DTIC

ELECTE
SEP 2 4 1992

C

A Portable Multiprocessor Interface i
for Standard ML of New Jersey

J. Gregory Morrisett Andrew Tolmach

June 1992
CMU-CS-92-155

School of Computer Science
Camegie Mellon University
Pittsburgh, PA 15213-3890

J. Gregory Morrisett
Carnegie Mellon University
jgmorris@cs.cmu.edu

Andrew Tolmach
Princeton University
apt@cs.princeton.edu

AR e arm - e e
&MITEVTID Jnrltsa

This research was sponsored in part by the Defense Advanced Research Projects Agency, CSTO, under the title
"The Fox Project: Advanced Development of Systems Software”, ARPA Order No. 8313, issued by ESD/AVS
under Contract No. F19628-91-C-0168. J.G. Morrisett was supported in part by a National Science Foundation
Graduate Fellowship. A. Tolmach was supported in part by National Science Foundation grant CCR-9002786. The
research was conducted in part while the authors were visiting AT&T Bell Laboratories, Murray Hill, NJ.

The views and conclusions contained in this document are. those of the authors and should not be interpreted as
representing the official policies, either expressed or implied, of AT&T, DARPA, the U.S. Government.

g 23 084 @’\ 92-25767
92 v (ENERENRN .

Keywords: concurrency, threads, Standard ML, continuations, shared memory, multipro-
cessor

Abstract

We have designed a portable interface between shared-memory multiprocessors and
Standard ML of New Jersey. The interface is based on the conventional kemel thread
model and provides facilities that can be used to implement user-level thread packages.
The interface supports experimentation with different thread scheduling policies and
synchronization constructs. It has been ported to three different multiprocessors and used
to construct a general purpose, user-level thread package. In this paper, we discuss the
interface and its implementation and performance, with emphasis on the Silicon Graphics
4D/380S multiprocessor.

DTIC QUALITY INSPRCTED 3

1 Introduction

Many applications, such as window systems, operating systems, transaction systems, in-
teractive games, etc., provide multiple services to one or more clients. To provide low
latency service, such programs are often structured in a multi-threaded fashion. Many re-
searchers [11, 13, 14, 19, 25, 31, 39, 41, 48] are interested in adding concurrency primitives
to “higher-order” languages such as Standard ML [33] so that applications can be written
in a multi-threaded fashion and still take advantage of other high-level features, such as
strong typing, garbage collection, modules, etc.

Standard ML of New Jersey [9] (SML/NJ) provides an elegant set of extensions to SML
that makes writing an efficient thread package for uniprocessors quite easy. Uniprocessor
implementations simulate concurrent thread execution, distributing access to the processor
among the currently active threads, typically with the aid of a clock-driven preemption
mechanism. At least four such packages currently exist [14, 31, 37, 39).

Many multi-threaded applications offer better latency if they are executed in truly concur-
rent fashion, using multiple processors. Moreover, a truly concurrent thread model can be
used to express parallel algorithms designed to maximize throughput. We have designed
and implemented a shared-memory multiprocessor interface for SML/NJ, called MP, so
that thread packages can take advantage of parallel hardware. Our major design goals were
portability, simplicity, and efficiency. To achieve these goals, we have kept the MP interface
as small as possible, so that it can be easily ported to a variety of machines and operat-
ing systems. Porting MP to a new machine involves implementing only a small number
of system-dependent routines. The interface provides enough functionality so that thread
packages may be portably implemented in ML. This gives us flexibility to experiment with
different sets of thread primitives, scheduling policies, etc., using the language’s powerful
abstraction mechanisms. We use a range of mechanisms to interface ML code with the
SML/NJ runtime system both efficiently and cleanly.

The MP interface has been ported to the Silicon Graphics (SGI) 4D/380S, the Omron
Luna 88k, and the Sequent Symmetry multiprocessors.! Both the Omron and Sequent
implementations were completed within a week—a testament to the portability of the in-
terface. Trivial uniprocessor implementations of MP exist for all systems that run SML/NJ.
A portable version of ML Threads [14] extended with “safe refs” as suggested by Appel and
Tolmach [45], has been built on top of the MP interface and can be used as a basis for
experimenting with multiprocessing.

In this paper, we first show how SML/NJ provides appropriate mechanisms for building
uniprocessor thread packages. We then present our multiprocessor interface and show how a
parallel thread package can be implemented on top of it. We discuss the system-independent
implementation routines and the system-dependent routines for the SGI multiprocessor. We
close with performance results and some open problems.

We will assume that the reader has a basic knowledge of SML/NJ. In particular, the reader
should understand first-class continuations in order to follow the examples. Some knowledge
of operating systems and their concurrency features will also be helpful.

!The Sequent port was done by Lorenz Huelsbergen of the University of Wisconsin using the sml2c
compiler [44).

2 Terminology

A machine consists of some number of independent physical processors that share a common
memory. The shared memory might not be sequentially consistent; i.e., for a processor to
guarantee that the result of a memory operation is visible to other processors, it may need
to issue explicit instructions in addition to the memory operation itself. A machine that has
only one processor is called a uniprocessor, while machines with more than one processor
are called multiprocessors.

A task (sometimes referred to as an address space), is an abstract unit of resource allocation
exported by the operating system. A task typically contains a view of a portion of the
machine’s memory, some number of kernel threads, and other resources (e.g., file descriptors)
that the OS has granted the task.

A thread is an abstract agent of computation that provides the illusion of a virtual processor.
We say that the threads of a program multiplez the control of the program. Threads and
their associated operations may be provided by the operating system (kernel threads) or by
a set of user-level routines (user-level threads).

A kernel thread is a thread that is provided and managed by the OS. Each kernel thread
belongs to at most one task and can be scheduled to execute on any of the processors at any
time. In particular, the OS may choose to run the threads of a task in parallel. Additionally,
the OS has the ability to preempt (i.e., suspend) a kernel thread at any time. Each of a
task’s kernel threads may access any memory location of which the task has a view.

A user-level thread is a thread that is provided and managed by a user-level set of routines.
User-level threads can provide much better performance and flexibility in scheduling than
kernel threads (2, 16, 30, 42, 47), because thread operations do not require expensive system
calls. However, kernel intervention is typically still required to obtain access to multiple
processors and to manage J/O. Therefore, user-level threads are often multiplexed on top
of kernel threads; typically, there is one kernel thread per physical processor.

Figure 1 shows the typical relationship between processors, tasks, kernel threads, and user-
level threads. In SML/NJ, operating system services are provided via a runtime system
written in C; most services are exported to the ML environment as functions (see Sec-
tion 5.1). We have a choice between implementing user-level threads in C and exporting
them to ML, or exporting an interface to kernel threads and implementing user-level threads
directly in ML. Since ML provides excellent facilities for implementing threads in a unipro-
cessor environment, as described in Section 3, it is natural to choose the latter alternative;
the resulting interface is described in Section 4.

3 An SML/NJ User-Level Thread Package

Standard ML is a mostly functional programming language that provides first-class func-
tions (closures), compile-time typing, polymorphism, exceptions, garbage collection, and a
powerful module facility. In addition, the language has a complete formal semantic specifi-
cation (33].

The Standard ML of New Jersey implementation [9, 7) supports type-safe, first-class con-
tinuations [17] and provides asynchronous exception handling facilities in the form of signal

Task/

Task Process Task
. . User-Level
Appl'camn User-Level Threads Threads
ML
User-level User-~level
Scheduler Scheduler
The MP
Interface
C-Runtime
! '
User-Level Kernel Kernel Kernel Kernel
Operating Thread Thread Thread Thread
System
0S Scheduler
Physig:al] | \
Machine

Processor Processor Processor

Figure 1: Relationship of Tasks, Kernel Threads, and User-Level Threads

signature QUEVE =

sig
type ’a queue
val create : unit -> ’1a queue
val enq : ’a queue -> ’'a -> unit
val deq : ’a queue -> ’a
exception Deq

end

signature THREAD =
sig
val fork : (umit -> unit) -> uwait
end

Figure 2: Queue and Thread Signatures

handlers [38]. These extensions provide everything that is needed to build complete, unipro-
cessor, user-level thread packages in the language.

