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Assessing Dimensionaity of a Set of Items-Comparison of Different Approaches

Abstract

This study examines the performance of the following four methodologies for

assessing unidimensionality: DIMTEST, Holland and Rosenbaum's approach, linear factor

analysis, and nonlinear factor analysis. Each method is examined and compared with other

methods on simulated data sets and on real data sets. Seven data sets, all with 2000

examinees, were generated: three unidimensional, and four two-dimensional data sets. Two

levels of correlatiotL between abilities were considered: p=.3 and p=.7. Eight different real

data sets were used: four of them were expected to be unidimensional, and the other four

were expected to be two-dimensional. Findings suggest that, while the linear factor

analysis often overestimated the number of underlying dimensions, the other three methods

correctly confirmed unidimensionality but differed in their ability to detect lack of

unidimensionality. DIMTEST showed excellent power in detecting lack of

unidimensionality; Holland and Rosenbaum's and nonlinear factor analysis approaches

showed good power, provided the correlation between abilities was low.

Subject terms: DIMTEST, unidimensionality, essential dimensionality, non-linear factor
analysis, item response theory.
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Assessing Dimensionality-Comparison

It is well known that most item response theory (IRT) models require the

assumption of unidimensionality. According to Lord and Novick (1968), dimensionality is

defined as the total number of abilities required to satisfy the assumption of local

independence. If there is only one ability affecting the responses of a set of items to meet

the assumption of local independence, then that set is referred to as a unidimensional set.

It has also been long argued that responses to test items are multiply determined

(Humphreys, 1981, 1985, 1986; Hambleton & Swaminathan, 1985, chap. 2; Reckase, 1979,

1985; Stout, 1987;Traub, 1983; Yen, 1985), and several abilities unique to items or

common to relatively few items are inevitable. The ability which the test is intended to

measure (i.e., the ability common to all items) will be referred to as the dominant ability,

and abilities unique to or influencing responses to few items will be referred to as minor

abilities. Given that item responses are multiply determined, it is intuitively clear that, in

order to satisfy the assumption of unidimensionality, it is required that a given test

measure a single dominant ability. A number of simulation studies have demonstrated that

a dominant ability can be recovered well, using computer programs such as LOGIST, in

the presence of several minor factors (Reckase, 1979; Drasgow & Parsons, 1983; Harrison,

1986). Although counting only dominant dimensions violates Lord and Novick's (1968)

definition of dimensionality, it is commonly accepted that, in order to apply

unidimensional item response theory models, it is sufficient to show that there is one

1dominant ability underlying the responses to a set of items

Stout (1987, 1990) provided a mathematically rigorous definition of dominant

dimensionality referred to as essential dimensionality and provided a statistical test

(DIMTEST) to assess whether a set of items met the requirement for essential

unidimensionality. Junker (1988, 1991) further explored essential dimensionality for

dichotomous and polytomous items and established consistency results for the maximum

likelihood ability estimates of 0 under essential unidimensionality. Essential dimensionality

is the total number of abilities required to satisfy the assumption of essential independence.
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Assessing Dimensionality-Comparison

An item pool is said to be essentially independent (El) with respect to the latent variable

vector _ if, for a given subset of items, the average absolute conditional (on _) covariances

of responses to item pairs approaches zero as the length of the subset increases. When

conditional covariances based on only one dominant ability meet the assumption of

essential independence, the response data is said to be essentially unidimensional (dE=l).

In contrast, the assumption of local independence requires that the conditional covariances

be zero for responses to any item pair, and the number of abilities required to those

conditional covariances is the dimensionality. According to this definition of

dimensionality, all major and minor abilities influencing item responses have to be

considered when assessing the local independence assumption; whereas, according to the

essential dimensionality, it is sufficient to consider only the influence of dominant abilities.

Hence, essential independence and essential dimensionality are weaker forms of local

independence and traditional dimensionality respectively.

Stout's definition of essential dimensionality is conceptually based on an infinite

item pool. An infinite item pool can be conceptualized in two ways: 1. as a consequence of

continuing the test construction process beyond the N items of the test being studied where

the N items become a subset of the item pool; 2. as a consequence of a sequence of finite

tests where each finite test is optimally constructed. For example, a 20-item test is

constructed with the knowledge that the test is going to be only 20 items long and that it is

not necessarily a subset of an optimal 40-item test. In this way, an item pool is a collection

of optimal finite test length tests (for details see Junker, 1991; Junker & Stout, 1991).

In assessing essential unidimensionality of given item responses, DIMTEST assesses

the likelihood that the given set of item responses come from an essentially unidimensional

item pool. That is, DIMTEST assesses whether or not the model generating the given item

responses is close to the EI, dE= 1 model. The major focus in assessing essential

unidimensionality of a given set of item responses is to determine how "minor" the

influence of minor abilities is and whether the influence of these minor abilities can be
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Assessing Dimensionality-Comparison

ignored when assessing essential unidimensionality.

Historically speaking, linear factor analysis has been used to assess the

dimensionality of the latent space underlying the responses to a set of items. If the results

indicate a one-factor solution, then it can be inferred that one dominant ability is

influencing item responses. There are, however, a number of technical as well as

methodological problems associated with using linear factor analyses to assess

dimensionality. For example, difficulty levels of items and guessing levels of

multiple-choice items can each play a major role in affecting the factor structure of item

responses (for details see Carroll, 1945; Hulin, Drasgow, & Parsons, 1983, chap. 8; Zwick,

1987). Consequently, many attempts ha, e been made by researchers in recent years to

develop new methods to assess dimensionality. Some of the recently developed methods

include nonlinear factor analysis (McDonald & Ahlawat, 1974); Bejar's procedure (Bejar,

1980); order analysis (Wise, 1981); modified parallel analysis (Hulin, Drasgow, & Parsons,

1983, p. 255); residual analysis (Hambleton & Swaminathan, 1985, p. 163); Bock's full

information factor analysis (Bock, Gibbons, & Muraki, 1985); Holland and Rosenbaum' s

test of unidimensionality, monotonicity, and conditional independence (Rosenbaum, 1984;

Holland & Rosenbaum, 1986); Roznowski, Tucker, and Humphreys' procedures (1991); and

Stout's unidimensionality procedure DIMTEST (Stout, 1987).

