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CHAPTER 1

INTRODUCTION

Interaction between a vibrating cylindrical shell and a surrounding fluid is of keen
interest to many acousticians working in structural acoustics. Much analysis has been done on
the scattering and radiation properties of such a system in the frequency domain. However,
these analyses rarely consider the shell - fluid interaction in the time domain. Hence, the main
objecive of this thesis is to examine energy radiated by a fluid loaded, point driven, finite
cylindrical shell in the time domain.

Due to the cost in both time and resources, relatively few measurements are available
for study in the time domain. Thus, transfer functions for the acoustic pressure and acoustic
velocity in the radial direction of the shell obtained via Nearfield Acoustical Holography were
provided for study by the Naval Research Laboratory of Washington, D. C. A Linear system
model and signal processing techniques were employed at Iowa State University to simulate
the acoustic pressure and normal acoustic velocity at the shell surface for numerous point
excitations. Then integration techniques were used to obtain the total energy radiated by the
shell for a given excitation. This quantity was then normalized by the amount of energy input
by the forcing function to yield the fraction of input energy radiated to the farfield. Along the
way, active acoustic intensity and impulsive power of the shell were examined as a means to
gain physical insight to variations in the percent of input energy radiated by the shell. The
work on this thesis began with the problem of unplementing the linear svstem model on a new
computer system at [owa State University.

Though acoustic pressure and velocity were recreated by using a linear system model
for the interaction between the shell and the fluid, the calculation of normalized energy
radiated to the farfield by the forcing function producing this pressure and velncity 1s not

linear. The idea that this quantity could be influenced in a wway that i5 not linear by varying the
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time duration of single excitation forces, as well as the time spacing between multiple shell
excitations, served as inspiration for the work performed in this thesis.

It is worth noting that performing the research via computer simulation and linear
system model techniques instead of actually performing all of the measurements on a fluid
loaded sheli saved a great deal of time. Performing a measurement in a fluid loaded
environment and calculating all of the desired quantities for the entire shell can take up to
three or four days. A simulation, however, only requires about two hours of computer time.
Thus, obtaining the results in this thesis would have taken about five years longer if all of the
measurements were done in real life instead of by computer simulation. What’s more,
facilities and equipment for performing the actual measurements is costly and only exists at a
few research facilities. Simulating the shell response requires only computer equipment that is
readily available at almost any facility.

One major goal of this thesis was to explain the relationship between the pulse time
duration of the forcing function and the normalized energy radicted by the shell. The second
major goal was to create a mode! for the behavior of the normalized energy radiated by the
shell when the spacing between multiple pulse forcing functions was varied. Overall, it was
desired to be able to design forcing functions to fit specific normalized energy prameters,
particularly, minimizing the normalized energy radiated by the shell.

Achieving these goals will aid in understanding actual physical phenomena which
occur inside cylindrical shells. Events that could be modeled by this analysis include
operation of a 1. ;tor, opening and closing of valves, and rotation of a propulsion device.

Also, this analyis can be extrapolated to other physical systems which do not consist
of cyvlindrical shells. Almost any system with a periodic or repetitive excitation, such as
engine valves opening, can be thought of in terms of the analvsis done in this thesis. Other
systemn that could be modeled include ventiation or air-conditiening ducts with fans, air

compressor valves, and even assembiy line machines.
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Chapter 2 develops the linear system model technique for the specific shell geometry
studied in this research. Assumptions used in employing a linear system model, as well as its
advantages and disadvantages are discussed.

Chapter 3 briefly describes the role of Nearlield Acoustical Holography and the
specific parameters for its use in this research.

Chapter 4 details the aspects of implementing fast Fourier transforms on the data
provided for this research. Specific concerns include proper reconstruction of the traisfer
function spectra provided for the work, filtering, and zeropadding.

Chapter 5 introduces the Gaussian time window force. Parameters and equations are
explained and developed for single and multiple pulse forces in both the time and frequency
domains. Proper force spectra for use in FFT algorithms and examples of the force in the time
domain are shown.

Chapter 6 explains how various quantities are calculated from the computer simulated
acoustic pressure and normal velocity. Quantities studied include normalized energy as a
function of single pulse time spacing and multiple pulse time spacing, acoustic intensity as a
function of frequency, and the impulsive sound power radiated by the shell as a funciton of
frequency.

Chapter 7 includes the results from two studies that were done. Normalized energy vs.
single pulse force time duration for four shell areas is explored first. Then the results from
varying multiple pulse time spacing for the same four areas are discussed. Physical insight to
the fluid - shell interaction is gained by studying the active intensity. Finally, models to
explain both sets of results are developed using the impulsive power spectrum.

Chapter 8 surnmanzes results, explains the conclusions, and makes recommendations
for further work. Some criteria for develping forcing functions that produce specific
normalized energy results are discussed, and recomumendations on how to develop better

tmpulsive power spectrum models are made.




CHAPTER 2
LINEAR SYSTEM MODEL

Perhaps the most fundamental concept employed in this research is the use of a single
input - single output linear systemn model. The acoustic feld around a fluid loaded, point
driven, finite cylindrical shell with spherical end caps is described via such a model. In a
linear systemn, a single input f(t) is operat:d upon by a transfer function h(t) in order to
produce an output field quantity y(t). All three quantities may be thought of as either functions
of time or functions of frequency. In this research, a point driving force is operated on by the
fluid ioaded cylindrical shell which produces, in turn, the field quantities of acoustic pressure

and velocity. A symbolic diagram of the linear system is shown in Figure 2.1.

(1) e ( h(t) ) —_— ()

Figure 2.1: A single input - single output linear system model

One important characteristic of such a system is that it adheres to the principle of
superposition. For example, presume a quantity y(t) is produced by the simultareous
operation on two excitations, f;(t) and f5(t), by h(t). Assume further that if f{(t) and f(t) vere
operated on by the transfer function separately. the field quantities produced would be y(t)
and y»(t), respectively. In a linear system, y(t) would be equal to the algebraic sum of v (1) and
va(b).

