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Intersensory (Visual/auditory) facilitation of reaction times (RTs) was examined using
three different response systems: saccadic eye movements, directed manual responses
(deflections of a joystick towards the target location) and simple manual responses.
The data were examined in the context of race models (in which facilitation is attri-
buted to the minimum of two random variables representing the detection times associate
with the visual and auditory targets) versus neural summation [coactivation] models
(where the facilitation is attributed to a combination of the activities within the
visual and auditory channels prior to detection). The first experiment provides evidenc

for neural summation [coactivation] in all three response model. The effects of varying

combinations of auditory and visual stimulus intensity were examined in the second ex-

periment. Intensity-dependent mismatches in the auditory and visual RTs had little
effect on the magnitude of the redundant targets effect, indicating that visual-auditor

integration occurs over temporal intervals of at least 40 msecs. The effects ofspatial

correspondence (auditory and visual targets presented in spatial register or in oppo-

site hemifields) was examined in the third experiment. Coactivation depends upon the

spatial alignment of the targets for directed responses (both saccades and directed
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manual responses) but not simple manual RTs; evidence of coactivation of simple
RTs was found for bothe in register and out-of-register stimuli. The character
of visual-auditory interactions appears to vary according to the sensory-motor
pathways utilized by the task. The results for saccades are consistent with
known patterns of auditory-visual convergence within the oculomotor system, and
therefore indicate that the redundant target paradigm can provide behavioral
correlates of established aspects of the neural architecture of a specific
sensorimotor system (eg., Meredith & Stein, 1987; Jay & Sparks, 1987; 1990; Peck,
1987). As there are no known pathways that could mediate sensory convergence
of visual information from one hemifield and auditory information from the
contralateral hemifield, we suggest that the summation effects observed for
simple manual responses are at least partially attributable to a later stage of
information processing (er., coactivation at the level of response execution). The
interference produced by out-of-register stimuli observed for both directed manual
responses and saccades is tentatively attributed to processes associated with the
selection of the target in addition to a possible contribution from response
competition.
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I Abstract

N Intersensory (visual/auditory) facilitation of reaction times (RTs) was examined using

I three different response systems: saccadic eye movements, directed manual responses

(deflections of a joystick towards the target location) and simple manual responses. The data

I were examined in the context of race models (in which facilitation is attributed to the minimum

I of two random variables representing the detection times associated with the visual and

auditory targets) versus neural summation [coactivation] models (where the facilitation is

I attributed to a combination of the activities within the visual and auditory channels prior to

detection). The first experiment provides evidence for neural summation [coactivation] in all

I three response modes. The effects of varying combinations of auditory and visual stimulus

I intensity were examined in the second experiment. Intensity-dependent mismatches in the

auditory and visual RTs had little effect on the magnitude of the redundant targets effect,

I indicating that visual-auditory integration occurs over temporal intervals of at least 40 msecs.

The effects of spatial correspondence (auditory and visual targets presented in spatial register or

I in opposite hemifields) was examined in the third experiment. Coactivation depends upon the

spatial alignment of the targets for directed responses (both saccades and directed manual

responses) but not simple manual RTs; evidence of coactivation of simple RTs was found for

I both in register and out-of-register stimuli.

The character of visual-auditory interactions appears to vary according to the sensory-

I motor pathways utilized by the task. The results for saccades are consistent with known

patterns of auditory-visual convergence within the oculomotor system, and therefore indicate

that the redundant target paradigm can provide behavioral correlates of established aspects of

I the neural architecture of a specific sensorimotor system (eg., Meredith & Stein,1987; Jay &

Sparks,1987;1990; Peck, 1987). As there are no known pathways that could mediate sensory

convergence of visual information from one hemifield and auditory information from the

contralateral hemifield, we suggest that the summation effects observed for simple manual
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responses are at least partially attributable to a later stage of information processing (eg.,

coactivation at the level of response execution). The interference produced by out-of-register

m stimuli observed for both directed manual responses and saccades is tentatively attributed to

processes associated with the selection of the target in addition to a possible contribution from

response competition.

I
I

I

I
I

I
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U IntroductionI
Recently there has been renewed interest in understanding the manner in which

I redundant stimuli affect sensory-motor performance (eg., Ashby & Townsend,1986, Miller,

1982; Mordkoff,& Yantis; 1991; Raab, 1962; Stein, Meredith, Huneycutt & McDade, 1989;

Townsend & Ashby, 1983). In many cases, performance (usually reaction times, RTs) to

-- single stimulus presentations is compared with performance under conditions of dual stimulus

presentations. The frequent finding is that reaction times (RTs) to dual stimulus presentations

H are faster than RTs to either stimulus presented alone (Miller, 1982, 1986; Mordkoff and

Yantis, 1991; van der Heijden, La Heij, and Boer, 1983; Raab, 1962). This is referred to as a

redundant signals effect.

I Central to an analysis of the redundant signals effect is the question of whether the

facilitation produced by redundant targets is sufficiently robust to rule out the possibility that

I responses to redundant targets are simply triggered by whichever target is detected first

(equivalent to the operation of a logical OR gate). Since the detection times associated with

each modality are considered to be random variables, some reduction in responses times is

I expected in a system which applies such an OR operation to otherwise independent sensory

channels, an effect known as probability summation. (eg., Raab,1962; Miller,1982; Townsend

I & Ashby, 1983). Probability summation assumes that a separate decision process accumulates

I information on each afferent channel, and the first channel to detect the target generates the

response. For this reason, such models of redundant signal processing are often called "race"

-- models. Miller (1982;1986) pointed out that the magnitude of the redundant targets effect

should be greater than that attributable to race models if the activity of several parallel afferent

channels were pooled prior to a single decision process. Combined activation would produce

I RTs which are faster than those predicted by race models (Nozawa, 1989). Thus, facilitation

beyond probability summation may be indicative of neural summation ('coactivation)

I somewhere within the processing system. The pooling of information could occur at the level
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i of a sensory decision (Luce & Green,1972; Wandell and Luce, 1978; Blake, Martens, Garrett

& Westendorf, 1980; Fidell, 1970; Fournier & Eriksen, 1990; Rose, Blake and Holper, 1988;

i Westendorf and Blake, 1988) or at the level of response selection or execution (eg.,Diederich

& Colonius, 1987; Eriksen and Schultz, 1977; Fournier & Eriksen, 1990; Miller 1982;1986).

i While the sensory channels in many redundant targets experiments may reasonably be

I] regarded as being organized in parallel, the very existence of a redundant targets effect means

that information about the individual targets must converge at some point in sensory-motor

I processing. Recent electrophysiological studies have revealed a specific site of auditory-visual

convergence within the oculomotor system of cats and monkeys (Jay & Sparks,1987;1990;

Meredith & Stein, 1987; Peck, 1987). These findings motivated the present analysis of the

redundant targets effect on the latency of saccadic eye movements in humans.

Multimodal Convergence in the Saccadic Control System

Recent electrophysiological studies have revealed a neural mechanism that appears

designed to enable multimodal control of saccades: individual neurons within the deeper layers

of the superior colliculus (SC) receive convergent visual and acoustic inputs (e.g., Jay &

Sparks,1987; Peck, 1987; Meredith & Stein, 1987). The coordinates of the visual and

auditory receptive fields are usually in spatiotopic register, and spatially aligned bimodal inputs

often elicit unit discharges that are substantially greater than responses evoked from either

modality alone (Meredith & Stein, 1987). The responses of single cells to bimodal stimuli are

sometimes close to the sum of the unimodal responses (Meredith and Stein, 1987), a

combination rule referred to as superposition of impulse counting (see Fatt & Katz, 1952; Cox,

1962). Often however, bimodal summation effects are much greater than the superposition of

the two unimodal responses (Peck ,1987; Stein, Meredith & Wallace, 1991). Thus, the

behavioral effects produced by bimodal stimuli might reflect an overadditive combination of

each of the unimodal activities (e.g., Stein, Meredith, Honeycutt & McDabe, 1989). Jay and

Sparks (1987) report that many of the cells in SC that discharge prior to saccades (pre-saccadic

burst (PSB) neurons) also receive convergent visual and acoustic inputs, suggesting that the

two modalities might show particularly robust facilitatory interactions in controlling the

lIRmn~ nmmnnl~n
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initiation of saccades. The present experiments examined the degree to which spatially

coincident acoustic and visual targets facilitate the latency to initiate saccades relative to the

I latencies associated with stimuli of either modality presented alone. The experiments thus

address the issue of intersensoryfacilitation in the saccadic control system and compare the

I effects to those obtained with manual responses.

II Evaluating Probability Summation

Estimates of the maximal degree of intersensory facilitation attributable to race models is

derived from the work of Miller (1982) and is based on the inequality:

P(Tmin < t IS1 & S2) < P(T 1< t I S1) + P(T2 < t IS2). (1)

I where T1 and T2 are defined as the random times associated with processing of information in

channels 1 and 2 respectively, and Trin is the minimum of the two random times, T1 and T2 (Trin

I = min[T1,T 2]). Inequality (1) is also known as Boole's inequality in probability theory (Dudewicz,

1976,p. 15). As (1) indicates an upper limit on performance attributable to race models, it can

conveniently be regarded as the "upper boundary" of probability summation (race models). The

I left side of the inequality represents the cumulative distribution function (CDF) of the redundant

targets condition (assuming the race model) and the other terms represent the cumulative

I distribution functions of the single target conditions. Ignoring the motor-related components of

reaction time (i.e., the "base time"), probability summation states that the cumulative distribution

function of the redundant targets condition can be expressed as the sum of the two cumulative

distribution functions from the single target conditions, minus the joint cumulative distribution

function:

P(Tmin < t IS1 & S2) = P(Ti < t IS1) + P(T2 < t IS2) - P(T 1 t andT 2<t ISl &S2). (2)tIn 2t S1 2
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The joint CDF, P(Tt < t and T 2 < t I11 &S2), can be written as a multiplication of the two single-

I target CDF's if (1) T, and T2 are stochastically independent, and (2) we assume context

II independence and selective influence (i.e., the processing times on channel one do not vary with

the activity on channel two; cf., Colonius, 1990; Townsend and Ashby, 1983). Thus, the

expression

I P(Tmin e t IS1 & S2) = P(Ti <t IS1) + P(T2 < t IS2)- (P(T e tIlS1) x P(T2 < t IS2)) (3)

represents the independent race prediction. If there is negative dependence between the random

I times T, and T2, the joint CDF is less than the multiplication of two marginal CDFs. If there is

positive dependence between two random times, the joint CDF is greater than the multiplication of

I_ two marginal CDFs. Regardless of the dependent structure between T, and T2, inequality (1)

I holds because P(T1 < t and T2 < t IS1 &S2) Z 0. Thus, violations of inequality (1) indicate a

redundant targets effect which exceeds the upper limit of probability summation (Miller, 1986;

Ulrich and Giray, 1986). We can evaluate applicability of probability summation to obtained

redundant targets effects by comparing the CDF obtained with bimodal targets,

PRT < t IS 1 & S2), with the CDFs obtained for unimodal targets,

P(RT< t I S1) and P(RT< t IS2); i.e.,

P(RT< t IS1 & S2) - {P(RT< t I S1) + P(RTet IS2). (3)

Notice that this comparison can only be evaluated over values of t such that

P(RT< t I S1) + P(RT< t IS2) < 1.

Insert Fig. 1 about here
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Figure 1 illustrates the relationship between several boundary conditions relevant to reaction

time performance in the redundant targets paradigm. The thick solid line illustrates the CDF of RTs

-- based on the independent race model (independent race prediction, Eq 3). The thin solid line

represents the CDF for the maximum level of performance attributable to any race model, (i.e., the

upper limit of probability summation, which is the right hand side of the race inequality (Eq. 1).

The maximum of the two marginal CDFs (Frechet, 1951) is indicated by the heavy dashed line.

The Frechet boundary represents the slowest level of performance possible in any model in which

responses are determined by the minimum of the completion times (min [T1,T2]) for two parallel

processes (Colonius, 1990). The region between the Frechet boundary and the probability

summation limit represents levels of performance that could be produced by race models in which

the assumptions of stochastic independence and selective influence are relaxed (see Nozava, 1989;

Ulrich and Giray, 1986). As indicated above, given the assumptions of context independence and

selective influence, performance that is faster than the probability summation limit cannot be

accounted for by race models, and therefore will be interpreted as evidence of neural summation1 .

I One type of neural summation (the superposition model, see Fatt and Katz, 1952; Cox, 1962;

I Schwarz, 1989) produces the linear sum of the channel inputs. Nozawa (1989) has provided a

mathematical proof that the superposition of two neural counting processes will produce faster RTs

than the independent race model. To the extent that neural summation is an overadditive

combination of channel activities (e.g., Stein et al., in press) predicted performance would be even

I faster than the superposition model. The degree to which observed redundant targets effects exceed

the upper limit of probability summation could be related to the operator which combines the

1 While many authors have adopted the term "coactivation" to refer to violations of inequality
(1), we refer to such violations as "neural summation" in the present paper because of the
parallel relationship between the present results and observations of auditory-visual
convergence in the electrophysiological literature. In addition, the set of models which
encompass the term coactivation is perhaps larger (e.g., Miller, 1991; Mordkoff & Yantis,
1991) than what might be reasonably included in the type of summation mechanism we
consider here. Thus, the term neural summation might be preferable in the context of the
effects we consider, since it implies specific patterns of convergence in neural "hardware".
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I auditory and visual information: a multiplicative operator will produce greater violations of the race

inequality (Eq. 1) than superposition.

I Intersensory Facilitation as a Function of Task Requirements

Since visual-auditory convergence onto pre-saccadic burst neurons in the superior colliculus

H is a potentially unique architecture among sensory-motor systems, it seemed desirable to compare

the magnitude of bimodal summation observed for saccades with alternative sensory-motor tasks.

Thus, we also investigated intersensory facilitation using two types of manual responses. Directed

I manual responses required the subjects to deflect a joystick in the direction of the target as quickly

as possible. The second type of manual response was a simple reaction time task. The directed

I manual responses are similar to saccades in that target position must be encoded before a correct

response can be executed. In contrast, simple manual responses do not depend upon localization

of the target.I
General Methods

- Apparatus

The basic apparatus consisted of an array of 3 stimulus panels aligned on an arc with a

radius of 114 cm. Each stimulus panel contained a red and green light-emitting diode (LED) and a

small (4 cm) speaker. Two panels positioned on the horizontal meridian of the left and right visual

fields provided the targets. The green LED of the central panel served as a fixation point. Flashes

I of the peripheral red LEDs (100 ms duration) served as the visual targets. Acoustic signals

consisted of white noise bursts (100 ms) delivered through the speakers. Both the amplitude of the

acoustic targets and the luminance of the visual targets were controlled by 12 bit D/A converters.

Acoustic warning signals (2000 Hz, 300 ms) presented through a centrally located oscillator

-- module preceded the delivery of imperative targets by 1000 ms. In order to prevent echoes which

I might impair sound localization, the entire apparatus was located in a large (1.54 m. by 1.54 m. by

0.9 m.) enclosure which was lined with a sound-absorbing foam material (SonexU). The

apparatus was located in an isolated, completely darkened room.
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Response Recording

Eye position was monitored using a scleral infra-red reflection device (Narco

I BiosystemsTM Model 200 eye tracker). The output of the eye tracker was sampled via a 12 bit

A/D converter at 200 Hz, and the digitized records were stored for subsequent off-line data

I analysis. In addition to measuring saccades, we included sessions in which the observers were

required to generate directed and simple manual responses under similar conditions. Directed

manual responses were recorded using an inductive-coil joystick. The subjects were simply

required to push the joystick in the direction of the eccentric target as quickly as possible. The

joystick position was sampled using D/A convertors (200 Hz sampling rate) and the direction

and latency of the movements were analyzed in the same way as saccades. In the simple RT

condiion subjects simply depressed a microswitch in response to the target onset. The

microswitch was also sampled at 200 Hz.

Response Detection. Both saccades and directed manual responses (joystick movements)

were detected using a velocity criterion. While the detection of both saccades and joystick

responses was automated, all records were monitored by an operator in order to insure that

misses or false positives were not included within the data set. In general, the velocity criterion

for saccades and joystick responses was set to - 50 deg. sec- 1. However, the criterion was

occasionally adjusted in order to maximize the performance of the velocity-based algorithm.

This was especially true in the case of joystick responses, which tended to show greater

variability in velocity than saccades.

IDaaAay. As indicated in the Introduction, violations of the race inequality (Eq. 1)

represent the principle measure of interest. Recent simulations by Miller and Lopes (1991)

have shown that fast guesses can bias the results against observing such violations. While the

uncorrected (more conservative) data provide clear and robust violations of Eq 1., we did

correct for fast guesses using the following procedure, which is derived from the correction

suggested by Miller and Lopes (1991).

The CDF for auditory targets, corrected for fast guesses, is given by
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FA,c(t) = (1-g) FA(t) + g G(t), where FAg(t) represents the CDF corrected foi fast

I guesses, FA(t) represents the uncorrected auditory CDF, g is the probability of a fast guess,

I and G(t) is the CDF of the fast guesses (which were estimated from the distribution of false

alarms (FA) on catch trials). Similarly, we have corrected CDFs for the visual and the bimodal

I targets; Fv,c(t) = (1-g) Fv(t) + g G(t) and FA&v,c(t) = (1-g) FA&V(t) + g G(t), respectively. In

this paper, we present many of the results in terms of the difference between the obtained

redundant targets CDF and the sum of the unimodal CDFs. Let us refer to this as the

I magnitude of the race inequality violation, which is given by

Mag = FA&vg(t) - { FA,g(t) + Fv,g(t)}, where the subscript g indicates the obtained CDFs

uncorrected for fast guesses.

Substitution yields the corrected magnitude

Magc = (l-g) FA&v(t) + g G(t) - { (1-g) FA(t) + g G(t) + (1-g) Fv(t) + g G(t)),

and simplification gives

Magc - FA&v(t) - {FA(t) + Fv(t)) + g.G(t)

M c 1 -g

Although direction errors occurred, they were not included in the present correction procedure,

largely because of the lack of a formal model designed to account for their occurrence. As it

turned out, the latencies of the direction errors were often longer than the latencies for correct

responses, so they do not appear to be fast guesses per se.

It can be seen that this correction serves to increase the magnitude of the race inequality

violations, although the actual difference between the corrected ard uncorrected figures was

extremely small in most cases. We emphasize however, that all of the reported violations were

apparent whether or not this fast guessing correction was applied.

EXPERIMENT I

Preliminary Procedures.

Stimulus intensities that produced equivalent latencies in each observer were identified

in a series of preliminary sessions in which we presented unimodal targets of varying

I
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I intensities. There were 64 trials in each session. Each trial began with a warning tone,

followed by either a visual or acoustic target (there were no bimodal stimulus trials in these

I preliminary sessions). Stimulus intensity, modality and location (left vs. right) varied

randomly across trials. At least 4 of these preliminary sessions were run for each response

I condition (saccades, directed manual responses, simple manual responses). The intensity-RT

I curves were used to select visual and acoustic intensities that produce comparable response

times for use in the formal portion of the experiment.

Data collection was always preceded by 5 min of dark adaptation, during which time

the eye tracker was adjusted and eye position calibrated. At the viewing distance of 114 cm.,

I the targets appeared at an eccentricity of 200. Head movements were minimized using a bite-

plate. All subjects were emmetropic (or were appropriately corrected) and had normal hearing.

The subjects were paid for their participation.

Exprimental Procedures.

When intensities which produced equivalent latencies for the visual and acoustic targets

were identified, formal data collection began. Each observer participated in 15 blocks of 60

trials each. Typically, a subject was tested for 2-3 blocks/day. For saccadic and directed

I manual response sessions, each type of target (auditory, visual and bimodal) occurred with

equal frequency in a randomized order. For the simple manual reaction time sessions, bimodal

I targets were presented on 33.3% of the trials, unimodal targets were presented on 50.0% of the

trials (25.0% visual, 25.0 % auditory), and no target (catch trials) was presented on 16.7% of

the trials. Targets were presented to the left or the right of fixation with equal frequency in a

randomized order. The data reported below are based on at least 100 observations for each of

the 9 conditions (acoustic, visual or bimodal stimuli for each response condition) in four naive

observers.
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I

Insert Fig. 2 about here

I The averaged RTs for acoustic, visual and bimodal targets are illustrated in Fig. 2. The left

I portion shows the saccade latencies, the middle shows the directed manual responses, and the right

portion shows the simple manual response times. It can be seen bimodal stimuli generally

I produced shorter response times than unimodal stimuli. This was confirmed in a 4-factor analysis

of variance (direction (L vs R) x stimulus modality x response mode x subjects) which revealed a

significant interaction between response mode and stimulus modality (F 4 ,12 = 7.26,p<.005). Post

E hoc analyses of the means contributing to this interaction (Newman-Keuls) showed that bimodal

RTs were significantly faster than either of the unimodal RTs for each response condition (all p's <

I 0.05). The lone exception was that bimodal RTs were not significantly faster than auditory RTs in

the simple manual response condition.

Average error rates for each response condition are shown in Table 1. These errors

-- represent anticipations and false alarms in the simple manual RT task, whereas they include

anticipations and direction errors for the saccadic and directed manual responses. All RTs less than

125 ms were considered anticipation errors. These error rates were submitted to a 2 factor

(response condition x subjects) analysis of variance following an arcsine transformation. This

analysis revealed no significant differences in error rates for the three response conditions (F2,6 =

I 3.25, p=.l 1).

Insert Table 1 about here
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I Evidence for Neural Summation

We compared the obtained redundant target CDFs with the sum of the corresponding

unimodal CDFs in order to determine whether the observed intersensory facilitation of RTs might

I be accounted for by probability summation. All analyses are based on latency histograms with a 10

E i ms. bin width.

I Insert Fig. 3 about here

I
Figure 3 illustrates the redundant targets effect for a typical observer in the saccade

condition. The CDFs from the marginal (unimodal) conditions, the sum of these marginal CDFs

I (left side of the race inequality (Eq. 1)), and the obtained bimodal CDF are all presented in the top

panel. Violations of the upper limit of the race model are indicated whenever the probability

I associated with the obtained bimodal CDF exceeds the sum of the marginal (unimodal) CDFs.

I These violations are indicated by the vertical hatching in the top panel (non-violations are

represented by the horizontal hatching). The bottom panel represents the difference between the

I obtained bimodal CDF and the race inequality. As it is much more efficient to present the data in

terms of this difference between the obtained and predicted CDF, most of the results will be

I- reported using this difference format.

Figure 4 (a-d) presents of the general pattern of the violations of Inequality 1 in all four

observers. The data for saccades, directed manual responses, and simple manual responses are all

as indicated in the legend. With one exception, the data in the present report was submitted to the

correction for fast guesses outlined above. The only exception to this is the simple RT data from

Observer MK. The reason we elected not to use the correction for MK is indicated in Figure 5.