Hattie (1985), Hambleton and Rovinelli (1986), and Berger and Knol (1990) have

reviewed several procedures for assessing dimensionality, including some of the above

mentioned procedures. The main focus of this paper is to study and compare some of the

procedures to assess dimensionality that are most recent, seem promising, and are little

studied. Four procedures are considered and compared in this paper: DIMTEST, Holland

and Rosenbaum's procedure, nonlinear factor analysis, and linear factor analysis. Linear

factor analysis was used, because of its historical importance, as a benchmark to compare

other procedures. Several sets of unidimensional and multidimensional test data were

simulated and used to study the performance of all four procedures for assessing
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Assessing Dimensionality-Comparison

dimensionality. The same procedures were then repeated with real test data.

Description of Procedures

Linear Factor Analysis

Linear factor analysis is the most commonly used approach to assess dimensionality.

With linear factor analysis, each extracted factor is presumed to represent a dimension,

and items that load heavily on a given factor are considered good measures of that

dimension. There are a number of fundamental problems associated with applying linear

factor analysis to binary data. First, linear factor analysis assumes that the relationship

between the observed variables and the underlying factors is linear and that the variables

are continuous in nature. But it is clear for dichotomous data that the relationship between

the performance and the underlying latent variable is not linear. Hence, applying factor

analysis to phi or tetrachoric correlations of binary item responses produces difficulty

factors (Hulin, Drasgow, & Parsons, 1983, chap. 8). Second, in computing tetrachoric

correlations, the cell entries of the fourfold table for a pair of dichotomous items sometimes

equal zero, making it difficult to determine an appropriate value for the correlation. Third,

determination of the number of significant factors could be problematic.

In this study the statistical package LISCOMP was used to perform exploratory

linear factor analysis using tetrachoric correlations. Three different approaches were used

to determine the number of significant factors: parallel analysis, the chi-square test of

goodness of fit, and goodness of fit statistics (the means and standard deviations of the

squares of residual correlations and absolute residuals).

According to parallel analysis (Humphreys & Montanelli, 1975), the eigenvalues of

the given correlation matrix are compared with the eigenvalues of random data. The

random data consist of binary responses generated with the same number of items and

examinees as that of the given data. The largest eigenvalue from the random data is used
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Assessing Dimensionality-Comparison

as the cutoff point for eigenvalues from the actual data to determine the number of

significant factors. That is, the number of eigenvalues of the actual data greater than the

largest eigenvalue of the random data is taken as the significant nunber of factors

underlying the given data.

The second method used to determine the number of factors was the chi-square test

of goodness of fit from LISCOMP. The third method involves comparisons of means and

standard deviations of squares of r'siduals and absolute values of residuals after fit of an

m-factor model with the corresponding values from the random data. If the residuals are

sufficiently "small," then one can regard the fit of the model as "reasonably satisfactory"

(McDonald, 1981; Hattie, 1985, Hambleton & Rovinelli, 1986; and Berger & Knol, 1990).

Nonlinear Factor Analysis

McDonald (1967, 1980, 1982) and McDonald and Ahlawat (1974) have

demonstrated that applying linear factor analysis to unidimensional binary data yields

"nonlinear factors" rather than "difficulty factors." Nonlinear factors account for nonlinear

relationships among the variables by using higher order polynomials in the factor model

(for example, quadratic and cubic terms). McDonald developed the method of nonlinear

factor analysis (NLFA) to account for the nonlinearity of the data as an improvement over

linear factor analysis. The variables in the model can be expressed as polynomial functions

of latent traits or factors. For example, a two-factor model with linear and quadratic

terms would be of the following form:

2b b 0 b +du =1,2...N)Y io+i1+d iz 2 A 2

where Yi denotes the examinee' s score on item i, 01 and 02 denote latent traits, bijk

denotes the factor loading of the --th item on the --th common factor for the k-th degree
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Assessing Dimensionality-Comparison

element in the polynomial; ui denotes the unique factor and di denotes the unique factor

loading for item i. Hambleton and Rovinelli (1986) have demonstrated the use of NLFA to

assess dimensionality and found it to be a promising method. They, however, caution about

the criterion for the adequacy of the fit of the model.

In the present study, NLFA embodied in the computer program NOFA, developed

by Etazadi-Amoli and McDonald (1983), was used. The fit of the model is studied just as

in the case of the linear factor analyses, by comparing the means and standard deviations

of squared residuals and absolute residuals with the corresponding values of random data

and linear factor analyses. The chi-square statistic values are not available from NOFA.

Holland and Rosenbaum' s Test of Lack of Fit of a

Unidimensional, Monotone, and Conditional Independent Model

Rosenbaum (1984) and Holland and Rosenbaum (1986) have proved theorems

concerning conditional association ths* ran be applied to assess dimensionality. The basic

notion in Holland and Rosenbaum, s (H&R) theorems is that if the items are locally

independent, unidimensional, and the item characteristic curves are monotone, then the

items are conditionally positively associated. Specifically, the conditional covariances

between any pair of item response functions of a set of unidimensional dichotomous item

responses given any function of the remaining item responses will be nonnegative. The test

of this relationship can be specified as

Ho: Coy (X., X.I E XJ 0 vs. H: Co, M, X-1 .E X < 0
' J i,jjk' ' J i,jf k

Conditional associations for each pair of items is tested, given the number-right

score on the remaining items. The Mantel-Haenszel test (M-H) (Mantel & Haenszel, 1959)
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Assessing Dimensionality-Comparison

is used to test this hypothesis. To perform the M-H test on a given pair of items, a 2x2

contingency table is constructed for the pair for each of the possible number-right scores

on the remaining items. The cell values of a 2x2 table for item pair i and j for examinees

with total score k (A;=1,2,...K) on the remaining items can be denoted as the following: the

number of examinees who got both item i and item j correct (n ll ' the number of

examinees who got both item i and item j incorrect (n00), the number of examinees who

got item i correct and item jincorrect (n1o), and the number of examinees who got item i

incorrect and item j correct (no1k) The M-H statistic is then given by

nl+- E(n 1 1+) + 1/2

J V(nl+)

