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Knowledge and Processes of Design: Final Report 2

1. Introduction

Our project concerned information-processing characterizations of the knowledge
and processes involved in design. Design is a complex ill-structured task. By their very
nature, such ill-structured tasks involve processes of finding, representing, refining, and
reformulating goals and constraints, generating appropriate problem spaces to work in,
retrieving, integrating, and evaluating information from long-term memory or external
sources, and managing complex assemblies of past and current decisions (Mostow, 1985;
Reitman, 1964; Simon, 1973).

In classic theories of problem solving in psychology, a problem solver is faced with
a problem situation and develops a representation for the problem (problem structuring). In
classical terms, this representation may include information about the current state of the
problem situation, a goal, and possible sets of problem solving actions (operators) that may
be relevant to changing the current state to conform to the desired goal. A particular goal, a
set of states, and a set of operators defines a problem space. Problem solving is
characterized as a search process in a problem space, in which the problem solver proposes
and decides upon possible operators and sequences of operators that will transform the
current state into a goal state. Much of the research on the psychology of problem solving
has focused on understanding the knowledge and processes involved in solving well-
structured, but semantically impoverished, puzzle tasks. In these cases, the initial problem
state, the goal state, and the problem solving operators are well-defined, and problem
solving difficulties are largely due to the complexities of searching for and finding the right
sequence of problem solving actions. It is only recently that cognitive psychology has
started to examine in detail the kinds of problem solving and decision making that occur in
ill-structured problems such as those that are typical in expert design.

: Over the course of our project we made substantial progress in a number of areas.

We collected and analyzed verbal protocols from instructional designers, architects, and
mechanical engineers. We developed a framework for characterizing the problem spaces of
design that generalizes across design tasks, that is based on task invariants, the invariants
of the human information processor, and the logical structure of design. We developed a
protocol analysis formalism that can be used to analyze protocol data from experts in
different disciplines, and more importantly, can be used to connect statement-by-statement
codings to more abstract characterizations of design. This analytic technique has been used
to analyze and compare design in three disparate design tasks. The data, methodology,
framework, and theory are presented in detail in (Goel & Pirolli, 1989; Goel & Pirolli, in
press) and included here as Attachments 1 and 2. In addition, we developed a computer
simulation, implemented in Soar, of one of our design subjects, which is presented in
(Pirolli & Berger, 1991), included here as Attachment 3. This simulation served to provide
a precise sufficiency test of our analysis. The flip side is that the simulation forced us to
provide a precise description of the cognition of one of our designers.

Many interesting phenomena arise in design problem solving, and one of these is
the extensive use of external symbol systems. In developing an analysis of the relationship
between problem solving and external symbol systems, a theoretical framework for the
analysis was developed to categorize semantic and syntactic properties of external symbol
systems. This framework (largely worked out by Vinod Goel) is presented in (Goel,
1991a, 1991b). An experiment was developed to test hypotheses motivated by this
theoretical analysis, largely focusing on the relation of the ambiguity and density of symbol
systems to different phases of problem solving (roughly, why is it that sketches are
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dominant during early design work but precise notations dominate later problem solving).
This empirical work is presented in (Goel, 1992), included here as Attachment 4,

These accomplishments are important for several reasons. Cognitive science has
made substantial progress in the study of well-structured or semantically rich problem
solving. However, the study of ill-structured problem solving, such as design, has
received less attention. Furthermore, approaches taken to design have concentrated on
individual tasks, rather than characterizations that generalize across design tasks. Finally,
there has been very little work that attempts to relate properties of external representations
to different phases of problem solving. Our work suggests that we might be in a position
to create an integrated framework that:

* Provides middle-level nomothetic theory, allowing us to specify the universals
of design across tasks and disciplines. Thus, the framework can be used to
develop normative analyses and models across subjects.

» Provides a precise framework and language for idiographic theory and
analyses, allowing us to analyze individual cases of design. Thus, the
framework can be used to develop descriprive analyses and models of
individual subjects.

 Provides computational theory, allowing us to guarantee that our models are
sufficient to describe individual behavioral patterns.

e Describes the role of external representations in problem solving. Although
some recent work in cognition has begun to on this aspect of problem solving
(e.g., Larkin & Simon, 1987) these have tended to focus on well-structured
representations for well-structured problem solving tasks. Our focus has been
on the generative role of representations in problem solving.

Additional progress in the study of design could lead to progress in the study of other ill-
structured tasks, such as writing, strategic analysis, formulation and revision, and other .
tasks usually thought to involve creativity and expertise.

2. Formalizing the Notion of Generic Design

Conceptually, one of our initial moves in studying design involved developing an
analytic framework that discriminated design tasks from other kinds of problem solving,
and generalized across tasks that would generally be called design. Our initial report in this
area was presented in a paper by Goel and Pirolli (1989; see Attachment 1). In that paper,
we presented the design problem space, which provides a characterization of the abstract
structure of generic design tasks. Our first move in developing the design problem space
wgaggthe observation that design is a "natural kind" of problem solving (Goel & Pirolli,
1989):

Design is too complex an activity to be captured in a one-line definition...our
characterization of design starts with the observation that design is a category that
exhibits what Rosch calls prototype effects. (Goel & Pirolli, 1989, p. 23).

Our next step was to realize that the abstract structure of the design problem space
would be, in part, determined by constraints resulting from the invariants of the task
environments across design situations, combined with the invariants of human information
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processing. This involved an analysis of the structure of the prototypical design tasks, the
identification of the substantive invariants of the design task environment and human
information processing system, and the ways that these relate to the structure of the design
problem space (Goel and Pirolli, 1989)

Characterizing design at this level of abstraction has both costs and benefits. On the
one hand, it moves us away from the study of individual tasks to more general and abstract
characterizations of the intricate and intertwined interactions of the human problem solver
and a task environment. Such a move is important if we seek to gain a general
understanding of the nature of such complex problem solving. On the other hand, such a
level of description is several levels removed from the typical formalisms used to describe
verbal behavior at the grain size of individual statements. A substantial amount of our
efforts have been devoted to elaborating the design problem space analysis simultaneous
with our development of a statement-by-statement verbal protocol coding scheme with the
aim of developing a multi-level coherent analytic methodology.

3. Empirical Investigations

Two other important developments in our research have been to develop design
tasks that are effective for studying design, and to develop a comprehensive data analysis
methodology. From pilot studies we realized that we needed to study expert designers
working on tasks that are novel, but not beyond their expertise. We collected data from
architects, mechanical engineers, and conducted a larger experiment with instructional
designers.

We studied these experts on three sorts of design tasks appropriate to subjects’
expertise. Our most extensive data collection has concerned instructional design, in which
design briefs were presented to 10 professionals who work for an international office
systems company. The problems involved the design of instruction for a word processing
system familiar to the subjects. The problems were varied with respect to the target
audience, the instructional medium, and the nature of the desired specifications. Our
architecture task concerned the design of the site and building of an automated postal teller
system on the UC Berkeley campus. The mechanical engineering task involved the design
of the electro-mechanical system for an automated postal teller system. Each task took
about two to four hours to complete. Each designer worked alone, while thinking out
loud, using only pencil and paper.

Goel and Pirolli (in press; see Attachment 2) developed a hierarchical protocol
coding scheme to analyze our protocol data. At the finest grain of analysis the coding
scheme captured the operation being performed, the propositional content of the statement,
the knowledge source on which the content was based, and the context of the statement
within larger processing events in the protocol. These statement-by-statement codings
were then organized into larger control-flow structures centered around design components
called modules. The general assumption was that the cognitive representation of the
designed artifact had a nearly-decomposable structure. Each major component of this
decomposition was called a module, and within modules there may have been submodules.

In our formulation of the design problem space, we (Goel & Pirolli, 1989)
proposed that control flow is organized around leaky modules. That is, design is organized
into chunks of activity centering on individual modules. However, because modules are in
fact interrelated, the design of individual modules must occasionally involve functional
level assumptions about related modules, or occasionally involve putting the design of the
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current module on hold and attending to a related module. Goel & Pirolli (in press)
presented protocol analyses that illustrated leaky modules and bursts of activity in which a
particular module or submodule was the focus of attention. Within these units, other
modules may have been temporarily attended to or mentioned. This leads to what we called
a limited commitment mode control strategy.

Goel and Pirolli (in press) also presented various analyses examining how the focus
of design shifts through larger-grained identifiable phases of problem structuring and
problem solving. The analyses examine (a)the aspects of the design being considered, (b)
the sources of knowledge for design elements and decisions, (c) degree of commtment to
decisions, and (d) the distribution of operator activity.

4. Simulation Work

We selected a protocol of an instructional designer for our simulation efforts. This
particular protocol was chosen because (a) the subject was highly articulate and verbal, (b)
the subject was one of the most productive of the instructional designers studied (he
completed 2 draft of the instructional text including formatting and diagrams), and (c) this
subject produced copious scratch notes and outlines indicating his developing design. The
task for this designer was to design instruction on the Viewpoint text editor for an office of
10 secretaries who had some experience with MacIntoshes. The instruction was to be a set
of six independent-study, stand-alone modules, delivered by text. This designer was
instructed to produce a general outline of the sessions and to specify the first session is as
much detail as possible. The simulation was implemented in the Soar (Newell, 1990)
production system and is reported in (Pirolli & Berger, 1991) and in Attachment 3.

The main goal of our simulation was to generate the same written output, in the
same order, as the designer, and to be consistent with the verbal protocol. The simulation
operates in multiple problem spaces (as is typical in Soar programs). These included:

» A design-instruction problem space in which the task is implemented. The states
in the space include a representation of the task brief, the paper output (e.g., the
design sketches), and a mental model of the design artifact. The operator
specify-instructional-plan is selected in this space to solve global design tasks.

» When there is insufficient knowledge to directly implement the specify-
instructional-plan operator, an impasse occurs and the operator is implemented in
its own specify-instructional-plan problem space. In order to specify the
instructional plan, the plan is formulated and written using the operator formulate-
instructional-plan.

o If the formulate-instructional-plan operator hits an impasse, it is implemented in its
own problem-spaces. The formulate-instructional-plan space involves operators
that specify the instructional objectives, the target population, the task and
content analysis, and the subplans for the individual instructional sessions.
Each of these areas is a module, as discussed earlier.

» The task and content analyses are carried out by an analysis of the Viewpoint
manual table of contents. An analyze-contents space carries out the task of reading
through the hierarchical table of contents, claborating and evaluating each item,
and deciding whether to include the item in the instruction.
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¢  Task-specific knowledge associated with the specify-instructional-plan
space organizes instructional transactions. Impasses on operators working out
the design of these transactions lead to specialized problem spaces including: (a)
a determine-course-relevance space that fills out a schematic structure indicating why
course content is relevant to students, (b) a determine-course-sequence space that
decides how to allocate instructional content into the available sessions, and to
sequence the sessions, (C) a determine-lesson-instruction problem space that is used
to refine the instructional transactions for a lesson.

Our simulation is consistent with our protocol analysis scheme in several respects.
Most importantly, the problem spaces are generally organized around modules (e.g., the
target population, the content analysis), and has the characteristics of a limited commitment
mode strategy (e.g., proposing, elaborating, evaluating, then deciding). The simulation
uses about 300 production rules and completes the task in 1050 decision cycles. Assuming
that a decision cycle simulates human problem solving at the 6rder of magnitude of 10 secs,
the 1050 decision cycles is of about the same scale as the 3 hours of problem solving
engaged in by this subject.

S. External Representations and Design

One of our observations about design was that different sorts of external
representations seemed to be correlated with different phases of design. Vinod Goel
addressed this issue in (Goel, 1992), included here as Attachment 4. Hypotheses about the
relation between design problem solving and external representations centered on the
ambiguity and density of representational systems (Goel, 1991a). The early phases of
design involve higher amounts of the generation of new or alternative design elements than
later phases. Later phases of design involve higher amounts of refinement of existing
design elements. Representation systems of high amuiguity and high density are expected
during the early phases of design. Symbols in such systems are more easily manipulated to
produce novel referents (new ideas). Free-hand sketches are an example of such
representational systems. Drafting -type representational systems have less-ambiguous
semantics and lower density.

Goel (1992) performed a study of industrial and graphics designers working on a
probem in which they were restricted to either sketch-type diagrams or drafting-type
diagrams during either the early or late phases. The general structure of design problem
solving did not seem to be affected by choice of representational system, in terms of overall
length of the design sessions or the number or duration of episodes demarcated by attention
to particular design elements. However, when designer were allowed to use free-hand
sketches they produced more alternative design elements than designers restricted to
drafting-type systems. Free-hand sketches were also associated with more episodes of
reinterpretation, in which the meaning of a diagram suddenly changed. This occurs when,
for example, a subject draws a light bulb and then recognizes it as a human head, which in
turn leads to a new design idea.

These results highlight the generative role of diagrammatic representations in
problem solving. The standard view of the role of diagrams in problem solving (e.g.,
Larkin & Simon, 1987) is that they serve as data structures that have particular cost
characteristics for storing or accessing information. The work of Goel (1992) illustrates
how diagrams can support the creative generation of ideas an& that this property is related
to specific features of representational systems.
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MOTIVATING THE NOTION OF GENERIC DESIGN
WITHIN INFORMATION PROCESSING THEORY:
THE DESIGN PROBLEM SPACE!

Vinod Goel
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&
Peter Pirolli
School of Education
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ABSTRACT

The notion of generic design. while it has been around for 25 years is not often articulated, espe-
cially within Newell and Simon’s (1972) Information Processing Theory framework. Design is merely
lumped in with other forms of problem solving activity. Intuitively one feels that there should be a
leve! of description of the phenomenon which refines this broad classification by further distinguishing
between design and non-design problem solving. However, Information Processing Theory does not
facilitate such problem classification. This paper makes a preliminary attempt to differentiate design
problem solving from non-design problem solving by identifying major invariants in the design problem
space.

There are four major steps in the strategy: (1) characterize design as a radial category and flesh
out the task environment of the central or prototypical cases; (2) take the design task environment seri-
ously. (3) explicate the impact of this task environment on the design problem space. and (4) argue
that. given the structure of the information processing system as a constant, the features noted in the
problem spaces of design tasks will not all occur in problem spaces where the task environment is vastly
different. This analvsis leads to the claim that these features are invariants in the problem spaces of
design situations. and collectively constitute a design problem space.

Descriptive protocol studies are used to explore the problem spaces of three prototvpical design
tasks from the discipline of architecture, mechanical engineering, and instruciional design. The follow-
ing eight significant invariants are identified: (A) extensive problem structuring. (B) extensive perfor-
mance modeling. (C) personalized/institutionalized evaluation functions and stopping rules. (D) a lim-
ited commitment mode control strategy with nested evaluation cycles, (E) making and propagating
commitments, (F) solution decomposition into leaky modules. (G) role of abstractions in the transfor-
mation of goals to artifact specifications. and (H) use of artificial symbol systems. The paper con-
cludes by drawing some morals for the development of computer-aided design (CAD) systems, noting
the limitations in the work. and indicating directions for further research.

" The authors are indebted to Dan Berger and Susan Newman for much useful discussion and argumentation on the contents of
this paper  Vinod Goel gratefully acknowledges the suppon of the following sources of funding during the course of this work: an
Andrew Mcllon Fellowship. the Myrte L Judkine Memonal Scholarship. a Canada Morgage and Housing Corporation
Scholarship. and a summcr internship at the (nstitute of Rescarch on Leaming at Xerox Parc.  Portions of this research were aiso
funded to Peter Preoilt by the Office of Naval Rescarch undcer contract NOOT3-RR-0233.

Correspondence should be directed w Vinod Goel at the Insotute of Cogmitve Studies (Bldg T-4). University of California at
Berkelev. Berkeley. CA 94720




Goel & Pirolli: 2

1. INTRODUCTION

The term generic design denotes two related ideas. It suggests that design as an activity has a dis-
tinct conceptual and cognitive realization from non-design activities. and that it can be abstracted away
from the particulars of the knowledge base of a specific task or discipline and studied in its own right.
It has its origins in the design methodology research of the 1960s (Cross. 1986). At this time the obser-
vation was made that the various design methods. while they differed in particulars, shared a common
pool of assumptions which conceived the design process as moving through the following sequence of
steps: (i) an exploration and decomposition of the problem (i.c.. analysis): (ii) an identification of the
interconnections between the components: (iii) the solution of the subproblems in isolation: and finally,
(iv) the combination (taking into account the interconnections) of the partial solutions into the problem
solution (i.e.. synthesis). On the basis of this observation many researchers concluded that “the logical
nature of the act of designing is largely independent of the character of the thing designed” (Archer,
1969. p.76). However. they did not go on to develop the concept to any significant extent.

Subsequently these assumptions were questioned by other researchers (Akin., 1979: Lawson,
1979) working in the different framework of Newell and Simon’s (1972) Information Processing Theory
(IPT).! While the concern of the earlier rescarchers was with the development of "systematic design
methods” to help designers (often working in teams) to deal with the increasing amount and complexity
of project information (Cross, 1986). the concern of the latter is with explicating the internal structures
and procedures individual cognitive systems use during design activity, with what Eastman (1969) called

intuitive design.

The study of intuitive design, within an IPT framework, has become a dominant mode of
research into design activity. But this research is moving in two directions which are rather dissatisfy-
ing from the perspective of developing a cognitive theory of design. First, the research tends to be
discipline-specific and even task-specific (e.g.. Kant and Newell, 1984: Kant 1985: Steier and Kant,
1985: Jeffries = al. 1981: Ullman et al., 1986: Akin. 1979. 1986). Second. there is a proliferation of
disciplines and activities being labeled as "design.” Thus for example. Perkins (1986) labels the process
of knowledge acquisition "design.” Thomas (1978) analvses communication as a design process. Tho-
mas and Carroll (1979) assume that letter writing. naming. and scheduling are all design activities. The
first of thesz trends flies in the face of the intuition lving behind the notion of generic design. The
second threatens to drain the word design of all meaning.

One reason for these trends is the nature of IPT itself. Within IPT design is problem-solving
activity. But problem solving encompasses a wide range of cognitive activity: indeed. according o

some theoreticians. all of symbolic cognitive activity (e.g.. Newell. 1980). Intuitively one feels that

! Tiis discusmion assumes considerable tamilianny with IP1 s prosented by Newell and Simon (1972). The uninitiated reader s
well referred to this onginal work.

° There are ™wo mapor reasons for this.  Fuest theee s a realizagon by industry that the development of effective CAD tools
requires 3 model of the user's (designer's) cognitve processes (Hallas et al. 1984). Second there is the hope that the study of
human designers will lead to insights into the automabon of the design process (Kant and Newell. 1984).
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there must be a description of design problem-solving activity which both captures the similarities in
the problem-solving process across the various design disciplines and also recognizes the differences
between design and non-design probiem solving. This is the level which the term generic design infor-
mally tries to characterize. In the vocabulary of IPT. there must exist a design problem space—a prob-
lem space with major invariant characteristics across ali design situations. However, as has been
observed by a number of researchers (e.g.. Greeno. 1978). the theory does not easilv facilitate such

classification. We see three interrelated reasons for this “shortcoming.”

1)  In some ways the vocabulary provided by IPT seems to be missing a layer. At the top level
of the theory one can talk about Information Processing Systems. Task Environments. and
Problem Spaces. But the next level down takes one directly to the implementation details
of specific programs where one must talk about states and transformations at the leve! of
the elementary information processes. Differentiation of problem types is readily possibie
only at this lower level. There is a gap in the middle where one intuitively feels there
should be several intermediate levels of psychologically interesting concepts—such as gen-

eric design.

2)  The structure of the information processing system is underdeveloped. Except for the size
of short-term memory (STM) and read/write times. it does not impose many significant
constraints on the problem space. Thus the problem space tends to be substantially task
determined.

3)  But the notion of task environment has not been fully explored and exploited within the
theory. While the theory does say that the task environment consists of (i) the goal or
desire to solve the problem. (ii) the problem statement. and (iii) anv other relevant external
factors, the fact remains that historically. the goal or motivation of the problem solver has
simply been assumed. and the “other relevant external factors” have been effectively
ignored.’ The emphasis has been on how the problem statement gets mapped onto the
problem space.

Within IPT there are two passible sources of invariants on the design problem space. One is the
structure of the task environment. the other is the structure of the information processing svsiem (IPS).
One way of motivating a DPS is to identify task environments and information processing structures
that are particular to design situations. This is prerisely the strategy that will be pursued here. How-
ever. we will have little new to say about the structure of the IPS. Most of the paper is concerned with

explicating the structure of the design task enviro iment and specifving its impact on the DPS.

Organization and Overview of Paper: In this paper we would like to play out the intuition which
says that the design problem space is an interesting and “natural” categorization of problem spaces.
Our strategy will be to (i) characterize design as a radial categony and fiesh out the task environment of

the central or prototvpicai cases: (ii) take the design task environment seriously: (iii) explicate the

' Thes s undoubtedly due to the influcnce of game-plaving problems on which the theon grew up
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impact of the structure of the task environment and the structure of the IPS on the problem space of
subjects from three different design disciplines: (iv) suggest that the features noted in these problem
spaces will not all occur in a problem space where the task environment is vastly different: (v) claim
that these features are 1. ariants in the problem space of design situations and collectively constitute a
design problem space. Two aspects of our strategy differentiate this work from much of the current
research in design: (1) we take the structure of the design task environment very seriously. and (2) we
examine data from three different design disciplines. The paper concludes by drawing some lessons for
the development of CAD systems, noting some methodological limitations, and suggesting avenues for
further research. We begin by characterizing design and the design task environment.

2. CHARACTERIZING DESIGN & THE DESIGN TASK ENVIRONMENT

In this section we would like to claim that design is nor a ubiquitous activity. We no more design
all the time than we read all the time, play chess all the time or engage in scientific research all the
time. But the characterizations of design in the cognitive science literature would have us believe that
most of us do engage in design activity most of the time. We briefly review some of this literature and

conclude by offering our own, rather different, analysis.

Perhaps the most encompassing characterization of design is due to Simon (1981. p.130):

Evervone designs who devises courses of action aimed at changing existing situations
into preferred ones.... The intellectual activity that produces material artifacts is no
different fundamentally from the one that prescribes remedies for a sick patient or the
one that devises a new sales plan for a company or a social welfare policy for a state.
On this account, anyone dissatisfied with existing states of affairs and attempting to transform them into
“preferred ones” is engaged in design activity. The domain of design would seem to be coextensive

with the domain of problem solving.*

An early attempt at circumscription is due to Reitman (1964). In a paper on ill-defined prob-
lems. Reitman (1964) suggested a categorization of problems into six types based upon the distribution
of information within a problem vector. A problem vector is a tuple of the form [A. B. =>). where
components A and B represent the start and terminal states respectively, and the component =>
denotes some transformation function. Reitman’s Typel problems correspond to our intuitive notion

of design. Typical Type2 problem statements are:

compose a fugue
design a vehicle that flies

write a short storv
design a building

make a paper airplane
While these statements encompass widely varving activities, Reitman observed that theyv constitute

4 Which in tum w coextensive with thinkang in IPT.
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formally similar problems by virtue of the amount and distribution of information among the three
components of the problem vector. In the case of the Type2 or design problems, the invariant charac-
teristic is the lack of information. For instance:

(i) The start state A is unspecified (c.g.. design a vehicle...with what? putty? cardboard? pre-
fabricated parts from GM?).

(ii)) The goal state B is incompletely specified {(e.g.. how long should a story be? what should
the plot be? how should it end?).

(iii) The transformation function => is unspecified (c.g.. how should the airplane be made? by
folding the paper? by cutting and pasting?).

Afier this seminal paper design probiems became identified with ill-defined problems.

Continuing the investigation of ill-defined problems. Simon (1973) argued that problems in the
world do not come prelabeled as "well-defined” or "ill-defined.” Furthermore, according to Simon.
"well-defined” and “ill-defined” are not mutually exclusive categories. They constitute a continuum.
Where a given problem falls on this continuum is a function of the stance the problem solver takes to
the problem. That is, the problem solver may ignore existing information or supply missing informa-
tion from long-term memory or external aids. The conclusion that follows from Simon’s discussion is
that what constitutes a design problem is determined by the intentions and attitudes of the problem
solver. This is an interesting position that has found some acceptance in the literature (e.g.. Thomas
and Carroll, 1979). It does however, have the effect of once again opening up the flood gates as to
what constitutes design activity.

Each of these attempts at delimiting or characterizing design is due to cognitive science research-
ers. Designers typically offer very different definitions. A rather well-accepted one among designers is
due 10 Eastman (1981, p.13): "Design is the specification of an artifact that both achieves desired per-
formances and is realizable with high degrees of confidence.” This statement emphasizes that the pro-
duct of design is an artifact specification. and that considerations of performance and realizability are

integral to the process.

While each of these definitions is interesting in its own right and has a role to play in our under-
standing of design, none of them is sufficient for our purposes here. Design is too complex an activity
to be captured in a one-line definition; particularly a one-liner that purports to specify necessary and
sufficient conditions. As such, our characterization of design starts with the observation that design as
a category exhibits what Rosch (in Lakoff, 1987) calls “prototype effects.” Furthermore. it is what
Lakoff (1987) calls a radial category—a category in which there is a central. ideal or prototypical case
and then some unpredictable but motivated variations. On this assumption. if one shows people a list
of professions—e.g.. medicine, legal work. architecture. teaching. engineering. and research—and asks
them which are the best examples of design professions. they will all invariably and consistently pick out
the same few cases. In this list we believe the "best examples” would be architecture and engineering.

We propose 1o call these “good” or “central” or “prototypical” examples of design professions.
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Having made this observation. we propose to take a serious look at the task environment of these
prototypical design professions. In so doing we will be using the term "task environment” much more
broadly than it is generally construed in IPT. We want to use it to encompass much of what is relevant
and external to the problem space and the information processing svstem. The danger with this move
is that either it results in a theoretically uninteresting term—because in some sense evervthing is
relevant—or one is obliged to say what matters and what doesn’t. We go the latter route and attempt

to specify some of the more important aspects of the design task environment.

Fig. 1 approx here

The structure of the design task environment as we construe it is depicted in Fig. 1. As a first

approximation one can note the following overt features:’

1)  There are many degrees of freedom in the probiem statement. (This is just a positive refor-
mulation of Reitman’s (1964) earlier point about a lack of information in design problem
statements.)

2)  There is delaved/limited feedback (on the order of many hours to many months) from the
world during problem solving.

3)  The input to the design process substantially (though not completely) consists of goals and
intentions. The output is a specification of an artifact.

4)  The artifact must function independently of the designer.

5)  There is a temporal separation between the specification and delivery of the artifact (with
specification preceding delivery).

6)  There are costs associated with each and every action in the world. (i.c.. There are penal-
ties for being wrong.)

7)  There are no right or wrong answers. only better and worse ones.

8) The probiems tend to be large and complex.

We claim that these are significant invariants in the task environments of prototypical design situations.
and we can use them as a template to identify other cases of design. To the extent that the task
environment of a given problem situation meets or conforms to this template. that problem situation is
a good or prototypical example of a design situation. To the extent that a task environment varies from
this template—by omission of one or more of the requirements—to that extent it is a less central case

of design activity.

£ No atiempt s heing made w0 he exhausave
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Some problem-solving situations which fit well into the schema are instructional design. interior
design, "text book cases” of software design. and music composition. Some tasks that deviate slightly
are writing and painting. Here there is usually no separation between design and delivery. The prob-
lem solver actually constructs the artifact rather than specifying it. Some activities that deviate more
radically are classroom teaching. spontancous conversation. and game playing.

Note that we are not stipulating what is and is not a design activity. To do this we would have 10
insist that the eight task environment characteristics. or some subset of them, constitute necessary and
sufficient conditions for design activity. We make no such claim. Rather, all we are suggesting is that
we have here a template of some salient characteristics common to the task environment of problem
situations that are consistently recognized by people as good examples of design activity. Problem
situations in which the task environment fails to conform to this template on one or more accounts are
deviations from the central case. In this paper we are only interested in central cases and thus have no
interest in saying how far one can deviate from the prototype and still be “really” designing. Thus. we
will use the label design to refer to situations that closely conform to the prototypical or central cases.

There are two reasons why the above might be a reasonable characterization of design for our
purposes. First, it is descriptive. We look at the task environment of some designers and try to take it
seriously. The task environment of an activity is usually overtly visible with minimal theoretical com-
mitments (though it does require some immersion in the activity and the ability to specify the more
relevant factors). Second. in IPT the structure of the information processing system is relatively under-
developed. leaving the task environment as the major tool/resource for structuring the problem space.
Furthermore. the theory asserts that people "are severely stimulus-bound” (Haves and Simon. 1974,
p-197) with respect to representation and construct a naive/transparent mode! of the problem based
upon “the surface features of the external environment...” (Newell. 1980, p.714). Thus given the
accessibility and the importance of the task environment to IPT. it seems like a good basis for classifi-
cation. In the next section we examine each of the invariant features of the design task environment

and hypothesize about their impact on the DPS.

3. A CASE FOR GENERIC DESIGN: THE DESIGN PROBLEM SPACE

In the previous section we identified eight interesting invariants in the structure of the design task
environment. These invariants are external features of design activity that have been noted by various
researchers at various times and places in the design methodology literature. But we are unaware of
any studies in the IPT literature in which these factors are taken seriously and their cognitive implica-

tions sketched out. We undertake this task in this section.

Our strategy is to examine a number of designers at work and (i) reconstruct their problem space:
(ii) make an “explanatory connection” between the features evident in their problem spaces and the
above noted invariants of the design task environment (DTE): and (iii) make the standard argument
that the problem space is as it is because of the structure of the DTE and the structure of the IPS.
This last point implies that. taking the structure of the IPS as a constant, the features noted in the
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problem spaces of these tasks will not all occur in a problem space where the task environment is vastly

different. This leads to the claim that these features are invariants in the problem spaces of design

situations. and collectively constitute a Design Problem Space. We are actually able to identify eight

interesting invariants in the problem spaces of three different design disciplines. To anticipate and

overview, we will claim the following:

A)

B)

O

D)

E)

F)

G)

H)

The many degrees of freedom in design problem statements entail extensive problem struc-
turing.® (section 3.1)

The delayed/limited feedback from the environment, coupled with the cost of action. and
the independent functioning requirement on the artifact entails extensive performance
modeling of the artifact in the problem space. This modeling is made possible by the fact
that there is a temporal separation of specification and delivery phases. (section 3.2)

The fact that there are no right or wrong answers to design problems entails the use of per-
sonalized evaluation functions and stopping rules. (section 3.3)

The requirements of extensive performance modeling. along with the constraints of sequen-
tial processing and short-term memory (STM) capacity entail a limited commitment mode
control strategy with nested evaluation loops. This strategy is enabled by the temporal
separation of specification and delivery. (section 3.4)

The necessity of having to specify an artifact means that designers must make and pro-
pagate commitments. There is a tension between the limited commitment mode control

strategy and the need to make commitments. (section 3.5)

The size and complexity of desi-n problems combined with the limited capacity of STM
require solution decomposition. However. the decomposition is not complete. The
modules are “leaky.” (section 3.6)

A phenomenon closely related to solution decomposition is the mediation of goal and
artifact by abstraction hierarchies. It is entailed by the complexity of the problem. STM
capacity, and the fact that the input to the design process substantially consists of goal state-
ments while the output is an artifact specification. It is also related to the phenomenon of
personalized/institutionalized stopping rules and the making and propagating of commit-
ments. (section 3.7)

The last problem space invariant we note and discuss is the use of artificial symbol systems.
It is entailed by the limitations on the expressive power of the “language of thought.” STM
capacity. sequential processing. and probiem complexity. It is related to and has conse-
quences for the phenomenon of solution decomposition, abstraction hierarchies. the making

and propagating of commitments. and performance modeling. (section 3.8)

® By the use of the terms eniail and necessitate. we are throughout making contingent causal claims. not logical aceesan

claims
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All these invariants. their interconnections. and their connections 10 the invariants of the DTE and the
information processing system are explicated in the diagram in Fig. 2. While no claim of completeness
is made for this list, it is our contention that collectively these invariants differentiate design problem
spaces from non-design problem spaces. But before actually presenting and discussing each one, a word
about methodology is in order.

