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Refinements of Stout’s Procedure for Assessing
Latent Trait Unidimensionality

Abstract

This paper provides a detailed investigation of Stout‘s statistical procedure (the
computer program DIMTEST) for testing the hypothesis that an essentially
unidimensional latent trait model fits observed binary item response data from a
psychological test. One finding was that DIMTEST may fail to perform as desired in the
presence of guessing when coupled with many high~discriminating items. A revision of
DIMTEST is proposed to overcome this limitation. Also, an automatic approach is devised
to determine the size of the assessment subtests. Further, an adjustment is made on the
estimated standard error of the statistic on which DIMTEST depends. These three
refinements have led to an improved procedure that is shown in simulation studies to
adhere closely to the nominal level of significance while achieving considerably greater
power. Finally, DIMTEST is validated on a selection of real data sets.

Subject terms: Unidimensionality, essential independence, essential unidimensionality,
DIMTEST, item response theory.
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Stout ‘s procedure for unidimensionality — 2

Refinements of Stout’s Procedure for Assessing
Latent Trait Unidimensiozality

Item response theory (IRT) is presently one of the most widely used techniques in
psychometrics and is likely to remain so in the future. Some applications of IRT include
ability estimation, item/test bias, equating, and adaptive testing. The three assumptions
underlying many commonly used IRT models are monotonicity, unidimensionality (d=1),
and local independence (LI). Monotonicity assumes that the probability of correctly

answering an item increases as ability increases. Unidimensionality1

assumes that the items
of a test measure a single ability. Local independence assumes that given any particular
level of ability, responses to different items are independent. This paper is concerned with
the statistical assessment of the assumption of unidimensionality. Most IRT models
specifically require this assumption; moreover, classical test theory models implicitly
assume that items measure the same dominant dimension. In spite of the importance of
this assumption, it is also well known that actual data are rarely strictly unidimensional. It
has long beer argued that items are multiply determined and that, in addition to
measuring the intended attribute, other attributes unique to individual items or common to
relatively few items are unavoidable (Humphreys, 1981, 1985, 1986; Hambleton &
Swaminathan, 1985; Reckase, 1979, 1985; Stout, 1987; Traub, 1983; Yen, 1985). In addition
to the multiple item attributes that influence dimensionality, examinee characteristics such
as differential teaching methods, the point of time during the instructional unit that the
test is given, and so forth, also can influence the dimensionality of a set of items
(Birenbaum & Tatsuoka, 1982; Bejar, 1983; Traub, 1983). Dimensionality is therefore a
property of both the test and the examinee populaiion taking the test (Reckase, 1990).
Linear factor analysis (subjectively interpreted in the absence of a statistical

distribution theory) has been the traditional approach for assessing the dimensionality of a
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set of items. If the results of a linear factor analysis reveal only one significant factor, then
the test is considered unidimensional. In the case of dichotomous data, however, it is well
known that linear factor analysis of phi correlations between items often leads to
overestimation of the number of factors underlying the item responses (Carroll, 1945;
Hambleton & Swaminathan, 1985, Chapter 2; Hulin, Drasgow, & Parsons, 1983, Chapter 8,
McDonald & Ahlwat, 1974). As a corrective alternative, tetrachoric correlations can be
used for factor analysis. When guessing is present in the responses to items, however, linear
factor analysis of tetrachoric correlations can produce a spurious factor due fo difficulty of
test items (Hulin, Drasgow, & Parsons, 1983, Chapter 8). In addition, computation of
tetrachoric correlations can be problematic if any one of the correct/incorrect cells of the
two—by—two item response tables contains a zero. Matrices of simple tetrachoric
correlations are thus often non—gramian. As a result, conventional methods of factor
analysis by phi or tetrachoric correlations are often unsatisfactory for assessing the
dimensionality of test items. Christoffersson (1975) and Muthen (1978) have developed
generalized least squares methods to overcome the problems with factor analysis of
tetrachoric correlations, but their methods are limited to 25 items at most. Moreover, they
are computationally intensive.

In recent years a vast body of literature has been developed for assessing the
dimensionality of test items. Comprehensive reviews of different procedures for assessing
dimensionality are provided by Hattie (1984, 1985), and Hulin, Drasgow, and Parsons
(1983, Chapter 8). Some of the more recent procedures developed to assess latent trait
dimensionality include: maximum likelihood full information factor analysis (Bock,
Gibbons, & Muraki, 1985); the Tucker and Humphreys procedures based on local
independence and first and second factor loadings (Roznowski, Tucker, & Humphreys,
1991); Stouts (1987) procedure for assessing unidimensionality based on the theory of

essential independence; modified parallel analysis, which combines latent trait methods and
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factor analysis and uses eigenvalues of tetrachoric correlation matrix (Hulin, Drasgow, &
Parsons, 1983, p. 255); McDonald’s nonlinear factor analysis (McDonald, 1962; McDonald
& Ablawat, 1974; Etazadi—Amoli & McDonald, 1983); Holland and Rosenbaum~s test of
unidimensionality, monotonicity, and conditional independence (Holland, 1981; Holland &
Rosenbaum, 1986); residual analysis, determined by model—data fit (Hambleton &
Swaminathan, 1985, Chapter, 8); and Bejar’s procedure based on three—parameter logistic
item parameter estimates (Bejar, 1980). Some of these methods are reviewed in Hambleton
and Rovinelli (1986), Mislevy (1986), and Zwick (1987a).

Although these different approaches offer promise for assessing the dimensionality of
binary data, researchers in the field have not reached a consensus on one satisfactory
method (Berger & Knol, 1990; Hambleton & Rovinelli, 1986; Hattie, 1984; Zwick, 1987b).
Primarily, this is due to the fact that there is substantial confusion in the literature
concerning the definition of unidimensionality. Additionally, many existing methods for
assessing dimensionality are only loosely connected to the various definitions in the
literature (Hambleton & Rovinelli, 1986).

This article is concerned with Stout’s procedure for assessing unidimensionality
(DIMTEST). Stout (1987) has developed a nonparametric statistical procedure based on
the large sample distribution theory for assessing latent trait dimensionality and has
argued the validity of this procedure based upon simulation studies involving a variety of
achievement tests. DIMTEST has been shown to discriminate well between one— and
two—dimensional tests, maintaining good adherence to a specified level of significance when
d=1 and maintaining good power when d=2, even when the correlation between the
abilities is as high as .7.