K
where n11+ = llS and E(nll+) and V(nll+) are the expectation and the variance of

?ill+ given by

K

= 1 +k +1 k (2)
k-I n++ k

and

V~nl+) nl+knO+kn+l kn+Ok (3V(n+) = Xlo ik ~(3)
n ++k( n ++k - 1 )

The plus subscript in Equations 2 and 3 denotes the summation over that subscript. The

computed Z-value is compared to the lower tail of the standard normal distribution. A

statistically significant Z implies that the pair of items in question are not conditionally

associated, given the sum of the remaining items and are thus inconsistent with the

unidimensional model. In this manner, the M-H statistic is computed for all N(N-1)/2
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Assessing Dimensionality-Comparison

pairs of items, where Nis the total number of items in a test. If a "large" number of pairs

are shown not to be conditionally associated, then the unidimensional assumption is

inappropriate.

Since H&R approach tests each item pair with significance level a, the simultaneous

inference for all item pairs can be based on Bonferroni bounds (Holland & Rosenbaum,

1986, Junker, 1990, and Zwick, 1987). According to Bonferroni bounds, one would accept

H. if the number of rejections at level a is around ta, where t is the number of tests

performed, which Is equal to N(N-1)/2; one would reject H. if at least one test is rejected

at level a/ t.

Rosenbaum (1984), Zwick (1987), and Ben-Simon and Cohen (1990) have

demonstrated the application of H&R approach to assess dimensionality. Ben-Simon and

Cohen found the H&R approach to be conservative and erroneously misclassified nearly

half of the multidimensional item pools they analyzed as unidimensional. Zwick found

H&R approach to be consistent with other procedures investigated in assessing

unidimensionality of NAEP reading data.

DIMTEST

Stout (1987) developed DIMTEST to test the hypothesis of essential

unidimensionality: the existence of one dominant dimension. Nandakumar and Stout (in

press) further modified and improved the performance of DIMTEST. The improvements

have lead to the following: a robust procedure against presence of guessing in item

responses; a better control of the observed level of significance, and greater power; and

automation of the size of assessment subtests, as described below. The hypothesis to test

unidimensionality can be stated as
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Assessing Dimensionality-Comparison

HO dE=l vs. HI: dE>l

where dE denotes the essential dimensionality of the item pool of which the given test

items are a part.

In order to apply DIMTEST, it is assumed that a group of J examinees take an

N-item test. Each examinee produces a vector of responses of Is and Os with 1 denoting a

correct response and 0 denoting an incorrect response. It is also assumed that essential

independence with respect to some dominant ability E holds and that the item response

functions are monotone with respect to the same dominant ability E. DIMTEST has

several steps. These are briefly described here (for details see Stout, 1987; Nandakumar and

Stout, in press).

Step 1: The N items of the test are split into three subtests: AT1, AT2, and PT.

First, AT1 items are selected so that these items all measure the same dominant ability.

This can be achieved either through factor analysis (FA) or through expert opinion (EO).

If FA method is chosen, M items with highest loadings on the second factor (before

rotation) are selected. In this case, the program automatically determines the size M of

AT1 as a function of the test length and the sample size. If EO is sought, on the other

hand, it is recommended that, at most, one-quarter of the total items should be selected

that tap the same ability. After selecting items of AT1, items of AT2 are selected, also of

the same size M, so that items of AT1 and AT2 have the same difficulty distribution (for

details see Stout, 1987). The remaining items (n=N-2M) form the partition subtest PT. In

the present study, FA is chosen to select ATI items. For examples where EO is used to

select ATI items, see Nandakumar (in press).

When FA is used to select AT1 items, the given sample of J examinee responses are

partitioned into tw,") groups. One group of examinee responses (500 examinees

recommended) is used for exploratory factor analysis to select AT1 and AT2 items, and the

other group of examinee responses is used to compute the Stout's statistic T.

10



Assessing Dimensionality-Comparison

Step 2: The second group of examinees (if the first group of examinees is used for

FA) are partitioned into K subgroups based on their PT score. That is, all examinees

obtaining the same total score on PT are assigned to the same subgroup k (k= ,2,...K).

Step 3: Within each subgroup k, examinee responses to subtest items AT1 and AT2

are used to compute the unidimensional statistic T given by

T = (Ti - T , (4)

where

T. 1  K -2 -2

K Sk

is computed using items of ATi. The Cak and o' and Sk are given as follows.

The usual variance estimate for subgroup k is given by

- k ( -p -))20* = -r. 4 (I~z //Jk,
j=1 3jk

where

= r=1 U-VM, Eand -) =

with U i*k (1 or 0) denoting the response for item i by examinee jin subgroup k and Jk

denoting the total number of examinees in subgroup k. The "unidimensional" variance

estimate for subgroup k is given by

Uk i =1 P

where

;(k) = k
Pi j=1 Uij~lk'
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And the standard error of estimate for subgroup k is given by

-- _a + /J8
Sk [(Ee',k - Lip + /JkI

where

= E=1 -(k))4jk

and

64,k E i=1lpi pi 2p

The computed T-value is referred to the upper tail of the standard normal

distribution to obtain the significance level. The significant values associated with

unidimensional tests are expected to be large while the significant values associated with

multidimensional tests are expected to be within the margin of the specified level of

significance.

