animals' orientation mechanisms (those whereby an animal moves

movements. The simplest one makes it possible to towards a specific goal), it is necessary to first model the

compute the sinuosity of an animal's search path and to search paths. It is afterwards important to determine

determine some basic properties such as its diffusion. which environmental cues are relevant to animals and

Applying this model in the framework of optimal foraging which kinetic parameters they have to regulate to be

theory led us to determine the sinuosity value which efficient. Using modeling and computer simulation of

minimizes the path length of a central place forager. animals' movements, we have attempted to formalize

More complex models, integrating cybernetic controls of some of the mechanisms involved in movement control. In

the sinuosity and the velocity as a function of this context, animals have been taken to be probabilistic

environmental stimulations, show how animals can orient self-directed mobile agents.

themselves in relation to a stimulation gradient or exploit Here we present a general overview of the

patchy environments using simple klino- and ortho-kinetic theoretical studies we have published over recent years in

mechanisms. Another t.pe of movement model was the field of modeling animals' movements. Thee models

developed to study orientation mechanisms based on an deal with a large range of natural spatial behaviours, from

egocentric spatial memory. random foraging to oriented movements based on spatial

memory. Some of these models link up with the optimal

1. Introduction foraging theory- they are an attempt to determine which

movement strategies maximize the efficiency of food

Animals often exhibit random search paths: take for searching in a stochastic environment. Other models were

example the paths of foraging ants, which anybody can devised with a view to explaining orientational

observe. This intrinsic randomness does not however performances on the basis of elementary sensorimotor

prevent the animals from orienting efficiently towards probabilistic mechanisms. Since a mathematical approach

specific goals and/or aggregating in the the most suitable would be too complex to be practicable here, the
areas of their environment. To understand space-use properties of our models were established using computer
mechanisms (those whereby an animal regulates the time simulations.

..... o.o. °oo.. ................................ .. o ...... .° .... .. oo.o...o.....°..°...................... .... o.°°° .o....° ....') histextis .reise.vesion of co muncaton p evi usl.prsened a a ork hop on od elngAnaysi an
() This text is a revised version of a communication preiously presented at a workshop on Modeling, Analysis and
Simulation of Biological Motion, Bonn 1989.



Instinct as an Inductive Bias

for Learning Behavioral Sequences

Lashon B. Booker-

Navy Center for Applied Research in Artificial Intelligence
Naval Research Laboratory, Code 5510

Washington, DC 20375-5000

Abstract are evident in animal behavior. In subsequent sections
we describe the classifier system framework and show

Ethologists have identified many ways that in- how it can be used to implement computational models
nate behavioral primitives and predispositions of some of these relationships. In particular, we show
facilitate the learning of complex behaviors, how certain built-in mechanisms for generating behav-

clisifier appst es. We s o e o w certin it - ior provide an inductive bias that can be manipulatedclassifier systems. We show how certain built- to improve learning in classifier systems. The effects
in mechanisms for generating behavior in clas- of this bias on learning are illustrated by a classifier
can be manipulated to improve learning. The system that learns to solve a simple navigation task.

effects of this bias on learning are illustrated
by a classifier system that learns to solve a 2. Instinct and Learning
simple navigation task.

At one extreme, instinctive behaviors can be sufficiently

1. Introduction preordained and inflexible that they proceed to com-
pletion automatically once they are triggered by an ap-

Animals are born with a large repertoire of innate, co- propriate stimulus. These motor programs are called
ordinated patterns of muscle movement and behavior fixed action patterns and, once initiated, they often re-
commonly referred to as instincts. Instincts are often quire little or no external feedback. A classic example
thought of as inflexible, low-level "motor programs". of a fixed action pattern is the egg-rolling behavior of
However, ethologists have discovered that innate be- geese, which a goose will complete even if the egg is
haviors in fact often use learning as a strategy for filling taken away (Tinbergen, 1951).
in details that are too complex to specify completely in Other kinds of innate behavior patterns are rigidly
advance. While some instinctive behaviors may be rigid programmed, yet exhibit a great deal of "run-time"
and stereotyped, many others are remarkably plastic. flexibility (Gould, 1982). Examples include the con-

The relationship between instinct and learning is not struction of bird nests, beaver dams, and spider webs.
just relevant to ethologists however. Computational These structures have fixed, species-specific character-
models of adaptive behavior can also benefit from un- istics, but the building behavior can adapt itself to a
derstanding the important influences of prior structure wide variety of both predictable and unpredictable con-
on learning and behavior. Unfortunately, the role of tingencies in the immediate environment. Even more
prior structure and innate rules of behavior is ignored in sophisticated examples of plasticity are evident in the
most computational models of adaptive behavior. Ex- way human infants learn to crawl and walk. One innate
ternal reinforcement is usually viewed as the primary, component of this behavior seems to be a goal-directed
if not the only, influence on learning, specification of what to learn - infants seems to have a

This paper examines how prior structure or "in- built-in sense of which movements "feel right" - cou-
stinct" can work together with reinforcement in classi- pled with a motivational drive for repeated experimen-
fier systems, a rule-based framework for studying adap- tation. Moreover, the learned movements show a fur-
tive behavior. The next section briefly reviews a few ther flexibility in the way they recalibrate themselves to
of the relationships between instinct and learning that accommodate the growth of the body. These are just

* Author's current address in Artificial Intelligence Technical a few examples of the many ways instinctive mecha-
Center, The MITRE Corporation, 7525 Colshire Drive, McLean, nisms and predispositions can facilitate the learning of
VA 22102, booker~ai.mire.org complex behaviors.
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Abstract world.

As [Flynn 871 points out, there are many compo-
In recent years there has been a move within the ar- nents to such creatures, including sensors, actuators,
tificial intelligence and robotics communities towards power sources, and intelligence. Over the last five years
building complete autonomous creatures that operate we have found that all these components are intimately
in the physical world. Certain approaches have proven related as we have tried to build prototype creatures
quite successful, and have caused a re-analysis within ([Flynn and Brooks 89]). Choices in any part of the
the field of artificial intelligence of what components are system architecture (e.g., sensor characteristics) have
necessary in the intellectual architecture of such crea- major impacts upon other parts of the system. In gen-
tures. However nothing built thus far yet comes close eral it is very dangerous to think that any one compo-
the dreams that many people hold dearly. Further- nent (such as intelligence) can be isolated and studied
more there has been quite some criticism of the new by itself.
approaches for lacking adequate theoretical justification. Our experience with the subtleties of such interactions
In this paper we outline some of the more obvious chal- has led us to our current construction of a very complex
lenges that remain for these new approaches, and sug- robot, named Attila ([Angle and Brooks 90)) pic-
gest new ways of thinking about the tasks ahead, in or- tured in figure I (in fact we are building multiple copies
der to decompose the field into a number of manageable of Attila). It has six legs, each with three degrees of
sub-areas that can be used to shape further research. freedom, an active whisker, a gyro stabilized pan-tilt

head carrying a range finder and a CCD camera, 10 on-
1 Introduction board processors, and over 150 sensors. We built an

earlier six legged robot named Genghis ([Angle 89],
There is a growing interest in building artificial crea- (Brooks 89], but its complexity pales in comparison to
tures of some sort. One example is the recent boom that of Attila. Many of the issues raised in this paper
in a field known as Artificial Life (see [Langston 87 were brought to our attention as we have tried to work
and (Langston 901). While much of the emphasis is on out how to program this complex robot Attila to be an
building forms resident in computers, which are agents artificial creature.
acting in an information domain, there has also been The bulk of this paper is devoted to the problems and
some interest in physical embodiments of artificial crea- challenges in designing and building the computational
tures. architectures for such creatures. However, the reader

This author, at the MIT Al Lab, introduced the sub- should not forget that the other aspects of a creature's
sumption architecture ([Brooks 86] and extended in architecture cannot be considered in isolation from in-
[Brooks 901) with the explicit goal of building mo- telligence. In a complete design, all aspects greatly in-
bile robots with long term autonomy. Later the word fluence each of the others.
creaiure crept into the language of the MIT group (e.g., We first argue that there are multiple levels of analy-
(Connell 87]). The goal is to build autonomous mobile sis or abstraction with which we must be concerned in
robots which operate over long periods of time, com- designing and building complete creature architectures.
pletely autonomously, in dynamic worlds. It is envi- There can be no single magic bullet or theory which will
sioned that these worlds are worlds which already exist tell us all we need to know. Some problems within these
for some other purpose-not worlds specially built to levels are well circumscribed and so can be worked on in
house the robots. Further, it is envisioned that these isolation. However, in order to build complete creatures
robots carry out some task which has some utility for we need to bridge the gaps between these levels also.
whoever wanted the robots to exist and live in this The bulk of the paper then goes on to examine each
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Abstr act inside of the black-box system whose beha-
vior it nevertheless replicates adequately.

Anexperiment has beenset up toexplore the The model may lump several functions into
hypothesis according to which the solution one, incorporate approximations, ignore
of conflicts of motivations is reached by the some rare or extreme conditions but remain
trend to maximize pleasure. Subjects were nevertheless a good model.
placed in a situation of conflici where the The second type of model is more ambi-
pleasure of playing a videogame clashed tious and aims at theoretical description of
with the increasing discomfort of a cold the system This type of model is more diffi-
environment. The time lapse tolerated by cult to achieve because it includes the inti-
each of the subjects could be predicted from mate laws of the system and because it im-
the algebraic sum of the rating of displea- plies the knowledge of the structures and
sure aroused by the cold environment and functions of the constituent elements of the
the rating of pleasure aroused by the video- system. Eventually this second type also
game, obtained in different sessions. This reaches the same goal as models of the first
result supports the working hypothesis and type.
perrmits the conclusion that pleasure is the In an enlightening chapter on ins-
common currency which allows tradeoffs tinct and motivation Epstein (1982) has re-
among various motivations. cently reflected that there are behaviors

which are simple reflexes in the Cartesian
and Sherringtonian acceptation of the word,
but there are also complex behaviors. The

1. Models. latter occur with the cooperative action of
an endogenous component, an acquired

One may identify two types of models those component, and a reactive component. He
describing the behavior of a given system stressed that (we need concepts that take
and those describing the system itself. The account of the complexities of behaviors
first type of model is pragmatic. A good that are not reflexive). Theoretical models
behavioral model is adequate enough when of complex behavior must include these three
it replicates the behavior, and is able to components. This implies the recognition
predict future behavioral responses of the and the incorporation of emergent proper-
system. Yet this may be achieved without ties and functions within the central ner-
any knowledge of the intimate mechanisms vous system. i.e. functions which cannot be
that produce the behavior. In the same way predicted from the sum of properties of the
as a given envelope function can be ap- elements of the central nervous system it-
proximated with various summations of dif- self. Excellent theoretization on this point
ferent functions, a model may ignore the will be found in Toates (1986a).
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Abstract
"he methodology we have used to develop

An evolutionary method based on such organisms is an evolutionary technique
selective reproduction and random based on selective reproduction and random
mutation was used to evolve neural mutation (Holland, 1975; Goldberg, 1989).
networks that control two types of (For other approaches to developing similar
simple organisms which can reach for behaviors see Jordan, 1989; Booker, 1988;
objects using their 2-segment arm. Patamello and Carnevali, 1989.) An initial
One kind of organism does not move population of organisms each randomly
and can only capture an object if it is different from all others is created. Each
at reaching distance; the other can organism lives in its individual environment
displace itself and therefore it first which contains a number of objects. At the
approaches an object and then end of their life they are rank ordered based
captures it. Individual learning during on their performance on the object reaching
lifetime to predict changes in the tasks. There is no learning of this task during
position of an object or of the hand life but p,-formances vary because of
relative to the organism's body helps chance. Only the best performing organisms
in the evolution of the object reaching are allowed to reproduce by generating a
capacity, although inheritance of the number of copies of themselves while the
weight matrix is strictly Darwinian. others estinguish without leaving any
Finally, a more sofisticated fitness offspring. A small amount of random
criterion which penalizes arm variation is added to the copies so that some
movements causes the more complex offspring will result in a better individual and
organism to move its arm only when some in a less good individual than their
an object is at reaching distance. common parent. However, selective

reproduction will insure that a better
offspring is more likely to reproduce than a
lcss good one. The net result of this

I. Introduction evolutionary process is that the capacity to
reach for objects gradually increases across a

Our purpose in the present paper is to number of generations.
describe an attempt at evolving simple
simulated organisms that have the capacity Another purpose of this research is to
to reach for objects using their single 2- examine how the performance that emerges
segment arm. We will describe two such evolutionarily can be controlled and shaped
organisms. One does not move and can only by appropriately manipulating the fitness
reach for objects if the objects are located at criterion, that is, the criterion in terms of
reaching distance from the organism. The which individuals are rank ordered and
second organism can displace itself in space which therefore dictates who will reproduce
and therefore can approach objects and, and who won't. In the second simulation
when they are at reaching distance, it can with the organism which both displaces itself
reach for them with its arm. in space and moves its arm, we will show
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Abstract domain of the field of neuroethology, and the new ap-
This paper questions approaches to computa- proach is therefore referred to as "computational neu-

tional modeling of neural mechanisms underlying roethology". Meaning is supplied to the models by em-
behaviour. It examines the "simplifying" (con- bedding them in simulated environments which supply
nectionist) models used in computational neu- visual feedback without human intervention, that is they
roscience and concludes that, unless embedded close the external feedback loop from motor output to
within a sensorimotor system, they are meaning- sensory input.
less. The implication is that future models should The advantage of computational neuroethology is that
be situated within closed-environment simulation the semantics of the network are well grounded, and
systems: output of the simulated nervous system thus results are generated by observation rather than
is then expressed as observable behaviour. This by interpretation. That is, the fruits of computational
approach is referred to as "computational neu- neuroethology simulations are "hard" objective measure-
roethology". Computational neuroethology of- merts rather than "soft" subjective ones. At a metatheo-
fers a firmer grounding for the semantics of the retical level, it is argued that the computational network
model, eliminating subjectivity from the result- simulation of cognitive processing should pay much more
interpretation process. A number of more fun- attention to the evolutionary history of those faculties it
damental implications of the approach are also wishes to replicate. In particular, a conclusion of this
discussed, chief of which is that insect cognition paper is that the study of linguistic processes using net-
should be studied in preference to mammalian work models is wildly premature. The study of insects is
cognition. advocated as the most fruitful path for future research

As the reader will probably already have detected, this
1 Introduction paper is intentionally polemic. It is aimed at an inter-

disciplinary audience, and the author is no polymath.
This paper questions approaches to computational mod- For that reason, this paper is offered as a provisional
eling of the neural mechanisms underlying behaviour. It manifesto in the hope that it provokes some interesting
examines the relationship between computational neuro- discussion. The argument is based on previous work by
science [26] and that style of modeling popularly referred a number of authors. Because of its disputatious nature,
to as "ccnnectionism", "parallel distributed processing", there are more direct quotes in this paper than is corn-
or "neural networks" 1 which has recently been subject to mon. There is no denying that this is a selechve review
renewed attention in the fields of cognitive science and of the literature. This paper is abridged from [9].
artificial intelligence (see e.g. [25, 23]). The paper opens with a discussion of computational

Connectionist models are characterised by their sim- neuroscience, distinguishing it from neural engineering,
plified nature and concomitant inattention to biological and identifying two classes of model: realistic and sim-
data, and it is argued here that such "simplifying" com- plifying. Following this, the connectionist paradigm is
putational neuroscience has serious inadequacies. A dif- briefly summarised. Next, criticisms of connectionism
ferent approach is suggested which pays far more atten- are discussed, with particular attention to the argument
tion to the sensorimotor system and hence to behavioural that connectionist models have no semantic ground-
interactions with the external environment. This ap- ing without behavioural linkage to a sensorimotor sys-
proach involves computational modeling of the neural tern. Then, a remedy to this objection is proposed:
mechanisms underlying behaviour, in a manner akin to the adoption of the computational neuroethology ap-
that used in connectionism. Such an analysis of be- proach. Computational neuroethology is defined, and
haviour as a product of neural activity is properly the a specific technique for providing a behavioural linkage

'In this paper, these three terms wiu be treated as synonymous, is discussed. This approach has some important impli-
and referred to collectively as "connectionist" models. cations for future research, the most significant of which



The Computational Hoverfly; a Study in Computational Neuroethology

Dave Cliff
University of Sussex School of Cognitive and Computing Sciences

Brighton BN1 9QN, England, U.K.
E-mail: davec~uk. ac. sussex . cogs

Abstract clusively mammalian trait. The hoverfly Syitta pipiens

Studies in computer vision have only recently exhibits animate foveal vision behaviour which is remark-

realised the advantage of adding a behavioural ably similar to corresponding behaviour in humans.

component to vision systems, enabling them to The research project described here is a 'neural net-

make programmed 'eye movements'. Such an an- work' simulation-model study of the mechanisms under-

imate vision capability allows the system to em- lying animate vision in Syritta. The study of the neural
ploy a nonuniform or foveal sampling strategy, basis of behaviour is properly the domain of the field
with gaze-control mechanisms repositioning the of neuroethology, and this project (relying as it does on
limited high-resolution area of the visual field, computer simulation) is thus a form of "computational

The hoverfl :yritla pipien is an insect that ex- neuroethology".
hibits foveal animate vision behaviour highly sim- The simulation models the hoverfly living in a closed
ilar to the corresponding activity in humans. This dynamic environment: activity in the model nervous sys-
paper discusses a simulation model of Syritta cre- tem is expressed as flight behaviour of the model fly,
ated for studying the neural processes underlying which in turn generates new visual input for the sim-
such visually guided behaviour. The approach ulated eyes, which feed the model nervous system, thus
differs from standard "neural network" model- completing a visual feedback loop from sensorimotor out-
ing techniques in that the simulated Syrilla ex- put to photoreceptor input. The model nervous system
ists within a closed simulated environment, i.e. is not 'hard-wired' but is created using techniques from
there is no need for human intervention: such current 'connectionist' network learning theory and from
an approach is an example of computational neu- adaptive filter theory. The method by which the network
roethology. is created is incidental: it is the capability of the mature

network that is of interest. A number of different strate-
gies for creating the network are being explored; the opti-

1 Introduction mal solution (in the engineering sense) is not necessarily
the most biologically interesting.

For an animal (or an autonomous robot) to adapt and This paper gives a brief review of the past research on
survive in uncertain environments, a sense of sight is which this project builds, and then presents an overview
undoubtedly a useful thing to have. The creation of of the simulator system. The project draws on litera-
seeing machines has been the topic of much research ture in a number of fields: a more complete account of
in artificial intelligence and computer vision. Unfortu- the background literature and the simulator is given in
nately, most such research has ignored the behavioural [13], which this paper is abridged from. Computational
contexts in which natural vision occurs. Recently, a re- neuroethology [12] is discussed here only in passing.
search paradigm known as animate vision has emerged, The work is at an early stage. So far the most signifi-
where the seeing machine is given the ability to make cant results are in the design of the simulator. especially
programmed 'eye movements', allowing it to look around: the generation of the view through Syritta's eyes.
animate vision acknowledges the behavioural contexts of
natural vision. 2 Rationale

One such context is the need to control gaze when the
image sampling strategy uses nonuniform resolution. i.e. Work of this nature does not have a long academic pedi-
where only a restricted area of the field of view is high- gree. Therefore, the notes below concentrate on a few
acuity. as in foveal vision commonly found in predatory papers in some depth, rather than superficially skim-
animals. Foveal vision offers a number of advantages for ming many. The animate vision paradigm is described,
any real-time visual system, whether artificial or natural followed by a discussion of nonuniform sampling. The
(robot or animal). Animate foveal vision is not an ex- argument underlying the interest in insects is then re-
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Abstract studies in our laboratory indicated significant variation
among both male and female guppies in their preferences
for stimuli of food and conspecifics. Such individualA statistical method for quantifying, variation has increasingly attracted the attention ofsummarizing, and evaluating information

about the behaviour of a living system is behaviourists (e.g. for fish see Magurran, 1986; Gotceitas &
illustrated using data from a study of the Colgan, 1988) with respect to its basis and function. From
ontogenetic development of preferences in an ontogenetic perspective, such variation raises questions
guppies fteciia LcjgalaM). This method concerning the role of social isolation in its development,
permits comparisons of groups of individals sexual differences in this ontogeny, and the extent to which
in different treatments when the data on each adult behaviour is predicted by juvenile behaviour.
individual consists of a long sequence of Ontogenetic research on guppies has included studies

bvioual osts to r awith the entry time on the development of stimulus preferences (Candland &
behavioural states togethereily time Milne, 1966), avoidance of predators (Goodey & LUley,into those states. This tool is readily adaptable 1986), temperature preferences (Johansen & Cross, 1980),
to the study of a simulation of an organism,

set of organisms, or the comparison of robotic sexual activities (Liley & Wishlow, 1974), and the role of
stress and rearing conditions (Pinckney & Anderson, 1967;models with living systems. Newton, 1982). Germane to the present work are the

following findings from these studies. Tsolated fish were less
active than controls and that activiLy decreased over the

