

Technical Memorandum 4-92

AN EVALUATION OF SEVERAL PERSONAL WEAPON-SIGHTING SYSTEMS DURING DAYTIME, DUSK, AND NIGHT AMBIENT LIGHT CONDITIONS

Paul H. Ellis William E. Hanlon Samson V. Ortega, Jr. Ronald P. Merkey Percy L. Johnson

July 1992 AMCMS Code 61271611700011

92 9 25 635

U.S. ARMY HUMAN ENGINEERING LABORATORY

Aberdeen Proving Ground, Maryland

Ransom Rest $^{\circledast}$ is a registered trademark of Pansom International Corporation.

•

ť

Destroy this report when no longer needed. Do not return it to the originator.

The findings of this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

Use of trade names in this report does not constitute an official endorsement or approval of the use of such commercial products.

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY AVAILABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PAGE

.

.

i

•

: .

		R	EPORT D	OCUMENTATION	N PAGE			Form Approved OMB No. 0704-0188
1a. REPORT SI	ECURITY CLASS	FICATION	N		16. RESTRICTIVE M	ARKINGS		
Unclass. 2a. SECURITY	LILED CLASSIFICATION		RITY		3. DISTRIBUTION/A	VAILABILITY OF REP	PORT	
					Approved fo	r public rel	6 296	
25. DECLASSIF	HICATION/DOWN	GRADING	SCHEDULE		distributio	n unlimited.		- ,
4. PERFORMIN	IG ORGANIZATIC	N REPOI	RT NUMBER(S))	5. MONITORING OF	RGANIZATION REPO	RTN	JMBER(S)
Technic	al Memoran	dum 4-	-92					
6a. NAME OF F	PERFORMING OF	GANIZAT	TION	6b. OFFICE SYMBOL (If applicable)	7a. NAME OF MON	ITORING ORGANIZA	TION	
Human E	ngineering	Labor	ratory	SLCHE				
6c. ADDRESS	(City, State, and 2	ill' Codej			75 ADDBESS (CH	State, and ZiP Code	<i>y</i>	
Aberdee	n Proving	Ground	d, MD 21	005-5001				
Ba. NAME OF I	UNDING SPONS	ORING		86 OFFICE SYMBOL	9 PROCUREMENT	INSTRUMENT IDEN	11FIC/	ATION NUMBER
ORGANIZA	CHON			(II applicable)				
8c. ADDRESS	(City, State, and 2	IP Cosej		L	10 SOURCE OF FI	UNDING NUMBERS		
					PROGRAM	PROJECT	TASI	WORK UNIT
					ELEMENTINO 6.27	NU. 111627165870	001	ACCESSION NO.
11. TITLE (Inclu	ude Security Class	s.l.cation)			L			
An Eva Ambien	luation of t Light Co:	Sever nditic	cal Person ons	nal Weapon-sight	ting Systems	During Dayti	me,	Dusk, and Night
12. PERSONAL	LAUTHOR(S)					,		
Ellis,	P. H., Ha	::lon,	W. E., O	rtega, S. V. Jr	., Merkey, R	. P., Johnson	n, ŀ	́. L.
13a, TYPE OF	REPORT	T	135. TIME COV	/ERED	14 DATE OF REPO	RT (Year, Month, Day	1	15. PAGE COUNT
16 SUPPLEM	ENTARY NOTATE	<u>ис</u>			<u></u> 1017			100
		- / -						
17	COSATI CO	DES		18 SUBJECT TERMS //	Continue on reverse if	necessary and dentif	y by h	'ock number)
FIELD	GROUP	SUI	B-GRCUP	aiming devic		aser sights	, -,0	pistol sights
15	03			nandgun digh Infrared las	us n ei- n	ight sights istol shooti:	ng	sights tritium sights :
19	05	isse te	wert en slae	aiming de	Vices P		_	
19 ABSTRACT	T (Continue on rev	erse 1 no	cussary and de	nt 'y by block number;	_			
personal weapon-sighting systems. This study was a joint effort of the U.S. Border Fatrol, the U.S. Army Combat Systems Test Activity (VCACUTA), and the U.S. Army Center for Night Vision and Electro-optics (CNVEO). The weapon-sighting systems were mounted on Smith 4 Wesson 5900 series 9mm pistols. Standard into a mits were used at the baceline sighting system.								
Twelve this st light (crouch) exposur systems Inc., a three s Laserma AM/PVS7 visible	U.S. Borde udy. Three dusk), and ing man-ty te times (1 were used nd a reflet sighting s ix, Inc. i 'B night vi laser sigh	r Pat: c subt pe, E i.5 to i: ot: x coll ystem For th sich ht. an	rol volum ests were t. For e moilhouet t.5.0 peop acderd in loating o a were y me night ymydes (d ac infr	teers (eight da conducted in w ach oubtest, in the targeto fro ondul). For the on sights, trif light mide by Ar Sud plus a vis suntest, all fo [NVGo], which we ared lacer sight	<pre>le and four high all 12 s e dubjeuts f am 11 to 51 dup nublest lug three-d spaint, fou- spaint, fou- spaint, fou- spaint, fou- spaint signifier ere used in a b.</pre>	<pre>female) work subjects part ired it witk reters, usi , usily takes to in a right. For the dua aide: clashi systems wer inpunction &</pre>	use 101 103 103 103 103 103 103 103 103 103	d a pubjects in tated: day, low single of double varying target rechal sighting de by Trijicon, ditest, the same system made by ord, along with iron sights, a everse side)
	TION AVAILABUT		STRACT		21 ABSTRACT SEC	CHRITY OF ASSISTERA	no n	
22 NAME OF F	RESPONSIBLE 25	ليتا 9 AUGIVIQI	- элгас: 25 чс. 1 		22b TELEPHONE			26 OFFICE SYMBOL
Technic	cal Report:	3 3441	C(+		(375) 27%			SLCHE-SS-TSB
DD Form 14	173, JUN 86			Previous ea Lons	are obso ete	<u>S! ())P 1</u> Y	<u>Y C: A</u>	SSIFICATION OF THIS PAGE
	,					UN	ICL	ASSIFIED

17. Cosati codes (continued)

19 06

19. Abstract (continued)

Four measures of performance were collected from each subject-sighting-system condition during all three subtests: probability of a successful engagement (hits divided by target opportunities), time to hit, time to first shot, and number of shots fired.

The results indicated that for the day subtest, there were no significant differences between any of the sighting systems. For the dusk subtests, during double target engagement, the iron sights and tritium three-dot sights took significantly longer to fire the first shot than the visible laser sight did. Euring the night subtest, significantly more targets were hit with the visible laser-NVG and infrared-NVG sighting systems than with the iron-NVG, Aimpoint, iron sights, and tritium three-dot sights.

The overall conclusion was that there does not appear to be any reason to believe that any particular sighting system will out-perform any other until nighttime (the equivalent of full moon or darker) levels of ambient illumination prevail. During conditions of full moon or darker, a pistol equipped with either a visible or an infrared laser beam and used with the AN/PVS7B will significantly improve the probability of hitting a target.

Acce	sion F	07		1
NTIS	GRAAI		R	
DTIC	TAB		ñ	
Unan	nownced		ñ	
Just	ficati	0n		
By				\neg
Dist	ibutio	4		-
Avai	labili	ty Co	des	
	AVAIL	and/	r	-
Dist	Spec	181		
A .1				
N.1	1			
1			1	ť I

DTIC QUALITY INSPECTED 3

AMCMS Code 612716H700011

1......

ţ

f

,

•

Technical Memorandum 4-92

AN EVALUATION OF SEVERAL PERSONAL WEAPON-SIGHTING SYSTEMS DURING DAYTIME, DUSK, AND NIGHT AMBIENT LIGHT CONDITIONS

Faul H. Ellis William E. Hanlon Samson V. Ortega, Jr. Ronald P. Merkey Percy L. Johnson

July 1992

le se APPROVED:

ROBIN L. KEEGEE Director Human Engineering Laboratory

Approved for public release; distribution unlimited.

U.S. ARMY HUMAN ENGINEERING LABORATORY Aberdeen Proving Ground, Maryland

ACKNOWLEDGMENTS

The authors gratefully acknowledge the technical assistance provided by Thomas Fry, Douglas Struve, Thomas Hoerr, and Nancy Ryan.

CONTENTS

· - · ·

.

- **-**

•

•

•

÷

•

.

-

Ł

EXECTUTIVE SUMMARY	3
INTRODUCTION	9
OBJECTIVE	9
METHODOLOGY	9
ITEMS EVALUATED	9
Pistols	10 18
RESEARCH STRUCTURE	19
AMBIENT LIGHT CONDITIONS 2	20
SUBJECTS	20
TEST FACILITIES	21
TARGET SCENARIO PROGRAM 2	22
APPARATUS	23
PROCEDURE	23
Training	23 24 24
EXPERIMENTAL DESIGN	24
DATA COLLECTION	25
STATISTICAL ANALYSIS 2	25
RESULTS 2	25
Subtest 1; Daylight	29 31 33
DEBRIEFING RESULTS	35
CONCLUSIONS	37
Subtest 1; Day Subtest 2; Dusk Subtest 3; Night	37 37 37
RECOMMENDATIONS	39
REFERENCES	41

APPENDICES

A.	Debriefing Notes	43
в.	Night Vehicle Headlight Test	47
с.	Target Presentation Scenarios	51
D.	Light Reading Data	55
Ε.	Volunteer Agreement	61
F.	Statistical Analysis	67

FIGURES

1.	System A - Iron Sights	11
2.	System C - Tritium Three-dot	12
3.	System D - Visible Laser	13
4.	System F - IR Laser	14
5.	System G - Aimpoint sight	15
6.	The Test Weapons Viewed From the Rear	16
7.	AN/PVS7B Night Vision Goggles	17
8.	Typical Ambient Light Decay at Aberdeen Proving Ground	
	with clear skies and half moon in September 1991	21

.

TABLES

1.	Ambient Light Values Used as Starting Points in Subtest 2	20
2.	Presentation Order, Subtest 1, Daylight	26
3.	Presentation Order, subtest 2, Low Light	27
4.	Presentation Order, Subtest 3, Night	28
5.	Hit Performance (day)	29
6.	Time to Hit (day)	29
7.	Time to First Shot (day)	30
8.	Number of Shots (day)	30
9.	Hit Performance (dusk)	31
10.	Time to Hit (Juck)	31
11.	Time to First Shot (dusk)	32
12.	Number of Shots (dusk)	32
13.	Hit Performance (night)	33
14.	Time to Hit (night)	34
15.	Time to First Shot (night)	34
16.	Number of Shots (night)	35
17.	Subject Preference, Duty Carry	3€
18.	Subject Preference, Tactical Use	36

EXECUTIVE SUMMARY

In the latter part of December, 1990, the U.S. Army Combat Systems Test Activity (USACSTA), the U.S. Army Human Engineering Laboratory (HEL), the U.S. Border Patrol, the U.S. Immigration and Naturalization Service, and the U.S. Army Center for Night Vision and Electro-optics (CNVEO) put together an evaluation program of several pistol-aiming devices for use during daylight, dusk, and nighttime lighting conditions.

HEL wrote the evaluation plan and conducted the evaluation at a small arms range. The Border Patrol provided the test subjects, the pistols, and the ammunition, and CNVEO provided the AN/PVS7B night vision goggles (NVGs) and some of the sights and sight mounts. USACSTA provided for weapon and sight zeroing, maintenance, and storage.

The objective of this effort was to evaluate the performance of several types of pistol sights during a wide range of lighting conditions, and in some cases, in conjunction with AN/PVS7B night vision goggles. The results of this evaluation were to be used by the Border Patrol to judge the relative merits of various systems and to determine the best way to equip their field personnel for operations in daylight and during periods of reduced ambient light.

The methodology employed in evaluating these sighting systems was to conduct a series of live fire subtests with U.S. Border Patrol shooters during a wide range of ambient light conditions and against human type targets exposed for varying brief intervals of time. In addition to this, a debriefing was conducted at the end of the testing to solicit subjective opinions from the subjects about relative advantages and disadvantages of the sighting systems and how they might be used in the field.

The following sighting systems were evaluated:

System A - standard iron sights (baseline) System B - standard iron sights with AN/PVS7B NVGs System C - tritium three-dot iron sights made by Trijicon, Inc. System D - visible laser beam made by Lasermax, Inc. System E - visible laser beam with AN/PVS7B NVGs System F - infrared laser beam (Lasermax, Inc.) with AN/PVS7B NVGs System G - reflex collimating sight made by Aimpoint, Inc.

The sighting systems were mounted on Smith & Wesson 5900 series semiautomatic pistols chambered for the 9x19mm NATO cartridge.

This evaluation was conducted as a series of three subtests, each to examine the effects that the sights have on shooter performance during specific conditions of ambient light.

Subtest 1 looked at shooter and sight performance during daylight. Subtest 2 addressed performance during conditions of dusk. Subtest 3 was conducted at night. Not all the sighting systems were evaluated in each of the subtests. Those that were used with night vision goggles were not tested during daylight or dusk. The test items for each subtest were

Subtest 1. The sights tested in subtest 1 (daylight) were

Iron sights

Tritium three-dot sights Aimpoint

Subtest 2. The sighting systems tested in subtest 2 (dusk) were

Iron sights Tritium three-dot sights Visible laser Aimpoint

Subtest 3. The sighting systems tested in subtest 3 (night) were

Iron sights Iron sights with NVG Tritium three-dot sights Visible laser Visible laser with NVG Infrared laser with NVG Aimpoint

Subtest 2 (Dusk) was broken into four segments. As the ambient light diminished each evening and reached each of four preselected values, target presentation scenarios were initiated for the subjects at the firing points. The four ambient light values used as presentation starting points were

Starting point	Footcandles
1	1.50
2	0.40
3	0.12
4	0.03

These starting points were spaced approximately 5-1/2 minutes apart on the curve that describes the decay of light at dusk. This spacing allowed ample time for each shooter to complete a firing scenario and covered the full range of the light gradient that constitutes dusk, down to the approximate equivalent of full moon.

Subtest 3 (night) conditions were considered to have been reached when the ambient light level read 0.012 footcandle (corresponding approximately to full moon) or darker. Ambient light was monitored continuously and recorded at the start and stop of each target scenario during subtests 2 and 3. At the beginning of this evaluation, the moon had just entered the first quarter and was nearly full by the last day.

The subjects were selected by the U.S. Border Patrol from a body of volunteers solicited from various regional Border Patrol offices and brought to Aberdeen Proving Ground. The criteria for the selection of subjects were that they be representative of the range of shooting training and skills within the Border Patrol population, have 20/20 visual acuity (uncorrected), and have normal color perception. It was also requested that a significant portion of the subjects be female. Hand dominance was not controlled for.

The Border Patrol provided 12 subjects for this evaluation (four women and eight men).

The evaluation was conducted at HEL's M range, which is an outdoor live fire small arms range. Each firing point has a microphone that senses the

weapon muzzle noise upon firing and is used to initiate data recording for time to fire, hits, and so forth.

There was an electronic command and data link between the targets, the firing point, and a computer. The order and timing of the target arrays were pre-programmed.

The targets were stationary U.S. Army E type (crouching man) silhouettes mounted on pop-up mechanisms. They were painted with flat black paint to simulate the reflectivity of typical clothing that might be worn to avoid detection. The targets were hit sensitive so that they would go down when hit and transmit the time of hit to the data recording computer. The targets were all stationary.

A computer program was written to control the sequence and timing of target presentations. The program generated ten different target presentation scenarios to ensure that no shooter could memorize the sequence of target presentation variables (range, exposure time, azimuth, pairings, etc.). Each scenario included seven targets at 10, 25, and 50 meters. Three single targets and two pairs of targets were presented at each range. The single targets were exposed for 1.5, 3.0, and 5.0 seconds at each range. There was a 3-second between-target interval except for two longer delays embedded in each scenario to allow for weapon reloading. These occurred at points approximately one third and two thirds of the way through the scenarios, and lasted for 9 seconds.

A photometer was used to measure ambient light. The light sensor of the device was aimed at the open sky to take a diffuse reading over a wide area of the sky.

Subjects fired from the standing position using the two-handed firing technique as taught by the Border Patrol. The firing procedure was the same for each subtest. Each subject had three fully loaded (15 rounds) magazines at the firing point. The magazines were placed on the table where they could be easily reached during the target presentations. The subject was then given an unloaded test weapon and a loaded magazine. When the targets were about to be presented, the subjects at the firing points were instructed to load their weapons, assume the ready pistol position, and watch for targets. The subjects began shooting when the first target appeared. At two points during the scenario, the subjects were given time to reload the pistol.

Except for Subtest 2, a repeated measures test design was used so that each subject was exposed to each sighting system and condition of ambient light. While all the subjects participated in Subtest 2, each subject fired in only one of the four ambient light bands. Subject assignments to the four ambient light bands in Subtest 2 were random. However, some effort was made to evenly distribute subjects shocking skill in the four subgroups that fired in each light band.