This section describes the implementation of a simple thread package, similar to the core
of existing systems such as CML [39] and ML Threads [14].

3.1 Thread Management

Wand [46] is credited with showing how concurrency can be simulated using continuations.
Figure 3 shows how a very simple user-level thread mechanism can be implemented in
SML/NJ. The thread module is presented as a functor, parameterized by a QUEUE structure,
whose implementation is straightforward and is not shown here. The THREAD signature
exports just the function fork to create new threads. The QUEUE and THREAD signatures
are shown in Figure 2.

Each waiting thread is represented by a unit-accepting continuation. A queue (ready)
of continuations is used to store threads that are not currently running. When given a
function child, fork captures the current continuation using callcc and binds it to parent.
The parent continuation is placed on the ready queue, and child is executed. When
child completes, a continuation is dequeued from ready and invoked using throw, causing
execution to continue in the context of another thread.

Threads inherit the environment of their parent, which may contain both mutable and
immutable identifiers. The mutable identifiers form a shared memory: any ref cell or array
accessible from two threads is implicitly shared by them. A variety of synchronization and
communication mechanisms can be implemented on top of this shared memory. Two such
mechanisms, mutex locks and pipes, are described in Appendices A and B.

To prevent a compute-bound thread from monopolizing the processor, timer alarm signals
are used to trigger thread preemption. The call to setitimer causes the signal SIGALRM
to be delivered to the process every 50 msec. The call to setHandler installs the function
switch as a handler for the signal. When an alarm signal is delivered to the process, switch

functor CoThread (Queuwe : QUEUE) : THREAD =
3truct
val ready : (unit cont) Queue.queue = Queue.create ()
val atomic_flag = ref false
fun atomic () = !atomic_flag

fun enter_atomic () = atomic_flag := true
fun leave_atomic () = atomic_flag := false
fun atomically f x =
(enter_atomic ();
let val r = £ x
in
leave_atomic ();
r
end) handle exn => (leave_atomic ();

raise exn)
val reschedule = atomically (Queue.enq ready)
fun getneat () = atomically (Queue.deq ready)

fun fork (child : unit -> unit) =
callcc (fn parent =>
(reschedule parent;
child ();
throw (getnext()) (J)))

fun switch(_,k : unit comt) =
if atomic () then
k
else (reschedule k;
getnext ())
local
open System.Signals System.Timer
System.Unsafe.CInterface
val t = TIME {sec = 0, usec=50000}
in
val _ = (setHandler(SIGALRM,SOME switch);
setitimer(0,t,t))
end
end

Figure 3: Implementing Threads in SML/NJ

is given the current continuation (k) of the process. The handler is expected to return a
continuation to be invoked. Ordinarily, switch enqueues k onto the ready queue, and
dequeues and returns another thread’s continuation to be invoked.

The enq and deq operations must be atomic with respect to preemption; otherwise, the
ready queue might end up in an inconsistent state. A flag (atomic_flag) is used to indicate
when an “atomic” operation is in progress; switch preempts the current function only if
atomic_flag is clear. If atomic_flag is set when the alarm goes off, switch simply returns
the continuation that it was given, and the computation proceeds as if it had not been
interrupted.

3.2 Performance Considerations

The efficiency of this thread package implementation depends directly on that of SML/NJ’s
continuation primitives. Fortunately, the cost of creating and invoking continuations in
SML/NJ is low relative to overall execution speed, comparable with the cost of invoking
an ML library function. There are several reasons for this efficiency. First, the SML/NJ
compiler uses an intermediate form known as continuation-passing style that makes all
continuations in a program explicit, so it is simple for the compiler to expose continuations
to the user. Second, all closures (i.e., procedure-frames) are allocated on the heap instead
of on the stack. Thus, continuation creation (via callcc) consists merely of allocating and
initializing a closure. No copying from a stack to the heap needs to take place. Conversely,
when a continuation is invoked (via throw), no copying from the heap back to the stack is
necessary.

On the other hand, SML/NJ’s use of heap allocation for closures may make ordinary execu-
tion slower than it would be were conventional stack allocation used. Although Appel has
shown that heap allocation can compete with stack allocation for certain uniform memory
architectures [4], this is less likely to be true for systems with smaul first-level caches [24].
Therefore, while thread operations built on top of SML/NJ’s continuations should be effi-
cient relative to the rest of the ML computation, thread applications may not perform as
well overall under SML/NJ as under competing systems.

In fact, first-class continuations are an overly general mechanism for saving thread state.
Since any waiting thread can be resumed at most once, it is permissible to destroy the
thread’s saved state in the process of reinstating it, which can reduce the amount of copying
required by a stack-based implementation [22].

4 The MP Interface

Extending SML/NJ to support multiprocessing involves both explicitly adding to the set
of language primitives and implicitly adapting existing primitives to the multiprocessor
environment. Figure 4 shows the explicit MP multiprocessor interface in the form of an
ML signature. This signature describes the abstract set of services available to an MP client,
e.g., a particular thread package. The main abstraction presented by the MP interface is
a proc—a language-level view of a kernel thread executing on a physical processor. The
interface provides operations for managing procs and their state. Mutual exclusion among
procs is provided by spin locks.

signature MP =

sig
type proc_datum
datatype proc_state = PS of (unit cont * proc_datum)
exception Acquire_Proc
val acquire_proc: proc_state -> unit
val release_proc: unit -> ’a
val active_procs: unit -> int
val initial_datum : proc_datum
val get_datum : unit -> proc_datum
val set_datum : proc_datum -> unit
type spin_lock
exception Spin_Lock
val spin_lock: unit -> spin_lock
val try_lock : spin_lock -> bool
val lock : spin_lock -> umnit
val unlock : spin_lock ~-> unit
end

Figure 4: The MP Interface

4.1 Proc Management

The proc_state datatype represents the state of a proc. It consists of a continuation and
a client-defined proc_datum. acquire_proc attempts to acquire a new proc for the task. It
takes as an argument a proc_state and immediately returns. If the operation is successful,
the new proc is given the continuation of the proc_state to execute in parallel with the
proc that called acquire_proc. In addition, the proc_datum portion of the proc_state is
installed, as described below.

Typically, MP is implemented so that the number of available procs is equal to the number
of physical processors on the machine; after this limit is reached, calls to acquire_proc will
raise the exception Acquire._Proc. However, the number of physical processors available to
an ML program typically changes during a computation as a result of activity by other users
and by the operating system itself. Most operating systems lack a mechanism to inform user
space code about dynamic changes in processor availability. Thus, as with kernel threads,
the correspondence between procs and available physical processors is only an approximate
one.

The operation release_proc can be used to give the calling proc back to MP. If there
is only one proc currently running and it calls release_proc, then the entire task exits,
which might be undesirable. To help the client avoid releasing the last proc, function
active_procs returns an integer indicating how many active procs the task currently has.
release_proc is typically implemented by releasing the current physical processor to the
operating system, by either blocking in or exiting from the current kernel thread.

signature MP_ARG =
sig
type proc_datum
val initial_datum : proc_datum
end

tunctor MP (MP_Arg : MP_ARG) : MP =
struct

end

Figure 5: The MP Functor

Since acquire_proc and release._proc require communication with the operating system,
the client may wish to invoke them sparingly. To obtain good performance (at the ex-
pense of other system users) a client typically calls acquire_proc repeatedly when it starts
up, acquiring as many procs as possible, and holds on to them for the duration of the
computation.

4.2 Per-Proc Data

Often, a proc needs some small amount of private state. For example, consider the flag
atomic_flag of Figure 3. This flag indicates whether the single proc can be interrupted or
not. If we have multiple procs, then we need to have multiple flags, since some procs might
be executing an atomic operation at the same time that other procs are not.

The MP interface provides a single, programmer-defined proc_datum for each proc. The
operations get_datum and set._datum allow a proc to read and write its private datum. The
datum value for the initial proc is given by initial datum. As an example, the atomic_flag
for a proc can be stored directly in its proc_datum. If clients need to store more complex
pieces of state, they can treat proc_datum as a record or array. To support arbitrary datum
values in a type-safe manner, type proc_datum and the initial_datum value are defined as
arguments to the MP functor, as shown in Figure 5.