I The magnitudes of the violations of the race model inequality with and without the fast guessing

correction are shown in the bottom panel. It is evident that, using the correction in MK results in

violations of the inequality that begin at a latency of 15 msecs. This is entirely the result of the fact
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that MK committed 12 false alarms on catch trials that have no counterpart in the signal present

trials. The CDF for these false alarms (up to 300 msecs., which includes all but one of the false

alarms) is shown in the top panel. It seems obvious that, in this particular case, virtually all the

evidence for violations of the inequality rely on these 12 False alarms. Given this distortion of the

results produced by the fast guessing correction, we elected not to use the procedure in the case of

MK's simple RT data.

Insert Figs. 4 and 5 about here

I Violations of the race inequality are apparent for each response mode in all four observers. Notice

however, that both the proportion of the manual RT data which violates the inequality and the

magnitude of the observed violations appear smaller than those associated with saccades. Failures

to violate inequality (1) do not necessarily rule out coactivation models. However, if selective

influence and context independence holds, violations of inequality (1) can only be realized by

neural summation (coactivation). Thus, inequality (1) represents a very conservative test of neural

summation models (cf., Miller, 1991; Eriksen, 1988 ). Both superposition and overadditive

combinations of individual channel activities will violate inequality (1) (see Townsend and

I Nozawa, 1992). In the next section, we evaluate the possibility that the liklihood of violations

varied with response mode.

I Tests of the Response-Dependent Ordering of Neural Summation

The probability of violations of the race inequality was first calculated. The number of

violations occurring in the n intervals over which the inequality can be evaluated is distributed

as a binomial random variable. Thus the probability of a violation, pA=P(violationlresponse

mode A) - i/nA Bin(pA, nA). The multiplicative factor I/nA means that we are dealing with

the relative frequencies of the violations rather than the actual number of violations observed.

As nA (the number of possible violations) increases, the binomial approximates the normal

distribution: i/nA Bin(pA, nA )_ N(PA, PA(1-PA) / nA). Thus, the probability of observing a

violation can be approximated by the normal distribution with the mean of PA and the variance
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I of PA(1-pA) / nA. Thus, the hypothesis can be expressed as the difference of the two normal

random variables, PA and PB, the null hypotheses, P(violationlresponse mode A) <

P(violationlresponse mode B) and P(violationlresponse mode A) < P(violationlresponse mode

C) are distributed as N(pA- P, PA(1-PA) / nA + pB(1-PB) / nB). Since the distribution mean and

variance are known, the z-score associated with this comparison can be calculated as follows:

Z nAPA - PB
4PA- p A)" + - n

The results of these calculations are provided in Table 2. This analysis supports the

suggestion that the probability of violating the race inequality was greater for saccades than either

I directed manual or simple manual RTs.

I Insert Table 2 about here

==Discuss ion

RespQnse-dependent ordering in the magnitude of neural summation

All three response modes show evidence of neural summation between visual and auditory

channels. However, the magnitudes of the violations of the race inequality for saccadic responses

appears greater than those observed with either directed manual RTs or simple manual RTs. The

magnitudes of the violations of inequality (1) for saccades were quite robust, ranging from 0.23 to

0.40 in the four observers (Fig. 4). By way of comparison, previously reported violations of the

probability summation limit generally vary between 0.05 and 0.10 (eg., Diederich & Colonius,

1987; Mordkoff & Yantis, 1991; Miller,1982). The violations in the present manual RT data are

generally commensurate with these previous results. Thus, the magnitude of race inequality

violations depend upon the response system. Presumably, such differences may relate to the

operator which combines the channel activities (eg., addition or multiplication). Alternatively, the
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I number of elements in which the convergence occurs (cf., Kimura and Tamai, 1992) might

influence the magnitude of intersensory integration in a manner analogous to manner in which the

I number of responding elements contributes to the effects of stimulus intensity on RT. We return to

the possibility of response-dependent ordering in the magnitude of race inequality violations in the

I next experiment.

The importance of Central Simultaneity

The response-dependent ordering suggested by these data may also relate to the quality of

I the matches of the unimodal RTs. Intuitively, one might think that neural summation will be

maximized when the activities of each channel are cotemporaneous. Miller (1986) has provided

I direct evidence in support of this conjecture. Although the procedure is not necessarily infallible,

we tried to maximize the likelihood that each channel's activity arrived cotemporaneously at the site

of summation by matching the visual and auditory RTs (through manipulations of signal strength).

The procedure worked well for both the saccades and the directed manual responses. However,

despite a concerted effort, the matches for the simple RTs were not as close as we had hoped (Fig.

2). This mismatch could have produced less robust violations of the race inequality for simple RTs

than might otherwise have occurred (eg., Diederich and Colonius, 1987; Miller, 1986). Indeed,

the present evidence for neural summation observed for simple manual RTs may actually be a little

I weaker than in some of the previously published results using similar conditions (eg., Diederich

and Colonius, 1987; Miller, 1986). While other paradigmatic differences could play some role in

I attenuating the level of neural summation relative to some of these earlier reports (for example,

interstimulus dependencies [see below] and uncertainty of target location, and the presence of catch

trials), the observed violations of inequality (1) may have been more compelling had we succeeded

in obtaining better matches between the simple RTs in the single target conditions. The RT matches

between the auditory and visual targets were quite good in the saccadic and directed manual

response conditions however, and evidence for ordering was still obtained.

It is interesting to note that recent electrophysiological studies indicate that the "temporal

window" for bimodal summation in the superior colliculus is actually quite long (for individual

neurons, the integration window is often greater than 500 ms, see Stein and Meredith, 1990).

II
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From the ecological perspective, long integration times would appear quite desirable. That is,

substantial differences exist between visual and auditory transduction latencies, and the differences

in the relative velocities of sound and light would usually not be expected to compensate for the

differences in internal processing time. A strict requirement of central simultaneity for neural

I summation between visual and auditory targets would mean that neural summation could only be

expressed with specific combinations of visual and auditory intensities, and the required

combination of intensities would further depend on stimulus distance. In order to be generally

I useful, the summation mechanism must have a long integration time (cf. Stein and Meredith,

1990). A second goal of Experiment II was to investigate the effects of auditory and visual

detection asynchrony on the observed violations of the race inequality.

Inter-stimulus Dependencies and Coactivation

Mordkoff and Yantis (1991) have recently provided an interesting analysis of the role of

inter-stimulus contingencies and stimulus-response contingencies in experiments on coactivation

effects. They point out that in redundant targets experiments, the identity of the stimulus on one

channel can confer information3 concerning stimulus identity to the other second channel. For

example, suppose we wish to determine whether the presence of an auditory signal conveys

information about the likelihood of a visual signal. If the probability of an auditory and visual

target are independent, we have

P (A I V) = (P (A) x P (V)) / P (V) = P (A), and no information is conveyed.

However, if

P (AIV) -P (A) 0,

then the occurrence of V conveys information about the likelihood of A (see p 31 of Dudewicz,

1976). Mordkoff and Yantis (1991) refer to this difference between the conditional probability and

U 3 in this context, we do not mean information in the formal sense. Here the term information
refers to the idea that presentation of a target on one channel changes the probability that aI target is presented on a second channel. This occurs if the probabilities of a signal
presentations on channels 1 and 2 are not statistically independent.

I
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the marginal probability as the interstimulus contingency ( denoted as: ISC (V -> A)). They

observed that previous reports of coactivation were obtained only when ISC > 0. They go on to

report the results of several experiments showing no evidence of coactivation (i.e., no violations of

inequality (1) ) when ISC = 0. Table 3 presents the set of interstimulus contingency values from

the present experiment.

Insert Table 3 about here

In all cases, targets in one modality convey negative information with respect to the

probability of a target presentation on the second channel. According to Mordkoff and Yantis

(1991), this mitigates against violations of inequality (1). Nonetheless, clear evidence of neural

I summation was found. To our knowledge, these data represent the first evidence for violations of

inequality (1) with negative dependencies between the target stimuli. Mordkoff and Yantis also

define the interstimulus contingency benefit, ISCB (A) as the difference between P(VIA) and

P(VIA-). This quantity represents a benefit confered to redundant target trials over visual targets.

Similarly, we can define ISCB (V) as P(AIV) - P(AIV). Mordkoff and Yantis (1991) use ISCB to

analyize redundant target paradigms in which subjects must make one response if either 1 or 2

targets are presented and make a different response if two non-targets are presented. The logical

status of this measure is open in the present situation however. In the present case, the only type of

non-target was the absence of a stimulus altogether; it is difficult to see how a lack of stimulus

energy could facilitate processing in a different modality. In any case, the ISCBs in experiment 1

are also provided in Table 3, and again the values are negative. The interstimulus contingencies

indicate that there is no basis for facilitatory cross-talk between the channels in the present

experiment. In order to have the ISCBs play a role in the present context, one would have to

suggest that the absence of a target on one channel A must slow processing on channel V. By

assuming that the interactive race model may include inhibitory cross-talk, it might be suggested

that negative ISCBs might slow the unimodal RTs, thereby increasing the likelihood of violations
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I of inequality 1. This suggestion accepts the possibility questionable hypothesis that a lack of

activity on one channel can slow processing on another channel. In any case, the ISCBs in

I Experiment II were 0, and robust violations were still observed.

Note that the interstimulus contingencies were identical for the saccadic and directed manual

I response conditions. This supports our hypothesis that saccades show a greater degree of

-- intersensory facilitation than the directed manual responses. If anything, the present results may

underestimate the strength of neural summation in the saccadic and directed manual conditions.

Because we included catch trials in the simple manual RT condition, the negativity of the ISC is

much smaller in this condition. Thus, the ISCs in the present experiment actually favor neural

summation of simple RTs over the other response conditions. However, the fact that the ISC is

(slightly) less than zero might be another factor contributing to the weak evidence of neural

summation found for simple RTs relative to earlier reports (the ISCs in many of those reports were

positive, eg., Diederich and Colonius, 1987; Miller, 1982,1986; Mordkoff and Yantis,1991). In

the next experiment, we attempted to replicate these findings under conditions in which no

interstimulus dependencies were operating.

I EXPERIMENT II

I
Introductionl

The second experiment was designed to extend these observations by 1) investigating

the importance of matching the visual and auditory RTs in determining the magnitudes of the

redundant targets effects in the present paradigm and 2) evaluate the redundant targets effects in

the absence of the inter-stimulus dependencies that were operative in the first experiment.

Thus, the major differences between this experiment and the previous one is that the design

includes a factorial combination of high and low stimulus intensities for both the auditory and

the visual targets (to produce central asynchrony between auditory and visual detection times)

in the context of complete independence between the occurrences of visual and auditory targets.
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I Preliminary Procedures.

Once again, we attempted to match the RTs to the visual and auditory targets. Two

levels of intensity were employed for both the visual and auditory modalities. The intensity

I levels that produced approximate matches were obtained in preliminary observations. In this

experiment the same intensities were used by each observer. The selected intensities of the

visual targets were 0.04 cd. M-2 and 12.0 cd. m-2 . The corresponding auditory intensities

were 46 dBpl and 74 dBpl. In order to obtain improve our control over the auditory RTs, we

added a constant background of white noise (60 dBsp), which was delivered through an

I overhead speaker.

The general procedures were the same as in the first experiment. However, the proportions

of each trial type was altered to as to eliminate the dependent structure between the stimuli. The

proportions of each stimulus condition are provided in Table 4.

U
Insert Table 4 about here

Experimental Procedures.

Three observers participated in 15 experimental sessions of 384 trials each. Two of the

observers were naive with respect to the issues under investigation and were paid for their

I participation. The third observer was one of the authors. Typically, a subject was tested for 6

blocks of 64 trials per day (two blocks for each response condition/day for 15 days). Each

response condition (saccades, directed manual and simple manual responses) were run in

accordance with a Latin square to control for possible order effects. Within each block of

trials, targets were presented to the left or the right of fixation with equal frequency in a

randomized order. The data reported below are based on 90 observations for each of the 9

conditions (acoustic, visual or bimodal stimuli for each response condition) in each observer.



22

!

Insert Fig. 6 about here

Mean RTs, averaged across the 3 observers are provided in Figure 6. The intensity effect

averaged approximately 40 msecs., which was largely independent of modality and response

system. Error rates for each response condition are shown in Table 5. These rates appear quite

small, and as indicated previously, the RT distributions were corrected for fast guessing. We

therefore did not analyze the errors rates any further.

Insert Table. 5 about here

The results, expressed as differences between the obtained redundant target CDFs and the race

inequality are shown in Figure 7.

Insert Fig. 7 about here

Once again, robust violations of the race inequality were observed in all observers and each

response condition. There appears to have been little effect of mismatches between the auditory

and visual detection times on the size of the redundant targets effect. Large violations are seen

among all four combinations of auditory and visual signal strength. In addition, these violations

occund in the context of complete independence between the occurrence of the visual and
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auditory stimuL, suggesting that interstimulus contingencies appear to make little difference in the

present paradigm.

There is again a suggestion that the magnitudes of the observed violations might vary with

response mode however. We evaluated this difference using the methods described above, and the

results are provided in Table 6.

Insert Table 6 about here

The same trend of response-dependent ordering in the violations of the race inequality seen

in Experiment I appeared in Experiment 1I: saccades were more likely to produce violations than the

manual responses.

The results of the second experiment replicate and extend the findings of Experiment I.

Thus, human saccades show clear evidence of neural summation between the visual and auditory

channels. Both directed manual responses and simple manual RTs also show evidence of neural

summation, but these latter effects may be less robust. In all three cases, there does not appear to

be any strict requirement of simultaneity between the visual and auditory target processing -

asynchronies of up to 40 msecs. can easily produce summation effects. Relatively long integration

times for visual-auditory summation effects are a necessary component of the processing

architecture if the systems under investigation are to have any generally useful ecological validity,

as discussed above.

The Site of Neural Summation

Logically, neural summation effects could occur at the level of sensory processing,

response selection, or motor execution. Evidence favoring neural summation at each of these levels

of sensory-motor processing has been reported (sensory level : Fournier and Eriksen,1990;

Mordkoff and Yantis, 1991, response selection : Fournier and Eriksen,1990; Miller, 1982;

Mordkoff and Yantis, 1991;Schmidt, Gielen & van den Heuvel, 1984, and motor processing time:

Diederich and Colonius, 1987).
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Clearly, one major locus of the visual-auditory convergence resides within the oculomotor

system. We suggest that the most parsimonious interpretation of the saccade data is that neural

summation results from the convergence visual and acoustic afferents onto pre-saccadic burst

neurons within the deeper layers of the superior colliculus (e.g. Peck, 1986; Jay & Sparks, 1987;

Stein et.al., 1991). These cells share characteristics of sensory neurons as well as motor neurons,

and any attempt at a dichotomous classification seems pointless. Thus, the evidence for neural

summation (coactivation) in the control of saccades seems best regarded as occurring at the

interface between sensory processing and motor execution.

Our interpretation of these findings with respect to saccades would receive additional

support if it could be shown that these bimodal summation effects depend on the spatial alignment

of the visual and acoustic inputs in a manner similar to that already described for neurons in the

superior colliculus (e.g. Meredith and Stein,1987). Inverse relationships between the level of

coactivation and target separation have been reported (Fournier and Eriksen,1990; Miller, 1982).

An examination of the effects of spatial correspondence in the present paradigm should provide

important additional information concerning the mechanisms of neural summation in oculomotor

processing. The third experiment represents a preliminary investigation of the role of spatial

correspondence in mediating these summation effects.

EXPERIMENT III

Introduction

In the third experiment we sought to provide an analysis of the effects spatial misalignment

I between the auditory and visual targets on the summation effects reported above. Once again,

saccades, directed manual responses, and simple manual RTs were investigated. In this initial

analysis, bimodal targets could either occur in spatial register or out-of-register. In the later case,

the visual and auditory targets occurred in opposite hemifields. Under such conditions, it would be

surprising indeed to see evidence of neural summation, since there are no indications that visual and

I auditory inputs arising from such disparate locations converge onto common neural elements.

I Moreover, the out-of-register targets would certainly be expected to produce competing response

I
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tendencies, at least in the case of saccades and directed manual responses. The question we wished

to address with respect to these directionally specific responses was not so much whether evidence

I of neural summation would be obtained with these spatially misaligned targets, but rather, could we

provide evidence that the occurrence of these summation is specifically dependent on the spatial

I alignment of the auditory and visual stimuli. The situation for the simple manual responses seemed

less clear cut, since it appeared reasonable to hypothesize that auditory-visual summation of simple

detection times could occur for both in-register and out-of-register targets.

I
Methods

I In general, the methods and procedures were the same as those used in Experiments I and

IL. The major differences relate to design changes required by the inclusion of spatially misaligned

targets. Thus, there were two basic conditions: one in which the auditory stimulus was designated

as the target, and one in which the visual stimulus was designated as the target. In either case, 20.0

% of the trials were catch trials. A target (either visual or auditory, depending on the condition)

was presented on the remaining 80.0 % of the trials. Of these target trials, 50 % presented the

target stimulus alone, while the remaining 50 % of the target-present trials presented bimodal

stimuli. The auditory and visual stimuli were presented in spatial register on half of the bimodal

trials and were presented out-of-register (in opposite hemifields) in the remaining half. The

distribution of trial types is summarized in Table 7.

Insert Table 7 about here

All stimuli were presented at an eccentricity of 150. Target location varied between the left and

right locations with equal frequency, and the sequence of trial types was randomized.

The 3 subjects from Experiment II again served as observers. Subjects participated in 10

experimental sessions,where each session consisted of 6 blocks of 50 trials/day (two blocks of 50
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trials for each of the three response conditions). The order for performing each response condition

was counter-balanced across days. Finally, target modality was blocked: subjects participated in 5

I sessions with one modality as the target, and then participated in 5 more with the other modality as

the target. JZ and JE first responded to auditory targets, while HH first responded to visual

I targets.

The subjects were told which stimulus they should treat as the target, and to respond to the

m target modality as quickly as possible. Depending on response mode, these responses were of

I course to either look at the target, thrust the joystick towards the target, or depress the microswitch.

The observers knew that stimuli in the other modality would sometimes appear, and that they may

or may not be aligned with the target. They were given no specific instructions concerning how to

deal with these ancillary stimuli, other than to realize that responses that were not directed to the

designated target would be treated as errors.

The stimulus intensities were taken from experiment II, and were selected on the basis of

producing the closest match in unimodal RTs obtained in that experiment. The intensities used for

each observers are provided in Table 8. As in experiment II, white noise was present throughout

the duration of the session (60 dBspl).

Insert Table 8 about here

As it turned out, these intensities did not produce matched unimodal RTs in Experiment LIII.

Apparently, the change in conditions (only having to respond to a single intensity, only having one

modality as the target) altered the decision criteria and caused the resulting mismatches. However,

these mismatches in the unimodal RTs proved quite fortuitous in interpreting the results, as we

describe below.

Ieut
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Average RTs for the bimodal trials as a function of both spatial correspondence and target

modality are illustrated in Figure 8 for each response condition. The corresponding error rates are

I given in Table 9.

I . Insert Figure 8 and Table 9 about here

I The reaction time data were submitted to a four factor analysis of variance. The factors

I were spatial correspondence, target modality, response mode and subjects. The analysis revealed

significant main effects of correspondence (p<.02) and response mode (p<.05). In addition, the

interaction between spatial correspondence and response mode was significant (p<.02).

Examination of Figure 7 shows that this interaction is attributable to the effects of spatial

correspondence on saccades and directed manual responses; spatial correspondence had little effect

on simple manual responses.

In order to evaluate the results in terms of the race inequality, we had to use the unimodal

distributions from the two different target conditions (e.g., single auditory stimuli were only

presented during the auditory target condition). The only significance of this is that all the data

used in the analysis could not be obtained within the same sessions. By the time that these data

were collected however, each of the observers had performed these tasks for a long period of time,

and were producing data that were quite stable.

Insert Fig. 9 about here

I
The results, expressed as differences between the obtained bimodal RT distriautions and

I the race inequality, are provided in Figure 9. The data for the corresponding and non-

I corresponding bimodal stimulus trials are indicated for each of the three response modes. Consider

first the simple manual responses. In this case, violations of the race inequality appear equal for

I both corresponding and non-corresponding bimodal targets. Although the violations observed in

I
I
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HH were quite small, those observed in JE and JZ were substantial. In all cases however, the

spatial alignment of the stimuli appears to have little effect.

This contrasts with the results obtained using directed responses (saccades and directed

manual responses). When the bimodal stimuli were presented at non-corresponding spatial

I locations, performance was substantially below that predicted by the race inequality ( negative

values indicate performance slower than the inequality). Indeed, there were essentially no

violations observed in the entire data set. In contrast, violations of the race inequality did occur

I when the bimodal targets occurred in corresponding spatial locations, but not under all conditions.

Consider for example, observer HH. Violations of the race inequality were observed for both

directed manual responses and saccades when the visual stimulus was designated as the target, but

not when the auditory stimulus was the target. The pattern of results in observer JE is even more

obscure. JE shows robust violations for saccades, but only for visual targets. In contrast, JE's

directed manual responses only show violations when the auditory stimulus was designated as the

target. An equally obscure pattern is apparent in observer JZ. Thus, the results indicate that

evidence of neural summation relies on the spatial correspondence between the auditory and visual

targets, but appewu. to depend on some additional factor(s) as well.

Examination of the actual cumulative distribution functions for the various conditions

provides important clues as to what might be the basis for these apparently disorderly results.

Insert Fig. 10 about here

Figure 10 illustrates the unimodal CDFs, the obtained bimodal CDFs, the race inequality, and the

independent race prediction for the directed manual and saccade responses in each of the 3

observers. Inspection of the unimodal CDFs show that, in each case, one of the modalities

produced faster RTs than the other. When we compare the obtained bimodal distributions for

corresponding stimuli to the race inequality, it becomes clear that the race inequality is only violated

when the faster of the two modalities was designated as the target. There were no exceptions. A
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process of stimulus selection (based on the designated modality of the target) appears to precede the

summation stage. When the target modality is slower than the ancillary modality, subjects

apparently withhold their responses until the stimulus in the designated modality has been

identified. This precludes the expression of summation effects between the two stimuli. Notice

that, when the two stimuli are presented in non-corresponding locations, the RTs approach but

never exceed the unimodal CDFs; when the targets appear in corresponding locations, the bimodal

CDFs are always faster than the CDF for the target modality presented alone, but exceed the race

inequality only when the target modality is the faster of the two. Thus, the observers conform to

the requirements of the task: they make their responses contingent on the detection of the designated

target. If that target is likely to be detected first, a response can be initiated, but the later arriving

ancillary stimulus still is able to facilitate processing if it occurs in the corresponding location. If

the slower of the two modalities is the target, subject must await detection of the target in order to

avoid errors; they are apparently able to do this with reasonable efficiency.

This pattern of results is also reflected in the error rates (Table 9). Notice that most of the

errors occur on non-corresponding trials. The error rates for saccades clearly contrast with those

generated by the same observers in Experiment II: in Experiment II, not a single saccadic direction

error was made by any of the subjects.