A second important property of linear systems is time shift invariance. This means that




if, for a given excitation f(t), the result is y(t), the y(t) is independent of when f(t) was applied
to the system. That is, the resulting field quantity will be the same whether the excitation is
applied today, tomorrow, or next week, except the result will be time shifted.

And finally, a linear system model can be described mathematically by a convouution
integral. When the input excitation, f(t) is operated on by the transfer function of the system,

h(7), the response of the system, y(t) is calculated by

20

y(t) = j h(t)£(t - 7)dr, 2.1.1)

—co

the convolution integral in the time domain. According to the literature, the convolution
process can be carried out much more rapidly and efficiently as a simple multiplication if all
three system quantities are calculated as a function of frequency via the Fourier transform
integral. Equation (2.1.2),

HO = | h(t)e? " dr 2.1.2)

—0n

is the form of the Fourier integral used to calculate the transfer function as a function of
frequency. For the purpose of clarity, h(t) will be referred to as the impulse response function
of the linear system and H(f) will be referred to as the transfer function, or frequency response
function for the system, although the terms are sometimes used interchangeably in the
literature.

Once the linear system response and the input excitation as functions of frequency,
Y(x, and F(f), respectively, are obtained via use of Equation (2.1.2), the convolution integral

in the time domain becomes,
Y(f) = H(HF(D, (2.1.3)

an easy multiplication in the frequency domain. A desired field quantity can then be calculated

as a function of time via the inverse Fourier transform integral. In this research, the form




shown below,
) = [ Y(he M ar, (2.1.4)

was used for the inverse Fourier transform.

Describing the shell structure which these equations were performed on in this
research necessitates some slight modification of the linear system model notation. For
instance, excitation of the system may occur at almost any location on the shell. To allow for
this fact, all three system properties, whether written as functions of time or frequency, are
also written as functions of x,, the position on the shell where excitations are input. Further,
the operation of the impulse response on the input excitation, as well as the resulting acoustic
field quantity, are functions of where on the shell they are observed. The variable x is used to
denote this charactenstic. Thus F(f, x,), H(f, x,, x) and Y({, x,, x) represent the three system
components in the frequency domain and f(t, x, x), h(z, x,, x), and y(t, X, x) describe them in

the time domain. Figure 2.2 shows this idea in the time domain a little more clearly.

. y(t, Xo, X1)
y(t, X5, X0)
f(t, xo)
h(r, xoy X) Shell
\ chaker surface
forcing the
shell

Figure 2.2: Specific linear system model for the shell in this research




In actual practice, the driving force as a function of time is known, or can he measured
or calculated, as can field quantities such as acoustic pressure or velocity. Then, their
frequency domain counterparts are calculated by Fast Fourier Transform (FFT) - the discrete,
computerized algorithm for performing Equation (2.1.2). Finally, Equation (2.1.3) can be
manipulated to obtain the transfer function,

Y(£, x, x)

H({, X, X) = AF(f 5 ) . (2.1.5)
* %o

for the shell being studied. An inverse FFT - the discrete computerized method of performing
Equation (2.1.4) - can then be used to calculate the impulse response for the system,
h(r, x4, x), if desired.

For ideal accuracy and ease of calculation of the transfer function , the shell should be
driven by a unit impulse forcing function (Tse et al. 53). The Dirac delta function, which will
be denoted &(t, X,) for the described shell model, is such an impulse function (Bendat and
Piersol 15). According to the literature, the Dirac delta has a Fourier transform, denoted
&£, x,), which is equal to one for all frequencies from minus infinity to infinity. This allows

Equation (2.1.5) to reduce to
H(f, x,, x) = Y(f, x, x) (2.1.6)

for an excitation 6(t, x,,).

In reality, it is not possible to create a mechanical device which can produce a (t, x,)
input on the shell. Some other impulsive force f,(t, x,) is used to create a response y,(t, X, X)
for determination of the system transfer function using Equation (2.1.6). An excitation may be
considered sufficiently impulsive for use in Equation (2.1.6) if its toral time duration is much
less than the period of any natural resonance frequency of the shell. Because little is usually
known about such aspects of shells before the initial detenmination of H(f, x,,. x). Equation

(2.1.5) 1s typically used with the original measurement force, folt. x). ond the resulting




acoustic pressure or velocity, y,(t, X, X) inserted. Two frequency response functions, one for
acoustic velocity and one for acoustic pressure, were calculated via the linear system model
method for use in this research. In the remainder of this thesis, they are denoted as H,(f, x,, x)
and Hp(f, Xy X), respectively. Further, the notation used in this paragraph for the forcing
function (subscript 0) and its resulting response will be used only when referring to the
quantities used in the initial determination of the system transfer functions in the remainder of
this thesis.

By definition of a linear system and the calculations it facilitates, the acoustic pressure

or velocity for any synthetic force, Fgyp, is then computed by

Pyyn(t X X) = FFT7 [H (£ %o, X)F, o (f, 5], @2.1.7)
or
V oyt X X) = FFT [H, (6 %, x)F (£, %], (2.1.8)

where the subscript p denotes the pressure transfer function, the subscript v denotes the
vclocity transfer function, the subscript o denotes the point x where the force is applied, and
the subscript “syn” indicates that a quantity is simulated as a result of computer application of
a synthetic force. A primary advantage of the linear system model is that it allows acoustic
fields to be generated for numerous shell excitations while requiring only one initial
measurement to be performed on an actual fluid loaded, point driven shell. Due to the fact that
a computer simulation done by using Equations (2.1.7) and (2.1.8) is much faster than
performing a measurement, tremendous savings of tume and resources is another major
advantage of the model. Finally, this method is much more convenient because only a few
facilities capable of producing such acoustic measurements exist.

