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1.0 Executive Summary

The solution of complex image processing problems, both military and commercial,
are expected to benefit significantly from research into biological vision systems.
However, current development of biological models of vision are hampered by lack of
low-cost, high-performance, computing hardware that addresses the specific needs of
vision processing. The goal of this SBIR Phase I project has been to take a significant
neural network vision application and to map it onto dedicated hardware for real time
implementation. The neural network was already demonstrated using software simulation
on a general purpose computer. During Phase I, HNC took the neural network model of
the retina that was first developed by Eeckman, Colvin, and Axelrod at Lawrence
Livermore National Laboratory! and, using HNC's Vision Processor (ViP) hardware
achieved a speedup factor of 200 over the algorithm executed on the Sun SPARCstation.
A performance enhancement of this magnitude on a very general model demonstrates that
the door is open to a new generation of vision research and applications.

With HNC's new hardware, developers will be able to modify parameters in their
model in close to real time. Complex neural network models of the human visual
processing system have previously been implemented in software or have not been
implemented at all because no inexpensive efficient hardware has been available to
implement the large connection windows postulated in most models. The same situation
exists with respect to large convolution kemels or connection windows in conventional
image processing. The large increase in pricessing time usually encountered when the
kemel size increases beyond a certain size has led researchers and users to develop their
algorithms and applications with small kernels. This has been true in spite of the better
performance of larger kernel algorithms such as the edge enhancement algorithm using the
Laplacian of Gaussian kernel whose performance is less noise dependent when the kemel
size becomes 7 x 7 or larger.

HNC's new VLSI chip set will halt this computational bias against larger kernels and
connection windows. All other hardware chips have a fixed limit to the size of the
connection window. Usually this limit is 3x3 or at most 8x8. The alternative for the
algorithm developer is to take excessive time in a software implementation or, if they have
a hardware board that performs small convolutions, to build a new piece of hardware with
multiple chips. With the ViP chip set, a 16x16 convolution will now take only four times
as long as an 8x8 convolution instead of taking hundreds or thousands of times longer in
software or, alternatively, taking months to design and build new hardware using multiple
small kernel convolution chips.

The retinal model is used to implement and evaluate a tracking application on the
HNC real time VLSI Vision Processor (ViP). The algorithm operates well at low signal
to noise ratio. The model is described along with the digital hardware implementation of
the algorithm using the new ViP chip set.




In Phase II, HNC plans to propose the insertion of the ViP hardware into a specific
military tracking application using the neural network retinal model.

2.0 Neural Network Retinal Model

The retina model consists of a number of layers of processing elements, or cells, that
are connected to previous layers. These are simple feedforward neural networks. There
are also cells that have lateral connections within the layers. The feedforward connections
are cither inhibitory or excitatory. Each cell in one layer is connected to a small number of
cells in a previous layer. This connection pattern is reproduced for each cell in the whole
layer. The first layer of cells consists of the pixels or the image sensors themselves. Each
succeeding layer of cells is connected to its previous layer or layers by a convolution
kemel plus a non-linear, pointwise transformation. The inclusion of inhibitory or
excitatory layers requires an operation equivalent to image addition or subtraction. These
signal processing operations (convolution, image addition, image subtraction, pointwise
nonlinear transformations) are precisely those that the HNC ViP hardware is designed to
perform.

The primary function that the retinal model performs is noise reduction and motion
detection. It represses both noise and stationary objects. It does this for multiple objects
in the field of view with no increase in computational load over a single object. The model
was originally coded in C at Lawrence Livermore National Laboratories and run on a Sun
SPARCstation. The model runs slowly on the Sun, taking several seconds for a single
128x128 image to pass through all five layers of the retina. HNC's task in Phase I was to
take the model and to map it efficiently onto our ViP hardware. The retinal model is
described in more detail in reference 1 and in a paper to be published by Eeckman, Colvin
and Axelrod. A summary of the model is given in section 2.1.

2.1 Biological Background

To animals and humans, the detection and tracking of small moving targets in high
noise environments is effortless and virtually instantaneous. This task is done without the
higher cognitive facilities of the brain being used. The processing that occurs is non-
adaptive. Therefore, to design a tracking system, it is logical to examine the processing
that occurs early in the visual system, (i.e., in the retinal system) and to build a similar
software or hardware model.

The retina of vertebrates consists of five main cell types as illustrated in Figure 1
(taken from reference 1). Three of these cell types, photoreceptors, bipolar cells and
ganglion cells, are in a direct feedforward path from the incoming light to the visual cortex
of the brain. The remaining two types, horizontal cells and amacrine cells, laterally
interact with layers of photoreceptors, bipolar cells and ganglion cells.




