
p NAVSWCTR91-n3 AD-A255 656111(1 (~llf 1(11111HIIIHMIliI

ADA-BASED MULTITASKING TERMINAL IO

BY JOHN C. CHALKLEY MICHAEL W. MASTERS

COMBAT SYSTEMS DEPARTMENT

FEBRUAY 1992 D TIC
EL-ECT L'S..

Approved for public relemi; distribution is unlimited.

NAVAL SURFACE WARFARE CENTER
Dahigren, Virginia 22446-5000 . Silver Spring. Maryland 20903-5000

*A r 92-25054

92 9 12 102II lf1If 1fI Ul11 If iiI 111I llLI •

NAVSWC TR 91-783

ADA-BASED MULTITASKING TERMINAL I/O

BY JOHN C. CHALKLEY MICHAEL W. MASTERS
COMBAT SYSTEMS DEPARTMENT

S

FEBRUARY 1992

Approved for public release; distribution is unlimited.

NAVAL SURFACE WARFARE CENTER

Dahlgren, Virginia 22448-5000 e Silver Spring, Maryland 20903-5000

NAVSWC TR 91-783

FOREWORD

This report describes a set of reusable Ada packages designed by NSWCDD to
perform flexible terminal I/O functions in an Ada multitasking application
programming environment. Many terminal 1/0 services offered by Ada compiler
vendors (e.g., the TEXTJO package required by the Ada Language Reference
Manual) do not provide adequate concurrency primatives to support use in
multitasking programs. In particular, they are process synchronous rather than task
synchronous/process asynchronous, causing all program activity to block during
waits for keyboard input. Thus, they cannot be used effectively in real-time systems.

This software, called "ANSI Terminal Services," provides nonblocking
terminal 1/O and full concurrency protection for multitasking operations, including
use of multiple terminals from a single application program. ANSI Terminal
Services is designed to be used with a wide range of compilers, operating systems, and
terminal hardware configurations, with a minimum of modification. Currently
supported operating systems are DEC VAX VMS and SUN OS 4.1 (BSD 4.3 UNIX).
Development of an MS-DOS version would be straightforward. Terminal hardware
customization is supplied in the form of user-defined files that permit use with a wide
variety of terminals. There is virtually no compiler-unique dependency in the design.

The development of ANSI Terminal Services was initially funded by a
NAVSWC AEGIS Engineering Initiatives Study, which investigated using Ada for
future AEGIS baselines. Since its initial development, it continues to be used in a
variety of applications, including in the NAVSWC AEGIS CDS Distributed
Architecture Experiment (CDAE), in the joint DARPA/AEGIS High-Performance
Distributed Computing Project (HiPer-D), and in an analyst's testbed that is being
used for development of new TOMAHAWK Track Control Group (TCG)
mathematical algorithms. This report is intended to provide full documentation in
order to foster further use of the software.

The authors acknowledge the considerable contribution of Catherine Ray, who
developed early versions of several components of ANSI Terminal Services, including
a line editor and certain keyboard input features. The authors also acknowledge the
contribution of Harry Leung, who developed the low-level interface to SUN OS 4.1.

0

NAVSWC TR 91-783

This report has been reviewed by Richard Stutler, Head, Combat System 0
Technologies Branch, and R. Neal Cain, Head, Engineering and Technology Division.

CARLTON W. DUKE,. Head
Combat Systems Department

0

0

ii

NAVSWC TR 91-783

0

ABSTRACT

This report describes "ANSI Terminal Services," a reusable Ada-based layered
approach to providing protected asynchronous terminal 1/0 in a multitasking
environment. The traditional single-threaded, sequential programming model is
inadequate for Ada multitask programs, particularly for real-time applications. An
application is likely to contain several tasks needing to perform output concurrently.
Any shared resources contained in the 1/0 software must, therefore, be protected
through some form of mutual exclusion. Also, an application will likely need to
support input operations concurrently with outputs. This requirement is especially
important since Ada implementations on most current operating systems are process
synchronous, rather than task synchronous/process asynchronous. As a result, they
cause the entire user process to block on an input request. Thus, other program tasks
that may be performing critical functions are suspended until user input is complete.
Such a result is clearly inappropriate in a real-time environment. ANSI Terminal
Services solves these problems and provides both a standard programmer interface

* and the necessary multitasking concurrency control.

Accession For

INTIS GRA&I
I G

DTIC TAB 0
Enannounced El

Justi•t cation

Distributi on /

D'n~C •UA1X[i tNSECT•D 3 •AvailabilitY Codes

VnC Avail and/or
loDiet Speolal

iii/iv

NAVSWC TR 91-783

CONTENTS

Chapter Page

1 INTRODUCTION .. 1-1
1.1 DESIGN CONCEPT ... 1-3
1.2 TOP-LEVEL REQUIREMENTS 14
1.3 REPORT ORGANIZATION .. 1-7

2 FUNCTIONAL DEFINITION ... 2-1
2.1 OVERVIEW .. 2-1
2.2 VISIBLE DATA TYPES .. 2-5
2.3 PRIVATE DATA TYPES ... 2-18
2.4 TERMINAL ALLOCATION AND DEALLOCATION 2-21
2.5 OUTPUT SERVICES .. 2-22
2.6 INPUT SERVICES .. 2-26
2.7 CONVENIENCE FUNCTIONS 2-31
2.8 ELABORATED CONSTANTS 2-32
2.9 EXCEPTION HANDLING ... 2-32

3 DESIGN DESCRIPTION ... 3-1
3.1 ANSITERMINALSERVICES 3-1
3.2 ANSICURSORSERVICES 3-13
3.3 LINE EDITOR .. 3-18
3.4 KEYBOARD_INPUT .. 3-21
3.5 ASYNC_IO ... 3-24
3.6 ANSICONSTANTS ... 3-27

4 USAGE GUIDELINES ... 4-1
4.1 DESCRIPTION .. 4-1
4.2 POINT OF CONTACT ... 4-4

5 PERFORMANCE CHARACTERISTICS 5-1
5.1 SCREEN OUTPUT .. 5-2

6 FUTURE W ORK ... 6-1
6.1 X WINDOW SYSTEM .. 6-1
6.2 STAND-ALONE LINE EDITOR 6-1
6.3 PASSIVE TASKS .. 6-2
6.4 USER-DEFINED TERMINATORS 6-3
6.5 MONOCHROME SUPPORT .. 6-3
6.6 ASYNCHRONOUS TRANSFER OF CONTROL 6-3

v

NAVSWC TR 91-783

CONTENTS (Continued)

Chapter Pare

6.7 SIGNAL HANDLING 1/0 FOR UNIX 6-4
6.8 SUPPORT FOR ADDITIONAL OPERATING SYSTEMS 6-4

7 BIBLIOGRAPHY ... 7.1

Appendixes Page

A ANSITERMINALSERVICES SPECIFICATION A-1
B FORMAT FOR KEYBOARD MAPPING FILE B-1
C EXAMPLE KEYBOARD MAPPING FILE C-1
D FORMAT FOR CONSTANTS FILE D-1
E DEFAULT CONSTANTS FILE .. E-1
F EXAMPLE APPLICATION CODE F-1

DISTRIBUTION ... (1)

vi

NAVSWC TR 91-783

ILLUSTRATIONS

Figure Page

1-1 MULTITASK DISPLAY PROGRAM 1-2
2-1 PACKAGE DEPENDENCY DIAGRAM 2-2
2-2 LOGICAL KEY HIERARCHY ... 2-11
2-3 ONE USE OF THE LINE EDITOR TERMINATOR 2-30
3-1 ANSITERMINAL_SERVICES CONCURRENCY CONTROL 3-3
3-2 ABSTRACTED TERMINAL RESOURCE MANAGERS 3-4
3-3 SCREEN CONTROL TASK ... 3-6
3-4 KEYBOARD COIW OL TASK .. 3-10
4-1 EXAMPLE APPLICATION ... 4-2

TABLES

Tables Page

1-1 LAYERED APPROACH TO MULTITASKING TERMINAL 1/0 1-3
1-2 DEPENDENCIES AND RECOMMENDED PORTING MECHANISM 1-5
2-1 SUPPORTING PACKAGES ... 2-3
2-2 TYPES DERIVED OR REDECLARED IN ANSITERMINALSERVICES ... 2-6
2-3 PORT IDENTIFICATION RECORD (TYPE PORT_DATA) 2-7
2-4 ALLKEYS SUBTYPES .. 2-10
2-5 DEFAULT LOGICAL KEY MAPPINGS 2-13
2-6 CURSOR POSITION RECORD (TYPE POSITION) 2-14
2-7 TEXT COLOR RECORD (TYPE TEXTCOLOR) 2-16
2-8 CURSOR ATTRIBUTE RECORD (TYPE ATTRIBUTE) 2-16
2-9 VARIABLE LENGTH STRING RECORD (TYPE VSTRING) 2-17
2-10 FORMATTED TEXT RECORD (TYPE TEXT._REC) 2-17
2-11 TERMINAL RESOURCE MANAGER RECORD (TYPE TERMINAL) 2-21
2-12 SUBROUTINES OF THE SCREEN SUBPACKAGE 2-23
2-13 PROCEDURES FROM THE KEYBD SUBPACKAGE 2-27
2-14 LINE EDITOR OPERATIONS ... 2-29
2-15 FUNCTIONS TO RETURN PRIVATE TERMINAL DATA 2-31
2-16 IMPORTANT CONSTANTS INITIALIZED AT RUNTIME 2-32
3-1 LONG VARIABLE-LENGTH STRING RECORD

(TYPE LONGJ._STRING) ... 3-14
3-2 SUBROUTINES INTERFACED IN ANSITERMINALSERVICES 3-15
5-1 BENCHMARK RESULTS 5-1
5-2 BYTE COUNTS FOR SCREEN OUTPUT 5-3

vii/viii

NAVSWC TR 91-783

CHAPTER 1

INTRODUCTION

Terminal I/O in a multithreaded programming environment, such as that
supported by the task feature of the Ada programming language, engenders special
considerations. The traditional single-threaded, sequential programming model (i.e.,
program-wide execution suspension or blocking to wait for keyboard input and screen
scrolling of output) is inadequate for Ada multitask programs, particularly for real-
time applications.

Typically, multitasking programs differ in a variety of ways. First, within the
application program there are likely to be several, perhaps many tasks that need to
do output concurrently. Any shared resources contained in the 1/0 software must,
therefore, be protected through some form of mutual exclusion. At a minimum,
cursor state is a shared resource in such situations.

Second, the application program will likely need to suprort input operations
concurrently with outputs. This requirement is especially important since Ada
implementations on most current operating systems (e.g., VMS, UNIX, and MS-DOS)
are process synchronous rather that task synchronous/process asynchronous. As a
result, they cause the entire user process to block while the application waits for
input from the program user. Thus, other program tasks that may be performing
absolutely critical functions are suspended until user input is complete.

Third, real-time multitasking terminal use normally involves display screens
that map different program outputs to fixed locations or regions (panels) of the
screen. Thus, the values of critical status parameters may be displayed and updated
upon change in one or more screen panels: time of day, elapsed time, and other
critical parameters may be updated periodically in other panels; the user may be
prompted for text input in another panel; and a menu providing a number of program
control options, selectable via function or control keys, may be displayed in another
panel.

Figure 1-1 illustrates this situation. The user should be able to perform
normal editing functions concurrently with program-driven output to other panels.
However, upon input of a menu function key, the terminal handling software should
also be able to abandon user input at the text prompt and immediately initiate the

0

1-1

NAVSWC TR 91-783

.10

UL
Os" .

i- i i• :i
o : : ::".." '"......i: w...........• u

"2•::':::: ol

- -- ,•'\ - 1-

- -- -- %O

sLI.% %
%C

CL

R c _

& ,

1-2

NAVSWC TR 91-783

requested menu selection. In such applications, the screen as a whole must not be
allowed to scroll, although scrolling within some panels may be desired.

1.1 DESIGN CONCEPT

Some developers have provided useful reusable software packages that support
flexible terminal I/O, while ignoring the mechanisms needed to insure nonblocking
input and proper protection of shared resources in a multitasking programming
environment. In effect, these solutions leave the most difficult part of the problem to
the application developer, that of insuring that their products work properly in the
presence of multiple user tasks. The software described in this report approaches the
problem differently. It begins with the assumption that it is to be used in a
multitasking environment and, from the beginning, builds in the necessary
mechanisms for concurrency.

This approach has resulted in a layered set of terminal I/O Ada packages,
where input and output operations are built up step-by-step from low-level, system-
dependent I/O services, through successive abstractions, to a high-level user interface
that provides designed-in concurrency. This approach is shown in Table 1-1.

TABLE 1-1. LAYERED APPROACH TO MULTITASKING TERMINAL 110

Ada Multitasking Application

ANSI Terminal Services Programmer Interface

ANSI Terminal Services Concurrency Control

Intermediate I/O Services
"* Location-specified screen output
"* Cursor control via ANSI escape sequences
"* Line editing of text entry
"* Basic abstracted keyboard input
"* Bindings to low-level I/O

Operating System Specific Nonblocking I/O

Note that the highest layer, called "ANSI Terminal Services" throughout this
report, provides both a standard programmer interface and the necessary
multitasking concurrency control. Lower, nonconcurrent levels are effectively
hidden, but can be used directly, if needed, by a knowledgeable designer. The bottom
layer, nonblocking I/O services, is operating system specific. One of the key features

1-3

NAVSWC TR 91-783

of the layered design is localization and minimization of these dependencies in order A
to support portability and reuse to the maximum extent possible. W

1.2 TOP-LEVEL REQUIREMENTS

The multitasking operating environment described above, combined with
goals of portability and reusability, lead to a number of top-level requirements for the
terminal I/O capability illustrated in Table 1-1. These requirements primarily
address functional capabilities, but the need for portable and reusable software has
an additional impact on design. Each requirement is first listed below, then further
elaborated in the paragraphs that follow. Chapter 2 and Appendix A provide a
complete and definitive specification of program interface and functional -apabilities,
including:

"* Portable, reusable Ada design with minimum dependencies on terminal
hardware, operating system services, and compiler-specific features

"* Built-in mutual exclusion and nonblocking I/O support, including timed
input operations, for Ada multitasking applications

"* Support for fixed screen input and output using standard ANSI escape
sequences, including color when available

"* Keyboard independence, including a mechanism to dynamically bind edit
keys, function keys, etc., at runtime

"• Standard keyboard input features, including line editing, timed input, and
immediate input termination on detection of function and control keys

"* Use of multiple terminals from the same program

"* Use of terminal ports for direct intercomputer I/O

1.2.1 Portable Ada Design

The goal of portability and reusability is, strictly speaking, not one of
functionality, but rather of design. This goal is achieved primarily through the
proper choice of layering. The layered approach was introduced in the previous
section. Table 1-2 lists hardware and operating system dependencies, together with
the recommended mechanism for porting to alternate implementations.

0

1-4

NAVSWC TR 91-783

S
TABLE 1-2. DEPENDENCIES AND RECOMMENDED PORTING MECHANISM

DEPENDENCY LOCATION PORTING REQUIREMENT

Keyboard escape Keyboard input User-definable dynamic key mappings read from
sequence values package user-specified file.

Operating system 1/0 Asynchronous I/O Rewrite of package body to use OS-specific
services package nonblocking I/O services.

Cursor control escape Cursor services Rewrite of escape sequence data declarations in
sequences package package body.

Limit values Constants package Limit values input from user-specified file during
elaboration.

Task priorities ANSI Terminal Package recompilation (Ada task priorities must be
Services package static).

S 1.2.2 Multitasking, Nonblocking I/O

In addition to providing a functional capability, support for multitasking
during 1/0 operations impacts design as well. In particular, it implies the presence of
some form of mutual exclusion to protect shared resources during input and output
operations. Specifically, the location and color attributes of the cursor must be
protected during I/O by multiple application tasks. Without this protection, it is
impossible to insure the integrity of screen output and of keyboard input. As will be
shown in Chapter 3, this protection is provided by two Ada tasks: a screen control
task and a keyboard control task. These two tasks interact during input operation,
because the screen task is used to echo printable keystrokes upon input via the
keyboard.

Nonblocking I/O support is operating system dependent. This may be
accomplished in three ways. The first is through some form of interrupt mechanism,
such as software traps or signals. This method might more accurately be called
asynchronous 110. Some operating system vendors provide Ada bindings to such
services, in which case this approach is to be preferred. For example, Digital
Equipment Corporation (DEC) provides Ada packages (STARLET, TASKING_
SERVICES, CONDITIONHANDLING), which permit use of VMS operating system
asynchronous system traps (AST).

The second method involves polling the input channel to determine if any
keystrokes have been entered. Any available input is processed. If no input is

1-5

NAVSWC TR 91-783

available, a delay is executed, followed by another polling operation. This method
has two disadvantages. First, the polling operation consumes CPU time if there is no V
data available; and second, a keystroke arriving just after execution of the delay
operation will not be detected and processed until after the delay expires, thus
introducing a small latency. Choice of a suitable polling interval is critical to
performance.

Ada implementers on UNIX systems have been less inclined to supply organic
asynchronous input support, leaving application developers the problem of building
their own SIGNAL-handling routines. The current release of ANSI Terminal
Services for SUN OS is a polling implementation.

The third method for achieving nonblocking I/O is through use of an operating
system that supports multiple threads of execution within the user's process. In such
operating systems, waiting for input in one thread will not block program execution
in any other thread. The MACH operating system and its derivative, OSF-1, are
examples. The POSIX operating system interface standard specifies a similar
capability, called "p-threads," although POSIX/p-thread -compliant operating
systems are only now beginning to appear in the commercial arena.

1.2.3 ANSI Standard Fixed Screen Color Output

There is an ANSI standard for escape sequences used to control terminal cursor
location and attributes; e.g., line-wrap mode (on or oft), blink setting, reverse video,
bold text, and color. Virtually all terminals use this standard, although not all
terminals support color. ANSI Terminal Services makes use of these ANSI escape
sequences. Nonstandard terminals are not supported. In particular, to achieve fixed
screen output stability, line-wrap mode is automatically set to off to prevent wrap or
scrolling.

1.2.4 Keyboard Independence

Although ANSI escape sequences provide a widely accepted standard for screen
output, no such standardization exists for keyboards. Virtually every computer and
terminal vendor provides unique products, either in keys present on the keyboard or
in escape sequences generated by individual keystrokes or both. The printable and
control keys, of course, generate standard ASCII key codes in the range of zero to 127.
But edit keys and function keys follow no such standard, either as to key name or
escape sequence generated.

Providing a mechanism to permit dynamic binding of keystroke to escape
sequences is crucial to the portability of software across terminal hardware. The
terminal I/O services described in this report support dynamic binding by means of a

1-6

NAVSWC TR 91-783

user-specified file containing the mapping of edit and function keys to escape
S sequences.

1.2.5 Standard Keyboard Input Operations

A number of standard input operations are desirable. These include the ability
to perform line editing using standard edit keys; the ability to read all keystrokes
supported by the keyboard, including function keys; and the ability to perform timed
input. In the last case, the input operation should terminate either on completion of
the requested input or expiration of the specified time interval, with suitable
indication of which termination mode was experienced. Finally, in the case of both
timed- and line-edit operations, immediate termination of input must be performed
on the detection of function and control keys.

1.2.6 Use of Multiple Terminals

In many applications, it is useful to be able to control many terminals from the
same program. Most operating systems provide services to assign multiple terminal
ports to the same user process. In some cases, this operation must be accompanied by
system privileges beyond those granted to a normal user process. Further, it is also
useful that access to each port be bound at runtime to programmer-referenceable
data structures so that terminal identity can be tested for, passed as a subprogram
calling parameter, and assigned as a component of other data structures (e.g., as a
component of an array). ANSI Terminal Services provides this mechanism by means
of an Ada private type that is allocated at runtime when the operating system port
assignment service is called.

1.2.7 Direct Intercomputer 1/0

Terminal ports may be used to perform intercomputer I/O in addition to
normal screen output and keyboard input operations. In this case, the use of cursor
control on output, and escape sequence parsing on input are bypassed. Otherwise, the
mutual exclusion mechanisms supplied to support multitasking programming are
still present. Note that since no cursor control is applied, if this mode of 110 is used in
conjunction with a terminal, and if the output string includes a carriage return, a
traditional scrolling screen display can be accomplished.

1.3 REPORT ORGANIZATION

The remainder of this report is divided into five additional chapters. Chapter 2
provides a detailed specification of ANSI Terminal Services capabilities. It is the
programmer's interface guide. It deals only with the package specification of the

1-7

NAVSWC TR 91-783

highest layer of software, package ANSITERMINAL_SERVICES. Lower layers are
discussed in Chapter 3. In addition to discussing the specifications of lower-level W
packages, this third chapter also describes the details of the implementations
contained in each package body, including ANSITERMINAL_SERVICES.

Chapter 4 illustrates the use of ANSI Terminal Services in a concise example.
Chapter 5 provides a limited discussion of the execution performance characteristics
of this software. It should be cautioned that performance is highly system dependent.
Users should rely on their own benchmark tests, where performance is an issue.
Finally, Chapter 6 briefly discusses areas that may experience further development
in the future.

1-8

NAVSWC TR 91-783

CHAPTER 2

FUNCTIONAL DEFINITION

This section specifies and defines the capabilities of a set of asynchronous 110
packages written in Ada. Collectively, these packages provide a highly reusable
means for protected terminal 1/0 in a multitasking environment. For instance, users
may safely perform I/O such as line editing and screen updating within concurrent
Ada tasks. Specifically, these packages include the following capabilities:

"* Convenient routines for assigning ports
"* A flexible means of mapping any keyboard at runtime
" 1/0 routines that protect critical resources shared among Ada tasks
"* Means of imposing time constraints upon read requests
"* Color support for adequately equipped terminals
" Control over an arbitrary number of terminals

ANSITERMINALSERVICES is the single package that provides users with
the above capabilities. This chapter documents the specification of this package and
is organized as follows:

"* Overview of package hierarchy and capability
"* Visible data types
"• Private data types
"* Terminal allocation and deallocation
"* Output services
"* Input services
"* Convenience functions
" Elaborated constants
" Exception handling

2.1 OVERVIEW

The function and the purpose of ANSITERMINAL_SERVICES and its five
underlying support packages are briefly outlined in Sections 2.1.1 through 2.1.6. The
application interface and the interrelationships among this set of packages are
illustrated in Figure 2-1. While the functionality of ANSITERMINALSERVICES
is fully described here in Chapter 2, the supporting packages are documented in
Chapter 3, as referenced in Table 2-1.

2-1

NA VS WC TR 91-783

ANSITERMINALtSERVICES

UNE-EDITOR

E3SICURSOR...SER VICES KEYBOARD_-INU

ASYNCjO

ANSICONSTANTS

FIGURE 2-1. PACKAGE DEPENDENCY DIAGRAM

2-2

NAVSWC TR 91-783

TABLE 2-1. SUPPORTING PACKAGES

PACKAGE NAME REFERENCE

ANSICURSORSERVICES 3.2

LINEEDITOR 3.3

KEYBOARDINPUT 3.4

ASYNC_10 3.5

ANSICONSTANTS 3.6

2.1.1 ANSI Terminal Services

ANSITERMINALSERVICES addresses the problems inherent to concurrent
I/O and provides convenient, safe mechanisms for performing terminal I/O among
multiple Ada tasks. Specifically, ANSITERMINAL_SERVICES defines a terminal
resource manager that provides the synchronization necessary to perform I/O in a
multitasking environment on 7-bit terminals. This top-level package also provides
the complete interface users will need to access the functionality of all supporting
packages. As described in Section 2.2, ANSITEJMINALSERVICES derives all
data types and interfaces with procedures declared in lower packages so that
applications are dependent only upon this one package. Although the dependencies
have been removed, all functionality of the lower packages has been retained.