Time to each shot, time to each hit, which rounds hit, and which targets were hit were collected. This was correlated with the shooter and condition data and target array and presentation data in the M range computer.

At the conclusion of the field portion of this evaluation, the subjects participated in a debriefing to solicit any opinions they might have regarding the sights tested, methods of employing them, and any other relevant topic.

A repeated measure analysis of variance (ANOVA) was performed for each type of target presentation (single and double). The results were checked for compound symmetry. If the assumption for compound symmetry was rejected, the conservative Greenhouse and Geiser adjustment for the degrees of freedom was performed. Scheffé's post hoc test was then used to determine the significant differences between means. Significance testing was at the 5% level.

The probability of a successful engagement was used as the primary measure of performance. Other performance measures chosen as possible discriminators between sights are time to fire, time to hit, number of shots fired.

RESULTS

Subtest 1; Daylight

When the data were combined over subject, trial, light level, range, and exposure time, there were no significant differences among sights in probability of a successful engagement (hits divided by target opportunities), time to hit, time to first shot, or number of shots fired.

Subtest 2; Dusk

Because of the test limitations, only three subjects could be allocated to each of the four light condition bands. As a result, a repeated measures ANOVA was conducted in which three subjects were considered nested in each of four light level conditions.

The data for the Dusk subtest when combined over subjects, trial, light level, range, and exposure time show that there are no significant differences among sights in terms of probability of a successful engagement, time to hit, or number of shots fired. For the double targets, it was determined that the iron and tritium three-dot sights took significantly more time to fire the first shot than the visible laser sight did.

Subtest 3; Night

A Scheffé's post hoc analysis for the single target data determined that significantly more targets were hit with the visible laser/NVG and IR/NVG systems than the iron/NVG, Aimpoint, iron and tritium three-dot sights. This was also true for the double target data. Additionally, the IR/NVG system hit significantly more targets in double target presentations than did the visible laser system.

When the data were collapsed over subject, trial, exposure time, and range, there were no significant differences among sights in terms of time to hit and time to first shot.

An analysis of the single target data showed that significantly more rounds well fired with the systems that used night vision goggles (iron/NVG, visible laser/NVG, and IR/NVG) than with the visible laser and tritium threedot sights. Additionally, significantly more shots were fired with the iron/NVG system than with the iron and Aimpoint sights. The double target data show that significantly more shots were fired with the iron/NVG system than with any of the other sighting systems. Also, more shots were fired with the IR/NVG system than with the visible laser.

CONCLUSIONS

Subtest 1; Daylight

Subtest 1 revealed that there is no significant difference among iron, tritium three-dot, and Aimpoint sights in any of the measures that are considered to be important: probability of a successful engagement, time to fire, time to hit, and number of shots fired. Based on these data, there is no performance basis for selecting or rejecting one sight instead of any other for daytime use.

Subtest 2; Dusk

During the transient conditions of dusk, there were no significant differences among sights in terms of hits or time to hit. The visible laser sight was significantly faster (about 1/5 second) in mean time to fire than either the iron or the tritium three-dot sight against double targets. There were no significant differences among sights in number of shots fired.

Subtest 3; Night

At night, the probability of a successful engagement with either of the two laser beam-equipped weapons, when used with night vision goggles, was significantly higher (by a factor of two) than with the iron, iron with NVG, tritium three-dot, and Aimpoint sights agains both single and double targets. Against double targets, the IR laser with NVG is also significantly better than the visible laser.

The data suggest that the visible laser nighttime hit performance may fall close to midway between that of the iron, iron with NVG, tritium threedot, and Aimpoint sights, and the two laser beams when they are used with the night vision goggles.

Subtest 3 shows no sight to have an advantage or be at a disadvantage in terms of time to fire or time to hit at night.

Significant differences among sights were observed in terms of number of shots fired. The iron sight with NVG condition caused a significantly greater number of shots to be fired than the iron, tritium three-dot, visible laser, and Aimpoint sights against single targets, and all those plus the visible laser with NVG and IR laser with NVG sights against double targets. The other two night vision-aided conditions, IR and visible laser with NVG, exhibited significantly more shots fired than did the tritium three-dot and visible laser against single targets. The IR laser with NVG condition fired significantly more shots against double targets than did the visible laser without goggles. These data indicate that the mean number of shots fired at a target during these conditions with these weapons is simply a function of being able to see the targets. For this leasen, it does not seem useful as a discriminator of sight performance.

When all the data from the three subtests are considered, there does not appear to be any reason to believe that any particular sight will out-perform any other sight until nighttime (the equivalent of full moon or darker) levels of ambient illumination prevail.

For daytime duty use, there seems to be little reason to carry a pistol with other than standard iron sights, especially when the cost and maintenance

of the other sights and the requirement for batteries for several of them are considered.

During conditions of full moon or darker, a pistol equipped with either a visible or an infrared laser beam and used with the AN/PVS7B night vision goggles will significantly improve the probability of hitting a target. During those same conditions, a pistol equipped with a visible laser beam used without night vision goggles may provide a lesser, but material, improvement ir hitting capability.

When there is a good chance that the duty pistol will also be used at night or during reduced levels of illumination during the day (as inside unlit buildings), a case might be made for carrying a pistol that has both standard iron sights and a compact visible laser beam projector. This would provide the shooter with some performance gain in comparison to iron sights in dim light without night vision goggles, and greatly improved performance with a familiar pistol when used with night vision goggles.

During the debriefing, the subjects indicated that they probably needed two systems: one to be carried constantly during duty hours and another for those occasions when a bulkier, heavier, more complicated system could be tolerated and would be more effective.

Based on the data produced in these evaluations, the weapon to be used during nighttime levels of illumination when bulk and complexity are less of an issue should be equipped with a laser beam and used in conjunction with night vision goggles. To the extent that greater bulk is tolerable, a rifle or shotgun might be a better choice than a pistol for tactical scenarios because of the greater range capability of these weapons. Another field evaluation should be conducted to investigate this possibility.

RECOMMENDATIONS

This evaluation uncovered no performance basis for recommending a particular pistol sight from among those tested, for people who must carry a semiautomatic pistol on their person as a regular course of duty (non-tactical use). This evaluation also did not find any justification for the added cost and complexity of any sight other than the standard iron sight as tested.

Visible laser beam projecting sights should be further investigated to see if one exists that adds no more bulk, performs at least as well, and is more rugged and reliable than the one evaluated in this report. If such a device is found, it should be field tested to determine its merit for tactical use.

For tactical use, a pistol equipped with a rugged and reliable laser beam projector (either visible or IR) and used in conjunction with night vision goggles is recommended.

An evaluation of other individual weapons such as rifles and shotguns, equipped with laser beam projectors and used with night vision goggles, should be conducted to see if such systems offer any advantages in comparison to pistols so equipped and employed.

AN EVALUATION OF SEVERAL PERSONAL WEAPON-SIGHTING SYSTEMS DURING DAYTIME, DUSK, AND NIGHT AMBIENT LIGHT CONDITIONS

INTRODUCTION

In the latter part of December, 1990, the U.S. Army Combat Systems Test Activity (USACSTA) contacted the U.S. Army Human Engineering Laboratory (HEL). USACSTA was involved in assisting the U.S. Border Patrol, the U.S. Immigration and Naturalization Service, and the U.S. Army Center for Night Vision and Electro-optics (CNVEO). These agencies put together an evaluation program of several pistol-aiming devices for use during daylight, dawn and dusk, and nighttime lighting conditions. Portions of the evaluation would be conducted using night vision goggles. The purpose of the call from USACSTA was to see if HEL would be interested in participating in this program, since the major issues are largely ones of human performance.

Because these types of aiming devices are of potential interest for use with infantry weapons, and few or no data are available that describe their effectiveness, HEL agreed to become involved in the testing. Consequently, a meeting was held on January 3, 1991, to discuss the scope of the program and to assign tasks to the various participants. The outcome of the meeting was that HEL would write the evaluation plan and conduct the evaluation itself at its M range using U.S. Border Patrol agents as subjects. The Border Patrol would provide the subjects, pistols, and ammunition, and CNVEO would provide the AN/PVS7B night vision goggles (NVGs) and some of the sights and sight mounts. USACSTA would provide for weapon and sight zeroing, maintenance, and storage.

OBJECTIVE

The objective of this effort was to evaluate the performance of several generic types of pistol sights during a wide range of lighting conditions, and in some cases, in conjunction with AN/PVS7B night vision goggles. The results of this evaluation were to be used by the Border Patrol to judge the relative merits of various systems and to determine the best way to equip their personnel for field operations in daylight and during periods of reduced ambient light.

METHODOLOGY

The methodology employed in evaluating these sighting systems was to conduct a series of live fire subtests with U.S. Border Patrol shooters during a wide range of ambient light conditions and against human type targets exposed for varying brief intervals of time. Performance data were collected and used for this purpose. In addition to this, a debriefing was conducted at the end of the testing to solicit subjects' opinions about relative advantages and disadvantages of the sighting systems, and how they might be used from a tactical standpoint (see Appendix A).

ITEMS EVALUATED

The following sighting systems were evaluated:

System A - standard iron sights (baseline) System B - standard iron sights with AN/PVS7B night vision goggles System C - tritium three-dot iron sights made by Trijicon, Inc. System D - visible laser beam model MDL-200-670-10mW made by Lasermax, Inc. System E - visible laser beam (as above) with AN/PVS7B night vision goggles System F - infrared laser beam (same as above but with an infrared laser diode) with AN/PVS7B night vision goggles

System G - reflex collimating sight model Aimpoint 3000 made by Aimpoint, Inc.

Pistols

The sighting systems were mounted on three models of Smith & Wesson 5900 series semiautomatic pistols chambered for the 9x19mm NATO cartridge. These pistols were chosen by the Border Patrol because they closely follow the specifications for the service pistols that the Border Patrol intends to purchase and issue to all their agents in the near future. The reason that three different models were used is that Smith & Wesson had them available to lend to the Border Patrol at the time. These three models are actually variations of the same pistol. They have the same dimensions, grip stocks, trigger pull characteristics, barrel length, and so forth. They vary from each other in the area of decocking lever, safety lever, and hammer spur design. These features have nothing to do with the performance of the pistols as used in this sight evaluation.

The sights were attached to the pistols as specified in the sight manufacturer's instructions that came with the devices, or in the case of visible and infrared laser devices, by the manufacturer. The Border Patrol delivered the pistols for testing with the sights already mounted. The Border Patrol decided what type of sight would go on which model pistol. Once a given sight was mounted on a particular pistol, it remained on that pistol for the duration of the evaluation. Figures 1 through 7 show the pistols, sights, and night vision goggles.

The sight-pistol combinations were boresighted or zeroed from a Ransom Rest at the beginning of the testing and verified periodically throughout the evaluation. (Note. A Ransom Rest is a mechanical device the holds the pistol in a recoil-absorbing mount so that it can be aimed and fired with repeatable precision. The Ransom Rest was equipped with adjustment knobs for moving the pistol in azimuth and elevation for precise aiming.) Three of each type of sight mounted on dedicated pistols were available at the start of each day to ensure that malfunctions would not interrupt the scheduled shooting and to permit several subjects to fire the same condition at the same time.

The weapons and sights received daily inspection and cleaning before the day's shooting. Cleaning was done and repairs were made by the USACSTA Small Arms Repair Section where the weapons were secured when not involved in testing. USACSTA also rechecked the zero of the weapons on a regular basis.

Figure 1. System A - iron sights.

Figure 2. System C - tritium three-dot.

12

Figure 3. System D - visible laser.

Figure 4. System F - infrared laser.

Figure 5. System G - aimpoint sight.

Figure 7. AN/PVS7B night vision goggles.

Test Items

System A

Figure 1 shows System A, the baseline system. It was a Smith 6 Wesson Model 5926 with conventional iron sights. The pistol came from the manufacturer with three white dots painted into three shallow depressions machined into the back of the front and rear sight components. For this evaluation, these white dots were painted out so that the sights were like traditional iron pistol sights. This was done so that a three-dot system (System C) could be compared to plain iron sights during the daytime.

System B

System B was the same as system A except that it was used with AN/PVS7B night vision goggles. The AN/PVS7B night vision goggles are shown in Figure 7.

System C

System C, as shown in Figure 2, was exactly the same as System A (S & W Model 5926) except that Trijicon tritium gas-filled vials were installed where the white painted dots had been. Tritium is a luminescent radioactive isotope of hydrogen. The sight appears as a standard three-dot version of an iron sight during bright ambient illumination but glows during reduced light conditions.

System D

System D was a Smith & Wesson Model 5906 that had a Lasermax, Inc., MDL-200-670-10mW visible laser diode mounted on it at the Lasermax factory (see Figure 3). The laser diode is a Class IIIa battery-powered laser. The laser beam is turned on by a switch mounted directly in front of the pistol trigger guard. For this evaluation, the laser was turned on at the beginning of a target scenario and left on until the scenario was finished.

System E

System E was the same weapon as System D except that it was used in conjunction with the AN/PVS7B night vision goggles (see Figure 7). When viewed through the night vision goggles, the laser beam could be seen as an indistinct ghosted line ending in a bright ball when it struck the ground or an object.

System F

System F, as shown in Figure 4, was made by replacing the laser diode assembly in two spare System D weapons with infrared laser diodes also made by Lasermax. This system was operationally the same as System E, but when viewed through the night vision goggles, the laser beam appeared as a thin white line ending in a bright ball where it struck a target.

System G

System G is illustrated in Figure 5. The pistol was a Smith & Wesson Model 659. The sight was a unity power optical sight that had a battery-powered reticle that appeared as a red dot in the center of the rear lens. This sight was an Aimpoint 3000 manufactured by Aimpoint, Inc. It has

a brightness control knob that allowed the shooter to vary the intensity of the reticle. The intensity of the dot was adjustable to suit the ambient light conditions. During daylight, the reticle was set at the brightest setting. At dusk, it was set three clicks dimmer, and at night, it was placed on the dimmest setting. Figure 6 shows all the pistol sights from the rear as the shooter would see them.

RESEARCH STRUCTURE

This research was planned and conducted as a series of three subtests, each to examine the effects that the sights have on shooter performance during specific conditions of ambient light.

Subtest 1 looked at shooter and sight performance during daylight. Subtest 2 addressed performance during conditions of dusk. Subtest 3 was conducted at night.

Not all the sighting systems were evaluated in each of the subtests. Those that were to be used with night vision goggles were not tested during daylight or dusk. The test items for each subtest were

Subtest 1; Daylight

Iron sights Tritium three-dot sights Aimpoint

Subtest 2; Dusk

Iron sights Tritium three-dot sights Visible laser Aimpoint

Subtest 3; Night

Iron sights Iron sights with NVG Tritium three-dot sights Visible laser Visible laser with NVG Infrared (IR) laser with NVG Aimpoint

As an adjunct to these tests, on the last scheduled day of shooting, a cursory evaluation of four of the sights during conditions of headlight illumination at night was added to take advantage of an unused night that had been put in the schedule in case a makeup night was required for Subtest 3. These data are covered separately in Appendix B because time did not permit the evaluation to be conducted with the experimental controls that would give it a high degree of scientific validity.

AMBIENT LIGHT CONDITIONS

Subtest 1 was conducted in the early afternoon while it was still full daylight.

Subtest 2 was conducted at dusk. The ambient light was monitored continuously each evening starting before the onset of dusk (approximately 19:30 on 10 September) and continuing until the end of the evening's subtest program. As the ambient light diminished each evening and reached each of four preselected values, target-presentation scenarios were initiated for subjects waiting and ready at the firing points. The light level was recorded at the start and end of each target scenario. The four ambient light values used as presentation starting points are shown in Table 1.

Table 1

Ambient Light Values Used as Starting Points in Subtest 2

 Starting point	Footcandles	
1	1.50	
3	0.12	
 4	0.03	

Prior research (Ellis, Hanlon, & Ortega, 1989) about weapon sight performance during conditions of low ambient light and work done during contract to HEL (Kaprelian, 1988; Rogers, 1988) in support of that resear n, was most useful in determining these starting points.

These starting points were spaced approximately 5-1/2 minutes apart on the curve that describes the decay of light at dusk. Figure 8 shows these starting points superimposed on a plot of light decay as a function of time for a typical evening of the evaluation period. This spacing allowed ample time for each shooter to complete a firing scenario and covered the full range of the light gradient that constitutes dusk down to the approximate equivalent of full moon.

In Subtest 3, the sights were evaluated at night. Night conditions were considered to have been reached when the ambient light level read 0.012 footcandle (corresponding approximately to full meen) or darker. Ambient light was monitored continuously and recorded at the start and stop of each target scenario during Subtest 3 testing. At the beginning of this evaluation, the moon had just entered the first quarter and was nearly full by the last day.