4.3 Memory Management and Mutual Exclusion

All live heap memory is implicitly shared among all procs; in particular, a proc can freely
read or write into heap locations allocated by another proc. In ML, only specially declared
ref and array variables can be updated after being allocated, so all communication between
procs must be via such variables. If two procs perform conflicting operations on the same
data, the result is unpredictable—it depends on details of scheduling, relative execution
speed, compiler code generation, and hardware architecture. One way to solve these race
condition problems is to use some form of mutual ezclusion locks.

We provide spin locks to solve race condition problems at the MP level. Spin locks are
meant to be held for very short periods of time—so short, in fact, that it is more efficient to

spin (i.e., wait) for a lock than to do some sort of context-switch. Every potentially shared,
mutable memory location should be protected by such a lock, to guarantee that only one
proc at a time can access it.

The current MP specification does not address the underlying memory consistency model
provided by the hardware architecture; maintaining the desired degree of consistency is the
responsibility of the MP client. For the platforms on which it is currently implemented, MP
does expose enough of the low-level architecture to allow cliernis to control consistency; on
the SGI, for example, wrapping all shared memory accesses—including aligned single-word
writes—with spin lock operations will suffice to give the illusion of sequential consistency.
Defining a uniform higher-level model remains an important goal for future work.

We chose not to provide “heavier-weight” synchronization primitives for two reasons. First,
most hardware today provides primitives that directly support spin locks, such as an atomic
test-and-set instruction. Second, other synchronization constructs swch as mutex locks,
reader/writer locks, semaphores, pipes, channels, etc., can be easily implemented using spin
locks in conjunction with first-class continuations; see Appendices A and B for examples.

The operation spin_lock attempts to return a fresh spin_lock in unlocked state. Imple-
mentations of MP are expected to implement these locks as efficiently as possible, e.g.,
using hardware support. Since some machines may provide only a limited number of hard-
ware locks,2 the MP implementation is also permitted to run out of locks, in which case
exception Spin.Lock is raised by the next spin_lock operation. Thus, thread packages
are required to cope with the possibility of running out of locks by multiplexing them as
necessary.

The operation try_lock attempts to lock the specified spin lock and immediately returns a
bool indicating the success of the operation. If the operation is successful, the proc is said
to “own the lock”. At most one proc can own a given spin lock at any time. The spin lock
can be released by calling the unlock operation; this need not be done by the proc that set
the lock.

The lock operation is similar to try_lock except that it does not return until the lock is
successfully obtained. It is functionally equivalent to the following routine:

fun lock sl = while not(try_lock sl) do () (* spin *)

lock is provided in the interface since some sperating systems may provide a more efficient
spin than the one shown above (e.g., by using backoff techniques [1]).

4.4 I/0

I/O presents at least two problems for user-level thread packages. The first affects both
uniprocessor and multiprocessor implementations. When a user-level thread performs some
blocking I/O operation, it should not block the proc on which it is running indefinitely if
there are other user-level threads that need to run. A thread blocked while attempting I/O
is similar to a compute-bound thread, and it can be dealt with in the same way, by using
UNIX timer alarm signals to preempt the thread. In the existing SML/NJ implementation,
I/0 and signal handling are coordinated to support this preemption technique [38]. Before

*In fact, the SGI multiprocessor is the only machine we have worked with that limits the number o!
hardware locks.

a blocking 1/0 operation is performed (e.g., read from the keyboard), a UNIX select call is
made. The select may be interrupted by a signal. If the selact completes without being -
interrupted, indicating that the operation may be completed without blocking, signals are
masked and the actual operation is done. If a signal occurs during the select, the current
continuation is “backed-up” to retry the entire operation, so it appears to the signal handler
as though the signal occurred before the blocking I/O operation was initiated. Thus, no
proc will be blocked indefinitely on an I/O operation.

A second problem affects multiprocessor implementations: two processors may perform I/0
operations simultaneously, possibly accessing the same runtime data structures. At present,
MP takes no specific steps to prevent such conflicts; the client is responsible for protecting
the primitives with suitable mutual exclusion locks.

4.5 Signals

We use the existing SML/NJ signal interface [38], adding suitable conventions for multi-
processing. SML/NJ exposes only a subset of the UNIX signals to the ML user; of these,
we are primarily concerned with providing suitable treatment for SIGALRM (timer alarm)
and SIGINT (keyboard interrupt) signals.

Signal handlers are installed via a call to setHandler. The signal handlers are per-task
resources. That is, each proc within a task shares the same signal handling function. How-
ever, each proc may choose to mask or unmask signals independently via the maskSignals
operation. When a signal occurs, it is delivered to each proc. If the proc has masked its
signals, then the delivery will be delayed until the proc unmasks signals.

There is no facility in the interface for procs to signal one another, since they can commu-
nicate through their shared address space. MP does not support asynchronous alerts or
control operations by one proc acting on another, although these may be simulated using
polling in the target proc. The timer alarm can be used to issue the poll at appropriate
intervals.

4.6 An MP Thread Package

In this section, we show kiw to extend the implementation of the simple thread package
from Section 3 so that user-level threads can run in parallel using the MP interface.

The ready queue must be protected by spin locks to avoid race conditions between com-
peting procs. Figure 6 shows a functor that takes a queue implementation, and provides
queues that are safe with respect to multiple procs.

Figure 7 shows a functor that takes a safe queue implementation, an MP implementation
v.here the per-proc data are bool values and the initial object is false, and produces a
structure that matches THREAD. The ready queue is a safe unit continuation queue. Thus,
enqueuing or dequeuing a thread is an atomic operation with respect to multiple procs. The
atomic_flag is replaced by the per-proc datum. As before, the switch signal handler will
only allow a context switch to occur when the flag is not set.

For simplicity, the implementation shown here handles proc acquisition and release naively;
it holds procs only as long as they’re immediately useful rather than stockpiling them as
suggested in Section 4.1. The fork function, when given a function to fork, attempts to

10

functor Safe_Queue (structure MP : NP
structure Queue : QUEUE) : QUEUE =
struct
type ’a queue = (’a Queue.queue * MP.spin_lock)
fun create () = (Queume.create (), MP.spin_lock ())
fun with_lock 1 £ =
(fn x => (MP.lock 1;
let val r = £ x
in
MP.unlock 1;
r
end) handle exn => (MP.unlock 1;
raise exn))

with_lock 1 (Queue.enq q)
Queue.Deq
(with_lock 1 Queue.deq) gq

fun enq (q,1)

exception Deq

fun deq (g,1)
end

Figure 6: Safe Queues

acquire a proc to run the parent’s continuation. If the call to acquire_proc fails, the parent
is rescheduled onto the ready queue and the child function is evaluated. When the child
completes, a continuation is atomically dequeued from ready using getnext and invoked.
If the exception Deq is raised, there are no more threads to run, so the calling proc releases
itself.

Figure 8 shows how the system may be linked, given the MP functor and a structure Queue.

5 MP Generic Implementation Details

The implementation of the MP interface is divided into a generic system-independent layer,
and a system-dependent layer. The generic layer makes up the bulk of an implementation,
allowing the interface to be ported easily.

5.1 Interfacing ML code to the Outside World

In order to track the changes that are being made to the SML/NJ system’s development,
we tried to cause as little disturbance as possible while adding MP support. Internally,
SML/NJ supports a range of mechanisms for access to the underlying hardware and operat-
ing system [6, 7]. Each mechanism involves a different tradeoff between execution overhead
and portability.