Fig. 2 approx here

Method: The method of investigation adapted here is that of protocol analysis (Ericson and
Simon. 1984). The data base consists of 12 protocols from 3 different design disciplines—architecture,
mechanical engineering and instructional design. To illustrate and substantiate our claims for the pur-
pose of this paper we will draw upon one protocol from each of the three disciplines. The decision as
to which thrce of the protocols to use was made as follows: In the case of mechanical engineering,
there was only one protocol. There were multiple protocols for instructional design and architecture.
The decision among them was made on the basis of the completeness of the artifact specification and
the fluency of the verbalization.

Task Descriptions: The architecture task involved the design of an automated post office (where
postal tellers are replaced by automated postal teller machines) for a site on the UC-Berkeley campus.
The mechanical engineering task was to design the automated postal teller machines (APTM) for the
post office. The instructional design task was unrelated. It called for the design of some stand-alone
text based instruction to prepare the secretaries of a medium-sized company for a transition from type-
writers to the Viewpoint’ computer environment. In each case. the subjects were given a design brief
which stated the client’s requirements and encouraged to probe the experimenter for further informa-
tion and clarification. Thev were asked to "talk aloud” as thev proceeded with the task. The sessions

were taped on a video recorder.

Each of the tasks are complex. real world problems requiring on the order of weeks to months
for a complete specification of the artifacts. We asked the architecture and mechanical engineering
subjects to restrict their sessions to approximately 2 hours and gave the instructional designers approxi-

mately 3 hours. As a result, we received solutions specified to an incomplete ievel of detail.

Suhjects: Each of the 3 subjects volunteered to participate in the studv. The architect (Subject-
A) is a Ph.D. student in the Department of Architecture at UC-Berkeleyv. He has had six vears of pro-
fessional experience. The mechanical engineer (Subject-M) is a Ph.D. student in the Department of
Mechanical Engineering at Stanford Universitv. His professional experience iz more limited. but it has

included the design of automated bank teller machines. The instructional designer (Subject-I) is a

T Vvacwpuoint s an won-hased computer environment Tor Xerox S 1t suppons such functions as electronic mail. filing. word
provesang. and graphics
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professional with over 10 years expericnce in designing industrial training material.

Coding Procedure: The analysis of the protocols to date has been qualitative and descriptive. We
are still in the process of identifying the major components of the design problem space and arranging
them in an explanatory fashion so as to build a model of the design process. We are not at a stage
where we can engage in any quantitative or predictive analysis. But on the other hand. we are not lim-
ited to noting and relating everything we see. We have a rather explicit and constrained agenda: We
want to know how the identified aspects of the DTE impact the DPS.

3.1. Extensive Problem Structuring

As noted carlier, many degrees of freedom exist in a design problem statement (or to put it in
Reitman's terms. there is a lack of information). This lack of information impedes the creation of a
problem space. Problem structuring is the process of finding the missing information and using it to
construct the problem space (Simon. 1973a). It is the first step in any design activity. Large projects
may require an alternation between problem-structuring and problem-solving phases. While some
structuring is required in all problem situations, one of the hallmarks of design problems is that they
require extensive structuring. The extent to which problem structuring is necessary and successful

determines the nature and extent of the problem solving that will occur.

Each of the subjects in our experiment began by articulating and fleshing out their respective
problem statements. This process proceeded through the follwoing steps: (1) gathering information
from the design brief: (2) soliciting information and clarification from the experimenter through ques-
tions: (3) applying knowledge of legislative constraints (e.g.. building codes. in-house company stan-
dards): (4) applying knowledge of “"technical” constraints (¢.g.. “laws” of structural soundness. “laws” of
learning). (5) attending to pragmatic constraints (e.g.. time, money. resources at hand): (6) bringing to
bear self-imposed constraints or personal knowledge: and (7) negotiating constraints. While each of
these can bear considerable discussion. only the latter two will be addressed here. With respect to 16)
two questions are raised: (i) what is the form and structure of this personal knowledge. and (ii) how
and when is it brought 1o bear on the construction of the problem space? While we have no definitive
answers 10 these questions, we do offer some preliminary observations. In the case of (7) we illustrate

the process of negotiation and comment on when and why it might occur.

3.1.1. Form and Organization of Personal Knowledge

The personal knowledge our subjects used to construct their problem spaces was organized in
rich. intricate chunks or schemas. Two tvpes were discernible: general schemas and domain specific

schemas. Generallv. neither surface explicitly in protocols® but both are easily inferred from the

 Unlews the subjct gtops to cxplan or ranonalize. as one of our architeess frequently did. Here is a ypical excerpt from im:
Now . overy hulding fitang into a site <hould he hammonious with that site Nobody argues wath that. The next thing. and
companblc with the other bulldings. Ah We are poing from o wen antsonal penod. where buildings were seny antsocial and
withdrawn. and aggresane. and impolite. such as the one we are standing in. 1o, ah. buiidings which arc pleasant. outgoing. gentic.
ah. sophwncated and cultuncd
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situation-specific statements that the subjects make.

General schemas contain knowledge about the way(s) the world is. They are acquired over the
course of a lifetime and are our primary means of dealing with the world. They consist of at least pro-
cedural knowledge. abstract conceptual knowledge, and knowledge of thousands of parterns (pictorial,
linguistic. musical. etc.). Procedural knowledge is not open to introspection (Anderson. 1982) and thus
does not surface in the protocols. However, both the abstract conceptual knowledge and some of the

patterns are visible.

Abstract conceptual knowledge is the generalized knowledge—principles, laws. heuristics—which
we extract and carry away from the totality of our worldly experience. While there is much structure
and coherency in the organization of this knowledge. it does not necessarily constitute a theory. It is
perhaps better characterized as knowledge fragments or “knowledge in pieces” (diSessa. 1985). It is
instantiated and discernible in the problem space as situation-specific conceptual knowledge. For
example. here is an excerpt from Subject-A’s protocol:

(PF1) S-A: You. after all. vou probably have vour parcel or vour precious letier and vou want to get it
out. stamp it. or ah. have a dialogue with a machine and see what. how much you have to
pay. Your probably have to take it out from vour bag, or whatever. So you do need a sort
of protection.... I don't want them to get wet....

Underlyving this verbalization are two knowledge fragments at the abstract, conceptual level—Dbeliefs

about the use of post offices and beliefs about when and where people do and do not like to get wet.

Knowledge of patterns is knowledge that is stored in such a direct way so that much of the origi-
nal pattern or form is preserved (i.c., there is little generalization or abstraction). This may be volun-
tany. such as when students of poetry memorize lines of text or when architecture students draw and
commit to memory the forms of specific buildings. or it may be involuntary, as in the case of a stimuli
which the cognitive system is unable to fully comprehend and generalize. Instances of specific patterns
are visibie in all the protocols. Subject-A for instance. in attempting to reason about an automated
postal interface. immediately retrieved and repeatedly used the “image” of an automated bank teller
machine. But it was not some general conception of an automated bank teller but the specific Bank of
America Versatelier on Telegraph Avenue which he regularly uses.

(PF2) S-A: I don’t want to have one booth after the other and having the lines. ah. like it were a Ver-
sateller. ah. kind of a service. Bank of America has that kind of approach. here on Tele-
graph. You have twe, two Versatellers and usually have this long lines on the, ah. walk

path. And who ever. ah, leaves first in one of the two. ah. then. So you have one single
line for two machines. I am trying to avoid that....

Domain-specific schemas are built on top of the general schemas. They constitute the knowledge
acquired during the vears of professional training. They also consist of procedures. abstract conceptual
knowledge. and patterns. Again. the procedures are not visible in the protocol. The abstract concep-

tual knowledge here seems to be less fragmentary and more “theoretical™ than in the case of the

Y By “theorencal” s meant oniy that it more clahorate, complete. consistent. and organized.
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general schemas. (This is not surprising considering that it was acquired as an organized. systematic

body of knowledge.) For example. Subject-A has an eclaborate mini-theory about the use and organiza-

tion of space between buildings. His first sentences on viewing the site are:

(PF3) S-A: Well. what comes to my mind immediately, as I told you before when I was waiting [for]
you, I was looking at., how this is set by pathways. this. this open space in between the
sports court vard and these three buildings. And in thinking about the missed opportunity
that people had here, of having a sort of more relaxed plaza. instead of being just a cross

between these two directions. Which makes it very efficient. ah, but for sure it didn’t. ah,
give any contribution to the urban open space....

Similarly, Subject-I has a mini-theory about motivating. teaching. and imparting knowledge.

(PF3) S-I. The first thing we want to do with these people is try and sell them on a system. Any time
you change somebody from an-old system to a new system. or from what they are doing 1o
what thev're going to be doing. or what vou're expecting them to be doing. you've got to
give them a good positive reason. Why do I reallv? What's in it for me. you know.... This
is positive reinforcement....

Several of these protocol fragments (PF1. PF2, PF3) are also examples of what we call scenario
immersion. Scenarios are frequently occurring episodes in which designers recall and immerse them-
selves in rich intricate images from their past experience. The experience in question could have been
acquired directly or vicariously through some symbolic medium (e.g., reading, watching TV). These
episodes seem to plav an absolutely crucial role in the process of generation and evaluation. For
instance. the scenario in PF1 is used to generate the functional requirement “protection from rain.” In
PF2. the scenario is used to evaluate a proposed spatial configuration of APTMs. We say more about

scenario immersion in section 3.2.

3.1.2. Application of Personal Knowledge

Personal knowledge structures and procedures are stored in long-term memory (LTM). Their
indexing and retrieval is not well understood. Problem structuring is the process of finding and retriev-
ing “relevant” schemta and instantiating them into the problem space. By instanriation is meant nothing
more than the process by which a proposition of the content "All public buildings are required to have
ramp access for the handicapped” is transformed into the proposition that "This building requires a
ramp access.” As it is construed here, problem structuring is not itself a problem-solving activity. But
the extent to which it is successful does determine the amount of problem solving that will need to
occur.

Subject-1 was able to find. retrieve and instantiate a single powerful schema for designing training
programs. The template came with slots marked for lessons. sections. subsections. etc. He merely had
1o fill in the blanks with the content of the particular course. He generates the required content by (i)
asking the client (experimenter) for a list of tasks the secretary would be required to perform: (ii)

drawing upon his own personal knowledge of Viewpoint: and (iii) consulting the Viewpoint manuals. v

" Some of the imstructional dosgn subpeets actually used the V iowpeint manual o structure the tash.
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Finally. the selection of content is guided by an idealized cognitive model (ICM) (Lakoff. 1987) of

what a secretary is: for example:

(PF5) S-I:  All this isn’t going to stay in this create and edit documents [lesson]. This is just looking at
what’s available, and what we are going to have to do. Because within this table of con-
tents we've got related information—hardware requirements and so forth that has nothing to
do with the secretaries. and foundation and environment. Secretaries couldn't care less....
And the logoff sheet properties. I. T wouldn't even teach the secretaries. That's none of

their business. They have no need for that information. That I would teach your systems
administrator....

Subject-A on the other hand seemed to find his design problem more of a challenge and exhi-
bited somewhat different behavior. His initial structuring process took twenty minutes and resembled a
“brainstorming” session. If the protocol for this phase is recorded as a directed graph, with the nodes
forming individual “ideas” as they are uttered in temporal sequence, and the arcs connecting related
nodes. then the result is a lattice structure. The density and distribution of the links suggest that there
are really four smaller structures. First there are some site related constraints:

(PF6) S-A: You plotted those trees and that would really be a sin to touch them, I think. At least, the

evergreens.... As far as seating space goes, the one just below the evergreens. I wouldn't
touch all that corner....

Second there is a kernel idea:!!

(PF7) S-A: And what I thought is I shouldn’t necessarilv think of an enclosed building. Cause. I am in
the middle of an open space. It would be a contradiction to place a formal building there.

Third there are some ideas about the integration of site and structure:

(PF8) S-A:since this is the view towards the sports field. things happen over there after 5:00 p.m. I
have seen people playing softball and ah. frisbee. and a lot of spectacular kind of activities.
And I might take the opportunity of using this. So that people can be out there looking at
the field. The sunset is going to be. ah. watched. Ah. my guess is that it would be a good
opportunity 1o use it. And then now that I think of it. I am saying, well. I could even. ah.
sort of think of something. some structure that might use the roof of my post office to be on
a sort of more privileged position towards the field....

Lastly. there are some functional ideas about the fiow of mail.

(PF9) S-A: I have to be concerned about the pick up service.... Ah. I need to be able 10 service the
machine from behind and to have enough space to do so....

Thus. he was unable to retrieve a single unified plan or schema to guide his subsequent probiem solv-
ing. He had 1o start his problem solving with at least four schemas and integrate them as he pro-

ceeded. This is a much more challenging situation than the one encountered by Subject-1.

Sometimes the domain-specific knowledge of the designer is insufficient to structure the problem.
In such a case he first tries 1o use his general world knowledge; if this fails the problem may be
avoided. abandoned or not even recognized. For example, the architect (Subject-A) had no

" The carly gencration and faithful devclopment of a hemel wea is an intnguing phenomenon .t has been reported by several
rocarchen, including Kant and Newcdt (1983) and Ullman ct al. (1986). W do not have the space to pursuc it here.
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experience in designing user-transaction interfaces. but he was explicitly requested to do so in the
design brief. He chose to assume a "Versateller type interface.” When pressed by the experimenter to
provide further details. he gave the following “explanation” for avoidance:

(PF10) S-A: the philosophy of it is that I hate an interface which is not human.... Let’s leave it open.
It might be through a kevboard. through a menu where you have a multiple selection and
vou have a ah. sort of Versateller mode to answer....

3.1.3. Negotiation of Problem Space Boundaries

Constraints as they occur are not always desirable. Negotiation of problem space boundaries is
an interesting resultant phenomenon exhibited by most of our subjects. It is an attempt to shift prob-
lem space boundaries. Often it is done to minimize search effort by transforming the problem to fit an
existing plan or template. This scems to be the motivation behind Subject-I's attempt. Subject-I.
based on past experience. believes that training programs need some minimal instruction interaction.
The instruction he was requested to design on this occasion was to be completely self-contained (i.c..
no instructor interaction). He attempted to make the current task conform to his normal mode of
operation:

(PF11) S-I.  Ok. We can't negotiate vou. ah. considering bringing these people in. ah, in possibly two
groups of five, after hours. paid overtime or something, or is this already....

Sometimes negotiation is also used to enlarge and complicate the problem. Subject-A attempts to

do this. On viewing the small triangular site he has been given for the proposed post office, he is not

content to just build a post office but wants to redesign the whole area.!?

(PF12)
S-A: So. given the fact we have that triangle [i.c.. the site for the post office] over there as a limit.

And I cannot exceed that I suppose?
E: Right. that. that....
S-A: I have to take that for granted?
E: I, I would think so.
S-A: That’s the boundary of. You do not allow me to. to exceed in, in my area of intervention?
E:  No. I think you should restrict it to that.

S-A: So. ] am constrained to it and there is no way I can take a more radical attitude. Say. well. look.
vou are giving me this, but I actually. I. I'd come back to the client and say well look. I really
think that vou should restructure actually the whole space. in between the building. I'd definitely
do that. if that was the case. You come to me as a client. and come to me with a triangle alone.
I will give you an answer back proposing the whole space. Because. I. I think the whoie space
should be constructed. So. that there is an opportunity to finally to plan and that space through
those. ah, this building. open up Anthropology and. and plan the three buildings together. So. as

12 The subpeet s standing on a 9th floor baloony and has o bird's-ove view of the wite.
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to really make ah. this ah. a more communal facility....

The motive here is more difficult to speculate about. It could be a belief that this will result in a more

effective artifact: a desire for a larger fee; exuberance and enthusiasm for rebuilding the world in one’s

own image: elc.

3.2. Extensive Performance Modeling

Four important aspects of the DTE converge 1o necessitate extensive performance modeling of

the artifact (in its intended environment) in the design probiem space.

1)

3)

4

Penalty for being wrone: It is a fact about the world that every action occurs in real time.
consumes real resources, and has real consequences. In other words. it is impossible to set
the world back as it was before the action. At best one can only take additional action (at
additional cost) to remedy the situation, but traces of the original action will invariably
remain. This is as true of bending one’s little finger, uttering a sentence. walking to the
grocery store, building a house or a freeway. or putting a man on the moon. The differ-
ence in each of these cases is in the cost and residue—the penalty for error. As the penalty
for error increases, we respond by thinking through and anticipating as many consequences

of an action as possible—before acting.

Autonomy of artifact: The artifact has an independent existence from the designer and
must “make it on its own.” The designer cannot be there 1o explain its significance or per-
form its function. For example. in the case of the stand-alone instruction. the instructional
designer will not be in the classroom to respond to difficulties and questions of comprehen-
sion. He must anticipate the neccessary interaction and respond to it in the structure of the
artifact. Such anticipation/prediction requires extensive models of the artifact interacting in

its intended environment.

Delaved/Limited feedback from world: Feedback from the environment is a major
mechanism used by adaptive systems to enhance goal achicvement in the face of variable
environmental factors. One of the most dramatic consequences of the structure of the DTE
is that the feedback loop is delaved. The design is being deveioped between time ¢ and ¢+ /
(see Fig. 1) but it does not interact with the world until time ¢+ 3. But this for all practical
purposes is a point of no return. Resources have been expended and the damage has been
done. The feedback from this point can not guide the designer in the current project. but
only the next “similar” project. To guide the current problem solving the designer must

simulate or generate his own feedback between times s and 1~ /.

Temporal separation of specification and delivery: There is a linear. temporal separation
between artifact specification and delivenn. In Fig. 1 the specification is complete at time
t+ 1 and the artifact constructed in the world at time ¢=3. Ideally the artifact is completely

specified before construction begins.!' This temporal separation enables the designer to

Y This isoof coune not alwavs the caswe Fast-tracking s a case ot substantial parallel procesing But. oven here there are
agmficant seit-contmned modulc——and Crrors are cxpensne
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model artifact performance—in the problem space or some external medium—to minimize
damage and the expenditure of more substantive resources.

Performance modeling is necessitated by the first three aspects and enabled by the fourth.

Modeling is both internal and external to the problem space. Some of the possibilities. and the
sequence in which they are used, are as follows: (i) entailments of designer’s ICMs, (ii) scenario
immersion. (iii) pictorial models, (iv) mathematical models, (v) mock ups, (vi) surveys, (vii) computer
simulations. etc. Our subjects did not have the time or resources to make use of all these modeling
devices—though they all pointed out when they would normally use them. They were basically res-
tricted to their problem space and paper and pencil. This meant that they could take advantage of only
the first four types of models. We will restrict our discussion to a few comments about the first twe.

The designer’s ICM of the world allows for quick and automatic inferences. We have already
encountered an example in PFS where Subject-I uses his "secretary ICM" to quickly evaluate whether
to include certain material in the lessons. Such inferences do not seem to require any effort. They fall

out automatically from the designer’s idealized cognitive model of the world.

Scenario immersion is a more elaborate process whereby the designer pulls out a relatively con-
crete scenario from his past experience and immerses himself in it. Knowing how the scenario actually
transpired. he draws upon similarities between the scenario anJ the current situation to calculate the
emtailments of the current situation. It is a strategy of both the first and the last resort. For example.
we saw in PF2 how Subject-A evaluated a one possible spatial configuration of APTM machines by
doing a mapping between it and a previously encountered similar situation, the consequences of which
he has had first-hand experience. Subject-M. in determining the size and height of APTM machines
wanted to do a formal study to see how people would use the machine. However, (perhaps knowing a
formal study is not possible in the circumstances), he immediately and without prompting indulges in
scenario immersion.

(PF13) S-M: Ok. I think [we need...] user group studies about how-.... theyv would do the transaction.
I think there is something about how...they're going to use it. Mavbe. most student
mavbe riding bikes sometimes. Or most people. we expect them to walk, walk in. But
sometimes mavbe students [are] kind of lazy, or maybe they ride their bike or moped....

While their external models varied according to task demands and their pre-existing notational systems,

the scenario immersion strategy was cormon across all subjects. !

3.3. Personalized/Institutionalized Evaluation Functions and Stopping Rules

It has been noted bv many people (e.g.. Rittel and Webber, 1974) that there are no right or
wrong answers in design situations. but only better and worse ones. This has two interesting conse-

quences at the level of the problem space. First. it means that evaluation functions are often

¥ Nat only dows the seenano immerion phenomenon play o crucal role i performance modeling. it also soems to xe
imtrumental in gencration  Howover, we do not discuss this aspect of it here




Goel & Pirolli: 17

personalized or at least institutionalized.!® This is quite apparent in the above uses of ICMs and
scenario immersion. Second. the point at which a design is complete is a function of cognitive and per-
sonal resources. Subject-1 asked to stop because he was tired. Subject-M reported he could not
proceed any further without doing a mock-up of the APTM. As we did not have the resources there
for him to do so. he used this as a reason to terminate the session.

3.4. Limited Commitment Mode Control Strategy with Nested Evaluation Cycles

In section 3.2 we discussed the importance of performance modeling. Ultimately the purpose
and value of this is to enable the designer to anticipate the performance of the artifact and the conse-
quences of releasing it in the world. Since what matters is the performance of the final. complete
artifact (at time ¢~ 3). one possible strategy is to delay evaluation until the specification is complete (at
the end of time ¢~ 7). Evaluation at this point would certainly yield as good a value as possible. short
of direct feedback at time r~J3. But given the time. cost. and complexity involved in the design phase
itself, it is neither optimal or feasible. That is. quite apart from the time and costs involved in generat-
ing a complete design and then having to scrap it and start all over again. it is a fact about adaptive svs-
tems that they require continual feedback when engaged in any goal seeking endevour. It is simply not
possible for people to work for months on end without having any indication as to the value and status
of the work with respect to the goal. So not surprisingly, we found that our subjects did not wait until
the artifact was completely specified to evaluate its performance.

Since the design unfolds in a quasi-linear sequence. generally starting with a kernel idea that is
transformed and augmented until the final form emerges, another possible strategy is to evaluate com-
ponents of the artifact as they are being generated. This would result is a linear sequence of short
generate-evaluate cycles. While this is cognitively a very tractable strategy it can arrest design develop-
ment by requiring strict adherence to earlier decisions. That is. a decision made at one point. while
attractive in that local context. may be inappropriate in a later. more complete context. With this stra-

tegy one would be stuck with the earlier decision. Our subjects did not use this control strategy either.

Instead. all our subjects used a limited commitment mode control strategy (LCMCS) which incor-
porates the best of both worlds. It is cognitively tractable, enhances design development. and gives
good evaluation results. It is necessitated by the essentially sequential nature of svmbolic processing

and made possible by the fact that the design phase is separate from. and prior to, the delivery phase.

If one looks at the design process at any given time, one finds that there are at least three con-
texts that the designer needs to attend to: (i) the component of the artifact currently being generated
or focused on: (ii) the complete artifact in its current state (i.c.. the design so far): and (iii) the projec-
tion of the artifact in its complete state (i.e.. the final design). The LCMCS allows the designer to take

each of these contexts into consideration.

'* By “insttutionalized’ 18 meant aceepted by a group or orgamzation with which the devigner associates himsclf.  For evample.
n the case of Subpxt-l. this means in-house company standards and practices. [n the case of the architect. it might he some
“movement” such as Bauhaus. Postmodermism. ctc.
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As a first option. the designer can evaluate a generated or focused component on its own and
make a decision 1o accept or reject it. For example, the instructional designer thought of including the
component “start with basics and finish with more complex” in a subsection entitled "What will be
Trained.” He rejects it even before verbalizing it. (It surfaces only when the experimenter intervenes
with his question.)

(PF14)

S-I.  Ok. we've overviewed the course now just as far as the selling features. Now we’re going to do a
little bit of overview of what to expect. [writing: "What Will be Trained”) Ah, now what we will
train. OK. and we put that over.... [writing: "Six 1-hour Sessions”] We're going to, oh hell, that's
bullshit.

E:  What was bullshit?

S-I. Start with basics and finish with more complex. Well of course. What in the hell else would vou
be doing? I am not going to step you right off the end of the Titanic and ask you to swim....
What matters for present purposes is that the evaluation of the component was not done in the context

of the design but strictly locally. on its own terms.

Second. the designer can evaluate a generated or focused component in the current context (i.e.,
the context of the design so far). This practice results in a better evaluation function and an increase in
the number of options. He can choose to reject or accept the current component or he can choose to
reject or modify some previous decision to make the current one acceptable. For example, at one
point. Subject-1 makes a decision to the effect that secretaries don't need to know about "waste
baskets” (an icon used to delete computer files). A little further down he decides that they should
know how to recover deleted icons. Then he realizes that the only way they can do this is if they know
how 10 use "waste baskets.” At this point he can simply reject the later decision of teaching the secre-
taries about recovering deleted icons. but instead he decides to undo the previous decision and include
a section on “waste baskets.” This now makes it possible to stick to the second decision of teaching

about the recovery of deleted icons.

Finally. the designer can evaluate the generated or focused component in a later more compiete
context (at a later ume). further increasing accuracy and options. In this situation. he can accept or
reject the current component, as in the first case: modify some previous decision to make the current
one acceptable. as in the second case: but in addition has the option to modify some future decision to
make the current one acceptable. For example. Subject-A during his initial structuring phase had an
idea for using the roof structure of the post office as a seating platform for viewing the sports field:
{PF15) S-A: I could even. ah, sort of think of something, some structure that might use the roof of my

post office to be on a sort of on more privileged position towards the field....
But later when he calculated the size of the structure and realized how small it would be (i.c..
reevaluated it in the current. more complete context). he abandoned the earlier idea:
(PF16) S-A: The thought that I had before. that T might use. the envelope itself, the form. the roof.

ah. the walls. to. to implement some sort of. ah. landscape element. so as to have a
major view towards the sports field. That I am denving now.... 1 really am coming back
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to this and seeing that, after all. 1 won't bave huge lines. After all I just have 3 booths
and a roof. That's what I really have here. So. I'm sort of secing the extent, ah. to
which this probiem will be heading to.

3.5. Making and Propagating Commitments

A design task is not complete until the artifact is completely specified. A specification is a com-
plete. procedural. and declarative description. which when executed by an external agent results in the
construction of the artifact. It is not sufficient to wave one’s hands and talk about the artifact in some
general terms. One must actually make, record. and propagate decisions as one proceeds. otherwise
one will have nothing to show at the end of the session. Each of our subjects did explicitly record and
propagate their decisions.

An interesting tension exists between the LCMCS and the need to make commitments—between
not acting and acting rashly: between being Hamlet and being Laertes. Designers are adept at nego-
tiating this tension between keeping options open for as long as possible and making commitments.

3.6. Solution Decomposition into Leaky Modules

A major cognitive strategy for dealing with large complex problems is through decomposition.
Decomposition was a major step in the normative models of the design methodology movement (e.g..
Alexander. 1964). It has since been questioned and discredited as overly simplistic and even barmful
to the design process. As Alexander (1965) subsequently noted. “A city is not a tree: it is a semi-
lattice.” Or in Simon’s (1962, 1973b, 1977) vocabulary, the world is only nearly decomposable. But
what is 10 be made of the nearly? Some interpret it to mean that one can not talk about solution
decomposition in any significant sense. Others assume it can be ignored and continue to do clean,

tree-like decompositions (e.g.. Brown and Chandrasekaran. 1985).

Qur data shows extensive decomposition. Each of our subjects quickly and automatically decom-
posed their problem and developed their solution in a dozen or so modules. Subject-M's modules were
things like kev pad. screen. stamp dispensarv. parcel depositorv. and weighing mechanism. The
decompositions were discipline specific. They were not invented anew for the problem but seemed to
be part of the designers’ training and practices. However, equally important, the subjects did not treat
the modules as strictly encapsulated but rather as leaky modules. A decision made in one module could
have consequences in several others. The subjects seemed to have some sort of ongoing monitoring

process that looked for interconnections across modules.

The subjects dealt with the problem of “leaks” in one of two wavs. One method was to plug the
leaks by making functional level assumptions about the interconnecting modules (see section 3.7). This
method enabled them to bring closure or encapsulation to a module and make it cognitively tractable.
For instance. in designing the first lesson. Subject-I did not have to attend to the details of the third les-
son. It was sufficient to make some high-level functional assumptions about it. Similarly. in considering
the height and angle of the APTM kev pad. Subject-M did not attend to the details of the stamp
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dispensary. A second method of dealing with “leaks” was to engage in opportunistic behavior—to actu-
ally put the current module on "hold” and to attend to some of the interconnecting modules right there
and then.

3.7. Abstraction Hierarchies Mediate Transformation of Goals to Artifact

The input to the design process is generally a set of goals or intentions. The output of the process
is generally a specification of an artifact. The goals come substantially from the client (though are ela-
borated in discussion with the designer) and are a statement of the behavior he wants the artifact 10
support. The artifact specifications are substantially generated by the designer (though the client’s
brief may provide some guidelines at the level of the artifact) and specify those aspects of the artifact
that he considers to be causally relevant in the given circumstances. Conceptually or logically. it is
tempting to say that the transformation from goals to artifact specifications is mediated by functional
specifications (see Fig. 3). On this account one gets a storv whereby the intentions are carried out by
means of the functioning of the artifact. and the function is carried out by means of the causal structure
of the artifact. Both function and causal structure have to fit the inrtentions. but they are onlv con-
strained. not determined. by them. In fact the intentions constrain (underdetermine) function. and
function constrains (underdetermines) causal structure (see Fig. 3).

Fig. 3 approx here

Such explicit mediation is sometimes visible in our data. For example. Subject-M. when deter-
mining the components and configuration of the APTM, began with a very functional vocabulary:
(PF17) S-M: I think that functioning-wise we have some criteria. Ah. it's supposed to fulfili the
requirement of user to purchase the stamps. mail the letters, and weigh parcels and mail
it. Certainly there also will be register. should be something that can do the function for
registering letters. And ah. certainly we expect it to be user-friendiv and without requir-
ing any training. and transparent to user....

At this point there is no indication of how these functions will be realized. A few minutes later they

are mapped onto device components on a one-to-one basis:

(PF18) SM: So I would assume there is input and output devices...and we got to also have

depository...for letters and parcels. and something for...delivering device for stamps....
And we also need some device to weight....