The present study provides a detailed investigation of certain performance
characteristics and the consequent major refinements of DIMTEST for assessing latent

trait dimensionality. DIMTEST was found to perform undesirably in certain cases where
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the test contained many highly discriminating items with guessing present. A correction is
proposed to overcome this limitation. In addition, an automatic approach is devised for
determining M, the size of the assessment subtests; a better control of a, the specified level
of significance, is achieved by adjusting the estimated standard error of Stout ’s statistic 7.
These refinements have led to an improved test procedure that is easier to use and has been
shown in simulation studies to adhere closely to the nominal level of significance while

achieving considerably greater power. Finally, the procedure is applied to a selection of real
data sets.

Stout’s Procedure for Assessing Unidimensionality

As stated in the beginning of this paper, items are multiply determined, and thus
the number of dominant abilities should be assessed in testing for dimensionality. Stout
first informally (1987) and then formally (1990) provided a definition of the number of
dominant dimensions known as essential dimensionality, which is derived from the theory
of essential independence. The statistical procedure for assessing essential unidimensionality
is consistent with the definition of essential dimensionality. To assist the reader in
evaluating this claim as well as to enable the reader in understanding the refinements made
to DIMTEST, Stout’s definition of essential dimensionality will be followed by a brief
summary of the statistical procedure. The reader is advised, however, that use of
DIMTEST does not require acceptance of Stout’s notion of essential dimensionality, and,
in fact, DIMTEST can also be viewed as a technique to detect sizable lack of fit of a locally
independent unidimensional latent trait model.

Let U, denote the i~th item response and Uy = (Ul’ Uy,---Upy), denote the test
response vector for an N—item test. Observed item and test values will be denoted by u;

and u, = ("1’“2""“ N)' respectively. Let U = 1 denote a correct response and U, = 0
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denote an incorrect response to item i for a randomly chosen examinee. The latent random
vector is denoted by © and the particular values it takes are denoted by §. Let P‘(Q) denote
the probability that a randomly chosen examinee with ability 4 will get the i—th item
correct. It is assumed that all item response functions Pi(Q) are monotone. Let U = { U,
221} denote the item pool consisting of U v 38 its first Nitems. The item pool is
conceptualized as a result of continuing the test construction process in the same manner
beyond the construction of the N items that make up tie actual test U/ N being studied.

One advantage of using only the partially observed U instead of the actually observed U N
to model the test is that a totally rigorous definition of the number of dominant dimensions
can be given. These ideas are carefully and formally developed in Stout (1990) and

constitute a large sample approach to test modeling.

Definition 1 (Stout, 1990) The item pool Uis said to be essentially independent (EI)
with respect 10 the latent variable @ if U satisfies

Y |cov(u,ue = 9]
D)9 = 1ISi<KN -0asN-w

]

(1)

for every 4.

The distinction between local independence and essential independence is that local
independence requires Cov (U, o U j‘ © = §) = 0 for all §; whereas, essential independence
requires the average value of |Cov (Ui’ U J.| © = 0)| over all item pairs to be small in
magnitude for all § as the test length increases. Hence, essential independence is a weaker

assumption than local independence.
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Definition 2 (Stout, 1990). The essential dimensionality (dy) of an item pool U'is
the minimal dimensionality (number of elements in @) necessary to satisfy the assumption

of essential independence. When dj, = 1, essential unidimensionality is said to hold.

The reader should note that d E.=1 means that U has an IRT model for which
essential independence holds for a unidimensional latent trait 6. The ordinary definition of
IRT dimensionality is the same as Definition 2, but essential independence is replaced by
local independence and U replaced by U N Stout argues that the assumptions concerning
local independence and the resulting ordinary IRT definition of dimensionality should often
be replaced by the respective weaker assumptions concerning essential independence and
essential dimensionality. Junker (1988, 1991) has proved results concerning essential
independence and, in particular, has derived statistical consistency results for maximum
likelihood estimates of ability under the assumption of essential unidimensionality.

It can now be clearly stated what assessing the hypothesis of essential
unidimensionality means: among all the essentially independent monotone IRT models for
U, does there exists a unidimensional one? To answer this question, we assume both
monotonicity and essential independence and assess the lack of fit of unidimensionality.
This approach is similar to most other procedures for assessing data dimensionality, with
the exception that essential rather than local independence is assumed.

The statistical procedure for testing the null hypothesis of essential
unidimensionality will be briefly described here. For further details see Stout (1987, Sec. 4).
The N test items are split into two assessment subtests of length M each—called the
Assessment 1 subtest (AT1) and the Assessment 2 subtest (AT2)—and a longer subtest
called the partitioning subtest (PT) of length n (= N—2M). The M items for subtest AT1
are selected to have the same dominant trait. This splitting can be done using either expert

opinion or exploratory factor analysis. Whatever method used to select items of AT1, the
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goal is to select a small subset of items (up to one—fourth of the total test length seems a
good convention) that all measure the same dominant trait and, at the same time, are as
dimensionally different as possible from the PT items. Once items for AT1 are selected, a
second set of M items is selected for AT2 from the remaining items so that AT2 items have
a difficulty distribution similar to AT1 items (Step 6, Stout, 1987). The remaining n (=
N—-2M) items then become the partitioning subtest PT.

Each examinee is assigned to one of K subgroups according to his/her score on PT.
After eliminating subgroups with too few examinees (Jmin=20 recommended), within each
subgroup, k, two variance estimates, the usual variance estimate (:ri), and the

"unidimensional" variance estimate (o7; ), are computed using items of AT1.

. Ik —
where

M - Tk
) _ Ui Mand U =1 Y017,

with Ui]k denoting the response of the th examinee to the ith item from the kth subgroup,

and J; denoting the number of examinees in the kth subgroup.

-~ M - -
N e T
where
) Tk
pi(k) = 2]-____1 Uiﬁ.j"k'

The difference in these variance estimates is then normalized by an appropriate

normalizing constant Sk and summed over subgroups to arrive at the statistic
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- "2
1 K ai - ”[Lk
i KI722k=1[ S, ] @
where
£ = [(,14,k- )+ 5y M 42y - 005, k/m] /3, (3)
and

Tk Uk Mo K
- 4 p ‘ ‘ - (k)\2
My k =2j:=1( Y - ¥y 6, =2 i =P - 302 - 2 (B2,
Similarly, using items of AT2, the two variance estimates :ri, ';2U x and the
standard error of estimate Sk are computed and nc malized within each subgroup to arrive
at the statistic T g using formula (2). The statistic T to assess departure from essential

unidimensionality is given by
T=( TL‘TB)/H- (4)

The null hypothesis of d g=1is rejected if T2 Z o Where Z_ is the upper 100(1—a)

percentile of the standard normal distribution, and & being the desired level of significance.
Correction for Bias in the Statistic T, by Introduction o T B

Consider the statistical bias that would result if T, rather than T were the statistic
used to assess essential dimensionality. The above description shows that Stout’s test is
based on two variance estimates: the usual variance estimate ai, and the unidimensional
variance estimate ;?j’ E If the items of the test measure one dominant trait, then the two
subtests AT1 and PT would contain essentially unidimensional items representing the same

dominant trait. When the test length is boih long and essentially unidimensional,
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examinees within each subgroup can be assumed to be of approximately equal ability.
Consequently, it can be shown that the differences in the variance estimates :ri—;r?]’ B
computed using items in AT1, would be "small"; thus, using T I the test will be assessed
as essentially unidimensional. By contrast, if the test length is long and essentially
multidimensional, the trait measured by items of AT1 would be different from the trait(s)
measured by the rest of the test, and the AT1 differences ;%—;20-, k would not be small (see
Stout, (1987) for the heuristics explaining why this holds), and T; would conclude the test
to be essentially multidimensional.