DIMTEST assesses the degree of closeness of an essentially unidimensional model to

the model generating the observed data. This is done by splitting the test items into three

subtests-AT1, AT2, and PT-as described above. When the model underlying the test

item responses is close to essentially unidimensional, items of AT1, AT2, and PT would all

be of the same dominant dimension; therefore, the value of the statistic T computed based

on AT1, AT2 would be "small," leading to the tenability of H0 . When the model

underlying the test responses is not essentially unidimensionaJ, however, items of AT1

would be dimensionaly different from items of AT2 and PT and the value of the statistic

T will be "large" leading to the rejection of H0 .

DIMTEST has been found to discriminate between unidimensional and

two-dimensional tests for a variety of simulated test data when the correlation between

abilities is as high as .7 (Stout, 1987; Nandakumar & Stout, in press). Nandakumar (1991)
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has shown the usefulness of DIMTEST to assess essential unidimensionality in the possible

presence of several minor abilities. The findings indicate that essential unidimensionality is

established when each of the minor abilities influence relatively few items, or, if minor

abilities are influencing many items, the strength of the influence of the minor abilities is

low. As the strength of the minor abilities increases, the approximation to an essentially

unidimensional model degenerates, inflating the type-I error of the test of hypothesis of

essential unidimensionality. Nandakumar (in press) has further replicated these findings on

a wide variety of real test data. This study also demonstrates the sensitivity of DIMTEST

to major and minor abilities influencing item responses.

Description of Test Data

The Simulated Test Data

Seven data sets, DATA1-DATA7, were generated. Of the seven, three data sets,

DATA1-DATA3, are strictly unidimensional, consisting of 25, 40, and 50 items,

respectively. The other four data sets, DATA4-DATA7, are two-dimensional with length

N=25 and correlation between abilities p=.3, N=25 and p=.7, N=50 and p=.3, and N=50

and p=.7, respectively. All 7 data sets have 2000 examinees. These data set characteristics

are summarized in Table 1.

Table 1 about here

The unidimensional data sets were generated using the three-parameter logistic

model given by
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S1-c (5)
P(1)= + x +ezp{1 .La (1b 7) ]

The abilities (0) were independently generated from the standard normal distribution, and

the item parameters (aibici) of real tests as described in Nandakumar (1991) were used in

generating item responses. For example, items of DATA 1 have a larger va-iability in

discrimination power (ai), ranging from 1.22 to 2.82; items of DATA 2 have a smaller

variability of as, tanging from 1.07 to 2.00. For each simulated examinee, the probability

of correctly answering each item, Pi(0), was computed using the three-parameter logistic

model. For each item i, a random number between 0 and 1 was generated from a uniform

distribution. If the computed probability, Pi(G), was greater than or equal to the random

number generated, the examinee was said to have answered the item correctly and was

given a score of 1; otherwise the examinee was given a score of 0. The two-dimensional test

data were generated according to the multidimensional compensatory model (Reckase &

McKinley, 1983) given by

1-c
= . (6)P(0 1 62 )= c 1+ezp{-1. 7 [a1 i(O O-bl j )+a 2 i( 02-b 2 i ) j }

The abilities 0 = (01,02) were sampled from a bivariate normal distribution with

both means zero and both variances one. Two levels of correlation coefficients between the

abilities were used: .3 and .7. The guessing level was taken to be .20 for all tests. The

discrimination parameters (ail,ai2) for each item were independently generated as follows:

where A and a are the mean and standard deviation of the distribution of discrimination

14
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parameters of the respective unidimensional tests with the same number of items. Similarly

bli and b2i were assumed to be independent of each other for each item and were generated

as follows:

bli P N(/, or), b2 i N(, or),

where 14 and a are the mean and standard deviation of the distribution of difficulty

parameters of the respective unidimensional test with the same number of items. For

example to generate test data DATA4 with N=25 and p=.3, the means and standard

deviations of a s and bp of item parameters used for DATA1 were used. The item responses

(0,1) were generated exactly as described for unidimensional case by using Pi(_) of (6).

The Real Test Data

The real test data used in this study came from two different sources. The National

Assessment of Educational Progress (NAEP, 1988) data for the 1986 US History (HIST)

and Literature (LIT) for grade 11/age 17 were obtained from Educational Testing Service.

The Armed Services Vocational Aptitude Battery (ASVAB) data for Arithmetic Reasoning

(AR) and General Science (GS) for grade 10 were obtained from Linn, Hastings, Hu, and

Ryan (1987). For all data sets, examinees who missed one or more items were deleted from

the analyses. Test sizes and sample sizes for all real tests are given in bottom half of

Table 1. Since all four test data were assessed as unidimensional by the methods employed

in this article (details are provided in Results section), they were combined to form

two-dimensional tests. Four two-dimensional tests were formed as follows. The test data

HSTLIT1 was formed by combining the data of 31 items of HIST with the data of 5 items

of LIT randomly selected from 30 items. Similarly HSTLIT2 was formed by combining the

responses of 31 items of HIST with the responses of 10 items of LIT, and the test data GS
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was formed by combining responses of 30 items of AR with the responses of 10 items of GS.

The two-dimensional test HSTGEO contains 31 history items spanning US history from

the colonization period to modern times (HIST) and in addition contains 5 map items

requiring the knowledge of geographical location of different countries in the world. This is

the actual history test according to NAEP. But it was shown using DIMTEST that the 5

map items formed a separate dimension signifir-intly different from history items

(Nandakumar, in press). Hence the data on these 5 map items were removed from the

history test to for! HIST with 31 items, and the original history data were treated as a

natural two-dimensional test.

Results

The results of DIMTEST and the H&R approach will be studied together and

compared because of the similarity in the underlying theory and because both of them are

statistical tests. Likewise the results of linear and nonlinear factor analysis will be studied

and compared together.

