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APPLICATION OF BlOT THEORY TO

ACOUSTIC REFLECTION FROM SEDIMENTS

INTRODUCTION

As an acoustic wave is reflected from the sea floor, some of the incident energy is lost in
coupling to waves in the bottom and the inherent loss in the sediment. In shallow water, a
transmitted acoustic signal typically suffers many bottom reflections before it is detected by a
receiver. An error in the estimate of bottom loss of as little as 0.5 dB will accumulate to a 10 dB
error in total propagation loss after only 20 reflections from the bottom. It is, therefore, important
to develop realistic physical models of the acoustic properties of sediments in order to accurately
predict propagation loss.

The problem considered in this work is that of a reflection of a plane acoustic wave incident
from a constant velocity fluid half-space onto a homogeneous bottom half-space.

Conventionally, the sea bottom is modelled as either a lossy fluid or a viscoelastic solid.
The fluid model only considers the propagation of compressional waves in the sediment and
requires the knowledge of sediment mass density and the velocity and attenuation of compressional
waves. This model is most appropriate for low-rigidity, unconsolidated sediments such as ooze,
clay or silt.

The solid model is more accurate in that it includes the effect of sediment rigidity and thus
requires the knowledge of both shear and compressional wave velocities and attenuations as well
as the sediment mass density.

Both of these models usually assume a velocity that is independent of frequency and an
attenuation that increases linearly with frequency. These assumptions result in frequency
independent bottom loss.

More accurately, the sediment on the sea bottom may be viewed as a fluid saturated porous
solid. This view is quite general and includes oozes, clays, silts, sands and porous rock such as
sandstone. When the sediment is subjected to an acoustic disturbance, the solid frame of the
sediment and the pore fluid oscillate separately and interact via inertial coupling as well as viscous
drag. These mechanisms affect the acoustic wave propagation in ways not predicted by the simple
homogeneous fluid or solid models.

Wave propagation in fluid-saturated, poroelastic media may be described using the theory
developed by M.A. Biot between 1941 and 1962 [1]-[4]. The treatment is phenomenological and
encompasses a wide range of physical mechanisms that affect the acoustic properties of porous
media. Novel aspects of the theory are the prediction of a second "slow" compressional wave,
frequency dispersion of compressional and shear wave velocities, and an attenuation that is not
linearly dependent on frequency. These predictions have been experimentally confirmed only
relatively recently [5]. Biot theory may also be used for prediction of reflection and transmission
of acoustic waves at a fluid-porous media boundary.

In this work, wave propagation in fluid-saturated porous media will be reviewed.
Examples of velocity and attenuation dispersion as functions of frequency will be shown. Ocean
bottom reflection coefficient for a medium sand bottom computed using the Biot theory as a
function of grazing angle and frequency will be compared against the more common fluid-fluid and
fluid-solid interface models. Finally, shallow water propagation loss measurements will be
compared with model results using Biot theory to predict frequency dependent bottom loss.
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REVIEW OF BlOT THEORY

As mentioned in the introduction, the solid and the fluid parts of the sediment may be
viewed as oscillating separately and interacting via inertial and viscous coupling mechanisms.
Accordingly, the pore fluid dynamical relation will be discussed first. Then the dynamical relation
for the entire fluid-solid aggregate will be stated. Using the viscoelastic stress-strain relations and
separating the solution into rotational and irrotational fields, the longitudinal and shear wave
equations may then be derived. The phase velocity and the intrinsic attenuation of plane
monochromatic waves will then follow from the dispersion relations.

The dynamical relation for the fluid in the pore space may be expressed as

- 2U Pa 2(U -u) F 13 (U -u)(aa t2 a t2(1)a-Vp pf-- +mp ~ks at

where p is the fluid pressure in the pore, U is the displacement of the fluid and u is the
displacement of the solid frame, pf is the fluid mass density, Tl is the fluid static viscosity, and 13
and ks are the porosity and the permeability of the sediment, respectively. The viscosity correction
factor F will be discussed below. The second term on the right side of (1) accounts for the inertial
coupling between the fluid and the solid, i.e., the fluid exerts a force against the walls of the pore
space, thereby moving the solid frame. The added mass coefficient ma is a measure of the
tortuosity of pores. Note that, for uniform cross-section pores oriented parallel to the pressure
gradient, the solid frame does not interfere with fluid motion and ma is therefore equal to zero.