An important lumitation on the linear model does. however, exist. Because the

components of a given system used in Equation (2.1.5) exist only at a finite number of discrete




frequencies in an actual measurement, the division of the response by input force is done
frequency by frequency. Specifically, this means that only frequencies where F(f, x,) exists
can be calculated for a desired transfer function. At all other frequencies, the force has a value
near zero, which would result in very inaccurate results at these frequencies for
H(p or v)(f’ Xor X)-

More specific information on the role of acoustical holography and FFTs in

implementation of the linear system model will folow.
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CIIAPTER 3
ROLE OF NEARFIELD ACOUSTICAL HOLOGRAPHY (NAH)

Nearfield acoustical holography (NAH) is the method used to determine all unknown
desired quantities in the linear system model. Theory and implementation methods of NAH
are thoroughly discussed in the literature (Williams et al.), therefore only a brief overview of
how data was obtained for this research project will be given.

The NAH method requires simultaneous measurement of the driving force at x, and
the acoustic pressure at many points x in the fluid. For a cylindrical geometry, a force
transducer produces a time history of the input force. At the same time, a robotic arm fitted
with a hydrophone, and a device for rotating the shell about its central axis measure the
acoustic pressure at each point of a predefined cylindrical measurement grid in the acoustic
nearfield of the fluid (Washbum et al.). In terms of the linear system model, fo(t, X,) is the
force measured by the transducer and y(t, X, x) is the time record of the acoustic pressure
measured by the hydrophone at a large number of points x on the grid. Next, an FFT is
performed on f,(t, x,) and then on y(t, x,, X) at every point on the measurement surface. The
resulting pressure spectra, Y,(f, x,, x), and the force spectrum F,(f, x,), are then substituted
into Equation (2.1.5) for each point x to calculate the pressure transfer function, Hp(f, Xg X),
frequency by frequency. The frequency response function can then be subjected to an inverse
FFT al zorithm to produce the pressure impulse response function, hp(‘c, X X), at each point x
in the measurement. In general, both functions are also a function of r,,,, where ry, is the radial
distance of the hydrophone from the central axis of the cylinder. Also, r;, must be greater than
Iy the radius of the shell, and less than rj, the radial distance from the axis which is
determined to be the limit of the acbustic nearfield. Thus, the frequency response function is
written as Ho(f, x,, x. 1), and the impulse response is denoted as hp(T. X X, Iy)-

Next the NAH method uses an inversion of the Helmholtz-Huygen integral for
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cylindrical geometry to produce a pressure transfer function at any desired radius ry such that

<r

r, <1, .Asymbolic diagram is given in Figure 3.1. Along with the Hy(f, x4, . 1)

measurement
surface

/7 7 7 7 7 7 W 7
//////4/\\/

analysis surface
3

Figure 3.1: Symbolic diagram of NAH process

hologram, a velocity transfer function, denoted H,(f. x,, x, 1), is calculated. The NAH
method only provides the velocity transfer function for velocity in the radial (normal to the

shell surface) direction.




The holograms for the ry equal to r, were provided by the Naval Research Laboratory
(NRL) in Washington, D. C. Pressure was measured at sixty-four locations in the axial
direction of the shell and sixty-four points around the circumference of the shell. For each ot
the resulting 4096 spacial locations, 2048 time samples spaced forty microseconds apart were
recorded. The radius, r,, of the shell was 5.54 c¢m, and the grid points were spaced 0.84 ¢cm
apart in the axial direction of the shell. Further, the circumferential points were spaced evenly
throughout the 27 radian circumference of the shell. The cylindrical shell occupied space from
axial point nineteen to point forty-five, with eighteen extra points on each end.

Since Fy(f, x,) only existed from about 2kHz to 8kHz in the original measurement,
only 508 of the possible 2048 frequencies were stored for each point x in the holograms.

Explanaticns of the terms in the preceding paragraph, as well as reconstruction of a 2048 bin

spectrum for each x, will be discussed in the next chapter.




CIHIAPTER 4
FFT IMPLEMENTATION

4.1. Overview

As was stated in the previous section, transfer functions for acoustic pressure and
radial acoustic particle velocity consisting of sixty-four axial points, sixty-four
circumferential points, and 508 frequency bins at each of these 4096 (64x64) grid points, vere
obtained via the linear system model and NAH for a cylindrical shell. The initial measurcment
was done with a sampling rate of 25 kHz and 2048 time sample points, resulting in a forty
microsecond spacing between time samples for f(t, x,) and y(t, x,, x). According to Fourier
transform theory, the resulting frequency response functions will contain 2048 frequencies
ranging from 0-25 kHz with a 12.207 Hz (Bracewell 189-94).

The number of meaningful frequencies in Hp(f, Xy X) and H(f, x5, x) (the dependence
on r is now dropped from the notation, since all spectra will occur at r = r, from here on) is
reduced to 1024 because the Nyquist cutoff frequency, denoted f_, is 12.5 kHz (half the
sampling frequency). The Nyquist frequency has this effect because for a given sampling rate
and number of sample points, the sample values for a frequency f; will have the same
magnitude, and thus appear to be the same frequency to an FFT, as another frequency
f, = 2f.. - f, only the two frequencies will appear 180 degrces out of phase. This phenomenon
is called aliasing.

A simple analogy for aliasing is shown in Table 1. Because FFTs used in this research
compute spectra with complex values, the value ot the frequency f| above, denoted simply 2=
gy, can be thought of as having a real part and an imaginary part such that
g, = cos2nf t+isin2xf;t. Similarly, g, = cosZif,t+isin2nf,t, where f> = 2f_ - f, as in
the preceding paragraph. Sin(2rtft), stn[2(2f, - f)t]. cos(2Zrft), and cos{2r( 2t - f))t] values

for a time spacing of 40 microseconds and an arbitrary f; of 6000 Hz are given. Opposite
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signs and equal magnitudes on the sine terms and equal cosine terms in the table indicate that
the two signals are *he same frequency only 180 out of phase. Note that the linear magnitude
of the two g terms (the square root of the sum of the sine and cosine parts squared) is equal.