SUBJECTS

The subjects were selected by the U.S. Border Patrol from a body of volunteers solicited from various regional Border Patrol offices and brought to Aberdeen Proving Ground. The criteria for the selection of subjects were that they be representative of the range of shooting training and skills

within the Border Patrol population, have 20/20 visual acuity (uncorrected), and have normal color perception. The Border Patrol used recent medical records as a basis for the screening. It was also requested that a portion of the subjects be female. Hand dominance was not controlled for since it was not considered a relevant factor in an evaluation of pistol sights.

!

Figure 8. Typical ambient light decay at Aberdeen Proving Ground with clear skies and half moon in September 1991.

The Border Patrol was able to provide 12 subjects (eight men and four women) for ten working days for this evaluation. Nine subjects carried a revolver during the normal course of duty; the rest carried semiautomatics. Upon their arrival, it was discovered that one subject normally wore eyeglasses. It was decided that he would be included in the evaluation since the experimental design required 12 shooters, and it was too late to get a replacement.

TEST FACILITIES

M Range

The evaluation was conducted at HEL's M range, which is an outdoor live fire small arms range. Three firing points were used simultaneously for this evaluation; a fourth was held in reserve for makeup shooting when a subject had not been able to complete a trial because of a weapon, pistol, or range malfunction.

Each firing point commands a view of an array of targets that extend in a 50-meter-wide lane to 550 meters. Each firing lane is the exact duplicate of the next.

Each firing point has a microphone that senses the weapon muzzle noise upon firing and is used to initiate data recording for time to fire, hits, and so forth.

The view that the shooter sees from the firing point is a flat grassy surface that extends to a tree line at about 600 meters. Each target, when not in the raised position, is protected by an earthen berm that is about 2 feet high and of varying widths. The sloped front of the berms that face the shooter reflects the ambient light differently than does the range proper. The grass is not usually uniform in color. The result of this topography is that the targets are embedded in a visually "noisy" background.

The targets are controlled from a central command tower by means of a computer. There is an electronic command and data link among the targets, the firing point, and the computer. The order and timing of the target arrays can be pre-programmed.

Targets

The targets were stationary U.S. Army E type (crouching man) silhouettes mounted on pop-up mechanisms. They were painted with flat black paint to simulate the reflectivity of typical clothing that might be worn to avoid detection. The facial area of the targets was painted a medium tan to assist in target acquisition. The targets were hit sensitive so that they would go down when hit and transmit the time of hit to the data recording computer. The targets were all stationary. All targets were mounted in such a way that the frontal plane of each was perpendicular to the bullet path from the firing point. This ensured that the presented area of each target was the same independent of the angular displacement of the target.

TARGET SCENARIO PROGRAM

A computer program was written to control the sequence and timing of target presentations. The program generated ten different target presentation scenarios to ensure that no shooter could memorize the sequence of target presentation variables (range, exposure time, azimuth, pairings, etc.). Each scenario included seven targets at 10, 25, and 50 meters. Three single targets and two pairs of targets were presented at each range. The single targets were exposed for 1.5, 3.0, and 5.0 seconds at each range. There was a 3-second between-target interval except for two longer (10 seconds each) delays embedded in each scenario to allow for weapon reloading. These occurred at points approximately one third and two thirds of the way through the scenarios and lasted for 9 seconds. Appendix C shows the target presentation scenarios.

.

APPARATUS

A calibrated Tektronix Model J16 digital photometer was used to measure ambient light levels. The light sensor of the device was aimed straight up at the open sky and had a translucent dome over it to take a diffuse reading over a wide area of the sky. Readings for Subtest 2 (dusk) were taken continuously throughout the test and recorded at the start and finish of each target scenario. Light readings for Subtest 3 (night) were also monitored continuously and recorded at the beginning and end of each scenario that was fired for record. Appendix D shows the light level data sheets for Subtests 2 and 3. The measurements were recorded in footcandles.

PROCEDURE

Training

On the first day of this evaluation program, the subjects were taken to M range and given an orientation briefing about the purpose of these tests and the nature of their participation in them. They were told the objectives and procedures of each subtest. They were also shown the test items and received an explanation of how best to safely and effectively use each item. They were instructed in the safety procedures for M range and given administracive information. The subjects were encouraged to ask questions regarding any aspect of this program. At the end of the briefing, the subjects were given a volunteer agreement affidavit to read and sign (see Appendix E).

After the orientation briefing, the subjects were given instructions about how to engage the targets. They were instructed that upon seeing a target, they were to fire quickly and accurately. They were told that their primary objective was to hit the target and the secondary objective was to hit it quickly since they would have no way of knowing how long the target would be available. In addition, they were told that the targets would go down when hit.

The subjects then received familiarization training in the use of the baseline weapon, and on the range and test procedures on the first day of test. Thereafter, each subject's training for the sight condition to be shot for record took place just before firing for record. This training consisted of tutoring the subjects in the operation and techniques of firing the particular sight about to be tested and then allowing the subjects to shoot through two complete target scenarios. The subjects then fired for record. To minimize fatigue during this process, the subjects rotated alternately through this three-target scenario with the other subjects scheduled to fire at the same firing point; usually, either three or four subjects were at the same firing point at the same time.

Because of the rapidly changing nature of the ambient light during Subtest 2 (dusk), there was no time to train the subjects immediately before they were to fire. Instead, training and practice for Subtest 2 took place after the Subtest 3 firing the night before. This training consisted of a familiarization briefing about the sight to be fired in Subtest 2 the next day, and two live fire training trials with target scenarios. This meant that Subtest 2 began on the second night of the program rather than the first. In some cases, a subject fired the same sight condition in Subtest 3 that 3/ne was scheduled to fire the next day in Subtest 2. When this happened, no additional training with that sight took place.

Firing Technique

Subjects fired from the standing position using the two-handed firing technique as taught by the Border Patrol. The subjects engaged the targets starting from the standing "ready pistol" position. The ready pistol position is the same as the actual firing position except that the shooter swings his or her arms downward somewhat. This allowed an unobstructed view of the target area while the shooter looked for the next target. When the target appeared, the shooter would swing the weapon up until the sights were aligned on the target, obtain the proper sight picture, and fire.

The technique used when engaging targets with the visible laser system was for the shooter to shine the beam on the ground immediately in front of the 10-meter berm until a target appeared. When a target appeared, the red dot on the ground was quickly moved to the target and the pistol fired. The beam itself was not visible, and the only cue to its location that the shooter received was when the beam struck an object such as the ground or a target. The night vision goggles made it possible to see the laser beam itself, which gave the shooters a stronger visual cue about the location of the beam with respect to the target. This was especially true of the IR laser, which had a more sharply defined beam with less "blooming" around it.

Firing Procedure

The firing procedure was the same for each subtest. Each subject arrived at the firing point with three fully loaded (15 rounds) magazines. The weapons had been placed on a small table at the firing point before the subjects' arrival. The magazines were placed on the table where they could be easily reached during the target presentations. The subject was given a short familiarization briefing about the operation of the test item that s/he was about to shoot. The subjects were then given an unloaded test weapon and a loaded magazine. When the target control center was ready to present the targets and when the appropriate light level had been reached, the subjects at the firing points were instructed to load their weapons, assume the ready pistol position, and watch for targets. The subjects began shooting when the first target appeared.

At a point a third of the way through the scenario, and again two thirds of the way, a silver target (reload signal) appeared on the far left at ten meters to signal that it was time for the subject to reload the pistol. This target was not engaged. At this point, the subject removed the magazine from the weapon and inserted another fully loaded one that was on the table to the shooter's left. Ample time was allocated for this procedure. After the last target of each scenario had dropped from sight, the subject unloaded and put the pistol back on the table in a safe condition.

EXPERIMENTAL DESIGN

Except for Subtest 2, a repeated measures test design was used to expose each subject to each sighting system and condition of ambient light. While all the subjects participated in Subtest 2, each subject fired in only one of the four ambient light bands. (Note. Because the subjects were only available for ten test days, Subtest 2 scheduling required that the 12 subjects be divided into four groups of three shooters each. If all subjects had fired all light levels, the test would have required 16 days to complete.) Before subjects were assigned to a group, each individual's shooting skill was estimated based on Border Patrol individual qualification score records. This was done in an effort to have the groups evenly matched with respect to shooting skill. The four groups were then randomly assigned to a light band, as was each subject's order of firing and the sequence of sight to be fired.

The subject-condition counterbalancing sequences are shown on Tables 2, 3, and 4. Note that the subjects were exposed twice to each condition in Subtests 1 and 2.

DATA COLLECTION

Time to each shot, time to each hit, which rounds hit, and which targets were hit were collected. This was correlated with the shooter-condition data and target array and presentation data in the M range computer.

At the conclusion of the field portion of this evaluation, the subjects were assembled in a conference room and debriefed. The purpose of this debriefing was to solicit any opinions the subjects might have regarding the sights tested, methods of employing them, and any other relevant topic. After the purpose of the debriefing was discussed with the subjects, an unstructured session ensued in which subjects were first asked to list the advantages and disadvantages of each sight in turn, starting with the baseline iron sights. The person conducting the debriefing recorded these comments on a large briefing pad on a stand in front of the subjects. The entire debriefing session was videotaped.

STATISTICAL ANALYSIS

A repeated measures analysis of variance (ANOVA) was performed for each type of target presentation (single and double). The results were checked for compound symmetry. If the assumption for compound symmetry was rejected, the conservative Greenhouse and Geiser adjustment for the degrees of freedom was performed. Scheffé's post hoc test was then used to determine the significant differences between means. Significance testing was at the .05 level. The results of these tests for significance are presented in Appendix F.

RESULTS

The results and the discussion of the results will be presented for each subtest independently. Generally, only results that pertain to the performance of the sights are shown. Not shown are data that describe relationships that are well understood and are independent of the type of sight employed; for example, marksmanship performance tends to degrade significantly as target distance increases, or as the target exposure time decreases. This is evident in the Range x Exposure Time interactions throughout the data.

The probability of a successful engagement is used as the primary measure of shooter-weapon performance. This probability is derived by dividing the number of targets hit by the number of target opportunities.

Other performance measures chosen as possible discriminators among sights are time to fire, time to hit, and number of shots fired.

Table 2

·····

Presentation Order, Subtest 1, Daylight

	г	7	б	4	ۍ ۲	Subject r 6	untber 7	œ	6	10	11	12
Trial	sight A C G	Sight A C G	Sight A C G	sight A C G	sight A C G	sight A C G	sight A C G	sight A C G	sight A C G	sight A C G	Sight A C G	sight A C G
7 7	3 F S	1 3 7 6 2 4	571 268	753 842	1 7 3 2 4 8	7 1 5 6 2 4	43 2 43 2 43 6	537 862	731 426	517 268	375 842	153 684
	sight	A = Iron C = Trit G = Aimp	sights ium threa	e-dot								

Note. Numbers under sight = test day

•

.

٠

•

26

			N	ſ	4	Sul 5	oject num 6	ber 7	8	δ	10	11	12
i syst Level	Ttiai	51955 A C 0 G	sight A C D G	sight A C D G	signt A C D G	sight A C D G	Sight A C D G	Sight A C D G	sight A C D G	sight A C D G	sight A C D G	sight A C D G	sight A C D G
		യം ന യണ എന	2. E 2. E 2. E 2. E 2. E 2. E 2. E 2. E	ອ ເ- ເນັດ ອີເຕີ ອີເດີ	רייה הייה היים היים	8 6 2 4 7 5 9 3	עי 20 20 20 20 20 20 20 20 20 20 20 20 20	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4 7 6 7 8 8 8	0.0 8 1- 9 6	ଏହି ୮୦ ଅନ୍ତ ସ୍ଥାନ	9 8 3 9 2 5	
		Sight A	A = Iron C = Triti D = Visib 3 = Aimpo	sights um three le laser int	-dot								

Table 3

Presentation Order, Subtest 2, Low light

27

<u>Note</u>. Numbers under sight · test day

Table 4

Presentation Order, Subtest 3, Night

		9 0
	12	Sight ABCDEF 531467
	11	Sight ABCDEFG 2546731
	10	Sight ABCDEFG 3427516
	σ	Siyht ABCDEFG 1763245
number	8	Sight Aucdefg 4651327
Subject	2	S_gnt Ascoefc 2376154
	و	Sight ABCDEFG 64:2375
	ى ا	Signt ABCDEFG 3745612
	4	51971 81971 8102875 916-2249 916-2249
	m	51985 ABCUETG 4521736
	7	Sight Ascosic 1654321
	Ч	51971 ABC0810 1234567

Sight A = Iron sights
B = Iron sights with night vision goggles (NVG)
C = Tritium three-dot
C = Tritium three-dot
D = Visible laser
E = Visible laser with NVG
F = Infrared with NVG
G = Aimpoint

Numbers under sight = test night Note.

Subtest 1; Daylight

Hit Performance

Table 5 shows the probability of a successful engagement (hits per target opportunities) combined over subjects, trial, range, and exposure time. There was a significant range and exposure time main effect, and three significant interactions involving range and target exposure time. There was also a three-way interaction of Sight x Trial x Exposure Time. The interaction was caused by the iron sights seemingly performing better than the Aimpoint sight against the 1.5-second target in Trial 1, and seemingly worse than Aimpoint for that exposure time in Trial 2. It is unknown why this should be the case. Overall, there were no significant differences among sights.

Table 5

Hit Performance (day)

	Single	target	Double t	argets
Sight	Mean	SD	Mean	SD
Iron sights	.75	. 44	. 72	. 45
Tritium three-dot	.80	.40	.79	.41
Aimpoint	.76	.76	.75	.43

Time to Hit

Table 6 shows the mean and standard deviation for time to hit (in seconds) collapsed over subject, trial, range and exposure time. There are no significant differences among sights or any other main effects.

Table 6

Time to Hit (day)

Sight	Single target		Double targets	
	Mean	SD	Mean	SD
Iron sights	1.65	. 82	1.99	1.05
Tritium three-dot	1.65	. 90	1.91	1.07
Aimpoint	1.50	.60	1.88	1.05
Time to First Shot

The mean and standard deviation of the time to first shot collapsed over subject, trial, range and exposure time are shown (in seconds) in Table 7. Only those occasions when a shot was fired were used in the analysis. There are no significant differences among sights. There was a significant range effect and Trial x Range interaction. There was also a significant trial main effect for the double targets.

Table 7

Time to	First	Shot	(day)	
---------	-------	------	-------	--

Single	target	Double t	argets
Mean	SD	Mean	SD
1.41	. 39	1.15	. 35
1.34	. 39	1.06	.38
	Single Mean 1.41 1.34	Single target Mean SD 1.41 .39 1.34 .39 1.40 46	Single target Double t Mean SD Mean 1.41 .39 1.15 1.34 .39 1.06 1.40 46 1.10

Number of Shots Fired

The mean number of shots fired collapsed over subject, trial, range, and target exposure time is shown in Table 8. There were no significant differences among sights. There was a significant main effect for range and exposure time caused by the Aimpoint sight firing significantly fewer shots at the target exposed for 5 seconds than did the two other weapons. There is no explanation for this other than chance, since the Aimpoint sight is not significantly different than any of the other sights in any other category of performance. Four interactions were also determined. Range and/or target exposure time was in each interaction.

Table 8

Number of Shots (day)

	Single	target	Double t	argets
Sight	Mean	SD	Mean	SD
Iron sights	1.25	. 53	1.16	1.26
Tritium three-dot	1.25	. 63	1.15	1.22
Aimpoint	1.13	, 42	1.03	1.16

Subtest 2; Dusk

Because of test limitations, only three subjects were in each of four light condition bands. As a result, a repeated measures ANOVA was conducted in which three subjects were considered nested in each of the four light level conditions.

Hit Performance

Table 9 shows the probability of a successful engagement (hits per target opportunity) combined over subject, trial, light level, range, and exposure time. An ANOVA performed on these data determined a significant difference between ranges and between exposure times for both single and double target presentations. There were no significant differences among sights.

Table 9

	Single	target	Double t	argets
Sight	Mean	SD	Mean	SD
Iron sights	.59	. 49	. 63	. 49
Tritium three-dot	. 68	. 47	.66	. 47
Visible laser	.66	. 47	.66	. 47
Aimpoint	.73	. 4 1	.72	. 45

Hit Performance (dusk)

Time to Hit

The mean and standard deviation of the time to hit (in seconds) collapsed over subject, trial, range, exposure time, and light level are presented in Table 10. A significant main effect for range for the single target presentations, and a significant main effect for exposure time for double targets were determined. There were no significant differences among sights.

Table 10

Time to Hit (dusk)

	Single	target	Double t	argets
Sight	Mean	SD	Mean	SD
Iron sights	1.86	.96	2.12	1.06
Tritium three-dot	1.80	.78	2.18	1.12
Visible laser	1.78	.97	1.79	1.05
Aimpoint	1.59	.61	1.92	. 94

Time to First Shot

The mean and standard deviation of the time to first shot collapsed over subject, trial, range, light level, and exposure time are shown (in seconds) in Table 11. The ANOVA performed on these data determined a significant main effect for range and exposure time for single target presentations. For the double targets, there was a significant main effect for sight and range.