Primops: The compiler generates generic machine code, which is then translated into
machine-specific instruction sequences. The generic machine model includes general-purpose

11

functor MP_Thread(structure MP : MP
structure SafeQ] : QUEUE
sharing type MP.proc_datum = bool) =
struct
structure Safed = SafeQ
val ready : (unit cont) SafeQ.queue = SafeQ.create ()
fun atomic () = MP.get_datum ()
fun enter_atomic () = MP.set_datum true
fun leave_atomic () = MP.set_datum false
fun atomically £ =
(fn x => (enter_atomic ();
let valr =f x
in
leave_atomic ();
r
end) handle exn => (leave_atomic ();
raise exn))
atomically (SafeQ.enq ready)
(atomically SafeQ.deq) ready
handle SafeQ.Deq => MP.release_proc ()

val reschedule
fun getnext ()

fun fork child
(callcc (fn parent =>
(MP.acquire_proc (MP.PS(parent,true))
handle MP.Acquire_Proc =>
reschedule parent;
child ();
throv (getnext ()) ())))

fun switch (_,k : unit cont) =
if atomic () then k
else (reschedule k;
getnext ())
local
open System.Signals System.Timer
System.Unsafe.CInterface
val t = TIME {sec = 0, usec=50000}
in
val _ = (setHandler (SIGALRM,SOME switch);
setitimer(0,t,t))
end
end

Figure 7: MP Threads

12

structure MP_Arg : MP_ARG =
struct
type proc_datuam = bool
val initial_datum = false
end

structure MP = MP(MP_Arg)

structure SafeQ = Safe_Queue (structure MP = MP
structure Queue = Queue)

structure Thread : THREAD = MP_Thread(structure MP = MP
structure SafeQ = SafeQ)

Figure 8: Linking the System

registers and transfer operations, and also a set of primitive operators (primops) for perform-
ing specific arithmetic and logical operations and other specialized tasks, such as callcc.
Typically, each primop translates into a different sequence of native machine instructions
for each supported architecture. It is relatively easy to add new primops, provided a suit-
able implementation is available for each architecture, and depends only on the architecture
(and not, e.g., the operating system).

Assembly functions: The code sequences for some common operations, such as string
allocation and certain arithmetic functions, are too lengthy to generate in line. Instead,
they are provided as assembly-level functions that can be invoked directly from generated
ML code. Invoking such a function is similar in cost to calling an ML library function; in
particular, a return closure for the function call must be constructed. Assembly functions
can have variant implementations for different architectures and different operating systems.

C functions: The runtime system for SML/NJ is written in C and provides a coroutine
interface to ML code. When ML requires a runtime service, such as garbage collection,
it sets a global variable request to a value indicating which service is desired, saves its
register set in a global state vector, loads the C registers from the C stack and begins to
execute the C code that will provide the service. When the runtime service is complete,
the C registers are saved on the C stack, the ML registers re-loaded, and execution of ML
code continues. Two assembly language routines, saveregs and restoreregs, handle the
machine-specific task of crossing this ML/C boundary.

The most important runtime services are garbage collection (see Section 5.5) and signal
processing, which have their own request values. Other services, such as I/0, are provided
via named C functions. New functions can be added easily at linktime; in fact, function
names are not bound to code addresses until runtime.

13

5.2 Proc Implementation

Each proc is allowed to execute both ML and C code. The obvious alternative—restricting
C execution to a single server thread—would introduce unnecessary synchronization. Each
proc is given an MLState vector that holds per-proc copies of runtime flags and values.
While executing ML code, a pointer to the state vector sits on top of the C-stack. When
crossing from ML to C, the pointer is popped off the stack and passed as an argument
to saveregs. This routine passes the state pointer to the runtime service routine as well.
When the service is complete, the pointer is passed to restoreregs, which places it on top
of the stack.?

In a C signal handler, it is difficult to recover the the state pointer from the stack, since
a new frame is pushed on the stack. Thus, each state vector contains the kernel thread id
of the proc that owns it. While executing a C signal handler, the proc calls the system-
dependent routine ml_getpid to determine its identity. It then walks through the list of
state vectors until it finds the one with its id. While slow, this method is portable.

Implementing acquire_proc and release_proc requires access to the operating system,
so these routines are implemented as C functions. Since the ML runtime system must
allocate data structures for each process, a compile-time constant determines the maximum
number of procs that the runtime system can provide. When a client calls acquire_proc,
the runtime system first attempts to find an available MLState vector and initializes it
appropriately. If the blocked pool, described below, is empty, the runtime system invokes
a system-dependent routine, new_proc, which in turns calls the operating system, passing
the continuation to be executed and the state vector as arguments. The operating system
creates a new kernel thread and starts it executing the continuation.

When a proc calls release_proc, the runtime system puts the current kernel thread to sleep
using the system-dependent routine block, making the current physical processor available
for other system users. The blocked kernel thread is placed in a pool for subsequent reuse.
If the pool is non-empty when acquire_proc is called, the runtime system will remove a
sleeping thread from the pool and wake it, using the system-dependent routine unblock,
instead of asking the operating system for a new kernel thread. Under some operating
systems, if the runtime system acquired and released kernel threads whenever acquire_proc
and release_proc were called, it would rapidly run out of available thread (process) ids.

5.3 Per-Proc Data Implementation

Since it is very important to access the proc_datum as efficiently as possible, the SML/NJ
generic machine model was modified to include a dedicated virtual register to hold the
proc_datum. Two primops corresponding to get_datum and set_datum were added to read
and write the register. On RISC machines that have 32 or more registers, like the MIPS-
based SGI, dedicating a register for per-proc data does not affect performance [7, page 189,
so the virtual register is implemented by an actual register. On architectures with fewer
registers (e.g., VAX), the datum is stored on the stack and accessed indirectly through the
stack pointer.

3The idea of passing tke state pointer around in the runtime system is due to Andrew Appel. An
0S-dependent solution to this problem was used in the SML/Mach runtime system [14].

14

5.4 Spin Lock Implementation

Each spin lock is represented by one or more memory locations. On some machines, any
location can be used; exclusive access is guaranteed by using specially interlocked exchange
or test-and-set instructions. In this case, spin locks can be allocated in the heap, and
garbage collected in the usual way. Other machines provide a special bank of memory for
the locks, and only a fixed maximum number of locks are available. In this case, we do not
bother garbage collecting the lock memory, since the MP client must already cope with
the possibility of a restricted number of locks; if maximizing the number of available locks
proves desirable, modifying the collector to reclaim unreachable locks should not be too
difficult.

The spin lock operations try_lock and unlock should be as fast as possible. This suggests
adding new primops to the compiler. However, while primop implementation may depend
on the target architecture, SML/NJ currently has no provision for generating code based
on the target operating system. Therefore, we implement these operations using assembly
language routines.

5.5 Storage Management

SML/NJ performs heap allocation very frequently (approximately one word per every 3-7
instructions [7, page 196]). Allocation is in-lined by the compiler, making it quite fast. An
allocation consists of incrementing a top-of-heap pointer and writing the values. A check
for heap overflow is made at the entrance of each code tree;? if there is insufficient free space
to contain the maximum allocation that the code tree might perform, a trap instruction
is used to enter the C runtime system and initiate garbage collection. SML/NJ uses a
two-generation, copying garbage collector [5).

In adapting this system to a multiprocessor, it is important to avoid proc synchronization
during allocation; this requirement precludes allocating into a global heap. Instead, the
entire allocation region is divided into per-proc regions at startup; each proc allocates into
ite own region. All regions can be read or updated by the other procs, however. When
the allocation region is filled and a garbage collection (GC) is required, the procs are
synchronized, the collection is performed, and the allocation region is redivided. Procs in
the blocked pool are given a small, fixed-size region. The rest of the allocation area is
divided evenly among the active procs.

In practice, procs, and hence processors, tend to allocate at different rates. When redividing
the allocation region after a GC, we could try to give each proc a region roughly proportional
to its allocation rate. However, the previous allocation rate of a proc can be a poor predictor
of the future allocation rate, especially if procs frequently switch context. Since garbage
collections could be a serious performance bottleneck, we want to make sure that all of the
available space in the allocation area is used before initiating a GC.

To address this problem, we further divide each proc’s region into chunks. Initially each
proc is given the first chunk in its region as its allocation area. When a proc’s current chunk
does not have enough space left, the proc attempts to extend its current chunk by acquiring
the next contiguous chunk in its region. This prevents the proc from wasting space that is
left in the current chunk. If, however, there are no more chunks in the proc’s region, the

*A code tree is an acyclic set of blocks with one entry point and one or more exits.

15

proc attempts to find and “steal” some free chunks at the end of another proc’s region. If
no more chunks are available, then the proc initiates a garbage collection.

Setting the chunk size appropriately involves some tradeoffs. Setting it too large could
keep a fast allocator from finding available chunks to steal, causing garbage collection to
be initiated more frequently. Setting the chunk size too small forces the procs to trap and
look for chunks more often.