In the case of a relatively short essentially unidimensional test, however, examinees
within each subgroup are not likely to “>e approximately equal on the dominant trait
measured by the test, thereby causing the differences ;ri—;%], g to be large. This improperly
inflates the vilue of the statistic TL and resul*s in statistical bias. This bias is amplified if
items of AT1 are homogeneous with respect to item difficulty, which often occurs when
AT1 is selecied by factor analysis. To correct for this preasymptotic biasin T, AT2is
constructed so that items of AT1 and AT?2 are closely matched in their item difficulty
distribution. It has been observed that subtests AT1 and AT2 are both subject to similar
amounts of pre—asymp’ .ic hias, but because AT2 is chosen to be similar to AT1 in
difficulty only, T B formed from AT2 will not be made larger by the presence of
multidimensionality. Thus, as statistical experimental design ideas suggest, the bias is
cancelled by forming the diff-rence statistic T (Step 6, Stout, 1987).2

Avoiding Bias due to Guessing and High Discrimination of Items
Test items usually differ with respect to their various measurement properties.

There may be difficult items, easy itewas, high discrimination items, low discrimination

items, and so on. The 80—item SAT—Verbal vocabulary test analyzed by Lord (1968) is u0
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exception. Item parameter estimates for this test were obtained by LOGIST. DIMTEST
with a specified level of significance a=.05 was applied to a three—parameter logistic,
unidimensional, simulation model on various random subtests of 50 items selected from this
test. For 100 replications of the DIMTEST on the simulated test data, 5 rejections of the
hypothesis of d =1 were observed—strongiy confirming the unidimensional nature of the
simulated data. Items of the SAT—Verbal test were then divided into two sets. One set
consisted of items having discrimination parameters greater than 1.0
(high—discriminations); other set consisted of items with discrimination parameters less
than or equal to 1.0 (low—discriminations). DIMTEST was applied separately to each
subtest and the results were markedly different. Note from the classical test theory
perspective that the first test has high reliability and the second test low reliability.

Table 1

Table 1 displays the performance of the procedure, for both subtests, administered
to 750, 1000, and 2000 examinees. In these simulations, seven items were selected in each of
the assessment subtests based on factor analysis with a J min=20‘ The reported values in
Table 1 are the number of rejections out of the 100 replications of DIMTEST.

The number of rejections for the test with low—discriminations is what is to be
expected on a unidimensional test. However, the rejection rate for the test with
high—discriminations far exceeds the nomiral level of 5/100. Furthermore, as the number of
examinees increases, the rejection rate also increases.

This finding was confirmed in another unidimensional simulation, which used the

ASVAB general science test as its basis. [tem parameter estimates for this test were
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obtained by Mislevy and Bock (1984). In this simulation a rejection rate of 13/100 was
observed with a=.05. Further investigation showed that this elevated rejection rate was
caused by a preponderance of difficult, highly discriminating items. Thus, there is evidence
to show that if many items of a test are both highly discriminating and difficult with
guessing present, the observed type—I error rate may be unacceptably inflated.

In an attempt to determine the cause(s) for excess bias, Monte Carlo simulations
were investigated extensively with tests of high—discriminating items. Recalling that items
for AT1 were chosen according to the magnitude of their loadings on the second extracted
factor (Step 1, Stout, 1987), it was found that in the case of high—discriminations with
guessing present (with d E=1), the second factor was a very pronounced difficulty factor
even though tetrachoric correlations were used. One of the characteristics of the difficulty
factor is that very easy and very difficult items have high loadings of the opposite sign. In
the case of high—discriminations, for unknown reasons, but likely due to the presence of
guessing, most often very easy items tended to have larger factor loadings in magnitude on
the second factor than the corresponding collection of very difficult items. Consequently,
the easiest items tended to be selected for AT1. To control for statistical bias, DIMTEST
then selects the easiest remaining items for AT2. Therefore, PT is left with mostly difficult
items. Because examinees are grouped according to their scores on PT, which mostly
consists mostly of difficult items in this case, the partitioning subtest (PT) tends to
misclassify low ability examinees. This misclassification is made worse if guessing is
allowed. Thus, examinee abilities within each assigned subgroup may vary considerably,
leading to a serious violation of the fundamental assumption of essential independence
within subgroups. This assumption is critical for the statistic T to adhere closely to the
nominal level of significance. As a result, the values of the statistic T I (computed from
AT1) averaged around 10, the values of T B (computed from AT2) averaged around 7.
Thus, the values of T = (T L-TB)/ﬂ were so large that the hypothesis of dp = 1 was
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often 1'ejected.3 Although T B is supposed to compensate for the bias in TL’ the biasin T L
was so large that compensation was ineffective.

It is interesting to note that there are two reasons why the SAT subtest with
low—discriminations failed to exhibit statistical bias. First, low—discriminations enhance
the ability of AT2 to compensate (in a statistical, experimental design balancing sense4)
for the bias contributed by items of AT1. Second, the SAT subtest with
low—discriminations has a wider distribution of item difficulty, thereby tending to reduce
the misclassification of examinees in the formation of subgroups.

Another unidimensional simulation study was conducted with the same
high—discriminations SAT items, but with all c—~parameters set to zero, creating a
high—discriminations 2PL model. There was 1 rejection out of 100 trials. Therefore, the
presence of guessing coupled with high—discriminations seemed to have caused the inflated
rejection rate. This is true because, without guessing in the model, a highly pronounced
difficulty factor is unlikely to appear in the tetrachoric factor analysis and, in fact, did not
appear in high—discriminations 2PL simulations. Moreover, eliminating guessing reduces
the problem of misclassification of low—ability examinees.

