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ABSTRACT
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number of techniques for proving theorems in Z are presented. Some of the
techniques are not new, being drawn from the area of general mathematical theorem
proving, but are brought together in one place and applied specifically to Z. The
techniques have been written so that they can be understood and applied by a person
carrying out a pen and paper proof. Some of the techniques may be automated, and
would result in a proof tool tailored to the needs of the user; currently a user has to
tailor a proof to fit a tool.
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1 Introduction

The specification language Z has been developed to a stage where it is suitable for
writing large specifications. The Z reference manual [Spivey] gives a good working
definition and the language has been submitted for standardization. There are many
examples of its use, the best known being the set of case studies in [Hayes]. There are
many introductory texts while [Gravell] and [Macdonald] present techniques for writing
clearer specifications, so that they are easier to understand. There are also a number of
editors, syntax and type checkers. However, an important process in understanding and
validating a specification is to reason about it. There are no guidelines on how a proof
should be conducted or presented. In particular there is no standard syntax for theorems
in Z. The only published syntax for Z which contains a notation for theorems is [King].
There is also a lack of tools and techniques for carrying out proofs.

This paper presents a number of useful techniques for proving theorems in Z. The paper
does not contain a logic for Z (for this see [Woodcock]), but rather a collection of
heuristics. Some of the techniques are not new, being drawn from the area of general
mathematical theorem proving. But it is useful to see these techniques brought together in
one place and applied specifically to Z. The techniques have been written so that they can
be understood and applied by a person carrying out a pen and paper proof. However, they
could also be automated, resulting in a tool tailored to the needs of the user, currently all
too often a user has to tailor a proof to fit a tool [Smith b].

The content of the paper is as follows. Section 2 contains a useful proof technique known
as generalization. This is where a theorem is strengthened, roughly keeping its original
structure, so that the new theorem is more useful, and surprisingly, sometimes easier to
prove. The original theorem follows as a special case of the generalized theorem. Section
3 contains techniques for proof by induction. One technique shows how to choose the
right induction schema and induction variable, while another shows how to finish the
proof once the induction step has been performed. Section 4 explains a style of reasoning
known as window inference. This is a technique-where a user can transform an expression
by restricting attention, or windowing, on a subexpression. In this section, window
inference is formalized so that it can be automated. Section 5 presents a technique to help
check the consistency of a Z specification. The technique is for proving the existence of a
recursive function defined over a recursive free type. The technique extends that in
[Smith a] so that a wider class of functions are covered. Section 6 discusses reasoning at
the schema 'evel, and presents some useful laws for calculating preconditions. Section 7
discusses the conflict between specification and proof. Sometimes a theorem is easier to
prove from an alternative specification. But this alternative specification can be harder to
understand. Finally section 8 contains the conclusions of the paper, and suggestions for
further work.

2 Generalization

Sometimes it is easier to prove a theorem by generalizing it. The original theorem then
follows as a special case of the generalized theorem. At first sight this seems odd. How
can a more powerful theorem be easier to prove? A reason is that it removes irrelevant
detail from the problem. This section contains two techniques for generalization: the first
is to replace a subterm in a theorem by a variable; the second is to use higher order
functions. A generalized theorem is also more useful, because it can be applied to more
cases. It can therefore not only be used to obtain the original theorem, but other theorems
as well. Since a generalized theorem is more useful and sometimes easier to prove,
generalization is of interest to a person carrying out a pen and paper proof. It is also of
interest to a tool builder because the first, and part of the second technique, can be
automated.
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2.1 Replacing a Subterm by a Variable

The first technique for generalizing a theorem is to replace every occurrence of a
particular subterm by a variable, thus removing unnecessary clutter. The technique is
described in [Bird] and [Brumfitt], and is illustrated in the next example. All examples in
this paper start with the word Example and end with the symbol A.

Example 1

Consider the following specification

X : xK) --4 K

V.. n :q.
+mmm

(n) + m - s (n + m)

sum : - k

V n
sum 0 = 0
sum(s n) = s(n) + sum(n)

The function + is addition over K4d, s is the successor function, and the expression sum n

is the sum of the first n natural numbers. Now consider the theorem

V n : M • sum(n) + 0 = sum(n) (A)

This theorem can be proved by induction over M,,, using the above axioms. But during the
proof, a lemma (the associativity of +) is also required. Again this would have to be
proved using induction. So the total effort in proving theorem A is two induction proofs.
Now it is easier to prove a generalization of theorem A, namely

FV x : M - x + 0 = x (B)

Notice how the subterm sum (n) in theorem A (which appears in two places) has been
replaced by a simple variable x. This has removed the function sum which is just clutter
in the original theorem. Once theorem B has been proved, theorem A follows immediately
by specializing x with sum (n). The proof of B is again by induction over M J, but does not
require a lemma. Not only is theorem B easier to prove, it is more useful. It can be used to
prove the original theorem A without induction, by specializing x with sum (n). Similarly
it can be used to prove the theorem

IV n : n' + 0 = n!

where ! is the factorial function, by specializing x with n! . A

Another case when a more general theorem can be easier to prove is in proof by
induction. Although generalizing might strengthen the induction conclusion, it also
strengthens the induction hypothesis. This stronger hypothesis can help in proving the
theorem. The next example illustrates this, using the same technique of replacing a
subterm with a variable.
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Example 2

Consider the following quick reverse function for sequences

qrev (seq X x seq X) - seq X

V x X; s, t seq X
qrev(O, t) - t
qrev((x)s, t) - qrev(s, (x)-t)

Consider the following theorem

V s: seq X - rev s- qrev(s, 0) (A)

where rev is the ordinary reverse function as defined in [Spivey]. Proving this theorem
by induction (over sequences) on s does not work. The problem is in the step case, where
the induction hypothesis is not strong enough. But proving a generalization of the
theorem is successful. The generalization is to notice that theorem A can be written

FV s seq X * (rev s) -() qrev(s, 0)

and then generalized to

IFV s, t seq X • (rev s) - t = qrev(s, ) (B)

where the subexpression 0 has been replaced by the variable t. Proving B by induction
on s now gives a stronger induction hypothesis, sufficient to prove the theorem. A

2.1.1 Strengths and Weaknesses

The technique of replacing a subterm with a variable could be automated, and is therefore
also of interest to a tool builder. Indeed, the technique has been automated in the
Boyer-Moore theorem prover [Boyer]. Unfortunately, if the subterm is chosen arbitrarily,
the generalized version might not be a theorem. In order to avoid this, an understanding
of the problem is necessary. The technique is still safe, because the user would not be
able to prove the generalized version. The next example illustrates this.