The main idea is that g; and g, are complex conjugates of each other.

Table 1: Aliasing analogy values for f = 6 kHz and f, = 12.5 kHz

Time t, psec 0.0 40.0 80.0 1200 1600 2000 2400 2800
cos(2rft) 1.0 0.063 -0.992 -0.187 0968 0309 -0.929 -0.426
cos[ 2 2f-Nt] 1.0 0.063 -0.992 -0.187 0968 0309 -0.929 -0426
sin(2rft) 0.0 0.998 0.125 -0.982 -0.249 0951 0368 -0.904
sin[2r(2f.-Dt}] 0.0 -0.998 -0.125 0982 0.249 -0.951 -0.358 0.904

Because Fy(f, x,) only existed from 2 -8 kHz, only these frequencies could be
accurately obtained for the two transfer functions using Equation (2.1.5). This is because
values of the initial driving force for frequencies outside this range are very close to zero, and
would cause large errors if divided into Y, (f, Xy, X). As a result, only 508 meaningful
frequencies remain in the spectra, ranging from 1953.125 to 8142.069 Hz for each
measurement point in the pressure and velocity holograms provided by NRL. Figures 4.1 and
4.2 show the magnitude of Hp(f, x,, x) and Hy(f, o, X) for the driver point, X, (axial point 25,
circumferential point 33) on the shell. This point was chosen because it tends to dominate
sound radiation in the results.

4.2. Spectral Reconstruction

In order to multiply synthetic force spectra by the transfer function spectra for the
purpose of simulating sound radiation for the shell, the 508 point spectra provided must be
reconstructed into spectra of 2048 frequencies. Once again, the 2048 peints are mandated by
the original measurement situation - all transfer functions and unpulse respeonse functions

must have the same number of points, with the same spacing. as the criginal measurement.
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When beginning this process, it is helpful to note some properties of FFT aigorithims
as they are carried out by computer. Most FFTs take an input array of N (2048 in this research)
time points and return an array of N frequency coefficients. If both arrays are passed to the
FFT as complex values, the phase shift of each frequency of the retumned array is also given.
Typically, the first bin of this returned array contains a zero hertz value, or DC offset, which
has no corresponding alias frequency. The next N/2 frequency bins contain all frequencies up
to the Nyquist cutoff, f.. Thus, f; is placed in the N/2 + 1 bin of the array. Finally, the alias

frequencies are placed in bins N/2 + 2 to N with the relationship described in Equation (4.2.1),

([H(porv)(f,xo,x)]“ = [H(por,,)(f,xo,x)]*N__ ) (i=1,...N2-1) . (4.2.1)

1 1+ 1

* Denotes complex conjugate.
The equation is a result of the fact that Fourier series theory presumes data given to an FFT
are periodic functions which repeat every N points (Bendat and Piersol 11-13). Further, each
value at a given bin 1 is the complex conjugate of the value at the bin N/2 + 1. Realizing these
facts about FFTs, the provided spectra were constructed into 2048 bin spectra for each ~f the
4096 hologram points by first placing each of the 508 given frequencies in the proper slots
from zero hertz up to f.. This corresponds to bins 161 through 668 in a 2048 point spectra.
Finally. the alias frequencies are placed in bins 1382 through 1893, according to Equation
(4.2.1). The resulting spectra for the driver point are shown in Figures 4.3 and 4.4 for
comparison to Figures 4.1 and 4.2, respectively.
4.3. Need to Timé Shift Data

When the calculation of the two transfer functions was pertormed, the starting time of
the force excitation, and thus the pressure and velocity of the svstem, was lost. Because this
starting time appears as a phase <hift in the frequency demain and is the same for the
inputforce as 1t s for pressure or velocity, it is divided out when Equation (2.1.5) is

performed. As a result, no start or end of the signal is apparent when the transfer functions are
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again transformed to the time domain. Figure 4.5 demonstrates this fact for the pressure and
Figure 4.6 demonstrates for the velocity impulse response functions for the driver peint.

These are obtained by taking the inverse Fourier transform of Hp(f, Xo, X) and H(f, x,, x).
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Figure 4.5: Pressure impulse response hp(t, Xg» Xo) Without time shifting

It is now necessary to time shift the data by an appropriate amount. A 121 tap Kaiser-

Bessel filter was recommended by NRL and used in this project, which resulted in a time shift,
enoted t,, equal to sixty-one time bins. Thus, t, was 2.44 milliseconds. As will be
demonstrated later, this time shift is very important for applying synthetic forces to the data,
whether performing the convolution in time or the multiplication in frequency. Time shifting

the data is performed as in Equation (4.3.1),

h(Por\')a" Xor x) = FFT_I [H(Porv)(f’ X x): e~(znft°) ]. 4.3.1)

and can be done as a separate operation, but is usually incorporated in a filter. The results after

tune shifting are transformed to the time domain and shown in Figures 4.7 and 4.8.
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4.4. Importance of Spectral Symmetry
A simple demonstration is probably the most clear way to convey the importance of spectral
symmetry that was described in Equation (4.2.1). Figure 4.9 shows the error produced in the
pressure impulse response function when its corresponding spectrum is made symmetric
about the N/2 bin rather than the N/2 +1 bin. This figure shows that moving the alias
frequencies by just one point causes error in the pressure impulse response with a maximum
magnitude of about three percent of the maximum correct impulse response. This crror grows
to over ten percent when the second half of the spectra is made symmetric about the N/2 - 1,
only two frequency bins away from the correct bin. These errors seem large even though an
error of one or two bins in the point ¢f symmetry appears to be a minor mistake on the surface,
but an inverse FFT views all the alias frequencies in the second half of the specirum as having

incorrect magnitudes.