2.1.2 ANSI Cursor Services

ANSICURSORSERVICES includes the constants and types needed to
describe the cursor or a display. This supporting package also includes procedures
that use ANSI escape sequences to modify cursor and screen appearance. ANSI_
TERMINALSERVICES provides the necessary interface to this package so that
applications will not be dependent upon it.

2.1.3 Line Editor

LINE-EDITOR contains procedures to implement a simple yet flexible line
editor that is not dependent upon any particular keyboard. It has the capability of
presenting a default string that may be either accepted or edited by the user.

2-3

NAVSWC TR 91-783

Applications may access this editor through the top-level package ANSI-
TERMINALSERVICES. -

2.1.4 Keyboard Input

KEYBOARDINPUT defines an abstraction of a keyboard, which may then be
mapped to any physical keyboard. This binding is done at runtime via a keyboard
mapping file (See Appendices B and C). Dependent packages (LINEEDITOR and
ANSITERMINALSERVICES) operate upon KEYBOARDINPUT's abstracted
keys without concern for the underlying ASCII representation. In this manner,
KEYBOARDINPUT makes this entire set of Ada packages reusable. Because of
this design, the act of porting an application to another terminal should only involve
changing the keyboard bindings, rather than recompiling source code. As before,
applications may access KEYBOARDINPUT's functionality indirectly through
ANSITERMINALSERVICES.

2.1.5 Async 1O

ASYNC_1O is the lowest-level I/O package in this collection. Although the
package specification is applicable to almost any set of underlying operating system
terminal 1/0 services, the body of ASYNC_10 contains I/O routines which are largely
system dependent. One version of this package supports DEC's VAX/VMS system
calls, for example, while another supports UNIX. In either case, the functionality is
equivalent; ASYNC_1O initializes I/O channels and performs I/O services needed by
other packages in this collection. As with ANSICURSORSERVICES, LINE_
EDITOR, and KEYBOARDINPUT, this package should not be visible to an
application because its functionality is encapsulated within ANSI_TERMINAL_
SERVICES.

2.1.6 ANSI Constants

ANSICONSTANTS initializes critical constants at runtime. During package
elaboration, this package opens the ANSI.DAT file and reads several integer values.
The higher packages, in turn, initialize their constants with the values from the file.
This allows users to customize ANSI_TERMINAL_SERVICES to their needs without
the need to recompile any source code. The constants initialized in this manner are
tabulated in Section 2.8. Appendix D describes the simple format of the constants
file, and Appendix E shows the contents of the default file.

2-4

NAVSWC TR 91-783

2.2 VISIBLE DATA TYPES

When performing terminal I/O in a multitasking environment, an application
needs data types providing the following capabilities:

"* Port assignment and identification
"* Keyboard layout specification
"* Cursor placement
"* Cursor attribute assignment
"* Formatted text specification

ANSITERMINAL_SERVICES provides the data types described in Sections
2.2.1 through 2.2.16 to meet the above needs. All of these types actually originate in
packages other than ANSITERMINAL_SERVICES. In an effort to decrease an
application's reliance upon multiple packages, all important data types from the
supporting packages are derived or redeclared in ANSI_TERMINAL_SERVICES.
With this simplified interface, a user needs only to make ANSITERMINAL_
SERVICES visible to the application without including any supporting packages.
Instead of WITHing the KEYBOARDINPUT package to gain access to a certain
type, for instance, a user references the corresponding derived type in ANSI_

S TERMINAL_SERVICES.

Unfortunately, Ada does not provide a convenient means of deriving record
types so that their individual components are also derived. If a record type from
ANSICURSORSERVICES is derived in ANSITERMINALSERVICES, for
example, the components of the new type will be of a type from the lower package. In
order to provide an interface with these records that is consistent with that of the
derived types described above, ANSI_TERMINAL_SERVICES redeclares important
record types from its supporting packages. These new types are identical in structure
and name to the original records. All explicit type conversions needed to implement
these new types are localized within ANSI_TERMINAL_SERVICES and should be of
no concern to the user. Table 2-2 lists both the derived types and the redeclared
record types, along with their originating packages.

2.2.1 Port Name

To identify a terminal port by name in ANSI_TERMINALSERVICES, users
should use the PORTNAME type. This type is simply a string containing a port
name that is valid for the present terminal (e.g., TXA1:, ttya). The string is
constrained in length by the constant MAXPORTNAMESIZE. If the default
length (15) is inappropriate, users may modify its value in the constants file (see
Section 2.8).

2-5

NAVSWC TR 91-783

TABLE 2-2. TYPES DERIVED OR REDECLARED IN ANSITERMINALSERVICES

ANSITERMINALSERVICESORIGINATING _____ _____

TYPE PACKAG REFERENCE
DERIVED REDECLARED

PORT-NAME ASYNC_10 / 2.2.1

PORT-DATA ASYNC1O 2.2.2

ALL-KEYS KEYBOARDINPUT / 2.2.3

ASCILKEYS KEYBOARD-INPUT 4 2.2.3

CTRLKEYS KEYBOARDINPUT / 2.2.3

PRINTABLE-KEYS KEYBOARDINPUT / 2.2.3

UCLETrERS KEYBOARD-INPUT 4 2.2.3

LCLETTERS KEYBOARD_INPUT / 2.2.3

NUMBER.KEYS KEYBOARD-INPUT 4 2.2.3

MAPPEDKEYS KEYBOARD-INPUT 4 2.2.3

EDITKEYS KEYBOARD-INPUT / 2.2.3

FUNCTION-KEYS KEYBOARDINPUT 4 2.2.3

MAPLJST KEYBOARD_INPUT L 2.2.4

LINE ANSICURSORSERVICES L 2.2.5

COLUMN ANSICURSORSERVICES / 2.2.6

COLUMN-INCREMENT ANSICURSORSERVICES 4 2.2.8

SCREEN-COLORS ANSICURSORSERVICES 4 2.2.9

INTENSITYSETTING ANSICURSORSERVICES / 2.2.10

BLINK_ SETTING ANSICURSOR SERVICES 1 2.2.11

VSTRING ANSICURSORSERVICES 2.2.14

LAYOUTINDEX ANSICURSORSERVICES . 2.2.16

POSITION ANSICURSORSERVICES 2.2.7

TEXT_-COLOR ANSI_ CURSOR._SERVICES, 2.2.12

ATTRIBUTE ANSLCURSOR._SERVICES 2.2.13

TEXT.REC ANSICURSORSERVICES, 2.2.15

LAYOUT ANSICURSORSERVICES 4 2.2.16

2-6

NAVSWC TR 91-783

@ 2.2.2 Port Description

To aid in the assignment of a terminal port, ANSITERMINALSERVICES
provides the PORTDATA record type (see Table 2-3). This type is an encapsulation
of the requested port name and an assigned index into an internal channel array of a
system-dependent data type. When initializing a terminal, applications simply
supply a value of type PORT_NAME (2.2.1). The supporting package ASYNCIO
subsequently provides access to this port and assigns a value to PORTDATA's
channel index component. This index is of the private subtype CHANNELTYPE
(3.5.1) and includes integers in the range 1 to 16. If more than 16 channel indexes are
required for an application, the constant MAXCHANNELS may be customized by
altering the constants file (see Section 2.8). Normally, of course, applications should
have no concern with the assigned channel or its index. These constructs are internal
to ANSITERMINAL_SERVICES and ASYNCIO and are set when the user names
a requested port.

TABLE 2-3. PORT IDENTIFICATION RECORD (TYPE PORTDATA)

COMPONENT TYPE LEGAL VALUES ASSIGNMENT REFERENCE

Port-ID PORT-NAME string (1..MAXPORTNAMESIZE) By application 2.2.1

Channel CHANNEL-TYPE 1..MAXCHANNELS By ASYNC-1O 3.5.1

2.2.3 Logical Keys

Since ANSITERMINALSERVICES was designed to be highly reusable, it
considers the fact that all keyboards are not identical. Some have ten function keys,
while others have twenty, or none at all. Similarly, some keyboards allow separate
meta-key combinations such as Shift-F1 or Control-Fl. Another common disparity
involves keys related to editing functions. Some keyboards have keys labeled Insert
and Erase Line, while others do not. ANSI_TERMINALSERVICES addresses this
problem with a collection of logical keys.

A keystroke or logical key should be considered an abstraction of the keyboard
and can represent one or more ASCII characters. For example, if a user presses a key
corresponding to a printable ASCII character, then the keystroke is simply a
representation of that individual character. However, the user may press a function
or edit key that generates a series of ASCII characters prefixed by an escape
character (ASCII 27). This entire sequence of characters (usually three to five

2-7

NAVSWC TR 91-783

characters in length) is commonly called an escape sequence and also corresponds to a
single logical key.

Type ALLKEYS is originally declared in KEYBOARDINPUT and is derived
in ANSITERMINALSEEVICES. It is merely an enumerated type listing 242
possible logical keys. The contents of ALLKEYS are listed below in their proper
enumerated order:

(ASCII Control Characters:)

NUL,
CTRL_A, CTRL_B, CTRLC, CTRL_D, CTRLE,
CTRLF, CTRLG, CTRL_H, CTRL_I, CTRL_J,
CTRLK, CTRL_L, CTRL_M, CTRL_N, CTRLO,
CTRLP, CTRLQ, CTRL_R, CTRLS, CTRL_T,
CTRLU, CTRLV, CTRL_W, CTRL_X, CTRLY,
CTRL_Z, ESC, FS, GS, RS,
US,

(ASCII Printable Characters:)

SPC, EXCLAM, QUOTATION, SHARP,
DOLLAR, PERCENT, AMPERSAND, SINGLE-QUOTE,
L_PAREN, RPAREN, ASTERISK, PLUS,
COMMA, MINUS, PERIOD, SLASH,

ZERO, ONE, TWO, THREE, FOUR,
FIVE, SIX, SEVEN, EIGHT, NINE,

COLON, SEMICOLON, LESSTHAN, EQUAL,
GREATERTHAN, QUERY, ATSIGN,

UCA, UC_B, UCC, UCD, UC_E, UCF UC_G,
UCH, UCI, UCJ, UCK, UCL, UCM, UC_N,
UC_-O, UC_P, UCQ, UC_R, UCS, UCT, UC_U,
UCV, UC_W, UCX, UCY, UC_Z,

L_BRACKET, BACKSLASH, RBRACKET,
CIRCUMFLEX, UNDERLINE, GRAVE,

LCA, LCB, LCC, LCD, LC_E, LCF LCG,
LCH, LCj, LCJ, LCK, LC_L, LCM, LC_N,
LC_0, LCP, LCQ, LCR, LC_S, LCT, LC_U,
LCV, LCW, LCX, LCY, LC_Z,

L_BRACE, BAR, RBRACE, TILDE, DEL,

2-8

NAVSWC TR 91-783

* (Edit keys:)

DELETE, INSERT, HOME, ENDD,
ERASELINE, BACKSPACE, LEFTARROW, RIGHTARROW,
TAB, TABREVERSE, PAGEDOWN, PAGEUP,
UPARROW, DOWNARROW,

(Function keys:)

FK1, FK2, FK3, FK4, FK5, FK6, FK7, FK8, FK9, FK10,
FK11, FK12, FK13, FK14, FK15, FK16, FK17, FK18, FK19, FK20,
FK21, FK22, FK23, FK24, FK25, FK26, FK27, FK28, FK29, FK30,
FK31, FK32, FK33, FK34, FK35, FK36, FK37, FK38, FK39, FK40,
FK41, FK42, FK43, FK44, FK45, FK46, FK47, FK48, FK49, FK50,
FK51, FK52, FK53, FK54, FK55, FK56, FK57, FK58, FK59, FK60,
FK61, FK62, FK63, FK64, FK65, FK66, FK67, FK68, FK69, FK70,
FK71, FK72, FK73, FK74, FK75, FK76, FK77, FK78, FK79, FK80,
FK81, FK82, FK83, FK84, FK85, FK86, FK87, FK88, FK89, FK90,
FK91, FK92, FK93, FK94, FK95, FK96, FK97, FK98, FK99, FK100

Most of these logical keys correspond directly to the ASCII character set. supported by all keyboards. For example, ALL_KEYS includes entries such as
AMPERSAND, LBRACKET, LCA, and UC_A to match the ASCII characters &, [,
a, and A, respectively. It should be noted from the list above that the ordering of the
elements within type ALLKEYS is not arbitrary. Those logical keys, corresponding
to the 128 ASCII characters, are positioned such that they parallel the ordering
exhibited by the ASCII character set. For example, logical key UCA occupies
position 65 in type ALLKEYS, and the ASCII character A corresponds to position 65
in the character set.

In addition to the 128 ASCII logical keys, ALL_KEYS includes 14 edit
keystrokes (DELETE .. DOWNARROW) common to most keyboards. Since such edit
keys are not standardized, the physical keys may generate different escape sequences
on different keyboards. Their corresponding logical keys, however, may be mapped to
whatever escape sequence the actual keys generate (see Section 2.2.4). Of course,
there may not even be a corresponding physical key. In this case, the keystroke could
be mapped to any physical key, such as a function key, that generates an escape
sequence. If a keyboard has no Home key, for example, the logical key HOME could
easily be mapped to the key labeled Fl. Alternatively, the edit logical key could be
mapped to a control character if no corresponding physical key exists. For example,
HOME could be mapped to Control-H if a keyboard has no key labeled Home. Users
will notice that the three logical keys TAB, BACKSPACE, and DELETE normally
are equivalent to ASCII 9, 8, and 127, respectively. By default, these keystrokes will
be mapped in this manner. If needed, these mappings can easily be changed to fit any
user's preferences or any keyboard layout (see Section 2.2.4).

2-9

NAVSWC TR 91-783

For greater flexibility, ALLKEYS also includes 100 extra logical function
keys, which can be bound to any escape sequence. These extra keystrokes (FK1, FK2,
... FK100) are commonly associated with function keys, meta-combinations (e.g.,
Shift-F2), and edit keys that have no direct equivalent within ALLKEYS. Given
these 100 extra logical keys, type ALLKEYS should cover virtually all possible
keypresses a keyboard supports.

KEYBOARDINPUT partitions type ALLKEYS by declaring the nine
subtypes of Table 2-4. These subtypes group the logical keys functionally. For
example, type UC_LETTERS consists of the logical keys corresponding to the
uppercase letters. As shown in Figure 2-2, these new types also exhibit a natural
hierarchy. The logical key SIX, for instance, ; a member of the NUMBERKEYS
type. Therefore, it also falls within the PRINTABLEKEYS range and, in turn, the
ASCIIKEYS range. Like ALLKEYS, these nine subtypes are also derived in
ANSITERMINALSERVICES.

TABLE 2-4. ALLKEYS SUBTYPES

SUBTYPE NAME RANGE KEYS

ASCIIKEYS NUL.. DEL 128

CTRLKEYS NUL.. US 32

PRINTABLEKEYS SPC .. TILDE 95

UC-LETTERS UCA .. UCZ 26

LC-LETTERS LCA .. LCZ 26

NUMBER-KEYS ZERO.. NINE 10

MAPPEDKEYS DELETE .. FK100 114

EDITKEYS DELETE .. DOWNARROW 14

FUNCTIONKEYS FK1 .. FK100 100

2.2.4 Keyboard Bindings

Given any keyboard and KEYBOARDINPUT's list of logical keys, a means
must exist to link the two. Some logical keys, of course, are bound automatically
because they correspond to members of the ASCII character set. After all, users
should not need to map a printable ASCII character, because the standard dictates

2-10

NAVSWC TR 91-783

0

M IL IL L I

z)0 Ia
4u w

Z t=g' 0 Z(I

LL w

OW3: c c c c 0

iIU LU J

(A wCU (ZU

w 9 Iw

0. L 0 PC I P

IW 3 mm

CLc cC o u4IL J,*r 0

-~~~

Y.~0I~
W WWl

Zi~

I~~ 0i....0~

w 111011

w2-1

NAVSWC TR 91-783

commonality across keyboards. Pressing the spacebar, for instance, will generate an
ASCII 32, regardless of a keyboard's layout. Therefore, logical keys corresponding to W
the 128 ASCII characters are automatically mapped to individual characters simply
by their position within the enumerated type ALLKEYS.

Non-ASCII keystrokes, however, conform to no standard and therefore must be
explicitly mapped to their associated escape sequence. Of the 242 elements of
ALLKEYS, those of the MAPPEDKEYS subtype (2.2.3) must be bound in this
manner. This range of logical keys includes those associated with editing keys and
function keys. When one of these keys (e.g., an arrow key) is pressed, an escape
sequence results, which often varies both in content and size among different systems.

Since ALLKEYS was designed to accommodate any keyboard, it also allows
physical keys with no logical key equivalent to be mapped to the function logical keys
(FK1 - FK100). The escape sequence generated by a Help key, for example, could
easily be mapped to FK1. Mappings also apply to the opposite case. That is,
ALLKEYS contains edit keys that some keyboards do not support. If this is the case,
the functionality associated with the edit logical key could be mapped to an ASCII
control character. In this manner, a keyboard with no Home key could associate the
keystroke HOME with the Control-H character.

ANSITERMINALSERVICES records all of these necessary bindings with
the MAPLIST type. This type is an array of strings of type ESCAPESEQUENCE
(3.4.1) indexed on the logical keys of the MAPPEDKEYS subtype (2.2.3). Depending
on the logical key being mapped, the corresponding strings may be escape sequences
or individual ASCII control characters. The function logical keys (FK1 -FK100), for
example, may be mapped only to escape sequences. The other mappable logical keys,
however, may be bound to escape sequences, control characters, or the ASCII DEL
character. For instance, users may want to map TAB to Control-I (ASCII 9) and
RIGHTARROW to <ESC>[C. Regardless of the logical key, the length of the
strings being mapped is constrained by the MAXESCLEN constant. The default
length is five, but the constant may be set by the user in the constants file (see
Section 2.8), thereby eliminating the need for recompilation.

Variables of the MAPLIST type are assigned values at runtime by accessing a
keyboard mapping file. When a terminal is being initialized by ANSITERMINAL-
SERVICES, the specified mapping file is read, and the individual keyboard is
conveniently mapped to the functionality associated with the logical keys. The
application writer merely sets up a mapping file, as described in Appendix B, and
passes its filename as a parameter to CREATETERMINAL (2.4.1). (Appendix C
lists a sample mapping file.) If a mappable logical key is not explicitly mapped in this
file, its corresponding array element usually is assigned a string of blanks
(ASCII 32). Since the mappings for the logical keys listed in Table 2-5 are common for
many keyboards, however, they are explicitly initialized by KEYBOARDINPUT as
shown. Of course, users may overwrite any inappropriate defaults by specifying the
correct mapping in the file.

2-12

"NAVSWC TR 91-783

TABLE 2-5. DEFAULT LOGICAL KEY MAPPINGS

LOGICAL KEY DEFAULT MAPPING

TAB Control-I (ASCII 9)

BACKSPACE Control-H (ASCII 8)

DELETE DEL (ASCII 127)

UP-ARROW <ESC>[A

DOWNARROW <ESC>[B

RIGHTARROW <ESC>[C

LEFT-ARROW <ESC > [D

By abstracting the keyboard as a flexible collection of logical keys, we have
decoupled the functionality of a keypress from its actual representation. As a result,

Sapplications of ANSI_TERMINAL_SERVICES will be much more reusable. If these
applications are consistently designed around the logical keys, rather than on the
actual generated characters, then the application may be ported to different
terminals without changing any code. Only the mapping file associated with the new
keyboard will require modifications.

2.2.5 Screen Line Number

The LINE type from ANSITERMINALSERVICES is a subtype of the
integers and is used to specify a line or row number for the display. A screen's lines
are numbered beginning with one for the top line and continuing consecutively to the
bottom line. The type is given a default range of 1 through 25. If the upperbound is
too restrictive or too large, the MAXLINE constant may be modified in the constants
file (see Section 2.8).

2.2.6 Screen Column Number

Type COLUMN is derived in ANSITERMINALSERVICES to allow users to
refer to individual columns on a display. These columns are numbered such that the5 left-most column is referred to as column one, and the right-most column corresponds
to the MAXCOLUMN constant. The type assumes the default range of between 1

2-13

NAVSWC TR 91-783

and 80. If this upper bound is inappropriate for the display in use, the MAX-
COLUMN constant may be changed in the constants file (see Section 2.8). W

2.2.7 Cursor Screen Position

ANSITERMINAL_SERVICES provides the POSITION type to conveniently
specify individual screen coordinates. This type is often used when repositioning the
cursor, or when placing a string of text somewhere on the screen. This positioning is
absolute in reference to the upper left-hand corner of the display. As shown in Table
2-6, POSITION is simply an encapsulation of the LINE (2.2.5) and COLUMN (2.2.6)
types described above.

TABLE 2-6. CURSOR POSITION RECORD (TYPE POSITION)

COMPONENT TYPE VALUE RANGE DEFAULT REFERENCE

Row LINE 1 .. MAXRANGE 1 2.2.5

Column COLUMN 1 .. MAX_COLUMN 1 2.2.6

2.2.8 Screen Column Offset

COLUMNINCREMENT allows for a convenient way to specify a cursor's
intended position within the current line. Unlike the positioning provided by
COLUMN (2.2.6) or POSITION (2.2.7), that of COLUMNINCREMENT is relative to
the present cursor position. Because of this, advancing a cursor left or right within a
line often involves a value of type COLUMNINCREMENT. Another difference is
that COLUMNINCREMENT's range of values includes negative numbers, while
COLUMN and POSITION values are always greater than zero. The negative range,
of course, allows the cursor to move left towards column one. This type defines an
integer range with a default of -80 to 80. To change this range (and consequentially
the range of type COLUMN), users can modify the MAXCOLUMN constant in the
constants file (see Section 2.8).

2.2.9 Supported Screen Colors

In support of color terminals, ANSITERMINAL_SERVICES allows users to
specify the color of all screen 110. These color settings may be changed repeatedly
and at any time using the SCREENCOLORS type. This enumerated type is

2-14

NAVSWC TR 91-783

originally declared in ANSI_CURSORSERVICES and consists of the following eight
color values:

* BLACK
e RED
e GREEN
. YELLOW
e BLUE
* MAGENTA
9 CYAN
* WHITE

2.2.10 Text Intensity Settings

Many terminals (including those with monochrome displays) allow text to be
written to the screen using varying brightness levels. When displaying text on the
screen with ANSITERMINALSERVICES, the brightness of the resulting
characters can be specified using the derived enumerated type INTENSITY_
SETTING. This type comprises the following two enumerals:

* DIM and
**BOLD

2.2.11 Text Blink Settings

To highlight important text, many terminals allow displayed characters to
blink. Therefore, ANSITERMINAL_SERVICES provides the BLINKSETTING
enumerated type dei .-'-d from the package ANSI_CURSOR_SERVICES. When
writing text to the screen, applications may select a BLINKSETTING of:

"* BLINK or
" NOBLINK

2.2.12 Cursor Appearance

When performing screen I/O, it is usually desirable to be able to vary the
appearance of the resulting text. For instance, the foreground and background colors
of text should be easily specified within a program. In addition to color settings, a

cursor's appearance also includes its intensity or brightness level and its blink
setting. The type TEXT_.COLOR incorporates each of these settings into a single,
convenient type. TEXT-COLOR is a record whose components are of types

S SCREENCOLORS (2.2.9), INTENSITYSETTING (2.2.10), and BLINKSETTING
(2.2.11), as described above (see Table 2-7).