Example 3

Consider the theorem

F1V x : X * rev (x) = (x)

Replacing the subterm (x) by a variable y gives

I V y : seq X * rev y = y

which is obviously nonsense. A

2.2 Using Higher Order Functions

A second technique for generalizing theorems is to use higher order functions. This
technique is described in [Bird] and [Brumfint. In this section, a higher order function
will be one which takes a function as argument, and gives a function as result.

In general, a theorem contains a number of objects, for example functions, relations or

3



sets. These objects have a number of properties, but the theorem will only depend on
some of these properties. The theorem will also hold for other objects, provided they too
have these required properties. Higher order functions allow these required properties to
be separated from the irrelevant properties. For example, consider a theorem concerning
sequences. Suppose that the theorem only depends on properties of sequences
(collections of elements), and not on properties of individual elements of sequences. A
higher order function can be used to abstract, or lift, the properties about the collection of
elements from properties about individual elements. There is an analogy here with the
technique of promotion in Z. This is where a framing schema (analogous to a higher
order function) lifts the properties about collections of objects away from properties
about individual objects. The next example illustrates the use of higher order functions to
generalize a theorem.

Example 4

Consider the function square seq which squares every element of a sequence of
integers. For example, square seq (5, 1, -2) - (25, 1, 4). Formally

square-seq :seq 7L- beq 7

V i : 1Z; s : eq 7
square-seq () = (
square-seq((i) - s) = (i * i) - (square-seq s)

Consider the following theorem

V s, t : seq 72 • (A)
square seq(s t) = (square seq s) (squareseq t)

If the function squareseq in the above theorem is replaced by the funcion
addone seq (which adds one to every element of a sequence), then the theorem still
holds. In fact, the operation on the individual elements of the sequence (for example
squaring and adding one) is irrelevant. This fact can be captured by using the higher
order function map, familiar from functional programming (see for example [Bird]), and
defined as

map (TL - 7L) -4 (seq 7 -- seq 7L)

V f 17 -7 7, i 71; s seq 7
map f () = 0
map f ((i) - s) = (f i) - (map f s)

Notice the similarity between the definition of map and that of square seq. Notice how
the particular operation on the individual elements, i *i, has been replaced by the general
operation f i. The functions square_ seq and add one seq, for example, can be written

square == X i : 71 - i * i
add one == X i : 7L - i + 1

squareseq == map square

addoneseq == map addone

The generalized version of theorem A is then obtained by replacing squareseq by map

f, and universally quantifying over f, to obtain

V : 7I -71; s, t : seq7L • (B)
map f (s - t) - (map f s) - (map f t)
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Theorem B can be proved by induction on s, and then simply specialized to obtain
theorem A and similar theorems with functions other than square seq. As an aside,
notice that the type :1 in theorem A could also be generalized (to the generic type x say),
since the type of the elements in the sequence is also irrelevant. This would mean
defining map to be generic in x and replacing every occurrence of 1 in theorem B by x. A

The above example showed the use of a higher order function to generalize a theorem
concerning sequences. Sequences are very similar to lists, and lists can be specified in Z
using the free type mechanism. This suggests that the technique of using higher order
functions can also be applied to theorems involving free types. This is illustrated in the
next example.

Example 5

Consider the free type

LIST ::- nil I join 1 2 X LIST

which consists of lists of integers. Generalizing theorems involving LIST is similar to the
problem of generalizing theorems involving sequences in example 4. For example, if_
is concatenation of LISTS and square-list is a function which squares every element of
a LIST, then theorems such as

1V , m : LIST •
squarelist (l m) = (square-list 1) ^ (square-list m)

can be generalized in a similar way as in example 4. The generalization would involve a
higher order function, similar to map, but for LISTS rather than sequences. A

2.2.1 Strengths and Weaknesses

It has been shown that theorems involving higher order functions are very useful. They
can be stored in a library and repeatedly used to obtain other theorems. This cuts down
the proof effort. But where do these higher order functions come from? It is significantly
more difficult to find a higher order function, than to replace a subterm with a variable.
But some help can be offered. For example, if the theorem in example 4 is proved
without using higher order functions, then it can be seen that no property of
multiplication is used (the reader might like to try this). This means that the operation on
the individual elements of the sequences is irrelevant. Therefore, the higher order
function map, needs only to consider an arbitrary operation on the elements. As far as
theorems involving free types are concerned, a single higher order function can be
automatically generated from the primitive recursion theorem (PRT) for the free type
[Smith a]. This function can be used to express any primitive recursive function over the
free type. The work described here is an extension to [Smith a]. The next example shows
how the PRT for the free type LIST in example 5 can be used to obtain this single higher
order function. It is then used to define two functions over LIST.