1. Introduction duration of the observational trial (Newton, 1982). The
isolates scored higher frequencies of social display and

The use of robotic systems to model living organisms lower levels of sexual activity. Liley (1966) found that as
has had varying degrees of success in expanding our experience was gained with females, previously isolated
knowledge of living systems. Generally, the exercise is male guppies showed decreased levels of display. Pinckney
fruitful when relevant aspects of the livingsystem are and Anderson (1967) observed that group-reared fish spent
modelled faithfully. It is important, therefore, to have a decreasing amount of time near the stimulus fish in
tools for comparing the behaviour of robotic systems contrast to the isolated fish that spent an increasing amount
with the living systems they model, of time near the stimulus fish. The group-reared fish

We present here one example of such a tool: a showed a preference for the stimulus fish of the same sex
statistical method for quantifying, summarizing, and while the isolated fish showed no significant preference for
evaluating information about the behaviour of a living either sex of stimulus fish.
system. We illustrate this statistical tool by a study of All of these studies examined the behaviour of mature
preferences in guppies (=) for food and adult fish as the outcome of various manipulations. The
conspecifics. The tool is readily adaptable to the study objective of the present study was to monitor at frequcnt
of a simulation of an organism or set of organisms, or intervals the stimulus preferences and activity of guppies
to the comparison of robotic models with living systems, throughout the juvenile and early adult period-, and to

Guppies (foecil reticulata) are an intensively determine the extent and ontogeny of individual differences
studied species for many aspects of behaviour. Pilot in each sex. Individuals were raised as experimental fish
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Abstract and evolutionary systems whose dynamics are too com-
eare interested in simulations of biological plex to study analytically or experimentally (11]. In this

Welo ine simulations of iolofior- paper we consider simulating organisms that live and re-
evolution, i.e. simulations of populations of or- produce in relatively complex environments, with many
gleanm overamy eneiraonsng O ia- sensors (external and internal), and many possible actions
pionx and dyna ic nvromeningat. O h sin- at each moment. In addition the organisms possess some
tions are microanalytic, meaning that each in- amount of internal memory, allowing their behavior to be
dividual organism and gene is separately repre- history sensitive. In the course of its life each organism
sented, and the biologically significant events in is born, makes thousands of decisions (eat, move, mate,
an organism's lif e all separately simulated in etc.), and eventually dies. The reproductive success of a
detail. Although we have been successful with particular organism is affected by its behavior throughout
simple models, we have encountered fundamen- its lifetime.

tal difficulties when scaling up the complexity its imea

of the organisms and the complexity of behav- Our simulations are microanalyfic, meaning that each

iors we expect of them. These difficulties all individual organism and gene is separately represented,
lo a sex e tion: em. Ths difficnti approp- and the biologically significant events in an organism's
lead to a single question: What is an appropri- life are all separately simulated in detail. Each organ-

an appropriate programming paradigm in which ism in the evolving population is separately represented
as a program. Each organism's life is represented as a

tnhow sshel scpro behavioro e rgnm, process, a detailed sequence of events including its birth,
and how should such programs be encoded into its interaction with a dynamic environment, its competi-
sns or th etc ation with other organisms, its mating and reproduction

cessful over them? (fayadisdah

The project that brought these issues to (if any), and its death.
the ret a t p eoutiesisueaton The structural representation of an organism consiststhe surface is a complex evolutionary simulation of the following parts:

called AntFarm, in which we are attempting to

evolve cooperative foraging behavior in a popu- * interpreter: used to execute organism behavior func-
lation of colonies of artificial "ants." In this pa- tions (programs);

per we survey a number of candidate represen- 9 phenotype: the behavior function (program), that
tations for organisms, that we have considered maps sensory inputs and memories into memories
for AntFarm, all of which have been used in the and effector outputs;
past for simple evolution models. We show that p genotype: a bitstring that encodes the behavior
none of the representations are well-suited for function;
AntFarm. From their inadequacies we abstract
a number of principles that we believe are neces- e development function: the mapping that decodes the
sary for successful evolution of complex artificial genotype to produce the phenotype.
life. Finding a representation that has all of the In all of our experiments, the development function is
properties we identify is still an open problem. fixed for all organisms and for all time; it is not subject

to evolution. The genotype, of course, differs from an-
imal to animal, but is static throughout the life of the

1 Introduction organism; it is the genetic material used in reproduction.
At the time of reproduction, recombination and muta-

The simulation of evolving populations of artificial organ- tion operators are applied to a pair of parent genotypes
isms is very important in the study of ecological, adaptive, to produce an offspring genotype. The phenotype of an
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ABSTRACT

When a robot has to move in a locally uncertain environment, propulsion by
means of walking legs is advantageous compared to a wheel driven system.
However, the control of walking legs is more complicated. The question of
how the movement of the different legs is coordinated will be investigated
here. Three different solutions which have been developed during natural
evolution will be compared. These are the walking systems of an insect, of
a crustacea, and of a mammal. The results show that coordinating
mechanisms differ considerably in these animals.

1. INTRODUCTION similar mechanisms to the control of
walking legs in machines. In the past,

An autonomous robot which has to move engineers have pointed out that little
in an uncertain environment has to deal information is available on the
with the problem of how to perform a biological control mechanisms, but this
goal-oriented behaviour. This problem situation has changed recently. This
is a global one, meaning that the robot paper provides a summary of the recent
has to deal with the detection of biological results focussing on data
possible paths and to decide which of obtained from insects, crustaceans, and
these it should take. This includes the cat by means of behavioural methods.
problem of obstacle avoidance. When the
environment is "locally certain", as 2. CONTROL OF THE INDIVIDUAL LEG
for example a semi-artificial
environment with flat surfaces, the The results to be described here
technical problem of how to move the mainly concern the coupling mechanisms
body forward is comparatively simple between legs, i.e. those mechanisms
and can be solved by driving the robot that produce a proper coordination of
with wheels. If, however, the local the walking legs even when walking is
structure of the envircnment is disturbed. However, for this purpose it
uncertain, i.e., consists of irregular is necessary also to consider briefly
terrain, a robot with walking legs is how the movement of an individual leg
advantageous. Several attempts have is controlled. The mechano-neuronal
been made to construct such a walking system that produces this movement
machine. Nevertheless, comparing the might be called the step pattern
walk of a six-legged robot with that of generator. To avoid a possible
an animal such as an insect, misunderstanding it should be stressed
immediately reveals differences. The that it is completely open whether this
walking of an animal is much more step pattern generator contains an
versatile, and it appears to be more endogenous central pattern generator.
efficient and elegant. Thus it is
useful to consider biological control For simplicity, only forward walking
mechanisms in order to apply these or will be discussed. The cyclic movement
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Abstract
given path is approximated with a finite number of intervals

The purpose of this paper is threefold. To analyze an specified by the motion vectors joining the discrete end-
adaptation anomaly observed in a specific genetic effector positions. In other words, any sequence of end-
algorithm designed to optimize robot trajectories, to effector p>2) defines a valid which will
propose an explanation for this unusual adaptive positions (e trajectory
behaviour by drawing an analogy with some elementary approximate the desired path with a measurable error.
mechanisms in nature, and to suggest that a much more
robust adaptive strategy is to allow concurrent
adaptation of both the information content and the
representation structure by the genetic plan. This latter
strategy results in the optimization of the ability to The desired path
adapt.

This paper suggests that when artificial life or
machine learning applications attempt to capture the
essence of natural adaptation. it is important they allow and-effeclo.
selection to operate on all levels of the system.

Furthermore. it is essential to expose both the structureof the system and its information content to selection.

Fig. I - 3-link planar robot arm commanded to a fully stretched
1 A Genetic AIgorithm Designed to position, but the end-effector exhibits a steady-state

Op m e Robot Trajectories positioning deviation from the horizontal due to limited
positioning control accuracy.

Most robot applications are based on a motion trajectory
composed of a movement sequence of a robot arm.
Mechanically, a robot arm is an open kinematic chain Therefore, the optimization of a robot trajectory means
comprising relatively stiff links with a joint between the identification of both the optimum combination and
adjacent links. Each link represents one degree of freedom number of end-effector positions, and that means a great
and can be commanded to move independently of all other many alternative trajectories that should be considered. The
links. Standard systems have six degrees of freedom to size of the trajectory space grows substantially even further

obtain full spatial flexibility. Since a robot arm performs a when the robot used is of a redundant structure and most

task through the motion of its end-effector attached to the end-effector positions instantiate a multitude of different

last link, the last link is the primary component of the arm-configurations.

whole s e The complexity of programming a trajectory can be
An srmcofgur an iappreciated by examining the vertical plane in which the
An arm-configuration is a unique arm structure deined end-effector is required to follow the straight line connecting

by a set of lk positions (Fig. 1). Givcn the positions, the points A and B (Fig. 2a). One robot trajectory may be
end-effector's position is uniquely determined. A robot specified by sites I and 2 the end-effector should visit (Fig.
trajectory is defined by specifying a sequence of spatial 2b), while another trajectory might consider sites 3, 4, 5 and
positions the end-effector is required to visit. Thus, any 6 as an alternative specification (Fig. 2c). The performance

resulting from the different trajectories might be quite
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Abstract tells them where to place what. Ants work in parallel but do

not, as far as we can tell, have the capacity to communicateA distributed sorting algorithm, inspired by how like the shopkeeper, nor do they have a hierarchical organi-
ant colonies sort their brood, is presented for use sation whereby one individual makes the necessary deci-
by robot teams. The robots move randomly, do not sions and the others follow. Nevertheless, if you tip the
communicate, have no hierarchical organisadon, contents of a nest out onto a surface, very rapidly the work-
have no global representation, can only perceive ers will gather the brood into a place of shelter and then sort
objects just in front of them, but can distinguish it into different piles as before.
between objects of two or more types with a cer- This article describes a simple behavioural algo-
tain degree of error. The probability that they pick rithm, to be followed by each worker, that generates a sort-
up or put down an object is modulated as a func- ing process. Sorting is achieved without requiring either
tion of how many of the same objects they have external heterogeneities (e.g. temperature or humidity), hi-
met in the recent past. This generates a positive erarchical decision-making, communication between the in-
feed-back that is sufficient to coordinate the robots' dividuals or any global representation of the environmenL
activity, resulting in their sorting the objects into We also stress that the ants/robots have only very local in-
common clusters. While less efficient than a hier- formation about the environment and a very short-term
archically controlled sorting, this decentralised or- memory, and furthermore move randomly, no oriented
ganisation offers the advantages of simplicity, movement being necessary. They can't see far off nor move
flexibility and robustness, directly towards objects or piles of objects.

Our aim in this article is not to prove that the
model proposed is actually how the ants behave, but to

1. Introduction show that such an algorithm both works and could be used
by a team of robots. Inspired from our knowldege of the

What is the common point between a shopkeeper and an ant importance of functiord self-organisaion or distributed in-
colony? Each of these organisms is able to sort similar but telligence in ant colonies (Deneubourg, 1977; Deneubourg
different objects. When one examines an ant nest it is clear et al., 1984, 1986, 1987; Deneubourg and Goss, 1989; Goss
that neither the workers, the brood nor the food are ran- et al., 1990; Aron et al., 1990), our idea presents a working
domly distributed. For example the eggs are arranged in a illustration of how such a distributed system can have prac-
pile next to a pile of larvae and a further pile of cocoons, or tical applications in robotics, in accordance with ideas de-
else the trtee categories are placed in entirely different parts veloped by ourselves (e.g. Deneubourg et al.. 1984, 1990:
of the nest. The same is true in a shop. There is, however, an Deneubourg and Goss, 1989), and othcrs (e g. 3eni, 1988;
essential difference. The shopkeeper decides where he is Brooks and Flynn, 1989; Sandini and Dario, 1989; Fukuda
going to put his different goods, and if he has assistants he and Kawauchi, 1989; Brooks et al., 1990; Steels. 1990). The
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Abstract sensing and control. In the autumn term (October to
December, 1989) it was used for the practical sessions
of a new ten week module called "Intelligent Sensing

During the summer of 1989 we established and Control" I during which students worked in pairs to
the Intelligent Sensing and Control Laboratory build a series of Braitenberg-like ([Braitenberg 1986])
in the Department of Artificial Intelligence at mobile vehicles of increasing motor-sensory sophistica-
Edinburgh. This laboratory is designed to tion. It is now being used for a number of other projects
support both post-graduate teaching and basic in a long term research programme to investigate
research into intelligent sensing and control. the acquisition, maintenance, and adaptation of task
In this paper we present the motives for achieving competences in autonomous mobile robots.
setting up the Intelligent Sensing and Control
Laboratory and the design and implementation In this paper we present the motivation for setting
of a Lego TechnicTM based technology used up the ISC lab and the design and implementation of
to build simple autonomous vehicles intended the technology used to build the autonomous vehicles.
to support the teaching and research activities We also report on some of the experiences gained from
of the laboratory. We report on some of its first year of operation in both teaching and research.
the experiences gained from its first year of
operation and relate these to the requirements
of our biologically oriented research programme
into intelligent behaviour and its development in
autonomous artificial mobile systems. 2 Background and Motivation

Introduction There are two different motives for setting up the
Intelligent Senisng and Control Laboratory within the
Artificial Intelligence Department at Edinburgh. The

Du. g the summer of 1989 we established the first concerns the nature of intelligent behaviour and
Intelligent Sensing and Control laboratory (ISC lab) in the way we want to investigate it. The second concerns
the Department of Artificial Intelligence at Edinburgh. the kind of sensing and control we want to teach to our
This laboratory is designed to support both post- intelligent robotics students.
graduate teaching and basic research into intelligent

tNames appear in alphabetical order, with both being principal 'This forms part of the Inteligent Robotics theme of the
authors on this occasion. Department's MSc in Knowledge-based Systems.
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Abstract 2 Animation automation

Consider traditional animation movies: drawn by hand, they
In this paper, we propose the use of the animat approach to require a frame-by-frame precision level script for each char-
automatically generate animation scripts for computer synthe- acter of the animation. A first level of automation consists in
sized movies. We want to design a system where animats are drawing a few frame images by hand and apply an interpola-
actors able to improvise from a few contextual informations. tion procedure to generate the missing frames required for a
We plan to implement such animats with extended classifiers smooth animation. Improvements from the traditional paper
allowing a compact encoding of behavior rules while preserv- based technique only reside in greater flexibility of the draw-
ing their ability to be modified by inductive genetic opera- ing tools and reduction of involved manpower.
tions. By using computers, we can automate the generation of the

script by writing procedures in a computer language. Object
oriented [6] languages seem to match the requirements of an-

1 Introduction imation programming. In such languages, an object is speci-
fied by a local state (a set of state variables) and a set of proce-
dures (the object's methods). An object's behavior is imple-

When computer animated characters become more and more mented by its methods. As its methods process the object's
realistic in their rendering, the problem of specifying more re- local state, it is easy to obtain a wide range of behaviors from
alistic individual and collective behaviors also appears. We a few procedural specifications, by varying the content of the
think that animats can be used to solve this new problem and entities local states.
that behavior simulation based systems can change the way If object oriented programming systems facilitate the be-
computer animations are designed. We propose a "program- havioral specification of large groups of simulated actors, they
ming by environment" approach using animats and evolution do not give any assurance that the resulting acting will meet
simulation which can drastically reduce the work of animation the desired goals. This work is still under the responsibility of
script writing. the designer who must keep in mind a model of the potential

interactions between actors.
Animats are computer simulated entities, exhibiting A few fixed procedures can simulate complex behaviors.

animal-like autonomous individual or collective behavior. We Even a cellular automaton, Conway's game of life [2], can
want to use them as low-cost credible crowd arists in order generate primitive animats - gliders and glider guns, for in-
to ease the writing of animation scripts. In the world of film stance - with interesting behaviors. In the frame of computer
making, crowd artists are employed to give the audience back- animated graphics. we are moreover helped by spectators who
ground informations about the time and location where the will tend to interpret the events occurring in the movie. This
action of the movie takes place. The movie director gives to fact is highlighted in V. Braitenberg's book (3] where sim-
these actors fuzzy indications on how tc behave, then they are pie animats (called vehicles) are involved. These animats are
left nearly without control during the filming. On the other cans, endowed with captors (photosensible cells) and effec-
hand. as the central character behaviors may not easily infered tors (propellers such as wheels), which are wandering in an
from the movie context, the corresponding actors are more environment containing light sources. By changing the dispo-
precisely directed and have less freedom than crowd artists. sition and the properties of the different vehicle brain compo-

I
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Abstract different aspects of survival. For example, the parts

of an animal involved in the detection and
A model of the mechanisms underlying avoidance of predators can be thought of as

exploratory behaviour, based on empirical comprising one subsystem, the parts involved in
research and refined using a computer obtaining and metabolizing energy another, and so
simulation, is presented. The behaviour of on.
killifish from two lakes, one with killifish
predators and one without, was compared in Thus, an adaptive system can be thought of as a
the laboratory. Plotting average activity in a set of specialized subsystems working together to
novel environment versus time resulted in an maintain the integrity of the whole. However, when
inverted-U-shaped curve for both groups; we divide the system into subsystems according to
however, the curve for killifish from the lake ultimate causal goals such as avoiding predators and
withofit predators was (1) steeper, (2) reached obtaining energy, every subsystem that relies on
a peak value earlier, (3) reached a higher behaviour includes skeletomusculature. Much of
peak value, and (4) subsumed less area than the skelctomusculature plays a role in the
the curve for killifish from the lake with functioning of many subsystems. This makes sense;
predators. We hypothesize that the shape of subsystem-specific limbs are redundant, to the
the exploration curve reflects a competition extent that (1) subsystems require only periodic
between motivational subsystems that excite control of skeletomusculature to function
and inhibit exploratory behaviour in a way effectively, and (2) the skeletomusculature required
that is tuned to match the affordance to meet the needs of one subsystem could also be
probabilities of the animal's environment. A used to meet the needs of another. The upshot:
computer implementation of this model skeletomusculature is shared amongst subsystems,
produced curves which differed along the and though subsystems have to work together
same four dimensions as differentiate the two cooperatively, they must also compde for control over
killifish curves. All four differences were what McFarland and Sibly (1975) refer to as the
reproduced in the model by tuning a single system's "behavioural final common path" (see for
parameter. the time-dependent component of example, Miller, 1971; Baerends and Drent, 1982;
the decay-rate of the exploration-inhibiting Colgan, 1989). Which subsystem wins the
subsystem. competition depends upon the relative need

(deviation from homeostasis) of the subsystems, the

1. Introduction opportunities and dangers currently afforded by its
environment, and the pros and cons of engaging in

Selection tends to favour the evolution of behaviour that has only indirect or long-term
whose organization enables More efficient effects. Dawkins (1976) has suggested thatsystems andineates with e subsystem competition is lessened somewhat by the

ways of perceiving and interacting with the fact that the behaviours associated with variousenvironment, and greater capacity to cope flexibly suytesoup difrn pstosona

with environmental change. This often entails ubsystems occupy different positions on an
progressive differentiation of the parts of a system established behavioural hierarchy given equal nced

into subsystems that are specialized to take care of to control behaviour, the behaviour that is higher
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Abstract

This paper presents a design for a sensory-motor interface to generate motivated behaviour
and some capacity to learn, which may be useful in producing task-oriented autonomous
robots. There is a single design for the basic sensory-motor interface. By varying sensor bias,
parameter settings and type of sensory input one can generate many motivational phenomena
observed in lower vertebrates. Chains of instinctive behaviours can be refined by the experi-
ence of whether a response to a particular stimulus is successful. The property of incentive
motivation can be mimicked, as well as learning by punishment and drive-reduction learning.
Throughout the discussion we attempt to point out some of the difficulties which might be en-
countered in designing bio-imic autonomous robots.