Discussion

The results of the third experiment indicate that summation effects depend upon the spatial

alignment of the stimuli if the task requirements make localization of the target essential. If not, as

was the case for the simple manual responses, spatial alignment appears unimportant. Moreover,

in order to avoid errors when the response is contingent on the location of a designated target,

subjects must (and can) efficiently gate the emission of their responses according to target modality.

Although this selection process obviously must precede response execution, the selection process

does not act as a simple filter which prevents the ancillary stimulus modality from contributing to

the activation of a response. If this were the case, then the summation effects produced by spatial

correspondence would be prevented (a the pattern of errors would differ as well). Clearly,
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information from a spatially aligned ancillary target can facilitate processing, but this facilitation can

only generate RTs that violate the race inequality if the target modality is likely to be detected first.

I Otherwise, the subject waits for the target. This waiting slows responses to a level that makes

violations of the race inequality difficult to achieve.

The fact that violations of the race inequality were observed for simple RTs for both aligned

and misaligned stimuli may suggest that summation can occur at a post-sensory stage of

I processing. This suggestion is based on the supposition that a specific convergence of visual and

I auditory information originating from sources separated by 300 (150 on either side of fixation)

seems unlikely, especially when they are located in opposing hemifields. At least we are unaware

of any evidence that such convergence occurs. Of course, it is entirely possible that both sensory

and motor coactivation effects mediate the violations of the race inequality seen for simple RTs.

Indeed it seems possible that the summation effects on simple RTs might rely on sensory

convergence in the case of corresponding stimuli, and motor coactivation in the case of non-

corresponding stimuli.

Interpreting evidence for coactivation in terms of convergence of the sensory pathways

seems safer when the effects depend on the spatial alignment of the stimuli. Here too however,

I coactivation of motor processes appears viable. For example, while the failure to find evidence of

neural summation for -" 'ier directed manual responses or saccades for non-corresponding stimuli

might be related to the faL ihat the sensory pathways that carry the target information are inhibited

the addition of by out-of-register stimuli (e.g. Meredith and Stein,1987), it is also possible that the

pathways conveying information for such dramatically misaligned stimuli simply do not converge

onto any common element that is utilized in the performance of these tasks, but does invoke

incompatible response tendencies which must somehow be resolved. What is clear from the

present results is that out-of-register stimuli can certainly interfere with the processing of the target,

as is shown by the degree to which these responses are actually slower than the corresponding

unimodal distribution of response times.

It seems possible that all of these coactivation effects could relate to the actual generation of

I responses. In the case of saccades, neural circuitry clearly capable of producing all of the effects
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we report here is know to exist within the superior colliculus. As we suggested above however,

these neurons are truly at the interface between sensory and motor processes, so they can be

regarded as pre-motor neurons as readily as anything else. Much less is known of sensory

convergence in pathways that might be operative during the execution of sensory-motor tasks

I involving the hands. One can make a case for a transcortical route, and polymodal cortical areas

have been identified (eg., Kimura & Tamai, 1992; Neal, Pearson and Powell, 1990; Mistlin &

Perrett, 1990; Seltzer & Pandya, 1989). There is little to indicate that they play a pre-motor role

I that is in any way analogous to the function of the deeper layers of the superior colliculus in

initiating saccades however.

In conclusion, these results indicate that saccades show robust evidence of neural

summation between auditory and visual inputs that can reasonably be interpreted in terms of known

patterns of auditory-visual convergence within an important oculomotor structure: the superior

colliculus. Different neural pathways are assumed to mediate auditory-visual summation effects

observed for manual responses, and thus there may be either qualitative or quantitative differences;

this is, of course, an empirical issue. The suggestions in the present data that the magnitudes of the

race inequality violations might differ with different response systems are, in our opinion,

promising, and could indicate differences in the mechanisms that produce coactivation effects in

different circumstances. Similarly, the importance of spatially aligned targets may reflect important

differences in the locus of coactivation effects for different tasks. Future w, rk, involving for

example less extreme cases of spatial misalignment, should provide additional insight into the

nature and loci of coactivation effects in these systems, and may provide insight relevent to a range

of emerging issues in the study of coactivation effects more generally.
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Table 1. Probabilities and Mean RTs for correct responses, false alarms, and direction errors,

Experiment I.

Saccades Directed Manual resps. Simple Manual resps

P P(false alarm) - ----------------- --------------------- 0.0313

I Mean RT (false alarm) --------------- --------------------- 198.0

P (Direction error) 0.004 0.03

I Mean RT (dir. error) 106 214.4 --

Mean RT (correct resp) 213.9 315.7 267.0

I Table 2. Z scores associated with the probability of violations of race inequality: Experiment I

Observer Saccades vs. Directed. Manual Saccades vs Simple Manual

GT 7.36** 1.1

I LQ 7.98 ** 6.65 *

2JA 2.75 ** 2.72 **

MK 2.12* 1.89*

I * p<0.05, **p<0.01
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I Table 3. Dependent structure and the various stimulus probabilities for each response condition in

Experiment L

Saccadic and Directed Manual Response

Probabilities Associated with Various Stimulus Events

P(A and V) =1/3 P( A and V)=1/3 P( A and V )=1/3 P( A and V )=0
S P( A IV)=1/2 P( A IV)=I1.0 P(V IAW)=1.0 P(VI A)= 1/2l

P( A )=2/3 P( V )=2/3 P( X )=1/3 P( V )=1/3I
Summary of the dependent structure for saccadic and directed manual responses.

Events Conditional Probability Marginal Probability Difference

A IV versus V 1/2 2/3 -0.1666

VIA versus A 1/2 2/3 -0.1666

A IV versus V 1.0 2/3 0.333

VIA versus A 1.0 2/3 0.333

V I A versus V I A -0.5

A I V versus A I V -0.5

Simple Manual Response

Probabilities Associated with Various Stimulus Events

I P(A and V) =1/3 P( A and V )=1/4 P( W and V )=1/4 P(X and V )=116
P(A I V)=4f P( A IV )=3/5 P( V IX )=3/5 P( VI A )=417

I P( A )=7/12 P( V )=7/12 P(X )=5/12 P( V )=5/12

Summary of the dependent structure for simple manual responses.

Events Conditional Probability Marginal Probability Difference

A I V versus V 4/7 7/12 -0.0119
V I A versus A 4/7 7/12 -0.0119

A IV versus V 3/5 5/12 0.183
V I X versus A 3/5 5/12 0.183

V I A versus V IX -0.029

A I V versus A V -0.029
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I
Table 4. Dependent structure and the various stimulus probabilities in Experiment II.

Probabilities Associated with Various Stimulus Events

I P( A and V ) --0.25 P( A and V )=0.25 P( A and V )--0.25 P( A and V )=0.25

P( A I V )--0.5 P( A IV )=0.5 P( V I A )=0.5 P( VIA )--0.5

P( A )--0.5 P( V )--0.5 P( A )=0.5 P( V )=0.5

Summary of the dependent structure for saccadic and directed manual responses.

Events Conditional Probability Marginal Probability Difference

A IV versus V 0.5 0.5 0.0

V I A versus A 0.5 0.5 0.0

A IV versus V 0.5 0.5 0.0

V I A versus A 0.5 0.5 0.0

V I A versus VI A 0.0

A I V versus A IV 0.0

Table 5. Probabilities and Mean RTs for correct responses, false alarms, and direction errors,

Experiment II.

Saccades Directed Manual resps. Simple Manual resps

P (false aarm) 0.0167 0.009 0.0715

Mean RT (false alarm) 300.2 233.4 261

P (Direction error) 0.0 0.018

Mean RT (dir. error) ---------------------- 254.4

Mean RT (correct resp) 220.9 287.8 284.8
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Table 6. Z scores associated with the probability of violations of race inequality: Experiment II

Observer Saccades vs. Directed. Manual Saccades vs Simple Manual

HH 4.88 ** 1.7 *

I JE 3.84 ** 2.67 **

JZ 8.6 ** 10.03 *

* p<0.05, **p<0.01
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Table 7. Dependent structure and the various stimulus probabilities in Experiment lI.

Probabilities Associated with Various Stimulus Events: Auditory target condition

P( A )--0.8 P( V )--0.4 P( A )=0.2 P(V )=0.6

P( A and V ) --0.4 P(AandV)=0.4 P( A and V )=0.0 P( A and V )=0.2

P( alignedlA and V) =0.5 P( misalignedlA and V)=0.5

P( A I V)=1.0 P( A IV )=0.667 P( V I W )=0.0 P(VI A)=0.5

Summary of the dependent structure in the auditory target condition.

Events Conditional Probability Marginal Probability Difference

I IVversusV 1.0 0.4 0.6

V I A versus A 0.5 0.8 -0.3

I A I V versus V 0.667 0.6 0.067

V I A versus A 0.0 0.2 -0.2

I VI A versus V IA 0.5

A I V versus A IV 0.333

I

-- Probabilities Associated with Various Stimulus Events: Visual target condition

P( A )=0.4 P( V )=0.8 P( A )=0.6 P( V )=0.2

I P( A and V ) 0.4 P( A and V )=0.0 P( W and V )=0.4 P( A and V )=0.2

P( alignedlA and V) =0.5 P( misalignedlA and V)=0.5

P( A I V )0.5 P( A IV )=0.0 P( V IA )=0..667 P( VIA)=1.0

Summary of the dependent structure in the visual target condition.

Events Conditional Probability Marginal Probability Difference

A I V versus V 0.5 0.8 -0.3

V I A versus A 1.0 0.4 0.6

A IV versus V 0.0 0.2 -0.2

V I A versus A 0.667 0.6 0.067

V I A versus V A 0.333

A I V versus A IV 0.5
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Table 8. Stimulus intensities used in Experiment III

Saccades Saccades Directed Directed Simple Simple

Manual Manual Manual Manual

Observer Auditory Visual Auditory Visual Auditory Visual

Intensity Intensity Intensity Intensity Intensity Intensity

JE 74 dB 12.0 cal. m- 2  74 dB 12.0 cd. m-2  74 dB 12.0 cd. m- 2

I7 74dB 12.0cd. m-2  74dB 12.0cd. m-2  46dB 12.0cd. m72

HH 46 dB 0.04 cd. m-2  46 dB 0.04 cd. m-2  46dB 0.04 cd. m-2

Table 9. Probabilities and Mean RTs for correct responses, false alarms, and direction errors,

averaged across the three observers. Experiment 1I.

Saccades Directed Manual resps. Simple Manual resps

P (False Alarm): 0.0233 0.0133 0.0758

Mean RT (False Alarm) 237.1 367.3 243.1

Prob (Direction error)

All Trials 0.0125 0.04

Corresponding Stimuli: Aud. Targets 0.003 0.023

Non-Corresponding Stimuli: Aud. Targets 0.073 0.16

Corresponding Stimuli: Vis. Targets 0.003 0.013

Non-Corresponding Stimuli: Vis. Targets 0.003 0.093

Mean RT (1irection. error) 279.2 276 -

Mean RT (correct resp) 227.3 306.1 232.8
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Figure Captions

Figure 1. Three boundary conditions for parallel processing systems. See text for details.

I Figure 2. Mean latencies for visual, acoustic and bimodal targets for each response condition in
Experiment I.

I Figure 3. Violation of the race model inequality. The unimodal target CDFs, an obtained bimodal
CDF, and the performance limit of the race model inequality (sum of the unimodal CDFs) are as
indicated. Violations of the race model inequality are indicated by the vertical hatching. The
differences between the obtained bimodal CDF and the inequality are shown in the bottom panel.

Figure 4. Results from experiment I. Positive values indicate the magnitude of the violations ofI inequality 1. Data for saccades, directed manual responses and simple manual rts are as indicated.

Figure 5. Example of the potential problem associated with the correction for fast guesses. TopI panel shows the CDF for false alarms in observer MK. A total of 12 false alarms were recorded in
the simple RT task. The earliest of these have no counterpart in the target present trials. Bottom
panel illustrates the effects on computations of race inequality violations. Although the changes are
small in magnitude, they dramatically affect statistical measures based on the probability of a

* violation.

Figure 6. Mean RTs as a function of stimulus intensity for the unimodal targets in Experiment II.

I Figure 7. Violations of race model inequality using different combinations of auditory and visual
stimulus intensity. Format is the same as Figure 4.

I Figure 8. Mean RTs to bimodal targets presented at corresponding and non-corresponding
locations for saccades, directed manual responses, and simple manual RTs.

Figure 9. Violations of the race inequality for three response modes as a function of the spatial
alignment of the targets. Positive values indicate violations. See text for details.

I Figure 10. Unimodal CDFs, bimodal CDFs, the independent race prediction, and the limiting case
of the race model inequality for each observer in experiment I11. Data from trials with
corresponding targets versus non-corresponding targets are indicated. Only data for saccades and
directed manual responses are shown, since correspondence between the stimuli had no effect on
simple manual RTs (Figure 9).

I
I
I
I
I
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ABSTRACT

The purpose of the study was to investigate human performance in relatively simple

information processing tasks which use two input channels of sensory information. Human

information processing was viewed as a flexible architecture of component processes whose

internal state representations are random variables. The goal was to identify analytically the

processing architecture involved in two types of logical tasks: the OR task and the AND task.

The experiments used these two tasks in the context of two experimental situations: a supra-

threshold reaction time (RT) experiment and a near-threshold signal detection (psychophysical)

experiment. The experiment explored various hypotheses of integrating information on two

channels. The results are summarized below.

RT Experiment

1. In the OR task superadditivity of the mean and the survivor contrasts were obtained. The

model most compatible with the data was the probability summation model.

2. In the AND task subadditivity of the mean and the survivor contrasts were obtained. The

model most compatible with the data turned out to be the parallel exhaustive processing model.

Psychophysical Experiment

1.The slope analysis of the standardized ROC curves allowed us to reject the timing hypothesis

both in the OR task and the AND task. The counting mechanism was compatible with the data.



2.The experiment provided subadditivity of the mean response contrast in the OR task. Further

analysis showed that the results of the OR task was most compatible with the probability

summation model.

3.The experiment provided superadditivity of the mean response contrast in the AND task.

Further analysis showed that, among the set of models evaluated, the result were most

compatible with a channel multiplication model.

The conclusion was reached that there was a correspondence between the logical task

requirements and the information processing architecture utilized in the performance of these

tasks. The OR task caused convexity of the function which combines the activity within each

channel (i.e., the integration function). The AND task caused concavity of the integration

function.
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I
INTRODUCTION1

An important goal of cognitive psychology is to understand various ways in which

3 humans can process information conveyed over multiple sensory channels. Channels are

defined as pathways devoted to the specific dimension of stimulus. In this thesis, the terms

i channels, subsystems, and processes are used interchangeably.

Humans have a great deal of flexibility in information processing. They can optimize

their performance by utilizing a processing strategy suitable for the particular demands of a

given task. Given the same set of stimuli, human performance can importantly depend upon

the requirements of the task. Moreover, measures of task performance (using reaction times

and/or accuracy), can actually reflect the strategy adopted by the observer. One goal of the

present research is to explore the extent to which the logical requirements of sensory tasks can

determine the processing strategy adopted by an observer. In order to proceed, we must be

able first to define what the logical requirements of a task are. We must also define a variety of

strategies that might be employed by an observer. Finally, we must be able to develop analytic

methods not only capable of generating predicted patterns of performance that would be

produced by the various strategies but also capable of testing the predicted patterns of

performance against the obtained patterns of performance.

In this thesis, I wish to demonstrate that human performance on relatively simple

information processing tasks can be considered in terms of aflexible architecture of component

3 processes whose internal state representations are random variables. This approach can be

used to identify analytically the processing architecture realized in a variety of tasks.

A second major goal of this thesis is to show how this representation of internal

3 processes in terms of random variables can be used to model sensory processing over a wide

range of stimulus strengths. This approach enables to unify the traditionally separate domains

I!



of the time-course of suprathreshold detection (as measured with reaction times) and near-

threshold detection accuracy (as assessed in the domain of signal detection theory). First I

develop the approach in the context of suprathreshold detection performance and the analysis of

reaction times.

2



U i REACTION TIME

_I In considering reaction time modeling of an information processing system, there are

four major dimensions which distinguish various systems; 1) system architecture, 2)

processing completion mode, 3) the mode of factorial influence of experimental factors on the

processing times of the various components and 4) stochastic independence/dependence

between the processing times of the different components of the system.

The processing architecture can be either serial or parallel (Townsend and Ashby,

1983). In the parallel mode, all subsystems begin processing simultaneously but may finish at

different times. In the serial mode, each subsystem operates sequentially without temporal

overlap (Sternberg, 1969). More complex network models have also been developed (for

example, see Schweickert,1978; Fisher and Goldstein, 1983).

The processing completion mode specifies the rules for terminating information

processing. Most generally, we can define two types of completion modes, exhaustive and

self-terminating. In the exhaustive processing mode, information processing continues until all

elements are processed. In the self-terminating mode, processing ends whenever the system

has processed enough information to execute a correct response. A special case of the self-

terminating mode is called the minimum completion mode (Townsend & Ashby, 1983, p49).

For example, if two targets are presented in a detection task, responses could be based on the

detection of either target. In this case, only one target needs to be processed; processing of the

second target is unnecessary.

There are two aspects of the mode of factorial influence: selective influence versus

I nonselective influence (Townsend, 1984) and context independence versus context dependence

( Colonius, 1990). Given a system composed of subsystems (or channels) S1 and S2 with

experimental factors X1 and X2 , selective influence holds if an experimental factor (X1) affects

only a subsystem (SI) and a second factor (X2) affects only a different subsystem (S2).

1 3



Nonselective influence therefore occurs when a given subsystem is influenced by more than

one factor. Context independence holds when an experimental factor X1 affects only

subsystem SI and if another factor X2 affects only subsystem S2 regardless of presence or

absence of the other factor. Context dependence occurs when addition of another factor (X2)

changes the manner by which the factor (XI) influences the subsystem say SI. One example

of examination of context independence would be to evaluate the detection probability of a light

when it occurs with or without a tone. If the detection probability stays the same, context

independence holds.

The stochastic dependence/independence dimension specifies whether the completion

time of one subsystem covaries with the completion time of another subsystem. In the case of

stochastic independence, the joint processing time can be completely described by a

multiplication of the two marginal processing times. For example, independence can be

defined as P(coin I is head AND coin 2 is head) = P(coin 1 is head) x P(coin 2 is head). In the

dependent case, the joint processing time cannot be described by a multiplication of two

marginal processing times. Dependence can be defined as P(coin 1 is head AND coin 2 is

U Dhead) * P(coin 1 is head) x P(coin 2 is head). There are two subcases in the dependent case: a)

positive dependence and b) negative dependence.

Donders (1868) was the first to use an analysis of reaction time (RT) to describe the

way mental processes are arranged. The analytic method he created is called the subtractive

method. Donders assumed that mental processes can be decomposed into a finite number of

serially arranged processes that are initiated by an input to the system and culminate with an

output. He also assumed that deletion or insertion of an additional process will not alter the

i nature of other processes engaged by the task. This assumption is called pure insertion (cf.,

Ashby & Townsend, 1980). Based upon these assumptions, Donders developed an

experimental paradigm in which the duration of an elementary psychological process was

estimated by subtracting the arithmetic mean RT for a task which does not include the particular

4



mental component from the arithmetic mean RT for another task which does include the

component.

Approximately one hundred years after Donders' development of the subtractive

method, Steinberg (1969) developed another RT methodology: the additive factor method. As

with the Donders' subtraction method, Sternberg assumed seriality of component processes;

the stages are executed one by one without temporal overlap (see however, Taylor, 1976). A

second assumption in Steinberg's additive factor method is selective influence. Selective

influence means that a particular experimental factor affects the duration of only one process

(Townsend & Ashby, 1983). While the additive factor method allows us to construct an

experimental model whose basic components are serially organized stages, it does not allow us

to calculate the process duration directly.

Let us consider how the additive factor method is applied to an experimental situation.

The method uses the interaction contrast in the analysis of variance (ANOVA). The interaction

contrast can be defined clearly in the following example. Suppose that we have a 2 x 2

factorial design with experimental factors X and Y with levels 0 and 1 such as

X\Y 0 1

0 (0,0) (0,1)

1 (1,0) (1,1)

Table 1. A 2 x 2 factorial design with experimental factors X and Y with levels 0 and 1.

J We can define the interaction contrast as follows:

-- 5



A2 RT(x,y)=RT(O,O) - RT(0,1) - RT(I,0) + RT(1,1).
XY

While the above formula is sometimes referred to as the interaction contrast. I will refer to the

quantity A RT(x,y) as the mean contrast.
n y

Time Course Time Course Time Courne
Input- of of of OutputInpu -f---of" Residual

Process A Process B Process

Factor X Factor Y

Figure 1. Schematic representation of two serial processes, A and B, selectively influenced by

distinct factors, X and Y, respectively. The residual process is defined as non-detection

processes in the reaction time chain.

Suppose two processes (A and B) are serially organized and suppose further that the

processing completion mode is exhaustive. Assume that Factor X selectively influences the

duration of process A and Factor Y selectively influences process B (that is, selective influence

holds). This condition implies additivity in the mean RT contrast (that is, A2 RT(x,y)=O; seeXY

Steinberg, 1969; Townsend, 1984). Define T(O,-) as the mean duration of process A when
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In
factor X is at level 0. Similarly, we define T(-,I) as the mean duration of process B when

factor Y is at level 1. The mean durations, T(,-) and T(-,0) are analogously defined. Since

we assume process A and B are serially organized, the exhaustive processing time is simply the

sum of the two component processing times if selective influence holds (Townsend, 1984).

For example, RT(0,0) = T(0,-) + T(-,0). Thus, the mean contrast can therefore be written as

follows:

A 2 RT(x,y=RT(0,0) - RT(0,1) - RT(1,O) + RTll)

x.y

=T(o,-) + T(-,o) -T(o,-) -T(-,1)

- T(I,-) - T(-,O) + T(I,-) + T(-,I)

=0.

I Additivity of Mean RT3

~YJO)

400 .-1)

I 300

~200-

100 1
X(O) X(1)

Factor X

Figure 2. Graph showing additivity of mean contrast.
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Serial processing can also operate in the self-terminating mode. In the serial self-

I terminating model, processing occurs on only one channel at a time. The system processes

information on one channel and switches to another channel only if no target is detected on the

first channel. The mean contrast of the serial self-terminating model is proven to be additive

(see Appendix A for the proof). Thus, while both the exhaustive and self-terminating serial

models predict additivity of the mean contrast, the serial self-terminating model predicts faster

I RTs than the serial exhaustive model with the same accuracy level. This is because the

I exhaustive serial model always processes the activity on all channels. Other diagnostics for

discriminating among the various serial processing architectures are available, but are beyond

I the focus of the present work.

I In a real experimental situation, we first assume that some experimental factor X (e.g.,

stimulus intensity) selectively influences process A (which we might call "stimulus

I encoding"). The problem is to determine whether factor Y influences process A ( the stimulus

encoding stage) or process B (some other, serially organized mental component of the task).

I
I
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I

i responses decreases monotonically as the number of the targets increases (Grice, Canham, &

Boroughs, 1984; Miller,1982, 1986; Nickerson, 1973; Raab, 1962; Ulrich & Giray, 1986).