21

4
80 10 T T T l T

N

——— Symmetric Minus Unsymmetric

T TR
‘lll‘.ﬁr“ip‘lﬁ“{"xill“i' Al

'n".l"

K 1
I:: 'I‘ ".\' ! !g”l !“ ’!"M i

8 T U W T W O W 0 O O OO OO

0.0 20.0 40.0 60.0 80.0
Time, msecs

e
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Figure 4.10 shows that the unsymmetric pressure frequency response actually
produces an impulse response with a large imaginary portion when using complex valued
FFTs, as opposed to one with zero magnitude, which is produced by a symmetric Hp(f, X X).
This imaginary part must be viewed as errant, since only real signals are possible in the time
domain. Its maximum amplitude is also roughly 3% of the maximum amplitude of the correct
umpulse response function.

4.5. Filtering

Another very important step in the F~T implementation of the linear system model is
filtering. Filtering multipiies every spectrum in the pressure and velocity transfer functions by
a smooth frequency domain function, or filter. The data provided by NRL was filtered by a
Kaiser-Bessel filter which had a central frequency of 5 kHz, a bandwidth of 6 kHz and a time

shift of 61 bins. This filter was also made symunetric about the Nyquist frequency in the same
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way as the data was. The central frequency and the bandwidth correspond to the 2-8 kHz
spectra provided in the data. Figure 4.11 shows the filter used in this research.

The need for filtering is twofold. First of all, the filter incorporates the needed time
shift previously described. The second, and the most important reason for filtering, is
continuity of the data. Figures 4.3 and 4.4 show pressure and velocity spectra for the driver
point on the shell. Careful observation of these spectra indicates that they drop suddeniy to
zero at the edge of the spectra These sharp drops appear as discontinuities to the FFT
algorithm. Figure 4.12 shows that the filter removes these discontinuities by multiplying the
entire spectrum by a smooth, continuous function, namely the filter. Notice that the edges of
Hp(f, x,. x) shown in Figure 4.12 are brought gradually to zero, and that the outline matc.:es
that of the filter shown in Figure 4.11. The same filter was cpplied to all poincs of the velocity
transfer function as well.

The inverse FFT algorithm relies on this continuity when retuming a spectrum to the
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time domain (Bracewell 8-11). Combined with this assumption is the fact that the FFT uses a
linear combination of each bin in the frequency spectrum to produce a time domain
description. The result is that, depending on the size of the edge discontinuity compared to the
rest of the data, percent errors ranging from small to very large can be produced. Figure 4.13
shows the filtered minus the unfiltered pressure impulse response for the driving point of the
shell. Note that the maximum magnitude of the difference is about 10% of the maximum

amplitude of the filtered pressure impulse response shown in Figure 4.12.
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Figure 4.13: Filtered minus time shifted pressure impulse response for the driver point

Comparison of Figure 4.14 and Figure 4.7 shows that the filtereG pressure impulse
response has a more clearlv defined starting point than the time shifted only counterpart. Most
of the difference in Figure 4.13 is a result of this feature.

4.6. Considerations for Zeropadding
The way in which the convolution integral. Equation (2.1.1). is implemented with

FFTs requires zeropadding. Zeropadding is the process by which a signal in the time domain
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Figure 4.14: Filtered pressure impulse response for the driver point of the shell

is made longer than its original length by placing zeros on the end of the signal. For this
research, both transfer function data at each point x in the holograms and the synthetic forces
were transformed to the time domain after the proper reconstruction and filtering was
performed. Then the signals were made twice as long by placing zeros in bins 2049 through
4096. Finally, both the transfer functions and the synthetic forces were transformed back to
the frequency domain for use in Equations (2.1.7) and (2.1.8).

Two main types of computer algorithms exist for the purpose of carrying out the
convolution integral shown in Equation (2.1.1) for discrete, finite data and force arrays. The
first is the linear, or sometimes referred to as the picket fence algorithm. The second type is
the circular convolution algorithm which, due to the nature of the FFT algorithm, is the type
of convolution actually performed when pressure and velecity are calculated in the frequency
domain via Equations (2.1.7) and (2.1.8).

Suppose we have a discrete force array and a pressure transfer function array for a




gtven point x, both containing only four data points in the time domain for the purpose of easy
llustration. Presume further that these arrays have values f|, f», f3, f4 and hp1, hoa. hps, hpg,
respectively. Then the pressure array, p;, p», p3, ps resulting from the picket fence

convolution algorithm is given by Equations (4.6.1) to (4.6.5)

p, = f;-h,, (4.6.1)
or
i .
p; = an'hp(i-nn) i=ltoN | (4.6.5)

n=1
The resulting pressure array is also shown in Figure 4.15 for f; =2, f, = 1, f3=3, {4 = 2, and
hpl =1, hpz =2, hp3 =1, hp4 = 1, where * denotes convolution and N = 4 for Equation (4.6.5).
Resulting pressure array values are p; =2, p = 5, p3 = 7, pg = 11, which are considered to be
the correct pressure values for this force and pressure impulse response in the time domain
(Bracewell 24-48).

If the same force and pressure impulse response function are convclved via the
circular convolution integral in their present form, the resulting pressure is quite different, and
incorrect. This is because the circular convolution presumes that the arrays are arranged in a
circular fashion, and uses all points in both the force and pressure impulse response arrays.