But generally. the storv that emerges from the data is not quite so clean and is closely connected
to the near-decomposability phenomenon of the previous section. The tunctional specifications and the
causal structure specifications are not two distinct ontological categories but the same category under
different descriptions. Functional specifications treat the artifact. or some component of it. as a black
box and attend only to the input and output. Thev basically answer the question “what function will

this artifact. or this part of it. accomplish? Artifact specifications detail the causally efficacious
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structure of the artifact. They answer the question "how is the function to be accomplished?” For
example. during the course of designing the first lesson in the training package. Subject-1 worked with
several different modules. interconnected in various wavs. Some of these modules were: lessons. sec-
tions. subsections. paragraphs. sentences. and the choice and arrangement of lexical and grammatical
elements. This corresponds to what we called a solution decomposition in the previous sub-section. In
addressing each of these modules the designer may choose to do it at various levels of abstraction or

detail. The functional-causal structure distinction is just a special case of this abstraction process.

The status of any module vis-a-vis the functional-causal structure distinction depends on whether

a what or how question is asked of the module. For example:

What is the function of this lesson?

How is it going to achieve this function?
(By means of these sections.)

What is the function of these sections”?

] How are they going to achieve their function?
{By means of these subsections.)

What is the function of these subsections?

How are they going to achieve their function?
(By means of these paragraphs.)

L] etc.

In asking the different questions. the designer is choosing to attend to different levels of detail. Ulti-
mately. this regress must bottom out at a level where the artifact is completely specified. There are
some interesting observations to be made as to where it bottoms out and the number of levels a

designer explicitly considers.

Our data indicates that the number of levels explicitly attended to by a designer is a function of
his experience and familiarity with the task. availabilitv of relevant knowledge. and personal prefer-
ences. The more routine a task is. the more quickly and directly the designer can get 10 the low-level
dezails. if he so chooses. He knows by experience what tvpe of artifact supports what type of goals and
does not have to reason through it via “first principles.” Of cur three subjects. Subject-1 found the task
quite routine and traversed the abstraction hierarchy quite quickly. Subject-M. as noted earlier (PF17
& PF18). did cascade down several levels of function-artifact specifications. Subject-A, when con-
fronted with designing the automated mail-handling system for the post office. dealt with it in strictly

functional terms. He simply did not have the knowledge to specify lower-level details.

However. Subject-A consciously did something that was rather interesting. In determining the
configuration and location of the post office building. he purposefully staved at a highly abstract level

for an extended period of time so as not 1o crystalize or commit himself too soon to low-level details:

(PF19) S-A: 1 am constantly referring to that sketch by the way. As vou can see it's ah. although it’s
the lousiest of them all. it still, still something that I. I. 1. and I am not willing to do any
other sketch at the moment. Because [. | am realiv. tryving to figure it out and 1 am
doing it at an abstract level. So. that...the flow is not affected by the crystalization of an
idea....
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Thus training. personal preferences. stvle. and a number of pragmatic factors can affect the number of
abstraction levels that are considered and how quickly one descends the hierarchy. This point is tied to
the personalized evaluation function and stopping rules observation discussed in section 3.3. Descend-
ing too soon or not descending'® at all is a common mistake of novice designers. This relates to the
earlier point about the tension between the LCMCS and the making of commitments.

The level of detail at which the designer chooses to bottom out depends on professional conven-
tions and standards, personal preferences. style. and a host of pragmatic factors. Subject-1. for exam-
ple. did not stop at the specification of the actual words and sentences but went on to also specify page
layout and typeface. But he did not have to stop there either. He could also have specified the chemi-
cal composition of the ink or the tensile strength of the paper. He chose not to. He left it as someone
clse’s responsibility. He simply assumed that they would function in the “normal way"—that the ink
would not dissolve and the paper would not fall apart—and did not feel the need to provide any specifi-
cations for them. Every design profession has some conventions in this respect. and there is always

some freedom either way that the designer mav exercise at his discretion.

3.8. Use of Artificial Symbol Systems

Designers often use artificial symbol systems to filter and focus information and augment memory
and processing. These systems are so crucial for the problem-solving process that if they do not pre-
exist they have to be invented before the design can proceed.!? Their use and importance can be seen
most dramatically in the case of architecture. It is possible to recognize at least seven different symbol
systems (six of them artificial) in the architect’s repertoire (see Fig. 4). Roughly they are (i) natwral
language. (ii) topology ("bubble diagrams”). (iii) similarity geometry (rough sketches). (iv) Euclidean
geometry (plans, elevations. sections). (v) affine geometry (isometrics). (vi) projective geometry (per-
spectives). and (vii) models or mockups. (Admittedly. the correspondence between the formal
geometri~- \nd the architect’s various drawings is onlv approximate. but it does serve to highlight the
richness an  ariety of artificial svmbol svstems that are actualiy used.) |

eserassccccnnscncsan

Fig. 4 approx here
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The symbol systems from topology to Euclidean geometry form a sort of a hierarchy. In fact.
they map onto and support the abstraction hietarchy discussed in the previous section. It is possibie to
make and represent distinctions at the lower levels which the higher levels do not support. Similarly. it

is possible to make and represent distinctions at the higher. more abstract levels. which can only be

* Onc of our instruchonal desgner subpets staved ot @ sery high abstract fevel and refused to come down.  The result was that
he had no amfact speaficatons o show at the end of the enod

" Onc of our whrets reaload that he did not have an appropnate svmbol saatem for the development and spedification of the
arutact and tned to develop one as he went along The development of svmbol awstems can e soen on an institutional scale in the
case of the cmerging senping and manng svstemns for interactive videodise
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made at the lower levels in a hidden or obscure fashion. For example. metric distinctions are
preserved in Euclidean geometry but not in topology. and while every proposition of topology is trivi-
ally true in Euclidean geometry. topology does not come into its own until one abstracts away from

metric and other details.

Subject-A in his two-hour session used the symbol systems of natural language and similarity
geometry. There are two interesting things to note in his use of these systems. (1) Moving between the
systems automatically commits him to a level of detail by selectively highlighting and hiding informa-
tion. (2) Within a single symbol system he constructs multiple representations of the artifact. In both
cases we want to note that these external representations are not for communicating something after the
fact. They serve an indispensable role in the generation. evaluation. and decision-making process.

Once decisions are made, symbol svstems serve to record and perpetuate them.

As an illustration of the first point, consider the following sequence of protocol fragments and the
accompanying diagrams in which Subject-A determines the form and configuration of the post office
building:

(PF20) S-A: But I could eventually have one single space. where all the. ah. mail is. is delivered.
Which eventually would open up in a single way and have the booths orbiting around it.
So that a given line might occur here. another one here. and another one there.... Now

what I see is a more enclosed to itself structure. By that I want to say is that there is an
inner core and then this roof extending around it....

Along with this verbalization was the concurrent realization of the geometric form in Fig. 5.

Fig. 5 approx here -

The relationship between the verbalization and the diagram is a one-to-many mapping. The diagram
contains several elements which the verbalization does not. It contains and makes very explicit infor-
mation on the rough size (relative to users) and shape of each unit. the configuration of the units. and
how the designer envisions the lines forming. This is not an accident. It is simply not possible to draw
the artifact in similarity or Euclidean geometry without making commitments on these issues. whether
you are ready to or not.!¥ In fact. a few minutes later. while examiming Fig. 5. Subject-A expresses

surprise when he realizes the full extent of his commitment and commences to modify it.

(PF21) S-A: 1 don’t want 10, to affect the type of line that might happen. Why did I draw this. ah.
like something that sticks out? Ah. no. I actually want to minimize even more. So. the
way I see it now is I'll have to. ah. the booths [are]. conceived. probably in such a way
that, the element itself is. is really minimized as. as. ah. formal or volumetrical type of
ah. intervention. We have a main structure and 1. 2. 3 interfaces. and the main axis....
This seems to work well....

™ o acrual smulanty geometn . size. of coune. s aot peesenod
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Accompanying this verbalization is the diagram in Fig. 6. While substantially different from the
diagram in Fig. 5. it is consistent with the original verbalization in PF20.

Fig. 6 approx here

L

Each sketch highlights information not explicit in the verbal descriptior. As the information is
explicated. it can be auended to in subsequent generate-evaluate cycles. Much of Subject-A’s problem
solving involves traversing abstraction levels via the corresponding symbol systems. Learning to
traverse this hierarchy has some serious consequences for design development and crystalization. One
must know when 10 use which system so as not to commit oneself too soon and thereby prematurely
arrest design development. At the other extreme one must learn not to stay at the higher abstract levels
for an overly extended period of time and thereby produce nothing. This observation is of course
related to the earlier mentioned tension between the LCMCS and the necessity to make commitments.

To illustrate the second point. we note that Subject-A constructed four distinct representations of
the artifact within the system of similarity geometry: site plans. floor plans, elevations. and sections.
Furthermore. he attended to the various aspects of the building as they were being drawn: for example.
he calculated the vertical dimensions of the structure when drawing the elevation (see Fig. 7). not when
working on the plan:

(PF22) S-A: So. mavbe. ah. I should go on to a section now and see how this is ah. happening, with
more precise measures [meaning roof overhang and the glare on the monitors).... Ah. 6
feet I envisioned this to be very low anyway.... Probably 2.4 meters. 2.2 meters even....
So I'd say that 8 feet will be the maximum height.... Ah. probably we need about 2 or 3

feet to have all the equipment.... And the lower part of the display monitor and. and
kevboard will be perhaps 3 feet. 3.5 feet perhaps from the ground level.

--------------------

4. CONCLUSION

This study has identified eight significant invariants in the design task environment and character-
ized their impact of the design problem space. Fig. 2 serves as a succinct summary of both our stra-
tegy and findings. To repeat. our major empirical findings are the following characteristics of the
design problem space: (A) extensive problem structuring. (B) extensive performance modeling. (C)
personalized/institutionalized evaluation functions and stopping rules, (D) a limited commitment mode
control strategy. (E) the making and propagating of commitments, (F) solution decomposition into
“leaky modules.” (G) the role of abstractions in the transformation of goals to artifact specifications.

and (H) the use of artificial symbol svstems. But in addition to noting these features. we also made
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“explanatory connections” between them and the invariant features of the design task environment. We
make no claim for completeness and fully expect our characterization to grow and evolve as we exam-
ine more of our data. But we do expect our strategy of viewing design as a radial category. taking the
design task environment seriously. and examining data from several design disciplines to be of continu-
ing value in the future. At this stage, we cautiously suggest that while singularly these features may be
found in non-design problem spaces. collectively they are the invariant hallmarks of the design problem
space. We now conclude the paper by indicating some implications for CAD systems. noling some

methodological shortt mings and suggesting directions for future research.

4.1. Implications for Computer-Aided Design Systems

Tvpically. CAD systems provide designers with a variety of tools for modeling the anticipated
performance of an artifact during the design process. Our characterization of generic design and our

empirical observations suggest that there are several ways in which such systems could be enhanced.

We noted that design characteristically involves problems with many degrees of freedom, requir-
ing substantial collection of information. problem structuring, and negotiation. Much of this informa-
tion comes from external sources or the prior experience of the designer. At first blush, hypertext
tools would seem to be appropriate for such activities. However, as noted by Halasz (1988), making

hypertext systems that permit cheap input and restructuring is still a major research issue.

Design inherently involves the use of design abstractions. nested generate and evaluate cycles. and
a limited-commitment mode control strategy. This suggests that designers should be able to inexpen-
sively specify design abstractions and evaluate designs at any level of abstraction. The CLU language
for software design is an attempt along these lines (Liskov and Guttag, 1986). It is essentially 2 variant
of an object-oriented programming language that allows software designers to develop procedural and
data abstractions and specify the preconditions and entailments of these abstractions without immediate
concern for their implementation. The fact that designers appear to mix formalisms in their represen-

1ations of artifacts suggests that we have substantial work to do in this area.

Representation is an important issue in itself. First generation CAD systems viewed the
designer’s notes and drawings only as communicative devices. Our studies confirm the findings of Bal-
lay et al. (1984) and Ullman et al. (1986) that this is simply not the case. The designer’s notes and
drawings play a crucial role in design development by selectively focusing and filtering information and
augmenting memory and processing. This speaks for the need to develop computational environments

which can support a wide range of symbol systems.

Finally. we should remark on the potential role of Al in CAD systems. Al is especially
appropriate for propagating the entailments of closed-world models. as is typically done in theorem-
proving programs or problem solving programs that deal with well-structured problems. It does not
fare as well in tasks with changing world models: ones that are continually influenced by knowledge
brought in from the external world or from past experience. This would seem to imply that we should

not expect Al 1o provide highly automated design svstems for anything but the most routine and well-
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structured problems that arise during design. However, research on hierarchical planning could pro-
vide tools for representing and evaluating abstract design plans. Research in knowledge acquisition
tools could influence the development of CAD systems that acquire new design abstractions and evalua-
tions. Research in case-based retrieval and reasoning could provide tools to augment designers’ use of
prior knowledge in design. Intelligent advice or help systems that use knowledge of particular design
tasks, and on-line “pattern books” might be particularly useful aids for novice designers or as

warehouses for the design knowledge in particular disciplines or institutions.

4.2. Principle Shortcomings and Limitations

As the work currently stands, there are three principle shortcomings. The first is that the whole
analysis is based substantially on three protocols. one ecach from three of the many design disciplines.
In the short term we justify our experiment design by noting that the methodology used is qualitative
rather than quantitative. It does not require large numbers of subjects. As has been argued by Anzai
and Simon (1979) there is much to be gained by the detailed analvsis of a single protocol. Over the

long term. we recognize the shortcoming and are continuing to analyvze additional protocols.

The second shortcoming is that we have not used a formal procedure for coding the protocols.
Neither has there has beca any independent coding of the protocols. Again, over the long term. we
recognize this shoricoming as serious. In the short term. we note that the categories and conclusions
were arrived at through much argumentation and compromise with colleagues with first-hand
knowledge of the data.

The third shortcoming is that only design problem protocols have been examined. This only
allow us to make the weak claim that we have identified certain invariants in the design problem space.
It does not permit the additional claim that these invariants are not (collectively) found in nondesign
problem spaces. This latter claim is desirable for the motivation of generic design as a useful theoreti-
cal construct. But it requires the examination of nondesign protocols. The comparison of nondesign

probiem spaces with design problem spaces is a matter of ongoing concern.

4.3. Future Work

This investigation has been a first-pass. breadth-first look at design problem solving. We have
tried to lay out the major pieces of the design problem space and explain or justify them by an appeal
to the design task environment and the structure of the IPS. A logical extension of this work would be

to push the analvsis further and to derive a process model of design from it.

In concentrating on the big picture. we have had to resist the temptation to delve deeply into any
single feature of the problem space. Of particular interest to us are the phenomena of scenario immer-
sion, leaky modules. and the use of artificial symbol systems. Each of these promises to be a rich and

intricate field of study.

Also. we have not said anvthing about the differences in the problem spaces of our three sub-

jects. We have noticed some interesting differences in their knowledge bases. the external svmbol
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systems they use. and their cuitural and professional values and practices. However. any conclusions in
this regard must wait until we gather and analyize additional data.
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Fig. 4: Symbol Systems Used in Architectural Design
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Fig. 5: First Rough Sketch of Floor Plan of Post Office. See text.




Fig. 7: First Rough Sketch of (Vertical) Section of Post Office. See text.
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ABSTRACT

It is proposed that there are important generalizations about problem solving in design
activity which reach across specific disciplines. A framework for the study of design is presented
which (a) characterizes design as a radial category and fleshes out the task environment of the
prototypical cases; (b) takes the task environment seriously; (c) shows that this task environment
occurs in design tasks, but does not occur in every nondesign task. (d) explicates the impact of
this task environment on the design problem space, and (e) demonstrates that, given the structure
of the information processing system , the features noted in the problem spaces of design tasks will
not all occur in problem spaces where the task environment is vastly different. This analysis leads
to the claim that there are a set of invariant features in the problem spaces of design situations
which collectively constitute a design problem space. Protocol studies are reported in which the
problem spaces of three design tasks in architecture, mechanical engineering, and instructional
design are explored and compared with several protocols from nondesign problem-solving tasks.
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The proper study of mankind is the science of design.
--Herbert A. Simon

1. Introduction

Design is a quintessential cognitive task. The activity of design involves the mental
formulation of future states of affairs. The products of design activity are external representations
of such possible futures. Creative design is also one of the recognizable features that distinguishes
modern humans from other intelligent makers of artifacts (Mellars, 1989; White, 1989; Wynn,
1979, 1981). Design is therefore fundamentally mental, representational, and a signature of human
intelligence; features that surely make it an important subject of study in cognitive science.

The study of design in cognitive science is also timely in the context of past and recent
developments in the field. Much of the early work on problem solving (e.g, Newell & Simon,
1972) examined performance on well-structured, semantically impoverished tasks -- such as puzzle
solving -- having well-defined goals, problem states, and operators. Ill-structured problems,
which have ill-defined goals, states, or operators, have been receiving increasing attention. Such
research includes studies of software design (Guindon, 1989; Jeffries, Turner, Polson, &
Atwood, 1981; Kant, 1985), mechanical engineering (Ullman, Dietterich, & Stauffer, 1988), and
the formulation of administrative policy (Voss, Greene, Post, & Penner, 1983). In addition,
studies of problem solving in semantically rich domains involving the use of mental models, such
as physics (Gentner, & Gentner, 1983), have also increased over the past decade. Design, of the
sort we are interested in, is ill-structured in that the tasks involve underspecified goals and
operators. The kinds of knowledge that may enter into a design solution are practically limitless.
Furthermore, since design inherently consists of the formulation of models of possible states of
affairs in the world, it intrinsically involves mental models and a rich set of semantics. Given such
trends in the study of problem solving, design is a compelling testbed for further integration and
advancement of theories of cognition.

There are also practical reasons for being interested in the study of design. Design activity
has major impact on construction and manufacturing costs and capabilities. While it is the case that
design accounts for only 3 - 7% of product costs, and that the real money is spent during the

manufacturing or construction stage, it is also the case that 80% of manufacturing costs are
committed to during the first 20% of the design process (Dixon, & Duffy, 1990). Analysts have
noted serious shortcomings in both education and practice of design and have recently stressed that
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a lack of a basic scientific understanding of the design process is endangering American industry -
and productvity (Dertouzos, Lester, & Solow, 1989).

In this paper, we present a framework, theory, and method for the study of design tasks,
along with empirical analyses of expert design in three diverse disciplines. Our goal is to address
the knowledge and cognitive processes of individual designers, although, clearly, design is often
the coordinated effort of many individuals (Curtis, Krasner, & Iscoe, 1988). The framework is
intended to encompass theories or models that generalize across design tasks, provide accounts of
individual acts of design, and afford computational accounts of moment to moment information
processing. In the next section we embed our work in the literature with a very brief outline of
past design research and then present our research framework and empirical analyses in
subsequent sections.

2. An Overview of Design Research

The development of systematic theories of design has a long history within the design
professions, dating back to Leon Battista Alberti's (Alberti, 1450/1988) treatise on architecture.
More recently, cross-disciplinary systematication of design was attempted in the design
methodology movement. In part, this movement was spurred on by the large military and civilian
projects of the 1950's and 1960's, such as the development of the Polaris Missile and the moon
landing. The design methodology movement responded with a number of prescriptive proposals
for the systematization of the design process. A number of researchers (Alexander, 1964; Archer,
1969) observed that design had two components: a logical element and a creative element. Both
were necessary, but required very different abilities. The basic idea of the design methodology
movement was to develop systematic external methods and tools to better carry out the logical
analysis, and to unburden the designer to engage in the creative aspecis of the problem solving
(Cross, 1984).

One of the intellectual outcomes of this research was a consensus among many prac-
titioners that, while the various design professions -- e.g. architecture, engineering, industrial
design, urban design, etc. -- differed in particulars, they none the less shared a common core
which united them as design professions and differentiated them from nondesign professions such
as medicine. This unifying core was thought to reside in the fact that design problem-solving
activity involved the following sequence of steps:
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An exploration and decomposition of the problem (ie., analysis).
An identification of the interconnections between the components.
The solution of the subproblems in isolation.

HW N e

The combination (taking into account the interconnections) of the partial solutions into
the problem solution (i.e. synthesis).

On this basis many researchers concluded that “the logical nature of the act of designing is
largely independent of the character of the thing designed” (Archer, 1969, p.76). These
prescriptive proposals for revamping design methods gave way to studies involving either the
logical analysis of design problems (Alexander, & Poyner, 1966; March, 1976; Reitman, 1964;
Rittel, & Webber, 1973; Simon, 1973) or empirical studies (Akin, 1979; Akin, 1986; Darke, 1979,
Eastman, 1969) of design as it naturally occurs in the world (or at least the laboratory).

Another line of attack on design problems emanated from information-processing analyses
of problem solving. Design problems that require some creativity for their solution were identified
as ill-defined or ill-structured problems by Reitman (1964). In other words, such problems
initially have underspecified or ambiguous specifications of their start state, goal state, or the
function that transforms the start state to the goal state. Simon (1973) argued that there was
nothing intrinsic about a problem, per se, that made it ill- or well-structured, but rather that such
properties could only be determined by examining the relationship between the problem solver, its
available knowledge, and the problem to be solved. Furthermore, he concluded that information-
processing accounts were adequate to deal with both ill-structured and well-structured problem
solving.

Many recent analyses of design have been carried out in the framework of cognitive
psychology or artificial intelligence (Akin, 1979; Akin, 1986; Brown, & Chandrasekaran, 1989,
Guindon, 1989; Jeffries, et al., 1981; Kant, 1985; Mostow, 1985; Ullman, et al., 1988; Tong &
Franklin, 1989). However, as noted in Goel and Pirolli (1989), much of the cognitive science
research on design problem-solving suffers from the following difficulty: Either the research has
tended to concentrate on the analysis of discipline-specific design domains and has shied away
from characterizations of cross-disciplinary generalizations; or the term "design” has been applied
to an increasingly large set of activities that begins to drain the term of substance. Such unlikely
tasks as learning (Perkins, 1986) , communication (Thomas, 1978), letter writing, naming, and
scheduling (Thomas, & Carroll, 1979) have all been called design activities.
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We differ from much of this research in neither believing that (a) design activity char-
acterizations must be discipline specific, nor (b) that design is a ubiquitous activity. There is no
Imore reason to construe every cognitive activity as a design activity than there is reason to construe
every cognitive activity as a game playing activity or a natural language generation activity. We
assume that there are significant commonalties in the structure of design problems and tasks across
the various design disciplines; and there are significant differences in the structure of design
problems and nondesign problems. As such, we make a strong commitment to the study of design
as a subject matter in its own right, independent of specific tasks or disciplines. We use the term
generic design to refer to this study. We should note, however, that we are not alone in thinking
that there must be interesting generalizations to be drawn across broad classes of problems (e.g.,
Chandrasekaran 1983; Greeno, 1978).

Another way in which our work differs from other efforts in cognitive science is that we
explicitly acknowledge that our studies must emphasize the analysis of design problems and the
situations in which they occur. While the importance of analyzing such task environments has
been stressed in classical theories of human information processing and problem solving (Newell,
& Simon, 1972), such analyses are often taken for granted. In partictular, researchers dealing with
design problems have not let such understanding inform their data analysis and theorizing. We
propose to take and develop the notion of design problems and the contexts in which they occur
and let it seriously guide our cognitive characterizations.

Our research can therefore be viewed as an integration of two themes. It is an attempt to
show that design problem-solving is a natural category of activity and is interestingly different
from nondesign problem-solving activity. This attempt draws on the analysis of design problems
and situations, and uses the results as both framing and explanatory constructs. In the next section
we propose a framework in which to carry out such a study, and subsequent sections describe
empirical analysis conducted within the framework.

3. A Framework for Studying Design

In order to study generic design, we need to develop criteria for demarcating and rec-
ognizing design problems, and we need some understanding of their common characteristics. Our
framework for such an analysis derives from Newell and Simon's (1972) information-processing
theory of human problem solving. Basically, a human problem solver is viewed as an
information-processing system with a problem. A task environment is the external environment,
inclusive of the problem, in which the information processing system operates. A problem space
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is a formalization of the structure of processing molded by the characteristics of the information-
processing system, and more importantly, the task environment. A problem space is defined in
terms of states of problem solving, operators that move the problem solving from one state to
another, and evaluation functions.

Our intuitions about generic design can be formulated in information-processing theory as
an hypothesis about the design problem space:

Design Problem Space Hypothesis: Problem spaces exhibit major invariants across
design prohlem-solving situations and major variants across design and nondesign
problem-solving situations.

Our level of characterization of the design problem space will not be in terms of states,
operators and evaluation functions, as is standard in many psychological investigations (Newell
and Simon, 1972), but will be stated in a higher-level vocabulary, in terms of a set of invariant
features which are common to or characteristic of design problem spaces. Formally, this move to
abstraction is comparable to the development of process and data abstractions in computer science
(Liskov, & Guttag, 1986).

The basic strategy for explicating the design problem space will be as follows: (a) specify
some salient features in the cognitive structure of the designer; (b) specify the salient common
features or invariants in the task environment of design problems; (c) show that they constitute a
rather unique set of invariants not found in just any arbitrary problem solving situation; (d) let the
problem space be shaped by these two sets of constraints; (¢) note the structure of the resulting
problem space and make "explanatory connections” between this structure and the invariants of the
design task environment and the cognitive system; (f) show that the structure of at least some
nondesign problem spaces is very different; (g) make the Newell and Simon (1972) argument that,
given the structure of the problem solver as a constant across all cognitive activity, any interesting
differences across problem spaces of vastly different tasks will be a function of the task
environment; and (h) on this basis claim that these features are invariants of design situations and
collectively constitute a design problem space. In the following subsections we specify the
structure of the information processing system, the structure of the design task environment, and
make some predictions about the design problem space.
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3.1. The Structure of the Information Processing System

In the classic Newell and Simon (1972) theory of human problem solving, a cognitive
system is a simple, relatively unconstrained mechanism. It is basically a physical symbol
manipulation system with memory stores (short-term; long-term; external), a processor, sensory
receptors, and motor effectors. There are, of course, several more sophisticated accounts in the
literature. We view our use of the Newell and Simon (1972) theory, as a way of providing a
reasonable first-order approximation of human information processing that is consistent with a
wide variety of more recent proposals of human cognitive architectures (Anderson, 1983; Newell,
in press). The essential constraints on human information processing proposed by Newell and
Simon (1972) that are relevant to our analysis -- the limitations of short term memory, external
memory, and the sequential nature of symbolic processing -- would probably show up in many
theoretical alternatives. Even a connectionist theory would probably incorporate similar
assumptions to address the human limitations in heeding information, and the sequential nature of
problem solving activity.

3.2. The Structure of the Design Task Environment

Task environments consist of (a) a goal, (b) a problem, and (c) other relevant external
factors (Newell and Simon, 1972). In many studies of problem solving, the emphasis has been on
how the structure and content of a particular problem gets mapped onto the problem space. In
contrast, our explication of the design task environment involves looking beyond the individual
problem and specifying the relevant external factors common to all design problems.

Having put the problem thus, there are two difficulties that must be dealt with. First,
before one can look at the commonalties across the category of design problems, one must be able
to specify what constitutes the category, or at least to identify members of it. Second, having
identified the category in some way, one is confronted with the problem of identifying the aspects
of the task environment that are relevant. Both of these difficulties have proven to be a notoriously
challenging (Goel and Pirolli, 1989). We provide criteria motivated by categorization theory to
address the first problem and rely on intuitions, developed through immersion in the discipline of
architectural design!, to generate criteria that address the second problem.

IFirst author.
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It is our contention that design is too complex an activity to be specified by necessary and
sufficient conditions. Rather, design as a category exhibits what Resch (Rosch, 1978) calls
prototype effects. Furthermore, it is what Lakoff (Lakoff, 1987) calls a radial category --a
category in which there is a central, ideal, or prototypical case and then some unpredictable but
motivated variations. Given this assumption, one could use a variety of convergent
operationalizations to determine the constituent structure of the category of design activity. For
instance, if one shows people a list of professions--e.g. doctor, lawyer, architect, teacher,
engineer, researcher--and asks which are the best examples of design professions, people will
usually pick out the same few cases. In the above list we believe the best examples would be
architecture and engineering. We propose to call these central, or prototypical examples of design
professions.

Having made this observation we have a nonarbitrary and interesting characterization of
design activity. We are now in a position to take a serious look at the task environment of these
prototypical design professions and attempt to isolate some interesting common features. We note
the following overt features of design task environments (for an earlier approximation of this list,
see Goel & Pirolli, 1989):

A) Distribution of information. As was initially noted by Reitman (1964) there is a lack of
information in each of the three components of design problems. The start state is
incompletely specified, the goal state is specified to an even lesser extent, and the
transformation function from the start to goal states is completely unspecified.

B) Nature of constraints. The constraints on design task environments are generally of
two types, (a) nomological and (b) social, political, legal, economic, etc. The latter
consist of rules and conventons and are always negotiable. The former consists of
natural laws and are never negotiable. However, the constraints of natural law vastly
under determine design solutions. Design constraints are rarely, if ever, logical (i.e.
they are not constitutive of the task).2

C) Size and complexity of problems. Design problems are generally large and complex

spanning time-scales on the order of days, months, or even years.

2These important distinctions have not been widely appreciated in the literature. Simon (1973) for example

fails to (refuses o) recognize them.
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Component parts. Being large and complex, design problems have many parts. But-
there is little in the structure of design problems to dictate the lines of decomposition.
Decomposition is substantially dictated by the practice and experience of the designer.

Interconnectivity of parts. The components of design problems are not logically
interconnected. There are however many contingent interconnections between them.

Right and wrong answers. Design problems do not have right or wrong answers, only
better and worse ones (Rittel and Webber, 1973).

Input/owput. The input to design problems consists of information about the people
which will use the artifact, the goals they want to satisfy, and the behavior believed to
lead to goal satisfaction. The output consists the artifact specification. Functional
information in many ways mediates between the input and output information. This is
a rather standard characterization adapted from Wade (Wade, 1977), and is further
discussed in section 4.1.3.

Feedback loop. There is no genuine feedback from the world during the problem
solving session. It must be simulated or generated by the designer during the problem
solving session. Feedback from the world comes only after the design is completed
and the artifact is constructed and allowed to function in its intended environment. But
of course at this point the feedback can not influence the current project, but only the
next "similar" project.

Costs of errors. There are costs associated with each and every action in the world,
and the penalty for being wrong can be high (Rittel and Webber, 1973).’

Independent functioning of artifact. The artifact is required to function independently
of the designer.

Distinction between specification and delivery. There is a distinction to be made
between the specification of the artifact and the construction and delivery of the
artifact.
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L) Temporal separation between specification and delivery. There is a temporal separation
between the specification and delivery or construction of the artifact. The specification
precedes delivery.

These are all significant invariants in the task environments of prototypical design sit-
uations. Many of them have been noted previously by other researchers. Our claim here is that we
can use them as a template to identify other cases of design. To the extent that the task
environmeut of a given problem situation meets or conforms to this template, that probiem
situation is a prototypical example of a design situation. To the extent that a task environment
varies from this template-- by omission of one or more of the requirements--it is a less central case
of design activity.

Note that we are not stipulating what is and what is not a design activity. To do that we
would have to insist that the 12 task environment characteristics listed above, or some subset of
them, constitute necessary and sufficient conditions for design activity. We make no such claim.
Rather, all we are suggesting is that we have a template of some salient characteristics common to
the task environment of problem situations that are consistently recognized as good examples of
design activity. Problem situations in which the task environment fails to conform to this
template on one or more accounts are deviations from the central case. In this paper we will only
be interested in central cases and thus have no interest in saying how far a problem can deviate
from the prototype and still be considered design. Thus we will use the label "design” to refer to
situations that closely conform to the prototypical or central cases.