Based on the above findings, it was conjectured that when guessing/high
discrimination items are present, the assignment of examinees to subgroups could be done
more effectively using PT scores that were based on items that included easy items. This
was achieved in the following way. First, items of AT1 are checked statistically, using the
Wilcoxon rank sum test, to test if the items of AT1 are too easy as a group. If the
Wilcoxon rank test rejects, the procedure is to replace these items with items of highest
loadings of the opposite sign so that they are still dimensionally homogeneous5’6. If the
Wilcoxon rank test does not reject, items of AT1 are retained. Algorithm 1 in the
Appendix describes this procedure in detail. Items of AT2 are selected, as before, so that
items in AT1 and AT2 have approximately the same difficulty distribution.
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Automating the Size M of Assessment Subtests

As described previously, DIMTEST splits N items of the test into three subtests:
AT1 and AT?2 of length M each, and PT of length n (= N~ 2M). In all the simulation
studies presented in Stout (1987), the size of the assessment subtests M was specified by
the user a priori. For example, for a 30—item test, 5 or 7 items were used in each of the
assessment subtests; for a 50—item test, 8 or 12 items were used. By contrast, our aim has
been to develop an algorithm that automatically determines the size of assessment subtests
according to the magnitude of item loadings on the second extracted factor. For most
applications this would seem preferable to the selection of M, a priori, especially by a
novice user.

According to Stout’s large sample theory for DIMTEST, M should be small
compared to N. Extensive Monte Carlo simulations showed that a minimum of four items
was needed in each of the assessment subtests in order to have reliable variance estimates
(Nandakumar, 1987; Stout, 1984, p. 31). To determine the maximum size of M (Maz M)
that will yield desirable results, three different sizes of M were tried: Maz M = 1/5 of the
test length, Maz M = 1/4 of the test length, and Maz M = 1/3 of the test length.
Similarly, to determine the minimum size of factor loading that should be used for
assigning an item to AT1, three different "starting" values (Start) of factor loadings were
tried: Stert = .25, Start = .20, and Start = .15. An experimental design was set up for
conducting simulations with all three sizes of Maz M and with all three values of Start. For
each combination of Maz M and Start, both type-I error and power were observed over
repeated trials of DIMTEST with tests of different types. To illustrate, let Maz M = 1/5
and Start = 0.25. Based on the loadings of the second factor, items with absolute loading
greater than .25 are to be considered for AT1 selection. The average item loading is

computed for items with positive loadings and for items with negative loadings. The set
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with the highest average loading, in absolute value, is selected for AT1 and the size of this
set determines M. If the minimum required number of items is not obtained with either
positive or negative loadings, the start value is decreased by .05 until the minimum number
of items is found. Similarly, if in the selected set more than 1/5 of the items have absolute
loadings greater than .25, only 1/5 of the items with the highest loadings are included.
Algorithm 2 in the Appendix describes this procedure in detail. The observation of type—I
error and power for different values of Maz M and Start revealed that Maz M = 1/4 and
Start = .15 yielded the most desirable results. These values were then used for selection of
items in simulations reported in the Tables 3 through 7 of this paper. Other combinations
of Maz M and Start yielded either an observed type—I error rate that is too high or an

observed power level that is too low.
Standard Error Estimation in Stout’s Statistic

The general approach used in the development of Stout ‘s statistic first derived an
asymptotically valid test statistic and then made adjustments to optimize the
pre—asymptotic behavior of the statistic, guided by Monte Carlo simulations.

Stout’s statistic to test the hypothesis of essential unidimensionality was built by
combining information measuring the strength of evidence of the nonunidimensionality
contributed by each of the k= 1,...,K subgroups of examinees. That is, the goal was to

construct a statistic using the quantities

Xk= Ui_UU’k (5)

from k subgroups of examinees. Each X | measures nonunidimensionality in the sense that

X & 20 when d E’=1’ and X > 0 on average when d E> 1. The most obvious approach is to
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add up the contributions of X k and then normalize this sum by an appropriate standard
error of estimate. When unidimensionality holds, Stout (1987) found the estimated

asymptotic variance of X i to be

-~ -~ 6
s 7\2 = I A 4
(50 = Wy = o) -—201 % (6)
leading to the statistic

T'" = (Ty' ~Tg )T
where

K_, X

Ty = —Ept—r
(25, (53

()

Result 6.1 of Stout (1987, page 599) suggests7 that under regularity conditions when dg=1,
T;’ and T*~ should be asymptotically N(0,1) as the number of examinees and the number
of items both approach m. Moreover, Result 6.4 of Stout (1987, page 601) states that both
Ti' and T should have asymptotic power one when d g 1.

Simulation studies conducted prior to the study reported in Stout (1987) showed
that, for test lengths and examinee population sizes typically encountered in practice, the
statistical test T falsely rejected the hypothesis of unidimensionality more frequently
than the nominal error rate®. Two modifications for constructing T of (4) were then
considered: (a) enlarge S}’ to Sp of (3) so that the values of T on the average would be
smaller, thereby reducing the rate of occurrence of type-I error to close to or even below
the nominal level, and (b) normalize each X by its estimated standard error and then sum

(instead of first summing and then normalizing as in (7)). This modified statistic T was
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used in simulation studies reported in Stout (1987). However, the observed average type—I
error (.023) in Stout (1987, Table 2) was well below the nominal level (a = .05).

Because S;c’ yielded too large an observed type—I error and Sk yielded too small an
observed type-I error, the following adjustment to the estimated standard error was

considered in addition to Sk in the present study.

5.2 = [(;‘4, R kjm“] 13, (8)

It can be seen that

S;c' < S;‘g Sk‘

Furthermore, a basic question in constructing the statistic T was how to combine
the building blocks X i of (5) into a single appropriately normalized statistic for testing for
unidimensionality. That is, restricting attention to linear scoring, the search was for an
appropriate choice of weights {ak, 1< k< K} to form 2115:1“]:)( i Three different
weighting procedures were considered. Six new statistics T1 through T6’ as described
below, were derived as a result of using different weights and standard errors of estimates.
The objective was to find an improved statistic with an increased observed type-I error to
approximate the nominal level while maintaining or even improving the power.

An estimator or test statistic is useful provided it centers on the appropriate
parameter and had a small standard error. It can be shown that Var (EI{:lakX P is
minimized, subject to the constraint Ef:l“k = 1, by setting =
[1/var(X k)]/2f=1[1/var(x i)]- Based on this argument, the statistic T, =
( TL, 1T B,1 )/{2 was constructed where
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K X 1,12
Tp1= [Zkzz—;z—]/<2’{=z;kr> : (9

The statistic T,, was constructed similar to the statistic T of (4) but with 5] as the
estimated standard error. That is, T , is given by

K X
TL2 =—T72K1 [2 . 1——5—2 ] (10)

The statistic Ty was constructed with weights as in T, but with 5} as the estimated

standard error. That is, Tpqis given by

e Xk K 1 \1p
TL,3‘[zk=1—(sic)2j|/(zk=1—(sk)2) : (11)

Based upon the naive, intuitive idea that those subgroups with more examinees in
them should receive more weight in the constructed statistic, two more definitions T 4 and

T 5 Were proposed,where

J.X,
Tpa= [Z#— (2,752 (12)
and
VILX, ]
Trs= [Ek_ikk_ TORARES (13)
respectively.