2-15

NAVSWC TR 91-783

TABLE 2-7. TEXT COLOR RECORD (TYPE TEXTCOLOR)

COMPONENT TYPE LEGAL VALUES DEFAULT REFERENCE

Background SCREENCOLORS Black, Red, Green, Black 2.2.9
Yellow, Blue,
Magenta, Cyan, White

Foreground SCREEN-COLORS Black, Red, Green, White 2.2.9
Yellow, Blue,
Magenta, Cyan, White

Intensity INTENSITY_SETTING Dim, Bold Dim 2.2.10

Blinking BLINKSETTING Blink, No-Blink No_Blink 2.2.11

2.2.13 Cursor Attributes

To fully describe the attributes of a cursor or its associated text, users must
specify both screen location and appearance. When writing a string to a display, for
instance, ANSI_TERMINAL_SERVICES must know where to place the text and how
to set its color, intensity, and blink settings. ANSI_TERMINALSERVICES
provides the ATTRIBUTE data type to encapsulate these parameters. As shown in
Table 2-8, ATTRIBUTE's two components are of the types POSITION (2.2.7) and
TEXTCOLOR (2.2.12), as described above.

TABLE 2-8. CURSOR ATTRIBUTE RECORD (TYPE ATTRIBUTE)

COMPONENT TYPE REFERENCE

Pos POSITION 2.2.7

Color TEXT-COLOR 2.2.12

2-16

NAVSWC TR 91-783

* 2.2.14 Variable Length String

The type VSTRING is a discriminated record originally declared in package
ANSICURSOR_SERVICES (see Table 2-9). Its discriminant is an integer of the
STRINGSIZE range (3.2.1.1), which constrains the record's string component. This
variable-length string allows users to assign formatted strings (i.e., text and its
attributes) without regard to their individual lengths (see Section 2.2.15). The
maximum size of the string is determined by the MAXCOLUMN constant and is
assigned at runtime by the ANSICONSTANTS package (see Section 2.8).

TABLE 2-9. VARIABLE LENGTH STRING RECORD (TYPE V_STRING)

COMPONENT TYPE REFERENCE

Len (Discriminant) STRINGSIZE 3.2.1.1

Str STRING (1.. LEN) N/A

O 2.2.15 Formatted String

Type TEXTREC is a record that groups a variable-length string of type
V_STRING (2.2.14) with its ATIRIBUTE (2.2.13) values (see Table 2-10). This
record is used for output services and allows the user to conveniently specify text and
its intended screen position and appearance.

TABLE 2-10. ORMATTED TEXT RECORD (TYPE TEXTREC)

COMPONENT TYPE REFERENCE

Text V_STRING 2.2.14

Att A[TTRIBUTE 2.2.13

2-17

NAVSWC TR 91-783

2.2.16 String Layout Array

The LAYOUT type is an array of TEXTRECs (2.2.15) and is intended to make
writing multiple strings more convenient for the user. When several lines of text
need to be displayed at one time, the user may use this array of formatted strings to
group the write requests. Rather than issuing a write request for each line in a block
of text, for instance, the user could initialize a LAYOUT array to hold the entire
block. A single write request would then handle all the text at once. As illustrated
later in Chapter 5 (Performance Characteristics), this approach is significantly more
efficient.

The LAYOUT array is indexed by the LAYOUTINDEX integer range.
LAYOUTINDEX constrains the array and, therefore, restricts the number of
individual formatted strings that may be written with a single write request. This
index range is determined at runtime when the ANSICONSTANTS package reads a
value for the MAXSTRINGS_IN_LAYOUT constant (see Section 2.8).

2.3 PRIVATE DATA TYPES

In addition to deriving or redeclaring types from lower packages, ANSI_
TERMINAL_SERVICES also declares several private types of its own. These types
provide the following capabilities required for a multitasking environment:

"* Dynamic terminal attributes,
"* Synchronization mechanisms for concurrent 1/0 requests, and
"* An abstracted and protected terminal.

2.3.1 Dynamic Keyboard Bindings

The type KEYMAPACCESS is private to ANSITERMINALSERVICES
and is simply a pointer to an instance of the MAPLIST (2.2.4) type. This access type
allows a keyboard mapping list to be created dynamically. Since
ANSITERMINALSERVICES is designed to support several terminals
simultaneously, each terminal can allocate a variable of type KEYMAP_ACCESS
and obtain its own keyboard mapping list. Each terminal, then, has its own possibly
unique keyboard bindings.

2.3.2 Dynamic Cursor Descriptor

ANSITERMINALSERVICES also defines the private CURSORACCESS
type. This type provides a pointer to an ATTRIBUTE (2.2.13) record. With
CURSORACCESS, a cursor descriptor may be allocated dynamically to record a W
cursor's attributes (e.g., position, appearance, etc.). Since ANSITERMINAL_

2-18

NAVSWC TR 91-783

* SERVICES supports an arbitrary number of terminals, it may dynamically allocate a
cursor descriptor for each one.

2.3.3 Dynamic Screen Protection Task

ANSITERMINALSERVICES declares the private SCREENCONTROL
task type to protect shared resources when output services are requested in a
multitasking environment. Tasks rendezvous with a SCREENCONTROL server
task in order to write to a screen, access the cursor attributes, or write to a port.
However, ANSI_TERMINALSERVICES hides this tasking implementation from its
applications. Instead, it defines several interface procedures in the nested package
SCREEN (2.5). These procedures are identical in name and function to the entry
points. (See Section 3.1.1 for a full discussion of this private monitor task.) By calling
these procedures, users are guaranteed that an application's output requests will be
handled in a safe, synchronized manner.

Since each terminal will need protection for its own resources when output
services are requested, ANSITERMINALSERVICES also defines a type that
allows an arbitrary number of these tasks to be created at runtime. SCREEN_
ACCESS is private to ANSITERMINAL-SERVICES and is merely a pointer to the
SCREEN-CONTROL task type described above. It is used internally to dynamically

* create a server task that provides protected output services to a terminal. Also, this
dynamic type gives the keyboard task (2.3.4, below) access to the echoing services of
its screen counterpart.

2.3.4 Dynamic Keyboard Protection Task

ANSITERMINALSERVICES defines the private KEYBDCONTROL task
type in order to control access to a keyboard's services. In effect, this is a monitor task
through which other tasks access the shared cursor and port. For example, it
contains entry points for line editing and reading from a port. (See Section 3.1.2 for a
full discussibn of this private task type.) Users of ANSITERMINALSERVICES,
however, will not (and may not) rendezvous with the controlling task by calling its
entry points directly. Instead, applications use the procedural interfaces defined in
the nested KEYBD package described later (2.6). These convenient procedures
correspond directly with the entry points of the KEYBDCONTROL task type and
ensure that all input service requests are accepted individually.

Since ANSITERMINALSERVICES was designed to support several
terminals simultaneously, a monitor task is needed to synchronize access to each
terminal's shared resources. ANSITERMINALSERVICES defines the KEYBD_
ACCESS type to allow a keyboard protection task to be allocated dynamically as
needed. This private type is simply a pointer to the KEYBD_CONTROL task type
described above.

2-19

NAVSWC TR 91-783

2.3.5 Terminal Manager

Inherent to using a terminal in a multitasking environment is the need to
provide protection for its resources, namely the cursor and assigned port.
ANSITERMINALSERVICES provides this protection with the private type
TERMINAL. TERMINAL encapsulates the following:

* Terminal port identification
9 Keyboard bindings associa)I d with the terminal
* Terminal screen dimensions
"* Current cursor attributes such as position and color
"* Mutually exclusive access to input and output services

Since ANSITERMINAL_SERVICES was designed to support access to an
arbitrary number of terminals from within a single application, most of
TERMINALs components are dynamically allocated. For instance, the cursor
setting component is of type CURSORACCESS (2.3.2). This is simply a pointer to an
instance of an ATTRIBUTE record (2.2.13). Similarly, the keyboard map component
is dynamic in nature. The components related to protecting the I/O are also access
types (SCREEN_ACCESS (2.3.3) and KEYBD_ACCESS (2.3.4)). These are actually
pointers to Ada tasks that provide 1/0 services in a manner that assures mutual
exclusion in a multitasking environment. These underlying tasks synchronize I/O
requests and prevent simultaneous access of the cursor or port by competing Ada
tasks. The TERMINAL type effectively groups the shared data and monitoring tasks
into a single record. The complete specification for type TERMINAL is shown in
Table 2-11.

To properly use this type, applications will need a variable of type TERMINAL
for each terminal being used. Each of these terminal resource managers is
independent of the others and will provide the services listed above for exactly one
terminal. That is, each individual terminal manager will have its own port
identification, keyboard bindings, row and column constraints, protection
mechanisms, and critical region for holding the cursor's attributes. The routines
ANSITERMINALSERVICES provides to create and destroy such a manager are
described in Section 2.4. As mentioned above, ANSI_TERMINALSERVICES also
simplifies an application's interaction with the protection mechanisms by providing
procedural interfaces to the protective tasks. These interface procedures comprise
the nested packages SCREEN (2.5) and KEYBD (2.6), which are described later in
this report.

2-20

NAVSWC TR 91-783

d
TABLE 2-11. TERMINAL RESOURCE MANAGER RECORD (TYPE TERMINAL)

COMPONENT TYPE REFERENCE ACCESSED TYPE REFERENCE

Port PORTDATA 2.2.2 N/A N/A

NumLines LINE 2.2.5 N/A N/A

NumCols COLUMN 2.2.6 N/A N/A

Key-Map KEYMAPACCESS 2.3.1 MAPLIST 2.2.4

Cursor CURSORACCESS 2.3.2 ATTRIBUTE 2.2.13

Screen SCREEN.ACCESS 2.3.3 SCREENCONTROL 2.3.3

Keybd KEYBDACCESS 2.3.4 KEYBDCONTROL 2.3.4

2.4 TERMINAL ALLOCATION AND DEALLOCATION

ANSITERMINALSERVICES allows applications to access an arbitrary
number of terminals simultaneously. Each terminal, of course, requires a terminal
resource manager to ensure the mutual exclusion necessary in a multitasking
environment. Because of this, ANSITERMINALSERVICES provides the means
for an application to dynamically create and subsequently deallocate terminal
managers, as needed.

2.4.1 Terminal Initialization

ANSITERMINALSERVICES provides a convenient means of dynamically
creating any number of terminal controllers. The CREATETERMINAL function
localizes all necessary allocations and task instantiations. For example, CREATE_
TERMINAL associates a keyboard mapping to the new terminal, assigns a port,
records the screen's dimensions, and provides a protected abstraction of the
terminal's cursor. Also at this time, the dynamic components of a TERMINAL (2.3.5)
are allocated and assigned. This initialized TERMINAL variable is then returned to
the caller. At this point, the caller has access to a terminal manager, providing safe
I/O among multiple tasks. Before any screen I/O routines are called, however, the
caller must initialize the shared cursor resource by calling the SET_CURSOR
procedure described in Section 2.5.6.

2

2-21

NAVSWC TR 91-783

2.4.2 Terminal Shutdown

When a terminal controller is no longer needed, a call to SHUTDOWN_
TERMINAL will remove the protection mechanisms set up for the terminal and
deallocate the data types that provide this protection. This action terminates the
TERMINAL (2.3.5) variable's task components, allowing graceful termination of an
application program.

2.5 OUTPUT SERVICES

As discussed earlier, several difficulties arise when performing I/O in a
multitasking environment. When writing to a port, care must be taken so that the
output is not interleaved with that of concurrent I/O requests. Similarly,the cursor
becomes a shared resource and must not be carelessly accessed when writing to the
screen. The terminal resource manager defined by ANSITERMINALSERVICES
incorporates routines and protection mechanisms designed to meet these and other
needs. Specifically, ANSI_TERMINALSERVICES provides the following output
services:

"* Setting the cursor's positional and visual attributes
"* Reading the cursor's current attributes
"* Clearing areas of a display
"* Writing asynchronously to a display
"* Echoing user input
"* Writing asynchronously to a port

The SCREEN package is nested within ANSITERMINALSERVICES and
features the procedures of Table 2-12 to handle these output needs. Several of
SCREEN's procedures (i.e., SETCURSOR, SETPOSITION, and SET_COLOR)
modify the cursor's positional and visual attributes. The cursor resource must be
initialized in this manner prior to any screen I/O. These cursor routines are also
useful for initializing the cursor for a subsequent read operation, because the input
routines from the nested KEYBD package operate upon the current cursor attributes
(see Section 2.6). In contrast, screen writes via the PUT procedure (2.5.10) do not use
the current cursor settings. Rather, PUT requires cursor attributes as parameters.
These settings are in effect only for the duration of the individual write operation. As
the write completes, ANSITERMINALSERVICES resets the cursor to its state
before the write call. This temporary cursor setting, therefore, has no effect upon
subsequent writes.

2.5.1 Moving a Cursor via Absolute Screen Coordinates

The SETPOSITION procedure moves the terminal's cursor to the specified
location on the screen. This new location is in terms of absolute screen coordinates in

2-22

NAVSWC TR 91-783

TABLE 2-12. SUBROUTINES OF THE SCREEN SUBPACKAGE

PROCEDURE REFERENCE PROCEDURE REFERENCE

SETPOSITION 2.5.1 GETCURSOR 2.5.7

SETCOLUMN 2.5.2 CLEARTO_ENDOFLINE 2.5.8

GETPOSITION 2.5.3 CLEAR-SCREEN 2.5.9

SETCOLOR 2.5.4 PUT 2.5.10

GETCOLOR 2.5.5 PUTSTR 2.5.11

SET_CURSOR 2.5.6 PUTPORT 2.5.12

relation to the upper left-hand corner of the display. Once set,the cursor's position
remains fixed until another call explicitly repositions the cursor, or until a response
to an interactive input service causes the cursor to move. SETPOSITION may be
called any number of times to reposition the cursor as needed. Normally, tbis is done
before each call to any of the input routines from the KEYBD package (2.6) because
the input routines operate upon the current cursor attributes.

2.5.2 Moving a Cursor via Relative Column Increments

The SETCOLUMN procedure is included primarily to be used by the
supporting LINEEDITOR package (3.3) and allows the cursor to be repositioned
within the current line in terms of a relative offset. For instance, a column offset of
five will move the cursor to the right five spaces, whereas an offset of negative five
will reposition the cursor to the left. The offset, of course, is relative to the cursor's
current column number. The new position will remain in effect until another call is
made to a SET procedure or until an input response moves the cursor.

2.5.3 Reading a Cursor's Screen Position

To read the current cursor position, ANSITERMINAL_SERVICES provides
the GET_POSITION routine. The coordinates returned from this function are
absolute screen coordinates of type POSITION (2.2.7).

2-23

NAVSWC TR 91-783

2.5.4 Setting a Cursor's Appearance

SETCOLOR simply sets the cursor's appearance. That is, it resets the
background and foreground colors, and the intensity and blink settings. This
procedure may be called any number of times to reset the cursor as needed, and the
settings remain in effect until the next call to SETCOLOR or SETCURSOR (2.5.6).
As described earlier, these cursor settings apply only to subsequent reads, because
screen write requests require the cursor's write attributes to be specified as a
parameter.

2.5.5 Reading a Cursor's Appearance

To read the current appearance settings assigned to a terminal's cursor, an
appl;cation should call the GETCOLOR function. The returned ATTRIBUTE
(2.2.13) record denotes the cursor's foreground and background colors, aud the
intensity and blink settings.

2.5.6 Setting a Cursor's Collective Attributes

When a user needs to reposition the cursor and change its appearance
attributes, the SETPOSITION (2.5.11 and SETCOLOR (2.5.4) procedures may be
called consecutively. Since this is undoubtedly a common operation, however,
ANSITERMINALSERVICES provides the SETCURSOR procedure to collectively
set a cursor's positional and color attributes. SETCURSOR can be called at any time
to reposition and modify the terminal's cursor for future read operations. Also,
SETCURSOR should be called once before any screen I/O occurs, in order to properly
initialize the shared cursor resource.

2.5.7 Reading a Cursor's Collective Attributes

The GETCURSOR procedure replaces the need for consecutive calls to
GETPOSITION (2.5.3) and GETCOLOR (2.5.5). A call to the function GET_
CURSOR returns both the current position and appearance attributes of the
terminal's cursor.

2.5.8 Clearing a Line of Text

CLEARTOENDOFLINE erases any text on the current line that is located
to the right of the cursor. After this call, the cursor's position will remain unchanged.

2-24

NAVSWC TR 91-783

* 2.5.9 Clearing a Screen

To erase an entire display at once, ANSITERMINALSERVICES provides
the CLEARSCREEN procedure. In addition to clearing the display, this procedure
also updates the shared cursor resource and positions the cursor in the upper left-
hand corner of the screen, location (1, 1).

2.5.10 Writing to a Screen

ANSITERMINALSERVICES provides the overloaded PUT routine to allow
multiple tasks to safely write to the same screen even in the presence of a reader task.
This procedure is overloaded and displays either a single character, a string, or an
array of strings. If several lines of text need to be written to the screen at one time,
users should call the version of PUT that takes a LAYOUT (2.2.16) array of formatted
strings. This method is both more convenient and more efficient than calling the
string version of PUT to individually display each line in a block of text. In all cases,
the actions necessary to ensure mutual exclusion are localized within the PUT
procedure to simplify the interface with the application. The text will be displayed
with the specified cursor attributes in a manner that does not adversely interfere
with the cursor appearance or position associated with a concurrent read operation.
Also, no other I/O request can interrupt the write or modify the cursor's attributes
until the write completes. In this way, the cursor is protected, and many I/O
operations can safely execute concurrently.

2.5.11 Echoing User Input

PUTSTR is a procedure that is used internally within ANSITERMINAL_
SERVICES and its supporting package, LINEEDITOR (3.3). It simply writes a
string to a display and increments the cursor's column coordinate as specified. This
routine, however, is not intended for users of ANSITERMINALSERVICES and
provides no protection mechanisms when called outside of ANSITERMINAL_
SERVICES or LINEEDITOR. In fact, users are prevented from calling the
procedure because one of its parameters is a private type hidden in a lower package.
When writing to a display, therefore, users should always call the overloaded PUT
procedures described above (2.5.10).

2.5.12 Writing to a Port

To write asynchronously to an assigned port, an application should call the
owerloaded PUTPORT procedure. This routine sends a string or character directly
to the port "rithout fear of the message being jumbled with that of another I/O
request. Altaough PUTPORT is safe for direct port-to-port communication, users
should normally not call it to write to a screen in a multitasking environment

2-25

NAVSWC TR 91-783

because it provides no protection for the cursor resource. However, it may be used by
sequential applications to produce scrolling outputs (see Section 1.2.7). W

2.6 INPUT SERVICES

The input capabilities of ANSITERMINALSERVICES include the
following:

"* Interactive user prompts
"* Timing mechanisms
"* Port-based communication

Perhaps the most useful service of ANSI_TERMINAL_SERVICES is its ability
to coordinate the activities of concurrent processes performing interactive I/O on a
common 7-bit terminal. For example, writer tasks can easily update displayed
information while a nonblocking reader task is prompting the user for input. As
introduced in the last section, input routines use the current cursor settings, while
screen output routines require attribute parameters. To set the cursor for a pending
read, users must use the appropriate procedure (i.e., SET_CURSOR) from the
SCREEN package (2.5). Because these reads are nonblocking, other Ada tasks may
continue in the background. Because these reads are protected, the actions of writer
tasks will not adversely interfere with the cursor or disrupt the display.

Although these reads are guaranteed not to block other tasks, it is possible for
a read to never terminate. In situations where termination is critical, users should
use the timed reads offered by ANSI_TERMINAL_SERVICES. These timed routines
terminate the read if no response is detected within the specified time interval.

Similarly, direct port-to-port communication in a multitasking environment
requires protection for the ports involved. When reading from a port, for instance,
care must be taken to prevent jumbled data and ensure the integrity of the
transmitted data. ANSITERMINALSERVICES provides this protection by
coordinating all access to the shared port.

The above capabilities are provided by the nested package KEYBD. Although
ANSITERMINALSERVICES incorporates private tasks to ensure the protection
needed for such I/O (see Section 3.1.2), applications simply call procedures from the
KEYBD package, which subsequently interact with the entry points of an underlying
hidden task. Ada rendezvous still occur, of course, but their interface has been
simplified and abstracted as the protected procedures listed in Table 2-13. Each of
these procedures from KEYBD is described below.

2-26

NAVSWC TR 91-783

0
TABLE 2-13. PROCEDURES FROM THE KEYBD SUBPACKAGE

PROCEDURE REFERENCE

GETKEY 2.6.1

GETTIMEDKEY 2.6.2

GETLINEEDIT 2.6.3

GETNOECHO 2.6.4

GETTIMEDNOECHO 2.6.5

2.6.1 Reading a Keystroke

ANSI_TERMINAL_SERVICES provides the ability to safely read a single
keystroke without blocking other tasks. It should be noted that a keystroke here refers
to what we have previously referred to as a logical key (see Section 2.2.3). That is, a
keystroke corresponds to an individual keypress and is independent of the ASCII
characters resulting from that keypress.

The GETKEY procedure will return the first keystroke encountered and will
display a printable character if the programmer wishes. In case the programmer does
not want the corresponding character displayed on the screen, the printing option
may easily be turned off. For example, this latter scenario is well-suited for allowing
a user to select a menu item. In either case, no carriage return is needed to complete
the read; it terminates immediately after any key is pressed. If this key has not been
mapped in the user's keyboard binding file, GETKEY will return the NUL logical
key.

2.6.2 Reading a Keystroke with Time Constraints

GETTIMED_KEY provides the same functionality as GETKEY above
(2.6.1), but introduces a timing constraint. That is, it returns a representation of a
single keypress and optionally displays a character on the screen. If no key is pressed
within the specified time frame, however, the read will automatically terminate.

2-27

NAVSWC TR 91-783

2.6.3 Line Editing

In addition to the above methods for reading individual keystrokes, ANSI_
TERMINALSERVICES also supports line editing in a multitasking environment.
This line editor is invoked by a call to the GETLINEEDIT procedure within ANSI_
TERMINALSERVICES' nested package KEYBD. GETLINEEDIT offers several
line editing options:

"* Backspacing and deleting operations inherent to line editing
" In-line cursor movement
"* Jumping to the beginning or end of the text
"* Toggling between insert and overstrike mode
"* Erasing a line with a single keypress
"* Assignment of a default string to be accepted or edited
"* Immediate termination upon detection of control and function keys

The above functionality is actually from the supporting package LINE_
EDITOR. Since it is accessed through ANSITERMINALSERVICES, however, it
may be safely used in a multitasking environment. Any editing, for example, does
not block background tasks, because of the synchronization and protection ANSI_
TERMINALSERVICES provides. Similarly, the output of concurrent tasks cannot
disrupt the line editor.