There are three broad classes of behaviour which "synapses", some of which have variable strength
are generally referred to as motivated. In the first (fig. I), and (2) a connection strength change rule
class, motivation is based on the reduction of phy- related to Hebb's rule, which controls the strengths
siological deficits. Hungers for calories, proteins of the synapses as a function of activity in the con-
and minerals are the obvious examples of these nected neurons (ig. 2).
"drive-reduction" motivations. No deficit- We will describe the model in terms of an
correction is involved in the second category, example rather than in abstracto, although a brief
where the motivations are incentive; however mathematical description is included for complete-
these incentive motivations involve stimuli whichinheenty heoni - ithe atracive r aer- ness at the end of the paper (fig. 4). A detailed
are inherently hedonic - either attractive or aver- mathematical model has been constructed (Halpc-
sive. An example is the motivation to consume rin and Halperin, in prep.) and it forms the basis of
tasty non-caloric sugar substitutes like saccharin, a successful computer simulation (Halperin, Halpc-
which can reward behaviour quite effectively in rin, Rutherford and Dunham, in prep.). Since the
hungry animals. Finally, there is motivation to per- righting fish social behaviour which led to the
form sequences of displays or "fixed action pat- fiehtin fis h cl e which ed toterns" with neither physiological deficit-correcti~n development of the model would be difficult to
nor obvious hedonic responses involved - for visualize for anyone but ethologists, we will insteadexample the motivation of territorial animals to present the entirely hypothetical example of aexampe itruders, mscrap-collecting robot. The goal is to illustrate theight intruders, principles and also to illustrate the problems which

This paper presents a model which was dev- would have to be dealt with when using thcse ideas
ised to simulate fighting behaviour in Siamese in a practical design context. Many of these prob-
fighting fish (the last, least obvious class of motiva- lem are of the type which have been dealt with so
tion), and which turned out to model the other successfully in the biological mimic robots built at
types of motivation as well. This model is so sim- MIT ( e.g. Brooks and Flynn, 1989), and the suc-
pie and explicit that it could be used as a design cess of these robots creates optimism that extcn-
principle for building sensory-motor interfaces to sions to motivated bio-mimic robots can succeed.
control a range of motivated behaviours in auto- The hypothetical example we will consider is
nomous robots. a litter-collecting system for a park. There is a

The model has two basic elements: (I) a cir- large, heavy collecting machine (or an expensive
cuit diagram showing "neurons" connected by human to do the collecting) and a small army of
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Abstract relevant landmarks are visible. Given these starting con-

ditions, the authors show how comparison of the snap-

This paper draws an analogy between the way shot and a current image can lead to the computation
insects use vision to move themeives with respect to of a flight vector which, if followed, tends to bring the
local landmarks, and the problem of moving objects bee into a position where snapshot and new image are
relative to each other in vision-guided robotic assem- more similar. Thus as the (simulated) bee flies around
bly. In particular, an algorithm is presented for at- it continually compares its snapshot with the image of
tracting similar shapes together which was directly its current surroundings and computes new flight vector
inspired by a model of navigation in honeybees, and and so on, thus bringing it ever closer t the 'memorised'
which shares the same characteristics of robustness location.
and immunity to noise. In particular, the algorithm The main reason for the robustness of Cartwright and
can rotate, translate and scale one 2D shape to align Collet's algorithm is that it does not need to solve the
it with another despite the presence of significant dis- correspondence problem of which features in the image
tortion and missing or extraneous features. match which features in the snapshot. Computation of

the flight vector is independent of the goodness of fit be-
tween image and snapshot and so no search is involved.

1 Introduction The effect of the computation is that the bee moves to-
wards things (or gaps between things) which appear too

There are several reports' that insects are able to store small and away from things which appear too big.
retinal images and to later cor , ,ra these stored images For simplicity, it is assumed that image and snapshot
with a current one in order to facilitate homing with each consist of a 360 ° wide ring of dark and light seg-
respect to a set of (proximal) landmarks. For exam- ments. Each light or dark region in the image is paired
ple digger wasps can accurately fly to their tiny nest with the nearest region of the same sign in the snapshot
entrance by using local landmarks such as pine cones and the angular difference is found. These differences
scattered up to a metre or more from the entrance itself are simply averaged to find an overall rotation for the
(Tinbergen, 1932). Similarly, a honeybee can reliably bee. Translational vectors are computed by comparing
relocate a food source such as a flower even though it the angular sizes of dark and light areas. For example
is too small to see from a distance or can only be seen a dark area in the image is compared with the Dearest
from above due to surrounding vegetation. Again, once dark area in the snapshot; if the image area is smaller
they are in the approximate vicinity of the food it has then this suggest moving radially towards that part of
been shown that bees can home into the exact location the image. As with rotation, radial vectors generated
by using local landmarks (Anderson, 1977). in this way are simply averaged, giving an overall trans-

One of the most striking features of this type lation vector. Even if individual pairings of edges are
of homing mechanism is its robustness in the face wrong in terms of the correspondence, the overall flight
of missing, additional or moved landmarks between vector tends to be roughly right and small errors are
visits. Cartwright and Collet proposed an elegant compensated for by the iterative nature of the process.
computational model of landmark learning in honey-
bees in which the bee stores an image (retinal snap- 1.1 A robot guidance problem
shot) of its surroundings when it finds a food source
(Cartwright & Collett, 1983). To re-find the this loca-
tion the bee must first find the approximate vicinity (ie It was decided to take a similar approach to the
by some other form of navigation) so that the most of the bee model to help solve an analogous problem which

arises when guiding a hand-held object to bring it
ISe (Cartwriglht & Collett, 1983) for review in line with a stationary object under camera guid-
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Abstract organisms, in simulated environments, with some form
Darwinian evolution produces intelligent be- of evolutionary algorithm.

haviour without a designer, and this can be used Approaches on these lines have been the subject of
to evolve behaviour in simulated organisms. The much recent interest, and conferences on similar themes
problems associated with using genetic algorithms have been held under the title of 'Artificial Life' in Santa
to evolve programs in a conventional language, Fe in 1987 and 1990 (Langton 1989, Langton et al. 1991),
and to evolve the architecture of connectionist and with the titles 'Evolution, Games and Learning' and
networks, are compared. For an open-ended space 'Emergent Computation' by the Center for Nonlinear
of network architectures, a developmental lan- Studies, Los Alamos, in 1985 and 1989 (Farmer et al.
guage to model the production of a netwcrk from 1986, Forrest 1990).
the genotype is necessary, as is a new theoreti- This paper begins with an introduction to the most de-
cal analysis of genetic algorithms not limited to veloped work on evolutionary algorithms, Genetic Algo-
genotypes of a fixed length. rithms (GAs). There follows a discussion of the problems

I Introduction involved in using an evolutionary approach to develop-
ing conventionally structured programs, such as might

Artificial Intelligence arose as a field of study from the be required by a conventional, symbol-processing, A.I.
belief that intelligent human behaviour could be for- approach to simulating behaviour; a program evolution
malised, and hence could be mechanised. Problem solv- system is described that has a novel evaluation function
ing must be done according to rules, so this approach which sidesteps one of these problems, at the expense of
went; put the rules in a machine, and we will have an others. Classifier systems are mentioned, leading to a
intelligent machine. The greatest successes have been, discussion of recent work on applying evolutionary tech-
understandably, in just those fields of human intelligence niques to developing connectionist networks with archi-
where the problems can be formally defined, e.g. chess- tectures appropriate for the cognitive task they are fac-
playing, expert systems in simple domains; even -here, ing. Finally, the necessity is stressed for a new theoretical
success has been limited. Connectionism (McClelland backing to GAs, and the underlying pitfalls of evolving
and Rumelhart 1987) uses a different approach; investi- computational systems are looked at.
gating network models which are based on a very simpli-
fied model of the brain, namely large numbers of simple 2 Genetic Algorithms
processing nodes with many wires connecting them, pass-
ing activations throughout the network. A major insight GAs were developed initially by John Holland in the
to come from this approach is that the behaviour of the 1960's (Holland 1975) as a form of search technique mod-
whole can look as though it is obeying explicitly pro- eled on Darwinian evolution. The most accessible intro-
grammed rules, even though one can see that this is just duction is by Goldberg (1989); other sources are Davis
an emergent property of the underlying mechanisms. (1987), and the Proceedings of the first three GA con-

The conventional A.I. approach tries to design into a ferences (Grefenstette 1985, Grefenstette 1987, Schaffer
program intelligent behaviour; the connectionist tries to 1989).
design networks that will produce intelligent or adaptive Given a search problem, with a multi-dimensional
behaviour. Yet Darwinian evolution shows us that there space of possible solutions, a 'genetic-code' representa-
can be intelligent behaviour without a designer. tion is chosen such that each point in the search space

Hence as one can consider the intelligence and adapt- is represented by a string of symbols, the genotype. A
ability of humans and other animals to be an emergent number of initial random genotypes are produced, typi-
property of their evolutionary history in their environ- cally by a random number generator, which form the ii-
ment, one can also consider the possibility of the emer- tial population. Each of the corresponding points in the
gence of intelligent and adaptive behaviour in simulated search space (which can be considered as representing
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Abstract coevolutionary context. (Conrad & Rizki 1989, Packard
Evoutin s mstoftn iewd andfomalse) a a opimsa~on 1988, Holland 1990, Kauffman 1989b). In such models

rEvoution is most often viewed (and ormalised) as nti isto 'fitness' is not clearly defined, and fitness landscapes are
prateS5. Inti ae esgetta sflatraieh~si idydynamic entities, if they can be visualised at all
may 6e to view (and formalise) evolution as a self.enhancing

panean trsmformation. pattern detection and pattern generation In this paper we propose that it may be worthwhile to view
proces This sugestion is based on the growing awareness of the evolutionary processes not as primarily an optimisation
emergence of complex behaviour from simple environmentally process. but instead as pattern processing (i.e. as pattern
dependent action rules when they operate in a structured proc tin t pattern roe nge ern
enviroetmet. and the structuring of the environment by such detection, pattern transformation or pattern generation).
behavioural paterns. We describe paradigm worlds, which suggest Such a view is of course entirely compatible with the
that such emergent behaviour may underlie behaviour patterns optimisation viewpoint, but provides different heuristics
observed in various species. We show how the emergence of for studying such processes. In particular we should like to
macro-behaviour patterns can be interpreted as a form of pattern study what may be called the generation of 'fitness'
processing by the action rules on the environment. We suggest that dimensions, rather than walks through fixed fitness
thes emergent patterns function as a prepattem for evolutionary landscapes, although we prefer a terminology like 'pattern of
processem evolution fixates and enhances these patterns. survival' rather than fitness. The insight that pattern

recognition and pattern detection can be studied in terms of
1.Introduction energy minimisation ('optimisation' as used in evolutionary

Ever since Darwin's profound insight in equating 'survival' theory) (Hopfield 1984. Ackley et al. 1985 and the

and'fitness' for self-replicating entites, evolutionary theory extensive litcrature which followed this conceptualisation)

asad afitne foolligin etoit olumisation processes. has led to important new models and machines for pattern
Tahaslrn otn ntrso optimisation viwonprvae otboocales recognition/ Pattern detection. We hope that a similar. but

thinking about evolution and adaptation. Population reversed, change of viewpoint with respect to evolution (i.e.

genetis is entirely formulated in such terms, and traits of from optimisation to pattern detection) will likewise lead to
ognicsms ame ustomarilyoru lainedi terms od tir new models elucidating (and possibly machines,
organisms are customarily 'explained' in terms of their exhibiting) innovative evolutionary adaptaton.
'fitness', recently in particular in sociobiology and
behavioural ecology. Genetic Algorithms (Holland 1976, 2. TODO and emergent behaviour
Goldberg 1989) have used basic 'genetic mechanisis' for
solving general optimisation problems. Only relatively 2. Introduction o the TODOprinciple.
recently have quantitative studies begun to expose the
constraints on a 'mutation selection' process leading to The potential of local rules to generate complex behaviour
appreciable optimisation (after all: 'optimisa.. by in interaction with a structured environment was rust hinted
'survival of the fittest' is not a tautology). Eiget, id at by Simon (1969) in his phrase: "an Ant viewed as a
Shuster (1979) exposed the 'error threshold', i.e. uiey behaving system is quite simple, the apparent complexity of
showed that only a limited amount of mutation is its behaviour in time is largely a reflexion of the
compatible with evolutionary optimisation. Kauffman complexity of the environment in which it finds itself...";
(Kauffman & Smith 1986 Kauffman 1989a.b) stressed that " Man viewed as a behaving system is quite simple, the
optimisation is only possible in not too rugged fitness apparent complexity of his behavior in time is largely a
landscapes, i.e only if similar genotypes ha e.in general, reflexion of the complexity of the environment in which
similar fitnesses. Rugged fitness landsc-pes result from he finds himself...". Simon, and with him most Artificial
extensive coupling between genes, by which the system Intelligence research, have concentraled entirely on humans,
exhibits strong selforganising properties. Such and have in practice dismissed this phraw as an irony. Nor
selforganisation thus seems to be a constraint on have those studying animal behaviour taken-the hint
evolutionary optimisation. seriously, they have continued to study behaviour virtually

independent of the environment or they have paid attention
All these aroahs use an external. apriors, user imnwoscd to the environment as a constraint on (optimising)
fitness criterion. Only a few modcls arc s oud cs. n ahich behaviour only. By contrast our own research has been in
only survival determines the evolutionary process in a the direction of Simon's pointer, but has gone beyond it by
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Abstract psychology. It is argued that some of the
confusion in this area arises because of

This paper reviews 30o issues ambiguities concerning the status of optimailty asThinpernin re sme foptii s an account of behaviour. I then consider a
concerning the use of optimality dynamic principle called melioration. This is a
principles in the context of animal local optimization principle that may not alwaysbehaviour. After a brief discussion of result in optimal behaviur. I show that under
constraints, I look at matching and r es a or. ow that un

maximizing as accounts of behaviour. As some circumstances a form of melioration can
long as maximization is used result In chaotic behaviour.
descriptively there is no conflict 2. Constraints
between these approaches. They are
alternative forms of description; In Gould and Lewontln (1979) use the central dome
general It Is possible to convert one of St Mark's, Venice as a starting point for their
form of description Into the other. attack on ptimaity. The dome rests on four
Melioration has been suggested as a
priciple that underlies matching. When pendentives, which Gould and Lewontn refer to
faced with two alternatives melioration as spandrels. (The term "spandrer Is usually
requires that the animal increases its restricted to 2-dimensinal surfaces of the sort
allocation of time to the alternative with shown In Figure 1.) Each pendentive is deorated
the higher local rate of reinforcement, with a mosaic of one of the four evangelists,
When the local rates become equal, an together with his associated river, Gould and
equilibrium is attained at which Lewontin sugest that the design could result in
matching occurs. I present a simple the view that the architecture is seonday to it.
model of melioration In which this They contrast this with the prope' path of
equilibrium is not necessarily stable. It analysis's that 'begins with an architectural
is shown that time allocations can be constraint: the necessary four spandrels and their
periodic or chaotic, and that matching tapering triangular form'. (p582)
does not necessarily occur. it is important to realise that this is not an

1. Introduction argument against an optimality analysis, butmerely an illustration of the importance of askin
the right question. As Gould and LewontinThe use of optimality principles in biology (1979) state, the mosaics clearly serve the

remains controversial (see for example Maynard function of expressing the Christian faith. We
Smith 1978, Gould and Lewontin 1979. Williams can look at the decoration as a whole in this light,
1985, Ollason 1987, Dupr4 1987). In this and we can compare the decoration of restricted
paper I make no attempt to review all the issues. triangular spaces in various domed churches. The
After some remarks on the problem of architecture specifies the constraints within
constraints, I concentrate on alternatives to which an "optmality" analysis of the decoration
optimality that have emerged in operant operates. []
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Abstract formed by the intersection of at least two gradients along
association with a compass, exactly as human navigators

Examples of simulation models applied to the long do. In this case, one talks about a grid map, gradient map
distance orientation of rodents, bees, salmon and or navigational map. This map and compass hypothesis
pigeons are reviewed. In each case the models was first formulated by Kramer (1953), but considerable
provide new insights which are contradictory to the difficulties have since been encountered in determining
current map hypothesis. Salmon and rodent the map.
performances are assumed to be consistent with a Recent developments in the theoretical approach to

random process. Bees supposedly use non cognitive orientation have led to more attention being paid to
processes to perform map-like orientation quantitative models, owing to the development of
procedures, and pigeons' homing is found to computers and simulation techniques. These have thrown
involve mainly stochastic processes. The efficiency new light on orientation by predicting the performances of
of the simulated models as well as the fact that they orientation mechanisms which were considered a prod to
point to hitherto underestimated aspects of be implausible.
orientation make them useful new tools for solving To show how these new techniques can change our
spatial problems. view of animal orientation, I propose to review four

examples where models have provided new insights
1. Introduction contradicting the current map hypothesis. Each of these

Authors using the theoretical approach to the long involves species suspected of being capable of long

distance orientation in animals have consistently neglected distance orientation. the first two are alternative models

the development of quantitative models. Consequently, proposed in situations where homing by means of familiar

the properties of random processes have been rly area map was first envisaged: they concern rodents and
arely bees. The last two deal with situations where the use of a

formulated and their possible contribution to observed navigational map has been hypothesized. thes concer
performances have been underestimated (Jamon, 1987). salmon and pigeons.
Nor have performances been attributed to any
distinguishable orientation mechanisms. Indeed, long 2. The case of rodents' homing ability.
distance orientation has been largely interpreted in terms
of analogies with human navigation techniques, leading to Numerous experiments have shown that rodents
the explicitly formulated idea that "routine animals' transported a relatively long distance from their home can
movements are governed by a navigational process closely return to their previous territory with a probability of
analogous to every day marine practice (Gallistel, 1989). success which is higher than that predicted by randomness
The reference to man made concepts of orientation is (Joslin, 1977) (fig. 1).
based on the "map! metaphor, which implies that animals Various orientation mechanisms have been suggested
can build up a mental representation of their to explain this good successful homing performance level
environment. Two sorts of maps have been envisaged. The animals have been said to rely on some 'specific
When an animal moves in a familiar area, it is supposed orientation mechanism such as route-based navigation
to develop a mental representation of the landmarks involving the use of magnetic cues (Mather and Baker,
(Wiltschko and Wiltschko, 1987, talk about animals' 1980, 1981), or to pilot by means of a large familiar area
mental picture of the spatial distribution of the factors map (Furrer, 1973). In the latter case, they would have to
used), which has been variously called the mosaic map, build up a topographical representation of a large
familiar area map, topographical map or cognitive map. territory, extending beyond the limit of their actual home
When the animal has to orient in an unfamiliar territory, range during the course of exploratory trips.
it is supposed to use some sort of bico-ordinate map,

'*
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of this is the possible-world semantics of epistemic logics
which unfortunately makes agents omniscient.