Some problem-solving situations which fit well into the schema are instructional design,
interior design, some cases of software design, and music composition. Some tasks that deviate
slightly are writing and painting. In these latter cases there is usually no separation between design
and delivery. The problem solver actually constructs the artifact rather than specifying it. Some
activities that deviate more radically are classroom teaching, spontaneous conversation, and
puzzle-solving.

To illustrate how nondesign tasks differ from design, we will examine the task envi-
ronments of two well-structured problem tasks that have been extensively studied in the literature
(Newell & Simon, 1972). The first task is cryptarithmetic, which is a puzzle in which an addition
problem is presented, but all digits have been replaced by letters. The task involves solving the
addition problem by making hypotheses about the correspondences between letters and digits. The
second task is the Moore-Anderson logic task, which is posed as a game in which subjects
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transform given symbol strings into goal symbol strings according to certain transformation rules.-
The game moves are isomorphic to theorem proving by logical inference. The following is a
summary comparison of these two tasks to the 12 features of design environment listed above:

A") Distribution of Information: In the case of cryptarithmetic, the start state is completely
specified. The goal test is also clearly defined. The transformation function is restricted to
only two operations, which are specified in advance: (a) assign a digit between 0 and 9 to a
letter, and (b) perform addition. In the Moore-Anderson tasks both the start and goal states
are completely specified. The set of legal operators is also specified. All the subject has to
do is figure out the right order of application.

B') Nature of Constraints: In both cryptarithmetic and the Moore-Anderson task the rules
are definitional or constitutive of the task. As such they have a logical necessity about
them. If one is violated, we are simply not playing the game, but some other game.

C') Size and Complexity: In both cryptharithmetic and the Moore-Anderson task, the
problems are relatively small and simple. The ones we looked at (Newell &
Simon's,1972) took anywhere from 10 to 40 minutes to solve.

D") Component Parts: Even though the problems are relatively small, they break down into
a number of components. In cryptarithmetic each row (addend) is treated as a component.
In the Moore-Anderson task each well-formed formula (wff) constitutes a component part.
However, in both cases, unlike the design cases, this breakdown is enforced by the logical
structure of the problem.

E') Interconnectivity of Parts: In cryptarithmetic the few components (rows) that do exist,
are logically interconnected. That is, there exists the possibility that any row will sum to
greater than 9 and affect the next row. In the Moore-Anderson task there are logical
connections between the wffs but they are not obvious. In fact, the task is substantially to
discover these interconnections. .

F') Right and Wrong Answers: In the cryptarithmetic problems we examined there was
only one definite right answer. All other answers were simply wrong. In the Moore-
Anderson task the answer consists of the right sequence of operators. While there may be a
set of right sequences (rather than a single one), all others are definitely wrong. Also, itis
clear when one has a right sequence.
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G) Input/Output: In cryptarithmetic the input is limited to letters, numbers, and the rules
of the game. The output is a particular sequence of numbers. In the Moore-Anderson task
the input consists of the wffs, and the operators. The output consists of the sequence of
lawful operator applications sufficient to transform the premise wffs into the conclusion
wff.

H') Feedback Loop: In cryptarithmetic there is genuine feedback after every operation (i.e.
substitution and summation). It is, however, local feedback and the final decision needs to
satisfy global constraints. In the Moore-Anderson task there is local feedback after every
operator application. But it is of limited value. More useful feedback comes after
sequences of operator applications.

I') Costs of Errors: In both cases, the cost of error is negligible in the sense that a wrong
answer may cause the subject some embarrassment, but it will not affect the lives of third
party “users."”

J') Independent Functioning of Artifact: Not applicable.
K") Distinction between Specification and Delivery: Not applicable.
L') Temporal Separation of Specification and Delivery: Not applicable.

The reader will note that these nondesign task environments differ from the design task
environment on all 12 features listed above. Incidentally, they also differ from each other in
respect to features A’ and F.. But the consequences of this latter difference will not be pursued
here. The consequences of the differences between design task environments and nondesign task
environments will be considered in some detail in a later section.

This is not to suggest that all nondesign task environments will be so radically different.
For instance, an intermediate case is provided by the task environment of some mathematical
problems, such as those presented in Schoenfeld (Schoenfeld, 1985). However, we have
purposefully chosen to contrast the design cases with cases which deviate radically. The sharp
contrast makes the distinctions clearer. If something substantive is uncovered, we can move onto
the subtler comparisons which will be involved in the less deviant cases. If nothing interesting
emerges in these clear cut cases, nothing will emerge in the subtler cases.
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3.3. The Structure of Design Problem Spaces

The following is a list of a dozen invariants found in the structure of the design problem
spaces we examined. Each can be explained or justified by an appeal to the structures of the
information-processing system and design task environment as articulated above.

1. Problem structuring. The lack of information in start states, goals states, and
transformation functions will require extensive problem structuring before problem
solving can commence.

2. Distinct problem-solving phases. Design problem solving can be further subcate-
gorized into three interestingly distinct phases, preliminary design, refinement, and
detail design.3 This is probably due to the size and complexity of problems and the
many different types of information and levels of detail that need to be considered.

3. Reversing direction of transformation function. Since the structure of the task is not
well specified in advance, and the constraints are nonlogical, the designer has the
option to reverse the direction of the transformation function by transforming the
problem to one for which he may already have a solution, or into a problem for which
the solution is in some way more effective or desirable.

4. Modularity/decomposability. Given the size and complexity of design problems and
the limited capacity of short term memory one would expect decomposition of the
problem into a large number of modules. However, given the fact that there are few or
no logical connections between modules but only contingent ones, one would expect
the designer to attend to some of these and ignore the others.

S. Incremental development of artifact. Interim design ideas are nurtured and incre-
mentally developed until they are appropriate for the task. They are rarely discarded
and replaced with new ideas. The principle reasons for this would be the size and
complexity of problems and the sequential nature of the information processing
system, and the fact that there are no right or wrong answers.

3There is nothing deep about there being three phases rather than n phases. Designers use these three
phases to talk about their process. We too found them useful for our purposes. It would certainly have

been possible to do a finer-grained or coarser-grained individuation.
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6. Control structure. Designers use a limited commitment mode control strategy which
enables the generation and evaluation of design components in multiple contexts.

7. Making and propagating commitments. Since design plans and specifications have to
be produced in a finite amount of time, and have to be interpretable by a third party, -
designers have to make, record, and propagate commitments.

8. Personalized stopping rules and evaluation functions. Because there are no right or
wrong answers and direct feedback is lacking, the evaluation functions and stopping
rules the designers use will be personalized (i.e. derived from personal experience and
immersion in the profession).

9. Predominance of memory retrieval and nondemonstrative inference. Since there are
very few logical constraints on design problems, deductive inference plays only a
minimal role in the problem solving process. Most decisions are a result of memory
retrieval and nondeductive inference.

10. Constructing and manipulating models. Since design typically occurs in situations
where it is not possible to, or too expensive to directly manipulate the world, designers
usually manipulate representations of the world. (We only get one run on the world,
whereas we can get as many runs as we like on models of the world.)

11. Abstraction hierarchies. The qualitative difference in the input and output information
and the several distinct problem solving phases result in orthogonal abstraction
hierarchies.

12. Use of artificial symbol systems. Given the size and complexity of problems, the need
to construct and manipulate external models, and the use of abstraction hierarchies,
designers will make extensive use of artificial symbol systems.

The first six of these invariants will be discussed and illustrated with data in section 5.0. A
lengther and more complete discussion of all twelve invariants is available in Goel (1991). But
before begining the discussion we present our methodology and data analyses in the next section.
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4. Database and Coding Scheme

Our empirical studies have focused largely on the analysis of verbal protocols from expert
designers in various disciplines. This has required the development of a rather complex protocol
analysis scheme that can be tied to our framework for the design problem space. In addition to
developing analyses to find commonalties across design tasks, we have also been interested in
exploring how design tasks might differ from nondesign tasks. Consequently, we have also
performed analyses of nondesign verbal protocols that were readily available in the literature.
Altogether, we have accumulated a database of 12 design protocols and six nondesign protocols.
Both sets are described below and we present detailed analyses of three of the design protocols and
two of the nondesign protocols.

4.1. Design Protocols

Twelve design protocols, of approximately two hours each were collected from experts in
the disciplines of architecture, mechanical engineering, and instructional design. While we have
examined and coded all 12, we will restrict our discussion here to one from each discipline. The
three were selected one the basis of (a) the completeness of the artifact specification produced by
the individuals, and (b) the fluency of the subjects’ verbalization.

4.1.1. Subjects

One of the protocols was produced by a subject (Subject S-A) performing our architecture
task . Subject S-A was a Ph.D. student in the Department of Architecture at the University of
California, Berkeley, who volunteered to participate in the study. Subject S-A had six years of
professional experience, but had never designed a post office. A second protocol was produced by
Subject S-M in solving our mechanical engineering task. Subject S-M was a Ph.D. student in the
Department of Mechanical Engineering at Stanford University, and also volunteered to participate
in the study. Subject S-M had three years of professional experience including working for a firm
in Italy designing bank teller machines. The third protocol was collected from Subject S-1 on an
instructional design task. Subject S-I was a professional instructional designer working for a large
multinational corporation who also volunteered to participate in the study. Subject S-I had over 10
years experience in desigring technical training material, mainly on the operation and servicing of
office machinery and systems. Subject S-I was also familiar with the text-editor that was the focus
of his design task.
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4.1.2. Task Descriptions

Architecture. The architecture task involved the design of an automated post office
(where postal tellers were replaced by automated postal teller machines) for a site on
the UC Berkeley campus. Subject S-A was given two documents: an outline of the
experiment procedures and a design brief which motivated the need for the post office
and specified the client's needs and requirements. The site was visible from the place
of the experiment.

Mechanical Engineering. The mechanical engineering task involved the design of an
automated postal teller machine for the above post office. Subject S-M was given
three sets of documents: the experimental procedures, the design brief, and the post
office design generated by the architect.

Instructional Design. The instructional design task involved the design of a self-
contained instructional package to teach secretaries how to use the Viewpoint text-
editing software running on Xerox Stars. Subject S-I was given three documents, the
experimental procedures, the design brief, and the Viewpoint reference manual.

Each designer was asked to talk aloud as he or she proceeded with the task and was
encouraged to probe the experimenter for further information and clarification as necessary. The
experimenter answered questions posed by the subject but at no time initiated questions or engaged
the subject in conversation. The sessions were taped on one or more video recorders and all written

documents were collected for later analysis.

The tasks were complex real-world problems with most of the features specified earlier for
design task environments. They however differed in two respects from the characteristic features
of full-scale design tasks, and both of these differences were necessitated by the logistics of data
collecton. In our particular experimental situation there was no substantive penalty for being
wrong or proposing an inferior solution, as there would be in the world at large. Also, while the

tasks we gave our subjects each required on the order of weeks to months for complete

specification of the artifacts, we asked them to restrict their sessions to approximately two hours.

As a result we received solutions specified to an incomplete level of detail.
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4.1.3. Protocol Coding Procedures

The verbal protocols were first transcribed and cross-referenced with the written and drawn
documents (henceforth referred to as marks-on-paper). The transcribed protocols were divided
into utterances or statements, and each statement was coded. Collections of statements were
aggregated into units called submodules and modules. The utterances in modules or submodels
focussed on particular components or subcomponents of the artifact. A aggregation of modules
and submodules identified sections of protocol that corresponded to different phases of design
development. In this subsection we specify our criteria for individuating statements and the coding
scheme.

4131, Individuating Statements

Following previous outlines of verbal protocol analysis (Ericsson, & Simon, 1984), our
goal was to divide the protocols into statements that conveyed a single thought, expression, or
idea. There are at least two ways of doing this. One is to individuate by content cues such that
statements are demarcated by shifts in topic or new points being made about the topic. A second
way of demarcating statements is to use noncontent cues such as pauses, phrase and sentence
boundaries, and and the making and breaking of contact between pen and paper. We looked at both
of these ways of demarcating statements and applied whichever one provided the finer-grained
individuation. The mean duration of statements was approximately eight seconds. The mean
number of words per statement was about 15 words.

4 in hem

QOur protocol coding scheme was similar in spirit, but not detail, to schemes employed in
other recent studies of design (Greeno, Korpi, Jackson, & Michalchik, 1990; Ullman, et al.,
1988). Each statement was coded along several dimensions (see the Goel (1991, Appendix D)
for a more complete description of the scheme along with illustrative examples). Figure 1
illustrates how each statement could be assigned to one of four categories used to identify the
general focus of a designer's activity. Experimental task statements were statements concerned
with the experimental design and setup. Monitor statements indicated metacognition, or reflection
about design methods. These were statements in which a subject reviewed or commented upon the
problem solving process itself. Three different types of monitoring statements were identified:
explicit mentions of design operators, statements about design methodology, and statements about
book-keeping. Design development statements were statements that advanced the specification of
the artifact.
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Design development statements were further divided into: (a) problem structuring
statements, which generated or solicited information that further structured the problem, or (b)
problem solving statements, in which the design specification was advanced in some way.
Problem solving statements were divided into: (a) preliminary-design statements, which were the
initial specifications of a design solution, (c) refinement statements, which elaborated an
established design element, and (d) detail statements, which served to finalize the form of some
design element. These labels are rather standard terms that designers routinely use to talk about
various phases of design development. They are of course relative to the available time and the
degree of completeness of the design specification. But none the less, given the final output of the
designer, it is possible to trace the development and segment it into phases.

We also coded all design development statements according to the aspects of design
development referred to in the statements. This subcategorization was orthogonal to the
breakdown of design development statements presented in Figure 1, and differentiated the type of
content attended to by the designer. For each statement we identified whether the content of the
statement referred to: people, purposes, behavior, function, structure, and resources. As with the
problem solving categories, these subcategories are also quite standard in the design literature. The
ones we employ are adopted from Wade (1977). Briefly, the intuition behind these terms is that
artifacts are designed to perform certain functions which are calculated to support certain
behaviors, which help in the realization of certain purposes held by people. This categorization
provides a chain linking users to artifacts and recognizes that each intermittent step needs to be
considered. To these categories we have added resource (e.g. time, money, manpower, etc.). It
should be noted that these are not disjunctive categories. A single statement can fall into more than
one category.

In addition to coding the general aspects of the design being attended to, we also ag-
gregated statements into episodes of closely related statements united by a focus on some particular
component of the designed artifact. We called these aggregates modules and submodules. Unlike
the codings discussed so far, the module coding scheme was dependent on the particular design
tasks and the particular individual solving the task.
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Focus
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Figure 1. Categories of general focus in protocol coding scheme.

Finally, for each statement, we coded a set of information about the particular problem-
solving step being executed by a designer: (a) the operator applied, (b) the content to which it was
applied, (c) the mode of the output, and (d) the source of knowledge used (see Figure 2).
Operators were a labeling of statements by the function they served in the problem space.
Although we made no theoretical commitment to any specific set, we found the eleven noted in
Figure 2 adequate for our needs. The mode of output of a statement was encoded as either verbal
or written. Each statement was also coded for the source of knowledge for the statement. The four
categories used were the experimenter, the design brief, self (retrieved from long-term memory),
and inferred (deductively) from the information existent in the problem space.
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Figure 2. Localized problem-solving step categories in protocol coding scheme.

Although the complete coding scheme was complex, each part of the scheme provided a
different view onto the unfolding of the design process and the evolution of the design itself. In
the next subsection, we describe how the scheme was modified to code protocols collected in
nondesign tasks.

4.2. Nondesign Protocols

Our six nondesign protocols were gathered from several published sources. They include
mathematics, cryptarithmetic, and the Moore-Anderson tasks, and range in duration from 15
minutes to 40 minutes. The two mathematics protocols were taken from Schoenfeld (1985,
Appendices 9.1 and 9.5). These two were selected from several in Schoenfeld (1985) because
they were the only ones which approximated our experimental setup of single subjects giving
uninterrupted and unprompted protocols. The two cryptarithmetic and two Moore-Anderson task
protocols were chosen from Newell and Simon (1972, Appendices 6.1, 7.1, 9.2 and 10.1). These
protocols were chosen on the basis of their duration.
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Each of these six nondesign protocols was analyzed and coded. However, keeping with -
our strategy of contrasting extreme cases, we discuss and compare only the cryptarithmetic and
Moore-Anderson task problem spaces with the design problem space.

4.2.1. Subjects

The subjects in both the cryptarithmetic and Moore-Anderson tasks were undergraduate
college students.

4.2.2. Task Descriptions

The cryptarithmetic tasks for both subjects (NS6.1 and NS7.1) involved solving the
following puzzle:

ROBERT

in which each letter stands for a specific digit and the digits associated with ROBERT are the sum
of the digits associated with DONALD + GERALD, and it is given that D = 5. Cryptarithmatic
problems are basically constraint satisfaction problems.

The Moore-Anderson task is a string transformation task, isomorphic to deductive in-
ferences in propositional logic using logical inference schemas. The task for Subject NS9.2 in
Newell and Simon (1972) was

LI: R->~P).(~-R-->Q)
LO: «(~Q.P)

where L1 was a premise and LO was a goal. The transformation rules are specified in Newell and
Simon (1972, p. 406). Using the same transformation rules, the task for Subject NS10.2 in
Newell and Simon (1972) was:

L1:P.(Q.R)

L2: ~P-->T)-->~(P.Q)

LO:T.T
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where L1 and L2 were premises and LO was the goal.
4.2.3. Protocol Cocing Procedure

The protocols were reproduced from their original source and recoded with a subset of the
scheme devised for the design protocols that was modified as follows:

1. As with the design protocols, design development statements were differentiated into
problem structuring and problem solving statements. However, the problem solving
statements were not further differentiated into the various design phases.

2. The aspects of design development category was eliminated.
3. The mode of output was not coded.

The first two changes were necessitated by the data. There is no interesting sense in which
the nondesign data was amenable to a further break down of the problem-solving category into
subcategories and the aspect of design development category was inappropriate. Both of these
issues will be discussed below. There was not enough information available in the published
sources to code for the mode of output.

S. The Design Problem Space

In this section, we list and briefly discuss the some of the more interesting invariants in the
design problem space. In each case we ask the following three questions: (a) what is the
phenomenon, (b) why does it occur, and (c) what is the supporting data. We will also consider if
and in what form the phenomenon transpires in non-design problem spaces.

5.1. Problem Structuring

Problem structuring is the process of drawing upon our knowledge to compensate for
missing information and using this knowledge to construct the problem space (Simon, 1973). It
occurs for the obvious reason. Design problems are incompletely specified but the specification of
a problem space requires complete information about start states, goal states, operators, and
evaluation functions. In Goel and Pirolli (1989) we examined the form and organization of some
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of this knowledge and how it was applied. Here we want to note the extent and location of
problem structuring phases and also say a few words about how they differ from problem
solving.

The first thing to note is that problem structuring accounted for approximately 25% of the
statemets devoted to design development in our design protocols. In our three protocols it ranged
from a low of 18% to a high of 30% (for a mean of 24%). In contrast, only 0.3% of the
nondesign protocols were devoted to problem structuring. The second point is that problem-
structuring statements occurred mainly at the beginning of the task, where one would expect it, but
also reoccurred periodically as needed. Figure 3 shows the temporal distribution, aggregated over
S minute intervals, of the problem-structuring and problem solving phases for subjects S-A, S-M,
and S-I.
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Figure 3. Distribution and extent of problem structuring and problem solving for Subjects S-A, S-
M and S-I (aggregated over five-minu'e intervals).
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Although problem structuring is a widely recognized concept, it is often unclear as to how-
it differs from problem-solving. In our design protocols, we noted several phenomena that appear
to differentiate problem structuring activities from problem solving activities:

1. Aspects of the design considered: Table 1 presents a breakdown of the aspects of
design attended to by subjects across the design development phases. In general,
subjects produced proportionately more statements about people, the purposes of the
artifact, and resources during the problem structuring phases than in problem solving
phases (preliminary design, refinement, and detail design). In contrast, statements
about the structure or function of the artifact were more prominent in the problem
solving phases than in the problem structuring phases. These results suggest that
problem structuring in design is associated with attention io how the artifact may be
used and what is available to form it, whereas problem solving is associated with
attention to specification of the function and form of the artifact.

2. The primary source of knowledge: The client and design brief were important sources
of knowledge during problem structuring but not during problem solving (Table 2).
Problem structuring is associated with bringing new information into the problem
space.

3. The degree of commitment made to oustput statements (as evidenced by the quantiry
and character of written output): There was a higher percentage of verbal-only
statements generated during problem structuring than during problem solving (Table
3). To some extent, this may indicate that written output indicates some degree of
commitment to particular design decisions, whereas purely verbal statements about the
design indicate less commitment.

4. Operators: There was a higher percentage of add and propose operators in the problem
structuring phase than the problem solving phase. 42.3% of the operators applied
during the problem structuring phase were add operators. This was systematically
reduced to 36.7%, 35.3%, and 32% during the preliminary design, refinement, and
detailing phases respectively. Similarly, propose operators which accounted for
10.7% of the operators applied during problem structuring, were systematically
decreased to 10%, 7.6%, and 6.7% during the preliminary design, refinement, and
detailing phases respectively.
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Proporuon of statements made in each design development phase
about various aspects of a design.

Problem Solving

Problem Preliminary Detail
Structuring Design Refinement Design
Subject S-A
People .14 13 .06 .01
Purpose .14 .02 .00 .00
Resource 1 .02 .00 .03
Behavior .08 11 .01 .01
Function .10 .18 .10 .05
Structure .43 54 .83 90
Subject S-M
People 22 .07 22 .06
Purpose .04 .01 .00 .00
Resource .09 .03 .00 .00
Behavior .10 .11 .03 .09
Function .26 .35 .06 .10
Structure .29 43 .69 .76
Subject S-I
People 33 .10 .00 .00
Purpose .16 .02 .00 .00
Resource .26 .00 .00 .00
Behavior .04 .02 .00 .00
Function .00 .15 48 .33
Structure .20 g1 52 .67
Combined Subjects
People 22 11 .04 .02
Purpose 10 .02 .00 .00
Resource .14 .02 .00 .01
Behavior .08 .09 .01 .03
Function .14 .23 .32 .19
Structure .32 S3 .63 .75
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Table2
Breakdown of knowledge sources for statements made in each design development phase.
Problem Solving
Problem Preliminary Detail
Structuring Design Refinement Design
Subject S-A
Design Brief .09 .00 .04 .01
Experimenter 13 .01 .00 .00
Self .77 96 ~.88 .93
Inferred .01 .03 .08 .06
Subject S-M
Design Brief 11 .00 .00 .00
Experimenter 44 .04 .00 .00
Self .44 93 1.00 1.00
Inferred .00 .03 .00 .00
Subject S-I
Design Brief .38 .00 .00 .00
Experimenter .14 .05 .01 .00
Self 47 .95 .99 1.00
Inferred .01 .00 .00 .00
Combined Subjects
Design Brief 21 .00 .01 .00
Experimenter .25 .03 .00 .00
Self .53 95 .96 .98
Inferred .01 .02 .03 .02
Table 3

Output mode associated with statements in each design development phase.

Problem Solving
Problem Preliminary Detail
Structuring Design Refinement Design
Subject S-A
Verbal .86 .84 .58 .67
Written .14 .16 .42 33
Subject S-M
Verbal .89 .55 52 .66
Written 11 .45 .48 .34
Subject S-I
Verbal .80 .55 .60 .19
Written .20 45 .40 .81
Combined Subjects
Verbal .88 77 .61 71
Written 12 23 .39 .29
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5.2. Distinct Problem Solving Phases

In addition to the distinction between problem-structuring and problem-solving noted
above, there is a further differentiation of problem-solving into several distinct phases. We have
subcategorized problem-solving into preliminary design, refinement, and detail design. As noted
earlier, these categories are quite standard among designers. As might be expected, these phases
were generally engaged in sequentially by our subjects, starting from preliminary design, passing
through refinement, and ending with detail design; though it was not unusual for a subject to return
to an earlier phase as previously unnoticed aspects emerged (Figure 3). There was however
considerable variability between subjects as to the amount of time devoted to each phase.

The three problem solving phases differ at least in terms of the following three respects:

1. Aspects of the design considered: There was a steady decrease in the consideration of
people, purpose, and resource aspects of design development from preliminary to
detail design and a corresponding increase in the structural aspect (see Table 1). The
behavior and function aspects on average seemed to stay relatively constant across the
three phases.

2. The primary source of knowledge: There was still some input from the client and/or
design brief at the preliminary design stage, but it disappeared by the detailing stage
(see Table 2).

3. The degree of commitment made to output statements (as evidenced by the quantity
and character of wrirten output). There was a steady increase in the number of
verbalizations that were committed to paper as subjects prbgrcsscd from preliminary
design, through refinement, to detail design (see Table 3). There was also an increase
in the degree of explicitness and detailing in the written or drawn material (see Goel
(1991) for illustrations). We take both of these as evidence of increasing commitment
to the emerging design. '

It is our conjecture that the distinct phases result from not only the size and complexity of
the problems, but perhaps more importantly, from a combination of the different types of
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information that must be considered during the session (i.e., people, purposes, behavior, functor,
and structure) and the different levels of detail at which it is considered.

Again, the situation was quite different for the nondesign protocols. Instead of problem
solving being comprised of distinct phases of different activities, it was comprised of cycles of the
same basic activity. In nondesign problems, the subject is searching for a solution. If it is not on
the path being searched, one must back up and start down another path. The activity one engages
in as one goes down each path is basically the same. This is demonstrated by data that will be
discussed in a later subsection.

5.3. Reversing the Direction of Transformation Function

The designer naturally interprets the problem situation through personal experiences and
biases. But in addition to this, designers will occasionally stop and explicitly try to change the
problem situation so it more closely fits their expertise, knowledge, and experience. This involves
manipulating both the problem constraints and the client's expectations. We call this reversing the
direction of the transformation function because rather then transforming initial problem states to a
goal state, the designer can negotiate changes to the goal state that experience suggests are more
easily achievable, or perhaps might lead to a more effective design solution.

An example of an (unsuccessful) attempt to explicitly change the goal state specified by a
design brief was provided by the following negotiation sequence. Subject S-A was standing on a
ninth floor balcony and had a birds-eye view of the small triangular site he had been given for the
proposed post office. He was not content to just build a post office but wanted to redesign the
whole area.

S-A: So, given the fact we have that triangle over there as a limit. And I cannot exceed that I
suppose?

E: Right, that, that...

S-A: I have to take that for granted?

E: I, I would think so.

S-A: That's the boundary of. You do not allow me to, to exceed in, in my area of intervention?

E: No, I think you should restrict it to that.

S-A: So, I am constrained to it and there is no way I can take a more radical attitude. Say,
well, look, you are giving me this, but I actually, I, I'd come back to the client and say
well look, I really think that you should restructure actually the whole space, in between
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the building. I'd definitely do that, if that was the case. You come to me as a client, and
come to me with a triangle alone, I will give you an answer back proposing the whole
space. Because, I, I think the whole space should be constructed. So, that there is an
opportunity to finally to plan and that space through those, ah, this building, open up
Anthropology and, and plan the three buildings together. So, as to really make ah, this
ah, a more communal facility....

The reasons why such episodes occur are clear: (a) the problem are incompletely specified, and (b)
design constraints are nonlogical and therefore manipulable.

Notice such a sequence simply could not (and does not) occur in nondesign problem
spaces where the problem constraints completely specify the problem, and indeed are constitutive
of the problem. If it did occur--if the subject requested a change in the problem parameters--we
would simply say that he could not do the assigned problem and was changing it to a different
problem.

5.4. Solution Decomposition into Leaky Modules

A number of researchers have noted the important role played by decomposition in dealing
with complexity (Alexander, 1964; Simon, 1962, 1973b, 1977). However, there is considerable
disagreement as to the extent and structure of decomposition of design problems. Some
researchers assume strict tree-like decompositions (Alexander, 1964; Brown and Chandrasekaran
1989). But Alexander (1965) argued that "A city is not a tree; it is a semi-lattice.” There has also
been some discussion as to the extent of interconnections or the encapsulation of the modules.

In Goel and Pirolli (1989) it was noted that designers decomposed the design solution into
"leaky modules” (i.e. sparsely connected modules) and had two main strategies for dealing with
these interconnections: (a) they either blocked the leaks by making functional level assumptions
about the interconnected modules; or (b) they deferred further development of current module
while they attended to an interconnected module. It was also stressed that partial interconnectivity
(as opposed to total connection or total disconnection) was a genuine phenomenon and had to be
taken seriously.

The decomposition of a design into maximally independent units ameliorates the difficulties
faced by a limited capacity human information processor dealing with typically large and complex
design problems. Yet it is also a fact of the world that artifactual objects and processes are
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composed of entities that are in fact related to one -another in complex ways. Somehow, the design
process has to decompose a design to reduce attentional loads, yet remain attendant to possibly
important interconnections between decomposed modules.

In this study we investigate the density and distributions of these interconnections. We
divided the protocols into modules (see section 4.0) and used the mentioning of one module inside
another module as an indication of interconnections between the modules. Here we report the
findings for subject S-A.

Subject S-A decomposed his solution into 34 modules clustered in four larger groups. (We
will refer to these 34 modules as submodules and use the term 'module’ to refer to the four larger
groups.) The four groups (or modules) were "Site,” "Building,” "Services," and "Automated
Postal Teller Machine.” The submodules within the Site module were things like trees,
illumination, circulation, etc. The submodules within the Building modules included, mail storage,
configuration of plan, roof, location of equipment, etc. The Services modules included items such
as number of machines, mail pickup, number of people and service times, etc. The Automated
Postal Teller Machine module included things such as machine components, interface, and
stamping procedure.

Given these 34 submodules there are 1,122 logically possible interconnections that can be
made. We found that on average, 7.4% of these connections were actually made. Furthermore,
there is, as might be expected, a difference in the density of connections between the four major
groups and between the submodules internal to the groups. The former connections are
considerably denser than the latter (13.4% vs. 4.5%). These results support claims of the near
decomposibility of design solutions.

To compare these results with the the nondesign problem spaces we did the same analysis
on several nondesign protocols. In the case of cryptarithmitic we found that subjects decomposed
the task into modules corresponding to columns of letters. Since the problems only had six
columns there were only six modules (as compared to over 30 for each of the design tasks). But
while the actual number of modules were substantially fewer, the density of interconnections
between modules was considerably greater. Using the same procedure as above we find that the
density of interconnections for subject NS6.1 is greater than that of the design problem space. In
the cryptarithmetic problem space of subject NS6.1, 20% of the possible connections were made,
as opposed to an average of 7.4% for the design problem space of subject S-A.
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The denser interconnectivity of the cryptarithmetic modules is exactly what one would
expect given the fact that it is designed as a multiple constraint satisfaction problem and all the
constraints are logical (i.e. they must be attended to). This is perhaps why such problems can have
relatively few modules and still be very challenging. The reason design problems can have many
modules and still be tractable is because the interconnections are contingent rather than logical. The
designer has a greater degree of flexibility in determining which ones to attend to and which ones
to ignore.