Parallel processing in the minimum completion mode predicts decreased RTs to redundant

-* targets (e.g. Raab, 1962; p80, p248 of Townsend & Ashby, 1983). Although these models

are sometimes referred to as horse race models, I will refer to these models as probability

I summation models. The architecture of the probability summation model is parallel because the

processing of all targets begins simultaneously. Given two targets minimum completion time

is the processing mode, because a response can be produced as soon as the processing of either

target is completed. The model us,,,lly assumes independence of the processing times of each

target. Under this assumption, the model can be classified as an independent model. Finally,

the model assumes selective influence as a fundamental assumption.

The probability summation model can be defined in terms of the cumulative distribution

function as follows. Let us define the cumulative distribution function of a random variable T

as F(t) =P(T<_t). Probability summation states that the probability that the RT is less than t

the probability that either channel 1 OR channel 2 has been processed by time t = the

probability of the processing time of channel 1 is less than t OR the processing time of the

channel 2 is less than t. The above statements can be put in the form of equation in the

following way:

P(Tj < t OR T 2 _<t) = P(Tj < t ) + P(T 2 <t) -P(TI! <t AND T2 <t)

=P(TI1< t ) + P(T2 <t) -P(TI t ) x P(T2 <t).

The last step holds if and only if independence holds between two random times T and T2.

The symbol " x "denotes a multiplicative operation. Thus, the cumulative RT distribution

function according to the independent probability summation is given by:

FI(t) + F2(t) - F1(t) x F2(t).

Mean Contrast Superadditivity of the Probability Summation Model

3 11
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I Let us derive the prediction from the probability summation model's mean RT by way

1 of the additive-factor logic. Before deriving the prediction, we need to define the terminology

used in the prediction below. Define X1 and X2 as experimental factors influencing the

random times T1 and T2 respectively such that if we differentiate the survivor function of T1

with respect to X, and differentiate the survivor function of T2 with respect to X2 we get

Inegative values. The survivor function of a random variable T is defined as F(t)=P(T>t). The

survivor function simply tells us the proportion of trials in which the subject has not responded

by time t. Thus, the partial derivative of T1 and T2 with respect to the factors, X, and X, can

be expressed as follows.

a F(t1 ;X1) aF(t 2aRx 1  < 0 and D X2 < 0.

Ordering of Survivor Functions

1.0 .. ...... Low Intensity

High Intensity
* 0.8-

- 0.6-

AI-
0.4-

I 0.2

0.0
200 300 400 500 600 700 800

Time in msecI
I Figure 4. The ordering of survivor functions.

I This means that increasing the factor level of X, and X 2 will yield smaller survivor

probabilities for all values of T1 and T2 respectively as can be seen in Figure 4. Notice that

II 12



I greater survivor probability associates with higher intensity. This implies that increasing the

I factor level reduces the mean RTs. If we manipulate X1 and X2 orthogonally in. a two-by-two

factorial design with factor levels being 0 and 1 for each factor, we have the following four

I conditions: 1: (0,0), 2: (0,1) , 3: (1,0), and 4: (1,1). The mean RTs of the four conditions can

be represented as RT(0,0), R-T(0,1), RT(1,0), and RT(1, 1).

I Since we know that the mean of a positive random variable can be calculated by

I integrating its survivor function, F(t)=P(T>t), from zero to infinity (cf., McGill, 1963), we

can express the statistical contrast (or mean contrast) in terms of the survivor functions as

I follows.

RT(0,0) - RT(0,1) - RT(1,0) + R' )

= F(o,O)(t) - F(o,1)(t) - F(1,0)(t) + F(l)(t) dt

Assuming the probability summation model, we can write the above survivor functions as

being composed of two random times T1 and T2. That is, for example, we can write

F(o.o)(t) = Fl(o)(t) x F2(o)(t) because of the independence assumption in the probability

summation model. The symbol, Fl(o)(t) denotes the survivor function of the random variable

T1 when the experimental factor X, is at the level 0 and F2(o)(t) represents the survivor

function of the random variable T2 when the experimental factor X2 is at the level 0.

Therefore, the above expression can be expressed as

I Jo Fl(O)(t) x F2(o)(t) - Fl(o)(t) x F2(l)(t) - FIl()(t) x F2(o)(t) + Fl()(t) x F2 (1)(t) dt

(0o)tW - F1(1)(t) ) X ( F 2(0)(t) - F2)(t) ) dt.

13



The above quantity is greater than zero, that is the interaction is superadditive, if we have the

survivor function ordering on the random times T1 and T2. The survivor function ordering

means that Fl(o)(t) > Fl(1)(t) for T1 and F2(o)(t) > F2(j)(t) for T"2. Intuitively and with less

rigor, the ordering of survivor functions with respect to intensity can be interpreted as higher

intensity giving rise to a reduction in processing time. Thus, if increasing the level of the

experimental factors can be shown to produce faster RTs, the probability summation model

predicts superadditivity of the mean RT contrast. Notice that the expression of the mean

contrast can be reduced to that of the survivor contrast if we take the integration out from the

above expression. That is,

F(o,o)(t) - F(ojl)(t) - F(l,o)(t) + jj(t= (Fl(o)(t) - FIl)(t) ) X ( F2(o)(t) - F2(1)(t) )

If the survivor function ordering is satisfied for both random times T, and T2, then we have

survivor contrast superadditivity. The test in terms of the survivor contrast constitues a

stronger test of various models than the test in terms of the mean contrast (see Townsend and

Nozawa, 1992).

Channel Summation Model

However, there is another type of model which is capable of explaining the general

results. This model is called channel summation model or its special case is sometimes called

Poisson superposition model (Schwarz, 1989). It can be shown that the channel summaion

model also predicts superadditivity of the mean contrast (see Nozawa, 1989 and Appendix B).

However, this model can be distinguished from the probability summation model, all other

things being equal, because the channel summation model produces faster RTs than probability

summation. Thus, although both models predict superadditivity of the mean contrast, it is still

possible to distinguish between channel summation and probability summation using other

measures, such as the survivor contrast (see Townsend and Nozawa, 1992) or the capacity

coefficient (Nozawa, 1989; Townsend and Nozawa, 1992). The channel summation model

14



sums the level of activity in relevant internal random processes to generate an output (see

Figure 5 for the schematic representation of the probability summation model and the channel

summation model).

A.
Factor X

Time Course
Input x of

Process A
Time Course

of --. Output
Residual
Process

Time Course
ofInput y lp o

Process B

Factor Y

*.....Minimum operator
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B. Factor X

Activity Level
Input x - of

Process A
Tbie Course

of -- 1W OutputI Residua

Activity Level 
Process

I Iof
Input Process BI
- -

Factor Y

-- Figure 5. Schematic representations of the probability summation model (A)

and the channel summation model (B).

The activity of the channels is represented by stochastic counting processes ( see Cox, 1962).

The output of the model is also represented as a stochastic counting process. In order to

produce the time at which the response is made, the model is equipped with a threshold. When

I the threshold is reached, the system generates a response. Notice that both the probability

summation model and the channel summation model represent parallel processing architectures.

The major distinction concerns the manner in which the activity within each process is

combined.

16



While probability summation might represent a useful architecture for stimulus

detection in the redundant target paradigm, this architecture is clearly inadequate for performing

other types of task. For example, suppose an observer is instructed to respond only if a target

is presented on two (or more) input channels. In this case, correct responding depends on

detecting the occurrence of a target on both channels: that is, the system must operate in the

exhaustive processing mode. We now turn to a consideration of behavior of such systems.

Exhaustive Processing Paradigm

In the exhaustive processing paradigm, the subject is required to respond "yes" only

when two targets are presented, otherwise the subject is required to respond "no". I call such a

task the AND task. In such a task the optimal strategy is to process information exhaustively

on both channels. If the subject applies a self-terminating strategy rather than exhaustive

strategy, the RTs will be shorter but the accuracy will be lowered. Let us consider the behavior

of a simple parallel architecture operating in the exhaustive processing mode. In the next

section, I will develop the proof that parallel exhaustive processing predicts subadditivity of the

mean contrast (see also Townsend and Ashby, 1983, p373).

Pardlel Exhaustive Processing Model's Mean Contrast Subadditivity

Consider an AND task in which there are two levels of intensity associated with each of

the targets. There are four conditions in which the subject is required to respond "yes". Define

T, as the random variable representing the processing time on channel 1, and T2 as the random

variable for the processing time on channel 2. If the two targets are processed in parallel

exhaustively, and the processing of the targets is stochastically independent, then the total

processing time is simply the maximum of the two random variables T1 and T 2 (see Figure 6

for a schematic representation of the parallel exhaustive processing model).

17



I Factor X

'I
Time Course

Input x ---g of
Process A

Time Course
I d of -- N OutputResidual

Time Course
Input y of

Process B

FactorY

0 ..... Maximum operator
Figure 6. A schematic representation of the parallel exhaustive processing model.

Thus, we can express the model as follows:

I Tp,Exh=max(T1,T 2 ). In terms of the cumulative distribution function, we can write the

expression for this model under the double stimulus condition as follows:

Fmax{T1.T2J(t) = FTI(t) x FT2(t). That is, given the assumptions of selective influence and

stochastic independence, the cumulative probability that both targets have been processed by

time t is the product of the cumulative probabilities that each channel has detected its target by

tirre t. The mean contrast can be expressed as follows:

A 2RT (x,y)= RT(O,O) - RT(O,1) - RT(1,O) + RT(1,1)
X.Y

18



-- Jo F(o.o)(t) - F(o.1)(t) - F(o)(t) + F(l.1)(t) dt,

since integration of the survivor function yields the distribution mean.

Because the survivor function is the complement of the cumulative distribution function,

that is, F(t) = 1 - F(t), we have

=J 0 1- F(oo)(t) - 1+ F(o,1)(t) - 1+ F(l.o)(t) +1 - F(l.)(t) dt

0= J F(o,1)(t) - F(0,o)(t) + F(.0)(t) - F(ll)(t) dt

I
= J F1 (o)(t) x F2 (l)(t) - Fl(O)(t) x F2 (0)(t) + Fl(l)(t) x F2(o)(t) - Fl(l)(t) x F2(l)(t) dt

I (Fl(o)(t) - Fl(1)(t) ) x (F 2(1)(t) - F2(o)(t) ) dr.

The above quantity is less than zero (subadditivity) if we have the survivor function ordenng

on the random times T1 and T2. The survivor function ordering means that Fl(o)(t) > Fl(1)(t)

for T1 and F2(o)(t) > F l)(t) for T2. The survivor function ordering, for example, Fl(o)(t) >

3 FI(l)(t) is equivalent to the cumulative distribution function ordering Fl(0)(t) < FI(l)(t). This

ends the proof of subadditivity of the mean RT contrast of the parallel independent exhaustive

model.

The experiments described below represent situations conducive to parallel processing

architectures. Performance on an OR task is evaluated in an attempt to determine whether

processing conforms to the predictions of the parallel self-terminating model. Performance on
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! an AND task is evaluated in terms of parallel processing in the exhaustive mode. The

paradigms are summarized in Tables 2 and 3.

iI

Redundant Target Paradigm: the OR task
Event in Event in

- Condition Top Bottom Response
Channel Channel

Double
Target "Yes"

Condition

Top1 Single Target 0 None "Yes"
Condition

Bottom
Single Target None 0Yes

Condition

Noise
Condition None None 'No

-3

Table 2. The stimulus-response matrix of the redundant target paradigm.

Exhaustive Processing Paradigm: the AND task
Event in Event in

Condition Top Bottom Response
1Double Channel Channel

Target 
"Yes"

Condition

Top
Single Target 0 None "No"

Condition
Bottom

Single Target None 0 "No"
Condition

Noise
Condition None None "No"

Table 3. The stimulus-response matrix of the exhaustive processing paradigm.
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IHypotheses Tested in the RT Experiments

The hypotheses tested in the redundant target paradigm (OR-task) RT experiment are stated as

follows:

HO: RT(0,0) - RT(O,1) - RT(1,0) + RT(1,1) = 0: serial hypothesis

H1: RT(0,0) - RT(0,1) - RT(1,0) + RT(1,1) > 0 : parallel self-terminating hypothesis

The hypotheses tested in the exhaustive processing paradigm (AND-task) RT experiment are

stated as follows:

HO: RT(0,0) - RT(O,1) - RT(1,0) + RT(l,1) = 0 : serial hypothesis

H1 : RT(0,0) - RT(0,1) - RT(1,0) + RT(1,1) < 0 : parallel exhaustive hypothesis

I
U

I
I
I
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EXPERIMENT 1

Methods

Design

Each subject participated in both the OR task and the AND task, and the order of testing

was counter balanced between subjects. The stimulus conditions were identical in both tasks.

In each task condition, there were two sessions of practice and four experimental sessions.

Practice sessions consisted of 240 trials, whereas experimental sessions consisted of 480 trials.

There were nine possible display conditions: four brightness conditions for the double target

condition, two brightness conditions for each of the single target conditions, and one noise

condition in which no target was presented. All the experimental variables were within-subject

factors.

Subjects

Four students from a psychology course at Dartmouth College and two graduate

students, including the author, served as subjects. All the subjects had normal or corrected

I normal vision.

Apparatus and Stimuli

A microcomputer controlled the stimulus presentation and recorded reaction times.

Two red light-emitting diodes (LEDs) served as the targets and a green LED served as the

fixation point. The targets were located on the vertical meridian, equally spaced above and

below the fixation point at an elevation of + 10. Subjects viewed the stimuli binocularly at a

distance of 57 cm. There were two levels of target luminance (0.19 and 9.98 cd.m'2 ).

Luminances were chosen to insure a robust effect on the RTs, since the predictions described

above rely on ordering of the RT distributions with signal strength. The LEDs subtended 0.50

of visual angle. The fixation point remained illuminated throughout the session. Each trial

began with the presentation of a warning tone (500 msec. duration). Targets appeared
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immediately after the offset of the warning tone. Target durations were 500 ms. The subjects

were instructed to respond to the onset of the target as quickly as possible. Response sampling

began with the onset of the warning tone and continued for 2000 ms following target onset.

The inter-trial-interval was 1.0 sec. On each trial there were four possible events: top and

bottom targets together, top target alone, bottom target alone, and no target Subjects pressed

one of two response buttons to indicate their response: one for "yes" responses and the other

for "no" responses. The stimulus-response mapping for each task was described in the

Introduction (see Tables 2 and 3). The probability of presenting both targets was 1/6, the

probability of presenting the top target alone was 1/6, the probability of presenting the bottom

target alone was 1/6, and the probability of presenting no target was 1/2. The probabilities

associated with each target luminance were also 1/2.
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RESULTS 1

ANOVA Results

Mean reaction times of all of the subjects were analyzed by ANOVA separately for each

of the tasks (see Table 4 for the results of ANOVA for the AND task and the OR task). The

mean reaction times, standard deviations and error probabilities for each condition are

presented in Appendix C. In terms of means, the null hypothesis and the alternative hypothesis

of the OR task tested by ANOVA can be expressed as follows:

HO: A RT = RT(0,0) - RT(0,1) - RT(1,0) + RT(l,1) = 0: serial hypothesis
B,T

*2
HI:A RT = RT(0,0) - RT(0,1) - RT(1,0) + RT(l,l) > 0: parallel hypothesis

B.T

The null hypothesis and the alternative hypothesis of AND task tested by ANOVA can be

expressed as follows:

HO: A RT =RT(0,0) - RT(0,1) - RT(1,0) + RT(l,1) = 0: serial hypothesisB,T

*2
HI:A RT =RT(0,0) - RT(0,1) - RT(1,0) + RT(1,l) <0: parallel hypothesis

B.T

The results of the ANOVA revealed main effects of target intensity and an interaction between

intensity and RT in the double target conditions for both tasks (see Table 4 for the details of the

ANOVA). These interactions justify rejection of the null hypothesis in both tasks.
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ANOVA Results of the OR Task

Source df F Pr > F
Bottom intensity(B) 1,5 98.56 .0004
Top intensity(T) 1,5 75.99 .0006
BxT 1,5 43.48 .0016

ANOVA Results of the AND Task

II

Source df F Pr > F

Bottom intensity(B) 1,5 16.99 .0097
Top intensity(T) 1,5 12.15 .0179
BxT 1,5 43.90 .0016

Table 4. ANOVA results of the AND and the OR tasks.

In the OR task, the mean contrasts were positive for all subjects. In the AND task, the mean

contrasts were all negative. The mean reaction times for the double stimulus conditions are

graphed in Fig.7.
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A All Subjects in OR task B. All Subjects in AND task

380 480

360 460

440
340

420

320 400

300 , 380
bottom low bottom ]b.i bottom low bottom high
Bottom Intensity Bottom Intensity

-a ---- top low
--- top hIh

Fig.7. Mean reaction times for the double stimulus conditions in the OR task and the AND

task.

Results of Mean Analyses

For each subject, the mean contrast and its associated z-score was calculated and is

presented in Table 5. Let us define s2[RT(0,0)] as the RT variance estimate of the condition

(0,0) and n(0,0) as the number of the data in the condition (0,0). The z-scores were calculated

as follows:

z = 2 R/(standard error),
B,T

where standard error can be expressed as

s2[RT(0,0)]/n(0,0) + s2[RT(0,l)]/n(0,1) + s2[RT(1,0)]/n(1,0) + s2[RT(1,1)]/n(1,1).

Mean contrasts of the AND task showed subadditivity implying the possibility of the parallel

exhaustive processing model (see Table 5). This result allows us to reject such models as the

serial exhaustive processing model, the serial self-terminating model, the probability
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summation model and the channel summation model in the AND task. Mean contrast of the

OR task showed superadditivity implying the probability summation model and the channel

summation model as possible candidates to explain the results (see Table 5).

OR task AND task

OR AND
Subject Mean Contrast z-score Mean Contrast z-score
BJ 43.66 4.69 -61.44 -7.09
BK 64.61 5.47 -42.58 -2.11
GN 36.19 4.69 -62.30 -3.55
JZ 64.89 4.06 -59.60 -1.61
SK 32.99 2.89 -105.87 -9.47
ZC 26.20 1.52 -45.74 -2.61

Table 5. Mean contrasts and their associated z-statistics in the OR task and in the AND task.

The individual mean RTs, the variance of RTs and error probabilities are tabulated in Appendix

C. The graphs of individual mean RTs are listed in Appendix D. There was an interesting

trend in the ordering of the mean RTs to double targets in the AND-task double stimulus

condition for two of the six subjects; this is the non-monotonicity of mean RTs with respect to

two experimental factors (obervers BK and SK, see Appendices C and D). Monotonicity of

mean RTs with respect to one experimental factor is equivalent to the concept of the mean RT

ordering with respect to the intensity factor: mean RTs for brighter stimuli are faster than mean

RTs for dimmer stimuli. In order to satisfy monotonicity the double stimulus conditions, the

mean RT of (0,0) condition must be slower than the mean RTs of (0,1) and (1,0) conditions

and the mean RT of (1,1) condition must be faster than the mean RTs of (0,1) and (1,0)
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conditions. The interpretation of these violations of monotonicity will be considered in the

General Discussion.

Results of Survivor Contrast Analyses

For each subject, survivor functions were calculated to analyze survivor contrast. The

hypotheses tested in the OR task were as follows:

Ho:A 2 F(t) = F(o,o)(t) - F(o,)(t) - F(I0o)(t)+ F(1,)(t) = 0 serial hypothesis
B,T

2  -
H1 : F(t) =F(0,0)(t)- F(o.)(t) - F(1,0)(t) + F(1,1)(t) > 0 : parallel hypothesis.

B,T

The individual survivor contrasts of the OR task are presented in Appendix E. Since all of the

survivor contrasts were substantially greater than zero for all t, the data are clearly incompatible

with the serial self-terminating model.

For the AND task, if the crossing point between the two density functions for the

processing times for each target is denoted by t*, the hypotheses tested in the AND task can be

expressed as follows:

2
Ho: A F(t) =F(o,o)(t) - F(0 1)(t) - F(lo)(t)+ F(lI)(t)> 0 for t > t*: serial hypothesis

B,T
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H:A2 F(t) = (0.0)(t)- F(0.1)(t) - F(1,0)(t) + F(1.1)(t) < 0 for t > t* "parallel hypothesis.
B.T

In testing the above hypotheses, we have to take into account the crossing point t* because the

survivor contrast of the serial exhaustive model is biphasic:

A2 F(t) < 0 for t _< t* and A 2 F(t) > 0 for t > t* (for an elaboration of these ideas, see
BT BT

Townsend and Nozawa, 1992). Since none of the subjects generated a biphasic survivor

contrast (see Appendix E), this analysis also confirms that based on the mean contrast. Thus,

analyses both of the survivor contrast and of the mean contrast serve to reject serial models for

both the AND and OR tasks.

The results clearly show the complementary nature of the AND and OR tasks. That is,

the survivor contrasts for the AND task showed subadditivity whereas t,ose for the OR task

showed superadditivity (see Figure 8). Mathematically, the results obtained in the survivor

contrast imply the results of the mean contrast. Therefore, the results of these analyses are thus

more conservative, lending further support to the idea that performance on the OR task was

supported by parallel processing in the minimum completion mode, while performance on the

AND task was supported by exhaustive parallel processing.

However, a closer look at the pattern of the survivor contrasts obtained in the OR task

revealed an interesting trend. Two out of six subjects showed negative blips at the earlier

portion of their survivor contrasts (see Appendix E). As noted by Townsend and Nozawa

(1992), this can be taken as evidence of the channel summation model. I will put off a detailed

treatment of this matter until the discussion section.
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A. AU Subjects in OR task B. All Subjects in AND task
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Fig.8. Survivor contrasts in the OR task and the AND task.

Results Of Error Probability Analyses

Overall error probabilities in the double stimulus condition in the AND task and the OR

task were 0.099 and 0.0155, respectively. The error probability in the AND-task was greater

than that in the OR task and the difference in error probabilities was statistically significant at

y2<.00001. Since the parallel hypotheses were supported in the reaction time analyses, it is

natural to expect that the error probability might also reveal the parallel processing architecture.

This error analysis is put off until the General Discussion section, since the error analysis

techniques are introduced in the next part of the thesis.
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Discussion: Experiment 1

The results of experiment 1 can be summarized as follows. In the OR task the mean

contrasts and the survivor contrasts showed superadditivity. In the AND task the mean

contrasts and the survivor contrasts showed subadditivity. The results allowed us to reject the

serial hypotheses in both the OR task and the AND task. The next stage of analysis is the

detailed characterization of the obtained results in terms of the plausible parallel processing

models. The question can be put in the following way. In the OR task we can ask how fast

the obtained results compared to the prediction from the probability summation model. In the

AND task we can ask how fast the obtained results were compared to the prediction from

parallel exhaustive processing model. In order to accomplish this goal, I am going to use two

inequalities and one identity in both the OR task and the AND task. Let us consider the case of

the OR task.

In the OR task, as was put forward by Miller (1982), we can use Boole's inequality to

evaluate the probability summation model (see for example, Dudewicz, 1976). In this thesis

Boole's inequality is called Miller's inequality, since Miller was the first to apply the inequality

in experimental psychology and it is written as follows:

FB&T(t) < FB(t) + Fr(t) for any probability summation model.