Abstract The implementation of theories expressed in such formal
Agent theory in Al and related disciplines deals languages has additional problems. When agent

with the structure and behaviour of autonomous, implementation is done by direct mechanisation of the
intelligent systems, capable of adaptive action to logic, for example as a theorem-prover, the resulting
pursue their interests. In this paper it is proposed systems turn out to be ;aIefficient. This is a natural
that a natural reinterpretation of agent-theoretic consequence of the expressiveness of the language. On the
intentional concepts like knowing, wanting, other hand, the languages are sometimes not expressive
liking, etc., can be found in process dynamics. enough to deal with some concepts that seem needed to
This reinterpretation of agent theory serves two describe agents. An example is the expression of
purposes. On the one hand we gain a well quantitative magnitudes for describing strength of belief in
established mathematical theory which can be an agent.
used as the formal mathematical interpretation
(semantics) of the abstract agent theory. On the Refinement of these logics and their formal semantics, and
other hand, since process dynamics is a theory their efficient implementation, is of course an ongoing
that can also be applied to physical systems of enterprise. This paper is intended as an informal
various kinds, we gain an implementation rout preliminary to such work, offering some intuitions about
for the construction of artificial agents as bundles the interpretation of agent theoy through the general theory
of processes in machines. The paper is intended of process dynamics.
as a basis for dialogue with workers in dynamics,
Al, ethology and cognitive science. Such an interpretation can also provide a strategy for

1 Introduction implementation. The situation is analogous to the
relationship between the abstract Boolean algebra of classes,

Agent theory is a branch of artificial intelligence (Kiss, the propositional calculus, and hardware logic circuits, The

1988). Its domain is the theory, design and implementation abstract algebra is defined in terms of classes and operations

of artificial systems, similar to animals or people, that are on them; intersection, union, complementanion, etc. One

capable of autonomous, rational actions through which to interpretation of the Boolean algebra is propositional logic,

pursue their interests and goals. Aspects of this theory where the variables range over propositions and the

cover, among other things, how actions are related to operations are truth-functional manipulations, etc. The

knowledge, how plans for actions to reach goals can be possibility of implementation arises from the fact that

formed, how goals are formed, what the role of intentions another interpretation of Boolean algebra can be found in

for action is, how the state of the world is perceived, and the operation of physical electrical circuits. Because of

many others, this, the operation of the circuits can thus be described by
propositional logic, or stated conversely, the circuits are an

The abstract formulation of agent theory can be stated in implementation of the logic.

many different languages, both informal and formal. Much
current work in this field has made use of formal logical Let us represent this by the following schema:

languages (Georgeff and Lansky, 1986). Although these
specialised logics are convenient and expressive, often it is Propositional logic > Abstract Boolean algebra ->

dificult to formalise their semantics, or the semantics that Electrical circuits
have been offered have undesirable properties. An example

"'T
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ABSTRACT 2. BACKGROUND ON GENETIC
This paper describes the recently developed "genetic ALGORITHMS
programming" paradigm which genetically breeds popu- Genetic algorithms are highly parallel mathematical algo-
lations of computer programs to solve problems. In ge- rithms that transform populations of individual mathemati-
are hierarchical computer programs of various sin cal objects (typically fixed-length binary character strings)saes r linto new populations using operations patterned after (1)shapes. This paper also extends the genetic program- natural genetic operations such as sexual recombination
ming paradigm to a "co-evolution" algorithm which op- (crossover) and (2) fitness proportionate reproduction
erates simultaneously on two populations of indepen- (Darwinian survival of the fittest). Genetic algorithms begin
dently-actng hierarchical computer programs of various with an initial population of individuals (typically randomly
sizes and shapes. generated) and then iteratively (1) evaluate the individuals in

1. INTRODUCTION AND OVERVIEW the population for fitness with respect to the problem envi-
ronment and (2) perform genetic operations on various indi-

This paper describes the recently developed "genetic pro- viduals in the population to produce a new population. John
gramming" paradigm which genetically breeds populations Holland of the University of Michigan presented the pioneer-
of computer programs to solve problems. In genetic pro- ing formulation of genetic algorithms for fixed-length char-
gramming, the individuals in the population are hierarchical acter strings in Adaptation in Natural and Artifcia Systems
compositions of functions and arguments of various sizes (Holland 1975). Holland established, among other things,
and shapes. Each of these individual computer programs is that the genetic algorithm is a mathematically near optimal
evaluated for its fitness in handling the problem environ- approach to adaptation in that it maximizes expected overall
menit and a simulated evolutionary process is driven by this average payoff when the adaptive process is viewed as a
measure of fitness. multi-armed slot machine problem requiring an optimal al-

This paper also extends the genetic programming location of future trials given currently available informa-
paradigm to a "co-evolution" algorithm which operates si- tion. Recent work in genetic algorithms and genetic classi-
multaneously on two (or more) populations of indepen- fier systems can be surveyed in Goldberg (1989). Davis
dently-acting hierarchical computer programs of various (1987), and Schaffer (1989).
sizes and shapes. In co-evolution, each population acts as 3 BACKGROUND ON GENETIC
the environment for the other population. In particular, each
individual of the first population is evaluated for "relative PROGRAMMING PARADIGM
fitness" by testing it against each individual in the second Representation is a key issue in genetic algorithm work
population, and, simultaneously, each individual in the sec- because genetic algorithms directly manipulate the coded rep-
ond population is evaluated for "relative fitness" by testing resentation of the problem and because the representation
it against each individual in the first population. Over a pe- scheme can severely limit the window by which the system
riod of many generations, individuals with high "absolute observes its world. Fixed length character strings present dif-
fitness" tend to evolve as the two populations mutually ficulties for some problems - particularly problems in arti-
bootstrap each other to increasingly high levels of fitness. ficial intelligence where the desired solution is hierarchical

In this paper, the genetic programming paradigm is il- and where the size and shape of the solution is unknown in
lustrated with three problems. The first problem involves advance. The need for more powerful representations has
genetically breeding a population of computer programs to been recognized for some time (De Jong 1985. 1988).
allow an "artificial ant" to traverse an irregular trail. The The structure of the individual mathematical objects that
second problem involves genetically breeding a minimax are manipulated by the genetic algorithm can be more com-
control strategy in a differential game with an indepcndently- plex than the fixed length character strings. Smith (1980)
acting pursuer and evader. The third problem illustrates the departed from the early fixed-length character strings by in-
"co-evolution" and involves genetically breeding an optimal troducing variable length strings, including strings whose
strategy for a player of a simple discrete two-person game elements were if-then rules (rather than single characters).
represented by a game tree in extensive form. Holland's introduction of the classifier system (1986) con-

tinued the trend towards increasing the complexity of the
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given time by an internal state which largely

Abstract determines its current reproductive potential. That
state will be a complex of many factors, includ-

I present a scheme for partitioning ing stored energy, health, fertility, and (in a
information used in decision making. sexual population) attractiveness to mates. The
Three types of information are recog- lifetime of any individual can be thought of
nized: internal information, or an indi- as a time series of internal state transformations.
vidual's internal state; external informa- Transformation will be influenced by the
tion, or environmental factors; and individual's own behavior and by factors in the
relational information, or rules for environment which influence that individual, and
predicting transformations of internal will be governed by a set of rules which we
state. A genetic simulation model is may collectively describe as a transforming
described which tracks the evolution of function.
alleles for high and low information From this basic scheme, there appear- three
access in each information type in a types of information to which an individual
population with density dependence. making decisions may have access. First,
Stable polymorphisms result. Interac- the individual may be aware of its own
tions between the three genes are ex- state. Call this internal information. Second,
plored. The relevance of the model to it may be aware of environmental conditions, or
foraging situations is discussed. external information. Third, it may be aware of

the form of the transforming function, or
relational information.

1. Introduction Now consider foraging models with these

A major criticism of classical optimal foraging three information types in mind. The classical
models is that they assume complete information models assume complete external and relational
(Stephens & Krebs 1986). The problem of incom- information; but since they are static, or state-
plete information has received considerable atten- independent, ignore internal state. Their refine-
tion in the past twenty years, and the basic ments deal with deficiencies in external informa-
prey and patch models have been expanded to tion only. Dynamic optimization (Mangel &
consider incomplete information in prey recogni- Clark 1988) considers state-dependent decision
tion (Houston et al. 1980, Getty & Krebs 1985), making, but it assumes complete internal infor-
patch sampling (McNamara 1982, Lima 1984, mation. Finally, studies of rules of thumb
Bernstein et al. 1988), and tracking a changing (Janetos & Cole 1981, Green 1984) implicitly
environment (Stephens 1987, Shettleworth 1988). consider reductions in relational information,
In each of these cases the information studied is mainly as satisficing strategies (Simon 1956)
"about" the environment; that is, animals sense due to functional constraints, but assume corn-
the states of pertinent environmental parameters. plete internal and external information.

Is environmental information the only sort of This paper presents a model that examines
information an animal needs to make its deci- the interaction of internal, external and relational
sions? flow might one partition information in information genes in an evolving population. I
a way that is useful in thinking about the chose imulation methods to model this situation
evolution of behavior? for two reasons. First, including enough processes

Let us begin with a simplified look at the to generate information of each type makes the
process of survival and reproduction. Any indi- model sufficiently complex to prohibit an easy
vidual in a population can be described at a analytical analysis. Second, I was interested in
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Abstract serious comparison of different frameworks has been done.
This work is thus intended to be a first step towards the

The Purpose of this work is to investigate and investigation and evaluation of different reinforcement

evaluate different reinforcement learning learning frameworks in solving nontrivial learning tasks. In

frameworks using connectionist networks. I study particular. I am interested in reinforcement learning using

four frameworks, which are adopted from the ideas connectionist networks.

developed in [Barto, Sutton & Watkins,
1989; Watkins, 1989; Sutton, 19901. The four In the paper I study four reinfoadement learning

frameworks are based on two learning procedures: frameworks, which am adopted from the ideas developed in

the Temporal Difference methods for solving the [Barto, Sutton & Watkins, 1989; Watkins, 1989; Sutton,

credit assignment problem, and the backpropagation 19901. All of these franeworks are based on two learning

algorithm for developing appropriate internal procedures: the Temporal Difference ('I'D) methods [Sutton,

representations. Two of them also involve learning a 19881 for solving the credit assignment problem and the

world model and using it to speed learning. To error backpropaption algorithm [Rumelhart, et al.,

evaluate their performance, I design a dynamic 1986a] for developing appropriate internal representations.

environment and implement different learning Genely speaking, reinforcement learning based solely
agents, using the different frameworks, to survive in oneTD seeakis aeinorcee n dmains where
it. The environment is nontrivial and on the TD methods is a slow proceea . In domains where
nondeterministic. Surprisingly, all of the agents can reinforcements are sparse, the leanind rate is slow, and if
learn to survive fairly well in a reasonable tim the cost of mistakes (e.g., physical damage) is also high, the
frame. This paper describes the learning agents and agent would make more mistakes dn allowed. A solution

their performance, and summarizes the learning to these problems is to learn a world model, and practice

algorithms and the lessons I learned from this study. with the model. This idea is embodied in two of the
frameworks studied her

1. Ino My approcb to evaluating different learning frameworks
infrcm tte n g is to design a dynamic environment4 implement learning

Reinforcemnt learning is an interesting learning agents to survive in it using different frameworks, and
problem. It requires only a scalar reinforcement signal as a evaluate the performace of the agents. Four kinds of
performance feedback from the environment. objects are involved in this environment: the agent, fixed
Reinforcement earning often involves two difficult food and obstacles, and moving enemies. Although survival
subproblems. The first is called the credit assignment in this environment is easy for hunmans, it is by no means
problem. Suppose the learning agent performs a sequence trivial for knowledge-poor agents.
of actions and finally obtains certain outcomes. It must
figure out how to assign credit or blame to each individual The remaining of this paper is organized as follows.
situation (or situation-action pair) to adjust its decision Section 2 discusses the four learning frmnework. Section 3
making and improve its performance. The second describes the nile of the environment. Sections 4 and 5
subproblem arises from the need to develop the appropriate present the implementation ad performance of the learning
internal representatiom required to actueve the target agents. Section 6 assesses the merits of the agents. Finally,
learning tasks. In the course of learning, both subproblems Section 7 concludes the paper by swnnarizing the lessons I
must be solved, learned from this study.

Several reinforcement learning frameworks or algorithms
have been proposed in the literature (e.g., [Sutton,1984; Williams, 1987; Baro, Sutton & Watkins, 2. Reinforcement Learning Frameworks
1989; Watkins, 1989; Kaelbling. 1989; Sutton, 1 ) Learning to survive in an unknown environment can be

However, most have only been studied solving simple characterized as a kind of reinforcement learning. In
learning problems (e.g., (Anderson, 19891). In addition, no reinforcement learning, the learning agent continuallyreceives sensory inputs from the environment, selects and
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This approach allows simulation of
Abstract realities unapproachable with traditional

analytic techniques. A paradigmatic
A simple model is presented, aimed at example is the evolution of an ecosystem
capturing the essential traits of the interacting where several species coexist. In this
behaviour of adapting species. The modelling situation every species affects with its
paradigm followed is centered on intrinsic presence the environment it lives in,
adaptation, with no explicit fitness function, consisting both in the world and in its other
and is implemented using a probabilistic occupants: its survival probability, along
cellular automaton. Some simulation results are with its fitness to the environment, should
shown, regarding the outset of a predator therefore continuously be readjusted. In the
species and prey/predator population paper we present a model where fitnesses
dynamics, also with respect to environmental are only implicitly dealt with, in that they
structural changes. emerge from environment self-organizing

evolution and can be computed only a
1. Introduction posteriori. Given the description of an

environment and an initial uniform
Complex systems science aims at population, we simulate the adaptation of

capturing the fundamental characteristic of population t the evo etaong

adaptive systems composed of multitudes of the po ibl otse of ne spcis
inteactng ntiies.The funametalwith the possible outset of new species.

interacting entities. The fundamental The paper is organized as follows: in
concept around which all its approaches section 2 we introduce the simulation
hinge is that of self-organization (Nicolis, approach followed in our research along

Prigogine, 1977], that is the emergence of with the essential features of our model, in
organized behaviour in systems which were section 3 we describe the methodology
not designed explicitly to manage entities at followed to introduce interaction among the
the level of the outputs. A common feature basic individuals, in section 4 we give a
of all such models in fact regards the input more detailed description of our
specification and the system description, implemented system and propose some
which are defined at an aggregation level simulation result. Finally, in section 5. we
quite far - both in terms of object briefly outline our current activities
structuring and of characteristic time scale regarding extensions of the model.

from that of the output of interest.
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A creature is viewed as consisting of a set of

Abstract. behaviors. Examples of behaviors are: th, feeding
behavior. sleeping behavior, drinking behavior, etc. Only

In this paper we propose a mechanism for motivational a few - or often only one - of these behaviors can be

competition and selection of behavior. One important active at a time. However, a creature at every moment is

ch eistiofthis mechaism is that the selectort probably motivated towards a variety of them. This means
characteristic ofcton of that there has to be some mechanism which decides which
behavior is modelled as an emergent property of a paral- behavior "wins" and as such gets control over the "mus-
let process. This in contrast with mechanisms for behavior cles" or actuators of the artificial creature.
selection and motivational competition proposed earlier,
which are based on a hierarchical, preprogrammed con- In the case of simple animals, and also in the case
trol structure. We show that selection of behavior can be of simple artificial creatures, the optimal strategy can be
modeled in a bottom-up way using an activation/inhibition hard-wired respectively by nature (natual selection) or the
dynamics among the different behaviors that can be programmer. The changes in behavior can be entirely
selected. There is no weighing up of behaviors in a cogni- preProgrammed, and selection of behavior is a matter of
live manner and neither are hierarchical or bureaucratic routine, showing very regular, rhythmic patterns.
structures imposed. The paper elaborates upon the results Although such a reprogramme decision strategy may be
we obtained with simulated creatures based on this useful for creatures living in a very stable and predictable
mechanism. It draws parallels between characteristics environment, it does not suffice for creatures that have
observed in aninal behavior and characteristics demon- many jobs to do in an environment in which the opportun-
strated by our artificial creatures. Examples are: displace- ities to perform a job vary considerably (see Mc Fadand,
ment behavior, opportunistic behavior, fatigue, selective 1981, for the case of a natural creatme) (see Maes, 1990b
attention, and so on. for the case of an artificial creature).

Complex creatures need a more flexible behavior
selection mechanism which bases selection on the internal

1. Introduction motivational state of the creature as well as on external
This paper is concerned with the problem of behavior circumstances. It is clear from observation of animal
selection for an artificial creature. The context in which behavior that a change in the external environment may
we discuss this problem is that of the behavior-based sys- override the current behavior, for example, with some
tems (Brooks, 1986) (Brooks. 1990), which embody a new alarm response behavior. But animals also demonstrate
philosophy for building artificial creatures, inspired by the changes in behavior without a change in the external
field of Ethology (Mc Farland, 1981) and not unrelated to situation, which suggests that behavior selection is also
the Society of Mind theory (M insky, 1986). determined by internal motivation. E.g. a domestic hen,

when presented with an egg may eat it on certain occa-
sions or brood on it on other occasions (Mc Farland,
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Abstract and, thus, constitutes the ability to calculate binocular dis-
parity (Manteuffel ct al., 1989).

Results from electrophysiology, anatomy, and simu- In comparison to the amount of knowledge on vi-
lations show that the tectal sensori-motor system in sual properties of tectal neurons, there are only few data on
salamanders can be understood as a system that pre- sensori-motor coupling in the saccade control system. It is
serves retinal coordinates on both tectal hemispheres known that electrical stimulation of the toad's teetum co-
and establishes a head-centercd three-dimensional kcs saccades toward a location that roughly corresponds to
coordinate system by a combination of the bilateral the retinotopic map established by afferents from the
visual maps. Thus, the outputs of the sensory maps contralateral eye (Ewert, 1967). However, recent stimula-
are results of retinal inputs and intertectai signal tion experiments have shown that there exists no simple
transfer. The sensory maps are connected to respec- correlation between stimulation site, stimulation strength
tive motor maps organized in the coordinates of the and evoked saccade (Jordan et al., 1990). It is likely that the
neck muscles. The bilateral distribution of excitation motor map of the tectum in salamanders is not arranged in
in the whole system enables the animal to perform the coordinates of external space. The bimodal distribution
head saccades directed toward a stimulus at an of the populations of efferent neurons in a dorsal and a
arbitrary location within its egocentric frame of ventrolateral group with increasing density toward caudal
reference. tectal levels (Fig. 1) rather indicates a recruitment system

arranged in the coordinates of the neck muscle system
(Manteuffel, 1990; Naujoks-Manteuffel and Manteuffel,

1. The biological system 1990). According to this principle, larger saccades would be
evoked when more premotor neurons become activated. In

Research on the system controlling saccades in amphibians fact large saccades are necessary toward temporal goals
has largely concentrated on the visual input side. It is well which are stimulating more posterior sites of the optic tec-
established that moving stimuli, like squares of moderate turn ;n the visual domain.
size or bars elongated in the direction of movement, elicit The motor system executing the saccades in sakLi-
saccades of the head with a high probability. The probabi- manders is comparatively simple. The basic structure of the
lity is reduced if stimui, of other shapes are used. arrangement of the muscles responsible for head no-

As in other vertebrates, saccades are triggered by vements has most likely been inherited from fish ancestors
the optic tectum and can be released by electrical stimula- with a basic equipment of paired epaxial and hypaxial mo-
tion ol" this area. Tectal output units arc well activatecd by scles (i.e. above and below the axis of the spinal column).
,,isual stimuli like squares or horizontal rectangles which With a joint intercalated between the posterior pole of the
ace moved across their receptive fields (c.f. Himstedt et al., head and the first vertebra, vertical and horizontal articula-
1987). The tectum receives an orderly arranged input from tions can occur. Therefore, the resulting head movements
the eyes, establishing a retinoitepc map on which the nasal can be described best in the c(rdinates given by the direc-
visual field is represented rostrally ind the temporal visual tions of the forces of the two pairs of muscles. The bilateral
field caudally, the superior visual feld is represented close epaxial muscles (m. intertransversarius capitis superior) in-
to the dorsal midline, whereas the vcntro-latcral margin is sert at the car capsule and the hypaxiai m. rectus cervicis at
stimulated by visual objects in the 'ower part of the visual the os triangulare. Both pairs of muscles insert caudally at
field, transverse process es of the second and third vertebrae.

Recently we were able to show that an ipsilateral Saccades are largely ballistic movements in sala-
visual map exists as well. It is established by an information manders (Werner and Himsledl, 1985), in general lalmg;in
transfer from the other tectal hemisphere (that receives in- short with larger horizontal angles. Therefore two (ire
put from the contralateral eye). The ipsilatcral map repre- more saccades are often needed to bring a target into the
sents only the binocular part of the visual field and, there- center of the visual field. The animals approach a prey by
lore, covers only the rostral half of the optic tectum. The executing a saccadc followed by a few steps of straight
ipsilatcral map is pointsymmctrical to the contralatcral one walk. If necessary, this sequence can occur repetitively
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Abstract 2 Cognitive Maps

This paper presents a neurobiologically-feasible spatial A cogniiive map is a generic term for an internal repre-
representation model. The model was implemented and sentation of spatial information. The term has come to
tested on a physical autonomous mobile robot. It was connote a very analytical, centralized representation. In
shown to be both computationally simple and physically this paper, we will use the term in its generic meaning,
robust. and analyze its variants.

The described model is a possible interpretation of A cognitive map is usually assumed to represent space

the organization and function of the rat hippocampus. with a set of landmarks, each of which is an element (ob-

The paper presents relevant biological, psychological, ject or feature) serving as a point of reference [Presson
and neurobiological data, and gives a detailed set of and Monteilo 88]. According to Piaget, a landmark
comparisons between the physical hippocampus and our is a spatial primitive, and thus a basic building block
"synthetic" rat implementation. The implications of the of spatial representations [Piaget and Inhelder 671.
many similarities are described. Finally, areas for future Although most landmark studies concentrate on visual
study in both biology and robotics are suggested. cues, the concept generalizes to any perceptable feature.