5.5. Incremental Development of Artifact

As interim design ideas or solutions are generated, they are retained, massaged and
incrementally developed until they reach their final form. Very rarely are ideas or solutions
forgotten or discarded. In other words, information about the state of the design, and associated
knowledge brought into the design problem space, appears to increase in a monotonic fashion
throughout the design process. This is one of the most robust findings in the literature on problem
solving in design (Kant, & Newell, 1985; Ullman, et al., 1988).The duration of the incremental
development process is, to a great extent, a function of the resources available.

There are a number of factors in the design task environment which would seem to favour a
strategy of incremental development. First, the problems are large and, given the sequential nature
of information processing, cannot be completed in a single processing cycle. Second, since there
are few logical constraints on design problems and no right or wrong answers, there is little basis
for giving up partial solutions and starting over from scratch. It makes more sense to continue to
develop what already exists. Third, incremental development is compatible with the generation and
evaluation of design components in multiple contexts that will eb discussed in the following
section on control structure.

Incremental development does not occur in the nondesign protocols that we analyzed.
While it is true that the nondesign problems were also too large to be completed in a single
cognitive step, there is nonetheless a different character about the progression of knowledge states
and problem states. More specifically, most of the search paths explored in finding solutions are
wrong. When a particular search path is abandoned, much of the information associated with that
path is also abandoned as the problem solver returns to a previous problem solving state and
knowledge state and begins a new search path. The accumulation of knowledge relevant to a
solution does not monotonically increase as the problem solver switches from one search path to
another.
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Incremental development in design, and its comparison to nondesign problem solving can
be better understood by examining some particular protocol analyses and a more detailed
discussion of the control processes operative in design problem solving. Both are discussed in the
next section.

5.6. Control Structure

There are a number of issues which a control strategy for traversing design problem spaces
needs to address. Among them are the following three:

1. Are the solution modules to be developed in isolation from each other, or is there to be
interconnection between between the solutions?

2. Isthe information to be processed sequentially or in parallel?

3. Are the solutions to be developed incrementally or appear completely formed?

We have already discussed results and assumptions regarding each of these issues: (a) the
solution modules are interconnected to some degree, (b) the cognitive process is assumed to be
sequential, and (c) the solutions are developed incrementally. A control strategy which
accommodates and supports each of these facts is required.

Our data indicate that designers use a limited commitment mode control strategy (LCM
control strategy). This strategy is closely related to Stefik's (1980) "least-commitment” control
strategy. The basic feature of the LCM strategy is that, when working on a particular module, it
does not require the designer to complete that module before beginning another. Instead, one has
the option of putting any module on hold and attending to other related (or even unrelated)
modules, and returning to the module on hold at a later ime. This embedding can go several levels
deep and one is not irrevocably committed to interim solutions. One always has the option of
modifying partial design solutions at a later point. This, in effect, lets the designer take advantage
of multiple problem-solving contexts in the generation and evaluation of design elements. To
specify this more precisely, we need to (a) show that design elements are indeed considered in
different contexts, and (b) trace out the actual control structure showing the LCM control strategy.
In order to do (a) we first need a way to individuate design elements and design contexts.
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§5.6.1. Individuating Design Elements and Contexts

In the case of design elements there is a straightforward mapping between them and the
modules and submodules which we identified earlier. Contexts are not as easy to individuate.
They were identified using the following method: The protocol was divided into modules and
submodules, and a unique number was assigned to each token occurrence of modules and
submodules. Each numbered segment at the level of module or submodule constituted a different
context. Whenever module or submodule types were instantiated, it was in a different context.

This notion of context seems to combine both temporal and content components, because
whenever a uniquely numbered module or submodule was considered, it was at a unique time ¢
and it was proceed and followed by a uniquely numbered sequence of modules or submodules
(which means there was different information in the problem space). We have, for each of the
subjects, a tracing of modules and submodules and the contexts in which they were considered.
These tracings are best presented in conjunction with control strategies, to which we now turn our
attention.

5.6.2. Control Strategies

Control strategies can be enumerated at different levels. We used a three level hierarchical
analyses which accounts for the protocols at the level of module, submodule, and individual
statement types. As the module and submodule categories are task- and subject-specific, the
control structure at these levels will also be task- and subject-specific. Since the categories at the
level of individual statements are general across all the tasks and subjects, the control structure at
this level will also generalize across tasks and subjects.

The actual formalism that we use to capture and display the control structure is a transition
network. More specifically it will be a recursive transition network (RTN) (Winograd, 1983).
These networks have been widely used in the computational linguistic field to recognize, parse,
and generate natural language strings. We used them to (manually) recognize our protocols.

Some samples of control structure from subject S-A's protocol (one from each level) are
presented in Networks 1, 2, and 3 (Figure 4). The reader is refered to Goel (1991) for a
representation of the complete structure. The salient features of the networks are summarized
below and the reader is invited to examine Figure 4 for details:




Network 1

CS:
Circulation
Cald 8,141

LCS:
Huminason
W/ Ce3.1.3.15,14.3

Network 2

Network 3

Figure 4. Sample of RTN networks that recognize Subject S-A's
protocol. The "C" numbers specify the sequence (and context)
in which the arcs are traversed. Network 1 recognizes the
complete protocol at the level of the four modules. Network 2
recognizes the "site” submodule. Network 3 recognizes the
local control structure of all the submodules.
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* The control structure is naturally analyzed into three hierarchical levels:
Modules (Network 1)
(recursive call)

4 v
Submodules (Network 2)

(recursive call)

A\ A\
Statements (Network 3)

» The first two levels are task-specific; the third is general across all three tasks.

« Within any of the levels, one does not get a consistent, steady, linear movement through
the problem. Rather one gets repetitive, cyclical, flexible control structure at all three

levels.

» The effect of this repetition and reiteration is that most modules and submodules are
considered several times, in several different contexts. For example, in Network 1,
the site module is considered S times, the building module 7 times, the services
module 4 times, and the APTM module 4 times. Table 4 summarizes the multiple

occurrences of submodules.

Table 4
Occurrences of submodules in multiple contexts for Subject S-A

Number of Percentage of

submodules submodules Range

considered considered
Modules more than once High Low
Site 9 89% 7 1
Building 18 28% 5 1
Services 4 25% 3 1
APTM 3 33% 2 1

Total 33 44%
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» The single Local Control Structure (LCS) Network can recognize all the modules in all the
protocols. That is, it can do a flat or local statement by statement recognition of all the
protocols.

* Most of the action in the protocols seems to be internal to major modules, at the level of
submodules (Network 2). The top and bottom level networks (Networks 1, 3) are
rather sparse and simple.

While the control strategy for the nondesign problem space ook similar (in terms of the
cyclical, repetitive revisitation of modules) to the LCM control strategy (see Goel, 1991) of the
design problem space, much of the similarity is superficial. There is an important difference in the
two cases. In the nondesign problem space most of the problem solving occurs internal to
modules/episodes. There is little carryover from previous visits to a module or episode. In fact,
Newell and Simon (1972) in their original analysis of these protocols claim that in returning to a
former state, the subject is in fact returning to the previous knowledge state with respect to the
problem. If he goes down the wrong path and returns to the previous state all that he knows is that
the path he just explored does not lead to the goal state. He does not have an enriched
understanding of the state he is returning to.

Table 5
Trace of the development of knowledge in
Subject NS6.1's repeatcd visits to Module 6

Visit # Concluding Knowledge State Development of Knowledge
1 G has to be an even number sinitial proposal
2 No letter in front of R sconnection with first visit unclear
3 G has to be either 1 or 2 eignore/reverse previous conclusion
4 R has to be greater than 5 sconnection to previous visits unclear
5 G is going to be 1 *maybe connected to visit 3
6 R=9 *may be connection to visit 4
G=3 sunconnected to any previous state

This can be demonstrated by tracing through the repeat visits to a module/episode and
examining the state of knowledge at the end of each visit. Table S provides such a trace of subject
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NS6.1's visits to the module column 6. The thing to note is the third, "development of
knowledge,” column. It indicates that there is not a close connection between the current visit to a
module or episode and previous such visits.

In the design case, while problem solving does occur internal to modules, there is also
considerable carryover and development of the module from visit to visit, as evidenced by the
incremental development phenomenon, and further substantiated by the trace of Subject S-A's
repeated visits to the submodule "seating” in Table 6. When the designer cycles back, it is not to
the previous knowledge state, but rather to a previous topic instantiated in the current context.4
This is indicative of some higher level control structure which we have not yet uncovered.

Table 6
Trace of the development of knowledge in Subject S-A's
repeated visits to the "Seating” module

Visit No.  Concluding Knowledge State Development of Knowledge
1 Keep seating below evergreens; don't einitial proposal
disturb overall scheme
2 Keep existing seating sreaffirm original proposal
3 Incorporate seating elements as part of +builds upon first two visits
building structure; relaxation and view of
playing field important
4 As per 3rd visit but decouple seating from  emodify 3rd visit
building structure
5 Locate seating along boarders *build upon 4th visit
6 Counter position seats so as to break up *build upon 5th visit

symmetry & not affect circulation

6. Summary and Conclusion

In this paper we have proposed a framework and method for the investigation of design as
a cognitive process, and demonstrated some interesting results they yield. In particular, we started
with some intuitions about the notion of generic design and put forward the design problem space
hypothesis. To investigate the hypothesis we

4This is compatible with the view that design is an attempt at global optimization with finite resources.
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(1) circumscribed design activity from non-design activity in an non-arbitrary and non- .
vacuous manner by
(a) suggesting that design is a radial category exhibiting prototype effects,
(b) examining some prototype cases and analyzing their task environments,
(c) noting that not all task environments shared these features (i.e. not every task
environment is a design task environment,
(d) associating design activity with certain invariant characteristics of task envi-
ronments,

(2) used the structure of the design task environment and a few well accepted constraints on
the structure of information processing systems to generate hypothesis about twelve
invariant characteristics of design problem spaces;

(3) analyzed data from both design and non-design tasks and found evidence for the
postulated invariants. More particularly we presented data illustrating extensive problem
structuring, distinct problem solving phases, reversing the direction of the transformation
function, near decomposibility of design solutions, incremental development of design
solutions, and a limited commitment mode control strategy. We were also able to explain
why each of the invariants occur by appealing to the structure of the design task
environment. Along the way we provided a detailed qualitative and quantitative
characterization of design problem spaces.

(4) Equally importantly, we also presented evidence indicating that these invariants do not
occur either at all, or at least not in the same form, in at some non-design problem spaces.

On the basis of this data and analyses we conclude that the notion of a design problem space is an
interesting and explanatory theoretical construct and worthy of further study.
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Abstract

In this paper, we present an analysis and a computer simulation model of a
relatively ill-structured problem-solving task in instructional design. The primary
motivations for this research include (a) extending information-processing analyses of weli-
structured problem solving to ill-structured tasks, and (b) uncovering the problem-solving
and problem-structuring strategies employed in expert design. The simulation,
implemented in Soar, of an expert instructional designer suggests that substantial activity is
devoted to knowledge acquisition and integration as means for problem structuring. The
heterogeneous mix of strategies uncovered by our simulations is compared to recent
artificial intelligence approaches to design.
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Introduction

Problem solving has been one of the dominant fields of research in the study of
human information processing over the past three decades (Greeno & Simon, 1988) and
such research has left its signature on several major theories of human cognition
(Anderson, 1983; Newell, 1990). It is notable, however, that the bulk of this research has
focused on problems that are relatively well-defined or well-structured (Reitman, 1964
Simon, 1973). In other words, the sorts of tasks that have typically been studied involve
problem situations, goals, and problem-solving actions that require little embellishment on
the part of problem solvers. Consequently, theories of problem solving have been largely
shaped by the empirical phenomena of well-structured problems, and it is reasonable to
question how well the theories extend to relatively ill-structured problems, which are far
more characteristic of the types of dilemmas faced by individuals in their everyday
endeavors (Reitman, 1965).

In this paper, we present an analysis and a computer simulation model of a
relatively ill-structured problem-solving task in instructional design. In part, our aim is to
examine how current conceptions of problem solving extend to ill-structured problem
solving. As part of our research strategy, we have used the Soar franfework (Newell,
1990) to formalize our simulation model and to guide our empirical analyses. Soar is quite
explicitly a computational cognitive modelling formalism grounded in concepts and
assumptons that have emerged from research on relatively well-structured problem
solving. By formalizing our analysis in Soar, we not only test the sufficiency of our
particular account for the data at hand, we also test how well Soar and its underlying
conceptions of problem solving extend to ill-structured tasks. A clear precedent for this
kind of analysis is Simon's (1973) discussion of how GPS--a direct ancestor of Soar--
might solve ill-structured problems in areas such as architecture and ship design. Our
research could be construed as a modest attempt to test the notion that "the problem solving
mechanisms that have shown themselves to be efficacious for handling large, albeit
apparently well structured domains should be extendable to ill structured domains without
any need for introducing qualitatively new components” (Simon, 1973, p. 197; see also
Reitman, 1965).

The work presented here also arises out of our interests in studying the structure of
design as a particular kind of problem solving. Expertise and creativity in design has
raditionally been highly valued, yet we know very little about it. Creative and effective
design involves skillful generation, manipulation, and monitoring of strategies and tactics,
abilities to generate and reason with representations of the world, the analysis and
integration of complex information, and many other phenomena of perernial interest to
cognitve scientists. Moreover, we assume (Goel & Pirolli, 1989) that ill-structured
problem solving across design disciplines shares many features, and yet differs
substantially in character from other kinds of problem tasks such a game-playing, puzzle
solving, solving word problems, or diagnosis. If this assumption is warranted, then
studies of design tasks should yield information about a broad "natural kind" of human
actvity that is of both practical and scientfic utility.

An additional aim of this research is examine the variety of control strategies that
occur in human design. Workers in artificial intelligence (AI) have proposed a number of
general control regimes as basic approaches to design problem solving (Brown &
Chandrasekaran, 1989; Chandrasekaran, 1987; Chandrasekaran, 1990; Kant, 1985;
Mabher, 1990; Mostow, 1985; Mostow, 1989). Cognitive models of human design can
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both draw upon and inform this research by indicating the mix of control regimes and
problem representations employed for design subtasks by human experts.

Ill-structured Problem Solving

In Newell and Simon's (Newell & Simon, 1972) highly influential theory,
problem solving is characterized as a process of search in problem spaces. A problem
space is a formal characterization of the structure of processing that results from an
interaction of the human information-processing system with some task environment. The
structure of a problem space is defined in terms of the states of problem solving, operators
that move the problem solving from one state to another, and the goals or evaluaton
functions of problem solving. The task environment is the portion of the external
environment relevant to the problem-solving task.

Reitman (1964, 1965) presented seminal discussions of well-structured and ill-
structured problem solving in terms consistent with this classical framework of human
problem solving. Reitman (1964) proposed that problems were ill-defined to the extent that
problem states, goals, or transformation functions lacked information, were ambiguous, or
included open constraints. He also suggested that such ill-defined problems, which people
take on "with nothing remotely resembling a statement of the necessary and sufficient
conditions for a solution” (Reitman, 1965, p. 148), are the focus of largest percentage of
human energies, yield larger interindividual variability in solutions, and produce less
agreement on the acceptability of solutions, when compared to well-defined problems.

Inspired by Reitman's work, Simon (1973) argued that there was nothing intrinsic
about a problem, per se, that made it ill- or well-structured, but rather that such properties
could only be determined by examining the relationship between the problem solver, its
available knowledge, and the problem to be solved. Furthermore, Simon (1973) argued
that information-processing accounts that had been applied to the study of relatively well-
structured problems were adequate to deal with relatively ill-structured problems.

Simon (1973) proposed that processing in ill-structured situations entails substantial
integration and manipulation of knowledge that ultimately provide enough structure to a
problem space to yield an acceptable solution. The sources of such knowledge are the
long-term memory of the problem solver, and knowledge relevant to the task integrated
from external sources, including the problem description. The structure of processing and
the ulumate solution are, in large part, a reflection of the particular knowledge used to
structure the problem space.

Instructional Design

In this study, we have focused on the processes involved in instructional design
tasks by professional instructional designers. In related research (Goel & Pirolli, 1989),
we have developed an abstract characterization of the features of tasks that are prototypical
of design disciplines (e.g., architecture, bridge design, or mechanical engineering), and
professional instructional design fits this characterization rather well. On this basis, we
expect that many of our findings about instructional design will generalize to other design
tasks.

Typical instructional design tasks for a professional might, for example, involve
developing training materials about a new product for the technicians who will have to
service the equipment, or materials to train sales personnel on appropriate strategies for
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dealing with potential customers. Although many constraints may be fixed (e.g., time,
money, and other resources available), many may still be open or undefined. For example,
a designer may have the option to decide upon the medium for the instruction (e.g.,
videodisk versus texts), or perhaps many attributes of the target students may be unknown.
Typically, the designs take weeks to months and, once completed, the instruction is
implemented away from the designers, either because it is stand-alone instruction, or
because it is taught by a separate cadre of teachers or trainers. Although instructional
designers will sometimes perform what are called formative evaluations to determine the
effectiveness of their designs during the design process, true feedback on a design's
effectiveness occurs through summative evaluations of the end-products of the design
process.

Like many other design disciplines, instructional design has developed a large body
of prescriptive theory and methodology. A useful characterization of prescriptive
instructonal theory (Reigeluth, 1983) is that instructional design theories attempt to
specify the space of instructional situations, the space of instructional methods, and to
develop statements, called principles, that link these spaces. The analysis of instructional
situations is taken to broadly include the effects of instructional methods, usually called
instructional outcomes, and the conditions that affect the outcomes and use of those
methods. Such conditons include the subject-matter, the instructional setting, properties of
the targeted learners, and the nature of the learning task.

Principles of instruction are taken to be those statements that characterize elementary
building blocks for instructional methods. Descriptive principles are scientific statements
about the effects of a particular method under given conditions. Prescriptive principles are
the kind of statement used in design to identify the optimal method to use in a given
situation. Comprehensive instructional theories are intended to provide the knowledge
base for solving the problems of instruction by providing the rules and constraints for
forming efficient and effective instructional interactions.

Insert Figure 1 about here

Prescriptive instructional design methodologies specify how design should be
carried to yield effective design solutions. One popular method (Mager, 1988) for the
design of industrial training, is presented in Figure 1. This particular specification of
instructional design consists of four phases: analysis, development, implementation, and
improvement. The analysis phase can be thought of as background research that will be
relevant to structuring and solving the design problem. Mager (1988) emphasizes that the
main purpose of this phase is to determine the goals of the instruction. The development
phase is defined as procedures which include *“the drafting of measuring instruments, as
well as development and tryout of the instruction itself” (Mager, 1988, Volume 1, p. 15)
As would be expected, the implementation means the delivery of the instructional materials
to the students. The improvement phase can be seen as the feedback of the summative
evaluations into the design process for further refinement of the instruction.

The Protocol Database

Our protocol database was obtained from nine professional instructional designers
for a large multinational corporation whose main product is office systems. The subjects
were volunteers who had responded to a request for participation in the study by their
managers. All subjects were familiar with the Xerox Star system and its Viewpoint
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document preparation environment, which were the subject-matter for the instructional
design task. Four women and five men with varying ages, backgrounds and expertise
participated in the design experiment.

In part, our selection of professional designers and the design task was shaped by
an earlier pilot study, in which we had collected protocols from two professors, a lecturer,
and a teaching assistant, from the University of California at Berkeley, who were all
experienced in teaching statistics. These pilot subjects had been asked to design a lesson
on the law of large numbers to be delivered to psychology freshmen by a teaching assistant
familiar with statstics. We noted that (a) specifying lessons in advance did not appear to
be a familiar activity for the pilot subjects, (b) the subjects did not produce specifications of
uniform detail or concreteness, nor did they seem to have a sense for what should
constitute a specification, (c) the subjects appeared to be hampered by the lack of resource
material on the topic,! and (d) subjects posed many questions about constraints and
resources for the design during the design sessions. Consequently, we contacted
professional designers who were familiar with specifying instruction in advance and
producing assorted specification documents, which are highly stylized to include particular
kinds of information about an instructional design. In addition, we provided technical
documentation on the topic that was the focus of the instruction (i.e., manuals for the word
processor), and we developed a set of scripted answers to questions we thought might arise
during the design sessions.

Procedure

Subjects were studied individually as they performed the design task. Atthe
beginning of the design session subjects were presented with task instructions and a short
design brief. The task instructions informed subjects that they had three hours to complete
the design, that the session would be video taped, and that they were requested to “think
aloud"” during the experiment. At a convenient point during the session, the subject was
given the opportunity to take a short break.

The design brief described a ficional company (Acme Umbrella) that was about to
automate its administrative facilities by replacing secretaries' typewriters with Xerox Star
computers and its Viewpoint documentation preparation environment. The brief also stated
that Acme had observed that the manuals accompanying the computer would not provide
adequate training for the secretaries. The design brief stipulated that the subject was being
hired freelance to develop an appropnate training package for Acme's secretaries.

The training package was to be made up of six one-hour lessons of stand-alone
instructon. Other constraints placed on the training package in the design bnef were varied
across subjects along three dimensions with two cells for each dimensicn:

o The instructional delivery medium. The stand-alone instruction requested was
either (a) text-based or (b) interactive video-disk

» The background knowledge of the secretaries. Subjects were told that the
secretaries (a) knew just how to use an electric typewriter or (b) had some
experience with a word processing system.

Mn fact, all four pilot subjects produced a lesson on the central limit theorem rather than the law
of large numbers, probably because the former is a more central topic for psychology students.
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» The form of the specifications expected at the end of the design session.
Subjects were asked either (a) to organize all the lessons and design the first
hour in as much detail as possible (depth-first design) or (b) to design the
complete package in as much detail as possible (breadth-first design).

These dimensions and cells create eight variants of the design brief. Assignment of
subjects to design briefs was not completely random, since four of the designers who had
some experience with designing interactive video disk were assigned to work on design
briefs that requested interactive video disk instruction.

There were two experimenters present during the design sessions, and subjects
were :0ld that one of the experimenters could be treated as a representative of Acme
Umbrella and would answer any questions about the design brief. Manuals for the
Viewpoint environment were on hand and available for the designer to use at any point.
Subjects were given an unlimited amount of blank paper to create their design
specifications. Subjects worked at a desk and two VHS camcorders were used to record
the design sessions. The first camcorder was aimed at the subjects’ work area on the desk
to record all writing activity whereas the second used a wider-angle view to capture a
broader image of the designers. These videotapes and the designers' notes served as the
raw data for subsequent protocol transcription and coding.

Protocol Coding Scheme

The video tapes and writings of all nine designers were subjected to a first pass of
qualitative analysis in which we identified and compared the kinds of specifications
produced, a general characterization of the content of the specifications, and a general
characterizaton of the subtasks that the designers had performed. Detailed protocol
analyses were conducted on data from three designers. These three subjects were selected
because they were highly verbal, and because collectively their protocols covered a wide
variety of the phenomena we had noted among all nine designers.

The first of these three designers, Subject W, had one year of college and was
working on a degree. He had about 10 years of work in a variety of technical professions,
had been a trainer of technicians for about 4.5 years, and worked as a designer, analyst,
and writer of instruction for eight years. The second designer, Subject M, had completed
undergraduate degrees in psychology, with a focus on human factors and computer-
assisted instruction. She had worked as a technician for three vears, a trainer of technicians
for seven years, and worked in instructional design for 2.5 years. The third designer,
Subject C, worked as manager for instructional design projects. He had an undergraduate
degree in psychology, a masters in education, and had completed about one third of the
requirements for a Ph.D. in education. Subject C was also an adjunct faculty at a local
institute of technology and had taught courses on topics related to instructional design. He
had worked as a technician for four years and as an instructional designer for 19 years.who
were asked to design instruction for a text editor following a procedure described in detail
below.

The verbalizations recorded on the videotapes were transcribed and cross-
referenced with the notes written and drawn by subjects. The transcribed protocois were
segmented into utterances and actions following previous outlines of verbal protocol
analysis (Ericsson & Simon, 1984). Utterances were individuated into phrases conveying
single ideas either based on content cues, such as shifts in topic or new points being made
about a topic, or by noncontent cues, such as pauses, phrase and sentence boundaries, and
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the making and breaking of contact between pen and paper. Our coded transcripts also
contained codings of all reading, writing, and erasing actions performed by subjects.

We coded each utterance along three primary dimensions: (a) the kind of operation
being performed, (b) the information type being operated upon, and (c) the inferred source
of the information. Each coding of an information type also included a set of arguments
associated with the particular type that were used to specify the particular content of the
utterance. A summary of the protocol coding scheme is presented in the Appendix, and a
more detailed presentation of the scheme, along with the coded protocols of subjects
discussed in this paper are available from the authors.

Analysis and Simulation of an Instructional Design

Most of our efforts have focused on the analysis and development of a simulation
model that addresses the protocol of Subject W. This subject was selected for detailed
attention because (a) he was more verbal and articulate than average among our subjects,
(b) he proceeded farther in the task than other subjects, completing a draft of the actual text
for a lesson, and (c) he attended to a broader range of design and analysis subtasks than
most of our subjects, although the subtasks he worked on were exhibited in the protocols
of other subjects.

An Overview of Subject W's Design Protocol

The design brief presented to Subject W stated that his task was to design
instruction for a fictional company (the Acme Umbrella Company). The brief stated that
Acme was automatng its offices, and part of this process involved the replacement of
typewriters with Xerox Star computers and its Viewpoint documentation preparation
environment. Subject W's task was to design six hours of stand-alone text, preferably
divided into one hour slots, to train Acme's secretaries on the use of Viewpoint. Each
secretary was expected to work on one lesson per day over two weeks. At the end of the
period, each student was expected to be a competent user of Viewpoint. The brief noted
that these secretaries were "familiar with electronic word processing” and that the
secretaries would have access to the Star workstations during training. Subject W was
asked to "organize the lessons and design in detail as much of the 1st hour as possible.” In
addition, Subject W was asked to produce a design that would "enable the client to
extrapolate what the complete package will look like,” to "convince the client it will meet
his instructional objectives," and to "take full advantage of the expressive potential of the
medium.”

Figure 2 presents a summary of Subject W's writing output and protocol statements
up to the point at which he began writing his draft of the instructional text. The section of
protocol summarized in Figure occupied about 1.5 hours. The abscissa in Figure 2 marks
the sequence of coded protocol statements (943 total) uttered by Subject W over time, the
ordinatc marks different information type statements. Figure 2 is also segmented vertically,
with segments labelled A to G corresponding to different kinds of written output produced
by Subject W.

Insert Figures 2, 3, and 4 about here

To provide a general sense of Subject W's design process, it is useful to first look
at the things that he wrote. After some preliminary discussion of the design task (the first,
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unlabelled, segment in Figure 2), Subject W wrote 11 pages containing notes which can be
grouped into the following seven segments (labels in this list correspond to the labels in
Figures 2, 3, and 4):

(A) Subject W wrote one page of notes labelled "customer expectations.” The
notes included points about the length and structure of the instruction, the main
objectives of the course, and attributes of the secretaries.

(B) Next, Subject W wrote 1 -;-pagcs of notes labelled "order of training” and

sublabelled "task listing." The notes were a hierarchical (i.e., nested) list of
tasks and concepts that are related to creating and editing documents. Much of
the list was produced while skimming through the Viewpoint manuals.

(C) Subject W then wrote about % of a page of notes labelled "session 1" and

sublabelled "overview course.” The notes concermed an overview of the
purpose and expectations for the course that was to form the initial segment of
the first lesson.

(D) Subject W began a more detailed set of notes about the course overview for the
first lesson on a separate page labelled "overview.” The overview had two
main subsections labelled (a) "why star,” which contained notes about the
motivation for using the Star system, and (b) "what will be trained,” which
contained notes on discussing the structure of the course and the topics of the

six sessions. This segment ended with about % of a page complete, after

Subject W had written "sessions to include” as a subsection of “what will be
trained.”

(E) Subject W then wrote %of a page of notes labelled "prioritization of 6

sessions” in which he organized the topics that needed to be taught in the
course. Much of this was generated by reexamining the task analysis produced
in Segment B and the objectives developed in Segment A.

(F) Subject W then returned to the notes he had started in Segment D, completing

1 . . :
the page of notes and about a of another page with an enumeration of the six
sessions and their topics

(G) Subject W then wrote four pages of notes labelled "outline of session # 1
familiarization" that provided a detailed list of the topics and subtopics to be
covered in the first session.

After completing these notes, the subject took a short break and worked on the draft of the
first lesson.

General examination of Figure 2 reveals that within each segment, Subject W had
focussed on some particular subset of content, but occasional references were still made to
other aspects of content. The initial segment of Figure 2 indicates that Subject W largely
discussed available knowledge sources (labelled "K. Sources” in Figure 2; e.g., the
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Viewpoint manual), and features of the experimental task (labelled "Exp. Task"). Segment
A is comprised largely of statements about the objectives, instructional constraints, student
attributes, and the conditions (at Acme) before, during, and after the proposed instruction.
Segment B largely concerned the content of the proposed course. Sections C, D, F, and G
largely concerned the specific instructional transactions that would take place in the the
course. Section E was largely devoted to discussion of the sessions that would constitute
the course.

Figures 3 and 4, which simply replot portions of Figure 2, indicate our inferences
about the source of the knowledge underlying design statements. Figure 3 plots only
protocol statements in which the content of the statement was identified as oniginating from
external sources: the experimenter, the design brief, or the ViewPoint manual. Figure 4
shows protocol statements in which the content was inferred as originating from the subject
(self), or was an elaboration of previous content, a derivation from previously stated
content, or a review of previous content. Comparison of Figures 3 and 4 illustrates the
general flow of knowledge throughout the problem solving. At the beginning of the task,
knowledge from external sources (Figure 3) dominated the content of the protocol, the
early to intermediate stages of the protocol have higher rates of self-generated content
(Figure 4), and the later portons of the protocol are dominated by elaborations,
dernivations, and reviews of content (Figure 4).

Overview of the Simulation
Overview of Problem Solving in Soar

The simulation of Subject W is implemented in Soar, which has been proposed by
Newell (1990) as a universal theory of cognition. Soar performs tasks by problem space
search using universal subgoaling, and uses a base learning mechanism called chunking.
Problem spaces comprise sets of states, with operators that move from state to state, or that
augment a current problem solving context. The achievement of desired states within a
problem space constitutes task accomplishment. Knowledge is used to define and select
problem spaces, to guide progress towards desired states, and to select and apply operators
All long-term knowledge is stored in a content-addressable memory, represented as a
production system.

The processes generated in performing a task are focused by goal contexts that are
stored on a goal stack. A goal context is basically a four-slot frame with slots for a goal, a
problem space, a state, and an operator. The conditions of productions test for patterns in
the goal stack, which is stored in a working memory, and the production actions can add
new information to working memory or implement basic operators. Some complex
operators may involve significant search for their implementation, and thus may be
implemented as tasks themselves in appropriate problem spaces. In addition, the process
of operator selection itself may be implemented as a complex task in problem spaces (e.g.,
achieving the computation of search heuristics). Thus, the full power of problem space
search can be applied to any subcomponent of a task.