Viscous forces are important because of the large surface of interaction between the fluid
and the solid. The last term in (1) represents the viscous drag force that forms the frictional
coupling mechanism between the solid and the fluid. This term is an expression of Darcy's
phenomenological law which states that under steady flow conditions the spatially averaged relative
velocity of the fluid moving through a porous frame is proportional to the pressure gradient, i.e.,

SV p=1r3 a (U -U)ave.
ks at

Darcy's law also serves as the definition of permeability ks. The above relation becomes invalid as
the frequency increases. To include the higher frequency effects, Biot [2] has analyzed the
microvelocity field in two simplified pore space geometries under oscillatory flow conditions and
introduced the viscosity correction factor, F, which appears in (1). In the case of pores shaped as
cylindrical capillary tubes oriented along the pressure gradient,

F = I ic T(ic) (2)
4 1-2T(ic)/iuc

T(Ki) = ber'(K)+i-bei'(c) = -ifi J 1(i-i:ic)

ber(ic)+i-bei(K) J0 (iiC)

K = al(opf/71)t/2
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where ber(ic) and bei(K) are the real and imaginary parts of the Kelvin function [6], JI(z) and Jo(z)
are the Bessel functions of order one and zero, respectively [6], and (o is the radian frequency.
The characteristic pore size parameter al has been derived exactly for some idealized pore shapes;
however, for real sediments, it is usually adjusted to match experimental data. Yamamoto and
Turgut [7] have derived the viscosity correction factor for media characterized with a distribution of
pore sizes. Application of their analysis, however, requires the additional knowledge of the
standard deviation of the pore size distribution function, which is rarely available.

Defining the displacement of the solid relative to the fluid as w = 03(u -U), the fluid
dynamical relation (1) may be rewritten as

a2u pf a2w i F aw (3)at2 P at2 ks at

where the structure (or tortuosity) factor c = I + ma. This parameter is also usually determined by
matching model predictions to measured data in the case of real sediments.

The total force acting on the volume AV of the solid-fluid aggregate is

a2

(V €)AV =-(Ps AVs U +pf AVf U) (4)
a t2

AV = AVs + AVf,

where tij is the total stress tensor, AVs and AVf are the volumes of the parts of AV occupied by
the fluid and the solid, respectively, and Ps is the mass density of the solid material alone. Note
that as the stress tij is the total stress tensor acting on both the fluid and solid constituents, no
forces coupling the two need be included. Defining porosity P3 as 0 = AVf / AV, the dynamical
relation (4) may be rewritten as

a2

V '= - (p U + pf W) (5)
at2

p = ps( - 03) + 3p,

where p is the mass density of the sediment.

The constitutive stress-strain relations may be expressed as

S=pe+ ((H-g)V.u -CV.w) I (6)

p=M V-w - CV-u
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where
eij - 2I ýD ixj 1:

In (6) eij is the strain tensor and I is the identity matrix. The elastic constants H, M and C have
been related by Stoll [8] to Kb, Kr, and Kf, which are the bulk moduli of the porous frame, the
solid material and the fluid, respectively,

H - (Kr -Kb) 2 +Kb +4g//3
D-Kb

C K r(Kr-Kb) (7)
D -Kb

M= 
Kr 2

D -Kb

where D = Kr(I +O(K./Kf - 1). In the above, g. is the rigidity of the solid frame. To allow for
frame damping losses, Kb and pg are usually allowed to have small imaginary parts and are written
as Kb= Kb'(l+8) and g= g±'(1+8), where 8 is the specific loss. Biot [3] has shown that the elastic
constants H, C, M, and g may actually be considered as operators in the time domain, or,
equivalently, as frequency dependent quantities in the frequency domain. Such treatment would
allow consideration of thermoelastic, electrochemical and other relaxation phenomena (Stoll [8]).
This requires, however, an extensive and detailed analysis of the physical chemistry and
thermodynamics of the fluid-saturated sediment to provide the relaxation times. In the absence of
such knowledge, these quantities are assumed to be complex constants defined by (7). Stoll [81
suggests the following relationship between Kb' and g'

K'b= 21g'(1 + a)
3(1-2a)

where a is the Poisson's ratio.