The Simulated Test Data

DIMTEST and H&R Procedure

The results of DIMTEST and the H&R approach for simulated data are presented

at the top of Table 2. For all data sets, the significance levels associated with DIMTEST

indicate that DIMTEST is able to correctly confirm unidimensionality and detect lack of

unidimensionality for both correlation (between abilities) levels p-. 3 and p=.7. For

example, all three unidimensional data sets, DATA1-DATA3, have small T-values and

large significant values, implying the acceptance of the null hypothesis of essential

unidimensionality (here the data were simulated as strictly unidimensional).

Two-dimensional data, DATA4-DATA7, on the other hand, have large T-values, strongly
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rejecting the null hypothesis of essential unidimensionality.

Table 2 about here

The results of the H&R approach indicate that for uidimensional tests, the number

of significant negative partial associations at level a (a-.05) are far below the expected

number (ta), strongly confirming the unidimensional nature of these data sets. Among the

two-dimensional data sets, DATA4 and DATA6 (p=.3) were correctly assessed as

multidimensional. For these data, the number of significant negative partial associations at

level a were beyond ta level, and the number of significant negative partial associations

beyond level a/t were 15 and 1, respectively, identifying them as multidimensional. The

test data DATAS and DATA7 (p=.7), on the other hand, were assessed as unidimensional.

For DATA5 and DATA7, the number of significant negative partial associations at level a

were within ta level, and the number of significant negative partial associations beyond

level a/t was zero, making them unidimensional tests. It was disappointing to note that for

many of the item pairs measuring different traits, in two-dimensional tests, the covariance

did not approach significance. One reason for this could be the noise in the conditional

score. More research is necessary to draw definite conclusions.

Linear and Nonlinear Factor Analysis

The computer programs used to do the analyses, LISCOMP and NOFA, are heavily

computationally intensive and consume enormous CPU time. In addition, LISCOMP can

not handle more than about 40 variables. For these reasons, not all data sets were included

in the linear factor analyses, but all data sets were included in the nonlinear factor

analyses. The results of linear and nonlinear factor analyses are presented in Table 3.

17



Assessing Dimensionality--Comparison

Table 3 about here

Based on parallel analyses, one factor would be retained for DATA1, DATA2, and

DATA5; two factors would be retained for DATA4. Whereas, according to the significance

levels associated with a chi-square test of goodness of fit, in Table 3, a two-factor model

fits DATA1, a foul-factor model fits DATA2 and DATA4, and a three-factor model fits

DATA5. Similar chi-square values are not available for nonlinear models.

The goodness of fit statistics---the means and standard deviations of squared

residuals and absolute residuals--are reported for all data sets in Table 3. The top entry in

Table 3 refers to random data (RANDOM) with 25 variables and 2000 examinees. Because

of the cost of computations, only one random data set was used to compare the goodness of

fit statistics. Comparing goodness of fit statistics of RANDOM with DATAI, it appears

that both one-factor quadratic and one-factor cubic models fit as well as the four-factor

linear model. However, since the differences in the magnitude of residuals among models

are small, one could argue that four-factor linear and one-factor quadratic or cubic models

are over fit and that one should go with a more parsimonious model. Observance of the

significance values of the chi--square test of goodness of fit indicates that the two-factor

model fits the data. If one strictly applies the criterion of using random data residuals as a

guide to determine the number of factors, however, a one-factor model with a quadratic

term seems to be the right choice. Similar observations can be made-for DATA2.

Comparing goodness of fit statistics for linear and nonlinear factor analysis, it can be seen

that for DATA4 and DATA5, the two-factor quadratic model fits better than the

three-factor linear model, confirming the two--dimensional nature of data. Here again one

could argue, based on the absolute residuals, that the differences in the residuals are small

and that the quadratic models or three-factor and four-factor linear models are an over fit.
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The significant values associated with the chi-square test indicate overestimation of factors

for DATA4. As expected, the means and the standard deviations of squared residuals and

absolute residuals are much larger for DATA4 (p=.3) than for DATA5 (p=.7), reflecting

more deviation from unidimensionality for DATA4. For DATAS, the goodness of fit

analyses support a one-factor quadratic model. Likewise the two-factor quadratic model

fits DATA6, and one-factor quadratic model fits DATA7.

In summary, there are many criteria that can be used to assess dimensionality by

linear factor analysis approach. The different criteria may give rise to different conclusions

regarding the dimensionality of the data set in consideration. In the present study it is

shown that the significant values associated with the chi-square test overestimated the

number of factors in most cases. Parallel analyses correctly identified the dimensionality in

some cases. Nonlinear factor analyses exhibited a better fit than the linear factor analyses.

DIMTEST and H&R procedures were excellent in confirming unidimensionality.

DIMTEST demonstrated greater power in detecting multidimensionality for correlations

between abilities as high as .7. H&R and nonlinear factor analysis methods demonstrated

good power provided the correlation between abilities was low (p=.3).

The Real Test Data

DIMTEST and H&R Procedure

The results of DIMTEST and H&R for real data sets are presented at the bottom of

Table 2. For data sets LIT, HIST, AR, and GS, the T-values associated with DIMTEST

indicate that these data can be approximated by an essentially unidimensional model. The

results of H&R approach for these data are also consistent with DIMTEST results in that

the number of significant negative partial associations, for each one of the tests, is less than

the nominal level ta. While both approaches strongly support that HIST, AR, and GS are

essentially unidimensional, the decision is not clear for LIT because there is one negative
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partial association that is significant beyond level ci/t, and the T-value of DIMTEST is in

the border line region, indicating presence of violations to the unidimensionality

hypothesis.

For two-dimensional data HSTLIT1, HSTLIT2, ARGS, and HSTGEO, the

T-values associated with DIMTEST strongly indicate the multidimensional nature of these

data. Relatively large T-values associated with ARGS and HSTGEO indicate that abilities

within these tests are more orthogonal than abilities in HSTLIT1 and HSTLIT2. The

results based on HIR approach, however, indicate that all four data sets are

unidimensional. For each one of the two-dimensional data sets, the number of significant

negative partial associations is well below the nominal level ta, and none of the partial

associations are significant beyond level a/t. Even with a liberal a = .10, the number of

negative partial associations did not rise above the nominal level for any of the tests. These

results suggest that the H&R approach lacks power.