Animals construct landmarks from auditory, olfactory,
and tactile cues as well [Gould 82], taking advantage

Introduction of their different characteristics [O'Keefe 89.
1 IIn this paper, we will analyze cognitive maps along

two dimensions: 1) what information they encode and
Most animals, including humans, spend much of their 2) how they encode it. The "what" dimension can vary
waking time in transit from one place to another [Wa- from completely qualitative or topological to very quan-
terman 891. Purposefully moving about requires a titative or metric. The "how" dimension varies from
system for spatial modeling integrated with the mech- totally global or centralized to entirely distributed or
anisms for handling navigation, locomotion, and moti- decentralized.
vation. These systenm have evolved to perform with
impressive robustness. Understanding their function
has long been a goal of cognitive scientists, biologists,
and neuroscientists. More recently, this goal has been The nature of the representation determines the type
adopted by members of the Artificial Intelligence and and number of landmarks required for localizing. In a
robotics communities interested both in simulating bio- qualitative representation, an object can be remembered
:ogical systems and designing better artificial ones. - as being proximate to a landmark, defined within a ra-

The question asked by both communities is: "What dius around it. On the other end of the spectrum, the
kind of spatial information is stored?" In order to an- position of an object can be computed precisely from
swer it, experiments are designed to test where on the the known locations of three landmarks [Pick, Mon-
qualitative-to-quantitative scale the representation lies, tello and Somerville 88]. The question is how much
and whether it is centralized or distributed. This paper metric information is recorded.
describes a qualitative, distributed spatial representa- The psychological literature is divided on this issue.
tion tested empirically on a mobile robot. Studies testing response times in object position recall
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Acclimatization to altitude. Adaptive changes in a man
ABSTRACT breathing rarefied air for 4 days, followed by 6 days at

sea level.
There is an analogy between animal and product design that V = lung ventilation, E = serum erythropoictin. H = rate
can be formulated as an exact mathematical analogy. The of hemoglobin synthesis, R = fraction of red blood cells
success of a biological design is measured by the success of (after Adolph. 1972)
the genes that produce it, and this depends upon the ability
of those genes to increase their representation in the
population in the face of competition from rival genes.
Similarly, when a variety of products is under consideration, 6-
they vary in the period required for product development, in
the chance of failure in the market place, and in the expected
returns from sales if the product is successful. The 5-
development period refers to the period before any return is
achieved on investment. For animals this is the period 4-
between birth and reproduction, and for products it is the
period prior to time that financial return accrues to the
investor. The success of a design is evaluated by the net rate 3-
of increase of the genes coding for it (i.e. the return on
investment) in the animal case, or, in the case of a product
launched into the marketplace, of the money invested in iL R2
If we are to take the biological approach to robot design
seriously, then we should first consider the ecological (or 1 V
market) niche that a proposed robot is to occupy. Is the
robot to be a toy, a brick-laying robot, or a bomb-disposal
robot? Just as there are no general-purpose animals, so there 0
should be no general-purpose robots. For robot behaviour to -2 0 2 4 6 8 10
be adaptive, in terms of the analogy, it must optimise with Days
respect to the selective pressures of the market place. Other
forms of adaptation, such as acclimatisation and learning, Fit. I Adaption by accliratisation. The physiological changes that
are subject to the same criteria, occur in acclimatisation to altitude rn through a spectum. ranginh

from fast but costly processes to slow-acting processes that ae cheap
in energetic terms.

The term adaptation, as used in biology has a number of Adaptation impliescostreduction, ascanbe seen fromthe
meanings: Biologists usually distinguish t,--tvcen (1) example in Figure 1. In animal behaviour, real costs relate to
evolutionary adaptation, which concerns the wa.v, i n which Darwinian fitness. So, in considering the usage of the tem
species adjust genetically to changed environmenuW conditions adaptation in robotics, we should ask if there a concept
in the very long term; (2) physiological adaptation. h ic h has equivalent to the fitness of a robot?
to do with the physiological processes involved in the idjusunent I will argue that there is such an equivalent conceit, and
by the individual toclimaticchanges, changes in food quality, that the analogy between animal and product design can be
etc.; (3) sensory adaptation, by which the sense organs adjust formulated as an exact mathematical analogy. Briefly, the
to changes in the strength of the particular stimulation which success of a biological design is measured by the success of
they are designed to detect; and (4) adaptation by learning, the genes that produce it, and this depends upon the ability of
which is a process by which animals are able to adjust to a those genes to increase their representation in the population
wide variety of different types of environmental change. in the face of competition from rival gee How does this
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CHARACTERISATION

SUMMARY Although there are (and have been) manydocumented approaches to the study of
evolutionary intelligence, most have failed on the

Our operating hypothesis can be stated simply key issue of how systems 'invest in complexity'
enough. It is that the class of non-trivial or grow (ontogenetically or phylogenetically)
solutions to the problem of information from 'weak to strong'. Classical ethology, formanagement is small (see McGonigle, 1987). If example, has worked best with simpler 'reactive'
true, it follows that Intelligent systems (however systems which 'wear their adaptation' on their
instantiated) are solution constrained a priori sleeve1 . Certainly, their domain of inquiry hasand must converge on a similar design logic if precluded the study of human problem solving andthey are to succeed. In the case of biologically intelligence either from a comparative, ainstantiated intelligence, this convergence is seen cognitive or a developmental standpoint. As amore as a primary consequence of such solution consequence, ethologists may offer some solace toconstraint (for example, the power-generality designers interested in making simple reactivetrade-off), and less one of genetic affinity agents as a first step. However, and crucially for(although it may be secondarily a factor). our current agenda, they offer few general
Our general goal is the characterisation of characterisations of intelligent systems that
intelligent systems in the broadest sense, could afford strong clues as . the ways and means
informed in particular by converging research incomparative, developmental and cognitive I A psychologist looking at these reactive systemspsychology situated within a neuroscience as a group, however, might characterls. their groupframework (see McGonigle and Chalmers, adaptation as an example of the power-generality1990a). More recently, we have opened a trade-off, both in terms of niche/habitat selectiondialogue with roboticists at Edinburgh and in the specialsation of subsets within the group(Smithers, Malcolm and Donnett, in particular) as in (say) bees. However, a study of learningand are delighted to see the growing basis for mechanisms per se as an alternative to reactiveproductive dialogue. The position outlined here agents, fares little better. Motivated by black boxalso intersects with one espoused by Brooks behaviourism, the search for universal laws of(1986) but has an independent origin and learning and memory has failed to provide any stablerationale. correlates of species differentiation according toThe goal of this paper is to summarse some of the phylogeny or brain architectures. Although learningcharacterisatlons which emerge from work on appears early in the evolutionary process, it is notbiological systems in an attempt both to cross- the fact of learning, but WHAT is learned thatchick with designers of artificial systems and to differentiates animals. And if simple habit formationexchange concepts of possible mutual benefit. To is mainly what has been achieved in most of theselimit the vast area under review, I shall experiments, it is not surprising that they have notconcentrate on the incremental aspect of picked up direct implications of advanced nervousintelligent systems as this is, as I see it, the key systems, for, as Mishkin (1985) has claimed, suchissue. habit mechanisms are mediated by the motor cortex

(an 'old' area) of the brain.
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ABSTRACT

long as it avoids transgressing the viability boundary
Following a general presentation of the numerous means (Ashby, 1952; Sibly & McFarland. 1976).
whereby animats -i.e. simulated animals or autonomous
robots- are enabled to display adaptive behaviors, various
works making use of such means are discussed. This
review cites 172 references and is organized into three parts V2
dealing respectively with preprogrammed adaptive
behaviors, with learned adaptive behaviors, and with the
evolution of these behaviors. A closing section addresses . ...

directions in which it would be desirable to see future -......
research oriented, so as to provide something other than
proofs of principle or ad hoc solutions to specific problems, "x

however interesting such proofs or solutions may be in
their own right.

1. INTRODUCTION

In a changing, unpredictable, and more or less threatening
environment, the behavior of an animal is adaptive as long Figure 1. Viability zone associated with two essential
as the behavior allows the animal to survive. Under the variables VI and V2. The animat's behavior is adaptive

same conditions, the behavior of a robot is considered to be because corrective action has been taken at point B. so at to

adaptive as long as the robot can continue to perform the avoid crossing out the corresponding viability zone at point A.

functions for which it was built. Now, the survival of an
animal is intimately involved with its physiological state Such behavior can be generated by means of several

and the successful operation of a robot depends upon its different or complementary abilities and architectures. For

mechanical condition. Under these circumstances, it is example, the laws governing the animat's operation may

obvious that one can associate with an animat - whether the rely upon various homeostatic mechanisms thanks to

term indicates a simulated animal or an autonomous robot which, if the reference point alluded to earlier moves away

(Wilson, 1985, 1987a) -a certain number of state variables from an adapted point of equilibrium -adapted because it is

upon which its survival or successsful operation depend, and suitably located within the viability zone-, this proces
that each of these state variables is characterized by a range tends to return it to its original position, thereby decreasing

of variation within which tht animat's continued survival the risk that it will pass outside the limits of the zone.

or operation are preserved. Such variables % ere referred to Other ways in which to lower this risk involve the use of

as essential variables by Ashby (1952) long ago. Their high-quality sensory organs or motor apparatus that allow

variation ranges describe a viability zone inside the given the animat to detect as early as possible that it is

state space, and the animat can be referenced at any instant approaching these limits and/or to move away from them

by a point within this zone (Figure 1). Under the influence quickly and effectively. In this line of reasoning, it is

of environmental or behavioral variations affecting the obvious that the equivalent of a nervous system is

animat, the corresponding reference point moves and may at mandatory in order to connect the animats perceptions with

times come close to the limits of the viability zone. In its actions and that reflex circuits activated as quickly as

this case, the animat's behavior can be called adaptive s possible increase the adaptive nature of its behavior. It is

I
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Abstract ical "wetware," robottc hard-

The thrust of this paper is ware, and as computer software.

to meet the objections of what This paper shall, however,

may be termed a philosophical deal only with controversies

school, whose principals are surrounding the third variety,

Robert Rosen, Howard Pattee, and namely the computational AL

Peter Cariani. The objection form.

that a computational universe Generally stated, the AL

is a flat "pseudo-world," program is to develop life-like'

because it is "all syntax and organisms In the medium of

no semantics," is Inquired Into choice. For myself and some

and refuted, as is the claim other AL researchers, the

that nothing really new can computer is our medium of

evolve within such an artificial choice. Our objective is to

universe. It is concluded that Implant or evolve Individuals

no persuasive reasons have been or colonies in automaton

advanced as to why computational universes, to observe Instances

artificial life is not feasible. of propagation, adaptation,

or communication, such as one

usually associates with

A convergence of several life forms.

fields has resulted in the new Since the pioneering

discipline of Artificial Life work of von Neumann (1966),

("AL") research. And just as AL cellular automata have been

science has several sources, it much used as computational

is moving in several distinct media for AL research. In

directions. Life-like entities recent years, more sophist-

are being developed as biochem- icated systems, for example
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Abstract 'explore', 'map building', and 'map using'). This we call

a synthetic approach, see [Brooks 19861, for example.

The Really Useful Robots (RUR) project is seek. At Edinburgh we have adopted a synthetic approach
ing to understand how robots can be built that in what we call the 'Really Useful Robots' project (RUR)
develop and maintain the task achieving compe. [Nehmsow et al 1989. This project is attempting to de-
tences they requin for flexible and robust be- velop a control architecture which supports the devel-
haviour in variable and unforeseen situations, as opment of task achieving competences by the robot. In
opposed to these being installed by their design- other words, we are trying to understand how a robot
em. In this paper we present an experimental can sequentially acquire and maintain the behavioural
autonomous robot with a map building compe- competences it requires, rather than have them 'in-
tence which uses a self-rganising network. Map stalled' by us as its designer. We believe that this
building forms a necessary step on the way to autonomous acquisitio of task achieving competences
development of a navigational competence. Some will lead to greater flexibility and robustness in the be-
encouraging initial test results are also presented. haviour of robots with respect to variable and uaforseen

situations. In investigating this idea we are motivated
and informed by the adaptive control mechanisms we
see in simple animals which result in them having flex-
ible, reliable, and robust competences well matched to
the tasks they ar responsible for achieving and to the

I Introduction enwironment in which they are exercised.
Trying to get a robot to acquire the skills it needs

means that as many decisions as possible are left to
The traditional approach to control in (mobile) robots the robot, rather than being predefined by the designer.
is to decompose the task into separate components, and Alder, the first of the 'Really Useful Robots' (see fig-
implement these using standard control techniques, see ure 6), is able to adapt to a changing environment,
[Levi 19871, for example. This we call an analytical p. and to acquire useful competences. It uses what we call
proach. Alternatively, a control structure can be built fized and plastic components in its control architecture
'bottom up', first building foundational competencee ....
(such as 'move around and avoid obstacles'), and later nik kit. It is about 2 hcm ]on has n W2 based miceeromputer
on top of these more complicated competences (such as on board (16k RAM) and is equipped with up to seven tactile

sensors plus odometer. In addition to this a sonar sensor is avail-
**U. ZNehmsow and T. Smithers, May 1990 able, but h not been used to obtain the results presented in
tNama appear in ajphabetica ordsr, with both being principal this paper. More information about Alder and the 'Roely Useful

authors on this occasion. Robots' approach can be found in [Nehmsow et al 198B9.
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ABSTRACT.

This paper investigates the evolutionary imitation. Insect colonies (e.g colonies of ants,
development of (problem solving) behavior, bees, wasps, termites etc.) are another instance
Through evolution, artificial animals learn of the complexity to which evolution can give
to survive in a given world, rise. Such complexity is obvious if one examines
We use layered neural networks (NNs) as the the nests termites build or the social organisation
substrate on which evolutionary learning within insect colonies [Wilson 851. Many other
operates. The fault tolerance of neural examples can be found in [Dawkins 861 or
networks allows for a genotype / phenotype [Tinbergen 651, amongst others.
distinction which maintains the variation in Computational methodologies based on the
the genetic pool. Furthermore, we define evolutionary metaphor have been developed for a
building blocks which take into account the wide-range of problems, such as search, opti-
functionality of the NNs. mization and machine learning. One of the most
The result of the algorithm can be inspected notable methodologies are genetic algorithms (a
at two levels. First, there is the behavior of good overview of GAs can be found in [Goldberg
the individual animals. A description of their 89]). Another, related, methodology Is evolu-
behavior is obtained through the induction of tionary learning, which searches through a space
decision trees which describe the function- of behaviors using the principles of variation and
ality of the NN. Second, the behavior of the selection. In contrast with GAs, evolutionary
population as a whole can be described. The learning does not require an explicit, domain
distribution of the animals over the world specific fitness measure. We only need to specify
often provides an analogical representation of the characteristics of the environment (e.g. the
a problem solution, amount of food present) and the effects of an an-

imars actions on itself and on the environment.
In this paper we propose an evolutionary

Keywords: autonomous agents, evolutionary framework in which successive generations of
learning, genetic algorithms, inductive animals learn to improve their chance of survival
learning, machine learning, neural net- in a given environment. Or, in other words,
works. successive generations adaptively develop be-

havior (such as: look for food, avoid predators ...)
1. Introduction. in correspondence with their natural needs. In

order to be successful, an animal has to find an
Natural evolution continues to inlrigue mankind, answer to the following question: When should I
Particularly, the complexity to which it leads perform which actions? This question is an-
often surprises us. Examples of this complexity swered through evolutionary learning on NNs.
are abundant. Animals in a prey . predator re- Our system learns only through evolution, no
lation, for example, develop complex defensive life-time learning mechanism is incorporated.
and offensive behavior, such as camouflage and We should stress that our primary goal is to ob-

tain ,equate (problem solving) behavior. The
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Abstract being told, systems that learn by complete examples,
and animats, i.e. systems that learn by reward.

Animat research has already produced
interesting concepts and algorithms. In this
paper, we analyze how this research can be 1st level: Systems that learn by being told
applied to human intelligence understanding
and to reproducing of some expert behaviors. Most computers get their knowledge by being given
To support these ideas, we experiment with an programs, i.e. a list of instructions to be executed in a
improvement of Boole, a Genetic Based specified order, the processing is completely explicit
Learning algorithm from animat research, in a in the input knowledge.
medical domain of expertise. We
experimentally demonstrate that our system Production systems without learning ability get their
obtains good results on a well known realistic knowledge from rules which are used to reason about
medical diagnosis task, and we analyze its the input data and conclude about the output data to
potential ability to solve more complicated provide. They are somehow more intelligent because
problems. the order in which rules are executed depends on the

data: control is data driven. This means that a few
rules implicitly specify many different reasoning

Introduction
Specifically built neural networks get their knowledge

There has been much debate about how one can from a set of predetermined weights which indicate
consider that a system is intelligent, most of the time how a formulated hypothesis (micro-feature represented
according to how it processes information (rules, by one neuron) influences another. However, without
neurons etc.) in connection with the human brain, learning, they are not really much more intelligent
However, in (Wilson, 851 Wilson developed the idea than production systems, but some experiments tend
that we could probably learn more from ethology, and to show that they are less brittle and noise sensitive
he introduced the concept of animats, which are and can exhibit even richer behavior than can be
autonomous systems which learn how to survive and expected because they use parallel analog processing.
expand in a given environment
We propose to discuss how this research can be
profitable to the understanding of human intelligence, 2nd level: Systems that learn by complete examnies
and how animat algorithms can be used to reproduce
some intelligent human behavior. Learning systems can manage with even less

formalized knowledge: they only need examples which
contain both the input and the corresponding desired

1. Intelligence hierarchy output: they take care of extracting the appropriate
knowledge that is needed to generalize the sampled

Let us consider the following intelligent systems behavior to new inputs. Such systems can be either
hierarchy based on how explicit the input knowledge rule based systems, connectionist networks, or
from the environment must be: systems that learn by classifier systems. A number of learning algorithms
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Abstract
CRITTER

We consider the problem of a robot with
uninterpreted sensors and effectors which must
learn, in an unknown environment, behaviors r
(i.e., sequences of actions) which can be taken
to achieve a given goal. This general prob-

lem involves a learning agent interacting with WORLD
a reactive environment: the agent produces ac-
tions that affect the environment and in turn
receives sensory feedback from the environ- Figure 1: The general problem is for the learning agent,
ment. The agent must learn, through experi- the £critter,l to learn sequences of actions which produce
mentation, behaviors that consistently achieve rewards. The critter is rewarded when it is in a goal state.
the goal. The difficulty lies in the fact that the
robot does not know a priori what its sensors
mean, nor what effects its motor apparatus has critter from its present state to the goal state. The prob-
on the world, lem is difficult because the reward signal does not pro-

We propose a method by which the robot vide feedback for every action. The critter only knows
may analyze its sensory information in order that it has done the right thing when it stumbles onto
to derive (when possible) a function defined the goal and is rewarded. It is then faced with the credit

in terms of the sensory data which is maxi- assignment problem - the problemof deciding which ac-

mized at the goal and which is suitable for hill- tions led to the goal.

climbing. Given this function, the robot solves
its problem by learning a behavior that maxi- 2 A solution
mizes the function thereby resulting in motion In this paper, we propose the following solution to this
to the goal. problem:

1. Derive a function defined in terms of the sense vec-
1 The credit assignment problem tor (which is itself a function of the state of the

The learning problem addressed in this paper is illus- world) such that this function is maximized at the
trated in Figure 1. The learning agent, which we are goal state and is suitable for hill-climbing. It may
calling a "critter," receives sensory input (vector a) from in some cases be impossible to find such a function,
the world and acts on the world via motor outputs (rep- in which cases, the method fals,.
resented by a, the action vector). In addition, the critter 2. Learn a behavior that does gradient ascent on this
has access to a reward signal, r, by which it knows when hill-climbing function.
it has achieved its goal. (In the experiments discussed
later, the reward signal is incorporated into the sense The problem explored in this paper can be viewed as
vector for simplicity.) The critter's task is to learn a be- the problem of learning a hill-climbing function to re-
havior which reliably achieves the goal. This behavior place an a priori function where the latter is not appro-
is a sequence of actions (most likely dependent on the priate for gradient ascent. In general, this problem can
concomitant sequence of sense vectors) which takes the be described as follows: There is some function, given a
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languages and tools designed to facilitate the
Abstract development of animal simulations, even these tools

are meant primarily for experienced programmers.
Experimentation with animal simulations is As a result, it is difficult for non-experienced
limited, in large part, by the difficulty of programmers to convert ethological ideas into
converting ethological ideas into computer computer simulations. Certainly, novice programmers
programs. *Logo is a new programming language can change parameters or initial conditions on
that aims to make it easier for non-expert existing simulations. But they are not able to make
programmers (researchers as well as students) more serious modifications or create entirely new
to develop and modify their own simulations. simulations. In short, animal simulations are still not
*Logo is designed specially for simulating for the masses.
colony-level behaviors-that is, group What is needed is a new type of programming
behaviors that emerge from interactions among language that allows people to more easily create
hundreds or thousands of individual creatures. and experiment with animal simul~tions. This paper
Unlike most simulation languages, *Logo gives describes a language that aims to do just that. The
the creatures' environment an equal language, called *Logo (pronounced star-logo), is
computational status to the creatures designed especially for simulating "colony-level
themselves. Users write rules for creatures and behaviors"-that is, group behaviors that emerge as
for "patches" of the environment, then observe large numbers of individual animals interact with
the higher-level behaviors that result. A one another, as in bird flocking or ant foraging. These
sample *Logo program shows how local, types of simulations are particularly difficult to
parallel actions among ants can lead to spatial- construct using traditional, sequential programming
extended and temporally-sequential patterns in languages. Indeed, simulations of colony-level
the colony-level behavior, behaviors highlight the need for a new "massively

parallel" approach to programming, in which many
"computational creatures" act in parallel (at least