Granted, all keyboards do not necessarily have keys labeled to match the
above editing operations. Since ANSI_TERMINALSERVICES was designed to be
highly reusable, however, this is not a problem. An easy method exists to map the
above operators to any keyboard by means of a keyboard binding list (2.2.4), which is
read from a file at runtime. As previously described, this file effectively binds any
keyboard to the logical keys described previously (2.2.3). If a given keyboard does not
have an Erase Line key, for example, no functionality is lost; the line erase operation
could simply be mapped to an unused function key. In this manner, every editing
operation listed in Table 2-14 is available for any keyboard with a sufficient number
of assignable keys.

The string passed to the line editor is important in the following ways:

"* Its length determines the size of the input field
"* Its contents are displayed as the default input
"* Upon return, it holds the contents of a user's response

If the string Default is passed to the line editor, for example, the user's
response would be limited to seven characters, as dictated by the length of the
parameter string. Regardless of whether the user accepts or edits the default, the
input session ends when the user presses a key mapped to a control logical key (NUL..
US), a function logical key (FK1 .. FK100), or certain edit keys as listed in Table 2-14.
In addition, this terminating keystroke is returned to the application along with the

2-28

NAVSWC TR 91-783

TABLE 2-14. LINE EDITOR OPERATIONS

LOGICAL KEY ACTION

INSERT Toggle between insert and overstrike mode

LEFT-ARROW Move cursor left one position

RIGHT .ARROW Move cursor right one position

HOME Mover cursor to beginning of input field

ENDD Move cursor to end of input field

DELETE Delete the character at the cursor, and shift characters to the
right of the cursor

BACKSPACE Delete the character left of the cursor, move the cursor left
one position, and shift characters to the right of the cursor

ERASE_LINE Erase the current input string, and move the cursor to the
beginning of the input field

UP..ARROW Terminate the line editor, and return the current string and
DOWN-ARROW terminating character
PAGE-UP
PAGE-DOWN
TAB
TAB-REVERSE
NUL.. US
FK1 .. FK100

input sting. This is done in case an application needs to respond differently
depending upon how the user ended the line editing session. For examDle, a
concurrent Ada task could display a warning message on the screen as the user is
using the line editor (see Figure 2-3). With a single keypress, the user could
terminate the line editor and respond to the warning accordingly.

2.6.4 Reading Directly from a Port

The overloaded GETNOECHO procedure in ANSITERMINAL_SERVICES
provides a means of receiving a string or a single character from an assigned port. It
includes the necessary protection mechanisms to prevent a read from receiving
jumbled data. This procedure is overloaded so that it can return either a single ASCII
character or a string of characters. Regardless of the parameter type, the read will

2-29

NAVSWC TR 91-783

Urgent warning and
Instructions from
separate Ada task

WARNING : NEW LAUNCH DETECTED
PRESS: F1 for threat assessment Operator may terminate

F2 to defend line editor and respond
F3 to edit again to the warning by

Spressing F1, F2, or F&

EDIT SOME TEXT: Defaumtext

FIGURE 2-3. ONE USE OF THE LINE EDITOR TERMINATOR

terminate when either a carriage return is encountered, or the target string has been
filled.

2.6.5 Reading Directly from a Port with Time Constraints

To avoid a nonterminating read request, users may elect to use the overloaded
GET_TIMEDNOECHO procedure. The procedure offers the same functionality
described above for GET_NOECHO (2.6.4) and adds a timing constraint. If a read
requested via GET_TIMEDNOECHO does not terminate within the specified time,
the read will automatically terminate and will return the data read before the
timeout occurred. GETTIMED_NOECHO is overloaded to handle input of either a
single character or a string.

2-30

NAVSWC TR 91-783

. 2.7 CONVENIENCE FUNCTIONS

ANSITERMINALSERVICES provides a number of functions designed to
simplify its interface with application programs. Collectively, these routines provide
the following services:

* Access to terminal data (e.g., port name, keyboard bindings, etc.)
* Converting between Ada strings and variable-length strings

2.7.1 Terminal Manager Data

Applications and ANSITERMINALSERVICES' lower packages often need
to read components of the terminal manager record. This TERMINAL type (2.3.5),
however, is private to ANSITERMINAL_SERVICES and is not directly accessible.
To address this need, ANSITERMINALSERVICES provides the convenience
functions of Table 2-15. Each returns a single component of the specified TERMINAL
record.

TABLE 2-15. FUNCTIONS TO RETURN PRIVATE TERMINAL DATA

FUNCTION NAME RETURNED TYPE REFERENCE

THIS_TERMPORT PORTDATA 2.2.1

THISTERMMAPLIST MAPLIST 2.2.4

THISTERMNUM_LINES LINE 2.2.5

THISTERMNUMCOLS COLUMN 2.2.6

2.7.2 Variable Length String Conversions

ANSITERMINALSERVICES provides two functions to aid in the
assignment and conversion of variable-length strings. TO_V_STRING takes an Ada
string of arbitrary length and converts it to a variable-length string of type
V_STRING (2.2.14). In contrast, TOSTRING converts its VSTRING argument to a
standard Ada string.

2-31

NAVSWC TR 91-783

2.8 ELABORATED CONSTANTS

ANSITERMINALSERVICES and its supporting packages declare several
constants commonly used to constrain data types such as strings and integer ranges.
The values assigned to these constants, however, are not hard-coded. Instead, they
are assigned values read from a file (ANSI.DAT) by the ANSICONSTANTS
package. Because the file is read at package elaboration time, users may customize
these settings without the need to recompile any source code. Appendix D describes
the simple format of the constants file, and Appendix E shows the contents of the
default file. Table 2-1F(lists the constants initialized at runtime and the types they
constrain. This table also relates whether a constant is visible to applications (i.e.,
declared in the specification of ANSITERMINALSERVICES) or merely used
internally.

TABLE 2-16. IMPORTANT CONSTANTS INITIALIZED AT RUNTIME

CONSTANT NAME DEFAULT VISIBLE CONSTRAINED TYPE REFERENCEVALUE

MAXPORTNAME_..SIZE 15 Yes PORT._NAME 2.2.1

MAX_CHANNELS 16 No CHANNEL_TYPE 3.5.1

MAXESCLEN 5 No ESCAPESEQUENCE 3.4.1

MAXLINE 25 Yes LINE 2.2.5

MAXCOLUMN 80 Yes COLUMN 2.2.6

MAX_LONGSTRINGSIZE 1024 No LONG_STRINGSIZE 3.2.1.2

MAXSTRINGSINLAYOUT 30 Yes LAYOUTINDEX 2.2.16

2.9 EXCEPTION HANDLING

ANSITERMINALSERVICES declares a single exception (IOERROR) that
is raised whenever a problem occurs within the package or its supporting packages.
IOERROR is also raised if the user requests an impossible I/O service or if the
configuration files (i.e., constants, keyboard mapping, etc.) are invalid. For example,
10_ERROR will be propagated to the caller if an attempt is made to reposition the
cursor at position (1, 80) after creating a terminal with dimensions 24 x 40.
Similarly, CREATETERMINAL will raise IOERROR if the keyboard bindings file
does not follow the proper format, or if ASYNC_10 cannot open a channel, given the
specified port name.

2-32

NAVSWC TR 91-783

CHAPTER 3

DESIGN DESCRIPTION

Whereas the previous chapter described the specification of ANSI_
TERMINALSERVICES and the complete programmer interface, Chapter 3 expands
upon ANSI_TERMINALSERVICES' concurrency control and its five supporting
packages. These topics are organized as follows:

* ANSITERMINALSERVICES
* ANSICURSORSERVICES
"* LINE.EDITOR
"* KEYBOARDINPUT
"* ASYNC_10
* ANSI_CONSTANTS

O 3.1 ANSITERMINAL SERVICES

As described in Chapter 2, ANSITERMINALSERVICES offers 1/0 services
that are protected in a multitasking environment. Applications of ANSI_
TERMINAL-SERVICES may easily incorporate multiple writer tasks that
concurrently update a display even in the presence of a reader task. Although
abstracted to the user as protected procedure calls to the SCREEN (2.5) and KEYBD
(2.6) packages, these protection mechanisms are actually implemented via Ada task
types. These monitor tasks, SCREENCONTROL (3.1.1) and KEYBDCONTROL
(3.1.2), are described here in Section 3.1.

The keyboard task essentially owns the cursor and is preempted by write
requests that temporarily gain mutually exclusive access to the shared resource.
That is, the input routines use the current cursor attributes, while all output services
must borrow the right to access the cursor. Otherwise, writers may permanently
change the cursor's appearance or send output to an area of the display where other
tasks are concurrently performing I/O. Also, a writer must restore the cursor to its
original state before control of the critical region is relinquished. This is required
because the write may have preempted a concurrent read operation, and effectively
borrowed the cursor and its present attributes. Since the write does not use the
current cursor settings, the attributes must be specified as a parameter of the write
request. These temporary attributes apply only to the write operation and are
overwritten on completion of the write, as the cursor is restored to its original state.

3-1

NAVSWC TR 91-783

In addition to servicing user output requests, the output control task must also
address the needs of echoing user input. The concurrency control afforded by
ANSITERMINALSERVICES and the interactions between the implementing
tasks are illustrated in Figure 3-1.

Associated with each physical terminal controlled by an application program
is a TERMINAL record (2.3.5). As described previously, this record contains
terminal parameters, pointers to shared data regions, and addresses of the keyboard
and screen tasks. As a terminal is created, relevant parameters and pointers are
copied into each task body. For instance, the keyboard task records the address of the
associated screen monitor task, so that it may safely echo user input. Both tasks, of
course, require access to the shared cursor record. Since ANSITERMINAL_
SERVICES supports an arbitrary number of terminals, each must have its own
monitoring tasks and shared data regions. Fortunately, the abstracted terminal
manager hides the tasking implementation and dynamic shared cursor. As
illustrated in Figure 3-2, an application program merely declares a TERMINAL
variable (e.g., T1, T2, etc.) for each terminal it accesses.

3.1.1 Private Screen Monitor Task

ANSITERMINALSERVICES declares the private SCREENCONTROL
task type to protect shared resources when output services are requested in a
multitasking environment. Its entry points correspond to common output services
required by both the user and the keyboard monitor task. The KEYBD_CONTROL
task (3.1.2), for example, is dependent upon SCREENCONTROL to safely echo user
input. Similarly, user tasks rendezvous with the screen monitor in order to write to a
screen, set the cursor attributes, or write to a port. However, ANSITERMINAL_
SERVICES hides this tasking implementation from its applications. Instead, it
defines several interface procedures in the nested package SCREEN (2.5). These
procedures are identical in name and function to the entry points. For example, the
SETPOSITION procedure (2.5.1) merely calls the SETPOSITION entry point
(3.1.1.4) of the SCREENCONTROL task. By calling these procedures, users are
guaranteed that an application's output requests will be handled in a safe,
synchronized manner. The screen monitor task is documented below in the following
sequence:

"* Task design
"* Local state data
"* Local subroutine
"* Task entry points

3.1.1.1 Task Design. SCREENCONTROL is a server task consisting of a
startup entry and an endless loop with a selective wait. The selective wait includes a
shutdown entry and twelve entries (one overloaded) devoted to output services (see
Section 3.1.1.4). These output services include screen updates (e.g., asynchronous

3-2

NAVSWC TR 91-783

0

5 L

LE I-
5 L 0

jAD

E'

3-3

NAVSWC Th 91-783

F-1,

z

0

UU

co

z IZ

10 ~ ~ K JL 2 1. 0 00

c)I-

3-4

NAVSWC TR 91-783

writes, screen clearing, etc.) and cursor access (e.g., reading the cursor's screen
position). A program design language (PDL) for this task is included in Figure 3-3.
This figure also illustrates SCREENCONTROL's interaction with the keyboard
monitor task and the line editor support package. That is, KEYBDCONTROL
(3.1.2) and LINEEDITOR (3.3) must repeatedly use this task in order to safely echo
user input.

As shown in the PDL, the SCREENCONTROL task type contains no
exception handler; rather, its entries return an error flag indicating any problem
encountered with an output service. The reason behind this involves a compiler-
specific pragma (PASSIVE) described in Section 6.3. Briefly, this pragma is
supported by the VERDIX Ada Development System (VADS) version 6.0 compiler
and optimizes passive tasks such as SCREENCONTROL. To be eligible for this
optimization, however, the task must contain no exception handler. SCREEN_
CONTROL, therefore, sends error indicator flags back to its SCREEN (2.5) interface
procedures, which in turn may raise an 10_ERROR exception.

This task type takes the system default for its Ada task priority. In the
specification for ANSITERMINALSERVICES, the SCREENPRIORITY constant
is commented out of the source code because of the system-dependent nature of Ada
task priority values. Unlike other constants from ANSITERMINAL_SERVICES,
this constant may not be assigned at runtime, because Ada's priority pragma
requires a static expression. If the system default priority is not appropriate, users
must, therefore, modify the specification for ANSITERMINALSERVICES by
setting the constant value and removing the appropriate comment symbols.

3.1.1.2 Local State Data. SCREENCONTROL declares several variables
needed by its entries. The most important of these record terminal parameters and
provide access to the shared cursor resource. Other variables are useful during error
checking and type conversions. The following list summarizes the variables local to
the SCREEN_CONTROL task:

" THISTERM: This TERMINAL (2.3.5) variable is needed to give the screen
task access to the attributes of the terminal it controls. For instance, it
records the dimensions of the terminal as established by the user. Also,
components of this record hold the terminal's port data and the address of
the terminal's shared cursor resource.

"* LENGTH: This POSITIVE variable records the length of the string
argument to a write entry.

"* REMAININGSPACE: This INTEGER variable records the number of
columns between the specified write coordinates and the rightmost screen
column, as established by the user (see Section 2.3.5). If this value is less
than the length of the argument string, the text will be truncated before the
write.

3-5

NAVSWC Th 91-783

leak body SCREEN. *CONTROL is
proedre81rPCURSOR Is

Terminal -Move cureor left or right within line
TDiata and SHIFT-CURSOR;

Procedure *accept COPY TERMINAL PARAMS do
CREATE-TERMIA -Copy termina paramete'rs

end COPY_-TERMINALPARAUS;

Error ýJl accept CLEAR SCREEN do
Cursr Seting. 40-Clear entire display

so end CLEARSCREEN;

User 011. Procdure ý0 accept CLEAR TO ENDOFUNE do
-Clear line right of cursor

output fromend CLEARjTO.ENO-OFJJNE;

SCREENaccept GET POSITION do
40 -Return cursor coordinsats

Cursr Qury Dta.end GET-PO6ITION;

Cursr)0 accept GET-COLOR do
Cluery-Return cureores color
Data, orand GET-COLOR;

Error ýia accept GET -CURSOR do
-Return all cursor attributes
end GET-CURSOR;

Cursor 31p accept SET -POSITION do
Settngs,-Repoeition the cursor

Usettings end SETPOSITION.

accept SET-COLOR do
(>a. -4Se1 the cursor's appearance

end SET-COLOR;

40 3m oraccept SET CURSOR do
-4Set all cursor attribut
end SET-CURSOR

accept PUT do
-Write formatted text to wceen
and PUT;

CursorCusro
PoiinPosition)I, accept PUT -PORT do

I0OERROR SCREEN. end PUTPORT;

SET CLUMN 0 oraccept SET COLUMN do

ý DITORError-4Set the cursor's column
Echo end SETCOLUMN;

SCREEN.PUT..STR .~ --. n accept PUT STR -o

Error e0nd PUT STR;

Controlaccept SHUTDOWN do
Task -Terminate screen server

end SHUTDOWN;

SHUTDOWN TERMINAL end SCREEN-CONTROL;

FIGURE 3-3. SCREEN CONTROL TASK

3-6

NAVSWC TR 91-783

"" TEMPLAYOUT: This variable is an array of formatted text of type
LAYOUT (2.2.16). It is used within the PUT (3.1.1.4) entry to convert
between the derived LAYOUT type from ANSITERMINALSERVICES
and the original type in ANSICURSORSERVICES. In order to
accommodate any LAYOUT argument, TEMPLAYOUT is constrained by
the MAXSTRINGSINLAYOUT constant (2.8).

"• TEMPPUT_STRING: This variable is a long variable-length string of
ANSICURSORSERVICES' LONG_V_STRING data type (3.2.1.3). It
comprises an arbitrary number of strings separated by the ANSI control
sequences necessary to format each individual string. Because this string is
used within the PUT protected screen output entry (3.1.1.4), it will also be
appended with the control sequences needed to restore the cursor to its
original state before the write. When the string is written, the given text
will be displayed with the given attributes and will impose no side effects
upon the shared cursor resource.

3.1.1.3 Local Subroutine. The SHIFT_CURSOR procedure is nested within the
SCREENCONTROL task type. Given a value of type COLUMNINCREMENT
(2.2.8), this procedure updates the shared cursor resource and writes the escape
sequences needed to reposition the cursor on the display. Because COLUMN_
INCREMENT values may be positive or negative, this procedure may be used to shift

* the cursor right or left, respectively.

3.1.1.4 Task Entry Points. As discussed above (3.1.1), the entry points of this
private task type are accessible to users only via the interface procedures of the
SCREEN package. Because these interface routines involve record data types
redeclared within ANSITERMINALSERVICES, the task entries must also
perform necessary type conversions before calling routines from the lower-level
packages (see Section 2.2). These task entries are described below:

"• COPYTERMINALPARAMS: This startup entry copies in terminal
parameters, so that the SCREENSCONTROL task has access to the shared
cursor resource and the terminal settings (e.g., screen dimensions).

"* CLEARSCREEN: This entry calls ANSI_CURSORSERVICES' CLEAR_
SCREEN procedure (3.2.2) to erase a display and reposition the cursor in the
upper left-hand corner of the screen.

"* CLEARTOENDOFLINE: This entry calls the CLEAR_TO_ENDOF_
LINE procedure (3.2.2) from ANSICURSORSERVICES. As a result, the
text to the right of the present cursor position is erased.

"" SETCOLOR: This entry accesses the shared cursor data and updates its
visual attribute settings (i.e., color, intensity, and blink settings). The
control sequences needed to implement these new cursor settings are th-n

3-7

NAVSWC TR 91-783

written to the display by calling ANSICURSORSERVICES' SET-
TEXTCOLOR procedure (3.2.2).

"* GETCOLOR: This entry copies the cursor's current visual attributes into
the given TEXTCOLOR (2.2.12) record.

"* SETPOSITION: This entry updates the screen coordinates of the shared
cursor record an(' writes the escape sequences necessary to physically
reposition the cursor on the screen. This repositioning is accomplished by a
call to ANSICURSORSERVICES' SETCURSORPOSITION procedure
(3.2.2).

"* SETCOLUMN: This entry adjusts the cursor resource's column setting and
writes the appropriate control sequences to reposition the cursor on the
screen. For example, the LINEEDITOR support package calls this entry
point (via the SCREEN.SET_COLUMN interface procedure (2.5.2)) to shift
the cursor within the input field. Like SETPOSITION above, this
repositioning is done by ANSICURSORSERVICES' SETCURSOR_
POSITION procedure (3.2.2). Also, error checking exists to ensure that the
cursor is not adjusted beyond the established last column.

"* GET_-POSITION: This entry accesses the current coordinates of the shared
cursor resource and copies them into the given POSITION (2.2.7) record.

"* SETCURSOR: This entry updates the shared cursor's collective attributes
(i.e., position and appearance) based upon the specified ATTRIBUTE (2.2.13)
values. The SETATTRIBUTE procedure (3.2.2) of ANSI_CURSOR_
SERVICES is then called in order to write the control sequences required to
display the new cursor settings.

"* GETCURSOR: This entry copies all current cursor attributes into the
given ATTRIBUTE (2.2.13) record.

"* PUTPORT: This entry calls ASYNC_10's PUTASYNC procedure (3.5.2.2)
to write the specified string to the terminal's assigned port. Because no
display is involved, the cursor resource is not updated.

"* PUT_STR: This entry writes a string to a display via ASYNC_IO's
PUTASYNC procedure (3.5.2.2) and updates the cursor position according
to the specified column increment argument. This repositioning of the
cursor is performed in a call to the SETCURSORPOSITION procedure
(3.2.2) of ANSICURSORSERVICES. This write uses the current cursor
settings and, therefore, is unsafe for user output tasks. Instead, this entry
point is called only to echo user input within the associated KEYBD_
CONTROL task. The LINEEDITOR package also accesses this entry point W

3-8

NAVSWC TR 91-783

indirectly by calling the PUTSTR interface procedure (2.5.11) from the
SCREEN package.

"* PUT: This overloaded entry writes the specified formatted text to the
screen, while protecting the cursor attributes. Once the text has been
written, the proper control sequences ensure that the cursor is restored to its
prerendezvous state. All output strings are checked and possibly truncated
to prevent writing beyond the screen's established right border. One version
of PUT handles a single string/attribute pair, while the second PUT writes
an entire LAYOUT (2.2.16) array of formatted strings. For efficiency
reasons, both are processed similarly and involve a call to ANSI_CURSOR_
SERVICES' ASSEMBLELONGSTRING (3.2.2.2) procedure. This routine
constructs a single string of the specified text, embedded with control
sequences that provide the proper formatting. Since the control sequences
necessary to restore the cursor to its original state are also appended to this
string, a single call to ASYNC_IO's PUTASYNC procedure (3.5.2.2) safely
writes the formatted text.

"e SHUTDOWN: This entry terminates the screen control monitor task.

3.1.2 Private Keyboard Monitor Task

The KEYBDCONTROL task type includes entries corresponding both in
function and name to the input service procedures described previously in Section 2.6.
Users of ANSITERMINALSERVICES, however, will not (and may not) rendezvous
with this private controlling task by calling its entry points directly. As Figure 3-4
illustrates, applications instead route input service requests through the procedural
interfaces defined in ANSI_TERMINALSERVICES' nested KEYBD package.
When the GETKEY procedure (2.6.1) is called, for instance, it in turn, calls the
GETKEY entry point (3.1.2.4) from KEYBD_CONTROL. The keyboard monitor
task is described here as follows:

"* Task design
"* Local state variables
"* Local subroutine
"* Task entries

3.1.2.1 Task Design. The KEYBDCONTROL task type is a server task
comprised of an initialization entry and an infinite loop that contains a selective
wait. This selective wait includes a shutdown entry and several others that handle
input service requests individually by synchronizing calls to input routines from the
supporting packages. Figure 3-4 includes a PDL for this task. Additionally, this
figure shows the necessary interaction between this task and the terminal's
associated screen monitor task. This dependency exists because of the need to
intermittently echo user input. If a user inserts a character while line editing, for

3-9

NA VS WC TR 91-783

I-I
zoJ0

0 U

L~ l=

I 0

09 '- ll 0

.. 0

Q w

Rz A I 110 I- Wx' z'~a~

XW wla as w a . a
LuI AL I0 r IaALu 11-. s

CEa .1. '7c'. -s I .. Er - 0 I - .

- ~ ~ * &Si-I 0w

0.0

loxz
.j.

3-10

NAVSWC TR 91-783

. instance, the screen contents must be updated safely via a call to SCREEN_
CONTROL's PUTSTR entry (3.1.1.4).

As with SCREEN_CONTROL previously, the KEYBDCONTROL task type
takes advantage of VADS 6.0's passive task optimization and must, therefore, use
error flags rather than exception handlers. If any problems occur with an input
service request, the error flag causes an exception (IOERROR) to be raised in the
KEYBD package (2.6) and subsequently propagated to the caller. For a full
discussion of this passive task optimization, see Section 6.3.