The wave equation may then be derived by substituting the constitutive relations (6) into the
dynamical relations (3) and (5) and using definitions (7). Following Holland [9], the resulting
wave equation may then be separated into the longitudinal and shear wave equations by expressing
u and w in terms of scalar and vector potentials

U=VOs+VXW,, V.V,=O (8)

W=V f+Vx41Jf, V.VIf = 0

The longitudinal wave equations thus obtained are
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HV 2s - CV2Of a a 2(P 0s - Pf Of)

at2

C V2O M f - - -----2 OS C p a. 2of r F Oa¢f (9 )

2 13 t2 ks at

Assuming monochromatic plane wave solutions of the form Os = A exp i(ox-k-r), Of = B exp i(cot-
k-r), the longitudinal wave dispersion relation is obtained as

-k2H + ,)2 p k 2 C (02 pf
.- 0 (10)

-k 2C +•2 pf k2 M -J2m'

where m' = c pf/13 - i T1 F/o ks. The phase velocity is defined as vL = co/k. The intrinsic
attenuation is defined as the imaginary part of the wave number k. The relative amplitudes and
phases of potentials Os and of may be found by substituting the values of vL that are solutions to
(10) into (9).

It is interesting to note that the above dispersion relation yields two solutions for the
velocity vL. One of these solutions corresponds to the usual compressional wave found in
nonporous media. It is called Type I longitudinal wave, and its velocity and attenuation are plotted
in figures 1 and 2 as functions of frequency for medium sand sediment. The values of material
parameters are listed in table 1 and discussed in the section on measurements. Note that the
velocity is dispersive and that the assumption that high frequency measurements of velocity, often
carried out at 400 kHz, apply at low frequencies leads to an error of 100 rn/s (Hanfilton [10]).
Also, the intrinsic attenuation of this wave does not vary linearly with frequency, as is commonly
assumed [ 10]. Under Type I excitation, the fluid and the solid move essentially in phase.

The velocity and attenuation of the second compressional wave are plotted versus
frequency in figures 3 and 4. This wave, called Type II, or "slow," longitudinal wave, is
extremely lossy at low frequencies and becomes significant only at higher frequencies. Plona [5]
reported detecting this wave in a laboratory at 500 kHz. For this wave, the fluid and the solid
displacements are comparable in amplitude and essentially out of phase, i.e., the relative
displacement, w, is large. As may be seen from equation (3), the viscous force term increases
with w, and the energy of the wave is quickly dissipated. As the frequency is increased, the
inertial terms in equation (3) become more significant, and the solution becomes a propagating
rather than a diffusive wave. Calculations carried out in this work for the medium sand bottom
parameters shown in table 1, as well as those carried out by Holland [9] for carbonate sand,
indicate that the amount of incident acoustic energy converted into Type II longitudinal waves at the
water-sand interface is extremely small.
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Analogously, the shear wave equations may be derived as

2 2

gV2• = c)J--•s . p f -

at2 at 2  ks at

And the shear wave dispersion relation is

v=M 1, (12)j p. p f 2/m'r

where m' is the same as in equation (10). This relation has one solution, and the resulting shear
wave velocity and attenuation are plotted versus frequency in figures 5 and 6. Note that, once
again, the velocity is dispersive and that the attenuation does not increase linearly with frequency.

Table 1. Fluid and Medium Sand Sediment Properties Used in
Calculations Involving the Biot Model

Parameter Value Units

Fluid density (pf) 1024 kg/m3

Fluid bulk modulus (Kf) 2.38 x 1010 N/m2

Fluid viscosity (rj) 1.01 x 10-3 kg/ms

Grain density (Pr) 2650 kg/m3

Grain bulk modulus (KT) 3.6 x 1010 N/m2

Porosity (P3) 0.43

Permeability (ks) 1.25 x 10-11 m2

Structure factor (c) 1.75

Pore size (a1) 30 x 10.6 m

Poisson's ratio (;) 0.2

Frame shear bulk modulus (94b) 5 x10 7 (1 + i 0.02) N/m2
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BOTTOM LOSS PREDICTION