The notation, FB&T(t), is the obtained cumulative distribution function of the double stimulus

condition, FB(t) is the obtained cumulative distribution function of the bottom only condition,

and Fr(t) is the obtained cumulative distribution function of the top only condition. Of course,

in order for the inequality to be valid we need the assumption of context independence. That

is, the effect of the stimulus is unchanged whether another stimulus is present or absent. If this

assumption is satisfied, then the right-hand side of this inequality gives us the estimates of the

fastest reaction times attainable by the probability summation model. Therefore, the violation
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of this inequality allows us to reject all the members of the family of the probability summation

models: not only the independent probability summation model but also the dependent

probability summation models. Since I have presented the inequality to evaluate the obtained

distribution at the fastest regions of the distribution, next I am going to present an inequality

which establishes the slowest regions for the family of the probability summation models.

The slowest boundary of the probability summation model is called Frechet boundary

(cf. Colonius, 1990) and is written as follows:

FB&T(t) > Max (FB(t), FT(t)) for any probability summation model.

The assumption of context independence is needed in order for this inequality to be valid. If

this inequality is violated under the assumption of context independence, no probability

summation model can explain the results. Let us next consider the exact prediction of the

independent probability summation model.

The exact prediction of the independent probability summation model in terms of

cumulative distribution functions can be written in the following way:

FB&T(t) = FB(t) + FT(t) - FB(t) x FT(t).

However, in order for this identity to be satisfied, we'need to satisfy two assumptions: context

independence and the base time variance being zero. The base time is defined as the time taken

by non-detection processes in the reaction time chain. There exist estimates of the motor time

variance (see for example, Ulrich and Stampf, 1984). Even if the variance is relatively small,

there exists a non-zero variance and therefore we tend to have a bias in the above identity

(Colonius, 1990). There is no way to estimate the size of the bias in the context of the present

experiment. We need to be concerned about the direction of the possible bias. The direction of

the bias is toward underestimating the cumulative distribution of the double stimulus condition.

That is, at the level of the mean the estimation is biased toward a larger value. Put in another

way the estimates will be slower than the true independent probability summation model's
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mean. In interpreting the analyses below, the direction of the bias in this identity should be

kept in mind.

In the following, I will use the survivor representation of the above inequalities and

identity. They can now be expressed as follows:

Miller's inequality

FB&T(t) > FB(t) + FT(t)-1

Frechet boundary

FB&T(t) > Min{FB(t), FT(t)}

and

FB&T(t) = FB(t) x FT(t).

The fit of the above inequalities and the identity are presented in Figure 9. The fit of the above

inequalities and the identity are defined as follows:

Miller's inequality fit

FB&T(t) - (FB) + FT(t) - 1)

Frechet boundary fit

FB&T(t) - Min{FB(t), FT(t)}

Probability Summation identity fit

FB&T(t) - FB(t) x FT(t).

The independent probability summation model predicts exactly zero in the probability

summation identity fit. In interpreting the fit of the probability summation identity, we should

notice that there is a positive bias coming from the base time. Majority of the data points fall

above the zero line of the Miller's inequality fit and fall below the zero line of the Frechet

inequality. This means that the majority of the data can be explained by the probability

summation models.
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Figure 9. Fit of various boundaries.

One convenient fact about using this survivor representation of the inequalities and the identity

is that they directly associate with the means. If we integrate the survivor function of a positive

random variable from zero to infinity, we know that this yields the expected value of the
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random variable (McGill, 1963). Therefore, we can evaluate the fit of the inequalities and the

identity at the level of the mean.

The results of the fit of the inequalities and the identity at the level of means in terms of

z-scores are presented in Table 6.

Fit of Frechet Boundary

Subject (0,0) (0,1) (1,0) (1, 1)
/Condition
BJ -0.74 -2.18 0.96 0.17
BK 0.45 -0.10 -1.45 -0.18
GN -3.88 -0.16 0.87 -2.35
JZ -2.93 -0.57 -4.24 -4.62
SK -2.04 -0.13 -1.07 -2.32
ZC -0.95 1.24 -0.03 -2.78

Fit of Miller's Inequality

Subject (0,0) (0,1) (1,0) (1,1)
/Condition
BJ 4.95 0.89 2.64 4.72
BK 5.11 3.04 1.5 4.36
GN 0.58 0.22 1.68 2.68
JZ 2.01 2.28 0.42 4.5
SK 2.23 3.11 0.59 4.04
ZC 3.76 3.22 2.23 3.47

Fit of Probability Summation Identity

Subject (0,0) (0,1) (1,0) (1,1)
/Condition
BJ 2.83 -0.68 1.52 2.91
BK 3.82 1.7 0.01 3.15
GN -0.91 -0.08 1.11 1.05
JZ 0.36 1.10 -1.51 2.22
SK 0.49 1.62 -0.46 2.05
ZC 2.23 2.34 1.11 1.79

Table 6. Fits of two Inequalities and an identity at the mean level in terms of z-scores.

First, we notice that there were no significant violations in the positive direction in the fit of

Frechet boundary at the mean RT level. Therefore, the level of the performance in the

experiment can be explained by the probability summation model or models with faster
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redundant target response than the probability summation model. One of the models which

predicts faster redundant target response is the channel summation model. Second, there were

no significant violations in the negative direction in the fit of Miller's inequality at the mean RT

level. Non-violation of this inequality allows us to reject the channel summation model

(however, see the discussion on the subadditive channel summation below). This leaves Ls

with a large class of probability summation models: positively dependent, negatively dependent

or independent. Evaluating the results with respect to the probability summation identity, we

notice that the results can be summarized reasonably by the positively dependent, rather than

the negatively dependent probability summation model. There was only one significant

violation of the identity in the negative direction out of 24 fits. Subject JZ in (1,0) condition

showed z = -1.51. The overall results can be restated in terms of the concept of capacity as

limited capacity if we use stochastic independence as a pivotal assumption (Nozawa, 1989;

Townsend and Nozawa, 1992).

Although the concept of capacity was not introduced as one of the major dimensions of

information processing models, the concept of capacity is one of the important dimensions that

can be used to describe the parallel systems. Given the double stimulus condition's survivor

function, F1&2(t), and two single stimulus conditions' survivor functions, F1(t) and F 2(t),

Nozawa (1989) introduced an estimate of the capacity of the system in the following

expression:

In FI&2 (t)
C(t) =

In {F(t) x F 2(t))

If we assume stochastic independence, selective influence and context independence, in such a

situation the capacity coefficient can describe the rate of the processing of the system. For the

limited capacity system the capacity coefficient is less than one. For the unlimited capacity

system the capacity coefficient is one. For the supercapacity system the capacity coefficienz is

greater than one. The scatter plot of the capacity coefficients across conditions and subjects is
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presented below. The line was drawn at the level of C(t)=l, the unlimited capacity level, to

facilitate the visual evaluation of the capacity.

Scatter Plot of Capacity Coefficients
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Figure 10. Scatter Plot of the Capacity Coefficients in the OR task. The horizontal line C(t) =

1 is the !evel of the capacity coefficient equivalent to the unlimited capacity system.

To summarize the results of the capacity analysis, geometric means of the estimated capacity

coefficients were calculated and presented in Table 7.

0..abject (0,0) (0,1) (1,0) (1,1)
BJ 0.70 1.25 1.09 0.79
BK 0.54 0.77 0.94 0.57
GN 1.09 1.22 0.87 0.74
JZ 0.95 0.79 1.23 0.76
SK 0.95 0.85 1.07 0.78
ZC 0.62 0.63 0.70 0.78
Average 0.78 0.89 0.97 0.73

Table 7. (Geometric means of the capacity coefficients in the double stimulus conditions.
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The grand geometric mean of the capacity coefficient was found to be 0.84. Thus, the

Iprocessing system is likely to be of limited capacity. However, there is a caution in

interpreting the results. As was pointed out by Townsend and Nozawa (1992), the capacity

I coefficient has a tendency of underestimation because of the bias coming from the base time

component of the reaction time.

AE was mentioned in the results section, there are two out of six subjects who showed

J negative blips at the earlier portion of the survivor contrast. As noted by Townsend and

Nozawa (1992), this can be taken as evidence of the channel summation model. Since the

I channel summation model was rejected at the level of mean RTs, these negative blips cannot be

interpreted by the regular channel summation model. In order for the channel summaion

model to explain at least the results of the two subjects, either the model must sum the input in

Ia subadditive way or there was a violation of context independence. The channel summation

model can be written in general as follows:

Nsum(t) = w, x N1 (t) + w2 x NL(t),

where N1 (t) is the counting process of the channel 1, N2(t) is the counting process of the

channel 2, w, is the weight for the counting process of the channel 1 and w2 is the weight for

the counting process of the channel 2.

A subadditive summation occurs when the weights, w, and w2, are less when there are two

I stimuli than when there is only one stimulus. For example, if we have the following

relationship,

w1 = - and W2 K2
E[NI(t)] + E[N2(t)] E[Nl(t)] + E[N 2(t)]

where K1 and K2 are some constants. It can potentially explain the subadditive summation, if

K, < E[NI(t)] + E(N2 (t)] and K2 < E[NI(t)] + E[N 2(t)]. Psychologically, the constants, K,

and K2, can be thought of as representing the capacity limitations of channel 1 and channel 2.

This is an example of violation of the context independence assumption.
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Let us next consider the case of the AND task. In the AND task we have two

inequalities and one identity. They are the Frechet boundary, Boole's inequality and the exact

prediction of the independent parallel exhaustive model and can be written as follows:

FB&T(t) > FB(t) + Fr(t) - 1,

FB&T(t) < Min{FB(t), FT(t)),

and

FB&T(t) = FB(t) x FT(t).

Since we do not observe the RTs of the single stimulus condition with "yes" responses in the

AND task, in order for us to evaluate the fits of the inequalities we have to utilize RTs of the

single stimulus conditions from the OR task. In order to justify this utilization of the single

stimulus condition from the OR task in the AND task, I evaluate the following assumption.

This assumption, I call, marginal task independence. This concept is very similar to the

concept of pure insertion proposed by Donders (1868). The assumption of the marginal task

independence states that a component of the mental process network associated with one task

does not change even if the component process now is a part of another mental process. In

order to test this assumption I created the following test.

Since mean RT contrast of the AND task can be explained by the parallel exhaustive

processing model and that of the OR task can be explained by the probability summation

model, we can write the survivor functions of the double stimulus conditions in the AND task

and the OR task as follows.

We ignore the base time for a while.

For the AND task

FAB&(t) = FTB(t) + FTT(t) - Fmin(TBTT)(t)

For the OR task

F'RB&T(t) = Fmm(TB-TT)(t).
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Then combine the above two survivor functions to yield the following:

FANDB&T~t) + POR B&T(t) = FTB(t) + FTI(t).

This is the sum of the two marginal survivor functions. The marginal survivor functions can

be defined as the survivor function of a single random time. Next the problem is to determine

whether the sum of the two marginal survivor functions from the OR task is statistically not

significantly different from the sum of the estimated marginal survivor functions. This test of

marginal task independence can be performed at the level of mean RTs as follows. Now

introducing the base time in the expression, we have

RTANDB&T + K-TORB&T = TTB + Tb+ TTT + Tb.

If we subtract the mean RTs of the single stimulus conditions from the OR task, we have

RTANDB&T + RTORB&T - RTORB. R-TOT

T7) + Tb+ TTT +Tb;+ Tb+ TORLT+ Tb

If we have TTB = T1"rB and TTT = TRTT, then the above quantity should be equal to zero.

The above mentioned test was conducted using Z-statistics on all six subjects' mean

RTs and presented in Table 8.

Subject Statistics (0,0) (0,1) (1,0) (1,1)
BJ Difference 37.68 51.74 40.94 37.24

z-score 3.71 7.31 4.49 5.99
BK Difference 52.95 44.77 63.92 77.77

z-score 3.18 3.65 4.27 8.39
GN Difference 36.40 58.60 58.60 54.70

z-score 3.20 4.72 4.83 7.78
JZ Difference 147 139 94.01 91.40

z-score 5.34 6.04 3.26 5.89
SK Difference -65.87 5.13 -28.54 -31.00

z-score -5.73 0.47 -3.13 -3.19
ZC Difference 54.19 -17.37 57.98 58.58

z-score 3.14 -0.99 3.86 4.20

Table 8. Test of marginal task independence between OR task and AND task.
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For five out of six subjects the test of marginal task independence yielded mostly significantly

positive z-scores. Only one subject showed an opposite trend. Since the assumption of

marginal task independence does not seem to be valid, further tests on the mean RTs of the

AND task using mean RTs of the OR task are not going to be conducted. The conclusion of

the RT experiments can be summarized into the following items:

1. Superadditivity of the mean and the survivor contrast was obtained in the OR task. The

serial exhaustive and the serial self-terminating models were rejected.

2. Subadditivity of the mean and the survivor contrast was obtained in the AND task. The

serial exhaustive and the serial self-terminating models were rejected.

3. Using inequalities, the data in the OR task were further examined. The channel summation

model was rejected as a result of the analysis. However, there were two subjects who showed

negative blips at the beginning of the survivor contrast indicating the possibility of the

subadditive channel summation.

The final point of discussion is concerned with the dependent structure which is present

in the stimulus presentation. In the present experiment the probability of both targets being

presented at the same time was 1/6, the probability of the top target being presented alone was

1/6, the probability of the bottom target being presented was 1/6, and the probability of no

target being presented was 1/2. These stimulus probabilities produce a positive dependent

structure between the targets. That is, the probability of the joint occurrence of both targets is

greater than the product of the probabilities associated with each single target:

P( B&T ) > P( B ) P( T),

where B&T represents the joint occurrence of the bottom and the top targets, B represents the

union of all events in which the bottom target occurred and T is defined as the union of all

events in which the top target occurred. Positive dependency means that the occurrence of

either single target conveys statistical information for the likelihood of a target occurring in the

other location. For example, the above inequality shows that both the top target and the bottom
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target carry positive information. That is, knowing that there is the bottom target increases the

likelihood of having the top target. In the present experiments, the absence of a target also

carried positive information on the likelihood of the presence of a target on the opposite side.

A recent report by Mordkoff and Yantis (1991) showed that the dependent structure of the

stimuli can influence performance in the OR task. They suggested that the dependent structure

of the stimulus presentation probabilities may cause a between-channel interaction to produce a

dependent structure in the processing times between two channels. The direction of the

dependence between stimuli, according to Mordkoff and Yantis (1991), should be revealed as

that of the dependence between two processing times. They defined three types of

interstimulus contingencies, the interstimulus contingency benefit and the nontarget-response

contingency benefit as follows:

ISC( Ni -> T) = P( T(a) I Nib') ) - P( T(a))

ISC(T => T) = P( T(a) I T(b) ) - P( T(a) )

ISCB(Ni) - P( (a) I T(b)) - P( T(a) I Ni(b))

NRCB(Ni) = P( + )- P( +1 N),

where ISC represents the interstimulus contingency, ISCB denotes the interstimulus

contingency benefit, NRCB represents the nontarget-response contingency benefit, Ni

represents a specific nontarget element, T(a) represents the target in channel "a", N,(0 )

represents nontarget in channel "b" and "+" represents "Go" trials. If ISC( Ni => T) is greater

than 0, there is a positive dependence between nontarget and a target. If JSC(T => T) is

negative, presence of a target carries information with regard to absence of the other target. In

the present experiment, ISC(T => T) was positive, ISC( Ni => T) was negative, ISCB(N.)

was positive and finally NRCB(N) turned out to be positive. According to Mordkoff and

Yantis (1991), a positive ISCB and a positive NRCB should have caused speeding up of the

redundant target processing times compared to the processing times of the single target

conditions. This would have lead to negativity of fit with respect to the probability summation

identity since their "interactive race model" cannot predict any violation of Miller's inequality

42



without violating the assumption of context independence. However, as we saw in the results,

the data tend not to support their claim as far as this experiment is concerned. Future

investigation is needed both in terms of its analytical specification of the interactive race model

and the empirical research.
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ACCURACY MEASURES

The Additive Factors-type of Method in a Psychophysical Experiment

Let us consider the application of the additive factor-type method to a psychophysical

experiment in which the main dependent variable is response accuracy. In this domain of

theorizing and experimentation, the most important contribution was provided by Shaw and

colleagues (eg., Shaw, 1980; Mulligan and Shaw, 1980). Mulligan and Shaw (1980) showed

that the probability summation prediction holds in a bimodal detection experiment. The

experiment involved four different presentation conditions: an auditory signal and a visual

signal occurred at the same time, the auditory signal only wa presented, presentation of visual

signal only was presented, or no signal at all was presented. Since the subjects were required

to respond "yes" whenever they detected the auditory OR visual stimulus and were required to

respond "no" otherwise, the logical task requirement is equivalent to that of the redundant

target paradigm described above. Mulligan and Shaw (1980) analyzed the probabilities of "no"

responses in each of the various stimulus conditions using the following formula, which I call

the "no" response probability contrast. In the following formula I use the notation of my

experiment.

P[nol(0,0)] - P[nol(O,B)] - P[nol(T,0)] + P[nol(T,B)]
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The symbol, P[nol(0, 0)], represents the probability of "no" response given no signal at all.

The symbol, P[nol(T,B)], represents the "no" response probability given the top and the

bottom signals.

The results showed that the "no" response probability contrast was superadditive.

Actual derivation and testing were performed on the logarithmically transformed probabilities.

Shaw utilized the fact that the logarithm of the multiplication of two quantities can be expressed

as the sum of the logarithm of individual quantities. This fact allowed her to test the

independent parallel exhaustive processing model.

Following the analysis by Shaw (1980), ! will now show that the parallel exhaustive

processing model for the "no" response probability contrast is superadditive. In deriving

predictions from various models, it is necessary to realize that the four major dimensions of

information processing models presented in the previous section are as important in

constructing models in terms of the accuracy measures as they were in the RT measures. In the

following derivation, the crucial assumptions are 1) stochastic independence, 2) selective

influence and 3) context independence. Under these assumptions the "no" response probability

contrast of the parallel exhaustive processing is written as follows:

P[nol(0,0)] - P[nol(O,B)] - P[nol(T,O)] + P[nol(T,B)]

=P[no to top noise AND no to bottom noise]

-P[no to top noise AND no to bottom signal]

-P[no to top signal AND no to bottom noise]

+P[no to top signal AND no to bottom signal]

Assuming stochastic independence, we have
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= P[noltop noise] x P[nolbottom noise]

- P[noltop noise] x P[nolbottom signal]

- P[noltop signal] x P[nolbottom noise]

+ P[noltop signal] x P[nolbottom signal].

Assuming context independence, we can express the above probabilities in terms of internal

counting processes (which represent the activity within each sensory channel). The

accumulated count is compared with a criterion (0), yielding the expression

=P[NT(t)<O Itop noise] x P[NB(t)<O Ibottom noise]

- P[NT(t)<0 Itop noise] x P[NB(t)<0 Ibottom signal]

- P[NT(t)<0 Itop signal] x P[NB(t)<0 ibottom noise]

+ P[NT(t)<0 Itop signal] x P[NB(t)<0 Ibottom signal]. Factoring yields

= (P[NT(t)<0 Itop noise] - P[NT(t)<O Itop signal])

x (P[NB(t)<O Ibottom noise] - P[NB(t)<O Ibottom signal])

In the above expression I used NT(t)<0 instead of "no on the top channel" and NB(t)<6

instead of "no on the bottom channel." It simply means that a particular internal variable has

not exceeded the threshold value, 0, by time t. If the subject produces "no" responses more

often in the noise condition than in the signal condition (that is the rate associated with each

counting process is increased by the presentation of a signal), we then have the following:

P[Nr(t)<01top noise] > P[NT(t)<6ltop signal]

and
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P[NB(t)<01bottom noise] > P[NB(t)<61bottom signal].

Thus, the ordering of the counting process with stimulus presentation insures that

{P[NT(t)<0 Itop noise] - P[NT(t)<O Itop signal]) and

(P[NB(t)<O Ibottom noise] - P[NB(t)<O lbottom signal]) are positive. The multiplication of

these terms is also positive, so the "no" response probability contrast is superadditive.

Shaw did not prove nor empircally demonstrate subaddiivity of the response

probability contrast of the "yes" response. She just mentioned that predictions of the "no"

response are less cumbersome than those for probability of the "yes" response (Shaw, 1982).

The "yes" response probability contrast can be defined as follows:

P[yesl(0,0)] - P[yesl(O,B)L- P[yesl(T,0)]+ P[yesl(TB)].

Probability of a "yes" response given a bottom signal being presented = Probability

of the bottom signal exceeding the criterion OR noise in the top channel exceeding the criterion

= P[NB(t)>O] + P[NTn(t>0] - P[NB(t)>0] x P[NTn(t)>0], where NTn(t) is the counting

process of the top channel given noise only, NB(t) is the counting process of the bottom

channel given signal plus noise. Probability of "yes" response given top signal being

presented = Probability of top signal exceeding the criterion OR noise in the bottom channel

exceeding the criterion =

P[NT(t)>e] + P[NBn(t)>O] - P[NT(t)>OI x P[NBrJ)>6]. The probability of a "yes" response

given bottom signal and top signal being presented = Probability of bottom signal exceeding

the criterion OR the top signal exceeding the criterion =
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P[NB(t)>OI + P[NT(t)>O] - PIINB(t)>0] X P[NT(t)>O]. Finally, the probability of a"yes"

response given only noise being presented = Probability of noise in the bottom channel

exceeding the criterion OR noise in the top system exceeding the criterion =

P[NBn(t)>()] + P[NTn(t)>O] - P[NBn(t)>O] x P[NTn(t)>O]. Let us derive the prediction from

the probability summation model in terms of the "yes" response probability contrast. Again,

stochastic independence, context independence and selective influence are assumed.

Pfyesl(0,0)I - P[yesI(B,0)] - Pfyesl(0,T)] + P[yesl(B,T)], which by substitution yields

-P[NBn(t)>O] + P[NTn(t)>O] - P[NBn(t)>O] x P[NTn(t)>O]

-P[NB(t)>e] + P[NT4(t>0] + PIINB(t)>6] x P[NTn(t)>0]

-P[NT(t)>6] + PIINBn(t)>OI + P[NT(t)>61 x P[NBn(t)>e]

+ PINB(t)>e] + P[NT(t)>0I - P[NB(t)>e] x P[NT(t)>e]. Factoring and rearranging terms

gives

=P[NT(t)>8I P[NBn(t)>8I + P[NB(t)>e] x P[NTn(t)>OI

-P[NT(t)>O] x P[NB(t)>e] - P[NBn(t)>O] x P[NTn(t)>6]

-(P[NT(t)>e] - PjINT4(t>6I ) x ( P[NBn(t)>e] - P[NB(t)>e]

Since P[N-r(t)>Oj - P[Nmn(t)>O] is greater than zero and P[N]3,l(t)>O] - PIINT(t)>O] is less

than zero, the whole expression is negative. This ends the proof of the probability summation
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model's subadditivity with resp. ct to the "yes" response probability. A subadditivity

prediction at the level of the "yes" response probability contrast implies subadditivity at the

level of mean. I call the contrast at the level of the mean the mean response contrast. The mean

response contrast is written as follows:

E[N(Bn.Tn)(t)] - E[N(Bn,)(t)] - E[N(B,Tn)(t)] + E[N((,T)(t)].