As with SCREENCONTROL above, this type takes its Ada task priority from
the system default (see Section 3.1.1.1). To change this, users must change the
KEYBDPRIORITY constant in ANSITERMINALSERVICES and remove the
appropriate comment symbols.

3.1.2.2 Local State Data. The KEYBD_CONTROL task declares several local
variables required by its input services. Most importantly, one of these variables
provides the keyboard task with access to terminal parameters, shared resources, and
SCREENCONTROL's echo routines. The local state data is summarized below:

"* THIS_TERM: This variable is of type TERMINAL (2.3.5) and is needed to
copy in the attributes of the associated terminal. For example, THIS_TERM
records the terminal's port data needed for subsequent input services. In
addition, this record includes several dynamic components, allowing the
keyboard control task to access the shared cursor resource, the user-defined
keyboard bindings, and the SCREENCONTROL (3.1.1) entry point needed
to echo user input.

"* KEYSTROKE: This variable is of type ALLKEYS (2.2.3) and records the
logical key returned from a keystroke read.

3.1.2.3 Local Subroutine. Nested within the KEYBD_CONTROL task type is
the ECHOKEY procedure. Given a logical key, this procedure converts it to a
printable character (if possible), displays the character at the current cursor position
with the current cursor visual attributes, and shifts the cursor right one position.
Like all output requests in a multitasking environment, this single-character write
must be properly synchronized to avoid side effects with concurrent I/O operations.
That is, the cutput request must be routed through the terminal's associated screen
protection task described earlier in Section 3.1.1. The ECHOKEY procedure,
therefore, echoes the character by calling the PUTSTR entry point (3.1.1.4) of the
SCREENCONTROL task.

3.1.2.4 Task Entry Points. In addition to calling 110 routines provided by the
support packages, each KEYBDCONTROL entry implements all necessary type
conversions so that users may access the functionality of lower packages using only
the visible derived types of ANSITERMINALSERVICES (see Section 2.2). As

3-11

NAVSWC TR 91-783

described earlier (3.1.2), the entry points of this private task type are accessible to
applications only through the identically named interface procedures of the KEYBD W
package. The task entries are listed and described below:

"* COPYTERMINALPARAMS: This startup entry copies the terminal
parameters into the TERMINAL variable local to the KEYBDCONTROL
task. This gives the keyboard control task access to the shared cursor
resource, terminal settings (e.g., keyboard bindings), and the screen monitor
task needed to safely echo input.

"* GETLINEEDIT: This entry invokes the line editing service described in
Section 2.6.3 by calling LINEEDITOR's EDIT_STRING procedure (3.3.2).
The edit string is displayed at the current cursor position. Before the
invocation, KEYBD_CONTROL ensures that the requested edit string does
not pass the right border of the screen. If the parameter string is too long, it
is truncated so that only that portion visible on the screen is passed to the
EDITSTRING procedure.

"* GETNOECHO: This entry reads a string of arbitrary length directly from
a port by calling ASYNCIO's GETASYNCNOECHO (3.5.2.3). The read
terminates when either the string is filled, or a carriage return is
encountered. In either case, the number of characters successfully read is
returned to the caller along with the input string.

"* GETTIMEDNOECHO: This entry is identical in functionality to the
GETNOECHO entry described above, with the addition of timing
constraints. This timed read is provided by a call to GETASYNC_
TIMEDNOECHO (3.5.2.4) from the ASYNC_IO package. If no input is
detected within the given time interval, this procedure sets the timeout flag
and terminates the read operation.

"* GETKEY: This entry reads a single keypress event by calling
KEYBOARDINPUT's overloaded GETKEY procedure (3.4.2.2). This
procedure traps and parses escape sequences and returns the single logical
key bound to the pressed key. Additionally, this entry includes an echo flag.
If the flag is set, the logical key resulting from the read is passed to the
ECHO-KEY procedure (3.1.2.3) local to the keyboard task.

"* GETTIMEDKEY: This entry provides the same services as GETKEY
above, but places a timing constraint on the read. If no keypress event is
detected within the given time interval, the read terminates, and the
timeout flag is set. This timed read is performed by the timed version of
KEYBOARDINPUT's overloaded GETKEY procedure (3.4.2.2).

"* SHUTDOWN: This entry terminates the keyboard control monitor task. 0

3-12

NAVSWC TR 91-783

O 3.2 ANSICURSORSERVICES

ANSI_CURSOR_SERVICES is responsible for writing ANSI escape sequences
to a display in order to manipulate the cursor and control the screen's appearance. As
mentioned in Section 1.2.3, these standard escape sequences are hard-coded and must
be changed for nonstandard terminals. Most terminals, of course, adhere to the ANSI
guidelines and recognize the control sequences used to modify the cursor's position
and color. The remainder of this section is organized as follows:

"* Visible data types
"* Visible subroutines
"* Local subroutines
"* Constants

3.2.1 Visible Data Types

ANSICURSORSERVICES declares many data types related to cursor
specification (i.e., screen position, color, etc.). Most of these tipes are derived or
redeclared in ANSITERMINALSERVICES and were, therefore, described
previously in Section 2.2 (see Table 2-2 from Section 2.2). Those types not interfaced
in ANSI_TERMINALSERVICES are discussed here in Sections 3.2.1.1 through
3.2.1.4.

3.2.1.1 Variable-Length String Size. Type STRING.SIZE is an integer range
that constrains the variable-length string type (VSTRING) described earlier in
Section 2.2.14. STRINGSIZE defines a range between one and the constant
MAXCOLUMN. A variable-length string is, therefore, confined to a maximum
length equal to the user-defined maximum screen width. As discussed in Section 2.8,
the MAXCOLUMN constant may be modified by the application writer without
recompilation.

Some Ada compilers (e.g., Verdix Ada 6.0), however, require discriminated
records to be constrained at compile-time. Since STRING_SIZE constrains the
discriminated record V_STRING, and since STRING_SIZE is itself constrained by a
constant (MAX_COLUMN) set at runtime, an upper bound has been placed upon it.
This constraint is imposed by the STRING_SIZE_RANGE subtype and is hard-coded
to a maximum length of 120. Similarly, MAX_COLUMN is constrained by the
COLUMNRANGE subtype and is limited to a maximum value of 120. Although
these extra constraints are not required by all compilers (e.g., DEC Ada), they are
employed here to increase ANSI_TERMINAL_SERVICES' compliance with multiple
Ada environments.

3.2.1.2 Long Variable-Length String Size. As described earlier (2.2.16), ANSI_
TERMINAL-SERVICES allows users to specify several formatted strings that are to

3-13

NAVSWC TR 91-783

be written to the screen collectively. ANSICURSORSERVICES provides a routine
(ASSEMBLELONGSTRING, 3.2.2.2) that constructs a single variable-length
string comprising an arbitrary number of individual formatted strings. This new
string, therefore, must be large enough to hold the text and escape sequences
necessary for formatting. Type LONGSTRINGSIZE addresses this need by
defining an integer range that constrains the long variable-length string type
LONG_V_STRING (3.2.1.3). Its maximum size is determined by the MAX_
LONGSTRINGSIZE constant. As described in Section 2.8, this constant may be
initialized at runtime.

As with STRING_SIZE above (3.2.1.1), the LONGSTRINGSIZE range
requires an upper bound in order to comply with certain compilers (e.g., VADS 6.0).
That is, some compilers require that a discriminated record's constraining range to
itself be constrained at compile-time rather than at runtime. The additional subtype
LONGSTRINGSIZERANGE is used here to meet this requirement. It statically
constrains LONG_STRINGSIZE to be no longer than 1024.

3.2.1.3 Long Variable-Length String. Like type VSTRING described earlier
(2.2.14), type LONG V STRING is a variable-length string implemented as a
discriminated Ada record. Variables of type LONGVSTRING, however, are
allowed to be considerably longer, because they are used when converting an array of
formatted strings into a single variable-length string. (As described earlier (2.2.16),
this conversion is made in the interest of optimization.) The discriminant of
LONG_V_STRING determinek the length of the string and is constrained by the
LONG_STRING_SIZE integer range described above (3.2.1.2) (see Table 31).

TABLE 3-1. LONG VARIABLE-LENGTH STRING RECORD (TYPE LONG_V_STRING)

COMPONENT TYPE REFERENCE

Len (Discriminant) LONGSTRINGSIZE 3.2.1.2

Str STRING (1.. Len) N/A

3.2.1.4 Hidden Column Increment. The private type PUT_STR_INCREMENT
defines an integer range (-MAX_COLUMN .. MAX_COLUMN) used to specify the
column offset when echoing user input. The type is private, because it is intended to
prevent users of ANSITERMINALSERVICES from calling PUTSTR, a procedure
intended to be used only internally to echo input. As discussed in Section 2.5.11, this
private type allows only ANSI_TERMINAL_SERVICES and LINEEDITOR to call
the unprotected PUT_STR procedure.

3-14

NAVSWC TR 91-783

0
3.2.2 Visible Subroutines

The functionality of many ANSI_CURSORSERVICES visible subroutines
was previously described in Chapter 2. For example, the CLEAR_SCREEN
procedure from ANSI_TERMINALSERVICES simply calls the CLEAR_SCREEN
entry point of the screen task, which in turn calls the corresponding output procedure
in ANSI_CURSOR_SERVICES. As shown in Table 3-2, users should refer to the
earlier sections for descriptions of such output services.

TABLE 3-2. SUBROUTINES INTERFACED IN ANSI_TERMINAL_SERVICES

SUBROUTINE REFERENCE DESCRIPTION

CLEARSCREEN 2.5.9 Clears a display and positions the cursor
in the upper left corner.

CLEAR_TO_ ENDOF_LINE 2.5.8 Clears text to the right of the cursor
within the same line.

SETCURSOR_POSITION 2.5.1 Repositions the cursor.

SETTEXT_-COLOR 2.5.4 Assigns the cursor's visual attributes.

SETATTRIBUTE 2.5.6 Sets the cursor's positional and visual
attributes.

TOV.STRING 2.7.2 Converts an ADA string to a variable
length string of type VSTRING.

Visible routines not interfaced in ANSITERMINAL_SERVICES are fully
documented below. These routines are often needed by ANSITERMINAL_
SERVICES and provide the following capabilities:

"* Disabling line wrapping
"* Construction of optimized control strings
"* Important type conversions

3.2.2.1 Disabling Line Wrap Mode. The procedure LINE_WRAP_OFF writes
the ANSI escape sequence that explicitly disables line wrapping on the terminal's
screen. In this way, output will be truncated at the rightmost column, so that no

*scrolling will occur. Otherwise, the contents of the entire screen would shift, and the
positional values of the protected cursor resource would no longer accurately reflect

3-15

NAVSWC TR 91-783

the contents of the actual screen. Also, an unwanted line wrap could cause a critical
line of information to scroll off the top of the display.

3.2.2.2 Assembling a Screen Layout Control String. The procedure named
ASSEMBLELONGSTRING constructs a long variable-length string from an array
of formatted text (See the PDL below). That is, it groups the text from a LAYOUT
(2.2.16) variable into a single string and embeds the cursor control sequences needed
to implement the formatting associated with each individual string. ASSEMBLE_
LONG_STRING is optimized so that it only embeds these control sequences when
needed. If two successive strings are to be written with the same visual attributes,
for example, the control sequences that set the cursor color are inserted only before
the first string. Given the sluggish nature of screen I/O, it is important to reduce the
number of written bytes in this manner.

ASSEMBLELONG_STRING is called by ANSITERMINALSERVICES'
overloaded PUT procedures (2.5.10). The current cursor settings are therefore passed
to this procedure, because the cursor must be reset to its original state upon
completion of the write request. Assembling and writing a single (possibly long)
string is significantly more efficient than writing the specified formatting control
sequences, writing the text, and then writing the control sequences needed to restore
the cursor to its original state. This method is especially efficient when several
formatted strings are to be written at once, as with the LAYOUT version of PUT. In
this way, a single write can display an arbitrary number of formatted strings. This
optimization reduces the number of interactions with the terminal device driver and
avoids the associated temporal overhead.

procedure ASSEMBLELONG-STRING
(LAYOUTARRAY : in LAYOUT;
OUTPUTSTR • out LONG V_STRING) is

begin

-- Record original cursor attributes.

for STRINGNUM in LAYOUT_ARRAY' range loop

-- Embed escape sequences to reposition the cursor.

if APPEARANCEDIFFERENT FROMLAST then
-- Embed escape sequences to change the cursor appearance.
-- Record cursor appearance attributes.

end if;

-- Add actual text to be displayed on the screen.

end loop;

-- Add escape sequences to restore the cursor to original state.

end ASSEMBLELONGSTRING.

3-16

NAVSWC TR 91-783

3.2.2.3 Converting to a Private Column Increment. PUTSTRINCREMENT
(3.2.1.4) is a private type intended to prevent application writers from calling the
unprotected PUTSTR procedure used internally to echo user input. The routines
from ANSI_TERMINALSERVICES and LINEEDITOR that need to call PUTSTR,
however, must be able to assign values to this private type. The convenience function
TOPUTSTRINCREMENT allows for this by converting a value of the visible type
COLUMNINCREMENT (2.2.8) to the private type PUTSTRINCREMENT.

3.2.2.4 Converting from a Private Column Increment. As described in the
previous section, the ANSI_TERMINALSERVICES and LINEEDITOR packages
must be able to perform type conversions on the private PUTSTRINCREMENT
type (3.2.1.4). The convenience function TOCOLUMNINCREMENT is used
internally to convert a PUTSTRINCREMENT value to a value of the visible
COLUMNINCREMENT type (2.2.8).

3.2.3 Local Subroutines

ANSICURSORSERVICES includes two local subroutines that generate the
ANSI escape sequences necessary to perform the specified cursor assignment. For
example, unique cursor control escape sequences are defined to reposition the cursor
and modify its visual attributes. As discussed in Chapter 1, ANSITERMINAL_

* SERVICES only supports terminals that follow this standard. The standard escape
sequences are, therefore, hard-coded within ANSICURSORSERVICES.

3.2.3.1 Cursor Relocation Control Sequence. Given screen coordinates of type
POSITION (2.2.7), the REPOSITION__SEQUENCE function returns the standard
control sequence necessary to reposition the cursor to the specified location. Because
the size of this escape sequence will vary depending upon the specified screen location,
the function returns a variable-length string of type VSTRING (2.2.14).

3.2.3.2 Cursor Appearance Control Sequence. The COLORSEQUENCE
function returns the standard cursor control sequences needed to implement the
cursor settings of its TEXTCOLOR (2.2.12) argument. The function returns a
variable-length string of type VSTRING (2.2.14), which actually comprises several
escape sequences. These sequences individually reset the cursor and set its color,
blink, and intensity attributes.

3.2.4 Constants

Section 2.8 lists the constants used by ANSI_TERMINALSERVICES and its
supporting packages. As discussed, these constants are assigned at package
elaboration time by reading a constants file. Within ANSI_CURSOR_SERVICES,
the following constants are initialized in this manner:

3-17

NAVSWC TR 91-783

"* MAXLINE
"* MAX_COLUMN
"* MAXLONGSTRINGSIZE
"* MAXSTRINGSINLAYOUT

3.3 LINE-EDITOR

The LINEEDITOR supporting package defines a single visible procedure to
implement the line editing service described in Section 2.6.3. This editor allows a
user to move and edit freely within the input string and offers several operations
mapped to the edit logical keys (e. g., HOME, ERASELINE, and INSERT). Editing
of this nature requires explicit writes to update the contents of the current input
field. For instance, inserting a character in the middle of an input string requires
shifting text to the right of the cursor by one column. Because of this need to refresh
the display with intermittent writes, and because LINEEDITOR must allow for the
presence of multiple I/O tasks, this package is dependent upon the protected writes
provided by ANSITERMINALSERVICES' SCREENCONTROL monitor task
(3.1.1). Specifically, EDITSTRING and its nested subroutines repeatedly call the
PUT._STR procedure (2.5.11) to properly and safely update the screen contents. This
need for protected output within the input service results in the cyclic dependency
between the ANSITERMINALSERVICES and LINEEDITOR packages, as
illustrated earlier in the package dependency diagram (Figure 2-1). This section
describes the LINE_EDITOR package in the following order:

"* Local data types
"* Visible subroutines
"* Local subroutines

3.3.1 Local Data Types

LINEEDITOR defines no visible data types and only two local data types.
These two types are described in the following two sections.

3.3.1.1 Insertion and Overstrike Mode Descriptor. When editing text, a
keypress may either insert a character at the current cursor position, or overwrite the
character under the cursor. MODES, a type local to LINE_EDITOR, is a type that
encapsulates this line editing option. The enumerated type comprises the following
two elements:

9 INSERTT
o OVERSTRIKE

(Users should note the irregular spelling of the first enumeral; this is done to
differentiate it from the INSERT logical key defined by the type ALLKEYS (2.2.3).)

3-18

NAVSWC TR 91-783

3.3.1.2 Edit Keystroke Terminators. As mentioned in Section 2.5.3, the line
editing service terminates when the user presses a key mapped to a control logical
key (NUL .. US), a function logical key (FK1 .. FK100), or certain edit keys, as listed
previously in Table 2-14. LINEEDITOR locally defines the EDITKEY_
TERMINATORS type to group those logical keys that cause the line editor to
terminate. A subtype of type ALLKEYS (2.2.3), EDIT_KEYTERMINATORS
consists of the six logical keys in the TAB .. DOWNARROW range (See Table 2-14).

3.3.2 Visible Subroutines

EDITSTRING is the only visible subroutine defined in the LINEEDITOR
package. Users invoke this line editor by calling the GETLINEEDIT procedure
(2.6.3) of the KEYBD package. The functionality of GETSTRING was previously
described in Section 2.6.3. EDITSTRING also encompasses several nested
subroutines that are fully documented in the following section (3.3.3). These
subroutines generally implement the primitive operations inherent to line editing,
such as removing a character or checking for a full string. The following PDL
describes this procedure.

procedure EDIT_STRING is
* begin

-- Echo user-specified default string
while not DONE loop

-- Get a keystroke
if LOGICALKEYISTERMINATOR then

TERMINATORKEY: = KEY;
DONE := true;

elsif KEY in PRINTABLEKEYS then
ADDTOSTRING(CHAR&VAL(KEY));

elsif KEY in EDITKEYS then
case KEY is

when LEFTARROW >
-- Move cursor left one position

when RIGHT_ARROW =>
-- Move cursor right one position

when INSERT = >
-- Toggle between INSERTT and OVERSTRIKE modes

when DELETE = >
-- Remove character at the cursor

when BACKSPACE = >
-- Remove character to the left of the cursor

* when HOME = >
-- Move cursor to beginning of the input string

3-19

NAVSWC TR 91-783

when ENDD >
-- Move cursor to the end of the input string

when ERASELINE = >
-- Erase the input string

end case;
end if;

end loop;
end EDITSTRING;

3.3.3 Local Subroutines

This package defines several local subroutines necessary to implement a line
editor. These routines are nested within the GETSTRING procedure (3.3.2) and
provide the following capabilities:

" Testing for line editor termination
" Testing the status of the string (i.e., full or empty)
"* Removing a character from the string
"• Adding a character to the string (i.e., inserting or overstriking)
"* Performing other primitive operations (e.g., erasing the input string)

3.3.3.1 Determining if a Keystroke is a Terminator. The Boolean function IS_
DONE-SEQUENCE determines if a specified logical key should cause the line editor
to terminate. A TRUE value is returned if the keystroke is in the range of the control
or function logical keys. Also, the function returns true if the keystroke falls within
the EDITKEY_TERMINATORS (3.3.1.2) range defined locally within LINE_
EDITOR.

3.3.3.2 Determining if an Edit String is Full. The FULLSTRING function
returns a Boolean value indicating whether the string being edited is currently full.

3.3.3.3 Determining if an Edit String is Empty. The EMPTY-STRING
function returns a Boolean value indicating whether the string being edited is
currently empty.

3.3.3.4 Removing a Character. The REMOVECHAR procedure deletes the
character at the cursor. Characters to the right of the cursor are shifted left one
position to adjust for the deletion. Since a character is being removed from the input
string, a blank character (ASCII 32) is appended to the end of the string to maintain
its proper length.

3.3.3.5 Inserting a Character. As its name implies, INSERT_CHAR adds a
character to the input string at the current cursor position and shifts the cursor right
one position. Text to the right of the cursor is also shifted right one position, so that
no character is overwritten.

3-20

NAVSWC TR 91-783

3.3.3.6 Overwriting a Character. The OVERCHAR procedure overwrites the
character under the cursor with the specified ASCII character. None of the
remaining text is altered, and the cursor is shifted right one column.

3.3.3.7 Addink a Character. ADDTOSTRING is a simple procedure
consisting of only a single Ada CASE statement. Depending upon the current state of
the line editor's MODES descriptor (3.3.1.1), the specified character is passed to
another procedure. If the line editor is in INSERIT mode, procedure INSERT_
CHAR (3.3.3.5) is called. Otherwise, the line editor is in OVERSTRIKE mode, and
the character is passed to the OVERCHAR procedure (3.3.3.6).

3.3.3.8 Initiating an Edit Operation. DO_EDITFUNCTION is called when an
edit keypress is detected by the line editor. Depending upon the particular logical key
encountered, appropriate action (i.e., a line editor primitive) is taken. If the INSERT
logical key is pressed, for instance, the editor's MODES descriptor (3.3.1.1) toggles
between INSERTF and OVERSTRIKE. This action and the functionality associated
with each remaining edit logical key was previously listed in Table 2-14 of Section
2.6.3.

3.4 KEYBOARDINPUT

KEYBOARDINPUT is the support package responsible for declaring,
mapping, and reading the logical keys described earlier (2.2.3, 2.2.4). These logical
keys and their associated bindings effectively abstract the keyboard in an effort to
enhance portability. By changing only the keyboard bindings file, an application
that uses the logical key construct may be ported to another terminal without
requiring costly maintenance and recompilation. The remainder of this section is
outlined as follows:

"* Visible data types
"* Visible subroutines
"* Local subroutines
"* Constants

3.4.1 Visible Data Types

The most important data types KEYBOARDINPUT defines are the ALL_
KEYS and MAPLIST types. These constructs allow users to configure an
application at runtime in support of virtually any keyboard. ALLKEYS (2.2.3), its
subtypes (e.g., ASCII_KEYS, PRINTABLE_KEYS, etc.), and MAPLIST (2.2.4)
were fully documented in Chapter 2.

3-21

NAVSWC TR 91-783

The only KEYBOARDINPUT data type not derived in ANSITERMINAL
SERVICES is ESCAPESEQUENCE. This type is simply a string constrained by the W
MAXESCLEN constant. As discussed in Section 2.8, MAX_ESC_LEN is set at
runtime and has a default value of five. If a keyboard generates escape sequences
longer than five characters in length, users may easily modify the MAXESCLEN
value in the constants file.

3.4.2 Visible Subroutines

KEYBOARDINPUT provides several subroutines described in Sections
3.4.2.1 through 3.4.2.5. Collectively, these routines offer the following capabilities
for 7-bit terminals:

"* Binding logical keys to their ASCII representation
"* Reading a logical key
"* Converting logical keys to other representations

3.4.2.1 Reading a Keyboard Bindings File. Section 2.2.4 described the MAP-
LIST array type. Indexed upon the mappable logical keys, this array is composed of
strings of type ESCAPE-SEQUENCE (3.4.1). When a terminal is created, a
keyboard mapping list is allocated and subsequently initialized by a call to
KEYBOARDINPUTs READKEYMAPPINGS procedure. Given the name of a
keyboard bindings file, READ_KEYMAPPINGS initializes the array of escape
sequences to values listed in the file. Initially, several of the most common mappings
are assigned defaults before this file is read (See Table 2-5). If these defaults are
inappropriate, of course, the user may specify different bindings in the mapping file.
Appendix B lists the format for this keyboard mapping file, and Appendix C contains
an example.