Lastly, based upon Central Limit Theorem and contrasted with the statistic T of

(3), the statistic T, was derived where




B -
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7,6 = XS5 (14)

In summary, Stout’s (1987) recommended statistics T as well as statistics T, and
T6 use Sk as the estimated standard error, and the statistics, T2 and T3 use S;‘ as the
estimated standard error. The statistics T, and T'g use weights according to the principle
of minimum variance with Sk and S;c as the standard errors of estimates, respectively. The
statistics T y and T'g use weights J, (the number of examinees in each cell) and {J,
respectively, with Sk as the standard error of estimate. And finally the statistic T6 is based
on the usual form of the Central Limit Theorem®
We decided that statistics T; = ( TL, i TB, J/2, i=1,..6 with different weights

and standard errors should provide an ample choice of statistics for a simulation study to

assess whether an improved statistic can be obtained that would be better than using T.
Monte Carlo Simulation Studies

A Monte Carlo simulation study was undertaken to study the performance of
DIMTEST after performing corrections for high~discriminations bias using the Wilcoxon
rank sum test, automation of the size M of assessment subtests, and correction for the
standard error of estimate. In all simulations, ‘Imjn= 20 was adopted. The simulation
study was designed to be similar to Stout’s (1987) study in order to compare the
performance of the statistic before and after the proposed corrections.

Two issues were of particular importance in the study: (a) how well the nominal
level of significance specified by the user (@=.05) is approximated by the observed level of

0

significance when d = 1! , and (b) how large the power of the statistical test was in

various d=2 settings.
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The Preliminary Standard Error Study

In a preliminary pilot simulation study, the performance of six different statistics
T, through T, was studied and compared with T (after implementing corrections for
high—discrimination with guessing and automated M) with respect to type—I error and
power in various test settings. The results revealed that the statistic T, yielded a higher
observed type—I error, closer to the nominal level, and a higher power than T. The statistic
T, yielded an unacceptably large type-I error; statistics T}, T, Ty, and T differed little
in performance from T and thus would offer no advantage. Therefore, the statistic T, was
used in the simulations described below, and the results were compared with simulations of
Stout (1987), obtained by using the statistic T prior to the proposed corrections. That is, T
used S, and does not correct for high—discriminating/guessing items, nor did it
automatically select M. By contrast, T, used S, corrected for
high—discriminating/guessing items and automatically selected M.

The Unidimensional Simulation Study

The unidimensional, three—parameter logistic model was used to simulate the test
data. In order for the simulated test data to reflect real data, item parameter estimates;
were obtained from real data sets for five different tests: SATV, ACTM, ACTE, ASVAB
AS, ASVAB AR!L. The distributions of item parameters for these five tests are given in
Table 2, and show that the five tests differ not only in length but also in distribution of
difficulty and discrimination parameters. For example, ACTE has the lowest mean and
standard deviation of item discrimination parameters; ASVAB AR had the highest mean
item discrimination; ASVAB AS had the highest standard deviation of item discrimination;

etc. For each test type, two examinee sample sizes J were studied: 750 and 2000. With the
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sample size of 750, 250 examinees were used for factor analytic selection of assessment
items, while the reminder were used to compute the test statistic. With J = 2000, 500

examinees were used for the factor analysis and the reminder were used for computing the

statistic.

Table 2

Binary item responses were generated as explained below. Examinee abilities were
randomly generated from the standard normal distribution. For each simulated examinee,
the probability, P,(o), of correctly answering each item was computed using the
three—parameter unidimensional logistic model. If a uniform random deviate in the interval
(0,1) was less than or equal to the computed probability P‘( 6), the examinee was
considered to have answered the item correctly and was given a score of 1; otherwise, the
examinee was given a score of 0.

For each combination of test type and examinee size, DIMTEST (as here modified
by the Wilcoxon rank sum test, automated M, and the alternate standard error of estimate
Sk') was replicated 100 times, with new examinee responses being simulated each time.
The number of rejections out of 100 replications of testing the null hypothesis of essential
unidimensionality is reported in Table 3. Because the test data is generated from a

unidimensional model, the observed level of significance should be close to the nominal

level, which was set to .05.
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Table 3 and Table 4

Table 3 shows the observed type—I error for all five simulated test types for
different sample sizes. Of particular interest is the second column: rejection rates for the
SATYV high—discriminations. Contrasting these results with the rejection rates of Table 1
shows that, with the proposed correction for excess bias (that is, the Wilcoxon rank sum
test), the rejection rates have dropped to an acceptable level. For example, the rejection
rate with 2000 examinees has dropped from 58 to 7. For other test types, the observed level
of significance is also close to the nominal level. Table 4 compares these results with those
of Stout (1987, Table 2) where the statistic T was used. The contents of Table 4 show that,
as a consequence of the proposed refinements, the observed type—I error rate has increased
or remained the same for all test types and sample sizes except for ASVAB AR with 2000
examinees. The overall average observed type-I error has increased from .023 (Stout, 1987)
to .045 and is very close to the nominal value of .05. In addition, for each one of the cell
entries, there is no statistical evidence to reject the hypothesis that the nominal level of

significance of .05 holds. That is, they are all consistent with a p—value of .0512.

The Two—-Dimensional Simulation Study

The two—dimensional simulation study was modeled according to the
multidimensional three—parameter logistic model with compensatory abilities (Reckase &

Mckinley, 1983) given by:
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I-c,
_ ]
18 =¢i+—T1% {1713, (0; =0, ) F 4 (O 0, ) (15)

P8

Seven different test types were considered to study the power of the procedure after
the proposed changes. Two—dimensional counterparts of the five test types used in the
unidimensional simulation study were simulated in the following manner. The
discrimination parameters (a1 # % i) of the two dimensions for each item were

independently generated from a normal distribution:

a8 f2) @i {8 f2)

where 4 and o were the mean and the standard deviation of the distribution of
discrimination parameters of the respective unidimensional test taken from Table 2.
Likewise, b1 ; and b2 ; were assumed to be independent of each other for each item and were

generated:

bl," N(I‘l 0), b2t~ N(l‘: 0),

where 4 and o were the mean and tke standard deviation of the distribution of difficulty
parameters of the respective unidimensional test taken from Table 2. For example, to
generate the two—dimensional counterpart of the SATV test, the a,;'s and a,,’s were
generated independently from the normal distribution with mean 1.07/2 and standard
deviation .4/{2. Similarly, the b,;s and b,.’s were generated independently from the
normal distribution with mean .58 and standard deviation .88. Each test was taken to
consist of N, "pure" items dependent on 01 alone, N, "pure" items dependent on 02 alone,

and N3 mixed items dependent on 01 and 02.
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Abilities 8 = (8,, B,) were generated from a bivariate normal distribution with
both means being zero and both variances being one. The correlation coefficient p between
the abilities varied appropriately. The c—parameter was taken to be .20 for all items.
Binary item responses were generated exactly as described for unidimeasional tests using
(15).