Soar operates by iterating through decision cycles. Each decision cycle includes an
elaboration phase and a decision phase. In the elaboration phase, knowledge relevant to the
current task context is retrieved by the parallel firing of productions. The actions of some
productions will deposit preferences about possible actions to take. Preferences are
basically assertions stated in a domain-independent format concemning the selection,
rejection, or comparison of problem spaces, states and operators for goal contexts on the
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goal stack.2 That is, preferences are statements about how the slots in goal contexts should
be changed, and thus determine changes in problem spaces, states, and operators. For
example, given a particular goal context containing a specific problem space, state, and
operator, a production may assert that a new state is "best" for that goal context. Such a
preference would achieve the application of the operator by moving from the current state to
the new state.

The end of the elaboration phase occurs when all relevant productions have been
fired (i.e., quiescence is achieved). At this point, the decision phase is invoked and the set
of preferences are examined to determine a unique action to take (using a task-invariant
comparison scheme). Frequently, the available knowledge is insufficient or conflicting in
determining an action. Such a situation gives rise to impasses, which automatcally
generates a subgoal. Thus, new goal contexts are added to the goal stack solely through
the generation of impasses. In these subgoals, knowledge can be brought to bear in
selecting new problem spaces and in guiding search in order to overcome the impasse.
When an impasse is overcome, the subgoal disappears from the goal stack. Chunking
summarizes the problem solving (by creating new productions) that lead to the resolution of
an impasse by tracing through dependencies from the working memory elements that
produced the solution back to the working memory elements that were available in the
context that nggered the impasse. In our simulation of Subject W, the Soar chunking
mechanism was inactive, since we did not have many converging measures of leamning for
Subject W.

Specification of the Instructional Design Task

We represent the desired state (the goal) of problem solving in design as a set of
constraints that must be satisfied. More concretely, the desired state requires that there be a
specification of an artifact that transforms the current situation into a desired situation
within the constraints imposed on the design specification and the design process. For
instructional design this desired state is represented as a schematic structure of the
following form (in pseudo-Soar notation):

(goal <g> “desired <d>)

(instructional-design <d>
Acurrent-situation <C1> <€2> ... <Cp>
Marget-population <t1> <t2> ... <tp>
Adesired-situation <ds1> <ds2> ... <dsp>
Adelivery-constraint <dc1> <dca> ... <dcp>
Aspecification-constraint <sc1> <$C2> ... <sCp>
Ainstructional-specification <i>)

where goal and instructional-design are objects represented as lists containing a unique
identifier (in this case, <g> and <d>), and sets of attribute-value pairs. Attributes (or slots)
are prefixed with the up-arrow, A, and are followed by one or more values. The desired
state in our simulation is structured as shown above, and contains information that is
present in Subject W's design brief. The current-situation slot contains information about
the pre-training situation of the imaginary Acme Umbrella Company. The rarget-population
slot contains information about the secretanies of that company. The desired-situation
contains information about what the secretaries should know after the waining (i.e., they
have to learn a word processor). The delivery-constraint slot contains information about

2The simulation is implemented in Soar 4.5. In a the more recent Soar 5.0 version, preferences
can be asserted for any worming memory augmentation.
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how the training is to be delivered. The specification-constraint slot contains information
about the length of time available for design and general constraints on what the final
specifications should contain. The instructional-specification slot contains no information,
and it must be filled by a specification that satisfies the other constraints.

General Structure of the Instructional Design Task

Much of the problem solving in our simulation occurs in specification problem
spaces. The basic problem solving operations are (a) collecting information (from the
world or LTM), (b) decomposing a specification into subspecifications, (c) specifying the
subspecifications, and (d) registering when a specification is done. Figure 5 presents an
overview of the specification problem spaces in our simulation. The tangles in Figure 5
represent problem spaces, the circles represent states within those spaces, and the solid
arrows indicate operators that change state information. The dotted lines indicate that
impasses in applying an operator may result in a switch to problem solving in another
problem space.

Insert Figure 5 about here

The specification problem space is selected in our simulation when some aspect of
the design must be specified. A decompose-specification operator may apply and indicate
how the specification may be decomnosed into subcomponents which, if specified, would
comprise the whole specification. For instarice, the task of specifying the complete
instructional design is decomposed by an operatur into subspecifications consisting of (a)
the customer expectations, (b) the target population, (c) the task analysis, and (d) the lesson
plans. We assume that this particular decomposition is a piece of general planning
knowledge held by Subject W (it is also consistent with (Mager, 1988)). These
subspecifications are processed by attacking each in their own specification problem space,
where additional decompositions may take place. If a decompose-specification has applied
in a specification problem space, an assemble-specification operator recognizes when all the
subspecifications have been completed and acts as a goal test that terminates processing in a
particular specification problem space.

If no decomposition is retrieved from LTM, then by default a get-information
operator is selected. This causes the simulation to go into a problem space in which further
information is collected and evaluated with respect to the current specification task. For
instance, in specifying the task analysis, the simulation makes use of the table of contents
for the Viewpoint manual. The table of contents is available as a structured text that Soar
must access through its general i/o interface. Individual text headings are read into working
memory which, in tumn, cause the retrieval of LTM information about the word processor
and its use. The simulation uses the external table of contents to develop a plan-like
representation of the tasks involved in text editing, and the relevant features of the text
editor that need to be acquired in order to create and edit documents.

In general, the task-general planning knowledge is captured by decompose-
specification operators. These include plans for specifying an instructional design
(discussed above), plans for specifying customer expectations (e.g., objectives), and the
general structure of individual lessons. Problem-specific aspects of the design, such as the
specific task analysis and specific target population analysis, are carried out by the get-
information operator and its associated problem spaces. These latter problem spaces serve
to construct and evaluate mental models of the instructional situation and artifact. Roughly,
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the design process involves the development of a mental model of the instructional
situation, desired outcomes, and the instruction itself, and the development of a set of
specifications that capture the essential features of this model as a kind of external
blueprint.

Interaction with the Qutside World

The Soar architecture comes with a facility, Soar I/O, that allows for interaction
with the “outside world.” All interactions with the outside world take place through the
state associated with the top-level (or base) problem space in Soar. Information added as
certain augmentations of the top-level state automatically generate output, and similarly,
inputs from the outside world are deposited as specific augmentations of the top-level state.
The information in the top-level state is accessible from any subgoal context.

In the simulation of Subject W, Soar I/O is used during three different situations.
The first is to simulate the subject’s oral interaction with the experimenter (acting mainly as
the “Acme representative”). The second use of Soar I/O is to simulate Subject W's input of
information from the manual and other external documents (including notes written earlier
by Subject W). The third use of Soar I/O is to simulate the writing produced by Subject
W.

Almost all of Subject W’s interactions with the experimenter were questions that
occurred during the opening period of the protocol. The inquiries can be classified as two
types: verifications and clarifications. The former were questions requiring "yes" or "no”
answers, while the latter were requests for more information. Soar I/O is used to simulate
these interactions. The responses to the questions are simply stored in lists external to Soar
and the content and sequential ordering of the lists correspond to the answers provided in
the experimental session. The hierarchical table of contents of the Viewpoint manual is
represented in a hierarchically organized tree data structure external to Soar. The output of
the simulation is also written to hierarchically organized data structures.

A Comparison of the Simulation and the Protocol

We now turn to a detailed discussion of the protocol of Subject W and our Soar
simulation of that protocol. Our simulation addresses the segment of Subject W's protocol
that occurs after he had read the instructions for the experiment and the design brief and had
asked a few general questions about the experimental task (e.g., about using pencil and
paper; clarifying that an experimenter would be treated as a client). The segment addressed
by the simulation ends at the point where Subject W began actually writing a draft of the
instructional text he had designed.

Initialization of the Design Task and the Generation of the Top-level
Specification Task

We present the first few cycles of operation of our simulation in substantial detail.
In addition to some interesting features of the protocol that are being simulated, the detailed
presentation is also intended to provide the reader with a more concrete view of the
operation of the Soar simulation. In particular, the detailed presentation is intended to
provide some sense of how problem spaces, states, and operators are created, selected, and
terminated, how impasses occur, how processing in subgoal contexts can be used to
implement operators that occur in supergoal contexts, and how input and output are carmed
out. In later sections, our presentation is less detailed.
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The top-level goal context in our simulation is initialized as being in a design-
instruction problem space with an initial state that contains elements that encode the fact that
there is a client present, a notepad for output, and an available Viewpoint manual. As
suggested above, the top-level goal context also includes a specification of the desired state
for the task that summarizes the material that is in Subject W's design brief. More
specifically, the information for our simulation includes:

*  Current situation. The Acme company is buying Star computers and it is
buying the Viewpoint system.

» Target population. The student group consists of secretaries who know word
processing and MacIntosh computers. The secretaries do not know how to
perform word processing in Viewpoint.

» Desired situation. The secretaries know how to perform word processing in
Viewpoint.

« Delivery constraints. The instruction must take six hours, be carried out over
two weeks, and be stand-alone text. There must be six one-hour lessons.

Also, as suggested above, a slot for an instructional specification is present but unfilled.

There is an interesting interaction that takes place at the beginning of Subject W's
protocol (E refers to the experimenter and S is Subject W):

E: We have approximately three hours. If at any point during that period you want
to divide the work up, if you want to take a five or ten minute break, feel free to
suggest it.

S: Ok. [pause] And we are understanding by this that the, that this is the right
system for them?

Yes.

We are not going to go in with IBM PCs or anything else?

Right. That's the system.
S: Ok.

At the beginning of this segment, the experimenter was finishing up some discussion of the
general task constraints. Subject W then appeared to begin the design task by first
checking that there was no chance that the clients would change their minds about buying
the Star system after the instructional design was completed. This expectaton failure check
is highly reminiscent of work on case-based planning (***ref***), in which specific cases
of planning are retrieved from memory and used to identify possible ways (and reasons)
that a current plan may fail. From the protocol data it is impossible to identify whether or
not Subject W was thinking about a specific past experience or some generalization of past
experiences, but it does seem that past expenences are generating warnings for the current
design plan.

. The trace of our simulation for this early segment of protocol is summarized in
Figure 6. Given the top-level goal context specified above, the simulation proposes two
operators: (a) a specify operator which will generate the instructional specification, and (b)
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a check-expectation-failure operator that insures that the clients will not change their minds.
More specifically, the following production (in pseudo-English) proposes the specify
operator:

P1: design-instruction*specify-instruction*acceptable
IF  inthe goal context <g>

the problem space <p> is design-instruction
the desired state <d> includes instructional-specification <i>
the current state <s> does not have an instructional-specification

THEN create a specify operator <g>
whose result will be <i> and an object of type instructional-specification
the preference for <g> is acceptable in context <g>, problem space <p>,
and state <s>

Items enclosed in angle brackets, such as <g>, are variables. Production P1 detects that
the current state does not contain the desired instructional specification and creates an
operator to generate the specification. The operator is assigned an acceptable preference for
the current goal, problem space and state, which means that the operator can be selected for
applicaton.

Insert Figure 6 about here

In parallel, another production proposes the check-expectation-failure operator

P2: design-instruction*check-expectation-failure*change-system*acceptable
IF  inthe goal context <g>

the problem space <p> is design-instruction
the current state is <s>
the desired state <d> includes a current situation which includes
the buying <b> of an office computer system

THEN create a check-expectation-failure operator <g> to check expectation <b>
the preference for <> is acceptable in context <g>, problem space <p>,
and state <s>

Production P2 detects that the instructional design problem is one involving the purchase of

an office computer system and it generates an operator to check that that expectation will
hold.

The parallel application of productions P1 and P2 at this point in the simulation has
created two operators, both of which can apply to the current context. In the next cycle of
the same elaboration phase production P3 is executed, which generates a best preference
for the check-expectation-failure operator in the current context:

P3: design-instruction*check-expectation-failure*best
IF  inthe goal context <g>

the problem space <p> is design instruction
the current state is <s>
there is an acceptable preference
for a check-expectation-failure operator <g>

THEN the preference for <q> is best in context <g>, problem space <p>, and
state <s>
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After P3 is executed, quiescence is achieved in the elaboration phase, and the Soar
decision phase is executed. The preference processing scheme in Soar identifies the check-
expectation-failure operator as the unambiguously best operator, and the operator is
installed in the current goal context. It is important to note that the specify operator and its
acceptability in the current goal context are not removed by the selection of the check-
expectation-failure operator.

During the next elaboration phase, no knowledge is retrieved to implement the
check-expectation-failure operator. The goal context therefore remains unchanged during
the following decision phase and consequently a no-change impasse occurs. This causes a
new subgoal context to be automatically generated by Soar, and pointers to information
about the source of the impasse are also automatically generated by the Soar architecture.
Most importantly, there are pointers from the subgoal context to information that identifies
the operator that caused the no-change impasse.

In the elaboration phase following the generation of the new subgoal context, the
following production applies to create a problem space and initial state which will be used
to implement the check-expectation-failure operator:

P4: check-expectation-failure*space&state
IF  in the goal context <g> the problem space is undecided
the context occurred because of a no-change impasse on operator <g>
<q> 1s a check-expectation-failure operator for expectation <e>
THEN create a check-expectaton-failure problem space <p>
the preference for <p> is acceptable in context <g>
create new state <s> containing expectation <e>
the preference for <s> is acceptable in context <g>

This problem space and state then gets installed in the goal context during the
following decision cycles. In a subsequent elaboration phase, production PS5 recognizes
that there is a client who can be asked to evaluate the expectation:

P5: check-expectation-failure*ask-client*acceptable
IF  inthe goal context <g>

the problem space <p> is check-expectation-failure
the current state <s> contains expectaton <e>
the top state contains a client <c>

THEN create an ask operator <q> to ask <c> for an evaluation of <e>
the preference for <q> is acceptable in context <g>, problem space <p>,
and state <s>

Once the ask operator is selected, a production executes which augments the top
state with a query to evaluate the expectation <e>.3 This augmentation of the top state
causes the Soar /O interface to generate the query, and a canned answer to the query
(corresponding to the experimenter's answers) is retrieved by external Lisp code and
deposited as an evaluation of <e> in Soar working memory. Production P6 then detects
that this evaluation has been generated, and consequently the check-expectation-failure
operator can be terminated in the design-instruction problem space:

3The production actually used in the simulation includes conditions that detect the specific context
in which the ask operator is being applied. We do this so that we can include canned text in the production
to mimick the actual statements (or paraphrases) of Subject W's questions. This is used purcly as an aid for
tracing and debugging the simulation.




1ll-structured Problem Solving in Instructional Design Page 17

P6: design-instruction*check-expectation-failure*expectation-acceptable*reject
IF  inthe goal context <g>
the problem space <p> is design-instruction
the operator is check-expectation-failure <q> for expectation <e>
and there is an acceptable evaluation of <e>
THEN the preference for <g> is reject in context <g>, problem space <p>, and
state <s>

Note that production P6 applies only to information that is available in the goal context in
which the original impasse on the check-expectation-failure operator occurred. This
production does not detect anything about how the evaluation occurred, only that the
operator has been achieved. In the following decision cycle, Soar terminates the check-
expectation failure operator. Because the operator has been achieved, the subgoal context
generated by the no-change operator impasse is removed.

In the same decision phase, Soar finds that the previously proposed specify
operator is still acceptable for the top-level goal context, and that operator is then selected.
Once again, there is no knowledge immediately available in the system that will implement
the specify operator directly to generate the desired instructional specification, and
consequently a no-change impasse occurs. Production P7, which is very much like
production P4, sets up the problem space and initial state to resolve the impasse:

P7: specify*space& state&desired
IF  in the goal context <g> the problem space is undecided

the context occurred because of a no-change impasse on operator <g>
the supergoal context <sg> has desired state <d>
<g> is a specify operator

THEN create a specify problem space <p>
the preference for <p> is acceptable in context <g>
create new state <s>
the preference for <s> is acceptable in context <g>
augment <g> with desired state <d>

Production P8 is then applied to augment the state with information about the specification
that the specify operator is producing:

P8: specify*space*augment-result&type
IF  inthe goal context <g>
the problem space <p> is specify
the state 1s <s>
the specify operator <q> in the supergoal context is to specify result <r>
of type <t>
THEN augment state <s> with result <r> and type <t>

The no-change impasse that occurs on the specify operator, and the execution of P7 and P8
to create a problem space to resolve the specify impasse, occur with great frequency
throughout the simulation.

Proposal of the General Design Plan
Following the application of productions P7 and P8, the simulation is in a specify

prohlem space, with an initial state that is augmented with an identifier for the desired result
and the type of specification desired (an instructonal specification). At this point the
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simulation decomposes the instructional specification into subspecifications that can be
artacked separately. Although Subject W did not state this decomposition explicitly, his
subsequent behavior and output conforms to the simulation’s plan, and the plan is
consistent with the steps of prescriptive instructional design methods (Mager, 1988). Other
protocols in our database make explicit reference to similar plans. We assume that such
general plans arise through the general training and enculturation of protessional
instructional designers (Goel & Pirolli, 1989).

More specifically, production P9 applies to propose a decompose-specification
operator:

P9: specify*decompose-specification*instructional-specification*acceptable
IF  inthe goal context <g>

the problem space <p> is specify
the state is <s> containing a result <r> and type instructional-sp ccification

THEN create a decompose-specification operator <q>
with a result <r> of type <t>
and subspecifications
of types expectations, target-population, task-analysis, and lesson-plan
with expectation <e>, target-populaton <tp>, task-analysis <ta>, and
lesson-plan <lp>
the preference for <q> is acceptable in context <g>, problem space <p>,
and state <s> .

In general, productions similar to P9 propose such decompose-specification operators after
matching the type of specification desired, and the operator is augmented to indicate that the
specification may be decomposed into specific types of subspecifications. Each
subspecification will be attacked by separate specify operators that often recursively invoke
processing in separate specify problem spaces.

During the same elaboration phase in which P9 is executed, two other operators are
proposed. An acceptable preference is also generated for a get-information operator. The
purpose of this operator, if selected and applied, is to collect information that might be
relevant to developing or decomposing a specification. However, the simulatien also
contains a production that recognizes when a decompose-specification and a get-
information operator are simultaneously proposed, ard assigns a reject preference to the
get-information operator. In this way, dccompositions get carried out if immediately
possible, otherwise the default action is to collect more information. The second operator
that is proposed is an assemble-specification operator. The purpose of this operator is to
recognize when a set of subspecifications has been developed and the operator creates a
specification object in working memory, which serves to mark the fact that a specification
has been completed. The assemble-specification operator is assigned a worst preference so
that all other acceptable operators are given higher priority. More generally, this example
illustrates how the proposal of operators and their prioritization can be carried out by
separate pools of knowledge in Soar operating in concert and largely in parallel during an
elaboration phase.

After the Soar decision phase selects the decompose-specification operator and
installs it in the current context, the application of the operator is carried out by the parallel
execution of instantiations of a production that augments the state to indicate that the desired
specification can be decomposed into a specific set of subspecifications. Parallel execution
of another production also copies this information about the decomposition onto the the
specify operator that caused the current impasse. Another production registers when the
subspecifications proposed by the decompose-specification operator are instantiated on the
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current state, and the operator is assigned a reject preference when all subspecifications
have been copied onto the state.

As augmentations pointing to the desired subspecifications appear on the state,
another production creates and proposes acceptable preferences for a specify operator for
each subspecification. Sequencing of the operators is achieved by productions that propose
better preferences, which is a binary transitive relation indicating that one operator should
be selected above another. The sequence in which the decomposition of the instructional
specification is processed in our simulation is depicted in Figure 7.

Insert Figure 7 about here

In summary, the specification of the instructional design is carried out by a
particular specify-operator. That specify-operator is implemented by processing in a
subproblem space. The processing in that subproblem space is initiated by a decompose-
specification operator. Parallel processes, implemented by productions, implement the
decomposition by simultaneously elaborating the state associated with the subproblem
space and the specify-operator that caused the subproblem space. The decompositions that
appear on the state associated with the subproblem space immediately trigger the proposal
of new specify-operators. An assemble-specification operator waits until all
subspecifications are completed and then is triggered to indicate that the specification task is
done.

Specification of Customer Expectations and the Target Population

The impasse caused by the selection of a specify operator for customer expectaticns
(Figure 7) again causes the selection of a specify problem space to implement the operator
and overcome the impasse. A decompose-specification operator is selected and applied
such that customer expectations are broken down into subspecifications for delivery
constraints and instructional objectives (see Figure 8). Specify operators proposed for
these subspecificauons result in impasses and each is implemented in separate specify
problem spaces.

Insert Figure 8 about here

The specification of delivery constraints is achieved by specify-desired-constraint
operators. These operators are proposed by productions that recognize that the current
specification involves information about constraints contained in the desired state
specificaton. The application of the operators involves wnting out the desired constraints
as parts of the desired specification (and writing them as output to the Soar 1/0 interface).
An assemble-specification operator recognizes when the listing of delivery constraints is
complete by generating an internal specification object that contains the specification
information on the current state. The application of the specify operator for the delivery
constraints is terminated by a production that proposes a reject preference for the operator
when the relevant specification object is generated, the impasse is terminated, and the next
specify operator is selected for application.
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At this point in the protocol, Subject W asked for an evaluation of several possible
objectives for the course, and the experimenter offered a list of proposals:
S: Within this training, the customer is going...
What is the end expectation?
Are they going to be expected to be able to use graphics?
Are they going to be able to use ah, any of the add features, ah, the sums, ah

E: Here, let me give you a brief description of the kinds of tasks they'll want them
to be able to do.

Right
They'll want them to be able to create and edit memos and documents.
Ok [writing down objective]

They'll want them to be able to do mail.

Ok [writing down objective]

They're going to want them to be able to tables and graphics, and that kind
of stuff...

S: Ok [writing down objective]

E: The other thing is they are probably going to have a feel for the whole, I
guess filing system, or just they're way around where things are, on the
machine...

S: Ok [writing down objective]

Apparently, Subject W was gathering additional information to refine the objectives of the
word processing course and used his own background knowledge to propose several
possibilities for evaluation and clarification. The experimenter then proposed a more
specific set of objectives.

The Soar simulation hits an impasse on the specification of instructional objectives,
because there is no chunked background knowledge about this specific task. There is also
no chunked knowledge available to decompose this particular specification in the specify
problem problem space that is selected for this impasse. Thus, the default get-information
operator is selected, which causes an additional impasse becauss there is no chunked
knowledge to retrieve about the objectives for this design. We assume that all of these
impasses are just a result of the fact that Subject W has never experienced this particular
design problem.

Productions select a ger-information problem space to implement the get-
information operator. Three kinds of operators are proposed and applied in this problem
space. First, an elaborate-information operator is proposed. Such operators are viewed as
cues to retrieve declarative information from long-term memory to elaborate some item.
Cue-specific productions apply in parallel during an elaboration phase to augment the item
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with additonal information. Next, evaluation operators are proposed and selected to
evaluate whether the new information is relevant to the current design. Finally, ask
operators may be proposed and selected to get information from external sources. As
informaton is evaluated as relevant, it is propagated back to the the specification problem
space. The result of the get-information operator is an elaboration of the the objectives list
to include the creation and editing of documents, mailing, the creation of tables, graphics
handling, file manipulation, and spell checking. An assemble-specification operator creates
a specification object containing this information to indicate that the objectives have been
completed.

Having completed the specification of customer expectations, the simulation turns
to the specification of the target population. Here the simulation again uses specify-
delivery-constraint operators to copy information about the secretaries from the desired
state information.

Specification of the Task Analysis

After specifying features of the target population, Subject W turned to a
specificatdon of the task analysis for creating and editing documents. Using the Viewpoint
manual, he developed a list of the the various system concepts and procedures that the
secretaries would have to learn. The main process was one of looking at headings in the
table of contents for the manual, and then transferring the heading to the task listing, if
Subject W thought the topic should be part of the the training. Roughly then, the manual
served to cue the recall of information from long-term memory (Subject W rarely looked at
the contents of the manual), and evaluations of the relevancy and importance of the topics
to the objectives of teaching the secretaries about document creation and editing.

Our Soar simulation of Subject W's task analysis is based on the hypothests that
Subject W was constructing a mental representation of a generic plan that secretaries would
follow in creatung and editing documents. After hitting an impasse on the specification of a
task analysis, the simulation moves into a get-information problem space. Another impasse
is hit when an elaborate-information operator fails to retrieve any information. A
comprehend-input problem space is proposed, based on the recognition that there is an
external source (the Viewpoint manual) containing relevant informaton.

Our simulation scans through the table of contents for the Viewpoint manual and
makes use of the indenting as an indication of subtask and subconcept relations. Each item
in the index is input and serves as a cue for additional elaboration by productions that
augment the item with long-term declarative knowledge. Most importantly, system
concepts are elaborated with the roles they can play in various tasks (e.g., the role a
keyboard can play). The system then proposes these tasks and concepts as part of a mental
model for the secretaries’ tasks. The tasks also come with prerequisite links (i.e.,
precondition and enabling links) and productions use this information to create a
coordinated structure of tasks linked to system concepts that are relevant to the performance
of the tasks. The plan that is developed is depicted in Figure 9.

Insert Figure 9 about here

More specifically. the goal of the task analysis is to create a plan-like outline of the
procedure involved with creating and editing ViewPoint documents. Items are read in from
the manual's table of contents, are labeled as a task or concept, and productions attempt to
merge the items into the developing plan outline. If a content item is a task, productions
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evaluate whether or not it is a prerequisite of task that is already in the plan, or if it is
directly associated to the performance of the task. If so, the item is merged with the
developing plan.

If a content item is a concept, the simulation determines if the concept may play a
role in any tasks. The simulation then determines if any such task is already part of the
developing plan and, if so, the content item is accepted and merged with the plan. If a
related task is not in the current plan, the simulation tries to determine whether or not this
new task is related to or a prerequisite of a task already in the outline. If so, then both the
concept item and the new task are accepted. If the concept and task are unrelated to the
evolving plan, then they are rejected.

To an approximation, this part of our simulation bears resemblance to work on the
integration of instruction comprehension and task performance in Soar (Lewis, Newell,
&Polk, 1989). The purpose of that work is to model data from psychological
experiments. The models process natural language inputs which describe the task to be
performed. The output of these comprehension processes is a behavior model. The
behavior model is then interpreted to propose problem spaces and operators to perform the
desired task. In our simulation, comprehension processes operate on the Viewpoint
manual table of contents to produce a plan-like behavior model of the tasks secretaries will
perform, and this behavior model is used to generate a task specification.

Specification of a Lesson Plan and Course Overview

Subject W's task was to design the first session of instruction in detail. After
developing the task analysis, Subject W began work on the lesson plan for the first
session. As a subtask in this lesson plan, Subject W developed a general outline of the six
lessons.

In our simulation, following the specification of the task analysis, a decompose-
specification operator is selected to carry out the specification of the first session (see
Figure 10). The operator decomposes the lesson plan for the first session into
specifications of (a) an introduction, (b) the relevance of the course to the students, (c) the
objective of the session, and (d) a course overview. The general structure of this plan is
highly similar to those proposed in the instructional design literature (Mager, 1988).

Insert Figure 10 about here

Subject W in specifying the introduction simply writes "Session # 1 - 1 Hour."
Our simulation also has a highly specific production that mimicks this specification. The
specification of the course relevance is handled in its own specification problem space, and
it is decomposed into three subspecifications: (a) specification of features of working with
ViewPoint that will be new to the secretaries, (b) specification of important features that are
in ViewPoint that the secretaries will be familiar with, and (c) and example of ViewPoint
use. We hypothesize that this decomposition is standard for Subject W and probably arose
from previous experience in motivating the introduction of new technologies into the
workplace. Get-information operators retrieve the relevant information from memory. The
specifications include (a) every secretary will have their own terminal and these will be
networked, (b) ViewPoint supports on-line text-editing and will come with a printer. and
(c) the instructional manual itself is a product of ViewPoint. The session objective is
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specified by Subject W simply as "explain expectations after training,” and similarly the
simulation has a highly specific operator that outputs the same specification.

In order to specify the course overview, Subject W had to first develop a more
specific plan for the entire six sessions. Subject W reviewed the previously specified task
analysis and objectives list and arranged the material into the various sessions. In our
simulation, the task analysis is reread through Soar I/O, and each item is evaluated to
determine if it will fit into the first session. Then the system generates a curriculum
structure containing slots for each of the six sessions, with the first session labelled as a
familiarization session, and the last session labelled as a review session, which
corresponds to the general plan for the sessions developed by Subject W. The system then
attermnpts to assign course objectives, and components of the task analysis not included in
Session 1, to Sessions 2-6.

Subject W rearranged the course outline several umes. Our simulation captures
these rearrangements using a relatively simple strategy that seems to correspond to that of
Subject W: (a) the system simply assigns the next input objective or task analysis item into
the next free session slot, and (b) if the next input item happens to be a prerequisite for an
already assigned session objective, the input item is inserted before the objective for which
it is a prerequisite.

Comparison to Other Protocols

While Subject W’s protocol has been the major focus of the investigation, all nine
subject’s protocols were analyzed for similarities to Subject W'’s protocol. Also, two other
protocols were coded in detail using in the scheme discussed earlier.

One of the obvious similarities between all the subjects was their use of course and
lesson outlines in the design process. All subjects started their designs with some basic list
of objectives or tasks, transformed and refined these lists into an outlines of the sessions,
and expanded simple outlines into more complex ones.

Another conspicuous similarity was the way almost all of the subjects split the
instructional content into the six sessions (one subject did not define the sessions). The
standard breakdown of the content was like Subject W’s:

Session 1: Intro

Session 2: Basic document editing

Session 3: Filing, Mail, and/or Printing
Session 4: Graphics or Tables

Session 5: More Graphics or Tables

Session 6: Review/Practice or advanced topics

Five of the subjects were in the experimental group requested to do their design a in
a depth-first manner (like Subject W). While the details of the first lesson differed to some
degree between the subjects, there was similarity in the format of the lesson. The subjects
generally followed the prescriptive style of a introductory lesson set forth by Mager (1988):
they each developed sections corresponding to (a) an introduction, (b) course relevance, (c)
lesson objective, and (d) a course overview. All of the subjects explicitly stated the need
and importance of defining objectives before designing instruction.
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General Discussion

A striking general characteristic of our Soar simulation is the substantial amount of
activity that was devoted to problem structuring. That is, much of the activity involved the
refinement or specification of the desired state, task constraints, and in many cases there
were no immediately obvious operators for producing a specification. In such cases, the
problem space was relatively ill-structured and the activity was focused on making it more
well-structured. Much of the structure for problem solving was developed by accessing
and evaluating information from long-term memory and external sources. This is
consistent with protocol analyses (Goel & Pirolli, 1991) of instructional design,
architectural design, and mechanical design, that indicated that approximately 25% of the
statements were devoted to problem structuring, whereas protocols culled from the
literature on well-structured problem solving showed an average of less than 1% of the
statements devoted to problem structuring.

The critical role of information (or knowledge) access, interpretation, and
manipulation in ill-structured tasks was recognized by Simon (1973) and, as noted in our
introduction, he suggested that classical problem solving analyses could be extended to
incorporate such processing. Indeed, our Soar simulation performed such problem
structuring using problem space search. It is the nature of the Soar architecture that cases
of insufficient structure in a problem space--or a lack of task implementation knowledge--
are treated as impasses that can be addressed as new problems to be solved.