Example 6

The PRT for the free type LIST in example 5 is (from [Smith a])

V x : X; f : (X X :L X LIST) -4 X

3 h LIST - X
h nil - x
V i 7L; 1 :LIST )h(join(i, 1)) =f (h 1, i, 1)

The theorem says that a primitive recursive function h, over the free type LIST, is
uniquely defined by its base case (x) and its recursive case (f). The theorem is generic in
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x, which is the target type of h. For example, if .h is the function which finds the size of a
list then x will be M. The fact that each x and f gives rise to a unique h means there is a
function (rather than a relation) H say, linking x and f to h. That is

H(x, f) - h

The function H is the single higher order function discussed above. The formal definition
of H is derived from the PRT, by replacing h with H (x, f). The definition is as follows

R : (X X ((X x 7 X LIST) -+ X)) -+ (LIST 4 X)

V x : X; f : (X X 1 X LIST) -+ X
H(x, f) nil- x
V i : 1Z; 1 LIST ° H(x, f) (join(i,1)) -. f (H(x, f) 1, i, 1)

Using H, the functions size (the number of elements in a LIST), and the concatenation of
two lists, __, can be written

fl == n : ; i ; 1 : LIST • n + 1
f2 == 1 : LIST; i 1; m : LIST join(i, i)

size == H(O, fl)
1 1, m : LIST H(m, f2) 1

For free types, given the PRT, the single higher order function described above can be
automatically generated, and is therefore also of interest to a tool builder. In general,
although higher order functions make theorem proving easier, they make the proof harder
to understand. Quite often a more obscure specification can lead to an easier pro- This
conflict between .,pecification and proof is discussed in section 7.

3 Induction

Proofs by induction occur frequently: the proof of any property defined over an infinite
set (for example the natural numbers) will almost inevitably involve induction. Proof by
induction is the basis of the Oyster-Clam system [Bundy a], which carries out program
synthesis. Program synthesis is where a program is extracted from the proof of a theorem.
The theorem to be proved is

F V inputs - 3 output • spec(inputs, output) (A)

where spec (inputs, output) is a specification of the program. Theorem A says that
the program is required to produce an output satisfying the specification for every input.
What is required for the proof is the construction of an existential witness for theorem A
which will be the program prog (inputs) satisfying the theorem

I V inputs • spec(inputs, prog(inputs))

Given that theorem A starts with a universal quantifier, a proof by induction will usually
be appFopriate. Each step of the proof corresponds to the introduction of a program
construct. For example, an inductive proof step corresponds to the introduction of a
recursive procedure. Proving A can involve complex induction schemata, corresponding
to the program stru,:ure.

For any proof by induction, a choice has to be made of the induction variable and the

induction schema; that is, what will constitute the base and step cases. For example,
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proving properties of the even numbers will usually involve stepping the induction
variable by two rather than one. The induction schema together with the induction
variable will be called the induction strategy. This section presents a technique for
choosing the induction strategy. When the induction strategy has been chosen, the proof
must be completed, so this section also presents a technique for completing the proof.
The techniques presented here are of interest to a person carrying out a pen and paper
proof, because they help to find the right induction strategy, and to complete the proof.
They are of interest to a tool builder as both techniques can be automated.

3.1 Choosing the Induction Strategy

The technique presented here for choosing the induction strategy comes from the
Boyer-Moore theorem prover (Boyer]. Firstly, the technique is explained when there is
only one recursive function and one possible induction variable. Theorems involving
more than one recursive function and more than one possible induction variable are
discussed later.

For theorems involving only one recursive function and one possible induction variable,
then obviously that variable must be chosen. The induction schema chosen should be that
one which mirrors the form of recursion used to define the function. For example, the
induction schema will have the same number of base and step cases as the form of
recursion. The next two examples illustrate the techn;jue.

Example 7

Consider the following recursive function

V m, n : K o
0 + mm (1)

s((n) + m =s(n + m) (2)

The theorem

1V n :K n + 0 - 0

can be proved using the one step induction schema

11'(0) A (SI)
V n : KN - P(n) 1 (s n)

V n : K - P(n)

The base case in si, namely p (0), corresponds to the base case of + (axiom 1). Similarly
the step case in si, namely

V n :KN * P(n) * P(s n)

corresponds to the form of recursion in the step case of + (axiom 2). A
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Example 8

Consider the following recursive definition of the set of even natural numbers.

even P I

0 e even (1)
S (0) 9 even (2)

s ( , n) 6 even 0 n e even (3)

The theorem

Vn :XN *nE even4 s(n) e even

can be proved using the two step induction schema

P(0) A (52)
P (S 0) A
V n * P(n) = P(s(s n))

V n * P(r)

The two base cases in S2, namely p (0) and p (s o), correspond to the two base cases in
the definition of even (axioms 1 and 2). The step case in s2, namely

V n : K P(n) * P(s(s n))

corresponds to the form of recursion in axiom 3 of even. A

It is worth saying at this point that induction schemata si and 52 are logically
equivalent. It is just that one induction schema is more appropriate for a theorem than
another. Now suppose that a theorem involved more than one recursive function. Also
suppose the thcorem contained more than one possible induction variable. (In examples 7
and 8 there was only one possible induction variable, namely n.) Which induction
schema, and which induction variable should be chosen? The technique for choosing the
induction strategy is a- -ollows. The explanation is based on that given in [Bundy b].
During the explanation, the pi.. ase recursion term is used. This is a term such as s (n) in
example 7 and s (s n) in example 8. The recursion term appears in both the dcfinition of
a recursive function, and in the corresponding induction schema.

Firstly, the form of the theorem is analysed to produce a number of raw induction
suggestions. These suggestions are then combined to produce a single induction strategy
which will be used for the prc f. The raw induction suggestions are generated as follows.
The theorem is scanned to locate its recursive functions. Each occurrence of a recursive
function -f, with a variable x in its recursive argument position, produces a raw induction
suggestion (the recursive argument position for the function + in example 7 is its left
hand argument). The raw induction suggestion consists of the induction schema that
m!rrors the form of recursion used to define f, and induction variable x.