In order to explain the concept of the mean response contrast, we need to understand

the concept of the decision variable in the signal detection theory (see Egan, 1975, p 19;

Treisman, 1976, p248). The concept of the decision variable is similar to what I call the

I"internal random variable", which generates RTs and psychophysical judgments by way of

certain transformations. One of the transformations I used in order to transform the internal

random variable to RT in the previous section was the renewal theorem. According to

Treisman (1976) the decision variable (or axis), E, can be considered the result of a certain

transformation of a physical variable, I. In the case of a weak signal we only need a small

Irange of operation and therefore the following expression may be a good approximation for a

short range of stimulus intensity (Treisman, 1976).

E =al+b

However, McGill and Goldberg (1968) assumed the form

E =aI b

Green (1976) assumed the following form

E =a(I + )b.

I
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Although I recognize that it is important to ask questions regarding the transformation of the

Iinternal random variable or the decision variable into the values of confidence ratings, this

problem is not within the scope of this thesis. If we use a single observation interval with a

I simple Yes-No response, random variation of the decision variable cannot be observed.

IHowever, if the subjects are allowed to generate their confidence ratings in addition to a Yes-

No response, it is possible to observe the variation of the decision variable and to make an

inference about the nature of the internal random variables.

ILet us consider an example of a psychophysical experiment in which a subject is

presented with either a visual signal, an auditory signal, both a visual and an auditory signal, or

I no signal at all (the noise condition). One of the interesting questions we can ask in the context

i of the detection of multiple signals is: Can we identify the functin by which multiple inputs are

transformed? In order to identify the function, we need to observe outputs which contain

I information on the decision variable. This can be done by way of confidence ratings. When a

stimulus is presented, the physical stimulus is transformed into a physiological signal. This

I physiological signal (which we assume is a random variable) is mapped onto the decision axis

1by some transformation. At this point we call the quantity a decision variable. The decision

axis is categorized in terms of confidence ratings ranging from the highest confidence on a "no"

I response to the highest confidence on a "yes" response. When the decision variable's value on

the decision axis falls within a particular interval, the subject responds with the category

I associated with that particular interval. These ideas are portrayed in Figure 11.

I
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Number of Counts z Confidence Rating

Figure 11. A graph showing the relationship between the number of counts and the confidence

rating scale.

In the above figure, the Poisson mass function with rate equal to 1 represents the noise

distribution and the Poisson mass functions with rates equal to 4 and 10 can be considered as

the signal plus noise distributions. Notice that a fewer number of counts associate with a

higher confidence rating on the "no" response and a greater number of counts associate with a

higher confidence rating on the "yes" response. Assuming that a mechanism which

accomplishes a mapping of the internal stochastic process into the confidence rating scale, it is

possible to identify the form of the function by which the two signals are transformed.
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If the input is "a" for one channel and "b" for another channel, and the transformations

which convert "a" and "b", real numbers, to the activity levels of the channels are "g" and "h",

respectively, then the function which maps each activity level to the integrated activity level, the

output "y", can be expressed as follows:

I y = f(g(a),h(b)

I For example, the signal detection system can be represented in the following flow diagram.

Factor X

Input a - of g(a)
Process A

f(g(a),h(b)) Function Output

Ac tivity L evel1

Input b of h(b)
Process B

II-- 1 - ---
Factor Y

Figure 12. A general representation of parallel processing system with two inputs.

What we are interested in is to identify the form of the function f(g(a), h(b)). One informative

analysis is the evaluation of the concavity and convexity of the function. Let us represent g(a)
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by x, and h(b) by X2 for the sake of simplicity. Let x'j and x'2 be real values representing

g(a') and h(b'), where a' and b' are another set of inputs. Let 03 be a real number between zero

and one. Then the function f(., .) is said to be convex if the following inequality is satisfied.

f(P3"(x 1 ,x2) + (1-13)(x'l,x'2)) < J3f(xI,x 2) + (1-3)-f(x' 1 ,x' 2)

For example, the function f(xl , x2) = min(xl , x2) is concave, the function f(xl , x2) = max(x1

, x2) is convex, the function f(xl , x2) = x1 x x2 is concave, and the function f(xl , x2) = x1 +

X2 is both concave and convex. In order to perform this analysis in detail we need to know the

form of the functions, g(.) and h(.).

Another way to identify the form of the function is to use the mean response contrast,

which was defined earlier. The mean response contrast can discriminate the form of various

functions. For example, the function f(xl , x2) = min(xl , x2) is superadditive, the function

f(xI , x2) = max(x1 , x2) is subadditive, the function f(x1 , x2) = X1 x x2 is superadditive, and

the function f(xl , x2) = x1 + x2 is additive in terms of mean response contrast. However, if

I the quantity turns out to be superadditive, there are at least two possible functions, min(xl , x2)

and x, x x2. In this case we still can distinguish between these two functions by predicting

I the response mean of the double stimulus condition from two single stimulus conditions.

i Thus, the response means are very informative in distinguishing among various models of

information processing. However, there are questions regarding the internal statistics for the

Iactivity of a single sensory channel. Various proposed statistics (neural codes) have been

reviewed by Perkel and Bullock (1967). Luce and Green (1972) proposed counting and timing

I codes as the statistics describing the activity of a single channel. In the present work, I will

i concentrate on these two codes. The counting code is related to the decision variable in a

monotonically increasing way. For example, as the expected value of the counting statistics

I increases, the expected value of the decision variable also increases. However, the timing code

is related to the decision variable in a monotonically decreasing way because the average time

I
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interval of noise is longer than the average time interval of signal and therefore is mapped into

smaller confidence rating values (see Luce and Green, 1972; Egan, 1975).

It is possible to distinguish the counting models from the timing models using the

signal detection theory (Egan, 1975). The counting model counts the number of events by

fixing the interval, whereas the timing model waits for a specific number of events. Both

models deal with the same underlying stochastic process, the renewal process. The difference

between the counting and the timing models is the sampling mechanism by which the

observation is made. If the sampling mechanism keeps track of counts within a fixed interval,

it is called the counting model, whereas if it keeps track of time at which a fixed number of

counts are made, it is called the timing model. The question in terms of psychology is: Can we

distinguish these two models? According to Luce (1977), slopes of standardized ROC curves

are less than one for the counting model and greater than one for the timing model.

JStandardized ROC curves are the ROC curves plotted on the normal vs. normal coordinate

system. Therefore, two coordinates are 1) z-scores of the false alarm probability on the x-axis

and 2) z-scores of the hit probability on the y-axis. Now define z(s) as the z-score associated

with the hit probability, z(n) as the z-score associated with the false alarm probability, gt as the

mean of the Poisson process generating signal plus noise, v as the mean of the Poisson

process generating noise and A as the amount of time spent by the subject in observation. As

expressed in Green and Luce (1973), the functional relationship between these two z-scores for

the counting model is

Z(s) - (vl11) 1/2 z(n) + A 1/2 [(gt- V )/11,1].

Assuming that the decision mechanism accumulates k counts from a single channel, the

functional relationship between these two z-scores for the timing model is written

z(s) -- v z(n) + k12 [A/ V _ 5.
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Since we have p .> v the slope for the counting model is less than one and the slope for the

Itiming model is greater than one. The same analysis was also used by Wandell and Luce

I (1978) to distinguish the timing model from the counting model. This analysis may potentially

lead to a situation in which all the timing models or all the counting models can be rejected.

ITherefore, this test will be performed at the beginning of the data analysis of the present

Iexperiment.

As was the case in the RT experiment, two types of tasks are involved in the

Ipsychophysical experiment. One task is the OR-task, in which the subject is asked to respond

"yes" to the occurrence of any target; otherwise a "no" response is required. Another task is

the AND task in which the subject is asked to respond "yes" only if two targets are presented;

otherwise the subject is required to respond "no". Let us consider the predictions from the

parallel models in the OR task and the AND task. First, I am going to present the predictions

1from all of the counting models except the serial models. The reason for this exclusion is that

Ithere is no representation of the serial counting models of which I am aware. After introducing

various counting models I am going to introduce the timing models including serial timing

models. As before, the crucial assumptions are 1) stochastic independence, 2) selective

influence and 3) context independence.

Counting ModelsI
The Probability Summation Model

I Probability summation assumes that decisions are based on the maximum of the

I counting processes for both channels. This model predicts subadditivity with respect to the

mean response contrast.

I
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E[N(BnTn)(t)] - E[N(Bn.T)(t)) - E[N(eTn)(t)] + E[N(BT(t)].

IEMxNnt,~~)1-EMxNntTt)
-E[Max ( NB(t),NTn(t))] I- E[Max ( NB(t),NT(t))]

I Since, for example,

E[Max (NBn(t),NTfl(t))] P[NBn(t)>kI + P[NTn(t)>k] - (P[NBn(t)>kI x P[NTn(t)>kI)

I by substitution and factoring, we see that the mean response contrast

-~(P[NT(t)>k] - P[NTn(t)>k]) X ( P[NBn(t)>k] - PIINB(t)>k] ) < 0.

U The Parallel Exhaustive Model

I This model predicts superadditivity with respect to the mean response contrast.

IE[NBn.Tn)(t)] - E[N(Bn.T)(t)I - E[N(B,Tn)(t)] + [B.Ct].

=E[Min (NBn(t),NTn(t))]I - E[Min { NBn(t),NT(t) ) I

-E[Min (NB(t),NTn(t))] + E[Min (NB(t),NT(t) )

0I=Y, (P[N'r(t)>kI - PCNTn(t)>kI ) x ( PNB(t)>k] - P[NBn(t)>kI ) > 0.
k=O

* 56



The Channel Summation Model

Thbis model predicts additivity with respect to the mean response contrast.

I E[N(]3n.Tn)(t)] - E[N(Bn,T)(t)] - EIIN(BTn)(t)] + EIIN(B.T)(t)].

I E[NBn(t)+NTn(t)] - [nt)Nt]

I-E[NB(t)+NTn(t)] + EN~)N~)

I=E[NBn(t)]+E[NTn(t)] - ENnt]EN~)

I - E[NB(t)]-E[NTn(t)] + EIINB(t)]+E[NT(t)] = 0.

i The Channel Multiplication Model

T7his model predicts superadditivity with respect to the mean response contrast.

EIN(Bn.Tn)(t)] - E(BnT)(t)] - E(N(B,Tn)(t)] + E[N(B,T)(t)].

I E[NBn(t)XNTn(t)] - [nt)NW

I-E[NB(t)xNTn(t)I + EN~~N~)

I E[NBn(t)]xE[NTn(t)] - E[NBn(t)]XEN~)

I-E[NB(t)]XE[NTn(t)] + NBt]ETt)

I {(E[Nen(t)I - E[NB(t)I) X (E[NTn(t)] - E[NT(t)]) > 0
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The Probability Summation Model

This model predicts superadditivity with respect to the mean RT contrast. However,

Isince the decision variable is transformed by a monotonically decreasing function, this model

predicts subadditivity with respect to the mean response contrast.I

Parallel Exhaustive Model

This model predicts subadditivity with respect to mean RT contrast. However, since

the decision variable is transformed by a monotonically decreasing function, this model

predicts superadditivity with respect to mean response contrast.I

I Channel Summation Mode,

I This model predicts superadditivity with respect to mean RT contrast. Because of the

Imonotonically decreasing transformation from the internal random variable to the decision

variable, the model generates a prediction of subadditivity.I

ILet us turn our attention to the serial models. There are two types of serial models to

consider they are the serial self-terminating model and the serial exhaustive model. The self-

terminating mode is most appropriate for the OR task, while the exhaustive mode is most

appropriate for the AND task. A serial model most naturally generates time domain decision
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variables. In the derivation below I use E[T(BTn)] to represent the expected value of the

timing observation variable under noise only condition. The symbol E[TBn+TTn] means the

expected value of the sum of the two timing observation variables, TBn and TTn.

I
Serial Self-terminating Timing Model

The mean response contrast is given by

E[T(BTn)] - E[T(Bn.T)] - E[T(BTn)] + E[T(B,T)]. Assume that the observer selects one channel

j(eg., the bottom channel) for processing with a probability p. The probability that the other

(top) channel is selected for processing is therefore (1-p). If the first channel selected for

processing does not have a target, then the model assumes that processing is switched to the

second channel. In this case, time is devoted to processing noise on channel 1 before

processing is transfered to the second channel. Thus, the expected value of the timing process

for the serial model on those trials in which the first channel selected does not contain a target is

the processing time devoted the exhaustive processing of noise on channel, plus the time

associated with target detection on channel 2, which is given by E[TBn+TT]. Ofcourse, this

expected value must be weighted by the probability that a particular channel is selected first.

Therefore, in order to exhaust all possibilities of selecting a channel given all the possible

stimulus alternatives, we have

= E[TBn+TT] - PXE[TBn+TT] -(1-p)xE[TT] - (1-p)xE[TB+TTn] - pxE[TB]+ pxE[TB]+(1-

p)xE[TT]

= E[TBn+TT ]- pxE[TBn+TT] - (1-p)xEITB+TTn]

= (1-p)x(E[TBnJ -E[TB])+px(E[TT] - E[TT])

The above quantity is positive if we assume E[TBn] >E[TB] and E[TTn] - E[TTJ
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Serial Exhaustive Timing Model

E[T(Bn.Tn)] - E[T(BT)] - E[T(BTn)] + E[T(BT)].

= E[TBP]+E[TT] - E[TBnJ -E[TTI - E[TB] - E[TTn]+ E[TB]+E[TT]

=0

Additivity holds for the serial exhaustive timing model.

In order to analyze the signal detection "Yes-No" data in detail, I invented a new type of

ROC analysis technique which utilizes more information than does the traditional way of

analysis. Appendix F gives a full details of the analysis technique. This analysis technique can

be used in the situation in which confidence ratings are obtained. This technique allows us to

generate stable estimates of the slope by being able to provide more points than the regular

"yes" ROC curves. The major difference between this technique and the regular ROC analysis

is that my technique uses all the data points, including "yes" responses and "no" responses, to

generate ROC curves, whereas the regular one only utilizes the data points which are associated

with "yes" responses.

Since I have presented the model predictions in terms of mean response contrast, let us

turn our attention to the hypotheses which are tested in the experiment. As I noted earlier, at

first I am going to perform the test of slopes of the standardized ROC curve's.

Hypotheses Tested in the Psychophysical Experments
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The first hypothesis states that the slope of the standardized ROC curve should be less than

one.

The counting hypothesis: the slope of e z-score ROC curve < 1

The second hypothesis states that the slope of the standardized ROC curve should be greater

than one.

The timing hypothesis: the slope of the standardized ROC curve > 1

The second test which I am going to perform is the test on the mean response contrast.

The results of the test on the mean response contrast can be classified into three categories:

subadditive, additive and superadditive. From the results of the RT experiments, I chose

plausible models: the probability summation model in the OR task and the parallel exhaustive

processing model in the AND task. From the above presentation of the models, we see that the

probability summation model predicts subadditivity and the parallel exhaustive processing

model predicts superadditivity. To put it in the form of hypotheses for the OR task, we have

H I. mean response contrast < 0

and

H2: mean response contrast 2t 0.

For the AND task we have

HI: mean response contrast > 0

and

H2: mean response contrast < 0.
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I felt that the description at the mean level was more general, and less microscopic and still

distinguishes various models. Therefore, I preferred the analyses in terms of the means.

I Unless it is necessary to analyze the data in further detail, the analyses will be performed at the

level of means.

II

I
I
I
I

I
I
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IEXPERIMENT 2

I
Methods

Each subject participated in two types of tasks: the OR task and the AND task.

Subjects were dark-adapted for at least five minutes before the experiment. Before the

I experiment proceeded to the data collecting phase, the intensities of targets used in the data

collecting trials were determined in two stages. At the first stage the subject performed a

I variation of the method of limits. After obtaining a rough estimate of threshold values the

experimenter introduced the Yes-No detection task. The intensities used in the experiment

satisfied the following criterion: detection performance on a single target were greater than 50%

and less than 80% in terms of hit proportion. When the intensities satisfied this condition, the

experimenter instructed the subject for the experiment. In the OR task subjects were required

1 to press a "yes" button whenever one of the targets, either bottom target or top target, appeared;

otherwise, when there was no target presented they were required to respond with a "no"

button. In the AND task subjects were required to press a "yes" response only when two

targets appeared; otherwise when either only one target was presented or no target was

presented, they were required to respond with a "no" response. In both tasks the stimulus

conditions were identical. All subjects performed both tasks in a counterbalanced order. There

were four possible display conditions: the two-target condition, the top only condition, the

bottom only condition, and one noise condition in which no target was presented. All the

I experimental variables were within-subject factors.

S
Five males, including the author, and one female served as subjects. All of the subjects

had normal or corrected normal vision.

I 63



I

SApparatus and Stmuli

A microcomputer controlled the stimulus presentation and recorded the responses. The

I target LEDs and the fixation LED were fixed in a display stand which stood on an optical bench

57 cm away from the subject's eyes. The top target (red LED) was presented on the vertical

meridian with an elevation of +1.0 0 from the center of the fixation point (green LED) and the

bottom target (red LED) was also presented on the vertical meridian at an elevation of - 1.0 0

from the center of the fixation point. The diameter of LEDs was 0.5 . The average

luminance of the target was 0.034 cd/m 2. Subjects viewed the display binocularly. The time

course of a trial was as follows. A warning tone sounded for a 100 ms. After a fixed

foreperiod (100 ms) the stimuli were presented for 100 ms. After a fixed interval of 800 ms a

click sounded and subjects were given 3000 ms to respond "yes" or "no" by pressing one of

the buttons. Following this 3000 ms. interval, a double click sounded, indicating that a

confidence judgement was then required. Subjects were given 4 secs. to make their confidence

judgements, which ranged from 1 to 5 (5 being "most confident" that their previous response

had been correct). These responses were coded via four different response buttons (pressing

3 no button during the 4 sec. interval indicated the lowest level of confidence). The inter-trial-

interval was 1.5 sec. In each trial there were four possible events: top and bottom targets

I together, only top target, only bottom target, and no target at all. The probability that both

targets were presented at the same time was 1/6, the probability that the top target was

presented alone was 1/6, the probability that the bottom target was presented alone was 1/6,

and the probability that no target was presented was 1/2.
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RESULTS EXPERIMENT 2

Results of Analysis on slopes of standardized ROC curves

As explained above, the first hypotheses to test were as follows:

The counting hypothesis: the slope of the standardized ROC curve < 1

and

The timing hypothesis: the slope of the standardized ROC curve > 1.

The following ROC curves are a couple of typical ROC curves: one from the OR task and the

U other from the AND task.

i A Task:OR Obs:GN B. Task: AND Obs: GN

1.1.0

0.8 0.8
V 0.6 0.6

A ~ ~ -U- &sigila
0.4 .. . _0.4-

t 0.2 0.2-

i 0.0 0.0 ' •,"-

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

P(CR > CRi I Noise) P(CR>CRilNoise)

Figure 13. Typical ROC curves from the OR task and the AND task. The notation

P(CR>CRilSignal) represents the probability of the confidence rating: greater than a particular
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point "i" on the confidence rating scale given signal presence and P(CR>CRilNoise) represents

that probability given signal absence.

In the OR task there were three signal plus noise conditions and one noise condition.

Therefore, there were three ROC curves obtained for each subject. The results of the slope

analysis showed all slopes were less than one in the OR task.

Subject/Condition Slope Intercept R2

GN OR B 0.543 -1.263 0.982
GN OR T 0.36 -0.918 0.977
GN OR B&T 0.613 -2.386 0.927
GT OR B 0.654 -0.957 0.996
GTORT 0.574 -1.125 0.984
GTORB&T 0.531 -1.291 0.99
HHORB 0.341 -0.849 0.801
HHORT 0.392 -1.344 0.874
HHORB&T 0.381 -1.8 0.907
JM OR B 0.622 -2.093 0.835
JMORT 0.595 -1.729 0.868
JM OR B&T 0.325 -1.851 0.784
MMORB 0.503 -2.165 0.948
MMORT 0.612 -2.165 0.948
MM OR B&T 0.943 -4.324 0.944
OOORB 0.603 -1.14 0.992
OOORT 0.531 .- 1.055 0.996
OOORB&T 0.417 -1.38 0.963I
Subject/Condition Slope Intercept R2

GN AND B&T 0.569 -1.953 0.961
GTANDB&T 0.68 -1.559 0.816
HH AND B&T 0.705 -1.508 0.99
JM ANDB&T 1.028 -3.492 0.849
MMANDB&T 0.842 -3.612 0.923
00 AND B&T 0.479 -0.996 0.983

Table 9. Slope, intercept and R2 of linear regression analysis of standardized ROC curves' in

the OR task and in the AND task.
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The R2s of the regression lines on the standardized of ROC curves ranged from 0.784 to

0.996. In the AND task there was only one signal plus noise condition. Therefore, there were

six slopes calculated, one from each subject. Five out of six slopes were less than one. Only

I one slope turned out to be greater than one: 1.028. The R2s of the regression lines on the

standardized ROC curves ranged from 0.849 to 0.996. All the obtained slopes were pooled

together to compute the mean of the slopes and a z-test was conducted on the mean of the

slopes. The pooled mean of the slopes was 0.577 and the z-score associated with it turned out

to be -2.376. The hypothesis that the mean of the slopes is greater or equal to unity was clearly

I rejected at p < 0.0089. From the results of the above analyses, the counting models were

considered to be more plausible than the timing models. This result leads to the rejection of all

the timing models, including all varieties of parallel and serial timing models. Since there is no

known representation of the serial counting model, I concentrate in the next section on the

evaluation of various parallel counting models. This evaluation was done by the following

analysis on the mean response contrast. Recall that the mean response contrast is derived from

the confidence ratings (including both "yes" and "no" responses) obtained in each of the four

stimulus conditions (see Accuracy Measures section for definitions).I

U Results of Mean Response Contrast Analysis

The hypotheses tested rae in order.

* For the OR task we have

II
HI: mean response contrast < 0

and
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H2: mean response contrast > 0.

For the AND task we haveI
HI: mean response contrast > 0

and

i H2: mean response contrast < 0.

I
The results of the calculation of the means and variances of the responses in the OR task and

I the AND task are presented in Appendix G. The mean response contrast for each subject in the

OR task and in the AND task are presented in Table 10.