On further examination of H&R results, it was found that the M-H Z-values for

many of the item pairs, where items were supposed to be measuring different traits, dii not

reach significance level. One explanation for this could be that for these item pairs, the

conditional score (EX k), on the basis of which the examinees are classified into different

groups, may be contaminated with items tapping different abilities. This could be

especially true for HSTLIT2 and ARGS where one quarter of the test items are from the

second dominant dimension. Because of the noise in the conditional score distribution, the

covariance of item pairs measuring different abilities may not be exhibiting significant

negative covariance. A proper conditional score may considerably increase the power of the

H&R approach.

Linear and Nonlinear Factor Analysis

The results of linear and nonlinear factor analysis for a selection of real data sets are

reported in Table 4. The results are consistent with the simulated test data in that for all
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cases nonlinear factor models fit better than linear factor models. According to the

chi-square test of goodness of fit, the four-factor model was best fitting for all data sets

where linear factor analysis was performed. Based on goodness of fit statistics, a one-factor

quadratic model fits LIT, AR, and HSTLIT1 better than three- or four-factor linear

models. Since a one-factor quadratic model fits as well as a two-factor quadratic model, a

more parsimonious model is strongly recommended in these cases. For HSTLIT2 and

ARGS, again it appears that a one-factor quadratic model is appropriate. If chi-square

statistics were avallable along with the goodness of fit statistics for nonlinear factor

analyses, it would have aided in the interpretation.

Table 4 about here

In summary, for real data sets, the results are somewhat consistent with simulated

data sets. For data sets assessed as unidimensional by DIMTEST and H&R, the chi-square

tests based on the linear factor analysis indicated a four-factor model for the same data.

Although we do not know the true dimensionality of real data, these results suggest that

linear factor analysis is overestimating the underlying dimensionality. Whereas, the other

three methodologies were excellent in identifying essential unidimensionality but differed in

identifying lack of unidimensionality. DIMTEST demonstrated greater power than either

the H&R or the nonlinear factor analysis methods. It appears that with the appropriate

conditional score the power of the H&R approach could be improved, and with some type

of fit statistics and the associated significance levels, the power of nonlinear factor analysis

could be improved.
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Discussion

Based on this limited study, findings demonstrate that the linear factor analysis

approach to assessing essential unidimensionality is not satisfactory. This finding is

consistent with the previous research and theory (see for example, Hambleton & Rovinelli,

1986; Hattie, 1984). In contrast to linear factor analysis, DIMTEST, H&R, and nonlinear

factor analysis were each shown to be promising methodologies to assess dimensionality.

In this study, all three methodologies exhibited sensitivity to discriminate between

one- and two-dimensional test data. For simulated unidimensional test data, all three

procedures were able to confirm unidimensionality. For the real data, all three procedures

were consistent in identifying unidimensionality of HIST, AR, and GS. For

two-dimensional test data, however, the three procedures differed in their ability to detect

the lack of unidimensionality. DIMTEST rejected the null hypothesis of essential

unidimensionality for all two-dimensional tests: both real and simulated. The H&R

approach confirmed the lack of unidimensionality for two-dimensional simulated tests,

provided the correlation between abilities was low (p=.3). For simulated test data with

high correlation between abilities (p=.7), the H&R approach was unable to detect

multidimensionality. Also, for all two-dimensional real test data, the H&R approach was

unable to detect multidimensionality.

The performance of the nonlinear factor analysis methodology was similar to the

H&R procedure for two-dimensional data sets. For simulated test data with p=.3, the

two-factor model with linear and quadratic terms demonstrated adequate fit statistics

(smaller means and standard deviations of squared residuals and absolute residuals). For

simulated tests with p--.7, however, the difference in fit statistics between one-factor and

two-factor quadratic models was not evident. Similarly for two-dimensional real test data

HSTLIT2 and ARGS, the difference in fit statistics between one-factor and two-factor

models with linear and quadratic terms was not evident. The difficulty in deciding about
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the correct model arises because there is no concrete way of assessing what is meant by

"sufficiently small" for goodness of fit statistics.

In this study, the results associated with the H&R approach were consistent with

the findings of the Ben-Simon and Cohen's (1990) and Zwick's (1987) studies. The number

of significant negative partial associations for unidimensional tests was far below the

expected five percent level, making it a very conservative test. Consequently, it did not

exhibit high power. The reason one observes fewer than the nominal level of negative

partial associations is that the conditional score used in computing the covariances is not

perfectly correlated with the latent variable (Zwick, 1987). According to the theorems

proved by Holland and Rosenbaum (1986), the conditional score used to compute the

covariances can be any function of the latent trait. An appropriate choice of conditional

score, therefore, could maximize the power of H&R approach.

The results of nonlinear factor analyses were consistent with the findings of

Hambleton and Rovinelli (1986). Factor models with linear and quadratic terms were able

to fit the data better than models with just linear terms. The problem with nonlinear

factor analysis is determining the appropriate number of polynomial terms to retain in the

model. This problem suggests that some type of adequacy of fit statistics with associated

sampling distribution would be necessary to aid in assessing the fit of nonlinear models.

In terms of assessing the degree of multidimensionality, both the DIMTEST and

nonlinear factor analysis approaches can be useful. The T-values associated with

DIMTEST and the fit statistics associated with nonlinear factor analysis can be helpful in

assessing the degree of multidimensionality. For example, both HIST and AR are

considered as essentially unidimensional data sets, but the associated T-values are -1.53

and 1.18 respectively. By contrast, for a two-dimensional data set HSTLIT2, T=2.03. The

difference in the T-values mirrors the degree of multidimensionality present in the data.