Our current implementation does sequential garbage collection. When one proc finds that
no more chunks are available, it sends a signal (SIGUSR1) to the other procs, using the
system-dependent routine signal proc. These procs note the signal, set their heap-limit
pointer to a special value, and continue what they were doing. When they enter the next
code tree, and are thus in a clean state, the special value in their heap-limit pointer will
cause them to fault and enter the GC routine. When all the procs have checked in, one of
them collects all of the roots and does the actual garbage collection while the others block
(using the block routine). When the collection is done, the new allocation area is divided
among the procs and the blocked procs are resumed (using the unblock routine).

The synchronization code for garbage collection is by far the most complex change we made
to the SML/NJ system. Fortunately, the bulk of this code is implemented at the generic
layer.

6 The SGI System-Dependent Layer

This section describes the machine dependent layer of the MP implementation for the Sili-
con Graphics 4D/380S multiprocessor running version 3.3 of the IRIX System V operating
system. This machine uses one to eight 40MHz MIPS R3000 processors, and supports up to
256 MB of main memory. Each processor has a 64KB direct-mapped primary instruction
cache, a 64KB direct-mapped write-through primary data cache, and a 1MB secondary
snoopy data cache. Test-and-set locks are provided through special hardware, described in
more detail below.

6.1 Procs and Processes

IRIX does not provide kernel threads per se, but does provide the ability for processes
(single-threaded tasks) to share the same address space. Processes that share an address
space form a process group. We map each MP proc to a distinct IRIX process. The sproc(2)
system call is used to implement new_proc. The blockproc(2) and unblockproc(2) system
calls are used to implement block and unblock, respectively.

One advantage of using processes (as opposed to kernel threads) as procs is that the interface
to IRIX signals is uniform; thus, no SML/NJ runtime changes were needed to support MP
signals at the system-dependent layer for the SGI.

8.2 Spin Locks
The MIPS R3000 does not have a test-and-set instruction. However, the SGI provides a

limited number of hardware locks, which are implemented by a separate lock memory and
bus, which is mapped to a special page of memory called a synchronization arena. Reading

16

from a location in the arena performs a test-and-set operation and returns the result of the
test. Writing an arbitrary value to the location clears the lock. A system call (usinit(3)) is
needed to place the page in the process group’s address space.

At most 4096 locks may be allocated from a synchronization arena. The runtime system
reserves a small number of locks for its own use and exports the rest to MP. The runtime
system keeps an array of pointers to the exportable locks. When a spin_lock call is made,
the runtime system returns one such pointer as the result of the operation. This extra
indirection is needed to support stand-alone or exported images of programs, since the
operating system does not gurantee to place the synchronization arena in the same virtual
address range for each invocation of a program.

It is possible to “trick” the SML/NJ compiler to generate the proper sequence of instructions
for the try_lock and unlock operations, since they are just reads and writes:

fun try_lock (x : spin_lock) =
System.Unsafe.boxed(!(!(System.Unsafe.cast x)))

fun unlock (x : spin_lock) = (!(System.Unsafe.cast x)) := 0

The boxed predicate returns true if its argument is 0 (considered as a machine word). This
approach allows us to gain the benefits of inlining without having to add a new primop, at
the expense of introducing machine dependencies at the ML level.

6.3 Performance

In this section, we present preliminary measurements for the SGI implementation of MP
and a simple thread package built on top of it. A proper performance analysis of MP
should compare it with other, perhaps less portable, mechanisms for implementing threads
on multiprocessors.

Figure 9 gives times (in psec) for selected MP and thread primitive operations. Thread tests
used an ML Threads package implemented on top of MP. The package’s implementation is
similar to the one described in Figures 7 and 12; mutex locks are enhanced to record the id
of the owning thread and check that the unlock is performed by the owner, but association
of mutexes to references remains informal. Spin locks are implemented using the in-line
ML code shown in Section 6.2. Thread package code and the ML portion of MP code are
placed in the same compilation unit as the test code to encourage in-lining. Tests used
100 MB of main memory; all times include garbage collection. Figures presented are the
averages over thousands of trials; loops were unrolled to minimize overhead.

Figure 10 gives running times (in seconds) for five applications running on an 8 processor
SGI using 100 Mbytes of main memory. The same thread package was used as in Figure 9.
Each reported figure is the average of at least three trials.

The benchmarks were:

¢ allpairs: Floyd’s algorithm for computing all shortest paths between two nodes of
a 100 node graph (34].

¢ mst: Computes the minimum spanning tree on 500 randomly distributed points using
Prim’s algorithm [34].

17

Primitive operation Time (pusec)
Get and set proc_datum. 0.07
Lock and unlock spin lock. 5.7
Unsuccessfully try to lock spin lock. 1.12
Lock and unlock mutex. 40.7
Unsuccessfully try to lock mutex. 10.6
Fork null thread and wait for it to terminate. 287
Synchronize with another thread (“pingpong”). 232
Voluntarily yield control to another thread. 32.5
Acquire and release proc (using 8 processors). 80.2
Figure 9: Primitive Timings
Processors Used
Prog 1] 2] 3] 4] 5] 6] 7] 8
allpairs 953 951 9.57] 9.69] 9.71
mst 22.79 1 22.12 | 21.18 | 21.39 | 22.80
abisort 844 | 839/ 8.17| 8.35| 8.69
simple 32.17 | 32.91 | 33.40 | 33.65 | 34.24
matrix 6.76 | 5.40) 450| 3.89| 3.40

Figure 10: Thread Benchmarks

18

e abisort: An adaptive bitonic sorting algorithm [12] of 2!2 integers [34].

e simple: The Simple hydrodynamics benchmark [15], which solves a set of differential
equations across a grid of size 100 x 100, run for one time step.

e matrix: Matrix multiply of two 250 x 250 integer matrices.

Except for matrix, these applications show very poor relative speedup, being unable to
make productive use of more than 3 processors. We conjecture that this poor result is
due almost entirely to main-memory bus contention. Independent measurements indicate
that the bus has a maximum achievable bandwidth of about 30 MB/sec; most of these
benchmarks (with the notable exception of matrix) generate 15-20 MB/sec of bus traffic
in allocation alone! We suspect that a large performance improvement can be made only
by moving to a different memory allocation strategy (see Section 8).

7 Related Work

There has been a lot of interest in adding threads to ML, but we are only aware of two
projects that have addressed running the threads in parallel on multiprocessors. Cooper and
Morrisett [14] describe a Mach-based multiprocessor thread implementation for SML/NJ,
which was the basis for our MP work. The SML/Mach interface provides fork, mutex
locks, condition variables, and per-thread ref cells (vars). At the time SML/Mach was
developed, the VAX-6300 was the only multiprocessor running Mach for which an SML/NJ
code generator existed. To increase the availability of the ML Threads package, we decided
to rethink the interface to acheive portability across operating systems and machines. Arn-
other shortcoming of the SML/Mach interface is that it does not provide a mechanism for
preemptively scheduling user-level continuation threads. Also, the interface is designed to
support only one thread package (ML Threads) directly and we wanted to support other
thread packages, notably CML.

Matthews [31] describes several implementations of a concurrent extension of Poly /ML us-
ing CSP-style communication operators [11]. The concurrency primitives are implemented
as hardwired extensions to the Poly/ML runtime system. Matthews describes a unipro-
cessor implementation using timer preemption, an implementation for the DEC Firefly
multiprocessor, and the outline for a distributed workstation implementation. The Fire-
fly implementation is comparable to our MP approach; in particular, garbage collection
is arranged in very similar fashion. However, support for multiple threads and for com-
munication between them is buried deeper in the runtime system and is not designed for
portability among different thread models or hardware platforms.

The Lisp community has a great deal of experience with multiprocessor symbolic computing.
Multilisp [21) and Qlisp [18] are two languages that provide concurrency extensions to Lisp
and have been implemented for various multiprocessors {20, 28, 32, 43]). Multilisp provides
Jutures as its primary concurrency mecizanism. Evaluation of the expression (future X)
forks a thread to evaluate X. A capability for X’s value is immediately returned to the caller.
When the value of X is needed, the capability can be touched, at which point the caller
is delayed until the evaluation of X is complete. Qlisp also provides futures along with a
variety of mechanisms including Qlet and mutex locks. Qlet evaluates the right-hand sides
of its bindings in parallel.