Equations (4.6.6) 10 (4.6.9),

Pp o= fyhy 4y b+ fih (4.6.6)
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Figure 4.15. Pictorial diagram of the picket fence convolution algorithm for N = 4

demonstrate this fact for N = 4. This idea is shown pictorially in Figure 4.16. The new result is
p1 =10, pp =10, p3=9, ps=11. To better understand circular convolution, imagine the
transfer function circle being placed upside down on top of the force circle with f) and hy,
aligned. Equation (3.2.6) then multiplies all aligned quantities and sums the products to obtamn
the first pressure value. Then the upside down pressure transfer function circle 15 rotated one

position counter clockwise and the process is repeated. In this case, four iterations of this




process were performed to obtain the pressure result shown in Figure 4.16. If, however, the
forcing function and the pressure transfer function are zeropadded, the correct result can be

obtained as shown in Equations (4.6.10) to (4.6.13)

py = fy - hy +fy-hg+fy-h +f-h+fs-ho+f-h,+f h +f-h,, (4610
Py = fy hp+fy b+ hog+ € hy+fo-ho+f - hg+fy h+fg-h. (4611
Py = fy hyy+fy-h,+f3-h +fy-hg+fs -h,+f-hy+f;-hs+fg-hy, (4612)
Pa =) hog+fy hg+fy-hy+fy-h +f5 hg+fe-hy+f ho+fy hs (4013)

o
[

P4

3
)

Figure 4.16: Pictorial representation of the circular convolution algorithm for N = 4

Since fs through fg and hpS through hpg are zero because they were extra zeros added on for

the purpose of zeropadding, Equations (4.6.10) to (4.6.13) reduce 10 be exactly the same as
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Equations (4.6.1) to (4.6.4), respectively. This mieang that zeropadded arrays convolved via

circular convolution give the same result as non-zeropadded arrays convolved via picket fence
type convolution. Thus, the circular convolution can only be done correctly if the two aTays
to be convolved are zeropadded to at least twice their original length. Because circular time
domain convolution is the type represented by the multiplication in frequency domain of
Equatiions (2.1.7) and (2.1.8), all data and forces were inverse Fourier transformed to time,

zeropadded, and returned to frequency for further processing.




CHAPTER S
DESCRIPTION OF FORCES

5.1. Mzasured Force
In the initial measurement, only the time signal of the driving force, fi(t, x;) was
known. This measurement force wes a chirp, consisting of a sine wave swept uniformly from
2000 Hz to 8000 Hz. The force time duration was only about 25% of the total acquisition
time, so the measurement contained a build up and decay of the fluid loaded cylinder’s
acoustic radiation as well as its structural vibration. An FFT was performed to obtain F(f, x.)
for calculation of the pressure transfer function via the deconvolution process already
aescribed.
5.2. Svnthetic Forces
A Gaussian windowed cosine function was chosen as the synthetic force input to
simulate shell sound radiation. This force was chosen due to ease of computation and control
of time duration and frequency bandwidth. The Gaussian force consists of a single frequency
cosine wave windowed by a Gaussian exponential function. For a fcrce consisting of a single
Gaussian pulse, the analytic expressions in the time and frequency domains are shewn in

Equations (5.2.1) and (5.2.2),

T{{t-t) ]2

foynlt. X)) = cos [2mf (t~t)) e , (5.2.1)

and

anfto'c—n{(f-f0>'.}’+e~rt{ (f~fo)

Foolf X)) = (1/2)e (5.2.2)

The frequency of the cosine portion, also referred to as the central frequency (in Hz, 13
represented by f,. The guantity ¢, is a time delay at which the pulse is centered, T 15 a constant

that is related to the time duration of a single pulse, and j = ~1. Examples of the Gaussian
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force in time and frequency domains for a central frequency of 500 Hz are shown in Figure
5.1. For simplicity, the force has an amplitude of one unit in the time domain, although the
function could be scaled to any amplitude. Also, units are not important, since results of forces
. are compared to one another. Only the relative change produced by forces is of interest, not
the value of individual results. In Figure 5.1b, only the first half of the spectrum required “or
the FFTs is shown. All forces used for simulation of sound radiation were made symmetric
about the Nyquist cutoff frequency in the manner described in sections 4.2 and 4.4

Gabor (434) relates the force time duration and frequency bandwidth to the constant t

via the uncertainty relations

At = 1. 1/2, (5.2.3)
and
Af = (1/7) .1/ (27m), (5.2.4)
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increased the frequency bandwidth decreases while the force time duration increases. This

fact is pertinent in section 7.1 of the results. Figures 5.2 and 5.3 demonstrate this relationship.

Finally, the Gaussian force is easily modified to include multiple pulse forces

N :
fn(t2) = 3 cos[2mf, (t=t,— (i=1)s)Je " 77 (5.2.5)
1=1
and
N 2nf [+ (i-1)s) = --1':{(1'—f)*:}2 —n{(f+f )t}
Foafix) = 3 (v/2)e” e M te S (5.26)
i=1

where all parameters are the same as before, and s represents the space between successive
force pulses in seconds. The total number of pulses, N, is limited by the total sample time and
the time duration of each pulse. Pulses may be spaced from zero seconds apart to as much as
will fit in the total sample time. In this research, all forces used in simulating acoustic

radiation were designed to be contained entirely within the original sample time of 83




34

milliseconds (2048 times 40 microseconds). Only multiple pulse forces with uniform time
duration between pulses are calculated in the equations above. The equations could be easily
modified to include non-uniform spacing by removing the summation symbol and including a
different variable, such as ty, t5, etc., for each successive pulse. Also note that the force has
analytical descriptions in both the time and frequency domain. Either may be used to calculate
the desired force, and then the force can be transformed to time or frequency by FFTs with
negligible error. However, it is recommended that a force be created in the frequency domain
for use in sound simulation via Equations (2.1.7) and (2.1.8) in the time domain to make sure
it decays within the 83 milliseconds of the original time sample. Further, only a version of the
time domain force provided by Gabor was used in this thesis. The frequency domain
description was derived from the time domain description using Fourier transform techniques
( Bracewell 98-120). This section concludes with examples of single and multiple pulse forces

shown in the time domain for two different pulse spacings by Figures 5.4 and 5.5.
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CHAPTER 6
CALCULATED QUANTITIES

6.1. Overview

Applying a synthetic force to the entire shell produces enormous amounts of acoustic
data. For each applied force there are 64 axial and 64 circumferential spatial locations which
have 2048 time steps for both the acoustic pressure and the normal acoustic velocity. One
possible means of viewing so much data is animation. Another method could be to view a
series of snapshots of the data in time. Neither of these methods, however, are adequate for
presentation in a thesis. Thus, total energy radiated by the shell was the means chosen to best
show all of the data for the entire shell. Calculation of this quantity and some other quantities
useful in explaining the results will be discussed in this chapter.