Similarly, the difference in fit statistics between one-factor and two-factor quadratic

models for DATA1 and DATA4 reflects the degree of multidimensionality.

23



Assessing Dimensionality-Comparison

In the present study, the test length is more than 25 items, and the sample sizes are

around 2000 examinees. It is not known if the results would hold up for small test lengths

and sample sizes. De Champlain and Gessaroli (1991) have shown that DIMTEST loses

power when both the test length and the sample size are small (for example, N=25 and

J=500). Their results show support for the use of incremental fit index (IFI) using the

nonlinear factor analysis program, NOHARM II, to assess dimensionality in cases of

smaller test lengths and sample sizes. Ben-Simon and Cohen (1990) have found that the

test length and the sample size had a marked effect on the M-H Z-statistic in the

detection of multidimensionality. In their study they tried test lengths of 20, 30, 40, and 50

and sample sizes of 1000, 2000, 3000, and 4000. They found that larger samples and larger

tests facilitated the detection of multidimensionality. They urge a cautious interpretation

of M-H test results in light of test lengths and sample sizes.

Just as linear and nonlinear methodologies share the same philosophical theory,

DIMTEST and H&R approaches share the same theoretical framework. The basic rationale

for the H&R approach is to reject the locally independent, monotone, unidimensional

model if the conditional covariances are significantly negative. By contrast, DIMTEST

rejects the essentially independent, monotone, essentially unidimensional model if the

conditional covariances are significantly positive (it can be shown that the expected value

of the numerator of Stout's statistic T is mathematically equivalent to average conditional

covariances among AT1 items, Stout (1987)). This apparent contradiction in the criterion

for assessing unidimensionality may be resolved by noting the subtle difference in item pair

covariances under consideration. In the H&R approach, one expects the conditional

covariance between items measuring different traits to be negative; whereas in Stout's

approach, one expects the asymptotic conditional covariance between items measuring the

same trait to approach zero. DIMTEST is specifically designed to assess unidimensionality

and thus looks for the existence of at least two dominant dimensions. By contrast, the

H&R approach looks at all item pairs and detects items that are not measuring the same
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trait as other items of the test.

As for the computational time involved, DIMTEST is most efficient. The

computational time involved for other procedures is significantly more. For example, for a

25 item test with 2000 examinees, DIMTEST uses 4 seconds of CPU time, H&R approach

uses 24 seconds, and nonlinear factor analysis uses 42 seconds; for a 50 items test with 2000

examinees, DIMTEST uses 8 seconds, H&R approach uses 106 seconds, and nonlinear

factor analysis uses 191 seconds. As the test length increases, the H&R approach requires

disproportionately more time, and the same is true for the nonlinear factor analysis as test

length increases and/or the model gets more complex.
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Notes

1The reader is reminded that testing for unidimensionality is not synonymous to testing for

model-data fit. If a unidimensional model is to be applied to the data, testing for

unidimensionality is the first step. If item responses are essentially unidimensional, then as

a second step, one can test for model-data fit, such as, one-parameter logistic,

two-parameter logistic, etc.
2
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Table 1
Description of Data Sets

Number of items of each trait
Name J1 Traits p2  N Traitl Trait2 Mixed 4

Simulated data sets

DATA1 2000 1 25 25 0 0
DATA2 2000 1 40 40 0 0
DATA3 2000 1 50 50 0 0
DATA4 2000 2 .3 25 8 8 9
DATA5 2000 2 .7 25 8 8 9
DATA6 2000 2 .3 50 16 16 17
DATA7 2000 2 .7 50 16 16 17

Reg data sets

LIT 2439 1 30 30 0 0
HIST 2428 1 31 31 0 0
AR 1984 1 30 30 0 0
GS 1990 1 25 25 0 0
HSTLIT1 2428 2 - 36 31 5 0
HSTLIT2 2428 2 - 41 31 10 0
ARGS 1853 2 - 40 30 10 0
HSTGEO 2440 2 - 36 31 5 0

1J denotes the number of examinees
2p denotes the correlation between traits
3N denotes the test length
4mixed items are a combination of both traits 1 and 2



Table 2

Results of DIMTEST and H&R Analyses

DIMTEST H&RI Test

H.: de 1 H.: cot(X)Xf1 E .XJ!O

No.of No. of No.of Decision
Decision item pairs pairs based on
based on pairs significant significant Bonferoni

Name T p< DIMTEST t at level a at level a/t bounds
Simulated test data

a

DATA1 -1.05 .85 accept H. 300 1 0 accept H.
DATA2 -0.75 .77 accept 780 3 0 accept
DATA3 -0.94 .83 accept 1225 10 0 accept
DATA4 7.19 .000 reject 300 71 15 reject
DATA5 3.62 .000 reject 300 10 0 accept
DATA6 10.13 .000 reject 1225 206 1 reject
DATA7 2.41 .008 reject 1225 56 0 accept

Real test data

LIT 1.70 .045 accept 435 16 1 undecided
HIST -1.53 .937 accept 465 6 0 accept
AR 1.18 .118 accept 435 3 0 accept
GS -0.14 .555 accept 300 6 0 accept
HSTLIT1 3.01 .036 reject 630 17 0 accept
HSTLIT2 2.03 .021 reject 820 18 0 accept
ARGS 6.15 .000 reject 780 4 0 accept
HSTGEO 6.19 .000 reject 630 17 0 accept

significant at .05 level



Table 3
Results of Linear and Nonlinear Factor Analysis

For Simulated Test data: Goodness of Fit Statistics

--* SD(r,- 74 SD(Irijl) p<**

RANDOM

Linear Factor Analysis
1 Factor .0009 .0308 .0250 .0182
2 Factor .0008 .0283 .0225 .0169
3 Factor .0007 .0246 .0207 .0160
4 Factor .0006 .0245 .0196 .0147

DATA1

Linear Factor Analysis
1 Factor .0017 .0412 .0333 .0242 .006
2 Factor .0013 .0359 .0286 .0218 .350
3 Factor .0011 .0332 .0262 .0204 .610
4 Factor .0009 .0303 .0236 .0191 .860