1. Introduction conceptually, if not in reality).
Section 2 describes the audience for *Logo.

During the past several years, a growing number of Although *Logo is designed primarily to help
researchers have begun creating computer-based students explore self-organizing phenomena, it could
simulations of animal behavior. Some are motivated serve equally well as a tool for ethologists. Section 3
by ethological goals: they hope to gain a better discusses the computational requirements for
understanding of the mechanisms underlying the programming colony-level animal simulations.
behaviors of real animals. Others are motivated by Section 4 discusses the central ideas underlying the
engineering goals: they hope that simulations of design of *Logo, including the decision to treat the
animals will provide ideas (or at least inspiration) creatures' "world" as an active computational actor,
for building computers and robots that function more equal in status to the creatures themselves. Section 5
effectively in the world, presents examples of *Logo simulations. A simulation

Unfortunately, designing and programming animal of ant foraging, for example, shows how local,
simulations typically requires significant parallel actions by hundreds of individual ants can
programming expertise. Most animal simulations are result in spatially-extended and temporally-
developed as customized programs, by experienced sequential behaviors by the colony as a whole.
programmers. Although there are several new Section 6 describes future directions for *Logo.
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Abstract subsequently active rules) have their priorities modified
Classifier systems (CSs) have been used to in proportion to the reward. (They use a more sophisti-

simulate and describe the behavior of adap- cated learning algorithm, the genetic algorithm, to form
tive organisms, animate, and robots. How- generalizations over the space of situations, i.e., to form
ever, classifier system implementations to date concepts.) These CSs use only a very simple model of
have all been reactive systems, which use sim- the world, in which a rule's priority in effect predicts
pie S-R rules and which base their learning al- the reward expected if that rule is fired. Despite us-
gorithms on trial-and-error reinforcement tech- ing such simple representational and learning techniques,
niques similar to the Hullian Law of Effect. CSa have shown surprisingly interesting behavior when
While these systems have exhibited interesting controlling animate which must learn and adapt to sur-
behavior and good adaptive capacity, they can- vive in simple enviroments; they have also been used
not do other types of learning which require to solve concept learning [Wilson, 1987a], dynamic con-
having explicit internal models of the external trol (Goldberg, 1988], and sequential decision problems
world, e.g., using complex plans as humans do, ([Grefenstette, 1988],[Booker, 19891).
or doing "latent learning" of the type observed A second type of learning involves building more corn-
in rats. This paper describes a classifier system plex models which not only predict rewards, but also
that is able to learn and use internal models predict world states.2 These models can be implemented
both to greatly decrease the time to learn gen- as rules of the form "If the situation is X, and I do A,
eral sequential decision tasks and to enable the then expect situation Y," i.e., S-R-S associations. Sys-
system to exhibit latent learning. tems can create and update these models continuously,

even when no rewards are being received, by predicting
1 Introduction the (non-reward) outcomes of actions and then modify-

Classifier systems (CS.) have been used to un- ing the model when the predictions are incorrect. That
derstand, through metaphor and simulation, the is, rather than just using the usually infrequent feed-
behaiord trof g adapti orni and simbtso back provided by rewards or punishments to build sim-behavior of adaptive organisms and robots from piS-moessytscaexltthfodofn-
animat ([Holland and Reitman, 19781, (Booker, 19821, ple S-R models, systems can exploit the flood of non-
[Wilson, 1985 ) to rabbits Holyoak et a., 1990 to hu- reward experiences they have to build much more com-
(Wilsn,1986])torabbis (Hollandetal . oae, al, 10 to h plete models of the world. Predictions of expected statesmoans [Holland et a)., 1986). However, all CSs imple- then can be integrated with motivations and predic-

mented to date have been reactive systems, i.e., they tions of rewards to choose actions that lead to goals.
store and use knowledge as rules of the form "If the sit- Uing inter d s s stms to ed the

uaton s X doA" whee Xmaydesrib a et f wrld Using internal models enables systems to reduce the
uation is X, do A" (where X may describe a set of world number of trials required to learn tasks ([Sutton, 1990],
states). In the terms of animal psychology. the system (Whitehead and Ballard, 1989)). Further, a model en-stores S-R associations (Walker, 1987]. These systems all ables a system to easily integrate newly acquired knowi-

have used a trial and error learning technique, the bucket l e aboutte o a bthg in oaor ko-
briadealgritm (BA)l t asignprirites o rles -edge about the world or about changes in goals or too-brigade algorithm (BBA), 1 to assign priorities to rules; tivtion ((Holland et a/., 1986), (Dickinson, 1980)). In-

the priorities determine which rules will fire and what the tvaios Holla es al., 1 , son, P980)).an
system wvill do in a given situation. The BBA is remi- ternal models also have been used to simulate Puagetian

nicent of the Hullian "Law of Effect," i.e., rules active cognitive development during infancy ([Drescher, 1986],
when reward is received (from the environment or from [Drescher, 1989) .

'The bucket brigade algorithm is a temporal difference method 2 Unless stated otherwise "internal model" and "model" will re-
(Sutton, 196Sf. fer to this more complex type of model.
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The three laws of robotics: (1) No robot may harm a human being or through inaction,
allow a human being to come to harm. (2) A robot must obey the orders given it by

human beings except where such orders would conflict with the First Law. (3) A robot
must protect its own existence as long as such protection does not conflict with the First

or Second laws. Asimov, 1950/1977, p. 40.

systems, (b) stochastic systems, (c) systems requiring
Abstract sensor fusion and feedback, and (d) systems with

Standard versions of control theory approach their incomplete information about the environment and its
limits in autonomous robotic control because of structure (Meystel, 1988). Many of these problems are

exacerbated by the control-theory-dominated approachtheir conceptualization in terms of a fixed mapping that robotic designers have taken. Although control
beite etironmtheon ariast, an behavior theory has been remarkably successful in many domains,
Cognitive action theory, in contrast, views behavior it approaches its limits in autonomous robotic control,
as hierarchically organized by a network of because in its standard versions it assumes that behavior

represent action with different degrees of can be adequately conceptualizmd as a system with a fixed

abstraction. Activation of nodes in the hierarchy mapping between environmental variables and behaviors.

controlled by potentiation and inhibition received It typically characterizes the behavior of the robot in
from other nodes and by environmental stimulus terms of movements or operations that are precisely
frmaote nean bensiron mationluf defined as specific responses to specific environmental

information. Learning consists of the formation of conditions (Brooks, 1986). This approach works well in
available information about the satisfaction of situations in which variability is limited, goals are simple
aablneiinformbackunction s. ut h eti ions o e and noncompetitive, uncertainty is minimal (or at least
cybernetic feedback functions. Such networks are statistically characterizable), and the environment and
capable of planning and executing highly flexble actions appropriate to it are fairly exhaustively known
behaviors in complex, uncertain enmironments. (e.g., a factory environment). The approach is likely to

1. Introduction prove ultimately inadequate, however, in highly variable
environments, in the face of complex competing demands,

Among the difficult problems for designers of and in situations in which no complete set of situation-
autonomous robot systems are control of (a) nonlinear response rules is available a priori.

aI I I
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better, or at least no worse, than any other that its
Abstract ancestors had achieved (Roitblat, 1987).

Analysis of animal performance can provide Although formal analyses have undoubtedly been
important cues about the design of automated successful in developing solutions to many automatic
artificial biomimetic systems. On the basis ofbartifical observtiosystes. Otha e basis deeopg process problems such as those encountered in designingbehavioral observations, we have been developing robots, many other problems have resisted solution.
models of dolphin echolocation ability that have Solutions to scientific and engineering problems are
applicability to the design of biomimetic sonar inspired by many sources, but are ultimately derived from
systems. A dolphin was trained to perform an the intuition of the engineer, as formalizations of folk
echolocation delayed matching-to-sample task.The clicks the animal generated during task physics, folk psychophysics, folk psychology, etc. Folk
performance e recorded and digitized along science is the set of generally held beliefs that people
with the echoes returned by the stimulus objecs employ in their ordinary activities. For example, many
The dolphir performance was then modeled college students recognize that a ball rolled out of an

inclined tube will fall some distance in front of the tube.
using artifical neural networks. Most of these same students, however, often mistakenly

1. Biomimetics believe that if they drop a ball while walking, the ball will
fall directly under the point at which it was released

The study of animals can provide a very important (McCloskey, 1983; see also Holland, Holyoak, Nisbett, &
adjunct to formal analyses in the design of automated Thagard, 1986).
systems such as robots and autonomous vehicles.
Animals have evolved in a real world, solving real Systems involving falling balls are well analyzed so
problems, such as gathering and interpreting essential anyone with training in mechanics can see clearly the
information. Evolution supports the emergence of difference between the folk beiefsconcerning falling balls
solutions tha-. are well adapted to the animal's ecological and formal scientific beliefs (we may call these *fact,').
niche, but provides no guarantee that the evolutionary Our intuitions have been trained to correspond with the
solutions an animal derives are the best possible solution analyzed facts, rather than with unanalyzed apparent
to a given problem (see Gould & Lewontin, 1979). perceptions. In situations in which formal scientific
Evolution merely asserts that, in light of the competing analyses have not yet been fully applied, we have no
demands presented by the animal's evolutionary history, assurance that our scientific intuitions similarly avoid the
its ecology, and its other needs, a solution (vis a is the pitfalls of our naivete. A creative scientist or engineer
whole organism and all its adaptations and constraints) is will apply his or her folk-science intuition to a difficult
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Abstract network, which also receives the animat's sensory percep-
tion by means of its input units. The animat potentially

This paper introduces a framework for 'curious neural is able to produce actions that may change the environ-
controllers' which employ an adaptive world model for mental input (external feedback caused by the 'reactive'
goal directed on-line learning, environment). By means of recurrent connections in the

First an on-line reinforcement learning algorithm for network the animat is also potentially able to internally
autonomous 'animate' is described. The algorithm is represent past events (internal feedback).
based on two fully recurrent 'self-supervised' continually The animat sometimes experiences different types of
running networks which learn in parallel. One of the net- reinforcement by means of so-called reinforcement units
works learns to represent a complete model of the envi- or pain units that become activated in moments of re-
ronmental dynamics and is called the 'model network'. It inforcement or 'pain' (e.g. the experience of bumping
provides complete 'credit assignment paths' into the past against an obstacle with an extremity). The animat 's
for the second network which controls the animats phys- only goal is to minimize cumulative pain and maximize
ical actions in a possibly reactive environment. The an- cumulative reinforcement. The animat is autonomous in
imats goal is to maximize cumulative reinforcement and the sense that no intelligent external teacher is required
minimize cumulative 'pain'. to provide additional goals or subgoals for it.

The algorithm has properties which allow to implement Reinforcement units and pain units are similar to other
something like the desire to improve the model network's input units in the sense that they possess conventional
knowledge about the world. This is related to curi08- outgoing connections to other units. However, unlike nor-
ity. It is described how the particular algorithm (as well mal input units they can have desired activation values at
as similar model-bui!ding algorithms) may be augmented every time. For the purpose of this paper we say that the
by dynamic curiosity and boredom in a natural manner. desired activation of a pain unit is zero for all times, other
This may be done by introducing (delayed) reinforcement reinforcement units may have positive desired values. In
for actions that increase the model network's knowledge the sequel we assume a discrete time environment with
about the world. This in turn requires the model network 'time ticks'. At a given time the quantity to be minimized
to model its own ignorance, thus showing a rudimentary by the learning algorithm is -t,i(c, - y(t)) 2 where yi(t)
form of self-introspective behavior, is the activation of the ith pain or reinforcement unit at

time t, t ranges over all remaining time ticks still to come,
1. Introduction and c is the desired activation of the ith reinforcement

or pain unit for all times.
In the sequel first an on-line algorithm for reinforcement The reinforcement learning animat faces a very gen-
learning in non-stationary reactive environments is de- eral spatio-temporal credit assignment task: No external
scribed. The algorithm heavily relies on an adaptive teacher provides knowledge about e.g. desired outputs or
model of the environmental dynamics. The main contri- 'episode boundaries' (externally defined temporal bound-
bution of this paper (see the second section) is to demon- aries of training intervals). In the sequel it is demon-
strate how the algorithm may be naturally augmented strated how the animat may employ a combination of
by curiosity and boredom, in order to improve the world two recurrent self-supervised learning networks in order
model in an on-line manner. to satisfy its goal.

Consider an 'animat' whose movements are controlled Munro [2], Jordan (1], Werbos (121, Robinson and Fall-
by the output units of a neural network, called the control side [6], and Nguyen and Widrow [4] used 'model net-

'This work was supported by a scholarship from SIEMENS AG works' for constructing a mapping from output actions
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Abstract Since a robot is usually located in an unstructured en-

vironment, world modelling requires us to impose struc-

In this paper it is argued that studying the behaviour ture on this environment using an explicit description
of (even simple) animals and human beings from an of the objects surrounding the robot. The problem of

Ethologist's point of view will provide a basis for which aspect of the environment should be modelled and

understanding human cognition. A simple model which aspects of the robot-world-interactions should re-
of the organization of behavioural sequences in ani- main constant or not became one of the most impoptant
mals as described by Niko Tinbergen [1] and Konrad questions in this domain, well-known as the Frame prob-
Lorenz (2] is presented as an starting point to de- lem (4].
velop intelligent autonomous systems. The relation Another problem which arises when using a world model
to current research into behaviour-based Robotics is the precision of the robot's internal representation of
is shown (cf. Brooks [3]) and essential extensions the surrounding world. Since the control algorithms of
to the behavioural model such as optimisation pro- today's robots are based on the transformation of three-
cedures based on genetic algorithms and evolution dimensional coordinates in order to perform the required
technology, a framework to link basic sensory-motor actions, the internal representation of the world which
skills to higher-order categorical perception as de- serves to interpret sensor data and to choose the appro-
scribed by the symbol grounding problem and more priate actions (the representation of which in turn has to
advanced models of the organisation of behaviour be translated into sequences of three-dimensional trajec-
are presented. In particular, seif-organisational pro. tories of the robot's actuators) must be precise in order
cesses are advocated as a key feature in achieving to allow an exact mapping from the external world to
intelligent behaviour of autonomous robots. the internal representation and vice versa.

The data received from the sensors is used to update the
1 Introduction internal world model. But as it is difficult to gain pre-

cise three-dimensional description from currently avail-

Initially, Robotics has been the most attractive field able sensors. it was claimed that the current sensor tech-
for researchers in Artificial Intelligence (Al) in order to nology was not sufficient to deliver precise updates of the
study the whole range of cognitive capabilities of human model.
beings. Defined as the intelligent connection between Because of this lack of information, it is argued, robots
sensing and acting, Robotics was supposed to naturally are not able to perform appropriate and flexible actions.
pose the questions one has to answer in order to under- Once more precise sensors have been developed, the
stand human intelligence, problem of incorporating more precise world knowledge

Researchers focussed on various aspects of the sensing-to- into the internal representation could be solved more eas-
acting chain using a knowledge-based approach to specify ily.
the information necessary for the robot to perform vari- We do not agree with this opinion and are convinced that
ous tasks. In general. this information consists of a world the inflexibility and subtlety of current robot controllers
model and the knowledge about possible transitions from are inherently based on the approach chosen. Making a
one world state into another due to the actions of such decision in favour of such a knowledge-based approach to
an intelligent agent. world modelling naturally leads to the problems discov-
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Abstract classification ? According to prototype theories, the simi-
larity of the test stimulus to the prototype is determined -

Certain parallels are explored between the mechanism this being just the inverse of the distance between them -
of associative learning in animals - and its description by and the stimulus is classified as being a member of this
contemporary learning theories such as that of Rescorla category if its similarity to the dog prototype is greater
and Wagner (1972) - and object classification, which can than its similarity to any other category prototypes. The
be construed as the problem of learning to associate greater the similarity to the prototype, the faster, more
visual features or micro-fearures with a category. A confident, or more accurate the classification decision.
specific associative learning theory of classification is The crucial commitment, then, of prototype theories is
presented. While prototype effects can be easily accom- that during the process of classification, no representations
modated within associative theories of classification, of specific training exemplars play a role in classification.
exemplar effects appear to be fatal for such accounts, It is only the abstracted prototype which determines the
since no explicit representations of exemplars are stored course of classification. Of course, representations of
in associative networks. An experiment is reported which specific training exemplars clearly do exist: thus each of
attempted to see whether the model would be able to us has memory traces of specific faces that we are famai-
reproduce exemplar effects. Surprisingly, it could. In exa- liar with - our mother's face, for example. Prototype
mining why this was the case, a new interpretation of theories maintain, however, that when a new physical
exemplar effects emerged. stimulus appears before me and I decide that it is a face,

the truce that exists in memory of my mother's face plays
1. Introduction no role in this process. It is only the prototypical face that

I have abstracted from all the faces that I have ever
Some years ago, it was very fashionable to assume that experienced that determines my classification decision.

people represented categories of visual objects in terms of Now, there is one piece of empirical evidence which
their prototypes. As a result of learning that a large appears to provide strong encouragement for the prototype
number of different visual stimuli all belong to a certain view, and this is the fact that subjects often respond more
category - such as the category dog - pcople were accurately, or with greater confidence, to the prototype of
assumed to have extracted a prototype reprcscnting the a category than they do to the specific training exemplars,
central tendency of the stimuli on a variety of feature even though they may nevr have seen the prototype
dimensions. before. A clear example of this occurs in an experiment

Figure I (left-hand panel) illustrates how this abstrac- by Knapp and Anderson (1984). They generated training
tion is supposed to work. Imagine a number of cxemplars stimuli, which were dot patterns, by distorting a particular
(marked by X's) of a category which vary on. say, two prototype pattern. Subjects saw a number of distortions of
dimensions. For instance. the exemplars could be dogs the prototype, and learned correctly to classify all of these
varying in colour and size. According to prototype patterns. When they were subsequently tested either with
theories, what is actually extracted and mentally new distortions, the original training patterns, or with the
represented of this category is the central tendcncy of the prototype itself, they responded most accuraely to the
exemplars within the feature space. The prototype prototype (I shall call this the prototype effect). This was
Imarked by a dot) has a value on each dimension most evident when the number of different training
corresponding to the modal value of the actual exemplars stimuli used had been large. Of course, this result is pre-
on that dimension. cisely what one would expect on a prototype account,

What happens when a new stimulus is prescnted for since the prototype pattern corresponds to what the
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Abstract 2. Conflict and Resolution

This paper gives details of recent experiments to We have already assured that the situation is one in
determine the characteristics of two simple which several stimuli are present. Let us further
mediation strategies. We have chosen to com- assume that each stimulus Is linked to a separate
pare two mutual Inhibition strategies; the standard behaviour, which is appropriate to the stimulus. For

'n-flop' model [Ludlow 76]Shackleford 891, and a example, there may be food and water present, and
scheme suggested by McFarland (McFarland 651. behaviours for eating and drinking to which they are
To study the comparative features of each linked. The first step in considering any restrictions on
network we use TAG's 'non-spiking' neuron the nature of any controlling mechanism might
model ( SNF block model [Snaith 89alSnaith usefully be to Imagine that no control mechanism is
89b]Holand & Snaith 90a) ) both in simulation present. What will happen If the behaviours occur
and on one of our Hilda series of mobile robots simultaneously? There appear to be three main
to show the mediation between simple 'fight' and possibilities:
'flight behaviours set up In conflict.

a). The behaviours operate satisfactorily together eg:

1. Introduction I can walk and chew gum at the same time.
b). The behaviours fall to operate satisfactorily

A number of problems In animal behaviour centre together because they require effectors to carry out
around the situation where there are a number of incompatible actions - eg: I cannot eat and roar at an
stimuli present and a number of appropriate respon- enemy simultaneously.
ses possible, only one of which can take place at any c). The behaviours fall to operate satisfactorily
time. Which response (or behaviour) will occur? and together because the effects of one behaviour - eg:
when, and under what circumstances, will it be flight - make it Impossible to continue with another -

supplanted by another? In behavoural analysis eg: mating.
variations in response have been atrbuted to set,
fatigue, habituation, attention, displacement. and so Let us confine our attention to situations (b) and (c).
on. At the physiological level, mechanisms have While it is true that (c) may bring a sort of resolution
been proposed for mediating the ir!eracuons of a to the conflict between the two behaviours, It Is worth
number of Individual neurons, or a number of pools noting that there is no guarantee of this. An oscillation
of neurons, each of which controls a tehaviour, so between the two behaviours might occur on an
that one or another is temporarily dominant, arbitrary time scale (flee for a second, mate for a
This paper examines the consequences of making second). This could also occur In (b), and might even
some very simple assumptions about the require- in some circumstances be an effective strategy,
ments which the mechanism must satisfy, and amounting to time sharing [McFarland 73
examines two possible implementations on paper, on [McFarland 74). However, both the robot designer
the bench, and in a mobile robot.
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Abstract 2. Hierarchical systems