The post hoc analysis of these data determined that for the single target presentation, there were no significant differences among sights. For the double targets, it was determined that the iron and tritium three-dot sights took significantly more time to fire the first shot than did the visible laser sight.

Table 11

	Single	target	Double t	argets
Sight	Mean	SD	Mean	SD
Iron sights	1.70	. 52	1.38	. 46
Tritium three-dot	1.65	. 45	1,40	. 47
Visible laser Aimpoint	1.54 1.56	.56 .53	1.14 1.28	.53

Time to First Shot (dusk)

Number of Shots Fired

Table 12 shows the mean and standard deviation for number of shots fired at each target collapsed over subject, trial, light level, range, and exposure time. An ANOVA performed on these data determined a significant main effect for single target range and exposure time. There was a significant main effect for exposure time for double target presentations. There was also a Range x Exposure Time interaction for the single and double target data. There were no significant differences among sights.

Table 12

Number of Shots (dusk)

	Single	target	Double t	argets
Sight	Mean	SD	Mean	SD
Iron sights	1.31	. 65	1.16	1.29
Tritium three-dot	1.16	.46	1.09	1.17
Visible laser	1.24	.65	1.12	1.21
Aimpoint	1.10	.45	1.07	1.17

Subtest 3; Night

Hit Performance

Table 13 shows the mean and standard deviation of the probability of a successful engagement (hits per target opportunity) combined over subject, trial, range, and exposure time for nighttime.

The ANOVA performed on the these data determined that the sight, range, and exposure time main effects were significant for both the single and double target presentations. There were also four significant interactions involving range and exposure time for both the single and double target data sets.

A Scheffé's post hoc analysis for the single target data determined that significantly more targets were hit with the visible laser/NVG and IR/NVG systems than with the iron/NVG, Aimpoint, iron, and tritium threedot sights. This was also true for the double target data. Additionally, the IR/NVG system hit significantly more targets in double target presentations than did the visible laser system.

Table 13

	Single	target	Double t	argets
Sight	Mean	SD	Mean	SD
Iron sights	.33	. 47	. 34	. 48
Iron with NVG	.25	. 4 4	.26	. 44
Tritium three-dot	. 33	. 47	.33	. 47
Visible laser	.46	.50	. 42	.50
Visible laser with NVG	. 30	. 49	.63	. 49
IR laser with NVG	. 64	. 48	.67	. 47
Aimpoint	.31	. 47	. 39	. 49

Hit Performance (night)

Time to Hit

The mean and standard deviation of time to hit (in seconds) are shown in the Table 14 collapsed over subject, trial, exposure time, and range. There were no significant differences among sights or any other main effects.

Table 14

	Single	target	Double t	argets
Sight	Mean	SD	Mean	SD
Iron sights	2.06	.87	2.46	1.21
Iron sights with NVG	2.10	1.13	2.52	1.20
Tritium three-dot	1.89	. 47	2.24	. 86
Visible laser	2.20	1.08	2.15	1.04
Visible laser with NVG	1.77	.81	1.20	. 92
IR laser with NVG	1.80	. 85	2.18	1.15
Aimpoint	2.18	1.11	2.65	1.06

Time to Hit (night)

Time to First Shot

Time to first shot collapsed over subject, trial, range, and exposure time is shown (in seconds) in Table 15. The ANOVA determined that the only significant main effect was atcributable to the range of the single targets. There were no significant differences among sights.

Table 15

	Single	target	Double t	argets
Sight	Mean	SD	Mean	SD
Iron sights	1.87	. 64	1,73	. 67
Iron sights with NVG	1.74	.51	1.39	, 42
Tritium three-dot	2.12	. 62	2.17	.90
Visible laser	2.02	.88	1.84	.88
Visible laser with NVG	1.62	.59	1.39	.53
IR laser with NVG	1.60	.56	1.37	. 51
Aimpoint	1.94	. 69	1.89	. 60

Time to First Shot (night)

Number of Shots Fired

The mean and standard deviation of number of shots fired appear in Table 16 collapsed over subject, trial, range, and exposure time.

An ANOVA test established that sight, range, and exposure time main effects were significant for the number of shots fired for both the single and double target presentations. There were six interactions, each of which included range and/or exposure time.

A Scheffé's post hoc analysis of the single target data showed that significantly more rounds were fired with the systems that used night vision goggles (iron/NVG, visible laser/NVG, and IR/NVG) than with the visible laser and tritium three-dot sights. Additionally, significantly more shots were fired with the iron/NVG system than with the iron and Aimpoint sights.

A similar analysis of the double target data shows that significantly more shots were fired with the iron/NVG system than with any of the other sighting systems. Also, more shots were fired with the IR/NVG system than with the visible laser.

Table 16

Number of Shots (night)

	Sing⊥e	target	Double t	argets
Sight	Mean	SD	Mean	SD
Iron sight:	1.08	1.01	1.00	1.53
Iron with NVG	1.69	1.11	1.55	1.81
Tritium three-dot	.77	.69	.78	1.12
Visible laser	.74	.63	.75	. 99
Visible laser with NVG	1.24	.71	1.08	1.19
IR laser with NVG	1.30	.69	1.12	1.25
Aimpoint	. 89	.86	.85	1.23

DEBRIEFING RESULTS

During the debriefing, the subjects were asked which sight they would prefer for each of two modes of service use; carrying from day to day for extended periods of time was the first mode addressed, and tactical use was the second. Tactical use was defined as those times when specialized equipment could be brought to a situation in a vehicle and used when longer term comfort or practicality was not as important. The subjects were asked to choose their first, second, and third preference for day, dusk, and night use. The responses are shown in Tables 17 and 18.

For dut	cy carry	First choice	Second choice	Third cho: 3
	iron eighte		10	
DATITME	tritium three-dot	11	10	õ
	Aimpoint	0	1	0
DUSK	iron sights	0	10	0
	tritium three-dot	11	0	0
	visible laser	0	0	0
	Aimpoint	0	1	0
NIGHT	iron sights	0	10	1
	iron sights with NVG	0	0	0
	tritium three-dot	10	1	0
	visible laser	1	0	9
	visible laser with NVC	; 0	0	0
	IR laser with NVG	0	0	0
	Aimpoint	ΰ	0	0

Subject Preference, Duty Carry

Table 17

Table 18

Subject Freterence, Tactical Use

For ta	actical use F	inst choice	Second choice	Third choice
DAYTIME	iron sights		3	0
	trition three-dot	6	5	0
	Aimpoint	ŧ,	3	0
DUSK	irot sight:		6	Ŋ
	tritium throughd	4	4	4
	visible laser	;	4	6
	Aimpoint.	ŧ	3	2
NIGHT	iron sights	· ,	(,	0
	iion sights with sw		4	с)
	tritium threas by		4	5
	visible have:		:	3
	visible lases with h	iza j	;i	3
	10 Incor with 105	<u>}</u>	· .	0
	Aimp line			()

COMMENT: Some of the subjects felt that a good duty weapon would be a pistol that had both the tritium three-dot sights and the visible laser. They thought that the laser would not add to the bulk of the weapon to an objectionable degree, that the tritium sights would be used during daylight and sometimes at dusk, while the laser would be more effective during the darker part of dusk and at night. This concept, of course, was predicated on their opinion that the tritium out-performed the standard iron sights in daylight and at dusk (not supported by the data), and that the visible laser was better than iron sights during the conditions of dusk (data show that it may be faster in time to first shot), and the visible laser was better than the tritium sights at night (data suggest that it may achieve a higher probability of a successful engagement).

The subjects expressed concerns about the durability, reliability, and battery life of the sighting systems that were electronic. The Aimpoint sight could not be quickly removed so that the iron sights could be used if they failed. The laser beam systems did not interfere with the use of the iron sights, but the subjects seemed to be less confident in the reliability and durability of these devices than they were of the Aimpoint sight.

CONCLUSIONS

Subtest 1; Daylight

Subtest 1 revealed that there was no significant difference among iron, tritium three-dot, and Aimpoint sights in any of the measures that are considered to be important. Based on these data, there is no performance basis for selecting or rejecting one sight instead of any other for daytime use.

Subtest 2; Duck

During the transient conditions of dusk, there were no significant differences among sights in terms of hits or time to hit.

The visible laser sight is significantly faster (about 1/4 second) in mean time to first shot than either the iron or the tritium three-dot sight against double targets. There were no significant differences among sights in number of shots fired.

Subtest 3; Night.

At night, the probability of a surgessful engagement with either of the two laser beam-equipped weapons, when used with night vision goggles, is significantly higher than that of the iron, iron with NVG, tritium three-dot, and Aimpoint sights against both single and double targets. Against double targets, the IR laser with NVG is also significantly better than the visible laser.

The data suggest that the violable laber nighttime hit performance may fall close to midway between that it the ir n, from with NVG, tritium threedot, and Aimpoint sights, and the two laber beams when they are used with the night vision goggles. Subtest 3 shows no sight to have an advantage or be at a disadvantage in terms of time to fire or time to hit at night.

Significant differences among sights were observed in terms of number of shots fired. The iron sight with NVG condition caused a significantly greater number of shots to be fired than the iron, tritium three-dot, visible laser, and Aimpoint sights against single targets, and all those plus the visible laser with NVG and IR laser with NVG sights against double targets. The other two night vision-aided conditions, IR and visible laser with NVG, exhibited significantly more shots fired than the tritium three-dot and visible laser against single targets. The IR laser with NVG condition fired significantly more shots against double targets than the visible laser did without goggles. These data indicate that the mean number of shots fired at a target during these conditions, and with these weapons, is simply a function of being able to see the targets. For this reason, it does not seem useful as a discriminator of sight performance.

When all the data from the three subtests are considered, there does not appear to be any reason to believe that any particular sight will out-perform any other sight until nighttime (the equivalent of full moon or darker) levels of ambient illumination prevail.

For daytime duty use, there seems to be little reason to carry a pistol with other than standard iron sights, especially when the cost and maintenance of the other sights and the requirement for batteries for several of them are considered.

During conditions of full moon or darker, a pistol equipped with either a visible or an infrared laser beam, and used with the AN/PVS7B night vision goggles will significantly improve the probability of hitting a target. During those same conditions, a pistol equipped with a visible laser beam used without night vision goggles may provide a lesser, but material, improvement in hitting capability.

When there is a good chance that the duty pistol will also be used at night or during reduced levels of illumination during the day (as inside unlit buildings), a case might be made for carrying a pistol that has both standard iron sights and a compact visible laser beam projector. This would provide the shooter with some performance gain over iron sights in dim light without night vision goggles, and greatly improved performance with a familiar pistol when used with night vision goggles.

During the debriefing, the subjects indicated that they probably need two systems: one to be carried constantly during duty hours, and another for those occasions when a bulkier, heavier, more complicated system could be tolerated and would be more effective.

Based on the data produced in these evaluations, the weapon to be used during nighttime levels of illumination when bulk and complexity are less of an issue, should be equipped with a laser beam and used in conjunction with night vision goggles. To the extent that greater bulk is tolerable, a rifle or shotgun might be a better choice than a pistol for tactical scenarios because of the greater range capability of these weapons. Another field evaluation should be conducted to investigate this possibility.

RECOMMENDATIONS

This evaluation uncovered no performance basis for recommending a particular pistol sight from among those tested for people who must carry a semiautomatic pistol on their person as a regular course of duty (non-tactical use). In the same context, this evaluation did not find any justification for the added cost and complexity of any sight other than the standard iron sight as tested.

Visible laser beam projecting sights should be further investigated to see if one exists that adds no more bulk, performs at least as well, and is more rugged and reliable than the one evaluated in this report. If such a device is found, it should be field tested to determine its merit for tactical use.

For tactical use, a pistol equipped with a rugged and reliable laser beam projector (either visible or IR) and used in conjunction with night vision goggles is recommended.

An evaluation of other individual weapons such as rifles and shotguns equipped with laser beam projectors and used with night vision goggles should be conducted to see if such systems offer any advantages in comparison to pistols so equipped and employed.

REFERENCES

...

- Ellis, P. H., Hanlon, W. E., & Ortega, S. V. (1989). <u>An evaluation of the</u> <u>ability of riflemen to strike targets with ml6a2 rifles with and without</u> <u>optical sights in low light conditions</u> (Technical Memorandum 7-89). Aberdeen Proving Ground, MD: U.S. Army Human Engineering Laboratory.
- Kaprelian, E. K. (1988). <u>Telescopic sight design characteristics that improve</u> <u>the performance of a rifleman in low light conditions</u> (Technical Note 5-88). Aberdeen Proving Ground, MD: U.S. Army Human Engineering Laboratory.
- Rogers, J. R. (1988). <u>Magnification, illumination, and the extension of the</u> <u>combat day</u> (Technical Note 4-88). Aberdeen Proving Ground, MD: U.S. Army Human Engineering Laboratory.

٠

•

200012-021

APPENDIX A

DEBRIEFING NOTES

DEBRIEFING NOTES

The following are the notes taken during the subject debriefing:

ASSETS

IRON SIGHTS

LIABILITIES

Can't see them at night

Poor contrast with dark targets

Can't use with night vision goggles

Sturdy Compact Lightweight Training easy because of familiarity with sight Minimal maintenance

IRON SIGHTS WITH NVG

Can see the targets well with Can't focus the goggles on sights night vision goggles

TRITIUM THREE-DOT/IRON

Provides good contrast on all Dots can be seen at night when colors of target Cost effective for duty carry Might need holster redesign to May assist in iron sight alignment fix detection problem Quick to align on targetMore difficult to zero sightsMay work well with flashlightMay obscure target if too bright

VISIELE LASER

Excellent in combination with the tritium three-dot for use day and night Visible beam could be a deterrent to adversary Easy to use. Walk beam into target If you can see the target, you can hit it May be useful for analyzing training performance Less weight than Aimpoint Gets better as light is reduced

VISIBLE LASER WITH NVG

Accurate Fast

pistol is holstered

so weapon must be pointed

Can't use in daylight Battery life a concern Doesn't work well with flashlight Doesn't seem reliable or durable Bulky Observable by adversary Eye hazard to bystanders or other people Headlights wash out beam

Halo around dot at 50 meters tended to obscure target Can't use in daylight AN/PVS7B uncomfortable Field of view is limited with AN/PVS7B Can be seen by adversary Requires batteries Goggles often fogged

ASSETS

LIABILITIES

IR LASER WITH NVG

Can't be seen by adversary Fast target acquisition Excellent tactical weapon Could still use iton or threedot sights without goggles in daylight

AIMPOINT

Good in daylight and dusk Fast in daylight and dusk, especially more distant targets Might be good with more training

AN/PVS7B NIGHT VISION GOGGLES

Great night vision Harness seemed better than older type (AN/PVS5) Lighter weight than older type Didn't blank out as badly as the older type, recovered faster Had shorter warm-up time than older type

SMITH AND WESSON 5900 SERIES PISTOLS

Light recoil Fits small hands well Liked the single action trigger pull, compared to their Ruger revolvers Halo tends to obscure 50-meter target Limited field of view from AN/PVS7B Seemed to require a warm-up period Durability a question Battery life a concern Depends on both goggles and laser working Potential eye hazard to bystanders or other patrolmen Goggles often fogged

Heavy, pulky Balance poor Interferes with immediate action to clear weapon malfunction. Better with revolver Not good in the dark unless target is silhouetted or in headlights Slower on the 10-meter targets Took longer to learn to use Dot brightness adjustment did not have wide enough range Requires time to turn device on **Requires** batteries No practical backup sights If the pistol is not aligned on the target, there is no cue as to where the dot can be found

Bulky and uncomfortable Limited field of view Can't focus on sights and target at same time

Single action trigger pull is heavy
Malfunctions; double feeds and
fails to eject
Safety sometimes gets knocked on
when the slide is racked (model
659)
Decocking lever (model 5926) in way
of slide lock

APPENDIX B

and the second second

.

NIGHT VEHICLE HEADLIGHT TEST

.

NIGHT VEHICLE HEADLIGHT TEST

As an adjunct to the main evaluation subtests of this report, an evaluation of the performance of some of these sights during conditions simulating engaging targets illuminated by vehicle headlights at night was conducted on the last night available for shooting, after the main evaluation data had been collected.

The test fixture used to simulate a vehicle was a frame supporting two sets of high and low beam assemblies at the proper height, width, and relationship to replicate the driving lights (high beams) on a medium sized truck. The lights were powered by a set of batteries. The fixture was positioned slightly forward and to the right of the firing point, so that the shooter was approximately 4 feet to the left of the left headlight assembly and approximately 3 feet behind it.

The sights used were the same ones that had been tested in the Subtest 2: the i on, tritium three-dot, visible laser, and Aimpoint sights.

Each subject fired every sight. The subjects were randomly assigned a position in the firing order and fired a full target scenario twice.