19

These versions of Lisp only support one thread model (e.g., futures) and are not extensible.
A great deal of work has gone into determining how to schedule the threads and how to
bound the number of threads in the system. For instance, some implementations allow the
user to select from a fixed set of scheduling policies (FIFO or LIFO). Other implementations
turn parallel code into sequential code when the compiler can determine that doing so will
improve performance. Qur approach provides more flexibility; MP clients can tailor a
thread package’s scheduling policy and mechanisms and its synchronization constructs to
meet the needs of particular applications.

Some existing concurrent systems do stress flexibility and portability at the runtime-system
level. The primary goals of the Portable Common Runtime system (PCR) are to provide
portability and language inter-operability [47]. PCR offers storage management, symbol
binding (i.e., dynamic loading), threads, and low-level I/O to a language implementor. The
implementation of threads under PCR is similar to ours—user-threads are multiplexed on
top of kernel threads. However, PCR does not allow the thread package or its scheduling
policy to be customized. Since PCR must work with a variety of languages, it uses a
conservative, non-copying garbage collector.

The goals of Jagannathan and Philbin’s STING system [26, 27] closely resemble ours.
STING is a dialect of Scheme enhanced with primitive concurrency operators to form a
substrate for custom design of concurrent symbolic computing environments. The basic
data types are threads and virtual processors; the system provides flexibility in scheduling,
storage allocation and thread migration policies without compromising efficiency. A major
difference from our work is that we rely on SML/NJ’s first-class continuations to represent
threads; STING’s thread data type is less elegant but more carefully crafted for perfor-
mance. Also, STING’s design does not emphasize portability among different hardware
and operating system platforms.

8 Discussion and Future Work

There is much work to be done regarding the MP interface. Most importantly, to determine
the adequacy of the interface, we need to build additional complete thread packages, such
as CML, on top of it. In the following paragraphs, we briefly discuss other issues and open
problems.

Smarter memory management: Bus contention resulting from poor locality of ref-
erence is a major problem with the current implementations. We suspect that the major
cause of this problem is SML/NJ’s allocation strategy. Recall that in SML/NJ all procedure-
frames are allocated on the heap. This has the advantage that callcc and throw become
relatively cheap. However, it has the disadvantage that space is not re-used for allocation
until a garbage collection occurs. If the size of the from and to spaces of the copying col-
lector exceed the size of a processor’s cache, this strategy insures a cache-miss on almost
every allocation.

There are two basic approaches to alleviating this problem. One approach is to try to size
the from and to spaces (or, more generally, the allocation space and youngest generation
of a multi-generation collector) for each processor so that they fit within the processor’s
cache. This approach has the advantage of leaving the fundamental SML/NJ heap allocation

20

strategy unchanged. However, it is unattractive on machines with small caches, such as the
Omron, which has a 16KB cache. The other approach is to use a stack to allocate procedure
frames that do not “escape.” Stack allocation of frames would allow memory to be re-used,
thus improving locality. To keep the cost of callcc and throw relatively cheap, we could
use techniques described by Hieb, et al. [24].

Concurrent GC: s mentioned in Section 5.5, concurrent garbage collection is an im-
portant goal. There have been many proposals for concurrent and/or parallel garbage
collection (8, 10, 23, 29, 36]. Parallel GC on a shared-bus machine might be unattractive
since GC is a memory intensive operation. We expect that a bus would rapidly become
saturated as more processors “helped” with the collection. Collecting garbage while the
computation proceeds seems more appealing, but most of the algorithms proposed have
drawbacks. Some require non-standard hardware support [23], while others require more
efficient traps and more flexible virtual memory management than today’s operating sys-
tems provide [8]. As well, most of the algorithms (with the notable exception of the one
described by Herlihy and Moss [23]) rely on some global synchronization of the processes.
If, as in the SML/NJ system, processes cannot be stopped at arbitrary points to initiate a
GC, the cost of the synchronization could overwhelm the benefits of a concurrent GC.

Smarter memory model: At present, the SML/NJ compiler takes a very conservative
approach to optimizing accesses to references and arrays. It performs all operations specified
in the source code even when simple dataflow analysis would show some of them to be
superfluous. This conservatism has been helpful in developing a multiprocessor interface,
since the compiler makes no assumptions that might be violated in a concurrent setting.
It might be worthwhile, however, to make the compiler smarter about performing such
optimizations, which could be particularly valuable for decreasing the cost of runtime safety
checks on shared accesses.

Such optimizations require making a more explicit connection between shared memory
locations and the mutual exclusion locks that govern them, and exposing that connection
to the compiler. As more complex cache coherence protocols come into common use, the
compiler will be required to take on this knowledge in any case, in order to produce correct
code even in a conservative fashion.

Smarter I/O: Our current I/O implementation is portable, but not wholly satisfactory.
When an MP client thread blocks, we would ideally like the current proc (and physical
processor) to be made available to run other threads; under most operating systems, how-
ever, MP loses control of the processor until the I/O completes or is aborted by a timer
signal.

One option would be to use extra kernel threads to do the blocking I/O operations. Un-
fortunately, “handing off” the I/O operation is problematic. The extra kernel threads can
either busy-wait for an I/O operation or block. If they busy-wait, they waste cycles when
I/0 operations are infrequent. If they block, then an extra kernel call is required to wake
them.

Scheduler activations [2] are an elegant solution to this problem. In the scheduler activation
model, each task is given a virtual multiprocessor. However, the number of processors

21

assigned to a task at any point in time is controlled by the kernel. There is a one-to-one
mapping of a task’s non-blocked kernel threads (scheduler activations) to its processors.
When a scheduler activation blocks for I/0O, the kernel constructs a new activation to run
on the processor. The new activation makes an upcall to the application informing it that
the original activation blocked. The new activation is free to continue executing other user-
level threads. When the I/O completes, the kernel makes another upcall to inform the
application.

We are currently investigating different approaches to integrating user-level threads and I/O
under the Mach 3.0 operating system. We are also investigating a scheduler activation-based
multiprocessor interface for SML [35].

Semantics: A formal specification of thc SML/MP system would be valuable. Without a
specification, one of the most important advantages of using SML as a base language is lost.
Recently, some progress has been made in the exploration of a semantics for a multiprocess
SML [11, 40]. We hope to be able to use these results to give a somewhat more formal
semantics for the MP interface.

9 Acknowledgments

Most of the MP interface was developed while the authors were visiting or consulting
for AT&T. We would like to thank Suresh Jagannathan and Jim Philbin of the NEC Re-
search Institute, Princeton, NJ, for graciously providing access to their SGI machine for
benchmarking and profiling. We would also like to thank David MacQueen, Eric Grosse,
and Tom Szymanski for their help and support with the SGI at AT&T. Andrew Appel,
David MacQueen, and David Tarditi all helped with their knowledge of SML and the New
Jersey system. Andrew Appel also helped with many low-level implementation details.
Jeannette Wing, Andrzej Filinski, Scott Nettles and John Reppy offered many insightful
comments on earlier versions of this report. Several of our benchmarks were ported from
Scheme programs written by Eric Mohr. Lal George translated Simple from Id into ML and
later parallelized it. Finally, a special thanks to Lorenz Huelsbergen for doing the Sequent
port.

A Implementing Mutex Locks in SML

In the ML Threads paradigm [14], a mutex lock is informally associated with each piece
of shared, mutable data (e.g., a ref cell.) When a thread wants to perform an operation
on some set of data, it should first acquire the associated mutex locks. After it is through
with the operation, it releases the mutexes. We say that a thread “holds” a mutex if it has
acquired but not released the mutex. Only one thread is allowed to hold a given mutex at
any point in time.

Mutex locks are typically implemented by blocking a thread that attempts to acquire a
mutex that is already held. On a uniprocessor, this approach is essential since some other
thread must run in order for the mutex to become available. On a multiprocessor, it makes
better use of processor resources than busy-waiting.