6.2. Normalized Energy

Total energy of the shell proved to be a very valuable means to analyze the results for
the entire shell. To more fully understand this quantity, it is helpful to look at a fundamental
power balance for the situation as presented by Mann et. al. (1661). The total change in energy
of a given volume V can be represented by an integral of the instantaneous intensity over any

surface S enclosing the volume, which is stated in integral form as
aatJ‘J.J‘ [E(, x)kin + E(t, x)pot] dV = "lei(t' x)dS, (6.2.1)
v 5

where E(t,x)y, is the kinctic energy, E(t, X)pq is the potential energy, and i(t,x) is the
instantaneous acoustic intensity normal to the surface S where S is the surface enclosing the
volume V. Thus, calculating the right hand side of Equation (6.2.1) provides the total energy
leaving the shell at an instant. S 1s designated as the hologram surface where the acoustic
pressure and normal acoustic velocity transfer functions exist.

Because all synthetic forces are now applied at the same point, the x, dependence is
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removed from the notation in further equations. Then the instantaneous acoustic intensity

normal to the shell is provided by

Lt &,2) = p(t, 0,2) - v(t, 6, 2), (6.22)

where p(t, ¢, z) 1s the acoustic pressure given by Equation (2.1.7), and v(t, ¢, z) is the normal
acoustic velocity given by Equation (2.1.8), with the dependence on x, dropped from the
notation. The general field point x in Eqns. (2.1.7) and (2.1.8) is now given by the coordinates
¢ and z to denote circumferential and axial dependence, respectively.

Second, an intermediate quantity called instantaneous acoustic power, denoted ITj(t),

is calculated for the whole sheli by
Zz'—‘L ¢2 =2 T

no= [ [ Lt 2dedz, (6.2.3)
z,=0 ¢ =0

where the limits z; =0 and z; = L represent the entire 64 axial points in the pressure and
velocity holograms, and the limits ¢; = 0 and ¢, = 2x represent the entire 64 circumferential
points in the holograms. It is useful to note that the instantaneous power can be calculated for
any zy, 7, 9y, and ¢, within the 64 by 64 point measurement hologram. This fact will be
utilized in the results section. An example of the instantaneous power for the entire shell is
given in Figure 6.1 a for a one pulse Gaussian synthetic force. The most important feature of
this plot is that power is alternately positive and negative. The positive values signify that the
shell is radiating energy into the fluid and negative values .ignify that the shell is absorbing
energy form the fluid. Thus, sound is being radiated by the shell to the fluid and being
reabsorbed by the shell from the fluid

Third, the total energy leaving the shell via sound radiation is obtained by

1
E(m) = M (ndr. (6.2.4)
(4]

where E(t) represents the total energy which has been transferred from the shell to the fluid up
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to this time. An example of total radiated energy for the entire shell is shown in Figure 6.1b.
Note that total energy fluctuates and then finally converges at t.. Thus, E(t.) represents the
total energy radiated by the shell for this particular pulse. A second example of total radiated
energy is shown in Figure 6.2, but in this instance E(t;) 15 never reached because the radiated
energy does not converge within 83 milliseconds. Only energies that converge at a distinct t,
as pointed out in Figure 6.1b are reported in this research. It is important to notice that the
quantities calculated in Equations (4.2.2) to (4.2.4) could have been calculated in the

frequency domain as well, but then the existence of t. could not be observed.
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Figure 6.2: Total energy radiated by the entire shell when driven by a one pulse Gaussian
force with f, = 2966.3 Hz, t = 0.02, and t, = 0.04 seconds

The fourth step in computing nomalized encrgy is performed. Namely, the total

raechanical energy input by the synthetic driving force is computed by
[T
E, = {|[ftte 2 vt o,z )]dty dA, (6.2.5)

gl
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where E;j is the total input mechanical energy, and f(t, &, z,) is the force at the driver point.
The resulting shell velocity at the driver point is given by v(t, &,, z,), which, from the
boundary condititions, must be equal to the normal acoustic velocity. Finally, dA represents
the differential area of the driver point.

Finally, the normalized energy radiated by the shell is the quotient

E(t)
NTE

n

(6.2.6)

where Ey; is the fraction of the total energy input by the driving force that is radiated as sound.
The need to compute this quantity is clearly seen by comparing an example of the results that

is not normalized with an example of the input mechanical energy . Figures 6.3 and 6.4 show
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Figure 6.3: Total energy, E(t.), radiated vs.two pulse force time separation for the entire
shell resulting from driving forces with f, = 4785.2 Hz, t, = 0.0125 seconds.
and T = 0.005 seconds

such examples. Note that while the total energy radiated. E(t,.), varies as a function of the time
separation of two pulses, so does the input mechanical energy. Thus, it is not possible to

determine if an increase in radiated energy occurred because of the interaction between pulses
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or because of a change in the amount of input mechanical energy. Thus, normalized energy is
more significant than simply reporting the radiated energy E(t.) because it incorporates the
amount of energy input to the system as well as the amount radiated. A larger value of E(t.)
means only that more sound was radiated, while a larger value of Ey means that, for a given
amount of input energy, a greater percentage of that energy was radiated by the shell as sound.
6.3. Acoustic Intensity

Another quantity of interest that is used to help explain some of the results presented
in this thesis is active acoustic intensity. This quantity represents the time integral of the
instantaneous acoustic intensity normal to the shell boundary, in Equation (6.2.2). However,

the active acoustic intensity is calculated in the frequency demain via
2f
1 b
[0.2) = [ JRe{[F,(DH (£ 9.2)] - [F" (DH, (L. 0.2)] } df, (6.3.1)

0

where F. 4f) 1s the synthetic forcing function at the dnver as a funcuen of frequency, Re
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denotes the real part of the complex frequency domain product, Hp(f, ¢, ) is the pressure
transfer function, and H(f, 9, z) is the normal velocity transfer function.
6.4. Impulsive Acoustic Power
The final quantity that is used to explain results, is the impulsive acoustic power.