Results

This test was conducted in the rain, and the headlight illumination had started to diminish because of weakened batteries before the test was concluded. These factors may have affected the results. For these reasons, the results are not considered to be sufficiently reliable for drawing definite conclusions. With the foregoing in mind, it should be noted that the data analysis indicated a significant difference (<.05) in only one instance; the probability of a successful engagement for the Aimpoint sight was significantly higher than that of the iron sights against single targets.

The results are shown in Tables B-1 through B-4.

Table B-1

	Single (target	Double t	argets
Sight	Mean	ŝD	Mean	SD
Iron sights	. 56	. 50	. 61	. 4 9
Tritium three-dot	.61	. 49	.59	. 4 9
Visible laser	. 62	. 49	. 61	.49
Aimpoint	. 78	. 42	.70	. 46

Probability of a Sucessful Engagement

Table B-2

Time 1	to	Hi	t
--------	----	----	---

Sight	Single Mean	target SD	Double Mean	targets SD
Iron sights	2.02	. 89	2.30	1.16
Tritium three-dot	1.83	.74	2.25	1.10
Visible laser	1.88	.94	2.07	1.11
Aimpoint	1.93	.84	2.12	1.00

Table B-3

Time to First Shot

Sight	Single Mean	target SD	Double Mean	targets SD
Iron sights	1.77	. 46	1.43	. 42
Tritium three-dot	1.74	.45	1.42	.39
Visible laser	1.74	.63	1.43	. 61
Aimpoint	1.67	.55	1.30	. 47

Table B-4

Number of Shots

Sight	Single Mean	target SD	Double Mean	targets SD
Iron sights	1.40	.77	1.24	1.38
Tritium three-dot	1.21	. 50	1.23	1.40
Visible laser	1.22	.65	1.10	1.22
Aimpoint	1.21	. 64	1,17	1.27

.

AFPENDIX C

.....

•

.

.

.

TARGET PRESENTATION SCENARIOS

TARGET PRESENTATION SCENARIOS

,

٠

.

•

94	<u>c</u>	50 m- RC 5 12,13	10m-L 5 2	10m-C 3 3	25m-RC 5 8,9	25m-C 1.5 8	10m-RC 3,4	50m-LC 3 11,12	25m-LC 5 7,8	10m-LC 3 2,3	50m-C 1.5 12	
;		10m-L 1.5 2	25m-L 3 7	50m-LC 3 11,12	50m-C 3 12	50m-R 5 13	25m-i 1.5 7	10m-L 5 2	10m-RC 5 3,4	50m-C 1.5 12	25m-1. 3 '1	
;	<u>-</u>	50m-L s	25m-C 1.5 8	50m-R 5 13	25m-R 1.5 9	10m-RC 5 3,4	10m-LC 5 2,3	25m-C 1.5 8	50m-L 1.5 11	25m-LC 5 7,8	10m-1JC 3 2,3	
, ,	77	25m-RC 3 8,9	25m-RC 5 8,9	1Cm-L 5 2	10m-LC 3 2,3	50m-LC 3 11,12	κ	8 - L 6 6	10m-LC 3 2,3	1Cm-L 1.5 2	25 # -R 5	
:	1	50m-LC 3 11,12	50m-R 1.5 13	25m-IC 5 7,8	25m-C 3 8	25m-RC 5 9,9	0 10 10 10 10 10 10 10 10	1 m et 1 m et 1 c 1 m et 1 c 1 c	25r-RC 3 8,9	25m-1 5 7	ាំ ហ ក ខ ហ	
MAG CHG					- °;		с <u>.</u> С	6.5	6.5	9 ° °		
:		10m-C 5 3	Ся-С а	10т-я 1.5 4	50m-R 1.5 13	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	25m-C 5 8	25	501-C 13-5 13-5	25m-RC 3 8,9	25 0 - C 5 7 , 8	••• SI
	•	25m-R 1.5 9	50m-LC 5 11,12	50m-C 3 12	10a-1 5 2	508-0 3 12	00 10 10 10 10 10 10 10 10 10 10 10 10 1	25:1-1:	ま 1:0 で の	: 0 -3C 5 3, 4	108-RC 5 8,4	VEN EVEN
	80	50m-C 1.5 12	25m-LC 3 7,8	10m-10 3 2,3	.) ドロ・・ . ・	204-10 3 2,3	0 F. (2) (+ O (-) 10	10ຕ-RC ົ 3, 4	к Е е е о	50	50m-RC 3 12,13	DELAY HUT
,	~	10m-RC 5 3 , 4	lCm-RC 3.4	2 2 2 2 2 - 2 2 - 2 2 - 7 2 - 7 2 - 7 2 - 7 2 - 7 2 - 7 2 - 7 2 -	50m-RC 3 12,13	1 (5) (5) 1 (5) (5) 1 (5	9 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	ため 1 → 65 上 + 1 ← つ 10	U - 75 - 95 11: 11: 11: 11: 11: 11: 11: 11: 11: 11	1-#00 5-1-	# 5 V E C	3-350000
	9	25m-C 3 8	50m-C 5 12	25 7 -30 3 8,9	25-8-5 5-5-1-	25 0 -8 5 9	11 9 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	20 7 -10 5 2,3	50m-341 5 12,13	258-C 3 8	25 6-3 0 3 8,4	
NAC						4: • • •	- 9			۰. · و		
	2	10m-LC 3 2,3	50-RC 3 12,13	253-E 5 7	004-10 0 0 1 1 1 1	й Е М Ч С		50-50 5 17,13	(1) 1, i∂ 1, i∂ 1, i∂ 1, i∂ 1, i∂ 1, i 2, i 2, i 2, i 2, i 2, i 2, i 2, i 2	U Horm C	τ 1 Γ. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	
	۲. ۲.	25m-LC 5 1,8	101-3 1 5 2 5	108-80 5 3,4	107-30 5 3,4	0 -	U 1 m s 1 m s 1 m s 1 m			и 1 п. 1		
	≁ 	50 m-R 3 13	10m-LC 5 2,3	50m-RC 5 12,13	10C 1.5 3		£ £ € € 	20 1 20 20	j ne		U Hormon C	
	~	10m-x 3	258-8 5 9	25m-X 3 9	25m-10 3 3,8	son-ac 5 12,13	5.7 8 -80 5 52,13	28-80 26-80			.) 1 m 1 m 1 m 1 m 1 m	
	;	25 n- L 5	ц- ноу - ноу - ноу	25m-C - 5 - 8	н Селт О	5-401 				йн у 201		
	EVFINT :	TABLE 1: TINE: TARGET NO.	TABLE 2: TIME: TARGET NO.	TABLE 3: TIME: TARGET NO	 10 Element 10 Element	N CENNI S CANAL	13 I SWI 19MI I SWI I SWI	on tessyt	ta munita ta munita ta munita	CN ⊂ EDSACL HEANT T	DN 1 CHAN	

APPENDIX D

٠

.

•

.

LIGHT READING DATA

LIGHT READING DATA

AMBIENT CONDITIONS DURING FIRING

				LOW LIG	ANT STUDY		
	Start	Light	Stop	Light	Phase of	Cloud	
Date	time :	level	time	level	Moon	Condition	Remarks
NSEP 91	1937	1.500	1934	1 0 980	New moon . pet show	Mostry claury	۱
	1944	.400	1946	1279			
	1951	.120	1953	1,083	1	nostors showing	·
	2000	.030	2003	1.025	1		1
ISLA	1937	1,300	1939	1,906	1	porthy church	·
	1943	.400	1945	1.248	1	·	·
	1948	.120	1951	1.0785	1		·
	1956	.030	1958	1.0228	1		1
12 SEP91	1937	1,500	1940	1,840	Kinton showing	Parth ovor last	
	1943	.400	1945	1.257	men ben nd MR	bet right	1
	1448	.120	1951	1.0761	1	,	1
	1951	.030	1950	1.0212	1	1	1
1350P91	1981	1,500	1433	1,938	# man	mosthy clouch	mon not showing
	1937	.400	1934	1.258	1	ካ	;
	1942	1.120	1944	1.0B11		Frony clouchy	1
	1950	,080	1902	1.0225		5	
16 SEP 91	1928	1.800	1980	1,897	claur shies	14 mon sharing	
	1934	.400	1936	1.254			
	1934	1,120	1442	1.0745	1/2 monshowing		· · · · · · · · · · · · · · · · · · ·
	1440	/ .030	1490	1.0251			
179EP41	1919	1.4453	1421	1.951	1/2 moon	von claudy	Siam min
	1927	.3933	1924	1.265		· · · · · · · · · · · · · · · · · · ·	
	1931	/ .1133	1935	1.0664		;	
	1941	.0283	1443	1.0204	·	Work Jands	lightning lots of it.
18 SEP91	1922	1,500	1924	1.938	1/2 mon showing	Parthy clouch	ground for humid, for word of
	1928	,400	1930	/ .2.55		mastin cloudy	range
	1954	1.120	1936	1.075		; 	more covered by buds share hart no
	1939	1.030	1942	1.0144		:	
19.55P91	1416	1.4933	1418	/ 1.200	124 not inawn	Warb 4110rer	overcist, raining finished
	1924	1.3983	1924	1.252			ruin Jorliny ungin
	1921	1133	1933	1.0894			
	1438	1.0233	1940	1 .0134	1		
21259991	1984	1,600	1426	1,434	14 men shown	purtly cloudy	
	1436	1	1938	1.082			
		/	· · · · · · · · · · · · · · · · · · ·	/			
		/		-',			· · · · · · · · · · · · · · · · · · ·
		/		/		· · · · · · · · · · · · · · · · · · ·	
		! <u> </u>		-/			
	·	′/ <u></u>	; <u> </u>			¦	· · · · · · · · · · · · · · · · · · ·
		/		/,	· · · · · · · · · · · · · · · · · · ·		
·	i	/	· '	/	i	i	·

Notes:

·····

.

•

•

•

.

.

i

slarting points:	w/ plustic cover on
LL 1= 1.50 f-c	probe 1= 1.4935
2= ,40	2 - 3433
3= .12	3= 1133
4 ,03	4: .0233

AMBIENT CONDITIONS DURING FIRING

;	Start	Light	Stop	Light	Phase of	; Cloud	1
Date	time :	level	time	level	Moon	Condition	Remarks
SEPAL	1750 /	1.500	1750	0.485	new men	cleur skies	
	1756	.400	1258	258	1		
	2002	120	2005	,OBII			1
	2011	.010	2010	0246		· ;	
ARPOI	1489	.080	100/	0245	(1944) (11) Silves	moth church	
	0005	.019	2006	/ 0%		chine Shawing	
	2007		eng	1.0/35	and and shout of	Sivia Silenting	
		()/27	2001	1 0122	1	· /	
		014	2013	/		·;	
;	4001		2017		,	·	1
	2021		2023		;	· ;	· · · · · · · · · · · · · · · · · · ·
;	2021		2027		¦	·¦	
¦	2032		2035	.0106	¦		
			2037		¦	·;	
	2011_	-000	2045	<u>-0102</u>	;	·	
	2045	0104	2040	0104	¦	·	
	2044	,10104	205/	/ <u>0104</u>		·	i
DELM	2026	.0151	2028	1.0129		1	·····
	2030 /	.0128	2033	.0127	!	ata a showing	
	2035	.0126	2037	.0126			·····
	2042	0125	2004	.0124			· · · · · · · · · · · · · · · · · · ·
	2049	.0128	2052	0122			·
[[]	2034	.0122	2054	/ <u>.0121</u>	·		· · · · · · · · · · · · · · · · · · ·
	2058	.0121	2101	1.0120		· · · · · · · · · · · · · · · · · · ·	• •
	2105	.0119	2/05	DII9	· · · · · · · · · · · · · · · · · · ·	! <u></u>	1 *******
	2107/		2109	<u>/ .0119</u>	1 1	!	
	2111	,0119	2113	1 ,0119	1		
	<u></u> /	,0119	2.19	/ .0118		1	1
	2121	,011B	21 24	1,410	!	1	
	2128	10117	2130	1.0117	1 1		
	2132	.0117	2.134	1.0110	1		
	2136	<u></u>	2138	1.0117			
150941	2017	.0110	2019	1.010	1 1 1	very change	no store, nummy
	2020	.0110	2022	1.0110	mm net newing	,	· ····································
	2027	,0110	2029	1.0109			
	2031	.0109	2033	1.0104	,	istors virble	
	2035	.0109	2038	8410.1	1		• • • • • • • • • • • • •
	2034	,0109	2041	1,004	1		· · · · · · · · · · · · · · · · · · ·
	2043	,010A	20+	1 DIDE	·	· ······ ···· ···	· · · · · · · · · · · · · · · · · · ·
	20-	1,0109	2058	1.0104	·	i has meine	1
	20=4	DIPB	201			. •. <u>•. •. •.</u>	· · · · · · · · · · · · · · · · · · ·
	/			1 Mar 1 1 1 1			•
	2105	0100	2105	/ DIOB			·····

NIGHT SHOOT

.

.

٠

•

Notes:

......

.

AMBIENT CONDITIONS DURING FIRING

					3.,007		
	Start	Light	Stop	Light	Phase of	Cloud	
Date	time	level	¦ time	level	Moon -	Condition	Remarks
ISEPGI	2107	0.0108	2109	1.0108			
	2111	.0100	2113	1.0108	1	1	
	2115	1.0108	2117	1.008	,,,,,,,,,	¦	
	2121	0108	2123	8010			
125EP 41	2011	1.0074	2013	1,0070	Amon showing	clourthies	
	2014	.0068	2017	.0066	·	stars showing	
	2019	.0064	2022	,0063	l	۱ <u></u>	
	2023	.0062	2025	1.0062	·	! <u></u>	
	20.26	0060	2029	1.0060			
	2030	.0060	2033	1.0060			
!	2034	.0056	2036	1.0056			
·	2030	.0051	2040	/ <u>.0058</u>			·
	2042	.0050	2044	1.005E			
	2046	.005B	2048	1.058			
	2003	.0058	2056	8505.			
	2057	.0098	2009_	/_ <u>@ #2</u> _			
	2102	,0007	2104	1.0058			
	2107	0057	2109				
	2///	/0097	2/15	/ <u>.@57</u>			
135EP41	2007	.0133	2011	1.0132	4 man not hours	Und ull over	inustars, nomen showing
	2013	<u>.0131</u>	2015	1.0130		·	nothing shewing
! — — —	2017	.0130	2019	1.0130			
	2020	.0129	2012	.0129			
	2023	1.0120	1025	1.0127			
	2027_	1.126	2029	,0126			
	2001	.0126	2035	1.0126			
	2034	.0126	2036	1,0126			
! ———	2001	,0/25	2055	1.0125			
¦	2034	,0126	2056	1.0126			
!	2058	.0126	2100	1.0126			
¦ —— ———	2101	.0126	2105	1.0126			· · · · · · · · · · · · · · · · · · ·
¦	2101	.0125	2104	,0125			
¦	21)9	0120	2110	1.0128		Mud lesining	spars by inning to show
¦			2120	10119			· · · · · · · · · · · · · · · · · · ·
	221_		2125	/ 10/17	i 	dannay clands	1.27915 ruible
16.5E141	2117	.0158	2119	1.0188	12 mory showing		tew stars hewing
;	2120	<u>6610,</u>	2122	1.0154			
·	2124	0194	2126	1.0129		· · · · · · · · · · · · · · · · · · ·	
	2127	0189	2129	1.0160		 	
	2131	,0160	2134	1.0160			a I I and a second
	2155	,0160	E137	1.0160		·	

NIGHT SHOOT

Notes:

• • •

-

AMBIENT CONDITIONS DURING FIRING

			^	light si	HOOT		
	Start	Light	Stop	Light	Phase of	Cloud	
Date	time	level	time	level	Moon	Condition	Remarks
KSEP91	2139	1.0159	41	0160	Keman shawing	Parth cloudy	·
	2142	1.0160	2144	.0161			
	2146	1,0161	2148	.0161	}		
	2149	.0161	2151	.0161	1		
	2155	.0161	2155	10161	1	1	1
	2157	.0161	21.99	.0161	1	!	
	2207	.0159	2209	.0199	1	· · · · · · · · · · · · · · · · · · ·	
	2211	.0159	2213	.0159		· · · · · · · · · · · · · · · · · · ·	·
	2214	.0189	2217	.0159			! 1
	228	.0159	2220	.0160		·	·
	8221	.0160	2223	.0160		skip drainy	more stars visible
	2225	0159	2227	<u>.0154</u>			· · · · · · · · · · · · · · · · · · ·
1858P91	2005	.0054	2007	,0034	12 man would	Land highton	from a distance durk charde one
	2006	<u>.0034</u>	2011	.0034	·		ranye.
	2014	,0085_	2017	. <u></u>			
	2018	<u>.0039</u>	2020	1034		-! <u>-</u>	apartering
	2021	, 10034	2024	.0038	!	·!	Warming a secondes.
	2025	.0037	2027	,0036	·		
	2028	.0035	2030	.0037		•	
	2021	<u>.0038</u>	2035	<u>.0078</u>	¦		·
	2035		2031	.0090	·	·	¦
;	2055	10024		2004	¦	- ¦	!
;	2057	-0074 -0074	201	<u>.0094</u>	;	- ¦	;
	2102	0024	2100	,000	¦		
	2107	1 2026	2112	10000	¦	, work yours with	internet
	2113	1 0020	AIIO	1020		-;	
		/	and Achine	1.0020		-;	
IGSEPAI	2003	1.0023		georgen_	Studebouise	lande (all over	1 A share a farmer la
		/		/	THOI SHARING	CIONDECHTOVER	durk fipe of classes
		/		/			CONTRACTOR
	2019	1.0015	2021	0015		· ;	NO STUTE ENGLINE
	2022	.0015	2024	1.0015	;	- ;	
:	202.5	1.001G	2027	1.0014			removed whether over probe
!	2028	1:0020	2030	1.0019	;	·	i i i i i i i i i i i i i i i i i i i
;	1	/		/			
!		/	-	/	·		
!		/		/	1	;	
		/	۱ <u></u>	/		¦	
!	¦	/	·	/	:		· · · · · · · · · · · · · · · · · · ·
	·	/		/	1		1
<u> </u>	·	/				·	·
i	;	/		/			· · · · · · · · · · · · · · · · · · ·