Subject/Condition Mean Response z-scores
Contrast

GN OR -2.56 -5.73
GT OR -2.40 -5.48
HH OR -1.79 -4.69
JM OR -4.69 -13.30
MMOR -3.13 -10.76
iOOR -1.74 -5.10

Subject/Condition Mean Response z-scores
Contrast

I GN AND 3.08 8.50
GTAND 2.12 6.62
HH AND 0.37 1.03
JMAND 3.26 12.80
MMAND 3.32 14.19
OAND 1.61 6.30

Table 10. Mean response contrast and its associated z-score for each subject in the OR task

and in the AND task.
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I In the OR task the z-values of the mean response contrasts ranged from -4.68 to -13.29,

demonstrating substantial subadditivity. The probability summation model's prediction was

confirmed. In the AND task the z-values ranged from 1.03 to 12.8 The smallest z-score,

1.03, came from one subject. The other five subjects showed large positivity in the z-values,

ranging from 6.62 to 12.8. In the AND task, therefore, except for one subject, the prediction

I from the parallel exhaustive processing model held at the level of the mean response contrast.

However, notice that the channel multiplication model also predicts superadditivity with respect

to the mean response contrast. Next I evaluate the adequacy of various models in predicting

the mean responses of the double stimulus condition from the other three conditions: the noise

condition, the bottom only condition and the top only condition.

The method of exact predictions from various models was developed. The method for

exact prediction from the probability summation model, the channel summation model, the

channel multiplication model and the parallel exhaustive model with respect to the mean, which

is presented in Appendix H. The method yields an estimate of the mean response measure of

the double stimulus condition by utilizing two single stimulus conditions and the noise

condition. The obtained means of the double stimulus condition and the mean predictions from

various models for each subject are presented in Table 11. The z-scores of the difference

between the prediction from various models and the obtained means are reported in Table 12.

II

Subject Double Channel Channel Probability Parallel
Condition Stimulus Summation Multiplication Summation Exhaustive

Condition Prediction Prediction Prediction Prediction(A)
GN OR 9.26 11.82 20.01 8.87 5.44
GTOR 7.18 9.58 13.61 7.79 4.48
HH OR 8.70 10.49 12.9 8.68 5.79
JM OR 9.06 13.75 27.36 9.24 6.88
MM OR 9.16 12.29 36.91 7.92 5.61
OOOR 6.23 7.98 10.80 6.48 4.00
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3 Subject Double Channel Channel Probability Parallel
Condition Stimulus Summation Multiplication Summation Exhaustive

Condition Prediction Prediction Prediction Prediction(A)
GN AND 7.70 4.62 6.20 4.09 1.92

- GTAND 6.49 4.36 4.61 4.18 2.15
HH AND 6.74 6.37 7.49 5.53 3.44
JM AND 8.24 4.97 6.77 4.03 2.43
MMAND 8.07 4.75 7.04 3.79 2.21
OOAND 5.02 4.63 6.20 3.31 2.23

I
Table 11. Obtained means of the double stimulus condition and the mean predictions from

various models for each subject in the OR task and in the AND task.

Subject Channel Channel Probability Parallel
Condition Summation Multiplication Summation Exhaustive(A)
GN OR -18.94 -79.53 2.85 28.27
GT OR -10.38 -27.76 -2.63 11.65
HHOR -11.93 -28.01 0.11 19.4
JM OR -23.93 -93.38 -0.92 11.17
MMOR -32.49 -288.16 12.92 36.98
OOOR -9.57 -25.06 -1.34 12.25

Subject Channel Channel Probability Parallel
Condition Summation Multiplication Summation Exhaustive(A)
GN AND 12.62 6.15 14.82 23.79
GTAND 9.09 8.01 9.88 18.63
HH AND 1.61 -3.24 5.23 14.2,
JMAND 19.02 8.57 24.51 33.98
MMAND 25.13 7.81 32.41 44.39

OOAND 1.99 -6.02 8.72 14.23

Table 12. The z-scores between the prediction from various models and the obtained means in

the OR task and in the AND task.

All the obtained mean response measures of the double stimulus condition in the OR

task were greater in magnitude than those of the prediction from the parallel exhaustive model

and less in magnitude than those of the predictions from both the channel multiplication model

and the channel summation model. The performance of three subjects was not significantly

different from that of the probability summation model. The mean response of two subjects

exceeded the prediction from the probability summation model. However, their means were
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U significantly less than the channel summation model's prediction. The weight of the evidence

thus favors the probability summation model of performance in the OR task. In the AND task,

the parallel exhaustive model's prediction, superadditivity, was confirmed in the above

analysis. However, the analysis of the mean response measure of the double stimulus

condition did not support the parallel exhaustive processing model. The exact prediction from

the parallel exhaustive model was not possible to calculate. Therefore, I presented the

approximate predictions instead in Table 11. In terms of ordering of the means, the parallel

exhaustive processing model's exact prediction on the mean must be less than the mean of the

exact prediction from the probability summation model. The means obtained in the AND task

were all significantly greater than the mean predicted by the probability summation model.

Therefore the exhaustive parallel processing model was clearly rejected. The reason is

straightforward. We know that E[max(X,Y)] _> E[min(X,Y)] for arbitrary positive random

variables X and Y. Now if the obtained mean is greater than E[max(X,Y)], then the obtained

mean must be greater than Efmin(X,Y)I. The z-scores of the difference between the

approximated predictions from the parallel exhaustive model and the obtained means were

reported in Table 12. All six subjects demonstrated response means significantly exceeding

that of the channel summation model. Five out of six subjects demonstrated response means

exceeding even the prediction from the channel multiplication model. In general, the data

conform most closely to predictions based on the channel multiplication model.

Summary of the Results

I 1.The results of the slope analysis of the standardized ROC curves allowed us to clearly reject

the timing hypothesis both in the OR task and the AND task. The counting mechanism was

found to be compatible with the obtained data in both tasks.

I
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2.The experiment provided subadditivity of the mean response contrast in the OR task. Further

I analysis showed that the results of the OR task were most compatible with the probability

summation model at the level of mean response.

I 3.The experiment provided superadditivity of the mean response contrast in the AND task.

Further analysis showed that, rather than supporting the parallel exhaustive processing model,

the results were most consistent with the channel multiplication model.

I
I
I

I
I
I

I
I
I
I
I
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I GENERAL DISCUSSION

I Let us begin by summarizing the results of the RT and psychophysical experiments.

[RT Expriment

1 1. In the OR task, superadditivity of the mean and the survivor contrasts was obtained. The

serial exhaustive and the serial self-terminating models were rejected. The viable alternatives to

the serial models were the parallel models: the probability summation model and the channel

summation model.

2. In the AND task subadditivity of the mean and the survivor contrast was obtained. The

I serial exhaustive and the serial self-terminating models were rejected. The most compatible

I model with the obtained data turned out to be the parallel exhaustive processing model.

3. Using inequalities, the data in the OR task were further examined. The channel summation

model was rejected as a result of the analysis. The model most compatible with the obtained

data turned out to be the probability summation model. There were two subjects who showed

1 negative blips at the beginning of the survivor contrast indicating the possibility of the

subadditive channel summation.

Psychophysical Experiment

1.The slope analysis of the standardized ROC curves was conducted. The results were

incompatible with the timing hypothesis both in the OR task and the AND task. The counting

mechanism was found to be compatible with the obtained data in both tasks.

I 2.In the OR task subadditivity of the mean response contrast was obtained. Further analysis

showed that the results of the OR task were compatible with the probability summation model.

I 3.n the AND task superadditivity of the mean response contrast was obtained. Further

I analysis showed that the channel multiplication model was rather compatible with the results

obtained.

7
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I Discussion

I In this section I wish to evaluate further the data obtained in the RT and psychophysical

experiments. First, I am going to analyze the error response probabilities in the RT experiment

I to see if the error probabilities are compatible with the processing models accepted in the course

of the hypothesis testing of the mean contrast and the survivor contrast analyses. Second, I

will point out non-monotonicity in the obtained data in the AND task RT experiment and

present two ways of interpreting the non-monotonic mean RTs. Third, I wish to present a

model of speed-accuracy trade-offs which can incorporate not only "yes" response RTs but

I also can incorporate "no" response RTs. Fourth, I wish to extract some common aspects

between the results of RT and psychophysical experiments with regard to the convexity versus

concavity of the functions.

Error Analse

First, I am going to present analysis of the error probabilities in the RT experiment.

There are a couple of types of errors which we can identify in the RT experiment. One of them

comes from fast guessing and the other comes from genuine statistical error of the decision

process. Ollman (1966) and Yellot (1967) developed the Fast Guess model to account for

speed-accuracy trade-offs. There are two modes of behavior represented in the model: a fast

guessing mode and a stimulus controlled response mode. In the fast guessing mode the subject

guesses and responds as fast as he can in a detection task. In this mode the subject's correct

response probability is at chance level. In the stimulus controlled response mode the subject's

response is controlled by the signal. In this mode the subject's correct response probability

may not be perfect but reflects the level of performance of the detection process. Let us define

the mean reaction time of this type of trials as ts. Let us denote the mean RT of the correct

responses as MRTc, the probability of correct response as P(C), the mean RT of the incorrect

responses as MRTe and the probability of incorrect response as P(E). If we have the signal

presentation probability of 0.5, there is a convenient relationship which can be tested easily.

That is,
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P(C) MRTc - P(E) MRTe = As (P(C) - P(E)).

I Since in the OR task we satisfy the requirement of the signal presentation probability of 0.5,

we can apply the analysis. However, in the OR task the probabilities of correct responses in

every subject were too high and there was a very small range of variation: the percentage of

errors range from 0.6 % to 5.7 %. Since there is not enough variation in the data, the linear

analysis cannot be done meaningfully. Therefore, I decided to analyze the data to evaluate the

statistical error of the decision process. In the following analysis I am going to concentrate on

the error probabilities of the double stimulus conditions. In order to present an account for the

error probabilities, we need to establish a model which can explain decision processes of both

"yes" and "n responses. The model assumes a time criterion tc before which a "yes"

response is allowed and after which only a "no" response is allowed. If there is only one

U signal to consider rather than two signals, the probability of a "no" response can be expressed

as follows:

P(Nol signal) = P(Wk > t, I signal).

This means that a miss response occurs as a result of truncation of the waiting time for the

signal detection. For the double stimulus condition in the OR task, the probability of a "no"

response can be expressed as follows:

P(No Bottom signal and Top signal)

= P(No on Bottom and No on Top I Bottom signal and Top signal)

assuming independence, we have

= P(Nol Bottom signal ) x P(NoITop signal).

Let the time criterion for the bottom channel be tcB and the time criterion for the top channel be

teT then we have

= P(WB > tcB) X P(WT > tcT).
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For the double stimulus condition in the AND task, the probability of a "no" response can be

" expressed as follows:

P(Nol Bottom signal AND Top signal)

= P(No on Bottom OR No on Top I Bottom signal AND Top signal)

3l assuming independence, we have

= P(Nol Bottom signal ) + P(NolTop signal) - P(Nol Bottom signal ) x P(NoITop signal)

I = P(WB > tcl3).+ P(WT > tcT) - P(WB > tcB).x P(WT > tcT)

Next let us define the error response probability contrast as follows:

P(Nol BO),T(l)) - P(Nol B(1),T(h)) - P(Nol B(h),T(l)) + P(No B(h),T(h)), where P(Nol

B(),T(h)) means the probability of a "no" response given the bottom signal is at the low level

I and the top signal is at the high level.u The above defined error response probability contrast for the OR task assuming the

parallel exhaustive processing model for a "no" response is derived as follows:

J P(Nol B(I),T(l)) - P(No B(1),T(h)) - P(Nol B(h),T(l)) + P(Nol B(h),T(h))

= P(Nol B()) x P(Nol T()) - P(Nol B(1)) x P(NoIT(h))

I - P(Nol B(h)) x P(Nol T(l)) + P(Nol B(h)) x P(Nol T(h))

I = P(WB(I) > tcB) X P(WT(I) > tcT)" P(WBO)> tcB) X P(WT() > tcT)

- P(WB(h) > tcB) X P(WT( ) > tcT) + P(WB(h) > tcB) X P(WT(h) > tZT)

=(P(B(I) > tcB) - P(WB(h) > tcB) I X I P(WTO) > tcT) - P(WT(h) > tcT))

Since both P(WBO) > tcB) - P(WB(h) > teB) and P(WTQ) > tCT) - P(WT(h) > toT) are assumed to be

I positive, the error response probability contrast is superadditive.

Assuming the probability summation model, the error response probability contrast for

the "no" response in the AND task is derived as follows:

P(Nol B(),T(l)) - P(Nol BOL),T(h)) - P(Nol B(h),T(l)) + P(Nol B(h),T(h))

= P(Nol B(l)) + P(Nol TO)) - P(Nol B a)) x P(Nol TO))

- P(Nol BO)) - P(NoIT(h)) + P(Nol B(l)) x P(NoIT(h))
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- P(No B(h)) - P(Nol TQ)) + P(Nol B(h)) x P(Nol T(l))

+ P(Nol B(h)) + P(Nol T(h)) - P(Nol B(h)) x P(Nol T(h))

= - P(Nol B(l)) x P(Nol T(1)) + P(Nol B(l)) x P(NoIT(h))

+ P(Nol B(h)) x P(Nol TO.)) - P(Nol B(h)) x P(Nol T(h))

"- P(WB(I) > tcB) X P(WTO) > tcT) + P(WBO) > tcB) X P(WT(h) > tcT)

+ P(WB(h) > tcB) X P(WT) > tcT) - P(WB(h) > tcB) X P(WT(h) > tcT)

= - (P(WB0) > tcB) -P(WB(h) > tcB))X(P(WTO) > tCT) - P(WT(h) > tcT))

Since both P(WBO) > tcB) - P(WB(h) > tcB) and P(WT) > tcT) - P(WT(h) > tcT) are assumed to be

positive, the error response probability contrast is subadditive.

The error response probability for the OR task and the AND task with all error response

probabilities across subjects were pooled to obtain four components of the error response

probability contrast. For the OR task the error response probability contrast was found to be

superadditive with z= 1.41. For the AND task the error response probability contrast was

found to be subadditive with z = - 1.69. The z-score in the OR task was not significant, only

at 1. < .2. However, the z-score in the AND task was significant at p < 0.05. Even though one

of the statistical tests was not significant, these results on the error response probability

contrasts seem to support the interpretation of the reaction time results given before.

INon-Monotoniciv in mean RTs

Next, I will conduct an analysis of the obtained data in the RT experiments in order to

examine the possibly dependent nature of the processing times. As I have pointed out in the

AND task RT experiment's results, there were two subjects out of six subjects who showed

non-monotonicity of mean RTs with respect to two experimental factors. Only one of them

turned out to show significant violations of monotonicity with respect to the mean RTs.

Subject BK showed the reverse order of mean RTs between (0,0) and (1,0) conditions.

However, the difference, RT(0,0) - RT(1,0) = -13 msec, was not significant: z=-0.7 8 .

Subject SK also showed the reverse order of mean RTs between (0,0) and (0,1) in addition to
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the reverse order of mean RTs between (0,0) and (1,0). In this case both violations, RT(0,0) -

RT(0,1) = -17 msec and RT(0,0) - RT(1,0) = -30 msec, turned out to be significant: z=-2.05

for the difference between (0,0) and (0,1) and z=-3 .75 for the difference between (0,0) and

(1,0). The significant violations of the monotonicity in terms of mean RTs cannot be easily

reconciled with the independent parallel exhaustive processing model unless we assume

violations of some other assumptions such as selective influence. However, if we are willing

to relax the assumption of stochastic independence, we may be able to explain the non-

monotonic results from the subject SK in the AND task. Townsend and Thomas (1991)

showed that negative dependence between two total completion times results in a reversal of the

factorial effect (see Townsend and Ashby, 1983, p 49 for a definition of total completion time).

A reversal of the factorial effect does not happen when two total completion times are positively

dependent. Next, I am going to present another way to look at the reversal effect.

My attempt to explain the reversal of the factorial effect can be formulated as follows.

Let us define two channels operating simultaneously with the processing completion mode

being exhaustive: let the actual processing time of the first channel be T1 and that of the second

channel be T2. If T1 < T2, then the second stage of processing is devoted to the processing of

the second channel. If T, >_ T2, then the second stage of processing is devoted to the first

channel. Let us suppose that there is a certain amount of interference time (Ti) added to the

total processing time depending upon the amount of time difference between actual processing

times, IT1 - T2 I. Let us suppose if IT, - T21 is less than td, then the integration of the

information from two channels will not take an additional amount of time. However, if IT, -

T2 1 is greater or equal to td, the integration of the information from two channels will take an

additional amount of time, Ti. Then the non-monotonic mean RTs in subject SK may be

explained. In order to verify that the model is compatible with the data, I conducted two types

of analyses: one utilizes a Thurstonian distance measure between the reaction times of the

single stimulus conditions and the reaction times of the double stimulus conditions and the

other utilizes the mean reaction time estimates of the heterogeneous intensity condition via two
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homogeneous intensity conditions. The heterogeneous intensity condition is defined as the

stimulus condition under which two levels of different intensities are used: (1,0) and (0,1).

The homogeneous intensity condition is defined as the stimulus condition under which two

signals are presented with two low intensities or two high intensities. The measures d(SD),

the magnitude of inhibition in (0,1) condition: RT(0,1) - RT and the magnitude of inhibition in

(1,0) condition: RT(1,O) - RT are defined as follows:

d(S,D) = { d(N,(0,O)) + d(N,(1,O)) + d(N,(O,0)) + d(N,(0,1)) } /4 - { d(N,(O,0)) +

d(N,(1,1)) }/2, where d(N,(O,O)) = (RT(0,0) - RT(O,0)) / {Var[RTN]} 1 2 and

d(N,(O,1)) = (RT(O,1) - RT(O,O)) / (Var[RTN])1" 2. The symbol d(SD) represents the

distance function between the single ,timulus conditions and the double stimulus conditions.

In order to define RT(0, 1) - RT and RT( 1,0) - RT, we only need to define RT, we write RT =

J0 1- (F(o,o)(t) F(11)(t) )lr2 dt. There was no statistical test conducted, however, the results of

both analyses seem to suggest that the performance of both subjects BK and SK is

distinguishable from other subjects' performance. The results of the analyses seem to be, at

least, consistent with the model. That is, non-monotonic mean RTs occurred in the subjects

whose values of d(SD) are smaller in the absolute values and whose magnitudes of inhibition

are larger. Further research is necessary for the clarification of this matter.

A Model of Speed-Accuracy Trade-offs

Next I wish to prese"nt a model of speed-accuracy trade-offs which can incorporate not

only "yes" response RTs but also can incorporate "no" response RTs. This model was already

partially prcsented in the first section of the general discussion in which the error response

probability contrast was analyzed. In this section I will first present the model in terms of its

defining parameters with its behavior, and next I will apply some pertinent analysis to the

obtained data from the point of view of the model. In order to present the model which is

capable of explaining both "yes" and "no" responses, I will first consider a part of the model
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I which explains "yes" responses with a single input channel with an infinite observation time.

In the case of a "yes" response, there are two important components of the model: one of the

components is the counting stochastic process, N(t), to generate the timing responses and the

-I other is the threshold or criterion, k. In terms of speed, as the expected value of the counting

stochastic process, E[N(t)], increases the mean RT will decrease. The mean RT increases with

IB an increasing threshold, k. In terms of accuracy, increasing E[N(t)] results in higher accuracy

in the signal detection situation. Accuracy also becomes higher if k increases. In the special

case, a gamma observer's performance with respect to accuracy ( by way of detectability )

increases linearly with the rate parameter, E[N(t)], and increases with a square root of the

threshold value, k (see Egan, 1975, p213). Next, let us introduce another parameter in the

I model so that the model can predict "no" responses. This parameter can be characterized as the

time criterion, t,. This time criterion parameter forces the system to respond "yes" within a

certain restricted amount of observation time, otherwise the system responds with a "no"

response. For the speed of responses, increasing this parameter results in slowing down of the

mean RT of "no" responses and also results in slowing down of the mean RT of "yes"

I responses. If the time criterion parameter decreases, the mean RTs of both "yes" and "no"

responses speed up. In terms of accuracy of the responses, decreasing tc causes a decrease inI
hit and false alarm probabilities and may cause an introduction of a larger proportion of fast

guess responses. Increasing t, causes both hit and false alarm probabilities to increase.

Therefore, the manipulation of tc from 0 to some finite number can control the detectability of

Isignal from chance level performance to performance associated with the limit of sensory

integration. Testing procedures for the above model in the empirical data should be developed

in the future.

Convex/Concave Analysis

Next, I wish to extract some common aspects between the results of the RT and

psychophysical experiments. In the OR task, both the RT and psychophysical experiments
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supported the probability summation model at the level of mean response. In the AND task,

RT experiment favored the parallel exhaustive processing hypothesis. However, in the

psychophysical experiment the channel multiplication model was more appropriate than the

parallel exhaustive processing model. Apparently, these two models have different processing

mechanisms; the parallel exhaustive processing model takes a minimum of two counting

processes to generate its output, whereas the channel multiplication model multiplies two

counting processes to yield its output. However, there is a common aspect between the parallel

exhaustive processing model and the channel multiplication model. That is both functions in

terms of counting process, the minimum of two counting processes and the multiplication of

two counting processes, are concave rather than convex (see Dudewicz, 1976, p 196). In

contrast to the concavity of the functions in the AND task, that is the minimum function and the

multiplication, the processing mode of the OR task seems to be convex. The probability

summation model can be represented in the counting domain as the maximum function. The

I maximum function is convex.

An interesting question to ask is whether convexity (or concavity) of the functions

U revealed by the subjects' performance is necessitated by the task. My conjecture is that the

convexity (or concavity) of the functions revealed by the subjects' performance is caused by'I'
the task. For now, I would like to mention the following relations between Boolean variables

and some algebraic functions. Given two Boolean variables, X and Y, the logical OR

operating on X and Y can be represented as the maximum of X and Y and the logical AND

operating on X and Y can be represented as the minimum of X and Y (Schneeweiss, 1989,

p134). Another equivalent expression is that the logical OR operating on X and Y can be

represented by X + Y - X Y (Boole, 1952, p 91) and the logical AND operating on X and Y

can be represented by X Y (Boole, 1854, 1958, p 29). For the logical OR operator we have

f(X,Y)= max(X,Y) and f(X,Y)= X + Y - X Y, which are convex and for the logical AND

operator we have g(X,Y) = min(X,Y) and g(X,Y) = X Y, which are concave (see Figure 14).
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Figure 14. Fxamples of convex and concave functions: A. Min[x,y] is convex and
I B. Max[xy] is concave.

Suppose one is given an exclusive OR (XOR) operatbr olperating on X and Y. That can be

I represented by X (1-Y) + (Il-X) Y = X + Y - 2 X Y. It turns out that it is locally concave in the

• region where X>Y or X<Y hold. This way of representing the logical operator using algebraic

! operators can lead to predictions from a large number of logical operations.

- It seems to me that the coincidence between the convexity of the OR task and the

convexity of the obtained performance in the OR task and that between the concavity of the

AND task and the concavity of the obtained performance of the AND task occurred not merely

because of chance but because of the adaptability of human behavior to a given problem
i situation.
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I1 Conclusion

1 RT Experiment

I. In the OR task superadditivity of the mean and the survivor contrasts were obtained. The

most compatible model to explain the data was the probability summation model.