2.1.1 Retina Model Dynamics

In the retina model, image processing operations are done by a functional layer of
identical cells. These transformations between layers correspond to filters that perform
two dimensional spatial operations on the data. These operations can have a different
spatial extent in every layer. The temporal processing in the retina is primarily decay of the
input stimulus and delay of the feedback or feedforward outputs from one layer to
another. The number of distinct mathematical operations needed to model the retina is
small. The operations symbolized in Figure 2 are sufficient.

The temporal behavior of the neurons is modeled as a leaky integrator. The
photoreceptor cell response is typical of most neurons and is given by the equation::

PR, (1) = Q.PR,(t~1)+ flinput_image, (1))

where alpha is a decay constant and f[] is a non-linear transfer function, usually a
sigmoidal or threshold function. The photoreceptor cells are also connected to their
neighboring photoreceptor cells. The latter connections are modelled by a convolution
over the spatial neighborhood with a kernel whose weights represent coupling factors.

(D)= ZK *PR_,, (D

where the kemnel, K, is defined over a finite neighborhood. These two transformations
(temporal and spana?) of the input image are implemented sequentially. Figures 3 through
7 describe the processing in each layer of the retina using the symbols of Figure 2.

2.2 Processing Layers

There are five layers of neurons in the retinal model corresponding to the five layers
in the biological model shown in Figure 1.. In addition, there is a sixth layer modeled that
permits the result of the processing to be displayed in a meaningful manner to a human
observer. The sixth layer shows the history of the track of a moving object. All the
processing in each layer can be performed on the ViP.

Each layer of neurons in the retinal model is considered to be equivalent to an image.
Each pixel in the image corresponds to a neuron in the layer. The value of each pixel is
identical to the output value of its corresponding neuron. Each basic operation, whether
it is a subtraction of two layers, a multiplication of a layer by a decay constant, a
thresholding of a layer, a non-linear transform of a layer or a feedforward transform
between two layers takes a single pass of the image through the ViP chip set.




Photoreceptor Cells

Horizontal Cells

Bipolar Cells
Amacrine Cells

Ganglion Cells

Figure 1. Cell types of the vertcbrate retina




Figure 2: Symbol table for Figures 3 through 7. The constants a and Kjj are different

for each layer.

- Q

Fl]

Multiplication by o

Addition

Subtraction (left input — bottom input)

Convolution with kernel Ku

Non-linear transfer function




All pixels in a given layer undergo the same arithmetic operations in parallel. The
feedforward transform between a source and destination layer is done by convolving a
connectivity kernel with the source image to produce the destination image. Each layer in
the model receives a time series of images from the previous layer or layers as shown in
Figure 1. Within each layer there are several intermediate processing steps.

2.2.1 Photoreceptor Layer

The photoreceptor layer receives the light input directly. In the hardware
implementation this layer receives a time sequence of images directly from a camera or
from images read from disk. A nonlinear transformation is performed on the input light
image by passing it through a look-up table on the ViP. This transformed image (like all
images) is considered as a layer of neurons and stored in memory as an image in the ViP.
The output image of the photoreceptor layer from the previous time step is multiplied by a
decay constant and stored in memory. The transformed light and the decayed
photoreceptor output images are added together and stored in memory. This image is
then convolved spatially with a connectivity kemel to form the output of the
photoreceptor layer. The photoreceptor kemnel smears the input image and reduces the
effects of noise. Figure 3 is a block diagram of the processing described.

2.2.2 Horizontal Layer

The horizontal layer receives input from the photoreceptor layer. A nonlinear
transformation is performed on the input by passing it through a look-up table on the ViP
and storing it in memory. The output image of the horizontal layer from the previous time
step is multiplied by a decay constant and also stored in memory. These two resultant
images are then added together to form the output of the horizontal layer. The horizontal
layer will eliminate the effect of a background that has a small spatial gradient. Figure 4 is
a block diagram of the processing described.

2.2.3 Bipolar Layer

The bipolar layer receives input from both the horizontal layer and the receptor layer.
The horizontal layer is convolved spatially with an inhibitory kemel to form an
intermediate inhibitory image. The receptor layer is convolved spatially with an excitatory
kemnel to form an intermediate excitatory image. These two images are combined by
subtracting the inhibitory result from the excitatory result. These two convolutions
represent an on-center, off-surround connection to the receptor and horizontal neurons
respectively. The output image of the bipolar layer from the previous time step is
multiplied by a decay constant and added to the excitatory and inhibitory result. That
result is then averaged spatially by convolution and stored as the output of the bipolar
layer. Figure S is a block diagram of the processing described.
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2.2.4 Amacrine Layer

The amacrine layer is an inhibitory layer for the later ganglion layer. It receives its
input from the bipolar layer. The absolute value of the difference between the bipolar
outputs at tme, f, and time, ¢ - delay, is computed. This step is essentially a motion
detection. The output of the amacrine layer from the previous time step is multiplied by a
decay constant and added to the absolute difference result and then thresholded. The
previous three layers have dealt primarily with spatial processing noise reduction; the
amacrine and ganglion layer deal primarily with temporal processing. Figure 6 is a block
diagram of the processing described.