Notes:

APPENDIX E

ę

it i

i

ŕ

. ·

VOLUNTEER AGREEMENT

	VOLUNTEER AGREEMENT AFFIDAVIT
	PRIVACY ACT OF 1974
Avmortly:	10 USC 3013, 44 USC 3101, and 10 USC 1071-1087.
Principle Purpose	: To document voluntary participation in the Clinical Investigation and Research Program. SSN and home address will be used for identification and location runness
Routine Uses:	The SBN and home address will be used for identification and locating purposes. Information derived from the study will be used to document the study, implementation of medical programs, adjudication of claims, and for the mandatory reporting of medical conditions as required by law. Information may be furnished to Fuderal. State and local agencies.
Disclosure:	The furnishing of your SSN and home address is mandatory and necessary to provide identification and to contact you if future information indicates that your health may be adversally affected. Failure to provide the information may preclude your voluntary participation in this investigational study.
والمراجع بمراجع بمراجع	PART A(1) - VOLUNTEER AFFIDAVIT
Volunteer Subjec	sts in Approved Department of the Army Research Studies
Volunteers unde which is the proximat	er the provisions of AR 40-38 and AR 70-25 are authorized all necessary medical care for injury or disease to result of their participation in such studies.
١,	\$\$\$N ;
having full capacity to	o consent and having attained mybirthday, do hereby volunteer/give consent as legal
representative for	to participate in An Evaluation
of Several	Personal Weapon Sighting Systems During Daytime, Dusk, and Night
Ambient Lig	ht Conditions.
under the direction of	Mr. Paul H. Ellis
conducted at The	U.S. Army Human Engineering Laboratory M-Range Test Facility, APG,
and means by which to me by Mr. Paul H	it is to be conducted; and the inconveniences and hazards that may reasonably be expected have been explained
m. raui n.	EIIIS, (410) 278-3930
I have been given an and complete satella related injury, I may () opportunity to ask questions concerning this investigational study. Any such questions were answered to my full liction. Should any further questions arise concerning my rights/the rights of the person I represent on study- contact.
- Kirk U.S.	Army Health Clinic, APG, ND (410) 278-4088.
I understand that I r withdrawn from the volunteer) or reque examinations are not will involve no panal?	may at any time during the course of this study revolue my consent and withdraw/have the person i represent study without further ponality or loss of benefits; however, lithe person i represent may be required (mistary sted (civilian volunteer) to undergo certain examination if, in the opinion of the attending physician, such costary for my/the person i represent's health and web-being. My/the person i represent's refusal to participate by or loss of benefits to which I am/the person i represent is otherwise entitled.
	PART A (2) · ABSENT VOLUNTEER AFFIDAVIT (MINOR CHILD)
I,	SSN having full
capacity to consent a	and having attained my birthday, do hereby volunities for
	lo participaté in
	(Research Study)
under the direction o	x
conducted at	
	Neme of institutions

(Continue on Reverse)

DA FORM 5303-R, MAY 88

a president services and the service of the service service and the service of the service of the service of the

•

.

•

•

n; etc

PREVIOUS EDITIONS ARE OBSOLETE

ವರ್ಷಕ ಹರಿತಕ ವರ್ಷದ ಮಹಿತ್ರದ ಸ್ಥಾನಸ್ಥಾನಗಳು ಸ್ಥಾನಗಳು

PART A(2) - ASSENT VOLUNTEER AFFIDAVIT (MINOR CHILD) (CONFL)

The implications of my voluntary participesor; the nature, duration and purpose of the research study; the methods and means by which it is to be conducted; and the inconveniences and hazards that may reasonably be expected have been explained to me by

I have been given an opportunity to ask questions concerning this investigational et dy. Any such questions were answered to my full and concerning my rights I may contact.

Plane, Address, and Phone Mamber of Hospital (Include Area Coded)

I understand that I may at any time during the course of this study revoke my assent and withdraw from the study without further penalty or loss of banalitic, however, I may be requested to undergo certain examination it, in the opinion of the standing physician, such examinations are necessary for my health and well-being. My relusal to participate will involve no penalty or loss of benefits to which I am otherwise entitled.

PART 8 - TO BE COMPLETED BY INVESTIGATOR

INSTRUCTIONS FOR ELEMENTS OF INFORMED CONSENT: (Provide a detailed explanation in accordance with Appandix &, AP 40-38 of -/R - 70-36.)

You were presented a pretest briefing which verbally explained your involvement in this evaluation of several pistol aiming devices, that is being conducted to assist the U.S. Border Patrol in better equipping their agents. During the pretest briefing, range safety procedures and class III a laser safety precaution were explained to you. Afterwards, you were given the opportunity to ask questions relative to any aspect of your participation in this evaluation, and these were answered to your satisfaction before you volunteered to become a test participant.

To reiterate, this evaluation will require that you fire 9mm semi-automatic pistols equipped with several different aiming devices (i: n sights, luminescent 3 dot, unity telescope w/red dot reticle, visible laser beam, and IR laser beam) sometimes in conjunction with AN/PVS night vision goggles. The evaluation will be conducted in the afternoon, at dusk, and after dark, and require your presence at the U.S. Army Human Engineering M-Range between the approximate hours of 1300 to 2200. The evaluation will start on 9 September and continue through 20 September 1991 exclusive of weekends.

You will be firing at pop-up silhouette targets at 10, 25, and 50 meters. The targets will be exposed for 1.5, 3.0, and 5.0 seconds. You will be trained in the proper method of using each sighting system and given practice in their use before firing for record. A typical firing sequence will be as follows:

At your assigned firing point you will be handed an unloaded weapon and a magazine with 15 rounds in it. You will be instructed on how to engage the targets, and when ready, will be given a 21 target scenario to shoot at. You will be given two opportunities to reload during each scenario. After you have been presented the last target you will be told to remove the magazine, clear the pistol, and put it in safe condition. (CONT'D ON PAGE 3)

testment record.								
Romature of Volumteer	DATE	Signature of (a minor)	LEGAL QUARDIAN <i>B</i> i voluniser is					
PERMANENT ADDRESS OF VOLUNTEER	TYPED NAME O	TYPED NAME OF WITHESS						
	SIGNATURE OF	WITNESS	DATE					

REVERSE OF DA FORM 5303-R, MAY 88

PART B OF THE VOLUNTEER CONSENT AGREEMENT (Cont'd)

An Evaluation of Several Personal Weapon Sighting Systems During Daytime, Dusk, and Night Ambient Light Conditions.

The conduct of the firing at M-Range will be in strict accordance with the established HEL standard safety operating procedures. Participation in this evaluation will be no more hazardous than your normal small arms practice sessions.

Your firing performance in this evaluation will be held in confidence, will not become part of your personal Border Patrol file, and will be released to no one. Your name will not appear in any report or other public disclosure of the test results.

APPENDIX F

.

•

STATISTICAL ANALYSIS

STATISTICAL ANALYSIS

Table F-1

Source	SS	df	MS	F	₽
TP	6.91	11	0.63		
sight (sight x tp)	0.35 2.21	2 22	0.17 0.10	1.72	ns
trial (trial x tp)	0.12 1.34	1 11	0.12 0.12	1.03	ns
range (range x tp)	29.67 3.89	2 22	14.83 0.18	83,99	<0.05 **
xtime (xtime x tp)	7.61 2.16	2 22	3.81 0.10	38.71	<0.05 **
sight x trial (sight x trial x tp)	0.33 2.59	2 22	0.17 0.12	1.41	ns
sight x range (sight x range x tp)	0.24 4.32	4 4 4	0.06 0.10	0.61	ns
sight x xtime (sight x xtime x tp)	0.35 4.98	4 4 4	0.09 0.11	0.77	ns
trial x range (trial x range x tp)	0.69 2.34	2 22	0.35 0.11	3.26	ns
trial x xtime (trial x xtime x tp)	0.12 2.03	2 22	0.06 0.09	0.65	ns
range x xtime (range x xtime x tp)	3.86 5.48	4 4 4	C.96 0.12	7.75	<0.05 *
<pre>sight x trial x range (sight x trial x range x tp)</pre>	C.14 4.27	4 4 4	0.03 0.10	0.36	n <i>s</i>
sight x trial x xtime (sight x trial x xtime x tp)	0.88 3.42	4 4 4	0.22 0.03	2.83	<0.05 **
sight x range x xtime (sight x range x xtime x tp)	0.37 8.85	8 58	0.05 0.10	0.46	n <i>s</i>
trial x range x xtime (trial x range x xtime x tp)	0.30 5.56	4 4 4	0.07 0.13	0.59	n.5
sight x trial x range x xtime (sight x trial x range	0.45 8.92	8 8	0.06 0.10	C.56	ns

Subtest 1. Analysis of Variance for Number of Targets Hit (single targets)

*Greenhouse-Geisser correction was done, but results were still significantly different.

**Sphericity was not violated.

.

.

.

p <0.05 indicates a significant difference; ns = not significant</pre>

Source	SS	df	MS	F	p
tp	5.34	11	0.49		
sight (sight x tp)	0.32 1.82	2 22	0.16 0.08	1.91	ns
trial (trial x tp)	0.01 0.97	1 11	0.01 0.09	0.06	ns
range (range x tp)	19.70 2.44	2 22	9.85 0.11	88.77	<0.05 **
xtime (xtime x tp)	1.17 0.34	1 11	1.17 0.03	38.47	<0.05 *
sight x trial (sight x trial x tp)	0.32 1.84	2 11	0.16 0.08	1.93	ns
sight x range (sight x range x tp)	0.13 4.31	4 4 4	0.03 C.10	0.34	ns
sight x xtime (sight x xtime x tp)	0.22 2.17	2 22	0.11 0.10	1.11	ns
trial x range (trial x range x tp)	0.01	2 2 2	0.01 0.05	0.11	ns
trial x xtime (trial x xtime x tp)	0.13 0.77	1 11	0.13 0.07	1.87	ns
range x xtime (range x xtime x tp)	0.46 0.93	2 22	0.23 0.04	5.48	<0.05 **
sight x trial x range (sight x trial x range x tp)	0.58 4.00	4	0.15 0.09	1.60	ns
sight x trial x xtime (sight x trial x xtime x tp)	0.13 0.79	22	0.06 0.04	1.79	no
sight x range x xtime (sight x range x xtime x tp)	0.32 4.46	4 4 4	0.08 0.10	0.79	ns
trial x range x xtime (trial x range x xtime by tp)	0.22 0.95	2 2 2	0.11 0.04	2.54	ns
sight x trial x range x xtime (sight x trial x range x xtime x tp)	0.30 1.78	4 4 4	0.07 0.04	1.94	ns

Subtest 1. Analysis of Variance for Number of Targets Hit (double targets)

*Greenhouse-Geisser correction was done, but results were still significantly different.

**Sphericity was not violated.
 p <0.05 indicates a significant difference
 ns = not significant</pre>

0.8	• • • •		i.	ą
		·····		
1 Š		й, 4 <u>е</u>		
2.42	1° a. #	1.21	3.65	ns
$7.2^{\frac{6}{2}}$	22	0.33		
1.59	!	1.59	5.08	ns
	; .			
1. 1:1			0.58	ns
÷		• • • •	1.50	n
· . • .				
 		Č. J	i 52	1.:
1. A 1.	•	·		
	÷		2.42	n
· · . * :				
2 . h	•;		1.74	n
· · · · ·	-1-1	1.36		
1.114		1. 1 . 1	2.00	n
<i>t</i> . 1	, :			
1.1	• •	· · · ·	2,49	Ľı
• •				
÷	•.			n
· · · ·		•		
	.,	. * *	3.41	n
. : .	÷	. • *		
'		. :		r:
· · ·	٠.			
			1,4 ;	f.
,				::
			•	:.
				2.3 4.4 4.4 2.4 2.42 2.3 3.21 3.65 7.29 2.3 2.33 3.65 1.59 2.33 3.65 3.46 1.59 5.08 3.46 1.59 5.08 3.46 1.59 5.08 3.46 1.59 5.08 3.46 1.52 1.52 1.4 1.11 2.58 1.4 1.11 1.50 1.4 1.11 1.50 1.4 1.11 1.50 1.4 1.11 1.50 1.11 1.51 1.52 1.12 1.11 1.52 1.1

Subtest I. Analysis of Volance or Time to Hit (Single targets)

n stand a standard a s Bana a standard a standa

٠

•

-

. . .

r

	Taule F-4
Subtest 1.	(Analysis of Variance for Time to Hit (double targets)

Source	s		2:3	F	р
tp	F.06	11	0.28		
sight (sight x tp)	0.89 13.77	2 22	0.45 0.63	0 72	ns
trial (trial x %;)	U.00 M.V3	1 ::	0.00 0.70	0.00	ns
range (range X t);		<u>.</u>	0.16 0.52	0.32	ns
xtika) (xtika) stij	. • :	1 13		2,41	ns
right withle. (sight withlel with)	- î 		$\frac{1}{2}$ $\frac{1}{2}$	0.10	ns
sight a ratao (Sight a ratao a tra		4	0.71 0.18	1.22	กร
sight x xtick (cight x xtick tic		•	$1 \leq C$	1.28	ns
trial Alterys (trial Alterator Alter	•	•		2,09	ns
Crial X Roberts (Crial R Loberts Cr		•		9,35	ns
omano v xtot. (tampe x aties = tj)	144 114		· · · · · ·	1. f. (113
nlight in the batter states (Light is the batter states is the		i.	1.1.9	111	5 5
ologiato en taron de estados Calingiato en taronio o contra o o tigos	- 	•		1.41	113
light maranak konstruction (11 july konstruction maranak konstru			.;	5.49	n .:
ta (al constitue de latoria) (ta tracia managería o tracola de			. 1 1	••••	fi
(1) All the description of th		:			1.5

···· ··· ··· ···

.

Source	\$\$	df	MS	F	p
TP	11.34	11	1.03		
sight (sight x tp)	0.30 2.69	2 22	0.15 0.12	1.22	ns
trial (trial x tp)	0.53	1 11	0.53 0.21	2.48	ns
range (range x tp)	20.17 3.41	2 22	10.08 0.16	65.05	<0.05 *
<pre>xtime (xtime x tp)</pre>	0.69 2.43	2 22	0.35 0.11	3.14	ns
<pre>sight x trial (sight x trial x tp)</pre>	0.21 3.45	22	0.10 0.16	0.67	ns
sight x range (sight x range x tp)	0.15 2.13	4 4 4	C.04 0.05	0.78	f is
sight x xtime (sight x xtime x t_{P})	0.78 5.92	4 4 4	0.20 0.13	1.45	ns
trial x range (trial x range x tp)	1.30 J.75	22 22	0.19 0.03	5.66	<0.05 /
<pre>trial x xtime (trial x xtime x tp)</pre>	0.31 2.90	2.	0.15 0.13	1.17	r i S
<pre>range x xtime (range x stime x tp)</pre>	1.28 3.52	4 44	0.32 0.08	4.01	ri C
<pre>sight x trial x range (sight x trial x range x tp)</pre>	$\begin{array}{c} 0.2 \\ 1.94 \end{array}$	4 4 4	0.07 0.04	1.56	n s
sight x trial x xtime (sight x trial x xtime x tp)	0.31 3.12	4 14	0.08 0.07	1.09	11.8
sight x range x xtime (sight x range x xtime x tp)	$\frac{0.17}{22.17}$	છે. ન પ્	0.02 1.14	0.36	Γ
trial x range x xtime (trial x range x xtime x tp)	5.29 4.14	i ii	2,22 3,19	n a an	n .3
sight x trial x range x xtime (sight x trial x range x 	9.00 10.00	11 4 12	.:	2.78	n.a

Subtest 1. Analysis of Variance for Time to First Shot (Single targets)

"Greenhouse-Geisser durrential was take, but the site were still Significantly different.