3.4.2.2 Reading a Keystroke. KEYBOARDINPUT's overloaded GETKEY
procedures read a single keystroke, map the key (if necessary) and return the
associated logical key. One version of the overloaded procedure incorporates a timing
constraint; if no response is detected in the allotted time, GETKEY sets a timeout
flag and returns the NUL logical key. The full functionality of the overloaded
GETKEY procedure was previously described in Sections 2.6.1 and 2.6.2. However,
one difference does exist between KEYBOARDINPUT's GETKEYs and the
interface procedures from ANSITERMINALSERVICES; echoing is not optionally
performed within KEYBOARDINPUT. As with all output, echoing requires
protection in a multitasking environment and is performed locally within ANSI_
TERMINALSERVICES. The following PDL summarizes GETKEY:

procedure GETKEY is
begin

3-22

NAVSWC TR 91-783

if TIMEDVERSION then
GETSINGLEKEYPRESSTIMEDNOECHO;

else
GETSINGLEKEYPRESSNOECHO;

end if;

case FIRST._CHARACTER is
when ESC = >

if SECONDCHARACTER = INITIALIZATIONCHARACTER then
-- ESC key pressed

else
-- Find MAPLIST entry matching this escape sequence

when OTHERCONTROLCHAR : DEL = >
-- Determine if edit keystroke is mapped to this character

when others = >
-- Printable key pressed

end case;
end GET-KEY;

3.4.2.3 Converting to a Printable Character. The GETCHARVAL function
returns the single ASCII character associated with a printable logical key. For
example, the function would return '$' if passed the DOLLAR keystroke.

3.4.2.4 Converting to an ASCII Character. Given a logical key in the ASCII_
KEY range (2.2.3), GETASCIIVAL returns the ASCII position of the corresponding
character. If given the UCA logical key, for instance, GET_ASCII_VAL will return
the integer 65.

3.4.2.5 Converting to an Integer Equivalent. GET_NUMBERVAL is a
function that converts a numerical logical key (ZERO .. NINE) to its integer
equivalent.

3.4.3 Local Subroutines

Nested within the READKEYMAPPINGS procedure are subroutines
described in the following two sections.

3.4.3.1 Initializing Keyboard Bindings. Before reading a keyboard bindings
file, READKEY_MAPPINGS calls the INITIALIZEESCSEQS procedure. This
sets the bindings of all mappable logical keys to blank (ASCII 32) characters. Some
edit keystrokes are vital for the line editor service and are therefore given default
bindings common to many terminals (see Table 2-5). These defaults, however, are

3-23

NAVSWC TR 91-783

easily overwritten; if the keystroke is bound by the user in the mapping file, the
default is discarded. W

3.4.3.2 Reading an Escape Sequence Binding. If READKEYMAPPINGS
encounters an escape character symbol ('/E') when parsing the keyboard bindings file,
the GET_ESC_SEQUENCE procedure is called to read the subsequent escape
sequence. While reading the sequence, checks are made to ensure that it does not
violate the size constraint set by the MAXESCLEN constant (3.4.4).

3.4.4 Constants

KEYBOARDINPUT defines only the MAXESCLEN constant. This
constant constrains the ESCAPE-SEQUENCE string type (3.4.1) and, in turn, the
elements of the MAPLIST array type (2.2.4). MAXESCLEN defines the
maximum length of escape sequences (including the ESC character) and has a default
value of five. As discussed earlier in 2.8, the constant is set at runtime and may
easily be configured by the user.

3.5 ASYNCIO

ASYNC_10 is the lowest level I/O support package for ANSITERMINAL_
SERVICES. It performs channel assignments and asynchronous read and write
operations by calling system service routines. Because it interfaces with operating
system I/O routines, the body of ASYNC_10 is system-dependent. The specification,
however, is host-independent and is documented here as follows:

"* Visible data types
"* Visible subroutines
"* Constants

3.5.1 Visible Data Types

ASYNCIO declares three visible data types related to channel assignment.
PORTNAME (2.2.1) and PORTDATA (2.2.2) are derived in ANSI
TERMINALSERVICES and were described earlier. The remaining type,
CHANNELTYPE, is a private integer range constrained by the MAX_CHANNELS
constant (3.5.3). In order to be as portable as possible, actual system-dependent
channel identifications are recorded in an array in the package body. Type
CHANNELTYPE serves as an index for this array. In this way, higher-level
packages (including the application program) refer to this integer index, rather than
the system-dependent channel identifier. Users of ANSITERMINAL_SERVICES,
however, only need to specify a port name to the CREATETERMINAL (2.4.1) 0

3-24

NAVSWC TR 91-783

O routine; the CHANNELTYPE component of the associated PORTDATA (2.2.2) is
set by ASYNCIO.

3.5.2 Visible Subroutines

ASYNC_10 declares several system-dependent procedures that perform low-
level I/O services. Although the procedure bodies are system-dependent, the
specifications of these subroutines are described in Sections 3.5.2.1 through 3.5.2.6.
Specifically, these ASYNCTO subroutines perform the following services:

"* Channel initialization
"* Asynchronous writes
"* Asynchronous, nonblocking reads (optionally timed)
"* Escape sequence detection and capture

As discussed in Section 1.0, ANSITERMINALSERVICES applications will
likely perform input and output operations concurrently within several Ada tasks.
Therefore, the 1/0 routines of this lowest package must be task synchronous/ process
asynchronous to avoid having the input request block a user's entire process. Again,
the implementation of this asynchrony is largely system-dependent. The version of
ASYNC_10 in support of DEC's VMS operating system, for example, incorporates

* asynchronous system calls interfaced in DEC's TASKING_SERVICES package.

3.5.2.1 Initializing a Channel. INITIALIZECHANNEL provides access to a
requested terminal port. Given the name of a port, INITIALIZECHANNEL calls
the necessary system-dependent routine to assign an I/O channel. The resulting
channel identifier is recorded within the package body's channel array, as discussed
in 3.5.1. The index to this identifier, however, is recorded in the specified PORT_
DATA record, along with the port name, and is returned to the caller.

3.5.2.2 Writing Asynchronously. PUTASYNC writes a specified string
asynchronously to the given port. Because this is the only write in this collection of
packages, the port assignment determines the target device. For example, this string
could contain escape sequences destined to control a display or text being routed to
another computer. In either case, PUT-ASYNC merely passes the string out the
specified port; all protection mechanisms needed for concurrent 1/0 are provided by
higher packages.

3.5.2.3 Stream Reading Without Echo. GETASYNCNOECHO reads a
stream of characters asynchronously from a port and explicitly disables screen
echoing. Because this nonblocking read performs no formatting or escape sequence
detection, an escape sequence is treated as a stream of individual characters. These
characters (including the introductory escape character) are included in the returned
cstring if space allows. If the string will not hold the complete escape sequence, the
overflow characters will remain in the system's keyboard buffer until consumed by a

3-25

NAVSWC TR 91-783

subsequent read. This read operation terminates either when a carriage return is
encountered or when the user-specified string has been filled. In either case,
GETASYNC NOECHO also returns the number of characters read. This count does
not include the carriage return terminator.

3.5.2.4 Timed Stream Reading Without Echo. GETASYNCTIMED_
NOECHO performs the same services as in the preceding paragraph but adds a time
constraint to the read. If no input is detected within the given time interval,
GETASYNCTIMEDNOECHO sets a timeout flag and returns the string and a
counter indicating the number of characters successfully read. The timing
implementation (e.g., interrupts, polling, etc.) is system dependent.

3.5.2.5 Keypress Reading Without Echo. GETASYNCKEYPRESS_
NOECHO reads a single keypress event and traps escape sequences when they occur.
As its name implies, this nonblocking read echoes no input to the display. The string
associated with this procedure should be thought of as a single character, with an
overflow area intended only for an escape sequence. If a user presses a printable key
in response to this read, for example, the returned string will contain the detected
ASCII character in position one, and the overflow area will remain unused. However,
a key that generates an escape sequence may be pressed. In this case, GET_
ASYNCKEYPRESS_NOECHO assigns the escape character (ASCII 27) to the first
string position and fills the remainder of the string with the escape sequence. In
either case, the read terminates immediately on any keypress and returns only the
ASCII characters generated by this single keypress event.

3.5.2.6 Timed Keypress Reading Without Echo. Like the routine in the
preceding paragraph, GET_ASYNC_KEYPRESS_TIMED_NOECHO reads a single
keypress and traps escape sequences. This procedure also introduces a timing
constraint. If no keypress is detected in the specified time interval, the read
terminates and sets a timeout flag. The implementation of this timing mechanism
(e.g., interrupts, polling, etc.) is system-dependent.

3.5.3 Constants

As discussed in Section 2.8, constants of ANSITERMINALSERVICES and
its supporting packages are assigned at runtime via a constants file. Table 2-16 from
that section lists these constants, their assigned value from the default constants file,
and the data types they constrain. ASYNC_10 declares the following two constants
that are initialized in this manner:

"* MAXPORTNAMESIZE
"* MAXCHANNELS

3-26

NAVSWC TR 91-783

O 3.6 ANSICONSTANTS

The ANSICONSTANTS package is intended to allow users to easily
customize ANSITERMINALSERVICES without recompiling any source code. At
package elaboration time, this package reads the ANSI.DAT file and initializes its
visible variables. As higher-level packages are elaborated, the constants of
Table 2-16 are initialized with the values read from the constants file. (Pragma
ELABORATE is used by higher-level packages to ensure that the
ANSI_CONSTANTS variables are indeed assigned values before their associated
constants are initialized.) In this way, constants and data types are constrained at
runtime. The default constants file is listed in Appendix E. To customize
ANSITERMINALSERVICES, application writers merely modify this file.

The remainder of Section 3.6, ANSICONSTANTS, is organized as follows:

"* Visible variables
"* Local constants
"* Local state variables
"* Elaboration code

3.6.1 Visible Variables

The specification of ANSICONSTANTS declares several variables from
which higher-level packages initialize constants. These variables are all integers
and are identical in name to the constants they subsequently define. Table 2-16
names these constants and lists their default values read from the visible variables of
ANSICONSTANTS.

3.6.2 Local Constants

FILENAME is the constant string ANSI.DAT. At package elaboration time,
this file is opened and read in order to assign ANSI_CONSTANTS' visible integer
variables. The named initialization file must follow the format outlined in
Appendix D.

3.6.3 Local State Variables

DATA_FILE is an Ada file descriptor of type TEXTIO.FILETYPE and is
associated with the constants initialization file. Defined in the package body, this file
object is used in the elaboration code when reading the constants file.

0

3-27

NAVSWC TR 91-783

3.6.4 Elaboration Code

When a compiled application program is run, the elaboration code of this low-
level package is executed first. This sequence of statements opens the ANSI.DAT
data file, reads an integer value for each of its visible variables,and closes the file.

3-28

NAVSWC TR 91-783

CHAPTER 4

USAGE GUIDELINES

The program listing of Appendix F is a concise example of how to properly use
ANSITERMINAL_SERVICES. Although it is not a very useful application, it does
serve to demonstrate the capabilities and interface mechanisms of ANSI_
TERMINALSERVICES. Such a small application, of course, cannot fully
demonstrate each of the services described in this paper. However, it does illustrate
the following:

"* Creation and deallocation of a terminal manager
"* Protected asynchronous writes with varying cursor appearance attributes
"* Optimized multiple writes using the LAYOUT type
"* Line and screen clearing
"* Setting of cursor attributes (e.g., position, appearance, etc.)
"" Line editing service and use of its terminator
"* Timed read of a logical key (without echo)
"* System-independent reference to function keys

4.1 DESCRIPTION

This example illustrates a paneled screen introduced in Section 1.0. That is,
the screen consists of several fixed regions into which the output from several
concurrent tasks is mapped. At variable declaration time, the main procedure
(EXAMPLE) creates a terminal manager by specifying a requested port name, the
name of a keyboard binding file, and the dimensions of the associated display. In this
example, the file of Appendix C is named as the mapping file. After a terminal
manager is allocated, EXAMPLE initializes the cursor attributes, clears the
associated display, and synchronizes the start of its embedded tasks. At that point,
the main procedure simply goes into a busy wait until its tasks have terminated. A
call to SHUTDOWNTERMINAL (2.4.2) then deallocates the terminal manager and
enables the program to terminate gracefully.

As illustrated in Figure 4-1, the EXAMPLE procedure incorporates three Ada
tasks; two (WARNING, TIMER) are writer tasks, and the third (READER)
repeatedly prompts the user for input. The READER task displays a prompt,
repositions the cursor at the end of the prompt, and requests the line editor service.
The associated string is given a default that an operator may edit or accept. When

4-1

NA VS WC TR 9 1-783

UL
S

0
0. IL. U.

2 zo
=W LW

% %

_ __ _ 0

ILI

4-2

NAVSWC TR 91-783

the operator is finished editing, the terminating keystroke is recorded in the variable
TERMINATOR. Under normal conditions, the READER task will then loop and
invoke the line editor again with the previous default string. (Task shutdown and
the importance of this terminator will be discussed below.)

Meanwhile, the TIMER task methodically and concurrently updates a clock
counter every second until requested by the READER task to stop. If no STOP entry
call is encountered within one second, TIMER will increment its counters and call the
ANSITERMINALSERVICES' PUT (2.5.10) procedure to display the results. Like
the READER task, TIMER is associated with its own region of the display, into which
no other tasks write.

Of EXAMPLE's three embedded tasks, WARNING is the simplest. It
immediately delays for several seconds and then displays an urgent, flashing
message. This message is made even more prominent by taking advantage of ANSI_
TERMINALSERVICES' color support. Since the warning message consists of
several strings with varying screen positions and attributes, the task sets a LAYOUT
(2.2.16) array and calls the PUT procedure (2.5.10) to simultaneously write the
strings. In this way, only a single PUT call is needed to write several lines to the
screen. WARNING then informs the READER task of the threat by calling its
SETDANGER entry. After writing the warning message and setting READER's
DANGER flag, the task terminates.

The DANGER flag is local to the READER task and indicates that a warning
message has been displayed by another task. This message instructs the operator to
select one of three choices, which have been mapped to the logical keys FK1, FK2, and
FK3. By selecting FK3, the operator temporarily ignores the threat and invokes the
line editor again. If the operator elects to counter the threat, however, the FK1 and
FK2 options will terminate all callable tasks and display a message signifying that
the appropriate action has been taken. At this point, the main procedure exits its
busy wait and calls the SHUTDOWNTERMINAL procedure (2.4.2) before
terminating.

In addition to the different responses, the operator also has two methods for
replying. The faster (and intended) method relies upon the line editor terminator
mentioned earlier (see Section 2.6.3). If a user responds to the threat by pressing one
of the response keys while editing, the current string will be accepted, and the
appropriate action will be taken immediately. However, the user may choose to
terminate the line editor with a carriage return or another nonresponse terminator
key. The line editor accepts its string at this point, but the threat remains
unhandled. To guarantee a threat response, the READER task then loops until the
operator responds properly to the message. A timed read (GETTIMEDKEY,
(2.6.2)) is employed here, so that a bell may be sounded on each timeout.

In summary, procedure EXAMPLE and its Ada tasks demonstrate how
ANSITERMINALSERVICES protects I/O resources in a multitasking

4-3

NAVSWC TR 91-783

environment. By calling the proper routines, the actions of I/O operations produce no
side effects to interfere with concurrent 1/0 actions. And because the interface to
these protective services has been greatly simplified and localized to ANSI_
TERMINALSERVICES, the desired real time, paneled display of the EXAMPLE
procedure is achieved quite easily.

4.2 POINT OF CONTACT

For further information or to obtain a copy of the software, contact:

Michael W. Masters
Naval Surface Warfare Center
Dahlgren Division
Code N35
Dahlgren, VA 22448

(703) 663-1611

mmaster@relay.nswc.navy.mil.

0

0

4-4

NAVSWC TR 91-783

CHAPTER 5

PERFORMANCE CHARACTERISTICS

Like all software, the performance of ANSITERMINALSERVICES varies
significantly with different hardware and compiler configurations. Even on common
systems, observed performance may differ with varying resource allocations, system
activity, and user privileges. Given the nondeterminism of software performance,
however, meaningful insights may still be gained into these packages and into the
efficiency of 1/0 in general.

Version 2.0 of ANSITERMINAL._SERVICES was initially developed with
VAX/Ada on a DEC MicroVAX II under VMS and has recently been ported to a Sun
Microsystem 4/260 workstation running the VERDIX Ada (VADS 6.0) compiler.
Three individual tests were conducted to compare the two configurations. As
expected, the performance of the Sun showed considerable improvements over that of
the slower MicroVAX in all tests. After all, the Sun is a 10 MIP RISC machine,
whereas the MicroVAX U1 is rated at only one MIP. In addition to the configuration
comparisons, the tests also explore differences in the two methods of screen output
ANSI_TERMINALSERVICES provides. Results of these tests may be compared to
recognize the importance of the screen output optimizations explained earlier in
Section 3.2.2.2. The benchmark results are given in Table 5-1 and explained below.

TABLE 5-1. BENCHMARK RESULTS

TIME (milliseconds)
WRITE TEST

MICROVAX II SUN 4/260

String PUTs 335.0 150.7

Layout PUT 225.0 5.7

5-1

NAVSWC TR 91-783

5.1 SCREEN OUTPUT

Writing formatted text to a display involves the following steps:

"* Call to the string version of the overloaded PUT procedure
"* Rendez ous with the specified terminal's screen monitor task
"* Validation of requested screen placement
* Adding formatting control sequences to the text
* Appending control sequences to restore the cursor to its original state
* Call to PUT_ASYNC to write the formatted text

In this manner, a single string of text is written with the given attributes, and
the cursor state is not adversely affected. If several lines of text are to be displayed at
the same time, the above steps may be repeated for each individual string. This
method, however, is inherently redundant because control sequences are repeatedly
written to set the cursor before and after each successive text string is written. A
better method involves assigning a LAYOUT array (2.2.16) with the formatted
strings and calling the layout version of PUT (2.5.10). This process involves the same
steps above, except that the formatting text for all strings in the array is combined
into a single string before the final cursor restoration sequences are appended. Thus,
the desired display is produced with f single write, and the cursor is not
unnecessarily restored to its original state after each individual string is written.

Two separate screen output tests were conducted on each configuration in
order to compare the two output methods described above. Both tests displayed the
four-line warning message of Figure 2-3 (2.6.3) and, therefore, produced the same
output. The first method involved separately writing the four strings constituting
the warning message, and required four calls to the string version of the overloaded
PUT procedure (2.5.10). The second method, on the other hand, merely required a
single call to the version of PUT in support of the LAYOUT (2.2.16) construct. As
Table 2-12 shows, the second method is indeed optimized on both configurations to
significantly accelerate the output of multiple formatted strings.

One potential reason for the performance difference concerns the resulting
number of writes. While the first method involvd four interactions with the
underlying terminal device driver, the other method required only a single write.
Similarly, the first method required four rendezvous with the screen monitor task.
The majority of the observed difference, however, is attributed to the difference in the
number of bytes each method required to achieve the desired results. As Table 5-2
illustrates, each of the four PUT crlls from the first test generated 19 bytes to restore
the cursor to its original state. "A Lie layout test, however, wrote a single long string
and only needed to restore the cursor once. Also, the cursor color was not redundantly
reset for each string of the array because the final three strings exhibit identical
visual attributes. Although both methods produced the same results, the layout PUT
required a single write and generated 89 fewer bytes of output. Given the sluggish O
nature of 1/0, any elimination of unnecessary bytes is clearly desirable.

5-2

NAVSWC TR 91-783

0

TABLE 5-2. BYTE COUNTS FOR SCREEN OUTPUT

MULTIPLE STRING PUTs
BYTE COUNTS LAYOUT

PUT
1 2 3 4 Total

Formatting Sequences 27 23 23 23 96 64

Text 40 31 19 23 113 113

Cursor Restoration 19 19 19 19 76 19

Total Bytes Written 285 196

Writers of real-time applications, however, may still not be satisfied with the
output performance exhibited above. For example, the VAX results show that an0 optimized layout write to display four formatted strings required 225 milliseconds.
Because the CPU would be out of the control of other tasks during this write, a 225
millisecond delay may prove to be dangerously long for real-time systems. For
example, other important real-time tasks may be refused immediate execution while
an earlier screen write request is being serviced. To meet such real-time deadlines,
designers may choose to implement a screen write with multiple string PUTs rather
than using the more efficient layout PUT. Thus designers may have to compromise
between maximum efficiency and maximum responsiveness. Unfortunately, these
goals may often conflict with one another.

0

5-3

NAVSWC TR 91-783

CHAPTER6

FUTURE WORK

Although ANSI_TERMINAL_SERVICES and its supporting packages provide
an effective and convenient method for performing terminal I/O concurrently among
Ada tasks, there are several areas in which the set of packages could be enhanced.
Future upgrades would likely involve the following capabilities:

9 X Window System support
9 Decoupling the line editor and ANSITERMINALSERVICES
* Passive task support
e User-defined line editor terminators
* Enhanced support for monochrome displays
* Asynchronous transfer of control
* UNIX signal handling 1/0
i Ports to additional operating systems

6.1 X WINDOW SYSTEM

Given the growing popularity and availability of the X Window System, it
seems appropriate for ANSITERMINAL_SERVICES to offer compatibility. For
example, a window could simulate an individual display. Although difficult, the
current packages could possibly be supplemented with X Windows routines that
access the X Windows event queue. Applications could then call the standard or X
Windows routines, as needed. Alternatively, one or more of the packages could be
made generic and instantiated with routines in support of X Windows or standard
terminals. A less daunting and more probable solution, however, would involve a
completely separate set of packages exclusively in support of the X Window System.

6.2 STAND-ALONE LINE EDITOR

Unfortunately, a cyclic dependency exists between the LINEEDITOR and
ANSITERMINALSERVICES packages (see Figure 2-1). The body of ANSI_
TERMINALSERVICES is dependent upon LINEEDITOR, of course, in order to
offer the line editing service. However, the editor also requires ANSI_TERMINAL_
SERVICES to provide necessary screen echoing. Editing of this nature often involves
intermittent writes to update the contents of the input field. If a character in the

6-1

NAVSWC TR 91-783

middle of the field is deleted, for example, characters to the right of the cursor must
be shifted. Because of the need for protected I/O in a multitasking environment,
these updating wrvtes must be properly synchronized by ANSITERMINAL_
SERVICES; hence, the cycle.

Because of this awkward dependency structure, the LINEEDITOR package
cannot exist independently of ANSITERMINALSERVICES as a stand-alone editor
package. This is inconsistent with the other supporting packages; each of these may
be used independent of ANSITERMINALSERVICES. (Of course, this is only
applicable when multiple tasks are not performing I/O.) If the line editor were a
generic package, however, this problem would likely be solved. The argument to the
instantiation would simply be output routines responsible for echoing characters
within the input field. ANSITERMINALSERVICES would instantiate the editor
with routines that echoed to the screen safely in a multitasking environment (see
PUTSTR, (2.5.11) and SETCOLUMN (2.5.2)). If an application is performing I/O
and is not using ANSITERMINAL_SERVICES (and therefore involves no tasking),
it could instantiate the line editor with ASYNCIO's PUTASYNC routine and
ANSICURSORSERVICES's SETCURSORPOSITION. In this manner, LINE_
EDITOR could be decoupled from ANSITERMINALSERVICES, and yet remain
accessible to both tasking and nontasking applications.