These suggestions are then combined as follows It may be possible for one suggestion to
subsume another. This will be the case if the two suggestions consist of the same
induction variable, and the recursion term of one induction schema consists of repeated
n.;tings of the recursion term of the other schema. For example, the recursion term -s (s
n) in example 8 subsumes the recursion term s (n) in example 7. If it is not possible for
one suggestion to subsume another, then it may be possible to produce a new suggestion
that subsumes both. This is achieved by merging the two suggestions. For example, a two
step schema and a three step schema can be merged to give a six step schema. After
subsumption and merging has been carried out there will be one suggesti ,i for each
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induction variable. It then remains to chooge one of these suggestions as the induction
strategy for the theorem. This final step is achieved by considering the terms that would
occur in the induction conclusion, for each suggestion. Some suggestions would result in
terms that could not be rewritten using the definitions of the recursive functions. Such
suggestions areflawed and are removed. If more than one suggestion remains, the winner
is the one that subsumes the largest number of raw suggestions. The next example
illustrates the technique.

Example 9

Consider the theorem

FV n, m : A4 n E even A me even * (n + m) e even

where + and even are defined in examples 7 and 8. This theorem contains two recursive
definitions, even and +, and two possible induction variables, n and n. The raw induction
suggestions are

(S2, n) (A)
(S2, m) (B)
(S1, n) (C)

where si and S2 are the one step and two step induction schemata appearing in examples
7 and 8. Suggestion A is generated by the first occurrence of even in the theorem, with
the variable n in its recursive argument position. Suggestion B is generated by the second
occurrence of even, with the variable zn in its recursive argument position. Suggestion c
is generated by the occurrence of +, with the variable n in its recursive argument position.

These three suggestions are combined to form the induction strategy as follows.
Suggestion A subsumes suggestion c, because they both contain the induction variable n,
the recursion term in S2 is s (s n), and the recursion term in si is s (n). This leaves
suggestions A and B. Suggestion B is flawed because it would produce the term n + s (s
m) in the induction conclusion, and this can not be rewritten using the definition of +. The
induction strategy is therefore A; two step induction on n. A

3.1.1 Strengths and Weaknesses

Using the above technique, an induction -trategy can be automatically generated. The
technique has been automated in the Boyer-Moore theorem prover [Boyer], and in the
Oyster-Cam system [Bundy b]. But the generated induction strategy might not always be
appropriate to prove the theorem. Once again, the technique is still safe, it just means that
the user will not be able to prove the theorem using that induction strategy. The next
example illustrates this.

Example 10

Consider the theorem

I V m, n Nm 2 * 2*n 2

Suppose the two functions that appear in this theorem (multiplication and exponentiation)
are defined recursively (which is usually the case). The above technique would produce
an induction schema based on these two recursive functions. But the appropriate
induction schema for this theorem is

IV n :I (V n' : I n' < n ° P(n')) 0 P(n)

V n : o p (n)
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This is a case of Noetherian induction.. This induction schema says that P (n) must be
proved under the assumption that P holds for all values less than n. That is, the induction
conclusion P (n) must be proved from the induction hypothesis

V n' : I n' < n * P(n')

Basically, this means that for the above theorem, m2 * 2*n2 must be proved under the
assumption that m2 * 2 "n2 is true for all smaller values of m and n. This is achieved by
assuming m2 - 2*n2 (the negation of the induction conclusion) and obtaining a
contradiction. The contradiction arises, because in assuming i,2 - 2*n2 , it can be proved
that ,'2 - 2*n"2 , where d" and n' are smaller than m and n. This contradicts the induction
hypothesis. A

3.2 Completing the Proof

Once the induction strategy has been chosen, the proof must be completed. In [Bundy a]
a technique is described for manipulating the induction conclusion so that the induction
hypothesis can be used. This technique is called rippling-out. The difference between an
induction hypothesis -nd conclusion is in the recursion term (recursion terms were
described in section 3.1). For example, the induction strategy finally chosen in example
9, used the recursion term s (s (n)). The induction conclusion contains s (s (n))
wherever the induction hypothesis contains just n. The expression s (s (...)) (the
recursion term without the n) is an example of a wave front. To complete the proof, the
wave front must be moved outwards from its deeply nested positions (or rippled, like a
wave on a pond), to reveal a copy of the induction hypothesis. The next example
illustrates rippling-out.

Example 11

Consider the function + as described in example 7, namely

+1
+ : NN X M) -- I

m m, n
0 + i= m (.)
s (n) + m =s (n + m) (2)

Proving the associativity of +, namely

V x, y, z : M * (x + y) + z = x + (y + z)

by induction on x gives an induction hypothesis

(x + y) + z - x + (y + z)

and an induction conclusion

(S x) + y) + z = SX) + (y + z)

Using repeated applications of axiom 2, the wave front s (... can be rippled outwards
to give

s( (x + y) + z) = s(x + (y + z)) (A)

Since s is an injective function, it obeys the law

I0



(s(M) - s(n)) - (n - n)

for any natural numbers m and n. Using this law, expression A above can be rewritten as

(x + y) + z - x + (y + z)

The wave front s . has now completely rippled-out, revealing a copy of the
induction hypothesis. The proof is therefore complete. A

3.2.1 Strengths and Weaknesses

The technique of rippling-out is easy to apply. The user simply has to apply axioms so
that wave fronts in the induction conclusion move outwards. The technique has been
automated in the Oyster-Clam system [Bundy a]. The technique is used by Oyster-Clam
as a central strategy for proof. In this system, not only does the technique complete an
induction proof, it also plays a part in choosing the induction strategy. This is because the
technique for choosing the induction strategy (section 3.1) has been automated in
Oyster-Clam so as to look ahead to ensure subsequent rippling can proceed. But the
technique of rippling-out is not always appropriate. For example, sometimes a wave front
needs to move sideways instead of outwards. That is, the wavefront remains at the same
level of nesting. The next example illustrates this.