 $p_{\rm c}$ 40.05 indicates a significant difference no son to similify set

··· · · ·

.

.

-

Source	SS	df	MS	F	p
tp	10.37	11	0.98		···· _, _
sight (sight x tp)	0.53 6.42	2 22	0.26 0.29	0.90	ns
trial (trial x tp)	2.60 2.12	1	2.60 0.19	13.47	<0.05 *
range (range x tp)	24.68 3.63	2 22	12.34 0.16	74.90	<0.05 *
xtime (xtime x tp)	0.03 0.61	1 11	0.03 0.06	0.58	ns
sight x trial (sight x trial x tp)	0.37 3.64	2 22	0.18 0.18	1.11	ns
sight x range (sight x range x tp)	0.71 4.27	4 4 4	0.18 0.10	1.82	ns
sight x xtime (sight x xtime x tp)	0.19 1.09	2 22	0.09 0.05	1.87	n s
trial x range (trial x range x tp)	0.89 1.52	2 22	0.45 0.07	б.49	<0.05 ·
trial x xtime (trial x xtime x tp)	0.03 0.94	1	0.03 0.09	C.36	ns
range x xtime (range x xtime x tp)	0.03 1.26	2 2.2	0.02 0.06	0.28	no.
sight x trial x range (sight x trial x range x tp)	0.21 3.04	4 44	0.05 0.07	0.77	ns
sight x trial x xtime (sight x trial x xtime x tp)	$\begin{array}{c} 0.31\\ 1.41 \end{array}$	2 22	0.16 0.06	2.45	r.s
sight x range x xtime (sight x range x xtime x tp)	0.33 1.39	4 44	0.08 0.04	1.86	13
trial x range x xtime (trial x range x xtime x tp)	0.17 1.70	2 7 4	0.09 0.08	1.12	r.3
<pre>sight x trial x range x xtime (x sight x trial x range</pre>	0.00 3.06	4 44	1.01 6.0"	3.34	1.5

Subtest 1. Analysis of Variance for Time to First Shot (double targets)

•

.

.

*Greenhouse-Geleser correction was done, but relative ware stril significantly different. p <0.05 indicates a significant difference no = not arguifficant

Source	SS	df	MS	F	р
tp	3.31	11	0.30		
sight (sight x tp)	1.64 7.51	2 22	0.84 0.34	2.41	ns
trial (trial x tp)	0.12 0.71	1 11	0.12 0.06	1.94	ns
range (range x tp)	15.64 4.73	2 22	7.82 0.21	36.39	<0.05 **
xtime (xtime x tp)	21.57 5.80	2 22	10.78 0.26	40.89	<0.05 **
sight x trial (sight x trial x tp)	0.11 1.78	2 22	0.06 0.08	0.69	r. 3
sight x range (sight x range x tp)	1.14 11.72	4 4 4	0.28 0.27	1.07	113
sight x xtime (sight x xtime x tp)	2.54 9.31	4 4 4	0.64 0.21	3.01	<0.05 **
trial x range (tiral x range x tp)	1.44 2.11	2 22	0.72 0.10	7.53	-0.05 **
trial x xtime (trial x xtime x tp)	0.11 3.56	2 2 2	C.06 0,16	0.34	ກຣ
range x xtime (range x xtime x tp)	13.46 10.84	4 4 4	3.36 0.25	13.66	<0.05 **
<pre>sight x trial x range (sight x trial x range x tp)</pre>	0.06 7.17	4 44	C.01 0.16	0.09	113
<pre>sight x trial x xtime (sight x trial x xtime x tp)</pre>	0.41 6.00	4 4	$\begin{array}{c} 0 \\ 0 \\ 1 \end{array}$	0,81	n .3
<pre>sight x range x xtime (sight x range x xtime x tp)</pre>	1.48 22.00	<u>8</u> 8	0.19 0.25	0, 74	r.s
trial x range x xtime (trial x range x xtime x tp)	2.53 11.25	- 5 - 4 - 5	6. 13 0.26	2,52	113
sight x trial x range x xtime (sight x trial x range x x xtime x tp)	2.14 14.27	ម៉ូ ដូ	5.27 	1.57	:;

Subtest 1. Analysis of Variance for Number of Shots Fired (Single targets)

**Sphericity was not violated.
p <0.05 indicates a significant difference
ns = not significant</pre>
Source	35	df	MS	F	ą
tp	1.89	11	0.17		
sight (sight x tp)	0.49 1.74	2 22	0.25 0.08	3.12	ns
trial (trial x tp)	0.08 0.53	1 11	0.08 0.05	1.74	ns
range (range x tp)	1.71 1.28	2 22	1.85 0.06	14.73	<0.05 **
<pre>xtime (xtime x tp)</pre>	7.52 1.87	1 11	7.52 0.17	44.29	<0.05 *
<pre>sight x trial (sight x trial x tp)</pre>	0.01 1.09	2 22	C.01 0.05	0.11	ns
sight x range (sight x range x tp)	0.44 4.20	4 4 4	$\begin{array}{c} 0.11 \\ 0.10 \end{array}$	1.15	n5
<pre>sight x xtime (sight x xtime x tp)</pre>	0.21 1.44	2 22	0.11 0.07	1.62	ns
<pre>trial x range (trial x range x tp)</pre>	0.17 1.26	2 22	0.09 0.06	1.48	ns
trial x xtime (trial x xtime x tp)	0.00 0.72	1 11	0.00 0.07	0.00	ris
range x xtime (range x xtime x tp)	2.28 1.70	2 2.2	1,14 0,08	14.72	<0.65 ···
<pre>sight x trial x range (sight x trial x range x tp)</pre>	0.13 2.23	4	6.03 0.05	0.65	ns
<pre>sight x trial x xtime (sight x trial x xtime x tp)</pre>	0.23 1.84		0.12 0.08	:.39	na
<pre>sight x range x xtime (sight x range x xtime x tp)</pre>	$\begin{array}{c} 0.26 \\ 2.22 \end{array}$	4 44	0.06 0.05	1.28	fi.C
trial x range x xtime (trial x range x xtime x tp)	0.11 0.88	2	0.05 0.04	1.35	£.3
<pre>sight x trial x range x xtime (tp x sight x trial x range</pre>	0.47 3.50	4 4 4	0.17 0. 4	1.49	DS

Subtest 1. Analysis of Variance for Number of Shots Fired (double targets)

*Greenhouse-Geisser correction was long, but results were still significantly different.

**Sphericity was not violated.

.

• •

.

p <0.05 indicates a signifusant difference ns = not significant

Source	SS	df	MS	F	p
11 (tp w 11)	6.14 6.74	3 8	2.05 0.84	2.44	ns
sight sight x ll (sight x tp w ll)	0.47 2.44 4.55	3 9 23	0.16 0.27 0.20	0.80 1.37	ns ns
<pre>range range x ll (range x tp w ll)</pre>	15.75 2.44 2.82	2 6 16	7.88 0.41 0.18	44.70 2.31	<0.05 * ns
range x sight range x sight x ll (range x sight x tp w ll)	1.19 3.39 5.71	6 18 46	0.20 0.19 0.12	1.60 1.52	ns ns
xtime xtime x ll (xtime x tp w ll)	3.00 0.94 2.16	2 6 16	1.50 0.16 0.13	11.14 1.17	<0.05 * ns
<pre>xtime x range xtime x range x ll (xtime x range x tp w ll)</pre>	2.19 1.03 4.85	4 12 32	0.55 0.09 0.15	3.61 0.57	ns NS
xtime x sight xtime x sight x ll (xtime x sight x tp w ll)	0.28 1.56 5.38	6 18 48	0.05 0.09 0.11	0.41 0.77	ກຣ ກຣ
<pre>xtime x sight x range xtime x sight x range x ll (xtime x sight x range x tp w ll)</pre>	0.37 3.30	12 36 36	0.03	0.21 0.63	ពន ៧.១

Subtest 2. Analysis of Variance for Number of Targets Hit (single targets)

*Greenhouse-Geisser correction was done, but results were still significantly different. p <0.05 indicates a significant difference

ns = not significant

23 - 1299 - 12 - 12

11 5.14 (tp w li) 3.39 sight 0.29 sight x ll 0.64	3 8 3	1.71 0.42	4.04	n'∍
sight 0.29 sight x 11 0.64	3			
(sight x tp w ll) 3.21	23	0.10 0.07 0.14	0.70 0.51	ns ns
range 11.29 range x ll 2.27 (range x tp w ll) 1.98	2 6 16	5.65 0.38 0.12	45.52 3.05	<0.05 * ns
range x sight0.58range x sight x ll1.27(range x sight x tp w ll)2.56	6 18 46	0.10 0.07 0.06	1.75 1.27	ns ns
xtime 0.63 xtime x ll 0.23 (xtime x tp w ll) 0.65	1 3 8	0.63 0.08 0.08	7.79 0.97	<0.05 * ns
xtime x range0.07xtime x range x ll0.41(xtime x range x tp w ll)1.21	2 6 16	0.04 0.07 0.08	0.48 0.90	ns ns
xtime x sight0.56xtime x sight x ll0.83(xtime x sight x tp w ll)2.23	3 9 24	0.19 0.09 0.10	1.92 0.95	ns ns
xtime x sight x range0.18xtime x sight x range x ll0.84(xtime x sight x range xtp w ll)3.10	6 19 48	0.03 0.05 0.06	0.47 0.72	ns ns

Subtest 2. Analysis of Variance for Number of Targets Hit (double targets)

*Greenhouse-Geisser correction was done, but results were still significantly different. p <0.05 indicates a significant difference</pre>

٠.

ns = not significant

Source		SS	df	MS	F	p
11		2.00	3	0.67	0.77	ns
(tp w 1	.1)	7.00	8	0.87		
sight		1.64	3	0.55	0.85	ns
sight x	11	4.81	9	0.53	0.83	ns
(sight	x tp w 11)	14.79	23	0.64		
range		9.26	2	4.63	13.31	<0.05 *
range x	11	1.76	6	0.29	0.84	ns
(range	x tp w ll)	5.57	16	0.35		
range x	sight	1.04	6	0.17	0.42	ns
range x	sight x 11	5.39	15	0.36	0.88	ກຮ
(range	x sight x tp w ll)	15.39	39	0.41		
xtime		5.93	2	2.96	4.21	ns
xtime x	11	5.02	6	0.84	1.19	ns
(xtime	x tp w 11)	11.27	16	0.70		
xtime x	range	7.20	4	1.80	4.15	ns
xtime x	range x 11	6.99	11	C.64	1.47	ns
(xtime	x range x tp w ll)	11.27	26	0.43		
xtime x	sight	5.90	6	0.98	1.65	ns
xtime x	sight x 11	16.33	18	0.91	1.52	ns
(xtime	x sight x tp w ll)	28.61	48	0.60		
xtime x	sight x range	12.34	12	1.03	1.75	n:3
xtime x	sight x range x ll	30.97	36	C.S6	1.46	រាន
(xtime tp	x sight x range x w 11)	55.76	95	C.59		

Subtest 2. Analysis of Variance for Time to Hit (single targets)

*Greenhouse-Geisser correction was done, but results were still significantly different. p <0.05 indicates a significant difference is = not significant

 (\cdot, \cdot)

n daa laha teetoo hili ku

.

•

4

_

_

Source		SS	df	MS	F	p
ll (tp w l	1)	1.14 1.59	3 8	0.38 0.20	1.90	ns
sight sight x (sight	11 x tp w 11)	1.07 3.52 10.61	3 9 23	0.36 0.39 0.46	0.77 0.85	ns ns
range range x (range	11 x tp w 11)	0.06 4.59 5.86	2 6 16	0.03 0.76 0.37	0.09 2.09	ns ns
range x range x (range	sight sight x ll x sight x tp w ll)	0.78 6.21 15.93	6 18 39	0.13 0.35 0.41	0.32 0.85	ns ns
xtime xtime x (xtime	ll x tp w ll)	5.04 1.03 3.94	1 3 8	5.04 0.34 0.49	10.23 0.70	<0.05 * ns
xtime x xtime x (xtime	range range x ll x range x tp w ll)	1.02 1.81 6.14	2 6 14	0.51 0.30 0.44	1.16 0.69	ns NS
xtime x xtime x (xtime	sight sight x ll x sight x tp w ll)	$1.11 \\ 5.68 \\ 8.06$	3 9 23	0.37 0.63 0.35	1.06 1.80	ns ns
xtime x xtime x (xtime	sight x range sight x range x ll x sight x range x	4.25 3.54	6 18	0.71 0.20	1.50 0.42	ns Ns
tp	w 11)	21.68	46	47		

Subtest 2. Analysis of Variance for Time to Hit (double targets)

*Greenhouse-Geisser correction was done, but results were still significantly different. p <0.05 indicates a significant difference r.s = not significant

•

·····

•

:

•

•

.

٠

•

Source	SS	df	MS	F	p
11 (tp w 11)	13.31 12.68	3 8	4.44 1.58	2.80	ns
sight sight x ll (sight x tp w ll)	1.42 5.83 4.39	3 9 23	0.47 0.65 0.19	2.47 3.39	ns ns
range range x ll (range x tp w ll)	19.76 1.92 2.28	2 6 16	9.88 0.32 0.14	69.27 2.25	<0.05 * ns
<pre>range x sight range x sight x ll (range x sight x tp w ll)</pre>	0.55 2.74 4. 4 0	6 18 46	0.09 0.15 0.10	C.96 1.60	ns ns
xtime xtime x ll (xtime x tp w ll)	1.46 1.75 1.70	2 6 16	0.73 0.29 0.11	6.88 2.74	<0 05 * n::
xtime x range xtime x range x ll (xtime x range x tp w ll)	2.30 5.38 3.72	4 12 32	0.58 0.45 0.12	4.95 3.85	ns ns
<pre>xtime x sight xtime x sight x ll (xtime x sight x tp w ll)</pre>	0.56 2.59 7.79	6 18 48	0.09 0.14 0.16	0.58 0.88	ns ns
xtime x sight x range xtime x sight x range x ll (xtime x sight x range x	2.02 6.06	12 36	0.17 0.17	1.02 1.02	ns - ns
tp w 11)	15.84	96	C.17	<u> </u>	

Subtest 2. Analysis of Variance for Time to First Shot (single targets)

*Greenhouse-Geisser correction was done, but results were still significantly different. p <0.05 indicates a significant difference ns = not significant

··]

Source	SS	df	MS	F	p
11 (tp w 11)	16.93 12.38	3 8	5.64 1.55	3.64	ns
sight sight x ll (sight x tp w ll)	4.25 5.10 4.43	3 9 23	1.42 0.57 0.19	7.35 2.94	<0.05 * ns
<pre>range range x ll (range x tp w ll)</pre>	12.13 1.72 1.59	2 6 16	6.06 0.29 0.10	60.99 2.89	<0.05 * ns
<pre>range x sight range x sight x ll (range x sight x tp w ll)</pre>	0.53 2.18 3.73	6 18 46	0.09 0.12 0.08	1.09 1.48	ns ns
<pre>xtime xtime x ll (xt_me x tp w ll)</pre>	0.11 1.01 0.98	1 3 8	0.11 0.34 0.12	$\frac{0.91}{2.74}$	ns ns
<pre>xtime x range xtime x range x ll (xtime x range x tp w ll)</pre>	0.08 0.23 0.99	2 6 16	0.04 0.04 0.06	0.62 0.61	ns ns
xtime x sight xtime x sight x ll (xtime x sight x tp w ll)	$0.07 \\ 0.73 \\ 1.11$	3 9 23	0.02 0.08 0.05	0.46 1.67	ns ns
<pre>xtime x sight x range xtime x sight x range x ll (xtime x sight x range x</pre>	0.52 1.13	6 18	0.09 0.06	1.J2 0.81	ns ns
tp w ll)	3.70	48	0.08		

Subtest 2. Analysis of Variance for Time to First Shot (double targets)

*Greenhouse-Geisser correction was done, but results were still significantly different. p <0.05 indicates a significant difference

ns = not significant

							the second se	_
	alpha =	0.05 df =	23	MSE	= 0.	19		
			G	G	G	G		
			r	r	r	r		
			р	р	P	Р		
	Mean	Group	3	4	1	2		
visible laser	1.1417	Grp 3						
aimpoint	1.2834	Grp 4						
iron sights	1.3831	Grp 1	*					
tritium three-dot	1.3997	Grp 2	*					

Subtest 2. Scheffé's Test for Mean Time to First Shot (double targets)

* Denotes pairs of groups significantly different

.