Stoll and Kan [11] and later Wu, et. al., [12] have evaluated the reflection coefficient for a
plane wave incident from the fluid half-space onto a porous solid. Holland [9] has derived a
relatively concise expression for the reflection and transmission coefficients. The field in the water
above the interface consists of the incident and reflected longitudinal waves, while below the
interface the field is the superposition of the transmitted Type I and Type II longitudinal waves and
the shear wave. The relative amplitudes and phases of these waves may be found by matching the
boundary conditions, thus providing the plane wave reflection and transmission coefficients. The
boundary conditions for the fluid-porous solid interface may be stated as the continuity of normal
particle displacement and normal stress and zero tangential stress. Since in porous media there are
two displacement fields, u and w, instead of the usual one, an additional boundary condition is
necessary. Assuming that, at the interface, the fluid is free to move in and out of the pores (open
pore boundary condition), the fluid pressures in the pores and above the interface are set to be
equal.

The amplitude of the pressure reflection coefficient IRI, expressed as bottom loss (-20 logl0
IRI), was calculated at several frequencies using the parameters shown in table 1, which were
chosen as representative of medium sand. The result is plotted versus grazing angle in figure 7
Note that, unlike the conventional models, Biot theory predicts a strong frequency dependence of
the bottom loss at shallow grazing angles which are of interest in long range propagation.

Bottom loss calculated using the Biot theory as well as that using the fluid sediment model
are compared in figure 8. Note that, at shallow grazing angles, the disagreement between the two
models reaches 0.5 dB. The agreement is somewhat better between the solid model and the Biot
theory result as can be seen in figure 9. It should be pointed out that, in calculating bottom loss
using the fluid as well as the solid models of the sediment, the velocities and attenuations of the
longitudinal and shear waves were determined using Biot theory. If these parameters were
determined using the conventional assumptions, the differences with the Biot theory would have
been more significant, especially at low frequencies.
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PROPAGATION LOSS MEASUREMENTS
AND DETERMINATION OF PARAMETERS

To test the model predictions, propagation loss data collected in May of 1967 in shallow
waters south of Long Island [13] were used. The measurements were carried out with a wide-
band (explosive) source under downward-refracting conditions which occur in the presence of a
negative sound velocity gradient. The source and the receiver were placed sufficiently deep so as
to minimize the interaction with the sea surface.

In determining the parameters in table 1, the acoustic velocity, the mass density, and the
viscosity of the fluid near the bottom were based on bathythermographic measurements as well as
tabulated properties of water. The fluid bulk modulus Kf may be found from vf = (Kf/pf) 1/2.
The saturated density of sediment and average grain size were determined from core sample
measurements taken in the area. As the sediment was found to be medium-grain-size quartz sand,
porosity and the pore size parameter were calculated (Stoll [8]). The mass density and the bulk
modulus of the individual grains were taken to be that of quartz. The shear modulus, gt, of the
solid frame is a function of overburden pressure which increases with depth, as discussed by Stoll
[8]. In this work, a homogeneous porous half-space is considered for simplicity, and thus an
effective value of p.',suggested by Yamamoto [14], is used. Poisson's ratio a of 0.2 is used to
determine Kb' (Stoll [8]). The value of permeability was taken from Yamamoto [14] and adjusted
slightly to fit the propagation loss data. Such an adjustment is permissible because permeability
varies with location and sediment type. Once the Biot parameters shown in table 1 were selected,
they were used for predictions of bottom loss at all frequencies.

To predict propagation loss, a multipath expansion propagation model [15] was used. The
sound velocity profile in the water column w-: taken from bathythermographic measurements and
values for bottom loss were calculated using the Biot theory as described above. It should be
noted that for a large receiver-transmitter separation, the arriving eigenrays interact with the bottom
at only a narrow range of shallow grazing angles, with a beam width of about 20".