6.3 PASSIVE TASKS 0
The syntax and functionality of the Ada tasking model takes many forms, or

idioms. Unfortunately, an intertask rendezvous requires an expensive operating
system context switch for most of these forms. Some compilers, however, optimize
certain task idioms in an effort to avoid the overhead associated with context
switching. Some monitor (or server) tasks, for example, are well suited to such
optimization. Containing no independent active thread of execution, these tasks
merely service others when invoked and are appropriately termed passive tasks.

The VADS version 6.0 compiler supports this optimization with the PASSIVE
pragma. This pragma results in the conversion of a passive task's entry calls into
procedure calls protected by runtime system semaphores. (See the VADS 6.0
reference manual for a full discussion of pragma PASSIVE.) The resulting optimized
calls are much more efficient than Ada's traditional rendezvous mechanism because
it eliminates the context switch. Although not widely supported among vendors,
passive task efficiency will soon be provided by the Ada 9X protected record construct.

Because of the heavy overhead involved with the standard Ada rendezvous,
ANSITERMINALSERVICES would benefit greatly if its passive monitor tasks
were optimized in the above manner. These tasks have been specifically designed to
conform to the passive task idiom. However, even the VADS passive task
implementation places certain constraints on their use. Among these is the limit
that passive tasks cannot be used as record components or as the product of an

6-2

NAVSWC TR 91-783

* allocator operation. Thus this optimization of ANSI_TERMINAL_SERVICES must
await removal of passive task constraints by Verdix.

6.4 USER-DEFINED TERMINATORS

Presently, the list of logical keys that terminate a line editing session is hard-
coded into the LINEEDITOR package. Specifically, the line editor will terminate
when a function or control logical key is encountered. Also, those edit logical keys
that have no corresponding line editor operation (e.g., PAGE_UP, TAB, etc.) cause
the editing session to end. As a future enhancement, the user could select which
logical keys will act as line editor terminators. The application could take the default
terminators listed above or could specify a subset. If a user did not want a control
keystroke to terminate the editor, for example, any such keystrokes would simply be
ignored.

6.5 MONOCHROME SUPPORT

Although ANSITERMINAL_SERVICES presently supports both color and
monochrome displays, it is admittedly more aligned to color support. For example,
users must specify foreground and background colors whenever the cursor attributes

* are changed or passed as parameters. Since the colors (BLACK and WHITE) never
change for a monochrome screen, such explicit color selection seems redundant. Also,
ANSITERMINALSERVICES writes escape sequences to change the cursor colors.
These escape sequences have no effect on a monochrome display and are, therefore,
unnecessary and inefficient.

To better support monochrome displays, a flag could be included in the
terminal manager record that indicates the capabilities of the associated terminal. If
a monochrome monitor is being used, for instance, the unnecessary escape sequences
could be avoided when the cursor's attributes change. Perhaps several procedures
could also be overloaded so that their call lines eliminate the need to specify the color
attributes of the cursor. Additionally, ANSI_TERMINALSERVICES could support
reverse video for monochrome screens in an effort to simulate a second color.

6.6 ASYNCHRONOUS TRANSFER OF CONTROL

As currently implemented, a read operation may only be terminated by the
user. The example outlined in Chapter 4 illustrates this scenario because its line edit
operation terminates only when the user concludes the input normally cr presses the
F3 terminator key. Such a situation, however, may be undesirable and potentially
dangerous in a real-time environment. While one application task is in the process of
reading data, for instance, another task may need to intervene and terminate the

6-3

NAVSWC TR 91-783

read. ANSITERMINALSERVICES should allow for this possibility. Ada 9X will
easily solve this problem with its selective entry call. W

We could presently offer the same functionality without Ada 9X by
dynamically creating and destroying reader tasks. However, this has a potentially
serious flaw. Some implementations of the Ada runtime do not reclaim all memory
associated with dynamically-created tasks when they become terminated. VADS 6.0,
for instance, does not reclaim task control blocks. The resultant memory leakage can
be lethal for a program that should theoretically run forever.

6.7 SIGNAL HANDLING I/O FOR UNIX

Presently, the UNIX version of ASYNC_1O's body implements nonblocking
I/O by systematically polling the input channel for available characters. As
discussed earlier in Section 1.2.2, polling is costly and is prone to unwanted delays.
Furthermore, the optimal polling interval may be difficult to find and may easily
differ between vendors and even among a vendor's platforms. Therefore, performance
of the UNIX release of ANSITERMINALSERVICES would undoubtedly benefit by
converting its nonblocking I/O routines to an interrupt-driven (i.e., signals)
implementation.

6.8 SUPPORT FOR ADDITIONAL OPERATING SYSTEMS

Reusability was a major goal in the design of ANSITERMINALSERVICES
and its supporting packages. In fact, only the body of the lowest package
(ASYNCIO) is system-dependent. Two versions of this package presently exist. One
implements VMS system services in support of DEC's VAX/VMS operating system.
Another version includes system calls to the UNIX operating system. Future
enhancements could include additional versions for other operating systems, such as
Microsoft Corporation's MS-DOS.

6-4

NAVSWC TR 91-783

BIBLIOGRAPHY

Booch, G., Software Engineering With ADA, The Benjamin/Cummings Publishing
Company, Inc., Menlo Park, CA, 1987.

"Escape and Control Sequences," VMS I/0 User's Reference Manual: Part 1, Section
8.1.2.4, Digital Equipment Corporation, Maynard, MA, June 1990.

Gehani, N., ADA: Concurrent Programming, Prentice-Hall, Inc., Englewood Cliffs,
NJ, 1984.

Installing and Using the VT320 Video Terminal, Digital Equipment Corporation,
Maynard, MA, 1987.

Masters, M. and Kuchinski, M., Software Design Prototyping Using ADA, NSWCDD
TR-82/417, Sep 1983, NSWCDD, Dahlgren, VA.

Thimbleby, H., "The Design of a Terminal Independent Package," Software-Practice
and Experience, Vol 17(5), May 1987, pp 351-367.

VADS 6.0 Programmer's Guide for Sun-4 SunOS, Section 2.2, Verdix Corporation,
Chantilly, VA, Apr 1989.

7-1

NAVSWC TR 9 1-783

APPENDIX A

ANSITERMINAL.-SERVICES SPECIFICATION

A-1

NAVSWC TR 91-783

-- Dahlgren Division, Naval Surface Warfare Center

-- Authors: M. Masters

-- C. Chalkley

-- Department: Combat System Technologies Branch (N35)

-- Revision History:
-- 1/31/92 C. Chalkley
-- - Version 2.0 completed.

-- ANSI-TERMINAL SERVICES v2.0

-- Purpose:
-- This package offers protected asynchonous terminal I/O among multiple
-- Ada tasks. Specifically, ANSITERMINAL SERVICES defines a terminal manager
-- which provides the synchronization necessary to perform I/O in a multi-
-- tasking environment. This package also provides the complete interface
-- users will need to access the functionality of all supporting pacakges.

-- Effects:
-- - The expected usage is:

1. Create or modify the constants initialization text file, "ANSI.DAT".
2. Call CREATE TERMINAL to allocate and initialize a terminal manager

-- for each terminal the application controls.
-- 3. Call SET CURSOR to initialize the application's terminal display.
-- 4. Call the-subroutines of the nested KEYBD and SCREEN packages
-- for I/O services.
-- 5. Call SHUTDOWN TERMINAL to deallocate each terminal manager.
-- - A valid keyboard mapping text file must be specified when a terminal
-- manager is created via CREATE TERMINAL.
-- - The exception 10 ERROR is raised when any problems arise.
-- - Two tasks (types-KEYBD_CONTROL & SCREEN_CONTROL) are activated for
-- each terminal created.
-- - Suggested renaming: package ANSI renames ANSITERMINAL SERVICES;
-- - A user's application is expected to be dependent only upon this package
-- and should not WITH the supporting packages.
-- - For full written documentation, see NAVSWC/TR-91/783, "Ada Based
-- Multitasking Terminal I/O"

-- Performance:
-- These routines of version 2.0 have been optimized for time by eliminating
-- unnecessary device driver interactions and by reducing the number of bytes
-- needed to format text for a terminal screen. The embedded monitor tasks
-- also take advantage of compilers supporting passive task optimization.

with SYSTEM;
with ASYNC 10;
with KEYROARD INPUT;
with ANSI CURSOR SERVICES;
with ANSI-_CONSTANTS;

pragma ELABORATE(ANSICONSTANTS, ANSI CURSORSERVICES);

A-2

NAVSWC TR 91-783

package ANSITERmINAL_SERVICS is

package CURSOR renames ANSI CURSOR SERVICES;

MAXPORTNAMESIZE : constant INTEGER - ANSI_CONSTANTS.MAXPORT NAMESIZE;

-- Maximum dimensions of terminal screens
MAX LINE : constant INTEGER :-ANSI CONSTANTS.MAX LINE;
MAXCOLUMN : constant INTEGER -ANSICONSTANTS-.MAX_COLUMN;

-- Maximum number of formatted strings in a layout array
MAXSTRINGS IN LAYOUT : constant INTEGER :m

ANSICONSTANTS.MAX STRINGS-IN LAYOUT;

-- The following types are derived so that users of ANSITERMINALSERVICES
-- will not have to WITH lower packages.

type PORT NAME is new ASYNCIO.PORTNAME;
type PORTDATA is new ASYNC_IO.PORT_DATA; -- terminal port descriptor

type ALL KEYS is new KEYBOARDINPUT.ALLKEYS; -- logical keys
subtype ASCII KEYS is ALL KEYS range NUL ..- DEL;
subtype CTRL KEYS is ALLKEYS range NUL US;
subtype PRINTABLE KEYS is ALL-KEYS range SPC .. TILDE;
subtype UC LETTERS is ALL-KEYS range UC A .. UCZ;
subtype LC-LETTERS is ALL-KEYS range LC-A .. LCZ;
subtype NUMBER KEYS is ALL -KEYS range ZERO .. NINE;
subtype EDIT KEYS is ALL--KEYS range DELETE .. DOWN ARROW;
subtype FUNCTION KEYS is ALL -KEYS range FK1 .. FKl0O;
subtype MAPPED KEYS is ALL_KEYS range DELETE .. FK100;

type MAP_L.ST is new KEYBOARD_INPUT.MAPLIST; -- keyboard bindings

subtype LINE is CURSOR.LINE;
subtype COLUMN is CURSOR.COLUM;
subtype COLUMNINCREMENT is CURSOR.COLUMNINCREMENT; -- relative col. offset
subtype LAYOUT-INDEX is CURSOR.LAYOUT-INDEX; -- layout array index

-- Visual attributes of the cursor

type INTENSITY SETTING is new CURSOR.INTENSITY SETTING;
type BLINK SETTING is new CURSOR.BLINK SETTING;
type SCREENCOLORS is new CURSOR.SCREEN_COLORS;

type V STRING is new CURSOR.VSTRING; -- variable length string

-- The following record types are from ANSI CURSOR SERVICES. Merely
-- deriving them here would cause the record's fields to be of types
-- from ANSI CURSOR SERVICES rather than of the corresponding types
-- derived above. Becamse of this drawback of record derivation,
-- these records are simply recreated here so that their fields
-- are of the above derived types. This package handles all the
-- necessary type conversions. The pending release of Ada 9X is expected
-- to address this problem.

type POSITION is - Screen position of cursor
record

ROW : LINE : 1;
COL : COLUMN : 1;

end record;

A-3

NAVSWC TR 91-783

type TEXTCOLOR is -- Visual attributes of the cursor
record
BACKGROUND : SCREEN COLORS -BLACK;
FOREGROUND : SCREEN COLORS :-WHITE;
INTENSITY : INTENSITY SETTING :- DIM;
BLINKING : BLINK SETTING :- NOBLINK;

end record;

type ATTRIBUTE is
record

POS : POSITION;
COLOR : TEXTCOLOR;

end record;

type TEXT REC is -- Formatted string (i.e., text/attribute pair)
record-

TEXT : V STRING;
ATT : ATTRIBUTE;

end record;

type LAYOUT is array(LAYOUTINDEX range <>) of TEXTREC;

type TERMINAL is private;

-- Exceptions

IOERROR : exception; -- I0 ERROR is raised whenever anything goes wrong
-- within ANSI TERMINAL SERVICES or its supporting
-- packages or-when the-user requests an illegal
-- I/O service.

-- Functions to return private TERMINAL data

function THIS TERM PORT (THIS TERM : in TERMINAL) return PORT DATA;
function THIS-TERM-MAP LIST (THISTERM : in TERMINAL) return MAP_LIST;
function THIS-TERM NUM LINES(THISTERM : in TERMINAL) return LINE;
function THIS_-TERMNUM_ OLS (THIS-TERM : in TERMINAL) return COLUMN;

-- TOV STRING

-- Exceptions:
-- None.

function TO_V_STRING(S : in STRING) return VSTRING;

-- TOSTRING

-- Exceptions-:
-- None.

A-4

NAVSWC TR 91-783

function TOSTRING(V_STR : in VSTRING) return STRING;

-- CREATE-TERMINAL

-- Purpose:
-- This function returns a dynamically created terminal manager which
-- provides all the mechanisms needed for protected I/O in a multitasking
-- enviromnent. The function assigns a channel using the port name,
-- allocates and initializes keyboard and screen monitor tasks, allocates
-- shared data resources, maps the keyboard according to the specified
-- binding file, and initializes other terminal parameters.
-- Note:
-- After creating a terminal in this manner, users should explicitly set
-- the terminal display with a call to SETCURSOR from the SCREEN package
-- below.
-- Exceptions:
-- 10ERROR

function CREATETERMINAL(PN : in PORT NAME;
MAP NAME : in STRING;
ROWS : in LINE : MAX LINE;
COLS : in COLN :- MAX COLUMN

return TERMINAL;

-- SHUTDOWNTERMINAL
--

-- Purpose:
-- This procedure deallocates a terminal's resources and aborts its
-- concurrency control mechanisms.
-- Exceptions:
-- 10ERROR

procedure SHUTDOWNTERMINAL(T : in out TERMINAL);

-- SCREEN
--
-- Purpose:
-- This package serves as the interface through which users access
-- ANSITERMINALSERVICES' protected output services.

-- Effects:
-- - A call to any of these subroutines results in a rendezvous with the
-- screen monitor task.
-- - IOERROR is raised if any problems occur.

-- Performance:
-- - The LAYOUT version of PUT is optimized to display several formatted

-- strings with a single write.

A-5

NAVSWC TR 91-783

package SCREEN is

-- CLEARSCREEN

-- Purpose:
-- This procedure clears the specified display and repositions the
-- at (1,1).
-- Exceptions:
-- _IOERROR

procedure CLEARSCREEN(TERM : in TERMINAL);

-- CLEAR TO_END._OFLINE

-- Exceptions:
-- 10ERROR

procedure CLEARTO_END_OFLINE(TERM : in TERMINAL);

-- SETCOLOR

-- Exceptions:
-- _IOERROR

---n----

procedure SETCOLOR(TERM : in TERMINAL;
COLOR : in TEXTCOLOR);

-- GET COLOR

Exceptions:
-- _IOERROR

function GETCOLOR(TERM : in TERMINAL) return TEXTCOLOR;

-- SETPOSITION

-- Exceptions:
-- _IOERROR

-------------------------------- --- S
procedure SETPOSITIOt(TERM : in TERMINAL;

POS : in POSITION);

A-6

NAVSWC TR 91-783

-- SETCOLUM.
--------------------------- ------------ --- ----------------

-- Exceptions:
-- 10ERROR

procedure SET COLUMN(TERM : in TERMINAL;
INC : in COLumINCREMENT);

-------- ---

-- GETPOSITION
--

-- Exceptions:
-- 10ERROR
---- --------------------------- --- ----------------------

function GETPOSITION(TERM : in TERMINAL) return POSITION;

-- SET CURSOR

-- Exceptions:
-- _IOERROR

procedure SETCURSOR(TERM : in TERMINAL;
ATT : in ATTRIBUTE);

-- GET CURSOR

-- Exceptions:
-- _IOERROR

function GET CURSOR(TERM : in TERMINAL) return ATTRIBUTE;

-- PUTPORT

-- Purpose:
-- This overloaded procedure writes a character or string to the given
-- terminal's assigned port. Because the intended output target is a
S-- port rather than a display, no cursor protection is provided.
-- Exceptions:
-- 10ERROR

A-7

NAVSWC TR 91-783

procedure PUTPORT(TERM : in TERMINAL;
CHAR: in CHARACTER);

procedure PUTPORT(TERM : in TERMINAL;
STR : in STRING);

-- PUTSTR

-- Purpose:
-- This procedure is used exclusively by the LINE EDITOR supporting
-- package to echo user input and shift the cursor accordingly. It
-- provides no cursor protection when called outside of LINE EDITOR.
-- Exceptions:
-- _IOERROR

procedure PUTSTR(TERM : in TERMINAL;
STR : in STRING;
INC : in CURSOR.PUTSTRINCREMENT);

-- PUT

-- Purpose:
-- This overloaded procedure writes a character, formatted string, or
-- array of formatted strings to the display of the given terminal.
-- Exceptions:
-- _IOERROR

procedure PUT(TERM : in TERMINAL;
ATT : in ATTRIBUTE;
CHAR : in CHARACTER);

procedure PUT(TERM : in TERMINAL;
ATT : in ATTRIBUTE;
STR : in STRING);

procedure PUT (TERM : in TERMINAL;
LAYOUTINFO : in LAYOUT);

end SCREEN;

-- KEYBD

-- Purpose:
-- This package serves as the interface through which users access
-- ANSITERMINALSERVICES' protected input services.

-- Effects:- Keyboard input routines operate upon the current cursor state.

-- - A call to any of these subroutines results in a rendezvous with the
-- keyboard monitor task.

A-8

NAVSWC TR 91-783

-- - _IOERROR is raised if any problems occur.- ---------- --------- --------------------

package KEYBD is

--

-- GET _LINEEDIT

-- Purpose:
-- This procedure invokes the line editor service for the terminal and
-- returns the edited string and the terminating keystroke. The
-- operations supported by the editor are listed in the specification of

the LINE EDITOR package.
Exceptions:

-- 10ERROR

procedure GETLINE_EDIT (TERM : in TERMINAL;
STR : in out STRING;
TERMINATOR : out ALLKEYS);

-- GETNOECHO

-- Purpose:
-- This overloaded procedure reads a character or string from the given
-- terminal's port. This read does not echo the results or capture
-- escape sequences.

-- Exceptions:
-- 10ERROR

procedure GETNOECHO(TERM : in TERMINAL;
CHAR : out CHARACTER);

procedure GETNOECHO(TERM in TERMINAL;
STR : out STRING;
LENGTH out INTEGER);

-- GETTIME _NOECHO

-- Purpose:
-- This overloaded procedure reads a character or string from the given
-- terminal's port. This read does not echo the results or capture
-- escape sequences. If no response is detected in the given time
-- interval, the read will terminate.
-- Exceptions:
-- 10 ERROR

procedure GETTIMED_NOECHO (TERM : in TERMINAL;
WAIT : in DURATION;
CHAR out CHARACTER;
TIMEDOUT : out BOOLEAN);

procedure GETTIMEDNOECHO (TERM : in TERMINAL;
WAIT : in DURATION;
STR : out STRING;

A-9

NAVSWC TR 91-783

LENGTH out INTEGER;
TIMED OUT out BOOLEAN);

--
-- GETKEY

-- Purpose:
-- This procedure reads a single keystroke from the terminal's keyboard,
-- optionally echoes a printable response, and returns the corresponding
-- logical key.
-- Exceptions:
-- 10ERROR
---- 7------------------------------- -----------------------------

procedure GETKEY(TERM : in TERMINAL;
KEY : out ALL KEYS;
ECHO FLAG : in BOOLEAN);

-- GET TIMED KEY

-- Purpose:
-- This procedure reads a single keystroke from the terminal's keyboard,
-- optionally echoes a printable response, and returns the corresponding
-- logical key. If no response is detected in the given time interval,
-- the read will terminate.
-- Exceptions:
-- 10 ERROR

procedure GET_TIMEDKEY`(TERM : in TERMINAL;
WAIT : in DURATION;
KEY : out ALL KEYS;
ECHO FLAG : in BOOLEAN;
TIMED OUT : in out BOOLEAN);

end KEYBD;

private

type KEYBD CONTROL; -- incomplete type declaration of keyboard task type
type SCREEN4_CONTROL; -- incomplete type declaration of screen task type

type KEYBD ACCESS is access KEYBD CONTROL; -- allows runtime task creation
type SCREEN ACCESS is access SCREENCONTROL; -- allows runtime task creation
type CURSOR ACCESS is access ATTRIBUTE; -- shared cursor resource ptr
type KEY MAP_ACCESS is access MAPLIST; -- terminal's keyboard bindings

type TERMINAL is -- Terminal resource manager
record

PORT : PORT DATA; -- host-independent port info
KEYMAP : KEYMAPACCESS; -- keyboard bindings
NUN LINES : LINE; -- lines the terminal supports
NUM COLS : COLUMN; -- columns the terminal supports
KEYBD : KEYBD ACCESS; -- controls access to keyboard
SCREEN : SCREEN ACCESS; -- controls access to screen
CURSOR : CURSORACCESS; -- cursor characteristics

A-10

NAVSWC TR 91-783

end record;

-- To explicitly set priorities for the underlying KEYBD and SCREEN
-- task types, the user must remove the comment symbols below
-- AND before the two PRAGMA PRIORITY0(s in the corresponding task specs.

-- KEYBD PRIORITY : constant integer :- 15; -- range of values is
-- SCREEN PRIORITY : constant integer :- 14; -- system dependent

-- SCREENCONTROL
--
-- This monitor task protects the cursor resource when performing
-- output. Its entries correspond to output services users request via
-- procedures from the SCREEN package above.

task type SCREENCONTROL is

-- pragma PRIORITY (SCREENPRIORITY);

-- Copy in terminal parameters
entry COPYTERMINALPARAMS(T in TERMINAL);

-- Clear the terminal's screen & move cursor to position (1,1)
entry CLEARSCREEN(ERROR : out BOOLEAN);

-- Clear in-line text right of the cursor
entry CLEARTOENDOFLINE(ERROR : out BOOLEAN);

-- Set the terminal's visual attributes
entry SETCOLOR(C : in TEXTCOLOR;

ERROR : out BOOLEAN);

-- Copy out the cursor's visual attributes
entry GETCOLOR(C : out TEXTCOLOR);

-- Reposition the cursor
entry SETPOSITION(POS : in POSITION;

ERROR : out BOOLEAN);

-- Set the cursor's colunm using a relative column offset
entry SETCOLUMN(INCREMENT in COLUMN_INCREMENT;

ERROR out BOOLEAN);

-- Copy out the cursor's position
entry GETPOSITION(POS out POSITION);

-- Set the cursor's positional and visual attributes
entry SETCURSOR(ATT : in ATTRIBUTE;

ERROR : out BOOLEAN);

-- Copy out the cursor's positional and visual attributes
entry GETCURSOR(ATT out ATTRIBUTE);

-- Write a stream of text to a port
entry PUTPORT(STR : in STRING;

ERROR : out BOOLEAN);

-- Write a string and (optionally) shift the cursor.