Example 12

Consider the function qrev in example 2. One of the axioms of qrev is

qrev((x)-s, t) - qrev(s, (xt)

Using this axiom in a proof will move the wavefront, (x)-, sideways. The wavefront is at
the same level of nesting on both sides of the above axiom. A

Extensions to rippling-out have been made in [Bundy c]. They include rippling sideways
as described above, but are beyond the scope of this report. The extensions have been
automated in Oyster-Clam.

4 Window Inference

Window inference is a style of reasoning which enables an expression to be transformed
by restricting attention to a subexpression. This is called opening a window on the
subexpression. Window inferencing transforms an expression without affecting the rest
of the expression, but allows contextual information to be used while transforming the
subexpression. The contextual information is derived from the original expression minus
the subexpression. This section formalizes window inference so that it can be automated
and is therefore of interest to a tool builder. The formalization presented here is from
[Grundy].

4.1 Formalizing Window Inference

It is useful to see an example of window inference before attempting to formalize it. The
next example illustrates the use of window inference to simplify an expression.

Example 13

Suppose the expression

(head s) " (tail s) - t s 0 (A)

11



where s and t are sequences, is to be simplified. Consider the following law from

[Spivey]

Ps 0 (head s) - (tail s) - s (B)

How can this law be used to simplify expression A? Window inference allows a window
to be opened (shown as a box below) on a subexpression of A

I (head s)- (tail s) - t A ̂ s 0

The contextual information, s * 0 (the remainder of A) can then also be used to simplify
the window expression. This contextual information, together with theorem B, enables the
following fact to be deduced (by modus ponens)

(head s) - (tail s) - s

Rewriting with this new fact allows the window expression to be simplified, so that the
original expression becomes

S = t A S # 0

A

Window inference can be formalized by using window rules. A window rule is a
particular type of inference rule. For example, the window inference carried out in the
last example can be formalized with the window rule

Q, T I. P 0: P'

r I (P A Q) 4* (P' A Q)

In this rule the complete expression is P A Q, the window expression is P, and the
contextual information is Q. The rule states that if the window expression can be
simplified to p' (using the contextual information) then the complete expression can be
simplified to P' A Q. The symbol r denotes a list (possibly empty) of other facts that can
be used when simplifying. In the last example r consisted of theorem B. The general
form of a window rule is

y, r e re'

r l Efe] R E[e')

The complete expression is E[e), the window expression is e, and the contextual
information is Y. The transformed window expression is e' which means that the
complete expression is transformed to E[e']. The symbol r denotes a list (possibly
empty) of additional facts that may be used during the transformation. The relationship
between the original and transformed window expression is r. Similarly, the complete
expressions before and after transformation are related by R. In general r and R are
different as illustrated in the next example.

Example 14

Consider the formal refinement of a specification to code (see for example [Morgan]).
When strengthening the postcondition it is natural to do so under the assumption that the
precondition holds. This can be formalized using the window rule

pre, r i post 4= post,

r I w : [pre, post] r w : [pre, post']

12



The symbol s is the refinement relation and w is the list of variables whose values may
change. In this example r is "reverse" implication and R is refinement. Therefore when
carrying out a formal refinement of the statement

w : [pre, post)

a window may be opened on the subexpression post as shown

w : [pre, I post I ]

while assuming the contextual information pre. A

4.2 Opening a Window Within a Window

A window can be opened within a window and so on, creating a window stack. To
formalize this consider the pair of relations (r, R) appearing in a general window rule.
A window may be opened inside another provided that r for the outer window is the
same as R for the inner. The next example illustrates this.

Example 15

Consider a backwards (subgoaling) style of proof. A goal of the form

xE (DIP u I

can often be solved by strengthening the predicate p to p'. This can be achieved in a
series of window inference steps as follows. First of all a window is opened on the set
using the window rule

rt s s'

r x E S - xE S'

This rule states that the set must be transformed into a new set with less elements. This is
achieved by opening a window on the subexpression P using the window rule

D, r P 4= P"

rF ( D I P • u u 2 (D I P' u )

and strengthening the predicate p (to give a new predicate p'). Once this has been
achieved (by opening another window perhaps, or using a theorem), both windows can be
closed to give the new subgoal

x E ( D I P' • u

A

13



4.3 Strengths and Weaknesses

Window inference is a powerful technique as it allows the user to concentrate on a
subexpression, and assume contextual information while doing so. There are many areas
where window inference is useful, for example the simplification of expressions,
refinement, and goal directed theorem proving. A disadvantage is that the window rules
which formalize the technique are complicated. If window inference is automated, then
although window rules are complicated they will be hidden from the user. The tool will
allow a window to be opened up provided that it has a window rule to justify it. Window
inference has been automated in the HOL theorem prover [Grundy].

5 Consistency of Z Specifications

It is important that a Z specification is consistent. An inconsistent specification may lead
to false conclusions in reasoning thus destroying the point of having a specification. For
example, a specification of a natural number x using the axiom x - x + 1 is
syntactically correct and well typed, but no such x exiots. In general, for each object
specified, a theorem should be proved stating that the object exists.

One way in which inconsistencies can arise is when using a Z free type. [Smith a] shows
that a user defined recursive free type may not exist, or even if it does, a recursive
function defined over it may not. [Smith a] presents techniques for checking the
consistency of recursive free types, and recursive functions defined over them. This
section extends the technique so that a wider class of functions can be checked. The
extension is of interest to a person carrying out a pen and paper proof so as to avoid false
conclusions when reasoning. It is of interest to a tool builder as the extension can be
automated.