22

signature MUTEX =
sig
type mutex
val mutex : unit -> mutex
val acquire : mutex -> unit
val release : mutex -> unit
end

signature PIPE =
sig
type ’1a pipe
val pipe : unit -> ’'la pipe
val put : ’la pipe -> ’'la -> unit
val get : ’la pipe -> ’1la
end

signature THREAD_INTERNALS =
sig
structure SafeQ : QUEUE
val ready : (unit cont) SafeQ.queue
val enter_atomic : unit -> unit
val leave_atomic : unit -> unit
end

Figure 11: Signatures for Mutex Locks and Pipes

A signature for Muatex locks is shown in Figure 11. Mutex locks can be added to the
MP thread package of Section 4.6 by using the functor Par Mutex shown in Figure 12.
The functor has access to “internal” components of the MP_Thread functor of Figure 7 via
parameter T; the THREAD_INTERNALS signature is shown in Figure 11. Each mutex consists
of a flag (held) that indicates whether the mutex is owned by some thread, and a queue
(waiters) of waiting threads. The acquire operation examines the held flag. If the mutex
is not held, then the flag is simply set to true. If the mutex is held, the current thread’s
continuation is enqueued on waiters and a new continuation is dequeued from ready and
invoked. If ready is empty, exception Deadlock is raised with the system in a dirty state.
The release operation attempts to hand off ownership of the mutex to some other thread.
It does so by dequeuing a waiting thread and rescheduling it. If no threads are waiting for
the mutex, the held flag is cleared.

To prevent a mutex data structure from entering an inconsistent state, preemption is pre-
vented during acquire and release operations by wrapping them with enter_atomic and
leave_atomic calls (see Figure 3). To make mutex locks work in a multiprocessor environ-
ment, the mutex data structure must also be protected against simultaneous update by two
different processors, using an MP spin_lock (see Section 4.6). A single global spin_lock
could be used to protect all mutexes, but it is more efficient to introduce per-mutex locks, as
shown in Figure 12. We simply add a call to lock the spin_lock before doing an operation
and a call to unlock it after the operation is complete.

23

functor Par_MNutex (structure MP : MNP
structure UnsafeQ : QUEUE
structure T : THREAD_INTERNALS) : MUTEX =
struct
exception Deadlock
datatype mutex = MUTEX of {lock : MP.spin_lock,
held : bool ref,
vaiters : unit cont UnsafeQ.queue}

fup mutex () = MUTEX {lock = MP.spin_lock (),
held = ref false,
waiters = UnsafeQ.create ()}

fun acquire (MUTEX{lock,held,vaiters}) =
(T.enter_atomic (j;
MP.lock lock;
if (theld) then
callcc (fn X => (UnsafeQ.enq waiters k;
let val k’ = T.SafeQ.deq T.ready
handle T.SafeQ.Deq => raise Deadlock

in
MP.unlock lock;
T.leave_atomic ();
throw k’ ()

end))

else
(held := true;
MP.unlock lock;
T.leave_atomic ()))

fun release (MUTEX{lock,held,waiters}) =
(T.enter_atomic ();
MP.lock lock;
(T.Safe(.enq T.ready (UnsafeQ.deq waiters))
handle UnsafeQ.Deq => (held := false);
MP.unlock lock;
T.leave_atomic ())
end

Figure 12: MP Mutex Locks

24

Figure 14 shows how the system can be linked to provide a Mutex structure.

B Implementing Pipes in SML

An alternative to the shared memory paradigm for communication and synchronization is
message passing. In this paradigm, threads are allowed to share only non-mutable data
and abstract communication channels. The operations provided for channels and their
synchronization semantics can vary a great deal [3]; at a minimum, operations for sending
values to channels and receiving values from channels are needed. The CML language [39)
extends SML by providing threads, channels, and powerful communication operations on
channels.

Pipes are a special case of channels characterized by their asymmetric synchronization. A
pipe can be thought of (and is usually implemented) as a queue. Senders put values into

the pipe and never block. Receivers get values from the pipe, blocking if necessary until a
value is available.

A signature for pipes is shown in Figure 11. Pipes can be added to the MP thread package
described in Section 4.6 using the functor Par_Pipe shown in Figure 13. A ’1a pipe value
consists of a queue of ’1a values (values) and a queue of ’1la-accepting continuations
(waiters). The get operation attempts to dequeue a value and return it. If no value is
available, the thread is blocked on the waiters queue as an ’1a-accepting continuation. The
put operation attempts to “hand” the given value to a waiting thread and reschedule the
thread. The “handing” of the value is accomplished by the make_unit function. make_unit
takes a ’1la-accepting continuation, k, and a ’1a value, x, and returns a unit-accepting
continuation which, when invoked, throws x to k. If put discovers that there are no waiters,
it enqueues the given value onto the values queue.

The pipe’s data structures are protected by wrapping pipe operations with enter._atomic
and leave_atomic, and adding a spin_lock to the pipe datatype with appropriate calls to
lock and unlock it.

Figure 14 shows how the system can be linked to provide a Pipe structure.

25

functor Par_Pipe (structure MP : MP
structure UnsafeQ : QUEUE
structure T : THREAD_INTERNALS) : PIPE =
struct
exception Deadlock
datatype ’1a pipe = PIPE of {values : ’1a Unsafe(.queus,
waiters: (’1a cont) UnsafeQ.queue,
lock : MP.spin_lock}

UnsafeQ.create (),
UnsafeQ.create (),
MP.spin_lock ()}

fun pipe () = PIPE {values
waiters
lock

fun make_unit (X : ’a cont) (x : ’a) : unit cont =
callec (fn c1 => (callcc (fn c¢2 => (throw cl c2));
throw k x))

fun put (PIPE{values,waiters,lock}) x =
(T.enter_atomic ();
MP.lock lock;
(T.SateQ.enq T.ready (make_unit (UnsafeQ.deq waiters) x))
handle Unsafe(.Deq => (UnsafeQ.enq values x);
MP.unlock lock;
T.leave_atomic ())

fun get (PIPE{values,waiters,lock}) =
(T.enter_atomic ();
MP.lock lock;
(let val x = UnsafeQ.deq values
in
MP.unlock lock;
T.leave_atomic ();
x
end) handle UnsafeQ.Deq =>
(callcc (fn k => (UnsafeQ.enq waiters k;
let val ¢ = T.Safe(.deq T.ready
handle T.SafeQ.Deq => raise Deadlock
in
MP.unlock lock;
T.leave_atomic ();
throw ¢ ()
end))))

end

Figure 13: MP Pipes

26

structure Thread0 = MP_Thread (structure MP = MP
structure SafeQ = SafeQ)

structure Thread : THREAD = Thread0

structure ThreadInternals : THREAD_INTERNALS = Thread0

structure Mutex = Par_Mutex(structure MP = MP
structure UnsafeQ = Queue
structure T = ThreadInternals)
structure Pipe = Par_Pipe(structure MP = NP

structure UnsafeQ = Queue
structure T = ThreadInternals)

Figure 14: Linking Mutexes and Pipes

27

References

{1] T. Anderson. The performance of spin lock alternatives for shared memory multi-
processors. IEEE Transactions on Parallel and Distributed Systems, 1(1):6-16, Jan.
1990.

[2] T. E. Anderson, B. N. Bershad, E. D. Lazowska, and H. M. Levy. Scheduler activations:
Effective kernel support for the user-level management of parallelism. In Proc. 13th
ACM Symposium on Operating Systems Principles, pages 95-109, Oct. 1991.

[3] G. R. Andrews and F. B. Schneider. Concepts and notations for concurrent program-
ming. ACM Computing Surveys, 15(1):3-43, Mar. 1983.

(4] A. W. Appel. Garbage collection can be faster than stack allocation. Information
Processing Letters, 25(4):275-279, June 1987.

(5] A. W. Appel. Simple generational garbage collection and fast allocation. Software—
Practice & Ezperience, 19(2):171-183, Feb. 1989.

(6] A. W. Appel. A runtime system. Journal of Lisp and Symbolic Computation, 3(4):343-
380, Nov. 1990.

[7) A. W. Appel. Compiling with Continuations. Cambridge University Press, 1992.

(8] A. W. Appel, J. R. Ellis, and K. Li. Real-time concurrent collection on stock multi-
processors. In Proceedings of the SIGPLAN ’88 Conference on Programming Language
Design and Implementation, pages 11-20, June 1988. Published as SIGPLAN Notices,
23(7), July 1988.