2. In the AND task subadditivity of the mean and the survivor contrasts were obtained. The

I most compatible model to explain the obtained data turned out to be the parallel exhaustive

processing model.

Psychophysical Experiment

1.The slope analysis of the standardized ROC curves was conducted. The results clearly reject

the timing hypothesis both in the OR task and the AND task. The counting mechanism was

found to be compatible with the obtained data in both tasks.

2.In the OR task subadditivity of the mean response contrast was obtained. Further analysis

showed that the results of the OR task were compatible with the probability summation model.

However, there were two subjects who indicated the possibility of the subadditive channel

summation.

3.In the AND task superadditivity of the mean response contrast was obtained. Further

analysis showed that the channel multiplication model is rather compatible with the results

obtained.
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APPENDIX A

Mean Contrast Additivity of Serial Self-terminating Model

Let us derive mean contrast additivity of the serial self-terminating model. In the

derivation, the constant p is defined as the probability of the system picking up channel 1 to

process the information. The symbol f1(o)(t) represents the density function of the processing

time of channel 1 when the luminance of the target is low. The symbol f2(l)(t) represents the

density function of the processing time of channel 2 when the luminance of the target is high.

The density representation of the serial self-terminating model in the redundant target condition

when both X1 and X2 are in the level 0 can be expressed as

fsT(t I (0,0)) p X fl(O)(t) + (l-p) x f2(0)(t).

Similarly for (0,1) condition,

fsT(t 1 (0,1)) = p x fl(0)(t) + (l-p) x f2(1)(t).

For (1,0) condition,

fsr(t 1 (1,0)) = p X fl(1)(t) + (l-p) x f2(0)(t).

And for (1,1) condition,

fs(t I (1,1))= p X fl(1)(t) + (l-p) x f2 (1)(t).
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The constant (1-p) is the probability that channel 2 is processed first. The subscript ST

represents that the processing completion mode is self-terminating. Putting all of the above

expressions together in the mean contrast expression, we have

10-t x {fsT(t 1 (0,0)) fsTr(t I (0,I)- fs'r(t 1 (1,0) ) + fs-r(t I (1,I)))} dt

= J~t x (p x fl(o)(t) + (l-p) x f2(o)(t) - p x fl(o)(t) - (l-p) x f2(1)(t)

- p fI(1)(t) - (-p) x f2(o)(t) + p x fl(1 )(t) + (l-p) x f2(1)(t) ) lt

=0

Additivity holds. Notice that in the serial self-terminating model, we even have additivity at the

level of density function. This ends the proof of mean contrast additivity of the serial self-

terminating model.
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APPENDIX B

Mean Contrast Superadditivity of the Channel Summation model

Let us derive the mean contrast superadditivity of the channel summation model.

Define Nl(t) as the neural counting stochastic process for channel 1. And define N2(t)

similarly as the neural counting stochastic process for channel 2. The channel summation

model can be defined as follows:

Nsum(t) = NI(t) + N2(t).

In order to derive the RT prediction of the channel summation model, we have to relate the two

domains of stochastic processes, the counting domain and the waiting time domain. This can

be accomplished by a theorem known as the Renewal Theorem (Karling and Taylor, 1975).

The renewal theorem relates the processes of counting stochastic events with time, and this is

the source of its importance to models of reaction times. We define a renewal process as a

sequence of mutually independent random variables which assume nonnegative values (Prabu,

1965). This theorem relates the process of counting stochastic events (i.e., the activity of a

channel) to time as follows:

P(N(t) > k) = P(Wk < t).

The symbol, N(t), represents a counting process and the symbol, Wk, represents the waiting

time process. Intuitively, N(t) _> k represents the event in which the counting criterion is

reached by time t. In terms of time of the response generated, the response has been already

generated by time t. A counting process is defined as the stochastic process that results when

the time of observation is fixed and the number of counts is studied (p77, Townsend & Ashby,

1983). A waiting time is defined as the time taken in order to observe a fixed amount of counts

(p77, Townsend & Ashby, 1983). Thus, if we envision the detection process as accumulating

the activity over an input channel, the relationship between the sensory activity and the time
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needed to detect the signal can be expressed in terms of the renewal theorem. The identity,

P(N(t) > k) = P(Wk < t), tells us that for any renewal stochastic process the probability of

counting being equal to or greater than an integer k when the observation time is fixed to "t" is

the same as the probability of the k-th event being observed before "t". The importance of this

identity lies in the fact that it allows us to derive predictions in terms of a RT measure by

I knowing the form of the expression in the counting domain. As will become clear later in the

thesis, this identity not only allows us to derive RT predictions but also allows us to derive

accuracy predictions.

A counting mass function, P(N(t) = n) = g(n,t), tells us the probability of getting n

events during an observation interval of duration t. It is defined for the number of counts from

II zero to infinity. Since it is a probability mass function, the sum across all n from zero to

infinity is one. Let P(N(t) < n) = G(n,t) be the counting cumulative distribution function, and

let X be a parameter of G(n,t) having two levels, 0 and 1, such that G(n,t;X--0) - G(n,t;X=l) >

0 for all t _0. This means that the activity of the counting process is greater when the counting

process is driven by a high intensity stimulus, X=l, than when the counting process is driven

I by a low intensity stimulus, X--0. Now we can express the mean contrast of the channel

summation model as follows.

RT(0,O) - RT(0,1) - RT(l,O) + RT(l,1 )

= F(oo)(t) - F(o.1)(t) - F(1,0)(t) + F(l,I)(t) dt

= P(Wsum,k(0,0)> t) - P(Wsum,k(0,1)> t) - P(Wsum.k(1,0)> t) + P(Wsumkl(1,1)> t) dt

By applying the renewal theorem, we have

= Jo P(Nsum(OO)(t)< k) - P(Nsumj(Oj)(t)< k) - P(Nsuml(1,O)(t)< k) + P(Nsuml(l.1)(t)< k) dt.
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= P(Nl(o)(t) + N2(o)(t) <k) - P(NI(o)(t) + N2(l)(t) < k) - P(NI(l)(t) + N2(o)(t) < k)

I + P(NI()(t) + N2(l)(t) < k) dt

I
This expression was proven to be positive for the special case of the Poisson channel

summation model.

In order to prove the superadditivity of the Poisson channel summation model, first let

U us define X1 as the rate of the Poisson process associated with the condition in which a target

(target 1) is dim and the other target (target 2) is dim, define Xm as the rate of the Poisson

process associated with the condition in which target 1 is dim and the other target target 2 is

bright, define X,1 as the rate of the Poisson process associated with the condition in wf,,ch

target 1 is bright and target 2 is dim, and define Xhh as the rate of the Poisson process

I associated with the condition in which targets I and 2 are bright. Since we assume selective

influence and stochastic independence, we can express the redundant target rates as the sum of

individual processing rates. We have

and

Xhh=Xh.+X-h.

Then we can express the mean contrast of the Poisson channel summation model ,assuming a

fixed criterion k for all four conditions, as follows.

A2 RT= k/Xn- k/h - k/Xhl + k"h

= k/().l-+),-I) - k/(X,,.+;. 11) - k/(Xh-+X-) + k/ h.+ -h)

= k((Xh-i)/((1.+Xl) (l.+)) - (X h-Xl1)/((h.+?.1) ( h_+,.h)))
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* = ~k(X..h-X-I) ( [()Xh-+X-I) ()Xh.+X..l}(XI..+)LDI (Xi-+X-ih)I / [(X1-+kl.) (XI..+XLh) (Xh..+)L1) (X~..+X.

F' h)])

We have X.h > X-1 and Xh- > Xi.. as a result of survivor ordering assumption. Therefore, we

have (X..h-X..I)[Xh.+kI.) (X.O-)( I -+X. ) I.-h))] > 0.

U This proves superadditivity of the Poisson channel summation model.
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APPENDIX C

Mean RTs, variance RTs and error probabilities of various conditions in RT
-I experiment.

Mean reaction times, variance reaction times, and error percentages in conditions under which a
bottom dim dot and a top dim dot are presented (0,0), a dim at the bottom and a bright dot on
the top are presented (0,1), a bright dot at the bottom and a dim dot on the top are presented
(1,0), a bright dot at the bottom and a bright dot on the bottom are presented (1,1), only a dim
dot at the bottom is presented (0,0), only bright dot at the bottom is presented (1,0), only a3dim dot on the top is presented (0,0), only a bright dot on the top is presented (0,1), and
nothing is presented (0,0).

"I
OR task

1Subject 1

Condition Mean RT Variance RT Error
Probability

Double (0,0) 336 1945 0.065
(0,1) 290 1253 0.0251 (1,0) 286 1253 0.027
(1,1) 284 1082 0.013

Bottom Only (0,0) 340 2162 0.109
' (1,0) 283 870 0.013

Top Only (0,0) 365 3564 0.373
(0,1) 369 1048 0.007

Noise (0,0) 379 1340 0.019

" Subject 2

Condition Mean RT Variance RT Error
Probability

Double (0,0) 335 6123 0.083
(0,1) 271 1849 0.000
(1,0) 265 778 0.000I (1,1) 266 1901 0.000

Bottom Only (0,0) 337 6191 0.091
(1,0) 270 1356 0.013

Top Only (0,0) 335 4476 0.151
(0,1) 272 1610 0.006

Noise (0,0) 406 5667 0.020

I
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Subject 3.- Condition Mean RT Variance RT Error

Probability

Double (0,0) 284 1204 0.044
(0,1) 237 303 0.000
(1,0) 242 729 0.023
(1,1) 231 335 0.000

Bottom Only (0,0) 307 2098 0.057
(1,0) 238 543 0.001

Top Only (0,0) 319 1806 0.078
S(0,1) 238 313 0.000

Noise (0,0) 441 3329 0.008

LI [Subject 4

Condition Mean RT Variance RT Error
Probability

Double (0,0) 501 7208 0.000
(0,1) 425 5914 0.000
(1,0) 418 4409 0.000
(1,1) 407 2134 0.000

Bottom Only (0,0) 533 15775 0.113
(1,0) 450 13924 0.000

Top Only (0,0) 580 :14957 0.171
(0,1) 430 8336 0.000

Noise (0,0) 517 16205 0.016
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Subject 5

Condition Mean RT Variance RT Error
Probability

Double (0,0) 420 2190 0.000
(0,1) 381 2642 0.000
(1,0) 367 1986 0.031

- (1,1) 361 1489 0.032
Bottom Only (0,0) 433 3654 0.023

(1,0) 373 2237 0.008
Top Only (0,0) 475 4182 0.031

(0,1) 382 2934 0.008
Noise (0,0) 465 5242 0.013

i Subject 6

Condition Mean RT Variance RT Error
Probability

Double (0,0) 378 6131 0.000
(0,1) 332 8742 0.000
(1,0) 317 4998 0.000
(1,1) 297 2992 0.000

Bottom Only (0,0) 389 7106 0.068
(1,0) 317 4422 0.000

Top Only (0,0) 410 5329 0.013
i (0,1) 319 -3795 0.007

Noise (0,0) 795 42341 0.008

I

I
I
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"1

I AND task

t
I Subject I

Condition Mean RT Variance RT Error
Probability

Double (0,0) 406 1531 0.150
(0,1) 400 903 0.041
(1,0) 402 1809 0.147
(1,1) 334 969 0.000

Bottom Only (0,0) 440 2663 0.020
(1,0) 411 973 0.007

Top Only (0,0) 394 1815 0.007
(0,1) 400 692 0.000

Noise (0,0) 369 1187 0.000

"I

Subject 2

I Condition Mean RT Variance RT Error
Probability

Double (0,0) 390 4204 0.526
(0,1) 382 3793 0.350
(1,0) 403 9497 0.286
(1,1) 353 2777 0.158

Bottom Only (0,0) 337 6191 0.091

(1, 0) 270 1356 0.013
Top Only (0,0) 335 4476 0.151

(0,1) 272 1610 0.006
Noise (0,0) 406 5667 0.019

I
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!II

-I Subject 3

Condition Mean RT Variance RT Error
Probability

Double (0,0) 378 2294 0.045
(0,1) 366 4984 0.067I (1,0) 374 3869 0.156
(1,1) 300 1414 0.022

Bottom Only (0,0) 512 5314 0.000

(1,0) 473 4886 0.022
Top Only (0,0) 489 5670 0.000

(0,1) 463 4173 0.011
Noise (0,0) 419 3317 0008

I
Subject 4

Condition Mean RT Variance RT Error
l (Probability

Double (0,0) 758 31364 0.053
(0,1) 677 20535 0.056
(1,0) 706 40885 0.056
(1,1) 565 5791 0.000

Bottom Only (0,0) 898 50625 0.000
(1, 0) 774 45454 0.007

Top Only (0,0) 828 44521 0.007
(0,1) 790 54149 0.000

Noise (0,0) 653 50310 0.000

I
I
I
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1 Subject 5

Condition Mean RT Variance RT Error
Probability1 Double (0,0) 422 2304 0.082

(0,1) 439 2391 0.013
(1,0) 453 2209 0.053
(1,1) 363 2190 0.000

Bottom Only (0,0) 458 8046 0.002
(1,0) 476 2862 0.008

Top Only (0,0) 435 3036 0.000
(0,1) 315 412 0.000

Noise (0,0) 390 2478 0.002

i
Subject 6

I Condition Mean RT Variance RT Error
Probability

,. Double (0,0) 476 7448 0.000
(0,1) 450 . 068 0.038
(1,0) 468 4610 0.074

i (1,1) 397 4610 0.000
" Bottom Only (0,0) 542 9120 0.000

(1,0) 519 5027 0.028
Top Only (0,0) 542 9235 0.000

(0,1) 520 6839 0.010
Noise (0,0) 548 15972 0.025

I
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* APPENDIX D
Subject BJ in OR Task Subject BK in OR Task

340- 340-

U 320a320-
.0 300-

S3001
280

280 a 260-
bottom low bottom MIL bottomi low bottom 14h

Bottom Intensity Bottom Intensity

Subject GN in OR Task Subject JZ in OR Task
290- 520-

I 500-

a270- 480-II .0460

3 250- 440-

420

20 bottom low bottom WIL 40 bottom low bottom WIgh

Bottom Intensity Bottom Intensity

Subject SK in OR Task 17 Subject ZC in OR Task
380-

420- 360-

400 340-

I-' 320-

380 300-

I360 280-
bottom low bottom igIL bottom low bottom MOIL

Bottom Intensity t-.-..- o BottomInteRSity

-4--- top high

I 101



I

420-Subject BJ in AND Task Subject BK in AND Task
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Mean reaction times of the double stimulus conditions in the OR task and the AND task.
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-1 APPENDIX E
Subject BJ in OR Task Subject BK in OR Task
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3 Subject BJ in AND Task Subject BK in AND Task
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APPENDIX F

The ROC curve constructing technique used in the signal detection experiment.

In this appendix, I am going to explain the ROC curve construction technique used in

the signal detection experiment. The raw data come in the form of confidence ratings

distributed along the confidence rating scale. First, define histograms from the noise condition

I as P(CR=cr(i)(0,0)), the bottom target only condition as P(CR=cr(i)I(0,B)), the top target

only condition as P(CR=cr(i)I(T,O)) and the double target condition as P(CR=cr(i)I(TB)),

where cr(i) is the i-th point on the confidence scale. Since there were 5 confidence rating

intervals, from the most certain to the most uncertain, for each response in the experiment,

there were total of 10 intervals on the confidence rating scale. Let us assign the most certain

I "no" response category the first interval of the confidence rating scale and the most uncertain

I no" response category the fifth interval. Similarly, we can assign the most uncertain "yes"

response category the number "6" and the most certain "yes" response category the number

1 "10." Therefore, cr(i), runs from I to 10 on the confidence rating scale.

The next step in constructing an ROC curve is to sum the histogram along the

I confidence rating scale. After this operation, we have what we call the cumulative distribution

function: P(CR<cr(i)). The next step is to calculate P(CR>cr(i)), the survivor function, which

is one minus the quantity of the cumulative distribution function. Notice that there are four

types of survivor functions associated with four different stimulus conditions in the present

experiment. Plot the survivor function of the noise condition on the x-axis and that of the

signal-plus-noise condition on the y-axis. This produces the ROC curve.

Traditionally, the ROC curve was created using the "yes" responses alone on both the

noise condition and the signal-plus-noise condition. However, the procedure of utilizing the

"yes" responses only can potentially lead to a situation in which not enough false alarm
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responses are observed. This can cause a problem to estimate an ROC curve because the

estimate of the curve does not span zero to one completely. However, if we utilize the

confidence rating of all of the points on the scale, we may be able to increase the number of

J points. Therefore, the procedure of utilizing all of the points tend to generate relatively stable

estimates of the ROC curves.

I

I ,

I
I
I
I
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I APPENDIX G

Subject/Condition Mean Variance
GN OR noise 2.59 4.60
GN OR B 7.34 9.62
GN OR T 7.08 12.70
GN OR B&T 9.26 2.36
GT OR noise 2.81 2.97
GT OR B 5.77 8.60
GTORT 6.62 8.84
GTORB&T 7.18 8.05
HH OR noise 4.11 4.60

1HH OR B 6.79 8.53
HHORT 7.81 5.42
HH OR B&T 8.70 3.11
JM OR noise 2.37 2.51
JM OR B 8.37 4.32
JMORT 7.75 6.34
JM OR B&T 9.06 4.45
MM OR noise 1.23 0.61
MMORB 7.02 4.63
MMORT 6.51 5.54
MMORB&T 9.16 1.24

i OOOR noise 2.58 1.33
OOORB 5.37 5.52
OOORT 5.19 5.01
OO OR B&T 6.23 4.78

Ii

I
I
I
i
l
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S-I

Subject/Condition Mean Variance
GN AND noise 1.51 1.11
GNANDB 3.25 5.16
GN AND T 2.89 4.27
GN AND B&T 7.70 8.45
GT AND noise 2.17 1.47
GTAND B 2.45 1.71
GTANDT 4.08 3.76
GTANDB&T 6.49 7.31
HH AND noise 2.81 2.93
HH AND B 4.76 4.57
HHANDT 4.41 3.59
HH AND B&T 6.74 6.36
JM AND noise 1.56 1.06
JM AND B 3.59 2.57
JMANDT 2.95 1.87
JM AND B&T 8.23 3.74
MM AND noise 1.30 0.63
MMANDB 2.93 1.89
MMANDT 3.12 3.12
MM AND B&T 8.07 2.17
OO AND noise 2.39 1.00
OOANDB 3.01 1.71
OOANDT 2.79 1.38
OOANDB&T 5.02 5.65

Means and variances of the responses in the OR task and the AND task of the signal
detectability experiments.

1

,I
-I
-I
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APPENDIX H

The method for exact prediction of the probability summation model, the

channel summation model, the multiplication model and the parallel exhaustive

model with respect to the mean.

Before turning to the exact prediction of various models, I will first present an

approximate prediction of the probability summation model and the parallel exhaustive

processing model. The first application of the probability summation model can be traced back

to Pirenne (1943). The approximate prediction of the probability summation model in the

bimodal detection was predicted from the unimodal conditions by, for example, Morton (1967)

and Sanford (1970) as follows:

p[Bim] = p[Aud] + p[Vis] - p[Aud] p[Vis],

where p[Bim] represents the probability of detection under the bimodal condition, p[Aud]

represents the probability of detection under the auditory condition and p[Vis] represents the

probability of detection under the visual condition. The above formulation neglects the effect

of the noise in estimating the single modality's real detection probability. To put it in another

way, the above formulation equates the detection probability produced by ,for example, the

auditory channel with the detection probability obtained under the auditory signal plus visual

noise condition. This will overestimate the probability of detection by the single channel,

therefore, yielding underestimated values for the bimodal detection probability. The exact

3 prediction of the probability summation model in the context of my experiment is in order. In

the following derivation, three important assumptions are made: 1) stochastic independence, 2)

selective influence and 3) context independence. Under these assumptions, the probability of a

-j miss in the double stimulus condition can be written as

109



3;I P[Missl Bottom and Top Signals] = P[Missl Bottom Signal plus Top Noise]

x P[MissiTop Signal plus Bottom Noise]

/ P[MissITop Noise plus Bottom Noise).

I Generalizing to an arbitrary point on a confidence rating scale, we haveI
P[CR < cr(i)I Bottom and Top Signals] = P[CR < cr(i)l Bottom Signal plus Top Noise]

3I x P[CR < cr(i)ITop Signal plus Bottom Noise]

/ P[CR < cr(i)ITop Noise plus Bottom Noise].

I Therefore, we have

P[CR > cr (i),probability summationl(BT)]

= 1 -( P[CR < cr (i)I(BO)] x P[CR < cr (i)I(OT)]) / P[CR < cr (i)1(0,0)].

The division by the term, P[CR < cr (i)1(0,0)] , nullifies the overestimation. The notation,

CR > cr (i), means that the obtained confidence rating is greater than the i-th confidence value.

Next, I present an approximate prediction of the parallel exhaustive processing model

and the exact prediction of the same model.

An approximate prediction:

I P[CR > cr (i),parallel exhaustive processingl(B,T)]

= P[CR > cr (i)I(B,O)] x P[CR > cr (i)I(O,T)]

3 The exact prediction of the parallel exhaustive processing model assuming stochastic

independence is written

P[CR > cr (i),parallel exhaustive processingl(BT)] =

I P[CR > cr (i)I(B,O)] x P[CR > cr (i)I(O,T)]) / P[CR > cr (i)1(0,0)]
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-I In order to derive the prediction at the mean level, the above survivor functions should be

summed across all the confidence rating values. In the case of the parallel exhaustive

processing model, the bias of the approximate prediction is toward underestimation of the

probability that the confidence rating exceeds a certain value on the confidence rating scale.

For the exact prediction of the probability summation model, the expected value is written

-I E[CR, probability summationl(B,T)]

-I

= oP[CR > cr (i),probability summationl(BT)]

'I = { 1 -( P[CR < cr (i)I(BO)] x P[CR < cr (i)I(0,T)]) / P[CR < cr (i)1(0,0)]
i=lI

For the exact prediction of the parallel exhaustive processing model, the expected value is

I written

E[CR, parallel exhaustive processingl(B,T)]

I C

= P[CR > cr (i), parallel exhaustive processingl(B,Tj)]

I P[CR > cr (i)I(B,O)] x P[CR > cr (i)I(O,T)]) / P[CR> cr (i)1(0,0)]
' i=l

:I The expected values of the approximate predictions can be derived in a similar way.

I
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I Let us turn our attention to the exact prediction of the channel summation model and the

channel multiplication model in terms of the expected value. The expected value of the channel

K U summation model can be written as

I
E[CR, channel summationl(B,T)] = E[CR, channel summationl(B,O)] + E[CR, channel

I summationl(0,T)] - E[CR, channel summationl(0,0)].

I The expected value of the channel multiplication model can be written as

E[CR, channel multiplication(B,T)] = E[CR, channel multiplicationl(B,O)] x E[CR, channel

I multiplicationl(OT)] /E[CR, channel multiplicationl(O, 0)].

1

I

I
I
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