In addition to the five two—dimensional counterparts of unidimensional tests, two
more tes‘s, the ACT Mathematics Usage Form 8B {ACTMS8B) and the ACT Mathematics
Usage Form 24B (ACTM24B) were used. For these two tests, estimated two—dimensional
item parameters (o, ;, o, i) and (b, ;, by z-) were obtained from the American College Testing
Program. Except for item parameter gereration, which has been replaced by use of actual
item parameter estimates, the responses for these two tests were simulated as described
above.

For each of the seven test types, two examinee sample sizes J were considered—750
and 2000—and two levels of correlation p were considered—.5 and .7. As in the
unidimensional study, when J=750, 250 examinees were used for factor analysis, and, when
J=2000, 500 examinees were used for factor analysis. For each combination of test type,
examinee sample size, and level of correlation, DIMTEST (as modified by the Wilcoxon
rank sum test, automated M, and‘ the alternate standard error of estimate Sl") was
replicated 100 times, each time simulating new examinees. For the first five test types, a
new set of item parameters was generated for each test after each 10 replications. The

number of rejections over 100 replications is reported in Table 5 for each case.

Table 5 and Table 6
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In the case of d =2, one wants good power; that is, one wants P[T2>Z a] to be farge
for a broad range of realistic d =2 alternatives. The contents of Table 5 show that the
power is extremely high for the case of p=.5 for both sample sizes. The power is very high
for p=.7 with 2000 examinees, and the power is good for p=.7 with 750 examinees. These
results are noteworthy, considering that all tests in the simulation study consist of at least
one—third mixed items requiring knowledge of both traits to be answered correctly.
Furthermore, it can be seen that as the sample size increases, the power also increases.

Table 6 compares the results of the present study with the results of Stout’s
simulation study which uses the statistic T (1987, Table 6). It can be seen, as a
consequence of the proposed refinements, that the power has increased for every test type,
sample size, and level of correlation. On the average, power has gone up from 67 to 88
rejections per 100 trials of the procedure for the case of p=.5 with 750 examinees, from 92
to 99 rejections for the case of p=.5 with 2000 examinees, from 36 to 54 for the case of
p=.7 with 750 examinees, and from 67 to 90 rejections for the case of p=.7 with 2000

examinees. These average increases are large enough to be of practical importance.
Real Data Study

Four different data sets were used to examine the performance of DIMTEST on
actual data. Data for two Armed Services Vocational Aptitude Batteries, used by the
Department of Defense Student Testing Program in high schools and post—secondary
schools, were obtained from Linn, Hastings, Hu, and Ryan (1987). These tests included
Arithmetic Reasoning tests for Grades 10 and 12 (AR10 & AR12), each with 30 items and
15%4 and 1961 examinees, respectively. Two more data sets were obtained from American
Cotlege Testi '« /ACT) Program. These included ACT mathematics usage Forms B and C
(F29B & F29C), each with 40 items and 2491 and 2494 examinees, respectively.
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DIMTEST was applied to each of the four data sets. In each data set, 500 examinees
were randomly selected for factor analysis; the rest were used for computing the statistic.
Examinees were randomly split into two groups, one group for performing factor analysis
and the other for computing the statistic, 100 times—each time testing for the null
hypothesis of essential unidimensionality. The number of rejections over 100 replications of

the procedure noted. The results for all tests are tabulated in Table 7.

Table 7

The contents of Table 7 suggest that, according to the DIMTEST, AR10 and AR]2
should be assessed as essentially unidimensional tests while F29B and F29C should be
assessed as multidimensional tests. Examination of items of F29B and F29C showed that
these tests consist of items assessing knowledge of arithmetic and algebra operations,
geometry, numeration, story problems, and advanced topics. Therefore, from the
perspective of content, F29B and F29C would seem to be multidimensional tests measuring
highly correlated abilities. The rejection rate for AR12 is slightly highgr than expected for
an essentially unidimensional test. One or two items highly influenced by another factor
may contribute to this high rejection rate, or many items may be slightly influenced by a

second factor. Further investigation is necessary to examine possible reasons.
Summary and Discussion

Detailed investigation of DIMTEST for assessing unidimensionality revealed certain

limitations. It failed to perform desirably when the test consisted of predominantly
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difficult, high—discrimination items coupled with guessing present. This limitation was
overcome by a more appropriate selection of assessment items. Also, an automated
approach was devised to determine the size of assessment subtests, and the estimate of the
standard error of the statistic was adjusted to yield the desired level of significance for

d E-—-l data and higher power for d E>1 data. After the proposed refinements were
implemented, DIMTEST was applied to a variety of simulated tests for different sample
sizes; these tests were modeled on Stout’s (1987) simulation study.

Comparison of the results of the present study with the results of Stout’s (1987)
study indicates that the proposed refinements have improved the observed level of
significance. It is now close to the nominal level for d =1 simulations and has considerably
increased the power for d E=2 simulations for different levels of correlations and sample
sizes. In addition, the procedure has been used on a number of real data sets. The results of
the real test data study seem to confirm the a priori hypotheses regarding the
dimensionality of these tests.13

The refinements have led to a revised test procedure that is, in particular, more
robust against unusually high—discrimination parameters with guessing present and that, in
general, is able to perform more desirably with respect to type—I and type-II errors.
Moreover, the procedure is automated and totally data—dgpendent in its selection of
assessment subtest items, making it more user friendly. The automation of the size of the
assessment subtests could especially benefit the novice user. Because the power of the
statistical test heavily relies upon appropriate selection of items for AT1, our simulation
study provides further evidence that the use of linear factor analysis for selection of these
items is a promising approach that requires little effort on the part of the user.