The resulting predictions of propagation loss are compared against measurements for a
number of frequencies in figures A 0-13. Also shown are the predictions using the same
propagation model under the conventional assumption of a fluid bottom with a dispersionless
velocity and an attenuation that increases linearly with frequency [16]. It may be observed that
both models perform reasonably well for the higher frequencies of 500 Hz, 3500 Hz, and 8000
Hz. ( The fluid model prediction at 8000 Hz was compared with measurements by Cohen and Cole
[13] and found to match the data well.) In the May 1991 analysis, transmission loss data taken at
1000 Hz at the same site indicated that both models give good agreement with the measurements
[17]. At 100 Hz, however, the fluid bottom model overestimates the bottom loss significantly
[18], and the Biot model is still in agreement with measurements. This agreement is to be expected
because the Biot model predicts a much smaller bottom loss at shallow grazing angles at 100 Hz
than at higher frequencies, as may be seen in figure 7. The fluid model, on the other hand,
predicts a bottom loss that is independent of frequency, clearly in disagreement with the
measurements.
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SUMMARY AND CONCLUSIONS

Biot theory of acoustic wave propagation in fluid saturated porous media was applied to
bottom loss prediction for a sea bottom consisting of medium sand. The theory predicts a
frequency-dependent bottom loss in contrast to the fluid or solid bottom models. Propagation loss
predicted with the Biot model of the sediment showed agreement with measurements at frequencies
ranging from 100 to 8000 Hz. The fluid model, which assumed a dispersionless velocity and an
attenuation that is proportional to frequency, has performed poorly at low frequency (100 Hz).

As the Biot theory includes phenomena not considered in the simple fluid or solid models,
it requires more detailed knowledge of the sediment and, thus, more parameters. Once these
parameters are determined, however, bottom loss may be predicted at a broad range of frequencies,
which makes this model superior to the conventional ones.

Since many algorithms and analytic methods used in underwater acoustics assume a simple
fluid or solid bottom, it may be useful to approximate the sediment as a 'Biot' fluid or a 'Riot'
solid with the velocities and attenuations of longitudinal and shear waves obeying the frequency
dependence predicted by the Biot theory.

Biot theory has also been used by Yamamoto [14] in normal mode solutions to the shallow
water acoustic waveguide. The water column was assumed to be isovelocity, and bottom half-
space was assumed to be homogeneous.

Further work should include the variation of sediment physical properties with depth to
simulate the bottom response more closely. This variation may significantly affect bottom
response, as indicated by Hamilton [ 10], who reported large compressional and shear wave
velocity gradients near the sediment-water interface. Badiey and Yamamoto [19] have investigated
theoretically the effect of shear rigidity variation with depth on normal mode propagation in a
shallow water wave guide. They also considered the effect of anisotropy induced by sediment
layering. More data are necessary to determine the needed sediment parameters.

REFERENCES

[1] M.A. Biot, "Theory of Propagation of Elastic Waves in a Fluid-Saturated Porous Solid. I.
Low-Frequency Range," Journal of the Acoustical Society of America, vol. 28, no. 2, 1956, pp.
168-178

[2] M. A. Biot, "Theory of Propagation of Elastic Waves in a Fluid-Saturated Porous Solid. II.
Higher-Frequency Range," Journal of the Acoustical Society of America, vol. 28, no.2, 1956,
pp.179-191.

[3] M. A. Biot, "Mechanics of Deformation and Acoustic Propagation in Porous Media," Journal
of Applied Physics, vol. 33, no. 4, 1962, pp. 1482-1498.

16



[4] M. A. Biot, "Generalized Theory of Acoustic Propagation in Porous Media," Journal of the
Acoustical Society of America, vol. 34, no. 9, 1962, pp. 1254-1264.

[5] T. J. Plona, "Observation of a Second Bulk Compressional Wave in a Porous Medium at
Ultrasonic Frequencies," Applied Physics Letter, vol. 36no. 4, 1980, pp. 259-261.

[6] M. Abramovitz and I. A. Stegun, "Handbook of Mathematical Functions," Dover, New
York, 1970.

[7] T. Yamamoto and A. Turgut, "Acoustic Wave Propagation Through Porous Media with
Arbitrary Pore Size Distributions", Journal of the Acoustical Society of America, vol.83,no. 5,
1988, pp. 1744-1751.