2.2.5 Ganglion Layer

The ganglion layer receives excitatory input from the bipolar layer and receives
inhibitory input from the amacrine layer. Excitatory input is received homogeneously from
the ganglion neuron's nearest neighbors in the bipolar layer. However, inhibitory input is
received from neurons in the amacrine layer (which was a motion detection layer) only in a
preferred direction.

The two connectivity kernels are shown in Figure 7. Nine amacrine neurons in three
concentric arcs centered around one of the six axes of the hexagon contribute inhibition
along that axis. The hexagonal structure of the cells in a layer must be mapped carefully
into a rectangular convolution kernel by the mapping illustrated in Figure 7. As long as
the coupling factor for pixels at a given row and column are mapped into corresponding
weights in the kernel, then the model is preserved.

The inhibitory and excitatory convolution results are combined by subtracting the
inhibitory result from the excitatory result. The output image of the ganglion layer from
the previous time step is multiplied by a decay constant, added to the excitatory and
inhibitory result and then thresholded.

The ganglion layer detects objects that are moving in a direction not inhibited by the
amacrine layer. Figure 8 is a block diagram of the processing described. There can be six
different ganglion layers in the model each one with a different inhibitory kemel aligned
along one of the hexagonal axes. The times in table 2 were calculated with a single
ganglion layer. Processing all six direction will approximately double the times.

2.2.6 History Layer

The history layer does not correspond to a layer of neurons in the retina. It is a
convenient way to accumulate spikes from the ganglion layer and display the tracks of

moving objects.
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(7b) Inhibitory kernel corresponding to (7a) directional coupling.

Figure 7. Connectivity kernels in the Ganglion layer.
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(7b) Excitatory kernel corresponding to (7¢) uniform coupling.

Figure 7. Connectivity kernels in the Ganglion layer.
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3.0 Vision Processor (ViP) Hardware

The ViP is a new type of high performance systolic array VLSI chip set optimized for
advanced vision processing. It is able to perform very high speed conventional and neural
network image processing functions as well as image arithmetic (e.g., subtract two
images). The ViP consists of two digital VLSI chips that can efficiently perform two
dimensional convolution with arbitrary sized kemels with full utilization of its processing
resources. For small kernels, the ViP chip set performs convolutions at a throughput rate
of 40 megapixels per second on 8-bit pixels. For larger kemels, performance is inversely
proportional to the kemel size. The has 64 processing elements arranged in an 8x8
systolic array that can perform convolutions with very large kernels (up to 64x64) on
images up to 4096x4096. Unlike other image processors, the ViP maintains its full
efficiency (5.12 billion arithmetic operations per second) on large kernels. An 8x8
convolution on a 512x512 image requires less than 7 milliseconds. Dual image arithmetic
and logical operations are processed at the pixel memory access rate of 80 megapixels per
second. The chip set also has the capability to perform convolutions on images with 16-
bit pixels at 20 million pixels per second.

The ViP chip set has been designed into a daughterboard that attaches to HNC's
Balboa 860/VME coprocessor board through an expansion bus. The Balboa 860/VME is
a high performance coprocessor based on Intel’s i860 64-bit RISC microprocessor. It
provides a 40 MHz Intel i860 with 16 Mbyte of DRAM memory and uses a 64-bit
architecture to provide a peak processing performance of 40 MIPS and 80 MFLOPS.
Block diagrams of the daughter board and the Balboa are shown in Figures 9 and 10.

The ViP daughterboard contains both the ViP-1 and the ViP-2 chips. The ViP-1
performs the convolutional and morphological operations. Image arithmetic is performed
in the ViP-2 chip. The ViP daughterboard contains three banks of image memory with
four megabytes of DRAM per bank. There is also a kernel memory containing 64 Kbytes
of fast static RAM. The resources of the Balboa combined with the image processing
capability of the ViP offers a high performance component for a wide range of image
analysis and processing applications.

The ViP image memory interface is designed such that a conventional linear memory
architecture can be used for accessing and storing data. No variable length scan
conversion shift registers are needed by the systolic array to access an image stored in a
conventional raster scan format. Such scan conversion variable length shift registers are
often required with other convolution architectures.