5.1 Functions Defined Over Free Types

[Smith a] presents a technique to prove the existence of a recursive function defined over
a recursive free type. But the technique can only be used for a function defined by
primitive recursion. The technique is now extended to cover some non-primitive
recursive functions. Basically the idea is to rewrite the non-primitive definition in terms
of a primitive one, after which the technique in [Smith a] may be used. The reader needs
only to appreciate how a non-primitive function can be rewritten in terms of a primitive
one. The extension only covers non-primitive functions defined over a free type of the
form

T ::= al I ... I am I C1 (( T )) I ... I cn U T ))

(the basic technique in [Smith a] covers all free types). A function f defined by primitive
recursion over the above free type T has a recursive case of the form

f(ci t) - A(f t)

where A (f t) is some expression involving f t. A non-primitive function g might have
a step case of the form

g(cl(c2 0)) = B( g(cl t), g(c2 t), g t ) (1)

In general, if there are n constructors ci on the left hand side of 1 then the right hand side
will contain applications of g containing zero, one, two, ..., n-1 constructors. Such a
function g can be written in terms of a primitive recursive function gi. The idea is that g.i
t delivers the tuple

14



(g t,
g(cl t), ... *, g(cn t),
applications of g with two constructois,

applications of g with n-I constuctors

(this tuple will contain i + n + n2  ... + nn - elements). It is then the case that
gi (ci t) can be written in terms of gi t (note this is primitive recursion). Once gi has
been constructed the original function gcan be written g t - FsT (gl t), where rsT
projects the first element from the tuple. The next two examples illustrate the technique.

Example 16

The natural numbers can be considered as the free type

AlI ::- 0 1 s I WI D

Consider the function

fib : -- RI

Vn
fib 0 = 0 (1)

fib 1 = 1 (2)
fib(n+2) = fib(n+l) + fib(n) (3)

which generates the Fibonacci numbers. The function fib is defined by non-primitive
recursion. A primitive recursive function fibi is now constructed. The idea behind the
construction is that

fibi n - (fib n, fib(n+l)) (A)

Using this idea

fibl 0
= (fib 0, fib 1) (using A)
= (0, 1) (using axioms 1 and 2 of fib)

and

fibi (n+i)
= (fib(n+l), fib(n+2)) (using A)
- (fib(n+i), fib(n+l) + fib(n)) (using axiom 3 of fib)
- (X x, y :R * (y, y+x)) (fib n, fib(n+l)) (0-abstraction)
- (X x, y : N * (y, y+x)) (fibl n) (using A)

The formal definition of fibi is therefore

h -" x, y : • (y, y + x)

fib 1 K -4 (1M x M)

Vn k.

fibl 0 - (0, 1)
fibl (n+l) - h (fibi n)

15



Notice that this is a primitive recursive function since fibl (n+1) is defined in terms of

fibI (n). The original function fib can then be written

fib n - fst(fibl n) (B)

The above approach of using the function fibl is also used in producing the fast
Fibonacci function in functional programming, described in [Bird]. The definition B,
considered as a functional program, is more efficient than the original definition, taking
less rewrites to evaluate the nth Fibonacci number. A

Example 17

Consider the free type

7 ::- a I b 9 T D I c 4 T ))

and the non-primitive recursive function

g : T -4 Kq

V t : T "

ga = 0

g(b a) = 1

g(c a) = 2

g(b(b t)) = g(c t) + (g t)

g(b(c t)) = g t
9(c(c t)) = g(c t) + 3

g(c(b t)) = 2

A primitive recursive function gi is constructed. The idea behind the construction is that

gI t = (g t, g(b t), g(c t))

Using a similar method as in the last example, the formal definition of gi is

hl == X x, y, z : (y, z + x, 2)

h2 == x, y, z : R ° (z, x, z + 3)

gl : T -4 (1KI X RI X KN)

V t : T .
g1 a - (0, 1, 2)

gl(b t) - hl(gl t)

gl(c t) - h2(gl t)

The original function g can then be written

g t - fst3(gl t)

where

fst3 =- x, y, z : RI • x

A
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5.2 Strengths and Weaknesses

The technique described helps in checking the consistency of a Z specification. The
technique of rewriting a non-primitive recursive function in terms of a primitive one can
be automated. A disadvantage of the technique is that the definition of the non-primitive
recursive function must be rewritten in an obscure way. This obscure specification helps
to prove the existence of the function. This is another example of how a more obscure
specification can lead to an easier proof. This conflict between specification and proof is
discussed in section 7.

6 Reasoning with Schemas

In Z, it is useful to reason at the schema level, without getting lost in a mass of low level
predicates. A schema can appear as a set, a predicate, in a schema expression or as an
inclusion. In its last role it provides its main expressive power, but also the greatest
difficulty for reasoning as it is not obvious when to stop expanding schema inclusions.

This topic will not be dealt with here except to note that the main new feature introduced
by a schema is its signature, so proof rules need to be concerned with the effect of
binding and variable introduction. In the case of schemas as predicates and schema
expressions it is reasonable to assume that typechecking has discharged the scope and
type consistency obligations, in which case schemas can be handled as predicates and
simple laws given for the schema operators. The propositional schema operators (A, V
etc) obey all the usual laws of propositional logic. If s, T and u are schemas then

S A (T V U) - (S A T) v (S A U)

Similar laws can be given for the other schema operators, and as an illustration of the
laws useful for reasoning at the schema level, the laws appropriate for preconditions will
be given.

6.1 Laws For Calculating Preconditions

When describing an operation in Z, it is useful to know when the specified operation can
be used. In particular, for consistency, it is important to check that the domain of
applicability is not empty. When using a schema to describe an operation, the
applicability of the operation is described by its precondition. This section contains
useful laws for calculating the precondition. The laws presented here have been
rigorously proven by hand although they should be formally proved using the semantics
of Z [Brien). The work extends that in [Gilmore] to consider all the schema operators in
[Spivey] and [McMorran].