A-11

NAVSWC TR 91-783

-- NO CURSOR PROTECTION IS PROVIDED.
entry PUTSTR(STR : in STRING;

INCREMENT : in CURSOR. PUTSTRINCREMENT; 0
ERROR : in out BOOLEAN);

-- Safely write a string to the display using the given attributes
entry PUT(ATT : in ATTRIBUTE;

STR : in STRING;
ERROR : in out BOOLEAN);

-- Safely write an array of formatted text to the screen
entry PUT(LAYOUT INFO : in LAYOUT;

ERROR : in out BOOLEAN);

-- Abort this monitor task
entry SHUTDOW;

end SCREENCONTROL;

-- KEYBDCONTROL

-- This monitor task protects the cursor resource when performing
-- input. Its entries correspond to input services users access via
-- procedures from the KEYBD package below.

task type KEYBD_CONTROL is

-- pragma PRIORITY (KEYBDPRIORITY);

-- Copy in terminal parameters
entry COPYTERMINALPARAMS(T : in TERMINAL);

-- Invoke the line editor service
entry GETLINEEDIT(STR : in out STRING;

TERMINATOR : out ALL KEYS;
ERROR out BOOLEAN);

-- Read a stream of input without echo or escape sequence detection
entry GETNOECHO(STR out STRING;

LENGTH : out INTEGER;
ERROR : out BOOLEAN);

-- Timed stream read without echo or escape sequence detection
entry GETTIMEDNOECHO(WAIT in DURATION;

STR out STRING;
LENGTH out INTEGER;
TIMED OUT out BOOLEAN;
ERROR out BOOLEAN);

-- Read a single keystroke with escape sequence detection and
-- optional screen echo
entry GETKEY(KEY out ALL KEYS;

ECHO FLAG : in BOOLEAN;
ERROR : in out BOOLEAN);

-- Timed read of a single keystroke with escape sequence detection and
-- optional screen echo
entry GETTIMEDKEY (WAIT in DURATION;

KEY out ALL KEYS;
ECHO FLAG : in BOOLEAN; 0
TIMED OUT : in out BOOLEAN;
ERROR : in out BOOLEAN);

A-12

NAVSWC TR 91-783

- Abort keyboard monitor task
entry SHUTDOWN;

end KEYBDCONMWL;
end ANSI_TERMINALSERVICES;

A

A-13

NAVSWC TR 91-783

D

APPENDIX B

FORMAT FOR KEYBOARD MAPPING FILE

B

B-1

NAVSWC TR 91-783

0
The keyboard mapping file is read to initialize the MAPLIST type. This type

binds the mappable logical keys to the particular escape sequences the given keyboard
generates. Alternatively, the type may be used to bind other unused keys to the
functionality associated with a logical key. For example, if the keyboard does not
have a Home key, the HOME logical key could be mapped to F1, Control-H, or any
other suitable unused key. An example file is given in Appendix C. The following
rules apply to the keyboard mapping file:

1. The file may have any number of comment lines denoted by the symbol "--"
beginning in the first column.

2. Within a line, any text occurring after the mapping specification is treated
as a comment.

3. No spaces are allowed in any mapping specification.

4. Function logical keys must be mapped sequentially beginning with FK1.

5. Edit logical keys may be mapped in any order.

6. Unmapped function logical keys will be initialized to a string of blank
characters (ASCII 32).

7. Unmapped edit logical keys will be initialized as follows:

UP ARROW = >/E[A
DOWNARROW = > /E[B
RIGHTARROW = > /E[C
LEFTARROW = >/E[D
TAB = > #9 (Control-I)
BACKSPACE = > #8 (Control-H)
DELETE = > #127 (DEL)
others = > #32 (blanks)

8. A function logical key (FK1 .. FK100) may only be bound to an escape
sequence. The mapping is specified as FKn =/E{c} where

"* n is the number (1..100) of the function logical key being mapped

"* /E is required and denotes the ESC character (ASCII 27) introducing the
sequence

"• {c} is a string of one or more nonspace printable ASCII characters

B

B-2

NAVSWC TR 91-783

. FORMAT FOR KEYBOARD MAPPING FILE

9. The 14 mappable edit logical keys may be bound to either escape sequences,
control characters (ASCII 0 - ASCII 31), or the delete character (ASCII 127).
The mapping is specified as either XX = #n or XX = /E{c} where

"* XX is a two-letter abbreviation for the mappable edit logical keys in type
ALLKEYS:

IN=INSERT HO=HOME EN=ENDD
RA=RIGHT_ARROW LA=LEFTARROW UA=UPARROW
DA=DOWNARROW PU=PAGE-UP PD=PAGEDOWN
TB=TAB TR=TABREVERSE BS=BACKSPACE
EL=ERASELINE DL=DELETE

"* #n indicates that the logical key is being mapped to the ASCII character
numbered n. This character may be a control character (ASCII 0 - ASCII
31) or the delete character (ASCII 127)

"* /E indicates that the logical key is being mapped to an escape sequence
where /E denotes the ESC character (ASCII 27) introducing the sequence

"* {c} is a string of one or more nonspace printable ASCII characters

B

B-3

NAVSWC TR 91-783

I

APPENDIX C

EXAMPLE KEYBOARD MAPPING FILE

C-1

NA VS WO TR 9 1-783

-- VT320 Keyboard mappings

-- map ImSzRT to <ESC)12-
-- map ZNDO to Control-I, ASCII 3

140-94 MAP HOW to Control-O, ASCII 4
PA-IE(C - map RIGHT ARPAYW to CESC)(C
Lh-/B (0 map LEFT ARROW
UA-/z~ (k map UP AhwO

DA---~ map DOWit ARPOW
as-#$ - map BACK PACZ to Control-H, ASCII 8
DL-O 127 -- map DEZLZTE to DEL character, ASCII 121
T9-#99- map TA) to Control-I, ASCII 9
TR-E2 -- map TAg REVERjSE to Cgntrol-B, ASCII 2
EL-*22 -- map MUMS LIMK to Control-V* ASCII 22
PU-IK(5' - map pjas Up to *ftev Screen" key which generates CESC>15-
PD-/E(6- - map PAGE DOIE to ONxt SCTO"* key
FK1-/EOP -- map FK1 to OPF1" key
FK2-/EOQ - PF2
FK3-/EOR -PFP3

FK4-/EOS -- p14
IFK5-/EI(- - map P1(5 to Frind" key
FK6'm/g[3- P-140RED/
PKI-/K(1- - F7
FKO-/EI 19-
FK9in/C(20-

P1(11-/K 123-
P1(12-/B 124-
FK13-/E (25-
P1(14-/I (26-
P1(15-/K (28-
P1(16-/K (29-
FK17-/Z131-
P1(18-/K (32-
P1(19./EL 33-
PK2O-/E(34- -- 20
FK21-/Z(4- -- map P1(21 to "Selectm key'

C-2

NAVSWC TR 91-783

I

APPENDIX D

FORMAT FOR CONSTANTS FILE

D

D-1

NAVSWC TR 91-783

The ASCII file ANSI.DAT is read by the ANSI-CONSTANTS package at
elaboration time in order to initialize several critical constants [2.8] needed by
ANSITERMINALSERVICES and its supporting packages. The format of the file is
quite simple; each line consists of an integer and optional commenting text. Because
each line is associated with a single constant, anything appearing after the integer
value is ignored. The name of the constant to which the value will be assigned is
therefore generally listed after the integer. Since the constants will be initialized in
sequence by ANSICONSTANTS, the values in the constants file must be in the
order listed below. The default ANSI.DAT file is given in Appendix E.

1. MAXPORTNAMESIZE
2. MAXCHANNELS
3. MAXESCLEN
4. MAX_LINE
5. MAXCOLUMN
6. MAXLONGSTRINGSIZE
7. MAXSTRINGSINLAYOUT

0

D-2

NAVSWC TR 91-783

APPENDIX E

DEFAULT CONSTANTS FILE

E-1

NA VS WC TR 9 1-783

15 V=MA PORT NAM SIZE
16 -- MAX CHANNELS
5 -- MAXESCLEN
25 -- MAX LINE
so - MA9 COLUMN
1024 Mid MANGSTRINGSIZE
30 -- MAXSTRI75S..iNJJXoUT

E-2

NAVSWC TR 91-783

I

APPENDIX F

EXAMPLE APPLICATION CODE

F

F-i

NAVSWC TR 91-783

--

-- Dahlgren Division, Naval Surface Warfare Center

-- Author: C. Chalkley

-- Department: Combat System Technologies Branch (N35)

-- Revision History:
-- 1/31/92 C. Chalkley
-- - EXAMPLE driver procedure completed

--

--

-- EXAMPLE
--

-- Purpose:
-- This procedure is an example application of ANSITERMINAL SERVICES. Its
-- embedded tasks illustrate the proper use of many ANSITERMINALSERVICES'
-- I/O routines

-- Effects:
-- - The keyboard mapping file "vt320.dat" must exist.
-- - This version executes on a DEC MicroVAX and opens a channel using the
-- SS$COMMAND port name.
-- - This procedure includes three tasks which will concurrently perform
-- I/O on a common terminal screen.

--Performance :
- Results my vary depending upon assigned task priorities and system loads.

with SYSTEM;
with TEXT 10;
with CALEFNAR;
with ANSITERMINALSERVICES;

procedure EXAMPLE is

pragma priority(SYSTEM.PRIORITY'first); -- proc body gets lowest priority

package ANSI renames ANSITERMINALSERVICES;

task TIMER is
entry START; -- Start counting off seconds
entry STOP; -- Stop counting

end TIMER;

task READER is
entry START; -- Start line editor
entry SETDANGER(NEWSETTING : in BOOLEAN); -- Sets the danger flag

end READER;

task WARNING is
entry START; -- Start delayed warning
pragma priority(SYSTEM.PRIORITY'last); -- give WARNING top system priority

end WARNING;

PORT NAME : ANSI.PORT NAME :- "SYS$COMMAND "; -- assigned port (VMS)
MAP N--AME : constant S-TRING :- "vt320.dat"; -- keyboard binding file
THIS TERM : ANSI.TERMINAL :-

ANSI .CREATETERMINAL (PORTNAME, MAPNAME,

F-2

NAVSWC TR 91-783

ANSI.MAXLINE, ANSI .MAXCOLtUM);

S
-- TIMER

-- Purpose:
-- This task periodically updates a clock counter in the upper left
-- corner of the terminal display.

-- Exceptions:
-- None.
--

task body TIMER is
CUR TIME : CALENDAR.TIME; -- system tine variable
SEC-COUNT : CALENDAR.DAY DURATION; -- seconds since midnight
HOURS : INTEGER :- 0; -- clock counters
MINUTES : INTEGER : 0;
SECONDS : INTEGER :- 0;

begin

accept START; -- wait here until told to start

ANSI .SCREEN.PUT (THISTERM,
((1,1), (ANSI.BLACK, ANSI.WHITE, ANSI.BOLD, ANSI.NOBLINK)), "TIME:);

loop -- edit until a threat arrives

select
accept STOP;
exit; -- exit loop & terminate the task

S~or

delay 1.0; -- wait one second for STOP request

CUR TIME :- CALENDAR.CLOCK; -- get current time
SEC-COUNT :- CA AR.SECONDS(CUR TIME); -- convert time
HOURS : INTEGER(SEC COUNT) / -600;
MINUTES : INTEGER(SEC COUNT) rem 3600 / 60;
SECONDS :- INTEGER(SECCOUNT) rem 60;

-- display updated time
ANSI. SCREEN.PUT (THIS TERM,

((1,8), (ANSI.B-LACK, ANSI.WHITE, ANSI.DIM, ANSI.NOBLINK)),
INTEGER'image(HOURS) & ":I &
INTEGER' image (MINUTES) & ":" &
INTEGER'image(SECONDS) & "

end select;
end loop;

end TIMER;

-- READER

-- Purpose:
-- This task repeatedly invokes the line editor until the user elects to
-- stop editing in the presence of a threat. It relies upon the WARNING
-- task to inform it of the presence of a threat.

Exceptions:
-- None.

F-3

NAVSWC TR 91-783

task body READER is
STR : STRING(l..12); -- string to edit
TERMINATOR : ANSI.ALL KEYS :- ANSI.NUL; -- editor terminator keystroke
RESPONSE : ANSI.ALLKEYS : ANSI.NUL; -- threat response keystroke
TIME OUT : BOOLEAN; -- used for timed read
DANGER : BOOLEAN :- false; -- presence of a threat

begin

accept START; -- Synchronize before editing begins

-- display line editor prompt
ANSI.SCREEN.PUT (THISTERM,

((13,18), (ANSI .BLACK, ANSI .WHITE, ANSI .BOLD, ANSI .NOBLINK)),
"EDIT SOME TEXT:");

loop

STR(1..12) :- "Default text"; -- string to be edited

select
accept SET DANGER(NEWSETTING in BOOLEAN) do

DANGER :Z NEWSElL]!ING;
end SETDANGER;

else

if DANGER then
RESPONSE :- TERMINATOR;

-- Erase prompt as user responds to warning

ANSI.SCREEN.SETPOSITION(THIS TERM, (13,18));
ANSI.SCREEN.CLEAR TO ENDOF_LINE(THISTERM);

-- Force user to respond to warning message if line editor
-- terminator didn't address the threat

while (RESPONSE not in ANSI.FK1 .. ANSI.FK3) loop
ANSI. SCREEN .PUT (THISTERM,

((10,27), (ANSI.BLACK, ANSI.RED, ANSI.BOLD, ANSI.BLINK)),
ASCII.BEL & "*** RESPOND TO THREAT ***-);

ANSI.SCREEN.SETPOSITION(THISTERM, (10,27));

-- Get a keystroke - if no response in 5 seconds, beep & try again
ANSI.KEYBD.GETTIMEDKEY(THISTERM, 5.0, RESPONSE, false, TIME_OUT);

end loop;

-- take appropriate action on user's response to the warning

case RESPONSE is
when ANSI.FK1 ->

TIMER. STOP;
ANSI.SCREEN.CLEAR SCREEN(THISTERM);
ANSI. SCREEN .PUT (THIS TERM,

((5,1), (ANSI.BLACK, ANSI.WHITE, ANSI.DIM, ANSI.NOBLINK)),
"Threat Assessment

exit;

when ANSI.FK2 ->
TIMER.STOP;
ANSI.SCREEN.CLEAR SCREEN(THISTERM);
ANSI.SCREEN.PUT (THIS TERM,

((5,1), (ANSI.BLACK, ANSI.WHITE, ANSI.DIM, ANSI.NOBLINK)),
"Initiating Defense

F-4

NAVSWC TR 91-783

exit;

S when ANSI.FK3 ->

ANSI.SCREEN.SET POSITION(THIS TERM, (10,27));
ANSI. SCREEN.CLEARTOENDOFLINE(THISTERM);
ANSI. SCREEN.PUT (THISTERM,

((13,18), (ANSI .BLACK, ANSI.WHITE, ANSI.BOLD, ANSI.NOBLINK)),
"EDIT SOME TEXT:");

ANSI.SCREEN.SET POSITION(THISTERM, (13,35));
ANSI.KEYBD.GET_LINEEDIT(THIS_TERM, STR, TERMINATOR);

when others -> null;

end case;

else

-- set cursor position & call line editing service
ANSI.SCREEN.SET POSITION(THIS TERM, (13,35));
ANSI.KEYBD.GET LINEEDIT(THIS_TERM, STR, TERMINATOR);

end if;
end select;

end loop;
end READER;

-- WARNING

-- Purpose:
-- This task displays a warning message after a short delay and

coumunicates the presence of a threat to the READER task.

-- Exceptions:
-- None.

task body WARNING is

WARNINGMESSAGES : ANSI.LAYOUT(1..4);

begin

accept START; -- wait until told to start

WARNING MESSAGES :-
((ANSI.TO V STRING(ASCII.BEL & "** WARNING : NEW LAUNCH DETECTED ***"

((5,20), (ANSI.BLACK, ANSI.RED, ANSI.BOLD, ANSI.BLINK))),
(ANSI.TO V STRING("PRESS: Fl for threat assessment"),

((67,274), (ANSI.BLACK, ANSI.YELLOW, ANSI.BOLD, ANSI.NOBLINK))),
(ANSI.TO V STRING(" F2 to defend"),

((7,274), (ANSI .BLACK, ANSI .YELLOW, ANSI .BOLD, ANSI .NOBLINK))),
(ANSI.TO V STRING(0 F3 to edit again"),

((8,24), (ANSI.BLACK, ANSI.YELLOW, ANSI.BOLD, ANSI.NOBLINK))));

delay 5.0; -- do nothing & then display urgent message

ANSI.SCREEN.PUT(THIS_TERM, WARNING MESSAGES);

READER.SETDANGER(true); -- inform READER task of threat presence

end WARNING;

begin -- EXAMPLE

F-5

NAVSWC TR 91-783

ANSI.SCREEN.CLEAR SCREEN(THIS_TERM);
ANSI.SCREEN.SET CURSOR(THISTERM,

((1,1), (ANSI.BLACK, ANSI.WHITE, ANSI.DIM, ANSI.NOBLINK)));

TIMER.START; -- Start all tasks
READER. START;
WARNING. START;

while READER'callable loop -- Do nothing until tasks are finished
delay 1.0;

end loop;

ANSI.SCREEN.SET POSITION(THIS TERM, (8,1));
ANSI.SHUTDON_TERMINAL(THISTERM); - deallocate terminal attributes &

-- terminate I/O monitor tasks

exception
when ANSI .10 ERROR ->

TEXT IO-PUTLINE(Illegal I/O request);
when others ->

TEXT IO.PUTLINE("Error within procedure EXAMPLE");
end EXAMPLE:

F-6

NAVSWC TR 91-783

I

DISTRIBUTION

Copies Copies

ATTN OP-094H 1 DEFENSE TECHNICAL
CHIEF OF NAVAL OPERATIONS INFORMATION CENTER
DEPARTMENT OF THE NAVY CAMERON STATION
WASHINGTON DC 20350-5000 ALEXANDRIA VA 22304-6104 12

ATFN SPAWAR-30T 1 ADA INFORMATION
SPAWAR-2312 1 CLEARINGHOUSE

COMMANDER C/O UIT RESEARCH INSTITUTE
SPACE AND NAVAL WARFARE 4600 FORBES BOULEVARD

SYSTEMS COMMAND LANHAM MD 20706-4320
WASHINGTON DC 20363-5100

ADA JOINT PROGRAM OFFICE
ATTN SEA-06 1 ROOM 3E114

SEA-06D 1 THE PENTAGON
SEA-06K 1 WASHINGTON DC 20301-3081
SEA-06KR 1

COMMANDER ATTN GIFT AND EXCHANGE
NAVAL SEA SYSTEMS COMMAND DIVISION 4
NAVAL SEA SYSTEMS COMMAND LIBRARY OF CONGRESS

HEADQUARTERS WASHINGTON DC 20540
2531 NATIONAL CITY BLDG 3
WASHINGTON DC 20362-5160 ATTN LEW ZITZMAN

APPLIED PHYSICS LABORATORY
ATMN- PMS-400B I THE JOHNS HOPKINS UNIVERSITY

PMS-400B3 1 LAUREL MD 20723-6099
PMS-400B5 1
PMS-412 1 ATTN STAN RALPH

DEPARTMENT OF THE NAVY GOVERNMENT ELECTRONIC
AEGIS PROGRAM OFFICE SYSTEMS DIVISION
2531 NATIONAL CENTER BLDG 3 GENERAL ELECTRIC COMPANY
WASHINGTON DC 20362-5160 MOORESTOWN NJ 08057

CENTER FOR NAVAL ANALYSES ATTN JOE CARUSO 2
4401 FORD AVE COMPUTER SCIENCES
ALEXANDRIA VA 22302-0268 1 CORPORATION

4001 OAK MANOR OFFICE PARK
SUITE 201
KING GEORGE VA 22485

(1)

NAVSWC TR 91-783

DISTRIBUTION (Continued)

Copies Copies

ATMN RALPH MATIEI INTERNAL DISTRIBUTION
(MAIL CODE 43) 2 (CONTINUED)

COMPUTER SCIENCES N42
CORPORATION U30

203 WEST ROUTE 38 U303
MOORESTOWN NJ 08057 U33

INTERNAL DISTRIBUTION
D 1
D4 1
E06 1
E211 GREEN 1
E231 3
E232 2
E261 WAITS 1
E32 GIDEP 1
F 1
F30 1
G1
G70 1
J 1

J10 1
J12 5
J12 CHALKLEY 3
J14 1
K 1
K10 1
N 1
N02 1
N04 1
N05 1
N06 1
N10 1
N20 I
N22 1
N24 1

N30 1
N304 1
N305 I
N33 1
N35 25
N40 1

(2)

Form ApprovedREPORT DOCUMENTATION PAGE OMB No. 0704.0188
Publik reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data
soumcs gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate o•any other
aspec of this collection of information. including suggestions for reduong this burden, to Washington Headquarters Services, Directorate for Information Operations and
Rep•ftS 121 S Jefferson Davis Highway. Suite 1204. Arlington, VA 22202-4302. and to the Office of Management and Budget. Paperwork Reduction Project (0704-0188).
Wmiington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

February 1992

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Ada-Based Multitasking Terminal 1/0

. AUTHOR(S)

John C. Chalkley Michael W. Masters

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) S. PERFORMING ORGANIZATION
REPORT NUMBER

Naval Surface Warfare Center
Dahigren Division (Code J12) NAVSWC TR 91-783
Dahlgren, VA 22448-5000

9. SPONSORING/MONITORING AGENCY NAME(S) AND 10.
SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

P 12a. DISTRIBUTION/AVAILABIUITY 12b. DISTRIBUTION CODE

Approved for public release; distribution is unlimited.

13. ABSTRACT (Maximum 200 words)

This report describes "ANSI Terminal Services," a reusable Ada-based layered approach to providing
protected asynchronous terminal I/O in a multitasking environment. The traditional single-threaded,
sequential programming model is inadequate for Ada multitask programs, particularly for real-time
applications. An application is likely to contain several tasks needing to perform output concurrently.
Any shared resources contained in the I/O software must, therefore, be protected through some form of
mutual exclusion. Also, an application will likely need to support input operations concurrently with
outputs. This requirement is especially important since Ada implementations on most current operating
systems are process synchronous, rather than task synchronous/process asynchronous. As a result, they
cause the entire user process to block on an input request. Thus, other program tasks that may be
performing critical functions are suspended until user input is complete. Such a result is clearly
inappropriate in a real-time environment. ANSI Terminal Services solves these problems and provides
both a standard programmer interface and the necessary multitasking concurrency control.

14. SUBJECT TERMS IS. NUMBER OF PAGES
ANSI Terminal Services Ada multitasking 121P 1/0 synchronous asynchronous 16. PRICE CODE
concurrency terminal

17. SECURITY CLASSIFICATION 1S. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. UMITATION OF

OF REPORT OF THIS PAGE OF ABSTRACT ABSTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED SAR
NSN 7540-01-2 0-5500 Standard Form 298 (Rev. 2-89

Prescribed by ANSI Std Z3 S1
290-102