The images are stored in the three banks of dynamic RAM on the daughterboard.
The banks of dynamic RAM are linked to the Balboa 860/VME memory through the
Balboa 860/VME's expansion connector. This allows direct access via DMA between the
ViP memory and the Balboa 860/VME's 16 MBytes of DRAM. 1t also allows the ViP to
access data across the VME Subsystem Bus (VSB) bus where other VSB hardware such

15




as a frame grabber can reside To facilitate these transfers, the ViP-2 has an on-chip DMA
controller. The DMA controller on the ViP-2 can be transferring one image between the
frame grabber and a bank of DRAM while, at the same time, the ViP chip set is doing a
convolution or other image processing operation on another image. This flexibility and
parallelism provides the ViP daughterboard with the processing and data transfer
bandwidths needed to perform real time image processing.
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Figure 9. Block diagram of ViP Daughterboard.
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The ViP chip set is particularly well suited for neural network and preattentive vision
image processing algorithms that use large connected neighborhoods to model the
transformations between layers of neurons. Many of these algorithms use convolution
extensively in the neural network model. One of the primary advantages of the ViP
architecture is its ability to implement large kemel convolution at full efficiency. This
feature of the ViP is very important for research applications in which the required kemel
sizes are not known a priori. In such applications, the ViP allows tremendous flexibility
without sacrificing performance. Table 1 compares the ViP’s convolution performance on
a 512x512 8-bit image with other commercially available image processing chips. Notice
that for kernels larger than 8x8, all of the other convolution chips require multiple chips to
perform the operation. In practice, this means that using one of these other chips restricts
the user to small kermels. The alternative is to take excessive time in a software
implementation or to build a new piece of hardware with multiple chips.

Table 1. Comparison of ViP daughterboard convolution performance with other leading
convolution chips. All imes are in milliseconds and the image is 512x512 with 8-bit gray-
scale.

Window Sun SPARC Plessey Inmos LSI Logic HNC ViP
Size Station PDSP 16488 IMSA110 L64240 Daughterboard
3x3 2,000 6.6 13.1 13.1 6.6
8x8 14,000 26.2 6 chips 13.1 6.6

16x16 56,000 8 chips 18 chips 8 chips 26.2
32x32 224,000 not possible 60 chips 32 chips 104.9
64x64 896,000 not possible 220 chips 128 chips 419.6

The key to the ViP’s convolution capability is a novel two dimensional systolic array
architecture on the ViP-1 chip. Systolic array architecture have been proposed and
developed since the late 1970s for a variety of signal and image processing applications.
H. T. Kung, in a 1982 review article [4], describes and classifies systolic arrays of many
different types. A special issue of the July 1987 Computer magazine is devoted to papers
that review systolic array projects and architectures. For many applications, systolic
arrays of processing elements are a very effective means of applying multiple processors to
perform computationally intensive tasks. The details of the systolic array architecture can
be found in reference 5.
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3.1 VIiP Software Description

The ViP is programmed through a set of command register that are accessed as
memory locations by the Balboa's i860 processor. To task the ViP to perform a function,
the appropriate control words are written to the various registers and the GO bit is set. At
this point the ViP-1 and ViP-2 intemal state machines begin execution. No additional
intervention by the Balboa is necessary until the function is complete. Completion is
signaled by an interrupt to the Balboa.

Users can access the control register to directly program the ViP; however, this
approach requires detailed knowledge of the control registers and their interactions. To
aid users in developing software for the ViP, an image processing module software
(IPMS) library is provided that implements many common image processing functions.
The library contains over 100 functions including image arithmetic, Sobel edge operation,
binary morphology, chain coding, two dimensional Fourier transforms, and image
histogram. All library routines are callable from C running under the Balboa Executive or
running directly on the host system. Some operations, like the Fourier Transform, operate
in software on the 1860 processor. These have been included in IPMS even though they
don't run on the ViP hardware in order to provide a complete image processing library.

4.0 Performan f the Retinal M | Implementation he Vi rdwar

The retinal model is implemented on the system shown in Figure 11. The primary
functions that the retinal model performs is noise reduction and motion detection. It
represses both noise and stationary objects. It does this for multiple objects in the field of
view with no increase in computational load over a single object. The model was
originally coded in C and run on a Sun SPARCstation. The model runs slowly on a Sun,
taking several seconds for a single 128x128 image to pass through all five layers of the
model.