Some of these rules have side conditions which are expressed in square brackets directly
after the rule. The following notation is used to express these side conditions. If s is a
schema, let bs denote the set of "before" components of s (the undashed variables and
the inputs), and as denote the set of "after" components of s (the dashed variables and
the outputs). Also let !s denote just the outputs. The next example illustrates this
notation.

17



Example 18

If s is the schema

-S
x, x', Z!
y, /, w?

then

bS - (x, y, w?) aS- (x', y', z!) !S (z.

Also, the rules are general in the sense that there is no necessity for a schema to be of the
form

s
AState

that is, where every undashed variable has a dashed counterpart. The schema could have
an undashed variable with no dashed counterpart, or vice versa.The rules are listed below
under the particular schema operation involved.

Disjunction

pre(S v T) = pre(S) v pre(T)

Conjunction

pre(S A T) = pre(S) A pre(T) [aS r) aT = H)

Implication

pre (S - T) = pre (-S) v pre (T)

Equivalence

pre(S 0 T) = pre(S 4 T) A pre(T 4 S) [aS C aT= (}]

This is a very interesting law. At first sight, this law appears to follow easily from the law
for conjunction above, since

S 0 T = S = T A T = S

But in order to use that law its side condition must be satisfied for the schemas s = T
and T = s. But these two schemas have the same signature (formed from merging the
signatures of s and T). Thus the side condition is not satisfied, and so the law can not be
used. The above law for schema equivalence must be derived by other means. It can be
used with the law for implication to obtain an expression for pre (S 0 T) in terms of the
preconditions of s, T, -ns and -, T.

18



Negation

There is no useful law for pre (--s). At first glance, one might have expected pre (- S) to
be equal to -- (pre s) but this is not the case. A counterexample follows.

Example 19

Let s be the schema
$

X, X:

x - x"

Both pre sand pre (-ns) are the schema

x

true

Thus ( (pre S) is the schema

false

which is very different from pre (-S). A

The reason why pre (-,s) is not equal to - (pre s) is as follows. A precondition
describes the applicability of an operation rather than describing the operation itself.
Thus it is possible for two schemas to have very different properties, but the same
precondition (as seen for the two schemas s and - s in the above example).

Overriding

pre (S E T) = pre (S) v pre(T)

This law is similar to the law for disjunction because s 9 T is like s v T but with the
priority given to T. This priority does not affect the precondition.

Composition

pre(S 9 T) = pre(S 0 pre(T)) [!S T = !T

Recall that for s a T to be defined the set of dashed variables of s must equal the set of
undashed variables of T.

Piping

pre(S )) T) - pre(S )) pre(T)) (aS - pipe) n aT = I)

where pipe is the set of outputs of s that are piped into T. This law is similar to that for
composition, but with . replaced by ). This is because the operation of piping is similar to
composition, but with inputs and outputs forming the interface between s and T, rather
than dashed and undashed variables.
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Projection

pre(S l T) - (pre(S) A pre(T)I(bS - bT) [as r) aT - {)

where bS - bT is the list of variables that appear in bS but not in bT.

Restriction

pre [SIP] - [pre(S) I PJ [P is a predicate over bS]

Quantification

pre(3DIP-S) - (pre [SIPJ)(D - aS)

where (D - aS) is the list of variables that appear in the declaration D but not in as.
There are no useful rules for pre (3 1 D/P .S) and pre (VDP *S).

Hiding

pre(S(v)) = (pre S)\(v - aS)

where v is a list of variables that appear in s. The expression (v - as) is the list of
variables that appear in v but not in as.

The next example illustrates the use of the above rules.

Example 20

Let SublO and Sub4 be schemas describing the operations of subtracting 10 and 4
respectively.

Sub10 Sub4,

a ?, b! b?, c!

b! = a? - c! = b? - 4

The laws can be used to calculate the precondition of the schema pre (SublO )) Sub4).
Using the law for piping, then

pre(SublO )) Sub4) = pre(SublO )) pre(Sub4)) (A)

Now pre (Sub4) is the schema

3 c! M •c = b? - 4

which simplifies to

b? : 4

The schema Subl 0 D pre (Sub4) is therefore

20



a ?

3 b : b - a?- 10 A b Z 4

which simplifies to

a? Al

a? Z 14

Using A and the fact that schema B has no after components, pre (Subl 0 )) Sub4) is
equal to schema B. The calculated precondition is as expected, since SublO )) Sub4
represents the operation of subtracting 14. A

6.2 Strengths and Weaknesses

The rules allow reasoning at the schema level. Also if an operation has been specified in
terms of basic operations, using many schema operators, then the rules can be used to
calculate its precondition from the preconditions of the basic operations. This means that
the preconditions of the basic operations can be reused, thus avoiding duplication of
effort. The rules could be used by a tool builder to populate a library, or be used to
produce an automatic precondition calculator.

7 The Conflict Between Specification and Proof

It is sometimes easier to prove a theorem starting from one specification than from
another. Although it can be easier to start from one specification, this can be at the
expense of clarity. If the specification is hard to understand, then it is unclear exactly
what has been specified. It is unclear if the specification captures the author's intentions.
This in turn makes it unclear exactly what has been proved. The whole point in carrying
out proof is to increase confidence in the system being developed. If it is unclear exactly
what has been proved then the proof is pointless. The next example illustrates this.