Although problem structuring was addressed to some extent by Simon and Hayes'
(Hayes & Simon, 1974; Hayes & Simon, 1976) UNDERSTAND research, their effort
focused on the comprehension of relatively simple instructions for well-structured puzzle
problems that were semantically impoverished. In general, however, the access,
interpretation, and manipulation of information involved in structuring ill-structured,
semantically rich, tasks has not received much attention, and it clearly constitutes a large
residual category of unaddressed phenomena in problem solving models. Indeed, many, if
not most, of the difficult problems faced every day in tasks such as buying a house,
figuring out what to do in graduate school, finding a mate, or managing a business,
substantially involve the collection and interpretation of information in order to understand
and choose the relevant problem spaces and associated actions in those spaces.

In our Soar simulation, the structuring of the instructional design specification was
substantially determined by the identification and refinement of the objectuives, conditions,
and constraints of the instruction, and the development of a mental model of the tasks to be
performed by secretaries. The identification and refinement of instructional objectives,
conditions, and constraints of the instruction were partly carried out through interaction
with the experimenter/client. Such interactions are probably a (somewhat pale) reflection of
the sorts of multiagent interactions that usually characterize design activities. More refined
interpretations of the statement of the design objectives, conditions, and constraints were
offered up for external evaluation or further clarificadon. Indeed, this interactive process of
refining and aligning the interpretaton of meanings from the design brief might be viewed
as a simple form of negotiation about commitments between two agents in the parlance of
distributed artificial intelligence (Gasser, 1991; Hewitt, 1991).

External sources of knowledge used to structure problem solving were used both as
knowledge generators and tests in the construction and selection of design elements. For
instance, the text editor manual was used to cue recall of concepts and tasks relevant to the
use of the text editor. These were tested and integrated into a plan-like model of tasks
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appropriate for novice secretaries. In this case, external sources were essentially acting as
knowledge generators. A contrasting example occurs earlier in the simulation when a list
of possible secretary tasks was generated from long-term memory and these items are
proposed to the experimenter/client for verification. In this case, internal long-term
memory was acting as a knowledge generator and external sources were used as search
control tests.

Examination of the protocol data summarized in Figwres 2, 3, and 4 suggests that
the design process can be viewed as a tension among an ordered attack on specific areas of
content, some degree of opportunism, and attention to interrelations among content
modules. This observation has been noted in other empirical studies of design (Goel &
Pirolli, 1991; Guindon, 1990; Kant, 1985; Ullman, Dietterich, &Stauffer, 1988). It has
been argued (Goel & Pirolli, 1989; Goel & Pirolli, 1991) that this characteristic tension in
design emerges because design problems are basically large-scale constraint-satsfaction
tasks that have to be handled by a human processor with limited information-processing
capacities.

One problem-solving method that addresses the tension between managing
complexity and attending to details is the constraint-posting hierarchical planning developed
in MOLGEN (Stefik, 1981). MOLGEN represents plans as abstract operators and states.
These plans are refined through decomposition. Constraints express relationships among
plan variables, constrain the selection of entities to incorporate into plans, express
commitments, and indicate interactions among subproblems. Constraints are formulated
within separate parts of the problem during hierarchical planning and then propagated
among the subparts to bring together requirements and to coordinate nearly independent
subproblems.

At some level of approximation, our Soar simulation implements a variant of
MOLGEN's mix of hierarchical planning and constraint posting. The instructional design
problem itself is proposed as a constraint satisfaction problem. The control strategy
presented in Figure 5 involves problem decomposition operators which carry out a form of
hierarchical planning. The context-sensitive elaboration of these operators, sometimes cued
by informaton acquired through the get-information op:-rators, is a form of constraint
formulation and propagation.

On closer inspection, our Soar model can be viewed as implementing several
methods that achieve this mix of hierarchical planning and constraint satisfaction. Our Soar
model can be viewed as sometimes using problem decomposition via precompiled plans.
For instance, the simulation contains a chunk that decomposes the task of producing an
instructional design into subtasks involving the specification of customer expectations,
target population, task analysis, and lesson plan. In other cases, the simulation can be
viewed as decomposing and solving problems by generate and test. For instance, in
developing a task analysis, the external environment and long-term memory are used to
generate possible subtasks and concepts relevant to creating and editing documents. These
concepts and subtasks have certain constraint relations among them that must be tested, in
addition to testing their value for novice secretaries. To an approximation, the Soar model
might be viewed as employing a kind of transformational approach to design, in which one
kind of specification representation is transformed into another. The transformation of the
task analysis into lesson specifications is one such example. Finally, the use of
background knowledge to structure design might be viewed as a case-based approach. The
checking of expectation failures due to background knowledge about clients buying office
systems is an example of such case-based reasoning.
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The notion that design can be addressed by diverse methods is recognized by many
in the AI community (Brown & Chandrasekaran, 1989; Chandrasekaran, 1990; Maher,
1990), and Chandrasekaran (Brown & Chandrasekaran, 1989; Chandrasekaran, 1990) has
argued for some time that Al design systems should be constructed to use heterogeneous
methods rather than any single approach. Brown and Chandrasekaran's (1989) generic
task framework, in which they develop such a heterogeneous model of routine design, is in
fact quite similar to the multiple problem space framework underlying Soar.

The protocol analysis and Soar simulation suggest that even simple cases of
nonroutine design involve substantal collection, evaluation, and integration of informaton.
The analyses and simulation also suggests that such design involves a heterogeneous
collection of methods achieving a tension between hierarchical problem decomposition and
global constraint satisfaction. Problem solving approaches to design that involve a uniform
method, or closed-world semantics would seem to face intractable complexities in tackling
such problems. Interestingly, the extension of the problem space search model to a
multiple problem-space architecture with diverse methods and the ability to incorporate new
task-implementation knowledge seems to be sufficient to deal with such design problems.
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Appendix

Information Types

s Knowledge source. Indication that someone or something will be a resource in
making decisions for some purpose.

« Studen:. Statements about properties of individual or groups of students, or
about members of the student population.

» Constraint. A constraint is an information type which fixes some feature about
the general form of instruction. Constraints have the form <form-feature>
[=lrelation] [valuelfeature]. Figures 2, 3, and 4 pool together constraint
statements and resource statements, which are about resources that can be used
with the instruction.

« Design. This includes three kinds of statements:

® Design operator. This information type refers to a statement about a
design operation. Operators include things like specify, prioritize,

sequence, decompose-task, locate, review, and gather-information.

Design methodology. A statement about design methods typically used,
or used in certain circumstances.

° Design resource. In these statements, the subject is discussing some

resource that is used during the design. process.

« Content. A statement about the content or subject-matter that may be part of the
instruction.

» Session. A statement about the content of a particular session.

» Transaction. A transaction is an instructional interaction (e.g., explain, tell,
question), usually about some content and intended to meet some objective.
The transaction information type is like the "content” type. A transaction is
added when the subject presents a content element as an instructional transaction
and writes it down in a course or session outline.

» Sequence. These are statements that relate to the ordering of the instruction.

» Prerequisite. A statement indicating some content is prerequisite for another.

* Objecnve. These statements indicate an instructional objective.

» Principle. A statement of an instructional principle.
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» Conditions. These statements concern the state of the instructional situation at
some point in time or over some time course (i.e. start, duning, or after).

Knowledge Sources
» Experimenter. The experimenter is the source of the information.
* Manual. The manual is the source of the information.

* Briefs. The design brief or the task instructions is the source of the
information.

+ Self. The subject is the source of the information.

e Derived. The source of the information is Self, but s/he had to derive it from
other knowledge.




Ml-structured Problem Solving in Instructonal Design Page 31

Author Notes

This research has been supported by the Office of Naval Research, Cognitive and
Neural Sciences Division, Contract No. N00014-88-K0233 to the Peter Pirolli. We would
like to thank Mimi Recker for comments on an earlier draft of this report.




Page 32 Ill-structured Problem Solving in Instructional Design

Figure Captions
Figure 1. An overview of the prescriptive design process model of Mager (1988).

Figure 2. A classification of the information types attended to by Subject W over the
course of his protocol. See the text for details

Figure 3. The distribution of external knowledge sources over the course of Subject W's
protocol.

Figure 4. The distribution of internal knowledge sources over the course of Subject W's
protocol.

Figure 5. The general control structure of the specification problem spaces.

Figure 6. Checking an expectation failure before specifying the instructional design.
Figure 7. The decomposition of the the instructional design into a general plan.
Figure 8. The decomposition of customer expectations.

Figure 9. The plan-like representation for the task analysis of task editing for novice
secretaries.

Figure 10. The decomposition of a lesson plan for an introductory lesson.
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Abstract

While cognitive science has been concerned with the distinction between “"diagrammatic” and
"sentence-like" representations, it has not concerned itself with the distinction between
different types of "diagrammatic" representations. It is argued here that even though both
free-hand sketches and rigid, box-like, diagrams are "diagrammatic” representations, they
differ in their degree of "density” and ambiguity and thus serve different cognitive functions.
A protocol study involving nine expert designers is described. The external symbol systems
subjects are allowed to use are manipulated along the dimensions of sketch-type and
drafting-type diagrams. It is hypothesized that this manipulation will hamper exploration of
the problem space and induce early crystallization of ideas. The results indicate statistically
significant differences along the lines predicted. This leads to the conclusion that the symbol
system of sketching -- by virtue of being "dense” and ambiguous -- correlates with creative,
explorative, ill-structured phases of problem solving.
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The Cognitive Role of Sketching in Problem Solving

It is common practice to differentiate between "language-like" and "picture-like"
representations and to assign them different cognitive functions. In fact, there is by now a
rather large body of work in cognitive science dealing with the distinctions between "picture-
like" and "language-like" representations. This literature has a number subcomponents. At
the most abstract level, there is the general question of how one differentiates "picture-like"”
representations from "sentence-like" representations. This issue has received surprisingly
little attention, though there are some notable exceptions (Goodman, 1976; Haugeland, 1990;
Palmer, 1978). A little more attention has been accorded the question of what it means to
claim that the system of internal representation is "picture-like” or imagistic (Anderson,
1978; Anderson, 1983; Dennett, 1981; Goel, 1991; Goel, 1992; Kosslyn, 1981; Pylyshyn, 1981;
Rey, 1981; Simon, 1972). However, most of the literature is concerned with adducing
empirical evidence for either "picture-like” or "language-like" internal representations (Finke
& Pinker, 1982; Kosslyn & Shwartz, 1977; Kosslyn & Shwartz, 1978; Meltzer & Shepard,
1974; Shepard, 1982; Shepard & Cooper, '982; Shepard & Metzler, 1971).

There is also a small literature dealing with the cognitive role of external "language-
like" and "picture-like” representations. Perhaps the most substantive work is due to Larkin
and Simon (1987). They begin by distinguishing between "language-like" or "sentential” and
"picture-like” or "diagrammatic” representations and then proceed to demonstrated how
these differences can lead to cognitive differences due to differing control mechanisms,
primitive operations,and resource allocations.

However, it is not common practice to further differentiate "picture-like”
representations into finer-grained types.! "Picture-like" representaiions of all types -- e.g.
paintings, photographs, free-hand sketches, schematic block diagrams, drafting diagrams, etc.
-- are lumped together and thought to serve similar cognitive functions. The major goal of this
paper is to argue that, just as there are distinctions to be made between sentential and
diagrammatic representations, there are equally important distinctions to be made between
different kinds of diagrammatic representations, and that different types of diagrammatic

1This finer-grained distinction is made in the design literature (Albarn & Smith, 1977; Lascau, 1989).
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representations are correlated with different cognitive processes. The discussion will be
restricted to external symbol systems. The relevance of the work to claims about the
system of internal representations is explored elsewhere (Goel, 1991).

The strategy is to examine problem solving in design domains such as architecture,
graphic design, and engineering. It is found that designers use several different types of
diagrammatic symbol systems and that different systems are correlated with different stages
of design development, involving different cognitive functions. In particular, it is noted that
free-hand sketching diagrams are correlated with the creative, exploratory, ill-structured
phases of design problem solving, while the rigid, box-like drafting drawings are correlated
with the well-structured, detail design and specification phases.

Systems of sketching are differentiated from systems of drafting along a number of
dimensions. The identification of these differentiating properties leads to the generation of
certain hypotheses about why sketching should be correlated with the preliminary,
explorative phase of design problem solving. A protocol study which manipulates these
properties of sketching is carried out and described. The results are significant in the direction
predicted. This leads to a conclusion about the cogritive role of sketching in problem solving.

Symbol Use in Design Problem Solving

Design is an excellent forum for studying human symbolic activity in much of its
richness and diversity. Designers in fact are explicitly in the business of manipulating
representations of the world (rather than the world itself). The input to the design process is
a design brief. It is a written or verbal "document” which generally describes the client's
current state of affairs, the reason these states are unsatisfactory, and what is required to
make them satisfactory. The output of the design process is generally a set of contract
documents, consisting of specifications and blueprints. The latter specify the artifact to be
constructed while the former specify the procedure for construction. Thus both the input and
the output of the design process are representations which describe and/or depict artifacts or
processes; albeit with several interesting differences between them (Goel, 1991).

Designing, at some very abstract level, is the process of transforming one set of repre-
sentations (the design brief) into another set of representations (the contract documents).
However, not only are the inputs and outputs of the design process representations, all the
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intervening transformations are also typically done on representations. This is not an acci-
dent. It is dictated by certain features of the design task environment.

Design typically occurs in situations where it is not possible or desirable to tamper
with the world until the full extent and ramifications of the intervention are known in advance.
After all, we only get one "run" on the world. And not only are actions irrevocable, they may
have substantive costs associated with them. Thus it is not surprising to find that designers
produce and manipulate representations of the artifact rather than the artifact itself. All the
reasoning and decision making (including performance prediction) is done through the
construction and manipulation of models of various sorts, including drawings, mockups,
mathematical modeling, computer simulations, etc.

Not only do designers make extensive use of representations, these representations
encompass many different symbol systems.2 Three such symbol systems are natural
language, sketching, and drafting. Moreover, these different systems are used in a particular
sequence which in effect results in a correlation of symbol systems with different phases of
design development. Four commonly identified development phases are problem structuring,
preliminary design, refinement, and detail specification (Goel, 1991; Wade, 1977). Each
phase differs with respect to the goals and cognitive processes associated with it.

Problem structuring is the process of retrieving information from long-term memory
and external memory and using it to construct the problem space; i.e. to specify start states.
goal states, operators, and evaluation functions. Problem structuring relies heavily on the
client and design brief as a source of information, considers information at a higher level of
abstraction, makes fewer commitments to decisions, and involves a higher percentage of add
and propose operators (Goel, 1991).

Preliminary design is a phase where alternative solutions are generated and explored.
Alternative solutions are neither numerous nor fully developed when generated. They
emerge through incremental transformations of a few kernel ideas. These kernel ideas are im-
ages, fragments of solutions, etc. to other problems which the designer has encountered at
some point in his life experience. Since these "solutions” are solutions to other problems
which are being mapped onto the current problem, they are, not surprisingly, always out of
context or in someway inappropriate and need to be modified to constitute solutions to the
present problem (Goel, 1991).

2] use the terminology of ‘representational system' and 'symbol sysiem’ interchangeably.
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This generation and exploration of alternatives is facilitated by the abstract nature of
information being considered, a relatively low commitment to the generated ideas, the
coarseness of detail, and a large number of lateral transformations. A lateral transformation
is one where movement is from one idea to a slightly different idea rather than a more
detailed version of the same idea. Such transformations are necessary for the widening of the
problem space and for the exploration and development of kernel ideas (Goel, 1991).

The refinement and detailing phases are more constrained and structured. Com-
mitments are made to a particular solution and propagated through the problem space. They
are characterized by the concrete nature of information being considered (mostly having to do
with the function and structure of the artifact), a higher degree of commitment to generated
ideas, attention to detail, and a large number of vertical transformations. A vertical
transformation is one where movement is from one idea to a more detailed version of the
same idea. It results in a deepening of the problem space (Goel, 1991).

Given these phases, we find that natural language is most prominent during the
problem structuring phase, while sketching dominates the preliminary design phase. As one
moves from preliminary design to refinement, the forms of sketching become more constrained
until a full-fledged drafting system emerges during the detailing phase.

This state of affairs is depicted in Figure 1. The geometric form depicts the design
problem space. Problem spaces are generally depicted as triangles (Laird,Newell, &
Rosenbloom, 1986). The problem is mapped onto the single point at an apex and the
expanding area between the apex and the base metaphorically represents the expansion of
the search space. In the case of design problem solving, the problem will have a number of
interpretations and thus will not map onto a single point, but rather several points or
alternatives (al, a2, ...). This mapping process is called problem structuring and the primary
symbol system involved is natural language. Once this mapping is completed, the designer
then expands the problem space by actively generating and considering a number of
alternative solutions (al, a2, a3, a4, ...). This process occurs during the preliminary design
phase and is correlated with various forms of sketching. Finally, these several alternative
solutions are quickly narrowed to one solution (al) which is then developed at great length
and detailed in the contract documents by some system of drafting. This constitutes the
refinement and detailing phases and is depicted by the narrowing of the base of the geometric
form in Figure 1 to an apex.
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Insert Figure 1 approximately here.

Figure 2 illustrates the development of a floor plan by an architectural subject (Goel,
1991). Notice transformation of drawing types from Figure 2a to 2f as the problem space is
traversed. There is an increase in the degree of explicitness and detailing in the lines, along
with an introduction of dimensions, labels, and iconic symbols. (Figure 2f is actually several
drawings removed from Figure 2e, and was not produced by the subject as part of the
session. It is a floor plan, and is included to give the reader an indication of what the
subject’s final drawings would have looked like, if time had permited the production of drafting
type drawings.)

Insert Figure 2 approximately here

It is important to realize that the differences in the drawings as one proceeds from
Figure 2a to 2f do constitute a difference in drawing types. Sketches are not just quickly
drawn, "sloppy"” diagrams. Similarly, drafting drawings are not just "neat" diagrams drawn
with the mechanical aids. The two constitute very different symbol systems,3 that is, they
differ in syntactic and semantic properties. Following Goodman (1976), I want to suggest
that syntactically, the system of sketching differs from system of drafting in terms of the
demarcation of syntactic types (or characters or symbols) and in terms of the ordering of
syntactic types (or characters or symbols).# Semantically, the two differ in terms of the
reference link, and in terms of the demarcation and ordering of reference-classes.> These

3A symbol system consists of a series of marks (or tokens), which instantiate types (or belong to
characters/symbols), which refer to classes of objects, events, and states of affairs in the world.

4When talking about the syntactic elements of a symbol system I, following Goodman (1976) prefer the
vocabulary of 'marks’ and 'characters’. The characters are the types and should be thought of as equivalence-classes
of marks, where marks are tokens. The reader may substitute the ‘type/token’ vocabulary as necessary. Also, a
character is here to be more broadly construed than an element of the alphabet. A character is taken to be any
symbolic expression, whether simple or complex. It can be anything from a single mark, (as in the case of a letter
of the alphabet), an utterance, a gesture, etc. to -- in the limiting case -- the whole work (e.g. complete paintings,
sketches, novels, plays, etc.).

5A reference-class (Goodman, 1976) is just the class of objects, events, states of affairs, etc. to which a syntactic
type, character or symbol refers. Where one was interested in contents, instead of reference, one might speak of
“content-classes”.
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differences are summarized in Table 1 and briefly. discussed below. The reader is referred to
Goodman (1976), Elgin (1983), and Goel (1992) for further discussion.

Table 1 approximately here

Demarcation of Characters: The first syntactic property along which sketching
systems differ from drafting systems is the demarcation of characters (or symbols}. The
issue here is one of syntactic type identity. In certain symbol systems the equivalence-
classes of tokens (or marks) which constitute the syntactic types are allowed to intersect,
while in other symbol systems such classes are required to be disjoint. What this means is
that, in an intersecting system, each token/mark will instantiate many types/characters
whereas in a disjoint system each token/mark will instantiate at most one type/character.
Intersection is construed broadly here to also incorporate the notion of inclusion. As such, it
is just the failure of disjointness (i.e. nondisjointness).

Sketches belong to syntactically nondisjoint systems. Each token sketch may belong
to many types at the same time. That is, in the absence of any agreement as to the
constitutive versus contingent properties of marks, there may be no fact of the matter as to
which equivalence-class or type they belong to. Thus for example, what equivalence-class or
type does drawing 2 in Figure 3 (see Informal Overview of Data section) belong to? Do
drawings 2 and 7 belong to the same equivalence-class or type? There may be no agreed
upon answers to these questions.

Drafting drawings, in contrast, belong to a syntactically disjoint system. There is
agreement as to the criteria for membership in the various equivalence-classes, and these
criteria are non-overlapping. For example, the marks belonging to the symbol for door are
distinct from the marks belonging to the symbol for window.

Ordering of Characters: The second property along which systems of sketching and
drafting and differ is in terms of the ordering of syntactic types (or characters). The
dimension of interest here is dense vs. non-dense. A symbol system is syntactically dense if
the types/characters are ordered such that between any two types/characters there is a third
type/character. Thus for example, the system of rational numbers (as normally ordered) is
dense, whereas the system of integers and the English alphabet are not. In a symbol
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system which is syntactically dense it is not possible to determine which type/character a
token/mark actually instantiates. In a system which is not dense, such determination is
possible, at least in principle.6

The system of sketching is syntactically dense because it allows for an ordering of
sketch types/characters such that between any two sketch types/characters there is a third.
So, for example, even it we agree that the drawing 2 in Figure 3 does in fact only belong to
one equivalence-class or type, it may not be possible to specify which of several closely
ordered classes it does or does not belong to.

Systems of drafting are non-dense. In a drafting system the drawings indicate only
(and very roughly) relative size, shape, and location. Line lengths are conventionally
restricted to preset tolerances (e.g. 1/16th of an inch) and each drawing is clearly marked
with the warning: "Do not scale”. Thus it is always possible to determine which
type/character a token/mark belongs to.

Reference Link: Ambiguity and unambiguity characterize the relationship between a
syntactic type/character and what it refers to. A syntactic type/character is ambiguous if it
has different referents in the different contexts in which it appears. A syntactic type/character
is unambiguous if it has the same referent in each and every context in which it appears.
Ambiguity is simply the failure of unambiguity.

The system of sketching is ambiguous because sketches do not have the same
referent in each and every context in which they appear. For example, does drawing 7 in
Figure 3 represent a human head or a light bulb? It received both interpretations under
different contexts. Drafting drawings generally have an unambiguous interpretation. For
example, the symbol for a watercloset always refers to a watercloset, irrespective of context.

Demarcation of Reference-Classes: The second semantic property along which the
systems of sketching and drafting differ is in the demarcation of reference-classes. As in the
syntactic case, the options here are nondisjointness and disjointness. The difference is that
here these labels predicate over reference-classes rather than characters. Semantic
nondisjointness allows reference-classes to intersect, while disjointness prohibits such
intersection and inclusion. As in the syntactic case, nondisjointness is simply the failure of
disjointness.

6Things are actually more complex than this (Goodman, 1976).
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The system of sketching allows for nondisjoint reference-classes. So for example, the
human figure referred to by drawing 3 in Figure 3 may belong to the class of humans and the
class of students. Drafting systems generally do not allow intersection or inclusion of
reference-classes. For instance, the system of drafting used by architects has a symbol
which denotes the class of waterclosets. It does not have any other symbol whose
denotation intersects with the class of waterclosets. (The reference-class of a symbol for
bathroom fixtures would include the reference-class for watercloset, but such a symbol does
not exist.)

Ordering of Reference-Classes: The last differentiating dimension we will consider is
the ordering of reference-classes. Again, as in the syntactic case, the options are dense and
non-dense ordering, but here they predicate over reference-classes as opposed to characters.
A symbol system is semantically dense if its reference-classes are ordered such that
between any two classes there is a third class. A symbol system is non-dense if there are
gaps between the reference-classes.

The system of sketching allows for a dense ordering of reference-classes. For
example, in a perspective drawing of a human figure, every height of marks would correspond
to a different class of heights of human figures in the world, and these classes of heights
would course be densely ordered. In such a case it would not be possible to tell which of
several sketch types a particular human height belongs to. In drafting drawings, not only the
line lengths, but also the corresponding referents are conventionally restricted to preset
tolerances, thus allowing for a non-dense ordering of reference-classes.

It is important to note that the system of sketching and drafting not only differ with
respect to demarcation and ordering of characters and reference-classes, and the structure of
the reference link, they in each case fall on the opposite extreme of the same dimensions. So
where one is dense, the other is nondense. Where one is disjoint, the other nondisjoint. And
while one is ambiguous, the other is unambiguous.

Given that design problem spaces involve several phases which differ in cognitive
processes, and utilize several different symbol sysiems which correlate with cognitive
processes, the question naturally arises as to why these correlations between design phases
and symbol systems should occur? More particularly, as this work is restricted to
understanding the cognitive role of sketching and how it differs from the role of other
diagrammatic systems such as drafting, the question to be asked and answered is "why
should the symbol system of sketching be correlated with preliminary design?".
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Taking seriously both, the characterization of preliminary design -- as a process of
creative, ill-structured problem solving, where the generation and exploration of alternatives
is facilitated through a coarseness of detail, a low commitment to ideas and a large number of
lateral transformations -- and the properties of the symbol system of sketching, one might
propose an answer along the following lines to the above question:

1) The nondisjointness of characters in the symbol system of sketching gives the marks a
degree of coarseness by allowing marks to belong to many different characters. This
allows the designer to remain non-committal about the character.

2) The dense ordering of characters in the symbol system of sketching gives the marks a
degree of fine-grainedness by making every distinction count as a different character.
This reduction in distance between characters helps insure that possibilities are not
excluded and facilitates the transformation from one character to another.

3) Ambiguity of the symbol system of sketching insures that the extensions of characters
during the early phases of design are indeterminate. Ambiguity is important because
one does not want to crystalize ideas too early and freeze design development.

4) The nondisjointness of reference-classes in of the symbol system of sketching results
in an over-lap of the reference-classes. This overlap is needed to remain noncommittal
about the exact referent of a character.

5) The dense ordering of reference-classes in the symbol system of sketching insures that
possibilities are not excluded and facilitates the transformation of one idea to another.

These are possible answers to the question "why should the symbol system of
sketching be correlated with the preliminary phases of design problem solving?" The general
claim is that certain cognitive processes need to occur during the preliminary phase of design
problem solving, and that certain properties of the symbol system of sketching facilitate these
cognitive processes. A rigid, box-like symbol system such as drafting, which differs from
sketching in being disjoint, nondense, and unambiguous, will hamper the relevant cognitive
processes. An experiment was conducted to investigate this proposal. It is described in the
next section.

Methodology and Data Base
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The experimental design requires expert designers to engage in two (one hour)
problem solving sessions while the (external) symbol systems they are allowed to use are
manipulated along the syntactic and semantic dimensions noted in Table 1. In one condition
subjects are allowed to use the symbol system of sketching, while in the other case they are
requested to use a symbol system with the syntactic and semantic properties of drafting
systems. The goal of the manipulation is to enable a conclusion about the impact of the
syntactic and semantic properties of sketching on the design problem space. The expectation
1s that the absence of these properties will hamper lateral transformations and freeze design
development. The hypotheses are discussed and stated more explicitly in the next section.

Subjects: Nine subjects employed as professional designers by a single multi-national
corporation volunteered to participated in the study. While their professional experience
varied from two to twenty years, each was deemed to be an "expert" by virtue of being
trained as a designer and successfully earning a living at it. They were accepted for the study
on the basis of three criteria: (i) that they had received training in the traditional drawing
tools and methods of their profession, (ii) that they regularly use a computational system for
some part of their design activity, and (iii) that they be familiar with the MacDraw’ drawing
package.

Six of the subjects were graphic designers; three were industrial designers. The basic
difference between the two groups was that the graphic designers generally worked on tasks
involving 2-D graphical/textual layout projects (such as corporate logos, posters, brochures,
etc.), while the industrial designers worked on 3-D projects (such as "product shells").
Accordingly, the tasks given the two groups varied along these dimensions.

Task Descriptions: There were three graphic design tasks and two industrial design
tasks. The graphic tasks required the design of (i) a poster and/or technical report cover for
the new cognitive science program at UC-Berkeley; (ii) a poster to promote the Shakespeare
Festival at Stratford-on-Avon in Canada; and (iii) a poster to attract Canadian tourists to the
city of San Francisco. The industrial design tasks required the design of (iv) a desk time
piece to commemorate Earth Day, and (v) a toy to amuse and educate a 15-month old toddler.
Each of these are open-ended, “real-world" problems.

The distribution of tasks across the two symbol systems requires some explanation.
First, the reason that there are three graphic design tasks instead of two is that some of the

"MacDraw is a registered trademark of Apple Computer, Inc.
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graphic designers actually participated in three different sessions instead of two. The third
session had a different goal and involved a different computational interface. It was not
considered a part of this study. Second, one of the industrial designer subject was allowed to
do a graphic design task. This resulted from the fact that several of the subjects considered
themselves proficient at both industrial and graphic design. Thus each subject was given a
choice as to which type of task they preferred. One subject chose one of each type.

As there were only nine subjects it was not possible to divide the sequence of ses-
sions evenly between them. Distribution was therefore determined by the flip of a coin. This
resulted in six subjects doing the sketching session first, followed by the session on the non-
sketching (drafting type) drawing system, and three subjects doing the session on the
drafting type system first, followed by the sketching session. In the case of three of the six
subjects who did the sketching session first, there was a lapse of several weeks between the
sketching sessions and the drafting type system sessions.

Instructions to Subjects: The subjects were given two sets of instructions. First, they
were asked to "talk aloud” during the task and encouraged to solicit additional information
and/or clarification from the experimenter who assumed the role of the client. The
experimenter answered any questions that arose but did not initiate questions or
conversation (apart from asking "what are you thinking now?" when the subject was silent for
a prolonged period). Second, since the focus of the study was on preliminary design, rather
than the whole design process, subjects were requested to "generate several ideas and then
to explore one or two a little bit". They were not expected to come up with a final
specification.

Recording of Data: All sessions were recorded on two video cameras. One camera
captured the general movements and gestures of the subject while the other was focused on
the piece of paper or computer screen on which the subject was drawing and/or writing. In
addition, the sessions which utilized a computer drawing package (see below) were also
recorded by MediaTracks®, a piece of software which runs in the background and maintains a
record of all screen activity which can then be replayed.

8'MediaTracks' is a registered trade mark of Farallon Corp.
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Manipulation of Symbol Systems

The manipulation of symbol systems required finding a symbol system which differed
from sketching only with respect to the syntactic and semantic properties identified in Table
1. So importantly, it needed to be a "drawing system" of some sort as opposed to a
"discursive language”. The symbol system which comes closest to meeting our needs is the
system of drafting. It is -- as has been already noted above -- a subset of the system of
drawing which differs from the system of sketching in just the right way. That is to say, it
actually falls on the opposite extremes of the syntactic and semantic properties of interest.

In some trial studies an attempt was made to impose the discipline of drafting on the
subjects during the preliminary design phase when they would normally sketch free-hand.
They simply could not (or would not) follow the instructions. Failing this, the manipulation of
symbol systems was effected through the manipulation of drawing tools and media.

While it is true that there is a logical distinction to be made between drawing tools
and media on the one hand and symbol systems on the other, in practice this distinction is
often collapsed, especially in the case of computational interfaces. A computational interface
provides not only a tool and a medium for drawing, it also specifies a symbol system by easily
facili.sting certain marks and operations and discouraging or even disallowing others.