[8] R. D. Stoll, "Sediment Acoustics," Lecture Notes in Earth Sciences, vol. 26, Springer-
Verlag (1989)

[9] C. W. Holland, "The Effects of Sediment Porosity on Acoustic Reflection and Transmission
at the Seafloor", Ph. D. Dissertation, The Pennsylvania State University, 1991.

[10] E. L. Hamilton, "Geoacoustic Modelling of the Sea Floor," Journal of the Acoustical
Society of America, vol. 68, no.5, 1980, pp. 13 13 -134 0 .

[ 11] R. D. Stoll and T.-K. Kan, "Reflection of Acoustic Waves at Water-Sediment Interface",
Journal of the Acoustical Society of America, vol. 70,no. 1, 1981,pp. 149-156.

112] K. Wu, Q. Xue, and L. Adler, "Reflection and Transmission of Elastic Waves from Fluid-
Saturated Porous Solid Boundary", Journal of the Acoustical Society of America, vol. 87,no. 6,
1990, pp. 2349-2358.

[13] J. S. Cohen and B. F. Cole, "Shallow Water Propagation Under Downward-Refraction
Conditions. II," Journal of the Acoustical Society of America, vol. 61,no. 1, 1977,pp. 213-217.

[14] T. Yamamoto, "Acoustic Propagation in the Ocean with a Poroelastic Bottom," Journal of the
Acoustical Society of America, vol. 73, no. 5, 1983, pp. 15 87 - 15 9 6 .

[15] H. Weinberg, "Application of Ray Theory to Acoustic Propagation in Horizontally Stratified
Oceans," Journal of the Acoustical Society of America, vol. 58, no. 1,1975, pp. 97-109.

[16] B. F. Cole and E. M. Podeszwa, "Shallow-Water Propagation Under Downward-Refraction
Conditions," Journal of the Acoustical Society of America, vol. 41, no. 6, 1967, pp. 1479-1484.

[17] J. M. Tattersali, D. Chizhik, and K. L. Francis, "Frequency Dependent Reflectivity of a
Medium Sand Bottom in Shallow Water Inferred from Transmission Loss Measurements",
NUWC-NL Technical Memorandum 921115, Naval Undersea Warfare Center, New London,
CT, in review.

17



[18] J. A. Davis, B. F. Cole, P. D. Herstein, S. R. Santaniello, and W. M. Leen, unpublished
report.

[19] M. Badiey and T. Yamamoto, "Propagation of Acoustic Normal Modes in a Homogeneous
Ocean Overlayi'g Layered Anisotropic Porous Beds," Journal of the Acoustical Society of

America, vol. 77, no. 3,1985, pp. 954-961.

18



INITIAL DISTRIBUTION LIST

Addressee No. of Copies

ARL/UT (J. Shooter, S. Mitchell. N. Bedford. E. Westwood,
Library) 5

BBN/Cambridge (G. Shepard) 1

BBN/New London (P. Cable) 1

DARPA (W. Carey) 1

DTIC 2

LDGO (R. Stoll) 1

NAVSEA (PMO 424. 06UR1) I

ONR R. Feden (124). K. Dial, E. Chalka, E. Estalotte,
B. Blumenthal, M. Orr) 6

ONR Det/Bay St. Louis (D. Small) 1

NRL (F. Erskine, 0. Diachok, M. Czarnecki, Library) 4

NRL/NSTL (B. Adams, E. Franchi, J. Matthews, P. Bucca,
J. Caruthers, Library) 6

NAVOCEANO (R. Merrifleld (PMI). R. Christensen (OA)) 2

NAWC (B. Steinberg (5031)) 1

PSI/McLean (C. Holland) I

PSI/NL (J. Davis, S. Santaniello) 2

SAIC/McLean (R. Dicus, A. Eller, C. Spofford, R. Cavanaugh) 4

SAIC/NL (F. DiNapoli, D. Griffiths, R. Evans, M. Fecher,
J. Hanrahan) 5

TRACOR (S. Reilly. G. Heines) 2

WHOI (G. Frisk. G. M. Purdy) 2

SCHLUMBERGER-DOLL (T. Plona) 1