Example 21

Consider the highest c=mmon factor (hcf) of two non-zero natural numbers. Recall that
the hcf of two numbers is the largest number which divides both. For example the hcf of
6 and 9 is 3. Consider the following specification of hcf (which is basically Euclid's
algorithm for calculating the hcf).

hcf : M41 X Ml) -4 K14

V x, y : R 1 "

hcf (x, x) = x
hcf (x + y, y) - hcf (x, y)

hcf(x, x + y) - hcf(x,y)

With this specification theorems involving hcf are easy to prove. The reason is that the
specification lends itself to proof by induction. The particular induction schema required
is generated by section 3 (induction), and is
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I V x RI I P(x,x) A

V x, y K41  P(xy) 4 P(x + y, y) A

V x, y AIV P (x,y) = P(x, x + y) A

V x, y :K 1  P(x,y)

The problem is that the above specification and corresponding induction schema are hard
to understand. It is not obvious that the specification captures the meaning of hcf. Now
consider the following alternative specification of hcf.

hcf t1I x K41) MI

V x, y, z : RI1
hcf(x,y) divides x
hcf(x,y) divides y

z divides x A z divides y 4 z divides hcf(x,y)

where m divides n if and only if n/m is a natural number. Proving theorem: is more
difficult using this specification, but the specification is easier to understand. For
example, the first two axioms state that the hcf of two numbers divides both numbers,
while the third axiom states that the hcf is the largest such number. It is much easier to
see that this second specification captures the meaning of hcf. A

As mentioned earlier, if a specification is hard to understand then it is unclear whether it
captures the author's intentions. There is a real danger that it specifies something very
different. It is possible for two specifications to be quite similar, but specify very
different objects. Thus if a mistake has been made inan unclear specification it will be
hard to notice, and something very different will be specified. This in turn means that a
different theorem to the intended theorem is being proved. The next example illustrates
this point.

Example 22

Suppose a mistake has been made in the unclear specification of hcf in example 21, giving

hcf :(NN, X M%1)-- 1

V x, y M k 1

hcf (x, x) - x
hcf (x + y, y) - hcf (x,y)
hcf(x, x + y) - x

(the right hand side of the third axiom is different). This specification does not specify
highest common factor at all, it specifies a modulo function. For any two numbers x and
y the above function repeatedly subtracts y from x until it is in the range 1. .y. Such a
mistake is more difficult to find in an unclear specification. Thus th,orems proved using
the above specification are not theorems about highest common factor at all, they are
theorerris about a modulo function. A

Other examples of this conflict between specification and proof have appeared in earlier
sections of this paper. In section 3 (induction), higher order functions were used to make
theorem proving easier. But these functions made the specification and proof harder to
understand. In section- 5 (consistency of Z specifications), some recursive functions were
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rewritten to make it easier to prove their existence. The new versions were harder to
understand.

[Gravell) and [Macdonald] present techniques for writing a specification so that it is
easier to understand. For example [Gravell] uses the phrase syntactic gap to mean the
difference between the English and the mathematics in a specification. The idea is to
minimise the syntactic gap. There is of course an assumption here that a person's English
is intuitive and easy to understand.

There appears to be a conflict between specification and proof. But perhaps this conflict
can be turned to advantage. Why not have both the clear specification for understanding,
and the unclear specification for proof)? The equivalence of these two specifications must
be proved: firstly to ensure that properties of the "proof" specification are indeed
properties of the "clear" specification; secondly to ensure that all properties of the "clear"
specification can be derived from the "proof" specification. In example 21, the
equivalence between the two specifications can be proved as follows. The induction
schema given in example 21 can be used to show that the "proof' specification implies
the "clear" specification. To show the converse, the lemma

1 V x, y : A41 - (x divides y A y divides x) (x = y)

can be used to link the relation divides in the "clear" specification to equality in tie
"proof' specification. In general, perhaps equivalence could be proved by a trusted
transformation approach. This approach would be similar to the technique of program
transformations.

8 Conclusions

This paper has presented a number of useful techniques for proving theorems in Z. Some
of the techniques give the user an advantage when proving theorems. For example,
generalization can make a theorem easier to prove, as well as making it more useful. Also
the technique for choosing the right induction schema and induction variable, and the
technique for finishing the proof, help to guide the user. One of the techniques for
generalizing a theorem is to use higher order functions. The identification of higher order
functions and theorems involving them presents an opportunity for further work in this
area.

The paper has discussed the conflict between specification and proof. Sometimes a less
intuitive specification can be betier for proof, but harder to understand. This conflict can
perhaps be turned to advantage by having both specifications. One specification would be
for understanding, the other for proof. The equivalence of these two specifications must
be proved: firstly to ensure that properties of the "proof' specification are indeed
properties of the "clear" specification; secondly to ensure that all properties of the "clear"
specification can be derived from the "proof' specification. Proving the equivalence
between these two specifications is an area for further work. PerhAps equivalence could
be proved by a trusted transformation approach. This approach would be similar to the
technique of program transformations.

The paper has also discussed the important topic of consistency of Z specifications. A
technique is presented that can check the consistency of certain non-primitive recursive
functions defined over a recursive free type. This technique should be extended to cover a
wider class of such functions and free types. This is an area where further work is needed.
The laws for calculating preconditions are also useful when checking consistency. They
can be used to check that a specified operation is actually possible.

The paper has identified some useful theorems for a theorem library. Examples of such
the ,rems are those generated by generalization. These theorems could be reused for
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many different problems. Also, the laws for calculating preconditions would be a useful
addition to such a library.

Some of the techniques could be automated. The resulting proof tool would be tailored to
the user, rather than the reverse which is currently the case. For example, if window
inference is automated this will give users the chance to do on a machine what they do on
paper. Using the techniques for generalization, a tool could automatically generalize a
theorem by replacing every occurrence of a subterm by a variable. If the tool was
successful in proving the generalized theorem it could automatically replace the variable
with the original subterm, thus proving the original theorem. The technique for choosing
the right induction schema and induction variable, and the technique for finishing the
proof, would mean a tool could automatically attempt to prove a theorem by induction.
The laws for calculating preconditions could be used to produce an automatic
precondition calculator.
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