In one session each designer was allowed to use the tools, media, and symbol sys-
tems of his/her choice. They invariably chose to use paper and pencils and did a lot of
sketching. In the second session they were requested to use a computational interface.
Specifically, they were asked to use a subset of the drawing package MacDraw (version
1.9.5; with the freehand tool turned off and the grid turned on) running on a Mac II% with a
large two-page monitor.

MacDraw, or even computational interfaces in general, are not the focus of this ex-
periment. MacDraw simply provides a drawing tool which allows subjects to make certain
types of marks and prevents them from making other types of marks. In particular, it is not a
sketching tool; it implements a restrictive subset of a drawing system, not unlike the subset
found in the system of drafting. The major difference between the two is that in the case of
drafting, the subset is specified by convention, while in MacDraw it is enforced by the tool.

9Mac 11 is a registered trademark of Apple Computer, Inc.
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The utility of MacDraw for our purposes lies in the fact that the symbol system it specifies
differs from the system of sketching along the dimensions of interest to us (Table 1).

With the freehand tool turned off, MacDraw supports three closed figure tools (ellipse,
polygon, and rectangle with rounded comers), three straight line tools, and one curved line
tool, all in four different line weights. Accuracy of line lengths, angles, and locations of the
marks is limited to 1/8 inch by the grid. Within these constraints one can -- indeed one must
-- make marks of only particular shapes and sizes and of the utmost precision and certainty.
Yet despite these limitations, it is possible to build up surprisingly complex shapes and
figures (as will be seen shortly).

Given these constraints it is reasonable to individuate equivalence-classes of marks
(or characters) in terms of congruence and identical orientation.!® This leads to disjoint
nonunit equivalence-classes (because the system facilitates the generation of congruent
marks of identical orientation). In addition, given two arbitrary shapes/marks it is percep-
tually possible (for the human visual system) to determine whether they belong to the same
equivalence-class. Thus the system does satisfy the two syntactic constraints of drafting
type symbol systems.

The determination whether the system satisfies the two semantic constraints is more
difficult. If the correlation of characters is with the corresponding geometric forms, then the
unambiguity and semantic nondensity criteria are met. If however, the correiation is with
arbitrary (existing or desired) states of affairs in the world, then neither unambiguity non
nondensity can be guaranteed. One might think that a system which satisfies the syntactic
properties will also satisfy the semantic properties (even though the two are logically
independent) -- after all, how would a nondense ordering of characters pick out densely
ordered reference-class? However, natural language has solved this problem with the
introduction of combinatorial syntax and semantics and provides a persuasive counter
example. Thus the semantic properties of a symbol system depend on the richness of the
syntactic scheme and on how the subject chooses to carve up the world with it. This however
will not be a problem for our investigation. An empirical measure of the syntactic and

10The reader will recognize that demarcating equivalence-classes in terms of congruence and identical orientation

leads to the system of Oriented Geometry. The only permitied transformation is translation and members of
equivalence classes share such invariant properties as angle values, line lengths, number of sides, separation of
plane surface into interior and exterior, perimeter length, area enclosed by perimeter, and orientation with respect
1o some axis.
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semantic properties of both symbol systems, as they are actually by the subjects during the
experiment, will be provided.

In summary, there are a number of positive reasons for using MacDraw to provide the
alternative symbol system to free-hand sketching. MacDraw provides considerable drawing
power -- at least sufficient to do simple drafting-type drawings -- while differing from the
system of sketching along the relevant syntactic and semantic dimensions. It also preserves
some of the basic spatial properties exemplified by the system of sketching.ll It is
something that the subjects were familiar or proficient with,!2 and it is readily available.
There is, however, one concern about using a computational interface which should be voiced.
Paper and pencil and computational systems currently require very different physical actions
to create marks. Dragging and clicking a mouse has a very different "feel” to it than drawing
on paper with a lead pencil. I am assuming this is an inconsequential difference once a certain
degree of competence has been acquired with a mouse (as each of our subjects had), or with
a pencil for that matter of fact.

Informal Overview of Data

Before specifying the coding scheme and actually offering an analyses of the data, it
may be a good idea to get an intuitive feel for the behavioral and design output differences
across the two conditions. Figure 3 and Figure 4 reproduce the output of two design
sessions, one free-hand and the other MacDraw. The free-hand drawings (Figure 3) are from
a Cognitive Science Program Poster task while the MacDraw drawings (Figure 4) are from a
Shakespeare Festival Poster session.

Figure 4 about here

Hwhile it does preserve the gross spatial properties (c.g. shape, size, location, eic.) it does not preserve the more
subtle properties, or most of the expressive properties of the system of sketching. At least one subject
complained about this.

12The subjects all used sophisticated computational drawing systems as part of their jobs. These systems for the
most part were a superset of MacDraw.
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Informally, and very briefly, the difference between the two cases seems to be the
following: In free-hand sketching, when a new idea is generated, a number of variations of it
quickly follow. The variations expand the problem space and are necessary for the reasons
noted earlier. One actually gets the sense that the exploration and transformation of ideas is
happening on the paper in front of one's eyes as the subject moves from sketch to sketch.
Indeed, designers have very strong intuitions to this effect.

When a new idea is generated in MacDraw, its external representation (in MacDraw)
serves to fixatz and stifle further exploration. Most subsequent effort after the initial
generation is devoted to either detailing and refining the same idea or generating the next
idea. One gets the feeling that all the work is being done internally and recorded after the fact,
presumably because the external symbol system cannot support such operations.

These observations are reinforced by some of thz verbalizations of the subjects. Here
are a few fragments to give one the flavor of their utterances:

Something happens in the sloppy interaction when pen hits paper which is not
happening here.

You almost get committed to something before you know whether you like it or
not.

I have to decide before hand what I want before I can draw it.

It is very frustrating.... unless you have an idea of what you want before you
even sit down.

Sketching is noncommittal. This is forcing me to make a commitment.

I just sketch a shape and look at it and have something come out of it.

I feel like I am doing a final design for something that I already know....

Its hard to play on here. Here you have to have an idea and do in and do it.

In sketching you can start drawing a line and it will turn into something else.
With this you have to know what you are doing.

Their comments are not confined to complaining about MacDraw. At a certain stage in
the design process they considered computational systems to be of value, and even asked for
them during the latter stages of their free-hand sessions.
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I really can't go any further. I would now rﬁovc to the computer to clean this up
and get the lines and types right....

At this point it would be nice to switch over to something like Adobe and to
have access to all the typefaces and fonts and libraries of pictures....

Before developing a coding scheme and examining the data more rigorously, it is worth
being very explicit about what we are looking for. This is articulated in the next section

Hypotheses

There are two sets of questions which the data need to address. The first set has to
do with whether the manipulation of symbol systems is actually successful in varying the
relevant syntactic and semantic properties across the two conditions. The second has to do
with the impact of this manipulation on the design problem space.

Arguments have already been offered as to why MacDraw and sketching -- viewed in
the abstract -- should fall on opposite dimensions of the syntactic properties in Table 1. That
is, if symbol systems are defined intensionally -- in terms of the characters and reference-
classes allowed for by the "rules” of the system, then free-hand sketching turns out to be
syntactically and semantically nondisjoint and dense, and ambiguous, while MacDraw turns
out to be, at least, syntactically disjoint and nondense. But the question remains, do these
symbol systems -- as they are in fact used by our subjects during the experiment -- differ with
respect to the syntactic (and semantic) properties in the manner claimed? An empirical
measure of this would be desirable.

This calls for an extensional definition of symbol systems, where a symbol system is
defined not in terms of the possible characters and reference-classes that can be generated
by the rules, but just in terms of the actual characters and reference-classes generated by the
suhiect during the experiment. On the extensional characterization we can get (relative)
empirical measures of density and ambiguity and/or nondisjointness. The claim that free-hand
sketching and MacDraw, defined extensionally, do differ with respect to the relevant
syntactic and properties can be captured in the following three hypotheses:

H1) Free-hand sketching is syntactically more dense than MacDraw.

H2) Free-hand sketching is semantically more dense than MacDraw.
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H3) Free-hand sketching is more ambiguous and/or more nondisjoint than MacDraw.

There are several important differences between the formulation of these hypotheses
and the initial characterization of sketching and drafting systems. One difference is that in
formulating these empirical hypotheses the logically distinct notions of nondisjointness and
unambiguity have been collapsed. This I suspect is an artifact of the particular methodology
employed. It was not sufficiently fine-grained to allow for a differentiation between
nondisjointness and unambiguity. Presumably a different experiment design could overcome
this problem.

Another difference is that the notions of disjointness, density, and ambiguity are really
binary criternia. In the above hypotheses they have been reduced to relative concepts. The
question is no longer whether MacDraw strictly satisfies the requirements of disjointness,
nondensity, and unambiguity, and free-hand sketching strictly satisfies the requirements of
nondisjointness, density, and ambiguity, but rather, which ends of the spectrum they roughly
fall on. There are two reasons for this shift. First, on a purely extensional definition, a symbol
system cannot of course be dense in the technical sense. Given a finite number of characters
and reference-classes there will be no ordering of them which is dense. One can however use
the notion of density in a less technical sense and show that the characters and reference-
classes of one system are more closely (or "densely") ordered than that of another system.
It is in this sense that the term 'density’ is used in the balance of this article.

The second reason for the shift from an absolute to relative vocabulary is that we are
confronting the general problem of maintaining black and white distinctions in a world
consisting of various shades of grey. This is a general difficulty in mapping logical concepts
onto the psychological domain. There are no easy solutions or explanations.

Once it is verified that the two symbol systems, free-hand sketching and MacDraw,
are being used in the desired way, one can proceed to investigate the impact of this manipu-
lation on problem solving behavior. The prediction here is that syntactic and semantic density
will facilitate lateral transformations by allowing for closely ordered (finely individuated)
characters and referents and/or contents.!3 In addition, ambiguity and/or nondisjointness of
characters will facilitate lateral transformations by allowing for multiple interpretations and/or
overlapping characters. This leads to the following hypothesis:

13In the coding scheme will actually utilize the notion of contents or ideas rather than referents.
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H4) Symbol systems which are nondense, unambiguous and/or disjoint hamper the
exploration and development of alternative solutions (i.e. lateral transformations)
and force early crystallization.

(Notice that the design of the experiment is such that it will not be possible to de-
termine what percentage of lateral transformations are due to density versus ambiguity
and/or nondisjointness.)

To investigate these hypotheses we need a quantitative measure of syntactic density
(H1), semantic density (H2), ambiguity and/or nondisjointness (H3), and the number of
lateral transformations (H4) across the two conditions. A coding scheme was developed to
facilitate just these measures. It is described in the next section.

Coding Scheme

The protocols were first broken up into episodes along the lines of alternative solu-
tions, a notion derived from Goel (1991). There is a one-to-one correspondence between
episodes and alternative solutions. Episodes were then correlated with the sketches and
drawings generated during the sessions. A one-to-one correlation was also desired between
drawings and alternative solutions. The first step in setting up this correlation was to
discount any episodes/alternative solutions which did not result in marks-on-paper. The
rationale for this is simply that the lack of marks-on-paper indicates a lack of commitment,
and more importantly, it is after all these marks which are the object of study. The second
step is to individuate these marks into drawings and sketches.

The individuation of drawings and sketches along these lines was reasonably straight
forward in the case of the free-hand sessions. For the most part, the individuation was done
by the subject, by drawing a rectangle around each separate drawing and even numbering
them. (The numbering was done at the experimenter's request.) Most subjects also
assigned a linguistic label to each drawing which also helped in the individuation process.
This individuation of sketches resulted in a unique correspondence to alternative solutions
(Figure 5).

Figure 5 Approx here
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Individuating the drawing output of the MacDraw sessions so that they uniquely
corresponded to alternative solutions (or episodes) was more problematic. The difficulty
resulted from the fact that the ability to cut, paste, delete, move, resize, translate, etc. meant
that changes were often made in place rather than resulting in a new drawing. This of course
destroys the one-to-one correspondence between drawing output and alternative solutions.
The strategy used to overcome this difficulty was to individuate MacDraw drawing output not
only spatially, but also temporally. This temporal individuation did provide a unique mapping
between alternative solutions and drawing output.

This procedure results in a similar number of drawings or episodes across the two
conditions, and the episodes turn out to have similar temporal duration (see Table 2, in the
Results section). The temporal duration of an episode was determined by the time it took the
subject to complete the accompanying drawing. The clock was started when the drawing was
started and stopped when the drawing was completed or abandoned. Any periods of drawing
inactivity between the start and completion of drawings were counted as part of the episode.
The fact that there are no significant differences in the number and duration of episodes
across the two conditions suggests that similar size "chunks” are being individuated.

No finer grained breakdown of the protocol was undertaken. All the subsequent
coding and analysis is carried out at the episode or alternative solution, or drawing level.
This is appropriate because our hypothesized differences across the two conditions are
stated at the level of alternative solutions and the properties of symbol systems we are inter-
ested in are to be found at the level of complete drawings (actually in the relationship be-
tween drawings), rather than the internal structure of drawings (Goel, 1992).

Given this initial breakdown of the protocols, the drawings accompanying each
episode were coded along the following three dimensions: (i) source type: where did the
diagram originate from?; (ii) transformation type: how was it generated?; and (iii) number of
reinterpretations: did the drawings undergo any reinterpretations? The scheme is formally
stated in Backus-Naur form in Figure 6 and discussed below.

Figure 6 Approx here
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The source type category is applied at both a syntactic level and a semantic level. So
every drawing has a syntactic source and a semantic source. The syntactic source traced the
origin of the drawing while the semantic source traced the origin of the idea or content of the
drawing. There is no g priori reason that these two components should coincide and often did
not. The two possibilities for a source are long-term memory (LTM) and previous solutions.

Categorizing a drawing as originating from LTM at the syntactic level is to say that
the equivalence-class to which the marks belong (i.e. syntactic type/character) is new.
Categorizing a drawing as originating from LTM at the semantic level is to say that the idea
or content of the drawing is new. In either case it is just another way of saying we don't
know where the drawing or idea came from but that it is not related to previously generated
drawings or ideas in any obvious way. The first drawing in every session is automatically
classified as originating from LTM (at both the syntactic and semantic levels), as are
subsequent drawings which have no obvious relations to previous drawings. For example,
drawings 1 and 5 in Figure 3 are classified as originating from LTM at both the syntactic and
semantic levels. Drawing 7 in Figure 3 is classified as originating from LTM at the semantic
level but not the syntactic level. (It is syntactically related to previous drawings but has
received a new interpretation as a "light bulb”.) In Figure 4 drawings 1, 8, 10, and 11 are
classified as originating from LTM at both the syntactic and semantic levels. Drawing 6
(Figure 4) is classified as originating from LTM at the syntactic level but not the semantic
level (it is the same idea as in the previous drawing, that of portraying a Shakespearean actor
in period costume). The LTM category serves as a measure of "new generations” or new
solutions.

Where a drawing is categorized as originating from one or more previous solutions, it
means that it is related to one or more existing drawings (which correspond to previous
solutions in a one-to-one manner) by the relation of variation, identical+/-, or identical.

A variation rating means that the current drawing is recognizably similar to earlier
drawings. At the syntactic level this means that the equivalence-class of marks (i.e.
syntactic types/characters) constituting the drawing are closely related to, but distinct from,
the equivalence-class of marks constituting one or more previous drawings. A variation
rating at the semantic level means that the idea or content of the drawing is similar (but not
identical) to the ideas or contents of one or more previous drawings. For example, in Figure
3, drawing 2 is considered a variation of drawing 1 at both the syntactic and semantic levels.
Drawing 7 (Figure 3) however, is considered a variation of drawing 1 at the syntactic level
but not at the semantic level (because it has received a totally new interpretation as a "light
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bulb". In Figure 4, variations are much less frequent. A good example is however provided
by drawing 12, which is considered a syntactic and semantic variation of drawing 8.

The variation category serves as a measure of density. The connection between the
two can be seen with the aid of the following example. Consider two symbol systems, $S1
and SS2. In SS1 characters consist of equivalence-classes of line lengths which, when mea-
sured in feet correspond to the integers. So we have lengths of 1', 2', 3, etc. In §S2
characters consist of equivalence-classes of line lengths which, when measured in feet cor-
respond to the rational numbers. So we have lengths of 1', 2', 3'...; but also lengths of 1.5,
2.5, 3.5... and 1.25', 2.25, 3.25'... and 1.12§', 2.125’, 3.125'... and so on. Lines of lengths 1.125’
and 1.25' are no more identical then lines of length 1' and 2', neither of these pairs belongs to
the same equivalence-class. However, line lengths of 1.125' and 1.25' are much more
"similar” or "closer to each other" -- with respect to length -- than lines of 1' and 2". Thus the
notions of "similarity” or "closeness"” seem to be an integral (necessary?) part of density.

An identical+/- rating means that the drawing is identical to a previous drawing except
for specifiable differences. At the syntactic level this means that the marks constituting the
drawing belong to the equivalence-class of marks constituting an earlier drawing except for a
few specifiable details. At the semantic level it means that the idea or content of the drawing
is identical to the content of an earlier drawing except on one or two specific counts.
Examples of this category are common in the MacDraw condition. For instance, in Figure 4
drawing 2 is syntactically and semantically identical+/- to drawing 1, drawing 3 is
syntactically and semantically identical+/- to drawing 2, and drawing 4 is syntactically and
semantically identical+/- to drawing 4. While this category can occur in the free-hand case, it
1s not common.

The identical+/- category importantly differs from the variation category in that what is
involved is a refinement or augmentation of an existing drawing, not the generation of a
different drawing. That this is the case reveals an important point about the individuation of
drawings. It indicates that the individuation is not strictly on the basis of congruence and
orientation as suggested earlier. In the actually coding, congruence and orientation are used
as guide lines along with a host of semantic and contextual cues to determine sameness of
drawing.

An identical rating means that the drawing is identical to a previous drawing. At the
syntactic level it signifies a type identity (in terms of congruence and orientation) between
the equivalence-class of marks constituting the current drawing and equivalence-class




The Cognitive Role of Sketching:24

constituting earlier drawings. At the semantic level an identical rating signifies a type
identity between the content of the current drawing and the content of earlier drawings. This
category never occurred in the free-hand case. Though it is important to note that both
logically and practically it could have occurred, for example through tracing or photocopy of
drawings. Interestingly, tracing was frequently used in the free-hand sessions. However, it
never resulted in an identical drawing, but always a variation of the old drawing. The identical
category did occasionally occur in the MacDraw case.

The identical+/- and identical categories are not considered to be a measure of density
because they do not result in new drawings or ideas.

The transformation type category is also applied at both the syntactic and semantic
levels. Syntactic transformations are defined over the equivalence-classes of marks consti-
tuting the drawing while semantic transformations are defined over the contents of drawings.
Transformations are classified as either new generations or transformations of previous
solutions.

New generations result in new drawings unrelated to previons drawings. At the
syntactic level a new generation means that the equivalence-class of marks which constitute
the drawing is unrelated to any earlier equivalence-classes of marks. At the semantic level it
signifies that the content of the current drawing is unrelated to the content of earlier
drawings. All (and only) syntactic and semantic source types which had their origin in LTM
are classified as new generations. Thus for example, drawings 1 and 5 in Figure 3 are
classified as new generations at both the syntactic and semantic levels. Drawing 7 in Figure
3 is classified as a new generation at the semantic level but not the syntactic level. (It is
syntactically related to previous drawings but has received a new interpretation as a "light
bulb".) In Figure 4 drawings 1, 8, 10, and 11 are classified as new generations at both the
syntactic and semantic levels. Drawing 6 (Figure 4) is classified as a new generation at the
syntactic level but not the semantic level (it is the same idea as in the previous drawing, that
of portraying a Shakespearean actor in period costume).

Current solutions or drawings are often transformations of previous solutions or
drawings. Three such transformations are recognized, lateral transformations, vertical
transformations, and duplication. The concepts of lateral and vertical transformations have
already been introduced. To repeat, a lateral transformation modifies a drawing into another
related but distinctly different drawing (as opposed to a more detailed version of the same
drawing, a totally unrelated drawing, or an identical drawing). A vertical transformation
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reiterates and reinforces an existing drawing through explication and detailing. A duplication
transformation results in movement from a drawing to a type identical drawing. Syntactic
transformations relate equivalence-classes of marks which constitute drawings while
semantic transformations relate the contents.

Lateral transformations are very common in the free-hand sessions. To take just one
example, the transformation from drawing 9 to drawing 10 in Figure 3 is a lateral
transformation at both the syntactic and semantic levels. In Figure 4, the best example of a
lateral transformation is the transformation from drawing 8 to drawing 12. Vertical
transformations of the other hand are more common in MacDraw. Good examples from
Figure 4 are the transformations from drawing 1 to 2, 2 to 3, and 3 to 4. Duplicate
transformations only occurred in Macdraw.

Finally, reinterpretation occurs where a subject assigns one meaning to a drawing,
and then immediately, or at some later point in the session, assigns a different meaning to the
same drawing. For example, drawing 1 in Figure 3 was a "silhouette figure going from dark
to light”. It was later reinterpreted as a "light bulb" (drawing 7) and a "Berkeley student”
(drawing 12). In Figure 4, the "Shakespearean actor” in drawing 5 was reinterpreted as
Shakespeare in drawing 7. Reinterpretation provides a measure of ambiguity and/or
nondisjointness. As already noted, this experimental design does not permit a differentiation
between these two notions.

It is essential to note that the categories involved in the measurements of syntactic
density (hypothesis H1), semantic density (hypothesis H2), and ambiguity and/or
nondisjointness (hypothesis H3) are logically independent of each other. They are also inde-
pendent of the measurement of lateral and vertical transformations (hypothesis H4). This
latter point is particularly important. If there was a conceptual connection between the cate-
gories of the two sets of hypotheses then the measure of a successful manipulation of the
relevant syntactic and semantic properties across symbol systems would logically imply a
confirmation of the hypothesis H4.

Results

It is now time to compare the problem spaces across the two conditions. The first
thing to note is that there were no statistically significant differences in the mean durations of
episodes, the mean number of episodes per session or the mean duration of sessions (Table
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2). This suggests that the subjects did not have a great deal of difficulty in using MacDraw.
They were neither so frustrated as to shorten the sessions nor so handicapped as to be
unable to generate episodes or drawings. There were however significant differences across
the two conditions in the types of episodes and their accompanying transformations. These
data are discussed below and summarized in Table 3.

Table 2 approximately here

First of all, as hypothesized, the sketches or episodes in free-hand drawing were
much more densely ordered (i.e. more of them received a variation rating, see section on
coding scheme) than the drawings or episodes in MacDraw. At the syntactic level a mean of
11.2 (§= 5.1) sketches per session received a variation rating in free-hand while in MacDraw
a mean of only 3.0 (S= 3.4) drawings per session received a variation rating. The difference
is statistically significant (F (1,8)=46.0, p =.0007, one-tail).

Table 3 approximately here

Second, also as hypothesized, a similar difference exists at the semantic level. In
free-hand sketching a mean of 10.4 (S= 1.3) episodes per session were categorized as
variations, while a mean of only 4.1 (S= 3.9) episodes per session were categorized as such
in the MacDraw case. While there is a narrowing of the gap from the syntactic case, the
difference is statistically significant (F (1,8)=33.6, p =.0017, one-tail). The reason for this
narrowing is discussed below.

Third, also as predicted, the free-hand sketches are more ambiguous and/or
nondisjoint than the MacDraw drawings. There were a mean of 2.4 (S= 3.4) reinterpretations
in the free-hand sessions as compared to a mean of 0.67 (S= 0.87) in MacDraw. These
figures fall on the margin of significance (F (1,8)=6.5, p =.05, one-tail).

These results allow us to reject the null hypotheses associated with hypotheses H1,
H2, and H3 and suggest that the two symbol systems are indeed being used in the manner
predicted. That is, the free-hand sketches belong to a symbol system which nondisjoint,
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dense, and ambiguous, while MacDraw drawings belong to a symbol system which comes
close to being disjoint, nondense, and unambiguous. Now that we believe that our
manipulation of symbol systems via tools and media has been successful, we need to
investigate whether this has the predicted impact on the design problem space.

The fourth hypothesis, H4, predicted that the replacement of sketching type symbol
systems with drafting type symbol systems would hamper the exploration and development
of alternative solutions (i.e. lateral transformations) and force early crystallization of the
design. A comparison of the mean number of lateral transformations (both at the syntactic
and semantic levels) across the two conditions shows this to be indeed the case (Table 4).

Table 4 approximately here

At the syntactic level the free-hand (sketching) condition resulted in a mean of 8.9 (S=
4.4) lateral transformations per session. This is significantly more (F (1,8)=20.8, p =.006,
one-tail) than the mean of 3.2 (S= 3.2) found in the MacDraw (non-sketching) case. At the
semantic level the free-hand (sketching) condition resulted in a mean of 8.0 (S= 3.3) lateral
transformations. This is again significantly more (F (1,8)=15.7, p =.01, one-tail) than the
mean of 3.9 (S= 3.4) found in the MacDraw (non-sketching) case.

Discussion & Conclusion

Thus the data seem to provide the evidence needed to reject the null hypothesis as-
sociated with hypothesis H4. However, before actually accepting H4, there are several al-
ternative hypotheses that need to be considered. Hypothesis H4 predicts that the
manipulation will hamper certain cognitive processes. The first difficulty is that any
manipulation which results in a deviation from normal working conditions -- whether it be an
uncomfortable room temperature or being forced to draw with a 7 pound pencil -- will hamper
cognitive processes. So the differences that have been noted may have nothing to do with
the theoretical reasons underlying the manipulation, but may simply result from the fact that
one system of drawing (free-hand sketching) was more familiar, or easier to use, than the
other (MacDraw).
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There are several reasons for rejecting this alternative hypothesis. First, as already
noted, the manipulation does not affect the duration of sessions, the number of episodes
generated per session, and the duration of these episodes (see Table 2). Neither does it
have any effect on the number of new alternative solutions generated per session. At the
syntactic level subjects generated a mean of 5.2 (S= 3.9) new alternatives per session for the
free-hand condition as compared with a mean of 4.0 (S= 1.6) for the MacDraw condition (F
(1,8) < 1). At the semantic level the free-hand condition resulted in 5.6 (S= 3.9) new
episodes while the MacDraw condition resulted in 3.9 (S= 1.2) episodes (F (1,8) < 1). Soit
does not seem to be the case that free-hand sketching is easier to use, or simply more
familiar than the MacDraw. Second, it is interesting to note that subjects actually asked for
the computational medium during the latter stages of their free-hand design sessions.

A second alternative hypothesis which may account for the results is that, the
differences observed are not a result of the manipulation, but rather the protocol analysis
methodology. The claim here is that there are really no differences across the two conditions.
What seems like a disruption of lateral transformations can be more simply accounted for as
an unfortunate artifact of the methodology. The fact of the matter is that the system of
internal representation is nondisjoint, dense, and ambiguous. Thus there is a better match
between it and the system of sketching than the system specified by MacDraw. This fact
combined with a well accepted hypothesis about protocol analysis -- that a more complete
record of internal activity will result if there is a good match between the internal and external
symbol systems than if there is not (Ericsson & Simon, 1984) -- suggests that what is being
interpreted as a disruption of certain cognitive processes is just a difference in the com-
pleteness of the records. That is, the free-hand protocols are a more complete record of
cognitive activity than the MacDraw protocols. If the two records were equally complete (or
incomplete) no difference in the number and distribution of lateral and vertical transformations
across the two conditions would be apparent.

I have much sympathy for this interpretation. And there is some evidence to support
it. The discrepancies between the correspondence of the various syntactic and semantic
measures noted above suggest that less of the cognitive burden is being off loaded on the
external symbol system in the MacDraw case than the free-hand case. One way of dealing
with this interpretation is to examine and evaluate the quality of the designed artifact across
the two conditions. This however, is not feasible for a number of reasons. First, given the
time constraints, subjects were unable to generate a complete design. Second, it is
notoriously difficult to evaluate design solutions.
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However, the acceptance of this interpretation does not jeopardize the conclusion 1
wish to draw from the study, in fact, it leads to a much stronger conclusion. I am postulating
that different external symbol systems are correlated with different cognitive functions. The
cost of accepting this alternative hypothesis is to postulate that different external symbol
systems are correlated with different cognitive machinery.

I have argued elsewhere (Goel, 1991) that this may indeed be the right conclusion.
However, this argument cannot be made solely (or even primarily) on the basis of these
results. Therefore, the conclusion to be drawn from the study seems to be that (i) there are
good reasons to differentiate between different types of "picture-like" representations and (ii)
free-hand sketches -- by virtue of allowing syntactic and semantic density and
intersection/inclusion, and being ambiguous -- play an important role in the creative,
explorative, open-ended phase of problem solving. This role includes the facilitation of lateral
transformations and the prevention of early fixation or crystallization (via density, ambiguity
and/or nondisjointness of drawings and contents and/or referents). These functions are
hampered by external representations which lack these properties.
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Table 1:
Differentiating Sketching and Drafting Systems

Drafting Systems Sketching Systems

Syntactic Properties

Demarcation of Types Disjoint Nondisjoint

Ordering of Types Non-dense Dense
Semantic Properties

Reference Link Unambiguous Ambiguous

Demarcation of Reference- Disjoint Nondisjoint

Classes

Ordering of Reference-Classes Non-dense Dense
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Table 2:
Mean Duration of Sessions and Episodes in Minutes, and Mean Number of Episodes per
Session
Free-hand MacDraw

Mean duration of sessions 56.7 (S =13.1) 53.2 (S =14.6)
(min)
Mean duration per episode 2.5 (S =1.3) 2.8 (S =0.6)
(min)

Mean number of episodes 16.4 (§ =7.8) 14.4 (S =6.1)
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Table 3:
Mean Numbers of Densely Ordered Episodes and
Reinterpreted Episodes per Session

Free-hand MacDraw
Syntactic Density 11.2 (§=5.1) 3.0 (§=3.4)
Semantic Density 10.4 (8=1.3) 4.1 (§=3.9)

Ambiguity 2.4 (S=3.4) 0.67 (S=0.87)
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Table 4:
Mean Numbers of Lateral Transformations per Session

Free-hand MacDraw
Syntactic Lateral 8.9 (S=4.4) 3.2 (§=3.2)
Transformations
Semantic Lateral 8.0 (§=3.3) 3.9 (8=3.4)

Transformations
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Figure Captions

Figure 1. Correlation of symbol systems and design phases. See text.

Figure 2. Transformations in external drawings accompanying design problem solving
phases.

Figure 3. Output of a sketching session from a Cognitive Science Program Poster task.
Figure 4. Output of a MacDraw session from a Shakespeare Festival Poster task.

Figure 5. There is a one-to-one correspondence between alternative solutions, episodes &
drawings.

Figure 6. Coding scheme in Backus-Naur form.
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The Cognitive Role of Sketching: 45
<code>
where
<code> = <source type> <transformation type> #_of_reinterpretations
<SOUrce type> = <syntactic source> <semantic source>
<symactic source> = LTM <previous_solution>
<semantic soum»' ol LTM <previous_solution>
<previous_solution> ;= variation identical+/- identical
<transformation type> ::= <syntactic transformation> <semantic transformation>
<syntactic transformation> = new_generation <transtorm previous solution>
<semantic transformation> ::= new_generation <transform previous solution>
<transform previous solution> ::= lateral_transformation vertical_transformation duplication
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