[9] A. W. Appel and D. B. MacQueen. Standard ML of New Jersey. In M. Wirsing, editor,
Third Int’l Symp. on Prog. Lang. Implementation and Logic Programming, pages 1-13,
New York, Aug. 1991. Springer-Verlag.

(10] H. G. Baker. List processing in real time on a serial computer. Communications of the
ACM, 21(4):280-294, Apr. 1978.

(11] D. Berry, R. Milner, and D. Turner. A semantics for ML concurrency primitives. In
Proceedings of ine Nineteenth ACM Symposium on Principles of Programming Lan-
guages, pages 119-129, Jan. 1992.

(12] G. Bilardi and A. Nicolau. Adaptive bitonic sorting: An optimal parallel algorithm for
shared-memory machines. STAM Journal of Computing, 18(2):216-228, Apr. 1989.

[13] E. Cooper, R. Harper, and P. Lee. The Fox project: Advanced development of systems
software. Technical Report CMU-CS-91-178, School of Computer Science, Carnegie
Mellon University, Aug. 1991.

[14] E. C. Cooper and J. G. Morrisett. Adding threads to Standard ML. Technical Report
CMU-CS-90-186, School of Computer Science, Carnegie Mellon University, Dec. 1990.

[15] W. P. Crowley, C. P. Hendrickson, and T. E. Rudy. The SIMPLE code. Technical
Report UCID 17715, Lawrence Livermore Laboratory, Livermore, CA, Feb. 1978.

28

L

[16) T. W. Doeppner Jr. Threads: A system for the support of concurrent programming.
Technical Report CS-87-11, Department of Computer Science, Brown University, June
1987.

(17) B. F. Duba, R. W. Harper, and D. B. MacQueen. Typing first-class continuations
in ML. In Conference Record of the 18th Annual ACM Symposium on Principles of
Programming Languages, pages 163~173, Jan. 1991.

(18] R. Gabriel and J. McCarthy. Qlisp. In J. Kowalik, editor, Parallel Computation
and Computers for Artificial Intelligence, pages 63-89. Kluwer Academic Publishers,
Boston, 1988.

[19] A. Giacalone, P. Mishra, and S. Prasad. Facile: A symmetric integration of con-
current and functional programming. International Journal of Parallel Programming,
18(2):121-160, Apr. 1989.

[20] R. Goldman and R. P. Gabriel. Preliminary results with the initial implementation of
Qlisp. In Proceedings of the 1988 ACM Conference on Lisp and Functional Program-
ming, pages 143-152, July 1988.

(21] R. H. Halstead, Jr. Multilisp: A language for concurrent symbolic computation. ACM
Trans. Prog. Lang. Syst., 7(4):501-538, Oct. 1985.

[22] R. H. Halstead, Jr. New ideas in parallel lisp: Language design, implementation, and
programming tools. In T. Ito and R. H. Halstead, Jr., editors, Parallel Lisp: Languages
and Systems: Proc. US/Japan Workshop on Parallel Lisp, June 1989, volume 441 of
Lecture Notes in Computer Science, pages 2-57. Springer, 1990.

(23] M. Herlihy and J. E. B. Moss. Lock-free garbage collection for multiprocessors. IEEE
Transactions on Parallel and Distributed Systems, 3(3):304-311, May 1992.

[24] R. Hieb, R. K. Dybvig, and C. Bruggeman. Representing control in the presence of
first-class continuations. In Proceedings of the ACM SIGPLAN ’90 Conference on
Programming Language Design and Implementation, pages 66-77, July 1990.

(25] L. Huelsbergen and J. Larus. Dynamic program parallelization. In Proc. of the 1992
ACM Conference on Lisp and Functional Programming, pages 311-323, June 1992.

[26] S. Jagannathan and J. Philbin. A customizable substrate for concurrent languages.
In Proc. ACM SIGPLAN ’92 Conference on Programming Language Design and Im-
plementation, pages 55-67, June 1992. Published as SIGPLAN Notices, 27(7), July
1992.

[27] S. Jagannathan and J. Philbin. A foundation for an efficient multi-threaded scheme
system. In Proc. 1992 ACM Conference on Lisp and Functional Programming, pages
345-357, June 1992.

(28] D. A. Kranz, J. Robert H. Halstead, and E. Mohr. Mul-T: A high-performance par-
allel Lisp. In ACM SIGPLAN ’89 Conference on Programming Language Design and
Implementation, pages 81-90, June 1989. Published as SIGPLAN Notices, 24(7), July
1989.

29

(29] H. Kung and S. Song. An efficient parallel garbage collection system and its correctness
proof. In 18th Symposium on Foundations of Computer Science, pages 120-131, Oct.
1977.

(30] B. D. Marsh, M. L. Scott, T. J. LeBlanc, and E. P. Markatos. First-class user-level
threads. In Proc. 13th ACM Symposium on Operating Systems Principles, pages 110-
121, Oct. 1991. Published as Operating Systems Review, 25(5), Oct. 1991.

(31] D. C.J. Matthews. A distributed concurrent implementation of standard ML. Technical
Report ECS-LFCS-91-174, Laboratory for Foundations of Computer Science, Dept. of
Computer Science, University of Edinburgh, Aug. 1991.

[32) J. Miller. MultiScheme: A parallel processing system based on MIT Scheme. PhD
thesis, Massachusetts Institute of Technology, Aug. 1987.

[33] R. Milner, M. Tofte, and R. Harper. The Definition of Standard ML. MIT Press, 1990.

[34] E. Mohr. Dynamic Partitioning of Parallel Lisp Programs. PhD thesis, Yale University,
Aug. 1991.

[35] J. G. Morrisett. Running your continuation threads in parallel. In Proceedings of the
Third International Workshop on Standard ML, Pittsburgh, PA, Sept. 1991.

(36] C. Pixley. An incremental garbage collection algorithm for multi-mutator systems.
Distributed Computing, 3(1):41-49, Dec. 1988.

[37]) N. Ramsey. Concurrent programming in ML. Technical Report CS-TR-262-90, De-
partment of Computer Science, Princeton University, Apr. 1990.

(38] J. H. Reppy. Asynchronous signals in Standard ML. Technical Report TR 90-1144,
Department of Computer Science, Cornell University, Aug. 1990.

[39] J. H. Reppy. Concurrent programming with events. Department of Computer Science,
Cornell University, July 1991.

[40] J. H. Reppy. Higher-order Concurrency. PhD thesis, Computer Science Department,
Cornell University, Ithaca, NY, Jan. 1992. Also Cornell Univ. Computer Science Dept.
Tech. Report 9 785,

{41] J. H. Reppy and L R. Gansner. The eXene library manual. Cornell University, Dept.
of Computer Science, Ithaca, NY, 1990.

[42] J. Sansilo and M. Squillante. An RPC/LWP system for interconnecting heterogeneous
systems. In Proceedings of the USENIX Tech. Conf., Dallas, TX, Feb. 1988.

[43) M. R. Swanson, R. R. Kessler, and G. Lindstrom. An implementation of Portable
Standard Lisp on the BBN Butterfly. In Proceedings of the 1988 ACM Conference on
Lisp and Functional Programming, pages 132-141, July 1988.

[44] D. Tarditi, A. Acharya, and P. Lee, No assembly required: Compiling Standard ML to
C. Technical Report CMU-CS-90-187, School of Computer Science, Carnegie Mellon
University, Nov. 1990.

30

[45] A.P. Toimach and A. W. Appel. Debuggable concurrency extensions for Standard ML.
In Proc. ACM/ONR Workshop on Parallel and Distributed Debugging, pages 120-131,
May 1991. Published as SIGPLAN Notices 26(12), December 1991. Also Princeton
Univ. Dept. of Computer Science Tech. Rep. CS-TR-352-91.

[46] M. Wand. Continuation-based multiprocessing. In Proceedings of the 1980 LISP Con-
ference, pages 19-28, Aug. 1980.

(47] M. Weiser, A. Demers, and C. Hauser. The portable common runtime approach to
interoperability. In Proceedings of the 12th ACM Symposium on Operating Systems
Principles, pages 114-122, Dec. 1989.

(48] J. M. Wing. The Venari project: Goals and plans. Venari Note 1, School of Computer
Science, Carnegie Mellon University, 1990, internal note.

31