When the statistical test rejects the null hypothesis of essential unidimensionality,
it is possible to proceed in several ways. One approach would be to reexamine the test and

assess the complexity of the essential multidimensionality present using DIMTEST,
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NOFA, and so forth. If inference suggests that each of the different dominant traits
influences a distinct group of items (i.e., there is a pronounced simple structure), the test
could be split into several essentially unidimensional subtests, and each one could be
analyzed separately using unidimensional IRT models. Alternately, if most of the items of
the test are each influenced simultaneously by several dominant dimensions, then the
researcher may need to resort to multidimensional parametric models in order to make
inferences about the test data (Reckase, 1985, 1989).

The dimensionality of a set of item responses is conceptually very complex. It is a
function of items, examinees, and extraneous factors such as type of instruction and stage
of learning. Also, dimensionality is, from the practical perspective, a continuum. Because
items are muliiply determined, among finite length tests (the only kind available in
applications), there is no such thing as a strictly unidimensional test. But we can still
describe a given set of item responses as being well modeled by an essentially
unidimensional test model. Junker (1990, 1991) argues that an index for the continuum of
dimensionality should be developed with strict unidimensionality, in the sense of fitting
local independence 1r;odels on one end and strict essential multidimensionality on the other
end, with essential unidimensionality in between. Junker and Stout (1991) have developed
indices for lack of essential unidimensionality, which can be extremely useful for assessing
the degree of lack of essential unidimensionality when Stout’s test of dp=1is rejected.
Additionally, these indices show when it is safe to use unidimensional estimation
procedures such as LOGIST or BILOG to arrive at accurate ability estimates. The
conjecture is that lack of strict unidimensionality is not detrimental, provided dE=1
modeling provides a good approximation to reality. The number of items influenced by the
secondary dimensions, as well as the strength of the influence of secondary dimensions, on
each item should determine how strong the lack of dz~=1 is. Nandakumar (1991) has

demonstrated the utility of DIMTEST in assessing essential unidimensionality when test
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items were influenced by various dimensions to various degrees, and thus strict
dimensionality exceeded one. Nandakumar has found that the accuracy of the
approximation of essential unidimensionality for a test is a function of the proportion of
test items influenced by the various nondominant traits present and by the strength of the
influence of these traits.

Stout’s procedure seems very promising for assessing the dimensionality underlying
a set of items. It is an outgrowth of the conceptual definition of essential unidimensionality
and was developed to be sensitive to dominant dimensions and insensitive to transient or
minor dimensions. The procedure is nonparametric (thus avoiding parametric model—data
fit problems), supported by an asymptotic theory, and is computationally simplistic.
However, the procedure is relatively new, and its applicability in a variety of realistic
applications needs to be studied further. Software to run DIMTEST is available from the

authors.
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Appendix
Algorithm 1: Test for Difficulty Factor

1. Rank the Nitems from most difficult (rank 1) to easiest (rank N).
2. Compute the sum W, of the ranks of the M items in AT1.
3. Compute the mean E( Ws) and the standard deviation SD( Ws) of the

sum Ws under the assumption of randomly distributed ranks:

E(W,) = § M(N+1)
SD(W,) = (J MV-M)(N+1) /2.

4. Compute the critical value C for Ws under the usual large sample

approximation:

C=E(W,)+ Z,(SHW,)),

where Z  is the upper 100(1-a)th percentile of the standard normal

distribution and a is the desired level of significance.

5. If Ws > C, conclude that M items in AT1 are too easy.
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Algorithm 2: The Size M of Assessment Subtests

Let N = total number of items, Mlow = 4, Mhigh = [g] , and
Mazload = .15.
1. Compute
a) I;= Number of positive loadings > Mezload.
b) I, = Number of negative loadings < —Mazload.
2. Redefine
I, := min (Mhigh, I,)
I, := min (Mhigh, L,).

w

. If both I1 < Milow and 12 < Mlow, then define
Mazload .= Mazload — .05.
Go to Step 1.

-8

. If either I1 or 12 is > Mlow, then let

I1 if I1 > Mlow
12 if 12 > Mlow

M=

(4]

. If both L2 Miow and I, > Mlow, then compute the averages Avgl
and Avg2 of item loadings for sets corresponding to I; and

12 respectively. Let

I, if Avgl > Avg2
M= |~ if Avg2 > Avgl

Max(1}, L)) if Avgl = Avg2
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Notes

1Th:oughoui;, we speak of a unidimensional test, a unidimensional set of items, etc. This
convenient phrasing represents the more complex reality that the dimensionality of a model
or a data set rests on the joint influence of test items and examinee population. Items and
examinees together produce test data that we judge by statistical inference to be
unidimensional or not. Reckase (1990) writes perceptively on this point. Technically, IRT
dimensionality is usually defined to be the lowest latent space dimension possible, such

that monotonicity and local independence hold.

2Note that the statistic T, computed from AT1 is sensitive to dimensionality (that is, it
can discriminate between d g=l1vsd g 1) and to sources of bias. The idea in introducing

AT?2 is to deliberately make TB sensitive only to sources of bias but not to dimensionality.

3In unidimensional settings where the procedure worked well, typical values of T 7, ranged
roughly from 1 to 5, and typical values of T g ranged roughly between .6 to 4.0; thus
typical values of T ranged roughly between —1.0 to 1.5.

41f a randomized block design with M blocks of size 2 is to be used in an experiment with
human subjects assigned to control and treatment groups, this experimental design
technique will work well unless the subjects are too variable. By rough analogy, the higher
the discrimination parameters, the more "variable" are the items that are being assigned to
AT1 and AT2 and the less effective the difficulty matching method (analogous to blocking)

of AT2 item selection is in eliminating bias.

51t can be observed that when items in AT1 are replaced (because they are too easy) with
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items of high loadings of the opposite sign, easy PT items could result, thereby causing
inaccuracy in subgroup assignment of high—scoring examinees. Simulation results have
shown that this potential inaccuracy is not as detrimental to the value of the statistic T as

it was when PT had mostly difficult items.

8We also tried to correct tetrachoric correlations for guessing by following Bock, Gibbons,
and Muraki (1985) and by using nonlinear factor analyses to diminish the influence of
difficulty on the second factor loadings. Regarding correction of tetrachorics, we found that
when guessing values were about .2 in the model, a large percentage of the sample
correlations was computed as 1 or —1. However, when the guessing levels were arbitrarily
cut by half, the problem of extreme correlations was reduced. Even with this reduction of
guessing levels, the items selected for AT1 did not differ significantly from those selected
without correction for guessing. Moreover, the ad hoc method of cutting guessing levels
defeats the purpose of using the three—parameter logistic model. Therefore correction for
guessing was not implemented.