The paper sets the first steps towards a theory of emergent 2.1. Characterization of hierarchical systems

functionality. The theory tries to make explicit what emer- In hierarchical systems there is a direct relationship
gent functionality is by contrasting it with hierarchical between structure and function. The system consists of a
functionality. It analyzes the principle advantages of this set of components. Each of these components has three
approach and conjectures a formal structure common to aspects: (1) inputs and outputs, (2) a control element to
systems with emergent functionality, turn the component on or off, (3) a well-determined func-

1. Introduction tionality. A component stands on its own in the sense that

its functionality can be tested independently from theEmergent functionality means that a function is not
other components. Moreover this functionality is £ recog-

achieved directly by a component or a hierarchical system o c bmon of tho functionality of tecsy-

of components, but indirectly by the interaction of more
tern. For example, the motor of a car needs fuel. The tankprimitive components among themselves and with the
realizes a subfunction of fuel. supply, namely to hold the

world. Emergent functionality has become one of the main
fueL The tank realizes tis function indepndenty from

themes in research on Artificial Life (Langton, 1988) and
the other components like the pipes that transfer fuel toautonomous agents (Brooks, 1989). So far, engineers and
the motor or the acceeator that regulate the flow.

scientists have used their intuitions to build systems that

exhibit emergent functionality but there is no explicit Some components are specialized in obtaining input

theory yet on what emergent functionality is, how it can from the environment. Others ae concerned with output

be achieved, when it is appropriate and why. This paper and actions in the environment. There are also com-

reports on research to understand the principles under.ying ponents whose major role is the control of the operation

emergent functionality and how it can be used for design- of other components. So the diffeaet components interact

ing and building systems. We first discuss hierarchical in two ways: (1) There is flow of data through

systems to make the specific properties of systems with input/output relations between components. (2) There is

emergent functionality stand out more clearly. Then we flow of control when one component nuns another coin-

tm to emergent functionality itself. Exarr.7',s are dis- ponent on or off.
cussed and the advantages of emergent funcuonality are Because the components function independently of
analyzed. The final part of the paper conjectures a formal each other they can be constructed and put together in a
structure that seems common to systems % ith emergent modular fashion: The global functionality is decomposed
functionality. into different subfunctions. A subfunction is either directly

realized by a particular component or it is further decom-
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Abstract

In the first part of this paper I argue that the Animat
learning problem facing animats is essentially Sensory
that which has been studied as the reinforce- Input Reward Action
meat learning problem-the learning of be-
havior by trial and error without an explicit
teacher. A brief overview is presented of the World
development of reinforcement learning archi-
tecturm over the past decade, with references
to the literature. Figure 1. The Reinforcement Learning Problem fac-

ing an Animat. The goal is to maximize cumulativeThe second part of this paper presents Dyna, reward.
a cla of architectures based on reinforce-
ment learning but which go beyond trial-and-
error learning. Dyna architectures include a of adaptation is the maximization of the cumulative
learned internal model of the world. By in- reward received over time.
termibing conventional trial and error with This formulation of the animat problem is the same
hypothetical trial and error using the world as that widely used in the study of reinforcemeng lear-
model, Dyna systems can plan and learn opti- in#. In fact, reinforcement learning systems can be de-
mal behavior very rapidly. Results are shown fined as learning systems designed for and that perform
for simple Dyna systems that learn from trial well on the animat problem as described above. Infor-
and erot while they simultaneously learn a mally, we define reinforcement learning as learning by
world model and use it to plan optimal action trial and error from performance feedback-i.e., from -
sequenes. We also show that Dyna architec- feedback that evaluates the behavior generated by the
tures are easy to adapt for use in changing animat but does not indicate correct behavior. In the
environments, next section we briefly survey reinforcement learning

architectures.
One might object to the problem formulation in

1 Animats and the Reinforcement Figure 1 on the grounds that all possible goals have
Learning Problem been reduced to a scalar reward. Although this appears

limiting, in practice it has proved to be a useful way
What is an Animat? An animat is an adaptive system of structuring the problem. Some examples of goals
designed to operate in a tight, closed-loop interaction formulated in this way are:
with its environment. An animat need not be a learn- * Foraging: Reward is positive for finding food oh.
ing system, but often it is; some sense of adaptation of jects, negative for energetic motion, slightly nega-
behavior to variations in the environment is required. tive for standing still.

Figure 1 is a representation of the animat problem
as i see it. On some short time cycle, the animat re- • Pole-balancing (balancing a pole by applying
ceves seusory information from the environment and forces to its base): The reward is zero while the
homses an action to send to the environment. In ad- pole is balanced, and then becomes -1 if the pole
dition, the animat receives a special signal from the falls over or if the base moves too far ouL of
environment called the reward. Unlike the sensory in- bounds.
formation, which may be a large feature vector, or the
action, which may also have many components, the-re- 9 Towers of Hanoi: Reward is positive for reaching
ward is a single real-valued scalar, a number. The goal the goal state.
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If we wish a robot to behave adaptively, it for many minutes with its forelimbs spread
may be useful to design it according to widely apart, or one foreleg placed up on its
principles enabling animals and people to do so. back at quite an extreme angle. Similarly, a
We use brain damage and drugs in animals to cataleptic rat remains with its hindlegs on a
break behavior down into its subcomponents, raised platform, forelegs on the floor, in an
and stages of recovery to reveal levels of awkward downward-tilted posture. These
reintegration. By partial transection in the symptoms support the generally held view that
brain, or by drugs, we appear temporarily to dopamine-deficiency produces an inability to
inactivate central motor programs involved in initiate movement. It therefore seems
spontaneous behavior (20). As in earlier work paradoxical when, as shown in fig. 1, a rat made
using complete transection (19), behavior breaks cataleptic by the dopamine receptor blocker
down into reflexes; spontaneous haloperidol will, if pushed from behind, leap
environmentally-directed behavior is abs-ant. vigorously into the air (2, 12). This paradox is
But by our procedures, allied reflexes operate resolved by detailed analysis of the rat's
as intermediate-level submodules. By studying responses leading to the jump. As the cataleptic
how they interact in recovery, and by analyzing animal is pushed forward (Fig. 1A), it braces
controls over individual reflexes, some principles against such displacement by shifting its weight
emerge, perhaps useful for robot design. In backwards. When its hind legs begin to slip
addition, approaching the subject via phenomena (B), a leap is triggered (C and D), away from
produced by pathology may yield insight into the surface where it is unstable. When it lands
imperfections in a robot that may arise from on the horizontal table top, it immediately
imbalance in adaptive systems. resumes immobility. Thus, cataleptic leaping is

(1) Allied Reflexes can Act as Isolated, merely an allied postural support defensive
Adaptive Submodules reflex, triggered by postural instability. The

Extensive lateral hypothalamic (LII) damage animal does not suffer from a general inability
produces a simplification of motivated behavior, to initiate movement - its isolated support
that we have called, after Magnus (10), a "zero- submodule simply does not do so when the
condition". All spontaneous environmentally animal is in a stable posture, even if awkward.
oriented behavior is temporarily abolished. The The static postural support submodule consists
animal lies motionless, virtually comatose, of an aggregate of allied reflexes (including
However, its autonomic system remains standing, crouching, bracing, clinging, stability-
relatively intact - if such an animal is tube-fed, related stepping, righting, and jumping), all of
it lives and recovers (20). Within a couple of which homeostatically maintain support or
days, somnolence usually disappears, but the regain upright unmoving stability. It is isolated
animal remains for several days in a state of from other submodules, individually involved in
catalepsy and akinesia, symptoms often seen in locomotion, turning, head-scanning, orienting,
Parkinson's disease (16). and ingestion, which are inactivated (20). When

For instance, an LH-damaged cat remains a submodule is isolated, inhibitory controls are
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Abstract

In this paper we described a simplified model for a case of wasps had two advantages from the point of view of our study,
functional self-organizajon. It deals with the emergence of a since they build their nest with no envelope and their colonies
particular form of task assignment and parallel hierarchical or- contain a relatively small number of individuals (n - 20),
ganization within a social group which depend basically on the which makes it possible to observe all the members of a colo-
interactions occurring between individuals and with their ir- ny over a period of time. These primitively eusocial species
mediate local surroundings. The task organization within the have little individual differeniation and no morpbological
cololy appeared to be a disuributed function which does not differences between castes or predetermined control of
require the presence of an individualized cenral organizer. We activities depending on age or on any other known
discussed how such elementary processes could potentially be physiological predetermination. The integration and
applied in the coordination and self-organization of groups of coordination of individual activities therefore depmd largely
interacting robots with simple local computational properties on the interactions which take place among the members of
to perform a wide range of tasks. these societies and on the immediate relationships between a

society and its environment.

Introduction A two fold morphogenetic process thus occurs within
the colony :

I eusocial insect societie, all the individuals must cooperate
to perform a certain number of tasks the nature of which
depends on the internal needs of the colony, as well as on the Each individual acquires its own behavloral profile
pa*rt environmental conditions. At any time each which is characterized by all the observable stable behavioral
individual can act and interact either with other individuals or items in which it takes part. All the profiles can be described
with their enionment and thus causes changes in the state of by a reduced number of behavioral forms to which the
the group. The group is nevertheless the focal point for a various individual profiles belong (see Theraulaz et coll., 1990
stable, Se-regulated organiztion of individual behaviors.
The study of the processes leading to the emergence of a a).
stable collective order in insect societies has recently
emphasized the imponance of individual interaction dynamics • In a society at a given moment in time, the whole set of
(Deneubourg et al, 1987; Deneubourg and Goss, 1989; Goss individual behavioral profiles does not constitute a random
et al., 1990; Beckern et aL, 1990). This research has demons- sample of all the possible profiles; they constitute a profile
mated that quite simple elementary rules of individual
behavior often make it possible for the society to create configuraton which can be defined by the proportion of
surprisingly complicated patterns and to make efficient individuals belonging to each of the behavioral forms.
decisions when certain types of external constraints are
encountered. The way this configuration is controlled by internal and

external constraints on the colony constitutes the task
Our biological study examined the processes involved in assignment process. The model presented here aims at

task assignment in primitive Polistes wasp colonies (Therau- describing the task assignment process in a hierarchically
laz et al., 1990 a, b and c). Polises domirdus is a species structured society.
which is to be found in temperate, northerly regions. These
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Abstract 1.1 The meaning of motivation
By looking at a variety of individual
motivational systems, the rust steps One reason for confusion seems to be the meaning
towards reconciliation of models in the different authors assign to the concept of "motivation".
psychological and Lorenz traditions is Even within psychology, the concept is used in very
made. A model that contains features different contexts and meanings by different researchers
of both emerges. The relevance of this (Toates, 1986). In psychology, "drive" and "motivation"
model to animal welfare issues is are overlapping and sometimes identical concepts, while
discussed. in ethology, since the influential work of Hinde (1959;

1960), "drive" has assumed a role much like a swear-
1.0 Introdution word in church, while "motivation" has survived as a

well-respected term. The term "motivation" is found in
It seemed once that study of motivation theory was in most ethology books, but rarely defined in a way that
serious decline; in psychology and ethology, the days of enables one to know what is meant by claiming that an
the grand theories (e.g. Hull, Lorenz) appeared to be animal is more or less motivated for certain behaviour.
over (Toates, 1986). Psychologists lost interest in the Although mainly used to discuss how responses may vary
topic and ethologists had moved in their droves to the in different contexts, "motivation" is usually only a
greener pastures of optimal foraging and sociobiology. heading for the chapter in which this is found. For
Then applied ethology came to the rescue; a renewal of example, Slater (1985) explicitly takes this broad view,
interest in motivation theory was prompted by in saying, while discussing the variability of responses in
considerations of animal welfare, suffering and the animals: "...discovering just what it is that leads them
associated recommendations for legislation (Dawkins, to behave differently from one time to another presents
1980). To assess when an animal is suffering or why some very interesting problems...These are the problems
animals in captivity might spend much time in various of motivation or, in other words, the mechanisms
bizarre activities, not observed in wild-living leading animals to do what they do when they do it."
conspecifics, one needs motivation theory. However, McFarland and Sibly (1975) provided a formal
applied ethologists encountered a major difficulty: representation of motivation, the state-space approach.
fragmentation and contradictions in the literature. To Although primarily introduced as a powerful alternative
some extent, psychological and ethological approaches to unitary drive concepts, they also tried to tidy up the
differ in their assumptions and areas of interest, terminology. Thus, "motivational state" is the state value
However, differences do not divide neatly along party of all causal factors influencing a setup of functionally
lines. Thus, ironically, some writers in the psychological related behaviour jatterns. The motivational state maps
tradition (e.g. Gallistel, 1980; Glickman and Schiff, onto a "tendency'-,hich is the strength of the behaviour
1967; Herrstein, 1977; Hogan, 1967; Toates, 1986) in the competition for the motor apparatus (the "final
argued for the applicability of the best-known common path").
ethological model, thaL of Lorenz (1950). whereas, to This may be a convenient and fairly unambiguous
some ethologists, it has been used for little more than way of talking about motivation, but for many
to illustrate how motivation doesn't work (Dawkins, psychologists, it doesn't relate to their conception of
1986; Archer, 1988). The issue is more than of academic motivational problems. In the terminology of
interest; recommendations for animal husbandry depend McFarland and Sibly, all behaviour of any animal will
upon which model one believes (Baxter, 1983; Hughes by definition be guided by a motivational state,
and Duncan, 1988ab). determining its tendency. This leads to the danger of a

Some of the conflict seems to arises from circular argument, since by the definition, an animal
semantic confusion, loose use of language and the will always be under the control of the behaviour for
assumptions of different perspectives, and we attempt to which the tendency is strongest, i.e. for which it is most
resolve some of this. We suggest where common ground motivated. So, if all behaviour reflects a hypothetical
can be found. First, it is necessary to try to sanitize the motivational state, which can only be deduced from
vocabulary, observations of the behaviour performed, we run into
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Abstract consideration of their phylogenetic origins (as in compara-
tive psychology), and (3) the general exploration of the

We consider psychology as the study of adaptive adaptive processes themselves that yield, adaptive agency
agency, investigating the processe and mechanisms (e.g. by simulation methods. including those in the field of

resltnginfitness-increasing behavior in the world, artificial life -- see Langton, 1989). In the current paper. we
A central issu in Psychology S0 construed becoines consider the phenomenon of 'learning' as an aspect of adap-
what we dhe relations between dhe primary adaptive tive agency, by investigating via evolutionary simulations
pr cess of evolution by natural selection, and the soi conditions under which the ability to [eami may prove
adaptive processes psychologists call 'learning'? In adaptive and so spread through a population. Thie theoreti-
particular, under what conditions would learning cal, historical, and methodological background for this work
evolve? To explore this issu, we use genetic algo- is presaited morm extensively in Killer and Todd (1990).
rids to simulate thes evolution by natural selection and fu~rher extentsions of this method applied to habituation
of neural networks, which in turn control the and sensitization as adaptations to short-term environmental
behavior of simple creatuires in virtual en~droninents. dynamics appear in Todd and Mifler (in press).
We have developed what we consider the simples Evolution as an adaptive process ha itself undergone
possible environmental challenge in which unsuper- changes: "survival of the stable' probably preceded "sur-
vised associative learning could prove adaptive: vival of the fittest" (Dawkiins, 1976). Evolution in the
'boosraping' the learned use of one highly accu - earth's early environment is likely to have selected for repli.

rawe but individually varying, sensory modality by cating systems with relative stbility in the shifting primor-
another less accurate, but evolutionarily stable, dial soup. After stability camne replication and metabolism:
modality. We have found a possibly quite general the ability to turn external malarial into copies and exten-
U-shaped curve relating the time (in number of Sen- sions of oneself.- The evoluttion of lar, more complex
erations) to evolve the use of unsupervised learning phenotypes then allowed din evolution of behavior-
on the varyig 'bootumpped' modality, to the accu__ generating SysteM' at Could Vpno'num inately prgamed
racy of perception in the stable modality which sequences of activity and movemenL Sensory systems
guides this learning. This U-shaped curve appears to couldM then evolve to guide these behavior-generators more
reprset a trail-off between the adaptive pressure adaptively, based on senstivity to particular environmental
to evolve learning (which peaks when perception ac- cues. Thus, blind activity may ha preceded rewaivity --
curacy in the stable guiding modality is at chanc) the ability to adaptively adjust to the cn=%e changing en-
and the ase of learning during a given lifespan vironment on a moment-by-moment bai Only after these
(which peaks when this accuracy is perfect.) first two stages had evolved could a further adaptive process

evolve -- 'learning,' defined as the- ability to make
long(ish).term adaptive changes in behavior-generators in

I IntroductoM response to the environment. In this theoretical framework,
learning emerges not as the primary adaptive force some

Natural selection has constructed animals' minds and have asstumed it to be, but rather as a tertiary one, following
behaviors for adaptive fit to the environmental problems genotypic evolution and short-term environmental reactivity
they must face. As the study of such minds and behaviors, (see als Shepard. 1987, 1988). Once: we re-conceptualize
psychology should focus on the notion of adaptive agencY - 'learning' as merely one process among several that gcn-
the generation of action in the world in response to chal- erate adaptive agency, the questions we might ask about this
lenges to individal fitns. This framework encompasses proess begin to change as well.
mnany approaches. including (1) the elucidation of complex
species-typical adaptations (as in human and animal experi - _ ____

mental, psychology and cognitive ethologyr), (2) the com- By this definition, learning incld such processes as
parison of psychological adaptations across species and experience-guided dev'elopment not coniinonly iLicludad in this

___________category. For examiples of such prF sn see Knixhen, 1988;

Copyright 0 1990 Peter Todd aid Geoffrey Miller. Singer, 1984,.1988; and Stein et. &I., 198.
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Abstract

This paper describes a computer simu-
lation of an animal environment which
has been created as a tool for investigat-
ing the mechanisms behind 'behavioural
choice' in animals. The simulated en-
vironment has been designed to pro-
vide sufficient complexity and realism for
meaningful behavioural experiments.

1 The Problem

"All brains, even those of the tiniest insects, generate'
and control behaviour." [Albus, 81]. This basic task
of animal brains can be split into three subtasks (e.g.- rl ifo.M,(T.

(Brooks, 861) as shown in Fig. 1:
1 - Sensing of the environment so as to be able to perceive Figure 1: Three functions of an animal brain.
what is going on at each moment in time (perception).
2 - Taking the interpretation of the environmental situ-
ation and using it to decide which of the animal's reper- ment of a set of limbs (e.g. in order to grasp an object,
toire of behaviours is the most appropriate (behavioural navigate around an obstacle, etc). We want to look at
choice). high-level decision-making (e.g. should the animal oh-
3 - Transforming the chosen behaviour into a pattern of tain food from the nearby fruit bush or else flee from the
movements of parts of the body (motor control). predator that has just appeared in the distance). We

do not want to address the problem of how the animal
Our aim is to investigate the mechanismi under- should move its limbs in order to pick the fruit and trans-

lying the second of the three stages outlined. This stage fer it to its mouth or how the animal should best move
is perhaps the least well understood of the three due its legs so as to be able to run away from the predator.
to the fact that the processes involved are internal and
cannot be directly observed, only inferred from the re- In short, we want to examine the second of the
suiting behaviour. The behavioural parts of a brain do three functions of Fig. 1, while ignoring the other two
not interact directly with the outside world, but rather as much as possible.
through the interfacing systems of perception and motor
control (Halliday, 83].