Since the ViP operates at a peak processing rate of 40 Megapixels per second, a
128x128 image (or layer of cells), executes a single operation such as convolution or
image subtraction is 410 microseconds. Each pass of an image through the entire retinal
model takes 32 ViP operations. These operations consist solely of a sequence of the
following functions: convolution with a kernel, look-up table transformation of an image,
addition of two images, subtraction of two images, multiplication of an image by a
constant, absolute value of the difference between two images and threshold of an image.
The peak frame rate for the entire retinal model using a single ViP chip set is
approximately 75 frames per second, although software overhead, and slower components
such as a video camera will limit this to 50 frames per second or less. The retinal model is
easily pipelined so that two ViP chip sets would operate at 100 frames per second and
multiple chip sets would operate at even higher rates. Images larger than 128 x 128 are
readily processed at proportionally lower frame rates.

19




Color
Monitor

D G G = &R S Gh BN G B D GF P S B an O e e

|
ViP Image Processing Module
Expansion Bus
Intel i t
ViP VSB

i860 Daughter | | Daughter FC:al:l:

Y  BNCBalboa B T :

Y

VSB Bus

Figure 11 Retinal model implementation system diagram

Color
Camera




A performance comparison between the Sun SPARCstation IPC software only system
and the ViP is given in Table 1. The ViP controlled by dedicated software figures are
projected. The Sun only and the ViP controlled by Sun software figures are measured.

Table 2. Retinal Model Processing Time per Image

Image Size Sun Only ViP Controlled by | ViP Controlled by
Sun Software Dedicated Software
128x128 3.5 sec. 0.14 sec 0.021 sec
512x512 46.0 sec 0.36 sec 0.23 sec

All operations on the ViP chip set are initiated by software function calls on the Sun
host. A message packet is sent by the host to the Balboa coprocessor board. The i860
microprocessor then reads the message packet and loads the control registers on the ViP
with the correct values for the operation requested. The i860 keeps track of all layer
parameters and manages the flow of images between the banks of memory. The overhead
involved in message passing, interrupt processing and resource management is, at present,
approximately 4 milliseconds per function call. A preliminary analysis has shown that the
software overhead can be reduced to less than 250 microseconds per operation so that it is
only a fraction of the ViP hardware image processing time. The times given in Table 2 for
the ViP Controlled by Dedicated Software assumed the 250 microsecond overhead value.
The software overhead percentage will be particularly small when the image sizes are
large, such as 512 x S12. In that case the hardware processing time for a basic ViP
operation is approximately 6.7 milliseconds, but the software overhead will remain at 250
microseconds.

The much faster speed of the ViP system as compared to the Sun only system greatly
facilitates the investigation of the many coupling parameters and decay constants in the

model. The small size of the chip set and the ease of programmability means that the chip
set can be used in real time fielded systems after algorithms are developed and tested on

the development system shown in Figure 11.

kin lication

Target detection and tracking often suffers from poor signal-to-noise ratio, sometimes
described as clutter. Visibic or infrared sensors often create additional signal processing
problems because the noise distribution is non-Gaussian. Active systems such as radar and
ladar often have reflections from trees, buildings or hills that may be misinterpreted as
targets. The effect of these problems can be reduced or eliminated by preprocessing the
image through a retinal model.

Operationally, the poor signal-to-noise ratio can lead to false alarms and/or missed
targets. The standard approaches used to separate the target from the noise are
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thresholding and integration over multiple images. These techniques are usually only
partially effective. In addition to thresholding and integration over images, the retina
based model uses the biologically-inspired techniques of direction sensitivity and local
neighborhood area of interest processing. The latter two signal processing techniques can
be implemented in neural network algorithms that exploit the parallel hardware
architecture of the ViP chip. The inherently parallel nature of the biologically-inspired
algorithms has lead HNC to develop new, very efficient parallel hardware that can
implement these algorithms in the latest VLSI technology. The combination of new
algorithms and new technology make neural network approaches particularly well-suited
to applications involving the detection and tracking of targets in a cluttered environment.

HNC's ViP can implement complex neural network models of the human visual
system in real time. Existing convolutional processors are unable to accomplish this task
in a cost effective manner. HNC's new VLSI image processing ViP chip, solved this
problem with a new patented systolic array concept ( US Patent # 5138695). Prior to this,
models have primarily been implemented in software or have not been implemented at all
because no inexpensive efficient hardware has been available to implement the large
connection windows postulated in most models. The same situation exists with respect to
large convolution kemels or connection windows in conventional image processing. The
large increase in processing time usually encountered when the kemel size increases
beyond a certain size has led researchers and users to develop their algorithms and
applications with small kernels. The availability of this chip should lead neural network
and image processing researchers to develop and test increasingly complex and powerful
algorithms and models of vision and apply them to difficult application problems.
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