The nonlinear factor extraction program NOFA was used to select items for the
assessment subtests. We tried two—factor quadratic model for this purpose. In comparing
the results of linear and nonlinear factor analysis, we found no difference in T—values
between the two methods. To our surprise the difficulty factor reappeared even with

nonlinear factor analysis. Therefore, we did not implement nonlinear factor analysis.

"The reason for the word "suggests" instead of "establishes" is that Stout’s result actually
assumes unidimensionality under the stronger assumption of local independence. Further,
the asymptotx:c invariance in (6) also assumes the stronger assumption of local

independence.
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8(S;:')2 is an asymptotic variance and fails to account for the overdispersion of Sk that
occurs as examinees in a fixed PT subgroup have varying abilities, even though the test is
unidimensional. Thus, (.Sv';‘,")2 will underestimate the true standard error and will yield too
large a type-I error (see Cox & Snell ,1989, pp 106—110 for . aice discussion of

overdispersion resulting from varying parameter such as ability).

9There are, of course, many more possibilities for computing statistics with given weights
and standard errors of estimate, but those described here were considered the most

appropriate.

10Technically, our simulations were done with d=1, implying d E‘=1' For simulation studies
for which dg=1, see Nandakumar (1991).

11The SATV denotes the SAT—verbal test obtained from Lord (1968); ACTM denotes the
ACT mathematics usage test, and ACTE denotes the ACT English Usage test, both
obtained from Drasgow (1987); ASVAB AS and ASVAB AR denote the Armed Services
Vocational Aptitude test Battery, Auto Shop Information and Arithmetic Reasoning
respectively, both obtained from Mislevy and Bock (1984).

121pe standard error for testing the hypothesis of p=.05 vs p#.05 is approximately 2.2
trials. Thus, the acceptance region of this test for a set of 100 simulations is given by (.7,
9.3) trials.

13We say "seem to" because one cannot really know that a real data set is d g=1or d 1
Further, the 100 replications of Table 7 are not the result of 100 administrations of the test

to similar examinee populations, but rather 100 variations of the application of the statistic
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to one data set that resulted from one administration of the test.
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Table 1

Rejection rates per 100 trials for dg=1 simulation study using
estimated item parameters of SAT verbal test with a= 0.05

Discrimination Number of Number of examinees
parameter items
750 1000 2000
Ogaigl.O 41 4 0 3
(low-discriminations)
1.1 € 8; < 2.0 39 28 46 58

(high-discriminations)




Table 2
Sample distributions of item parameters for the five
standardized tests used in the study
. ASVAB  ASVAB
. SATV ACTH ACTE AS AR
N: 80 40 75 25 30

Max ai’s 2.00 2.00 1.58 2.82 2.76
Nin ai’s 0.40 0.40 0.11 0.32 0.50
Mean ai’s 1.07 1.09 0.72 1.22 1.46
S.D ai’s 0.40 0.35 0.25 0.70 0.51

Nax bi’s 2.50 1.50 2.07 1.27 1.01
Nin bi’s -1.50 -1.02 -3.11 -1.39 -2.72
Mean bi’s 0.58 0.50 0.03 0.09 -0.02
S.D bi’s 0.88 0.61 0.96 0.72 0.84

Max c.’s 0.20 0.21 0.27 0.26 0.34
Nin ci’s 0.04 0.02 0.04 0.06 0.08
Mean ci’s 0.16 0.14 0.15 0.20 0.19
S.D ci’s 0.05 0.04 0.03 0.04 0.06

**N denotes the test length.

®

SATV denotes the SAT verbal test battery.
ACTH denotes the ACT mathematics usage test battery.
ACTE denotes the ACT English usage test battery.
ASVAB AS denotes the Armed Services Vocational
Aptitude Battery for auto shop information.
ASVAB AR denotes the Armed Services Vocational
Aptitude Battery for arithmetic reasoning.




Table 3
Results of unidimensional simulation study: Rejection rates for testing
the null hypothesis of dE=1 over 100 trials with ¢=.20 and ¢=.05

SATV
J SATV* high dis ACTM  ACTE ASVAB AS ASVAB AR
750 6 8 5 6 2 3
2000 6 7 4 4 2 1

*

SATV and ACTE each contain more than 50 items in the pool, but 50 items
vere randomly selected for the study. After each 10 of 100 trials a new
sample of 50 items was chosen. For other tests the same test was used for
all 100 trials.




Table 4

Comparison of unidimensional simulation study results of this paper with
those in Stout (1987): Rejection rates for testing the null hypothesis of
dg=1 over 100 trials with ¢=.2 and ¢=.05

SATV ACTH ACTE ASVAB AS  ASVAB AR
Study 750 2000 750 2000 750 2000 750 2000 750 2000

*
Stout (1987) 2 6 1 4 3 1 1 1 2 4
Present 6 6 5 4 6 4 2 2 3 1

x

For all tests the rejection rate reported is the average of rejection
rates (rounded to nearest integer) for the two different M values
reported in Table 2 of Stout (1987).




Table 5
Results of two-dimensional simulation study: Rejection rates for testing
the null hypothesis of dg=1 over 100 trials with ¢=.20 and ¢=.05 .

SATV ACTM ACTE ASVAB AR ASVAB AR ACTM24B ACTMSB
N -Il2-!l3 17-17-16 13-13-14 17-17-16 8-8-9 10-10-10 0-0-40 0-0-50

J 750 2000 750 2000 750 2000 750 2000 750 2000 2000 2000

.5 93 100 97 100 81 100 73 99 94 98 99 100
p=.7T 58 96 66 97 37 8 50 83 61 91 69 98

©
]




Table 6

Comparison of two-dimensional simulation study results of this paper with
those in Stout (1987): Rejection rates over 100 trials for testing the
null hypothesis dE=1 with ¢=.2, and a=.05

SATV ACTM  ACTE  ASVAB AS  ASVAB AR
NNy Ky:  17-17-16  13-13-14  17-17-16 889  10-10-10
J 750 2000 750 2000 750 2000 750 2000 750 2000
*
Stout (1987) 62 98 69 - 59 90 - 8 76 -
p=.9
Present 93 100 97 100 8 100 73 99 94 98
. Stout (1987) 36 83 - T4 - 55 - 54 - 6T
p=.
Present 58 9 66 97 37 8 50 8 61 ol

*

For all tests the rejection rate reported is the average of rejection
rates (rounded to nearest integer) for the two different M values reported
in Table 6 of Stout (1987).




Table 7
Results of real data study: Rejection rates for testing
the null hypothesis of dg=1 over 100 replications of random

selection of subjects with 2=.05

AR10 AR12 F29B F29C

¥: 30 30 40 40
J: 1984 1961 2491 2494

6 13 86 82
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