2 Why a Simulated Environment?
It should be noted that the u-s! in this paper of

the term 'behaviour' (e.g. in 'behavioural choice') refers Given that we want to examine behavioural choice mech-
to a pattern of actions such as eating, mating. avoid- anisms, what is the best method of going about it?
ing predators, etc. This should be distinguished from
the usual use of the term *behaviour' in the Al litera- One approach to examining behaviour has in-
ture, where it more often denotes the coordinated move- volved the building of robots which can navigate in a
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ABSTRACT computer model, but these concepts lack a proper
The computer metaphor, based on rule and (albeit potential) backing of causal mechanisms that
symbol manipulation, is challenged by our could perform the assumed tasks. The -pproach of
connectionist modeL Neural nets, Parallel cybernetics and system theory (Toates 1986) may provide
Distributed Processing systems, etc. are cap-. appropriate solutions when dealing with simple pheno-
able to achieve goals by way of cooperative mena (e.g., orientation), but their theoretical framework
activity and can ignore all gadgets that are is not suited for handling more complex phenomena.
required in the computational models based Moreover, many models based on this conventional
on the digital computer metaphor. The conse- modelling approach happen to be goal-directed.
quences of our structure-oriented modelling The condition of an 'explicit goal-representation'
approach for causal and functional explana- makes conventional modelling an inappropriate technique
tions in ethology are discussed. for the assessment of decisions that are made by. our

experimental animals: parasitic wasps. Many parasitic
wasps are known to adjust the offspring sex ratio to

KEY WORDS characteristics of the environment, to maximiz repro.
Neural nets, PDP, motivation, adaptation, parasitic ductive success. They are capable to optimie the F2
wasps, sex allocation offspring sex ratio: the actual ratio sons - daughters is

such that the maximum number of gene copies will be
present in the F2 progeny. In order to explain the

1. INTRODUCTION actual decisions of our wasps (but we beli-eve that this
point can be generalized, see McFarland 1989), we

Ethologists use the modelling approach in order to require systems which adapt to the environment without
reveal the mechanims underlying overt behaviour, an explicit representation of the world, and which can
Relevant principles of organization are tested by em- achieve goals without a representation of these goals
bodying them in a mathematical model, the behaviour (Le., without goal directedness). Conventional explanatory
of which is compared to experimental data. The serial concepts are therefore of no use when applied to the
computer metaphor and systems theory have set the decisions made by our experimental anima.
fashion for some time in modelling information proces- Recent developments in the field of Artificial Intel-
sing, such as involved in problems of decision-making. ligence have expanded the possibilities to develop
Models based on the computer metaphor manipulate ethologically relevant models: systems of semi-auto-
bits of data in a formal way, according to preset rules nomous information-processing entities, whose local
and operations which are specified in programs that interactions with one another are controlled by a set of
were designed for a given task (van Rhijn 1977; van simple rules. Such systems do not contain rules for their
Rhijn & Westerterp-Plantinga 1989; Coderre 1989; behaviour at the global level. The observable behavioural
Travers 1989). This way of modelling involves a dis- output and its complex dynamics are emergent proper-
tinction between system hardware and software, and ties, which develop from the local interactions of the
postulates a central processor that operates on the data low-level entities (Langton 1989). Connectionist models
and drives the system. These procedures are attractive perform without an explicit representation of a goal or
from a methodological point of view, in that one knows an emironment. This kind of modelling is the tool for
the complete set of assumptions necessary to make exorcising the homunculi from ethological theory.
these constructs work as desired. But, what is contri-
buted to causal analysis when we apply this approach?
In practice, one postulates homunculi with the self-same 2. BIOLOGICAL BACKGROUND
capacities that the theory sets out to explain. Function-
ally defined concepts take up key positions in the Sex allocation theory presents one of the finest oppor-
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Abstract I propose here a model of a robot's "mind" whose com-
ponents are divided up along very different lines, somewhat

We cannot expect to know the detailed "wiring analogous to principal components analysis: the first
diagram" of the nervous system for any intelligent component is a general associative memory model that
creature for quite a long time. Even then, the true captures general patterns and principles of behavior, while
organization is likely to be incredibly complex and successive'cotmponents add refinements, culminating in
tangled. However, in order to build intelligent robots society of mind-like demons that recognize very specific
now, we need a plausible interim architecture. A situations or patterns, and then override (by priming or
functional model for robot organization is proposed, inhibiting) more general behaviors. Intermediate
starting with a basic, first order model, which is refinements include control structures that allow search and
gradually refined. In particular, it is proposed that chaining of actions, as well as rote learning and
associative memory provides a useful - and perhaps generalization. Such a model fits neatly on any massively
plausible - basis for an intelligent system. parallel computer architecture (e.g. (Hills 85]), but can also

be simulated on serial computers (though perhaps not fast
enough to allow real-time performance, o .cept in the

0. Introduction simplest of environments).

While remarkable progress is being made by neuroscientists 1. Principle One
in unraveling portions of the nervous system (see, for
example, [Kosslyn 89] or [Halgren 87] for insights into the Use associative memory as the overall organizing
visual system and memory systems, respectively), we are
still far from being able to map the wellsprings of action, conception*
intention, and decision. Other researchers have investigated
abstract models of adaptation and learning, such as genetic Basc associative memory operations c capte the essence
algorithms and classifier systems [Holland 77], or the of what intelligent entities do: select relevant precedents in
SOAR system [Newell 87]; abstract models have been used any situation, and act on them. "Precedents" can be actions,
to build explicit models of creatures (e.g. the Animat options, remindings, etc. This type of operation, akin to
[WUson 87]). [Drescher 89] has introduced the "schema case-based reasoning (CBR) [DARPA 88, 89] and memory-
mechanism," and his ideas have much in common with the based reasoning (MBR) [Stanfill & Waltz 861 is easily
proposals below, especially in his views on chaining, and in programmed on a massively parallel machim and has found
his key ideas on identifying and learning reliable schemas, useful applications [Waltz 901. A number of tedmiques can
using large amounts of statistical analysis. "Subsumption be used to find "relevant" items, including oeaest-neighbor
architecture" researchen in Al (e.g. [Brooks 86], [Maes 90]) algorithms, and majority votes of n nearest neighbors. 1

hope to arrive at intelligent systems by first building a
(layered) system with the abilities of, say, a cockroach, and If oily a single precedent is dose to the cnens situation
adding yet more comn layers to eventually reach greater and (as when the robot is operating in a familia envirimmn on
greater intelligence. This work is broadly within a "Society a familiar task), then little more than an associative memory
of Mind"-type theory that views intelligence as composed of is needed in order to act intelligently. Only when two or
a very large number of independent agents and
"bureaucracies" of agents, each responsive to specific situ- *This work was supported in pain by the Defens Advanced
ations or patterns [Minsky 87]. While I subscribe in general Reseuch Projects Agency. administered by the U.S. Air Force
to the Society of Mind view, I believe that it is both Office of Scientific Research under contract 049620-.8-C-
possible and valuable to divide up the model of mind some- 0058.
what differently than is done within subsumption lWhat makes a neighbor "near" is a very subtle ismm, and the
architectures. key open problem in CBR and MBR.



Hierarchical Dishabituation of
Visual Discrimination in Toads'

DeLiang Wang
Michael A. Arbib

Center for Neural Engineering
University of Southern California

Los Angeles, CA 90089-2520, U.S.A.
wang@rana.usc.edu, arbib@pollux.usc.edu

Abstract ground contrast and shrinking stimulus size. After
the predictions were made, several were tested

Habituation is a basic form of learning in which by behavioral experiments. In particular, we
animals come to respond less and less to repeated selected a pair of stimuli whose ordering in the
presentation of a given stimulus. Studies of dishabituation hierarchy we predict to be
habituation in Aplysia have yielded important changed by contrast reversaL, and the
insights into basic mechanisms of synaptic experimental result is as predicted. A size
plasticity, while studies in humans reveal shrinking prediction failed to be validated, and
stimulus-specific habituation with mutual further experiments suggest that visual pattern
dishabituation by pairs of different stimuli, discrimination in toads is relatively unaffected
Studies in toads suggest a new phenomenon which by stimulus size. Finally, we discuss new insights
leads us to new models of vertebrate learning into a network, offered as a preliminary model of
which are subject to experimental test. Instead of the medial pallium, that can express the
mutual dishabituation for different worm-like dishabituation hierarchy of toads.
stimuli, toads exhibit a dishabituation
hierarchy, in which stimulus A may
dishabituate B, but not vice versa. We offer a
model of this hierarchy in which the toad's . Background
visual discrimination is reflected in different
firing rates in some Ligher visual center, Habituation is an elementary form of learning in
hypothetically anterior thalamus. This theory, which response to a stimulus will diminish with
developed through neural simulation based on an repeated presentation of the stimulus if there is no
extensive model of toad retina, predicts that punishment or reward associated with the
retinal R2 cells play a primary role in the presentations. In the marine mollusc Aplysia,
discrimination while R3 cells refine the feature habituation has been much studied for insight into
analysis by inhibition, molecular mechanisms of synaptic plasticity (see
The theory predicts new dishabituation hier- Bailey and Kandel, 1985, for a review). Here,
archies based on reversing stimulus-background habituation seems to be independent of the specific

patterning of stimuli, whereas habituation in
mammals is stimulus specific. Given two different

1 Th e research described in this paper was supported patterns A and B (e.g., two tones of different pitch,
in part by grant no. IRO1 NS 24926 from the National volume, or duration), the animal can exhibit this
Institutes of Health (M.A.Arbib, r-incipal specificity by the phenomenon of dishabituation.
Invec.gator). We wish to express our sincere thanks (i.e., stimulus B can release behavior despite
to Prof. J.-P. Ewert with whom one of us (W.-D.L.) habituation to A). Moreover, this dishabituation is
conducted the experiments that greatly furthered the mutual in mammals: If stimulus A can dishabituate
modeling reported here. stimulus B, then stimulus B can dishabituate stimulus

A (Thompson and Spencer 1966; Sokolov 1975).
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Abstract 1. -ntroduction

Song birds learn their songs, but the accuracy Learning plays a role in the song development of
of the copying process varies. As a result the all songbirds studied to date (see review by Slater
songs present in an area change with time. 1989). In many cases the copying of song takes

Our evidence to date suggests that place from neighbours when young birds first set
various aspects of chaffinch song in the wild up their territories so that birds on adjacent
can be accounted for by a simple random model territories tend to share songs, while the songs of
in which individuals learn the songs that they those further apart are less similar. While the
sing from various adults. The distribution of learning can be remarkably accurate, so that the
songs between repertoires of different birds is songs of two individuals are often identical, there
best matched by simulations with a 15% is good evidence from a number of studies that
copy-error rate. This rate of error, combined inaccuracies of copying may lead to new forms of
with a realistic mortality rate of 40%, also song arising (e.g. Jenkins 1978, Sfater & Ince
gives a good approximation to the changes in 1979). These "cultural mutations" may be the
the song types present in a population with reason why the songs present in a given area
time. change with time, and why there are also

Simulations have been used to examine differences in song between localities. Much of the
the distribution of song types between geographical variation in song is complex,
individuals in a population. When the simple especially in cases where each individual has a
situation, where all birds had a single song repertoire of several different song types and
type and four neighbours, from one of whom these are not all learnt as a package from one
new birds copied their song was examined, other bird. However, in some species dialect
small groups of birds sharing a song type were areas have been described in which groups of
found, as in some dialect species. An extension birds share the same song type or types and are
of this approach to simulate variations in separated from each other by more or less sharp
repertoire size or in numbers of neighbours boundaries. Whether or not this mosaic pattern
has recently shown that both these factors can has any functional significance is a matter of a
have a strong effect on the sharing of song good deal of controversy (see Baker &
types and their distribution in the population. Cunningham 1985).
If a bird chooses the commonest song type sung
by its neighbours rather than one of them at 2. Song in the Chaffinch
random very large groups of birds can occur.

'These simulations suggest that the We have used computer simulation mainly to
complex distributions of song types often found supplement our studies of song distribution in thp
in wild bird populations may result simply chaffinch (Fringila coelebs), a small European
from random copying processes which are not songbird. Its song has been extensively studied
always exact. over many years, starting most notably with the

work of Marler (1952) on song in the wild and
the laboratory studies of Thorpe (1958) on song
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Abstract with the best sense organs that money can buy,

A research methodology is proposed for under- and then teach it to understand and speak En-

standing intelligence through simulation of artifi- glsh. This process could follow the normal

cial animals ("animats") in progressively more teaching of a child. Things would be pointed

challenging environments while retaining charac- out and named, etc.

teristics of holism, pragmatism, perception, cate- Turing's first proposed direction led to "standard AL"
gorization, and adaptation that are often or computational cognitive science. Standard Al is ba-

underrepresented in standard Al approaches to in- sically competence-oriented, modelling specific human

telligence. It is suggested that basic elements of the abilities, often quite advanced ones. However, while
methodology should include a theory/taxonomy many Al programs exhiLit impressive performance,
of environments by which they can be ordered in their relevance for the understanding of natural intelli-

difficulty-one is offered-and a theory of animat gence is, in several respects, limited.

efficiency. It is also suggested that the methodolo- In addressing isolated competences, Al systems typ-
gy offers a new approach to the problem of percep- ically ignore the fact that real creatures are always situ-
tion. ated in sensory environments and experience varying

degrees of need satisfaction. Furthermore, the systems
1. Introduction attach less importance to such basic natural abilities as

perception, categorization, and adaptation than they do
There are two broad approaches to the scientific under- to algorithmic processes like search and exact reason-
standing of intelligence, or how mind arises from brain. ing. This leads eventually to problems connecting the
One is the natural science approach, analyzing and ex- arbitrary symbols used in internal reasoning with exter-
perimenting with phenomena of life, mind, and intelli- nal physical stimuli ("symbol grounding" (Hamad,
gence as they exist in nature. In this there are two main 1990)), and "brittleness" (Holland, 1986), the tendency
branches: physiology and especially neurophysiolog, for Al systems to fail utterly in domains that differ even
in which living systems are subject to detailed internal slightly from the domain for which they were pro-
investigation; and experimental psychology, including granimed.
studies of animals, in which living systems are studied Al systems also have an arbitrariness: it is often not
through their external behavior. Related to the latter, clear why one program that exhibits a certain intellectu-
but more observational, are fields such as linguistics al competence is to be preferred over some other one ex-
and anthropology. hibiting the same competence, especially since the field

In contrast, the second broad approach to intelligence has not agreed on--or too much sought-a clear defini-
may be termed synthetic and computational, in which tion of intelligence. In a sense, the programmer's facil-
the objects studied are constructed imitations of living ity for imitating a high-level fragment of human
systems or their behavior. In "Computing machinery competence is a kind of t-ap, since from a natural sci-
and intelligence", Turing (1950) suggested two possible ence perspective there is usually no strong relation to
directions for the computational approach: nature.

We may hope that machines will eventually Turing's second proposal, for a "child machine", re-
compete with men in all pure!y intellectual ceived, over forty years, little attention or resources,
fields. But which are the best ones to start with? perhaps because it seemed fantastic. Yet the child ma-
Even this is a difficult decision. Many people chine was to be situated from the start in a real sensory
think that a very abstract activity, like the play- environment and was to learn through experience. It
ing of chess, would be best. It can also be main- would have emphasized precisely the abilities that
tained that it is best to provide the machine standard AI minimized. Turing's proposal is in fact



A Von Neumann Approach to a Genotype Expression in
a Neural Animat

Dan Wood
ThinkAlong Software, Inc., PO Box 359, Brownsville California 95919 USA

thinkalong@applelink.apple.com (916) 675-2478
The existing animat system upon which this pro-

gram has extended utilizes a spreading-activation

[Collins and Loftus, 1975, Anderson, 1983] neural
network which was originally conceived as an exercise
to ascertain the capabilities of a neural net in control-
ling some sort of process. This neural implementation
has been applied not only to the animat described
here, but to process control in the manufacturing

Abstract domain [Park, et al., in prep.], part of a scientific dis-

This paper describes an approach to evolution covery system [Wood and Park, in press], and to the
an artificial insect existing in a simulated study of the Piagetian development of an infant brain

upon wrld i comrised of a sprad [Wood, manuscript].
two-dimensional world, comprised of a "spread- The"wetware"implementation controlling this ani-
ing-activation -buneur network. Study of the diffi- mat consists of a few dozen "neuron' nodes, each
culty of" hand-butilding neural networks has re- connected to several other nodes with varyinglevels of

suited in a genetic expression, based on the notion posite tor) or ne (itory)ngth.
of te Vn Neman comute arcitetureand positive (excitory) or negative (inhibitory) strength.

of the Von Neumann computer architecture and Sensors (input of sight, pain, hunger, taste, and satia-
the biological principles of DNA, which incorpo- tion) stimulate neurons which in turn dissipate acti-
rates both operations and data in a simulated vation to other neurons; muscle neurons that have
DNA strand. Work in progress indicates that by reached a certain threshold of activation will cause
embodying behavior parameters and actual neu- appropriate routines to execute (to cause 'die bug to
ral connections in a genotypic "language," and by move, turn, eat, or move randomly). Additi.,nally, the
expressing that phenotypically as an animat, the system applies a constant decay, to keep the overall
computer simulation appears able to evolve a activation steady, and random noise injected into the
better species of animat through mutations upon activation levels of all neurons. The system does not
the genotype. employ learning methods during the "lifetime" of the

Introduction animat; this project studies only the non-plastic neu-
rons found in the lower animals.

A domain of "artificial life" explores limited com- The animat's environment, implemented on a
puter simulations of animal behavior in an artificial Macintosh II, is a bound arena (figure 1) with morsels
environment. This class of
simulated animal is com- The Bug
ing to be known as the ani-
mat, as first coined by Ste-
wart Wilson in [Wilson,
1985]. Research on the
notion of an artificial insect
has proceeded in many A
diverse headings (see for
instance [Travers, 1988],
[Maes, 1990], [Park, 1988],
[Wilson, 19871). The im-
plementation described
here is a direct extension of
Jack Park's animat as de-
scribed in [Park, 1988].

Figure I



Four Important Issues in Cognitive Mapping
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Abstract Our past work has been the development of a
We introduce the notions of Raw and Full computational theory of cognitive maps to explain what
Cognitive Maps and Absolute Space needs to be computed and why [Yeap. 1988, 1990; Yeap and
Representations (ASRs) and discuss (i) the Robertson 1990; Yeap et. al., 19901. We stress the importance
value of computing a representation of the of studying the process as a whole, from perception to
local environment (ASR), (ii) the need for a cognition and generally in that order. Our investigation of the
global representation of one's immediate process begins with Marr's (1982) computational theory of
surroundings, (iii) categorisation and the vision and, as in Marr's work, the notion of a representation
formation of concepts and (iv) the problem of is central to our study. The next section presents a brief
planning a route. overview of the theory, the main idea being that a cognitive

mapping process should first compute a raw map and then a
0. Introduction full map. Using this theory we discuss four important issues

in cognitive mapping, two at each level: (i) the significance of
The problem of computing a cognitive map is fundamental to computing a representation of the local environment (an
any autonomous mobile system, be it a rat, a human or a robot. Absolute Space Representation or ASR) and (ii) the need for
When Towuan (1948) first suggested the idea of a cognitive a global representation of one's immediate surroundings; (iii)
map, he was probably referring to a "map" of the ial categorisation and concept formation and (iv) the problem of
layout of the environment (mazes in his case) but later it planning a route. These issues arise from the insights gained

became clear, especially after Lynch's (1960) work, that the from the implementation of the theory and from further

notion of a cognitive map is a complex one. In the early 70's, consideration of the natu of the cognitive mapping process.

there was an outcry from geographers, urban planners and

designers that a cognitive map is not a map (see [Downs and 1. A Computational Theory of Cognitive Maps
Stea, 1973]). A cognitive map is tied to our spatial behaviour
and it is therefore affected by a wide variety of factors ranging Although there are many factors which influence our
from our mode of travel and past experiences to our conceptual view of the world, our representation of the world
preferences and attitude. One problem with this view is that must begin from what we perceive. This observation suggests
it leads to a confusing use of the term and one is often left with that the first step in a cognitive mapping process is to compute
the impression that a cognitive map holds one's entire a representation of the physical environment. Since the
knowledge. However, if the system is to adapt and survive in different conceptual views of the world are but different ways
a (hostile) world with other agents in it. such factors must be of looking at what is already computed, this representation of
considered. the physical environment should be fairly independent of the

Cognitive mapping is therefore a complex process which conceptual representations that are developed later. Our
involves both one's perception and concepuon of the outside theory therefore suggests that a cognitive mapping process
world. Studies which emphasised only one level, either the should be studied as a process consisting of two loosely-
perceptual (e.g. work on autonomous mob,;e robots) or the coupled modules. An early cognitive mapping process
conceptual (e.g. early models), were at best Lncomplete and computes a representation of the physical world as perceived
very often asked many questions inappropna:e at that level by our senses. We call this representation a Raw Cognitive
For example, robotics researchers were concerned with how Map; indicating that the computed representation is not
to partition the environment in terms of s-aces large enough interpreted. A later cognitive mapping process computes a
for the robots to plan a collision free path. but planning a representation of the conceptual world. We call this
collision free path is a local problem and an attempt to solve representation a Full Cognitive Map; the word "full"
it at the path planning level is inappropriate (for more detail, indicates the full richness of the map as a cognitive
see (Yeap et. al., 1990]). representation.
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