Nonlinear Factor Analysis
1 Factor Quadratic .0003 .0185 .0147 .0113

(Yi= bio+bilO+bi202+diu i )

1 Factor Cubic .0003 .0185 .0147 .0113

(Yi = bio+bi1 O+bi262 +bi38 3 +diu i )

DATA2

Linear Factor Analysis
1 Factor .0110 .1049 .0982 .0369 .000
2 Factor .0091 .0954 .0896 .0327 .000
3 Factor .0070 .0834 .0774 .0310 .000
4 Factor .0061 .0779 .0720 .0278 .000

Nonlinear Factor Analysis
1 Factor Quadratic .0003 .0186 .0148 .011t

(Yi= bi0+bil +bi202+diui)
1 Factor Cubic .0003 .0185 .0148 .0113

(Yi= bi0+bi16+b i0 2+bi3"+diu i )

DATA3

Nonlinear Factor Analysis
1 Factor Quadratic .0003 .0186 .0147 .0115

(Yi = bio+bil0+bi2O +diu i )

1 Factor Cubic .0003 .0175 .0138 .0108

(Yi= bio+bilO+bi202+bi303+diui )



Table 3 continued...

DATA4

Linear Factor Analysis .23 .45.18 .90.0
1 Factor .23 .45.18 .90 .0
2 Factor .0017 .0412 .0334 .0240 .000
3 Factor .0012 .0346 .0276 .0212 .008

Nonlinear Factor Analysis
1 Factor Quadratic .0021 .0465 .0523 .0379
(Y1= bi~iOb2o+ii
2 Factor Quadratic .0003 .0171 .0131 .0109

~ b~~b 118 + bi 12G 1bi21 02 +b 2202'+diui)

DATA5

Linear Factor Analysis
1 Factor .0047 .0686 .0556 .0409 .000
2 Factor .0014 .0374 .0313 .0218 .011
3 Factor .0012 .0346 .0289 .0199 .245
4 Factor .0010 .0316 .0254 .0181 .600

Nonlinear Factor Analysis
1 Factor Quadratic .0009 .0307 .0246 .0186

(Y1= bi 0+bi 1e+bi 2o 2+diui)
2 Factor Quadratic .0003 .0174 .0138 .0107

(Yi= bi 0+biiG1 +bibj1  i2' 2

DATA6

Nonlinear Factor Analysis
1 Factor Quadratic .0005 .0242 .0204 .0172
(Yi= bi~iOb20+ii
2 Factor Quadratic .0003 .0182 .0145 .0111

(Y1= bi 0+bi 1 81 + b1 1 Ob 2 lB2 +bi 22e2+diui)

DATA7

Nonlinear Factor Analysis
1 Factor Quadratic .0005 .0223 .0176 .0137

(~y= bi~i ~ ~ +ii
2 Factor Quadratic .0003 .0175 .0140 .0105
(Yi= bi~i11b1 2' 2

r are the residual correlations
**S

p-value associated with the chi-square test of goodness of fit.



Table 4
Results of Linear and Nonlinear Factor Analysis
For Real Test data: Goodness of Fit Statistics

SD(r) iTT SD(I rIj)

LIT

Linear Factor Analysis
1 Factor .0034 .0584 .0465 .0354 .000
2 Factor .0028 .0526 .0428 .0307 .000
3 Factor .0019 .0439 .0349 .0267 .000
4 Factor .0015 .0391 .0310 .0240 .000

Nonlinear Fqctor Analysis
1 Factor Quadratic .0008 .0278 .0216 .0176

(Yi = bio+bilO+bi2e 2+diu i )

2 Factor Quadratic .0004 .0207 .0162 .0130
(Yi- bi0+billOl+bi 2 +bi 2 260+dui)

AR

Linear Factor Analysis
1 Factor .0047 .0683 .0569 .0378 .000
2 Factor .0032 .0561 .0468 .0310 .000
3 Factor .0024 .0489 .0400 .0281 .000
4 Factor .0020 .0447 .0362 .0262 .000

Nonlinear Factor Analysis
1 Factor Quadratic .0007 .0265 .0200 .0174

(Yi- bi0 i+bi2 0 2+ diui)

2 Factor Quadratic .0004 .0190 .0146 .0122
(Y=bi+bi 2 +b 0+b 0+b 02+diUi)

(Yi--O" 1 i i12  212 i22

HSTLIT1

Nonlinear Factor Analysis
1 Factor Quadratic .0008 .0275 .0213 .0175

(Yi= bi0 +bi10+bi2 2+diui)

2 Factor Quadratic .0003 .0185 .0143 .0118

(Yi= bi0+bi1101+bi12 +b i02b i22 2+bi2 3 1 '2+diui)



Table 4 continued...

HSTUIT2

Nonlinear Factor Analysis
1 Factor Quadratic .0006 .0236 .0181 .0152

(Yi= bio+bile+bi282 +diui)
2 Factor Quadratic .0004 .0191 .0150 .0119

(yi= bob,1+i Ib +
bi0+i111+b12'1+bi2102+i22 2+bi23'02+diui )

ARGS

Nonlinear Fctor Analysis
1 Factor Quadratic .0021 .0462 .0268 .0376

(Yi = bio+bil8+bi2O2+bi 3 ei)

2 Factor Quadratic .0004 .0192 .0003 .0123
(Y=bi0+bi11O1+bi12 1+bi2102+bi2202+bi2301e2+diu i )

3 Factor Quadratic .0004 .0175 .0003 .0111
(Yi=  i 1 161+b.1  +b +b 62

(-b1 +b 121 i2102 i22 2+bi31e3+
02 O+b O0+b O0+b O0+dui)

i32 3 i330102 i340103 i350203 ii

r U are residual correlations

p-value associated with the chi-square test of goodness of fit.
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