Source	SS	df	MS	F	F
11 (tp w 11)	1.87 7.34	3 8	0.62 0.92	0.68	าร
sight sight x ll (sight x tp w ll)	5.09 2.64 8.44	3 9 23	1.70 0.29 0.37	4.62 0.80	ns ns
range range x ll (range x tp w ll)	5,26 2,41 5,48	2 6 . 5	2.63 0.40 0.34	7.67 1.17	<0.05 * D\$
<pre>range x sight range x light x ll (range x sight x tp w ll)</pre>	1.27 7.62 8.75	€ 18 46	0.21 0.42 0.19	1.11 2.23	513 113
xtime xtime x ll (xtime x tp w ll)	$\frac{18.22}{4.37}\\ 8.72$	2 6 16	9.11 0.73 0.55	16,70 1,34	<3,9% ≯ ns
<pre>xtime x range xtime x range x ll (xtime x range x tp w ll)</pre>	8.03 5.01 8.57	12 32	2.02 0.42 0.27	7,54 1,56	<0.01.* N3
xtime x sight xtime x sight x ll (xtime x sight x tp w ll)	1,96 1,99 8,37	約 1.9 4合	3.33 1.11 0.17	1,89 0,63	1:3 113
<pre>xtime x sight x range xtime x sight x range x ll (xtime x sight x range x</pre>	3.56 8.47	36	0130 0124 214	1,55 1,23	1.3 5.3
tp w 11)	18141	: 5			

Subtest 2. Analysis of Variance for Number of Shots Fired (single targets)

*Greenhouse-Geisser correction was done, but repults were still significantly different. p <0.05 indicates a significant difference

ns = not significant

		.			
Source	SS	df	MS	F	ą
11 (tp w 11)	0.13 1.98	3 8	0.04 0.25	0.16	ns
sight sight x ll (sight x tp w ll)	0.70 1.90 2.33	3 9 23	0.23 0.21 0.10	2.31 2.08	ns ns
range range x ll (range x tp w ll)	0.76 0.97 1.87	2 6 16	0.38 0.16 0.12	3.25 1.38	ns ns
<pre>range x sight range x sight x ll (range x sight x tp w ll)</pre>	1.11 1.99 3.18	6 19 46	$0.19 \\ 0.11 \\ 0.07$	2.69 1.60	r: 5 113
xtime xtime x ll (xtime x tp w ll)	5.17 1.61 0.70	1 3 8	5.17 0.54 0.09	58.84 6.10	<0.05 * ns
<pre>xtime x range xtime x range x ll (xtime x range x tp w ll)</pre>	1.91 0.61 1.31	2 6 16	0.95 0.10 0.08	11.67 1.25	<0.05 · ns
<pre>xtime x sight xtime x sight x ll (xtime x sight x tp w ll)</pre>	$\begin{array}{c} 0.20\\ 2.25\\ 1.85\end{array}$	3 23	0.07 0.25 0.08	0.02 3.06	no 13
<pre>xtime x sight x range xtime x sight x range x ll (xtime x sight x range x</pre>	0.66 1.95	е 18	0.14 0.11	1.95 1.39	115 713
tp w 11)	3.13	49	0.03		

Subtest 2. Analysis of Variance for Number of Shots Fired (double targets)

*Greenhouse-Geisser correction was done, but relates were still significantly different. p <0.05 indicates a significant difference

ns = not significant

Source		S S	df	MS	F	р
TP		5.16	11	0.47		
sight (sight	x tp)	14.88 12.48	6 66	2.48 0.19	13.12	<0.05**
range (range	x tp)	45.88 5.13	2 22	22.94 0.23	98.34	<0.05*
xtime (xtime	x tp)	11.92 1.28	2 22	5.96 .06	102.22	<0.05**
sight x (sight	range x range : :p)	4.28 18.26	12 132	0.36 0.14	2.58	K0.05*
sight x (sight	xtime x time x tp)	2.80 16.22	12 132	0.23 0.12	1.90	n::
range x (range	xtime x xLime by tp)	1.95 3.61	4 4 4	0.49 0.08	5.95	<5.65**
sight x (sight	range xtime X range x xtime x tp)	41.77 351.45	214 21-1	6.20 6.13	1.48	1. .3

Subtest 3. Analysis of Variance for Number of Targets Hit (single targets)

*Greenhouse-Geisser correction was done, but retable were still significantly different.

**Sphericity was not violated. p <0.05 indicates a significant difference</pre>

ns = not significant

·····

Source			SS	đſ		MS			F		р	
	alpha =	0.05	df = 6	ίI	MSE =	- 0	. 1 9					
					G	G	G	G	G	G	G	
					r	r	r	r	r	r	r	
					ġ	р	ą	р	\mathbf{p}	р	р	
	Mean		Group	o O	2	7	1	3	4	5	6	
iron-nvg	0.2500		Grp 2	2								
aimpoint	0.3148		Grp 7	7								
iron	0.3333		Grp 1	1								
tritium three-dot	0.3333		Grp 3	3								
visible laser	0.4630		Grp /	1								
visible laser-nvg	0.6019		Gip 1		•	•	٠	٠				
irr-nvg	0.6389		11:1-1	í.	٠	٠	٠	¥				

Subtest 3. Scheffé's Test for Hits per Target Opportunity by Sight (single targets)

* Denotes pairs of groups significantly afferent

.

Source	SS	df	MS	E,	a
ТР	3.21	11	0.29		
sight (sight x tp)	10.53 8.35	6 66	1.76 0.13	13.88	<0.05**
range (range x tp)	39.50 2.49	2 2 2	19.75 0.11	174.85	<0.05**
xtime (xtime x tp)	$\begin{array}{c}1.05\\0.25\end{array}$	1 11	1.05 0.02	46.55	<0.05*
<pre>sight x range (sight x range x tp)</pre>	3.80 11.30	12 132	0.22 0.09	3.50	<0.00*
sight x xtime (sight x time x tp)	$ \begin{array}{c} 0.31 \\ 3.14 \end{array} $	t. te t	1.05 .05	1.09	: <i>.</i>
<pre>range x xtime (range x xtime x tp)</pre>	0.51 1.27		0.25 0.56	4.40	60. (H. * *
<pre>sight x range xtime (sight x range x time x tp)</pre>	0.49 7.39	12	0.08 0.08	હું મેમ	T ::::

Subtest 3. Analysis of Variance for Number of Targets Hit (double targets)

*Greenhouse-Geisser correction was danc, but idential activity of the destroyed of ferent.

**Sphericity was not violated.

p <0.05 indicates a significant difference</pre>

ns = not significant.

	alpha =	0.05	df = 66	MSE 4	= 0	.13				
				G	G	G	G	G	G	G
				Γ.	r	r	r	r	r	r
				q	p	р	Р	р	р	ą
	Mean		Group	2	3	1	7	4	5	6
iron-nvg	0.2569		Grp 2							
tritium three-dot	0.3333		Grp 3							
iron	0.3403		Grp 1							
aimpoint	0.3889		Grp 7							
visible laser	0.4236		Grp 4							
visible laser-nvg	0,6250		Grp 5	*	٠	•	•			
irr-nvg	0.6736		Grp 6	+	•	٠		,		

Subtest 3. Scheffé's Test for Hits per Target Opportunity by Sight (double targets)

Source	SS	df	MS	[1]	р
TP	2.77	11	0.25		
sight (sight x tp)	5.64 37.40	6 64	0.94 0.53	1.61	ns
range (range x tp)	1.82 7.90	2 20	$\begin{array}{c} 0.91 \\ 0.40 \end{array}$	2.30	ns
xtime (xtime x tp)	0.12 16.24	22	0.06 0.14	0.03	r .3
<pre>sight x range (sight x range x tp)</pre>	5,53 33,24	$\frac{11}{47}$	0.80 0.71	0.71	r .s
<pre>sight x xtime (sight x time x tp)</pre>	18 22 95,15	$\frac{12}{130}$	1.52 0.73	2.07	ŤG.
<pre>range x xtime (range x xtime x tp)</pre>	5.76 8.35	4 24	1.44 0.40	3.62	*
<pre>sight x range x xtime (sight x range x xtime x tp)</pre>	22.43 219.36	24 229	0.93 0.96	0.98	na

•

-

.

-

Subtest 3. Analysis of Variance for Time to Hit (single targets)

p <0.05 indicates a significant difference
ns = not significant</pre>

.

Source	SS	df.	MS	Ŀ	р
TP	9.88	11	0.90		
sight (sight x tp)	4.79 52.94	6 6 4	0.80 0.83	0.96	ns
range (range x tp)	3.52 20.40	2 21	1.76 0.97	1.81	ns
xtime (xtime x tp)	2.73 8.89	1 11	2.73 0.81	3.38	:15
sight x range (sight x range x tp)	8.58 27.90	11 44	0178 0163	1.23	ns
sight x xtime (sight x time x tp)	3.78 35.61	6 5.6	0.63 0.64	0.99	ns
<pre>range x xtime (range x xtime x tp)</pre>	1.38 9.04	2 16	0.63 0.57	1.22	1 ,2
<pre>sight x range x xtime (sight x range x xtime x tp)</pre>	4.28 9.82	- 8 1 7	0154 0198	0.93	7 12

Subtest 3. Analysis of Variance for Time to Hit (double targets)

p <0.05 indicates a significant difference

ns = not significant

mc.fbt, left i sei

ł

the second second

.

Source	ŝs	dť	МС	F	q
TP	2.16	11	0.20		
sight	1.79	6	0.30	0.79	ns
(sight x tp)	24.82	66	0.38		
range	16.89	2	8.44	36.33	<0.05 *
(range x tp)	5.11	22	0.23		
xtime	2.63	2	1.32	4.67	1:3
(xtime x tp)	6.20	.:2	Ċ.28		
sight x range	7.41	12	0.62	2.94	n.:
(sight x range x tp)	32.41	102	0.31		
sight x xtime	3.19	12	0.27	1.50	1 13
(sight x xtime x tp)	22.85	129	0.1d		
range x xtime	2	4	1.24	6. 17	• •
(range x xtime x tp)	9,16	1.1	0.21		
sight x range xtime	16.87	2.4	0.70	2.03	n.:
(sight x range x stime s tp)	88.69	263	J. 34		

2

Subtest 3. Analysis of Variance for Time to First Shot (single targets)

*Greenhouse-Geisser correction was done, but results were stall approximation of different. p <0.05 indicates a significant difference

ns = not significant

n na seanna a seanna Seanna a sea

	SS	df	MG	F	ą
x tp)	1.63 18.32	6	0.27 0.28	0.98	ns
x tp)	0.61 5.89	2 22	0.31 0.27	1.14	ns
x tp)	0.00 1.103	- - -	0.00 0.09	0.01	ns
range x range x tp)	$\begin{array}{c} 6.12\\ 16.36\end{array}$	12 107	$egin{array}{c} 0.151 \ 0.15 \end{array}$	3.34	ns
xtime x xtime x tp)	0.40 5.40	ဗ် ပ် ပ်	0.97 0.98	9.82	1:5
xtime x xtime x tp)	9.0 0 3.27	2	0.00 0.11	0.0.	
range x xtime x range x xtime x tp)	0.54 8.85	12 94	0.07 0.10	0.71	1.3
	<pre>x tp) x tp) x tp) range x range x tp) xtime x xtime x tp) xtime x xtime x tp) range x xtime x range x xtime x range x xtime x tp)</pre>	stp) 1.63 18.32 xtp) 0.61 5.89 xtp) 0.00 1.103 range 6.12 16.36 xtime 0.40 5.46 xtime xtp) 5.46 xtime xtime xtp) 3.27 range x xtime xtp) 3.27 range x xtime xtp) 3.26	SS df x tp) 1.63 6 x tp) 19.32 66 x tp) 5.89 22 x tp) 0.00 1 x tp) 1.103 1 range 6.12 12 x range x tp) 16.36 107 xtime 0.40 6 x time x tp) 5.46 56 xtime x tp) 3.27 25 range x xtime x tp) 3.27 25 range x xtime x tp) 3.27 25	SS df M3 x tp) 1.63 6 0.27 x tp) 18.32 66 0.28 x tp) 0.61 2 0.31 x tp) 5.89 22 0.27 x tp) 0.00 1 0.00 x tp) 1.103 0.00 1 range 6.12 12 0.51 x range x tp) 16.36 107 0.15 x time 0.40 6 0.57 x time x tp) 5.46 56 0.38 xtime x tp) 3.27 25 0.15 range x xtime x tp) 3.27 25 0.15 range x xtime x tp) 8.85 97 0.15	SS df M3 F x tp) 1.63 18.32 66 66 0.27 0.28 0.98 0.28 x tp) 0.61 5.89 22 22 0.27 0.27 1.14 x tp) 0.00 1.103 0.00 0.09 0.01 0.09 0.01 range x range x tp) 6.12 16.36 12 107 0.51 0.19 3.34 x time x xtime x tp) 0.40 5.46 6 5.67 6.13 0.82 0.19 0.82 x time x xtime x tp) 0.40 5.46 6 6.07 0.19 0.82 x time x xtime x tp) 0.20 3.27 0.60 0.10 0.60 0.01 range x xtime x range x xtime x tp) 0.54 8.85 20 0.10 0.71

۰.

Subtest 3. Analysis of Variance for Time to First Shot (double targets)

p <0.05 indicates a significant difference ns = not significant

2

.

4

•

4

.

Source		SS	d£	MG	F	1;
TP		12.01	11	1.09		
sight (sight	x tp)	73.93 55.75	6 66	12.32 0.84	14.59	<0.05**
range (range	x tp)	47.32 14.65	2 22	23.66 0.67	35,53	<0.05**
xtime (xtime	x tp)	67.30 12.28	2. 2. 2. c.	23.63 0.54	60,27	<0,65**
sight x (sight	range x range x tp)	69,99 35,37	12 192	5.) (d.) (d.) 4.2	17.91	∢急;負担★
sight x (sight	xtime x xtime x tp)	14.34 44.07		1.20 0.33	3.19	<0.05•
range x (range	xtime x xtime by tp)	7.02 8.32	4 4	:.9. 0.10	• • •	<0.00+*
sight x (sight	range xtime x range x xtime x tp)	16.35 91.35	24 266	0.68 0.34	1,97	t ::,

Subtest 3. Analysis of Variance for Number of Shots Fired (single targets)

*Greenhouse-Geisser correction was ince, hat receits were still organization of granting different.

**Sphericity was not violated.

p <0.05 indicates a significant difference</pre>

ns = not significant.

•···

.

•

Source			df	df MS				F	p	
	alpha =	0.05 df =	66	MCI	1 ×	0.	84			
			G	G	G	G	G	G	G	
			r	r	r	r	r	r	r	
			р	P	þ	Р	Р	Р	р	
	Mean	Group	4	4 1		3	5	6	2.	
visible laser	0.7407	Gry 4								
tritium three-dot	0.7685	G: p 3								
aimpoint	0.8889	G:p 7								
iron	1.0833	Gip 1								
visible laser-nvg	1.2407	1:10	•							
irr-nvg	1.2963	G:p=6	•	•						
iron-nvg	1.6852	Gip 2	•	,	,	٠				

Subtest 3. Scheffé's Test for Shots per Targe: Opportunity by Sight (single targets)

* Denotes pairs of groups significantly different

Source	38	df.	<u>M.</u>	ŗ	; ·
TP	4.76	11	0.43		
sight (sight x tp)	32.45 23.38	6 66	$\frac{5.41}{0.35}$	15.27	<0.35**
range (range x tp)	33.25 5.67	2 22	16.62 0.26	65.09	<0.05**
xtime (xtime x tp)	$\frac{11.76}{1.65}$	1	11.36 0.15	08.29	<0.08*
<pre>sight x range (sight x range x tp)</pre>	$\frac{25.72}{22.14}$	12	$\begin{array}{c} 2.14\\ 6.17\end{array}$	12.77	$< f_{1,1} < f_{2,1}$
sight x xtime (sight x xtime by tp)	2.50 7.57	6. 109	U . 12 	3.39	25 July 1
range x xtime (range x xtime by tp)	$\frac{3.57}{2.4n}$	2. 1. 1. 1. 1.	81,81 01,11		; •
sight x range xtime (sight x range x xtime x to)	4.20 10.14			· · · · ·	

Subtest 3. Analysis of Variance for Number of Shots Fired (double targets)

*Greenhouse-Geisser correction was able, it's receive were stall asplication different.

****Sphericity** was not violated.

p <0.05 indicates a significant difference

ns = not significant

ļ

(double targets)											
	alpha =	û.05	df = 66	MSE -	=)	.35					
				.;	0	G	ζ;	, i	G	G	
				r	r	:	;		1.	:	
				E	I.	\mathbf{p}	Ð	р	P	ι.	
	Mean		Group	4	(°.)	7	1	5	6	2	
visible laser	0.7500		Grp 4								
tritium three-dot	0.7847		Grip 3								
aimpoint	0.8472		61 p. 7								
iron	1.0000		$\cos p = 1$								
visible laser-nvg	1.0764		Grp 5								
irr-nvg	1,1161		0: p. 7	•							
iron-nvg	1.5486		Green in	•	٠	•	•	•	٠		

Subtest 3. Scheffé's Test for Shots per Target Opportunity by Sight (double targets)

5 penotes pairs of groups clauffir unity slitherent

ļ