Impulsive acoustic power is defined in this research as

z2°2
el ks .

M0 = | [3Re {HJf 6.2 H(£ 9,2} ddz, (5.4.1)
2,9,

a function of frequency. Impulsive acoustic power is best thought of as the time average at
each frequency of the energy per unit area radiated by a purely impulsive force. A purely
impulsive force has an amplitude of unity for every frequency. Impulsive acoustic power,
Himp, similar to instantaneous power, can be computed for any z;, z;, ¢y, and ¢, cf the
hologram surface data provided by NRL. This represents the sound power radiated from a
particular area of the shell for an impulsive force. A major difference, however, is that
impulsive acoustic power is a function of frequency, while instantaneous power is a function
of time.

Total energy radiated by the entire shell up to 83 milliseconds (the total sample time)

when excited by a force F(f) is related to the impulsive acoustic power by
Eo = | [F®-F(D] - (Ddf, (6.4.2)

if the limits in Equation (6.4.1) include the entire surface area of the shell. Actually, the
integration limits used in this research were 0 kHz and 25 kHz because of the sampling time
and other parameters discussed in Chapter 4. Recall that when the total energy radiated by the
shell converges, Equation (6.2.4) yields E(t.).

Impulsive power was computed for four areas of the sheli. The first area was the entire

shell, which was approximated as an integration over all 04 axial and 64 circumferential
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points. The second area was a small sector around the driver point corresponding to
integration from axial points 24 to point 26 and circumferential points 32 to 34, and is referred
to as the driver area. The end of the shell nearest the driver was the third area of integration.
Axial points 18 to 20 and circumferential points 1 to 64 comprised this area, which is referred
to as the driver end area. Finally, the impulsive power due to the end of the shell farthest from
the driver was computed. The integration was performed over axial points 44 to 46 and
circumferential points 1 to 64 for this region and will be referred to as the non-driver end area
of the shell. Figures 6.5 and 6.6 show the Impulsive power for the four areas described. These
plots will be very important in explaining the first section of results. The three frequencies
used in the explanation, 2966.3 Hz, 3808.6 Hz, and 4785.2 Hz, are pointed out on the plots.
Finally, all four plots are shown in linear and not logarithmic scale because the impulsive
power is negative for some frequencies in three of the four areas. Such an area actually

absorbs sound power of that frequency instead of radiating sound power.
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CHAPTER 7
RESULTS AND DISCUSSION

7.1. Normalized Energy vs. Pulse Time Duration

7.1.1. Precursory

In an earlier paper (Mann et al.), it was concluded that the percent of input energy
radiated as sound power for a fluid loaded, point driven, cylindrical shell increased as force
time duration of a one pulse Gaussian force, increased. It appeared, however, that this
conclusion was incorrect due to the very specific type of frequencies studied. It was decided
that an insufficient number of frequencies of different types were studied to support the
conclusion. Therefore, the study in this thesis was done to test the earlier conclusion.

Three frequencies, 2966.3 Hz, 3808.6 Hz, and 4785.2 Hz were chosen for study. The
first two were chosen for duplication of the earlier results. The first, 2966.3 Hz, was reported
to be a very resonant frequency of the shell by NRL, while the second was concluded to be a
very acoustically radiant frequency (Mann et al. 1663). Finally, 4785.2 Hz was chosen since it
occurred amidst a group of several local maxima in the impulsive power spectrum for the
entire shell (look back to Figure 6.5a) and because it was reported to be both structurally
resonant and acoustically radiant, though not as radiant as 3808.6 Hz, by NRL.

Nomnalized energy as a function of single pulse time duration was calculated for each
of the three frequencies and each of the four shell areas, rcsulting in a total of twelve sets of
results. The nommalized energy vs. single pulse time duration for each area of interest was
obtained by first calculating normalized enesrgy for a synthetic force of short time duration,
then calculating it again for a force of increased time duration. This process was repeated until
increasing the parameter T caused the force'timc duration to be so long that the energy did not
converge in the 83 milliseconds available for time domain viewing. The following sections

describe the results and use the impulsive power spectra to explain the results.
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.2 Result Discussion

Figures 7.1 and 7.2 present the results for driving forces with a single Gaussian pulse,
and with f, = 2966.3 Hz and t, = 0.04 seconds for the four shell areas described earlier. The
pulse time duration variable T was varied from 0.0004 to 0.01 seconds. A lower limit of
0.0004 seconds was required in order to keep the driving force frequency spectrum bandwidth
within the 2-8 kHz range of the data, while the upper limit of 0.01 seconds was the maximum
1 for which the normalized energy converged for this central driving frequency (2966.5 Hz).

In Figure 7.1a, the fraction of energy first decreases, and then increases steadiy from a
minimum as pulse time duration is increased. Although the results presented here are in
agreement with those in the paper by Mann et. al., referred to earlier, for equal values of t
compared. However , the general trend predicted is contradicted by the extra values studied in
this thesis.

Some insight into why an increase in input energy may not necessarily increase
radiated energy is gained by examining the three partial shell areas. Energy radiated by the
driver area, Fig. 7.1b, as well as the non-driver end area, Fig. 7.2b, steadily increases with
force time duration while the driver end area absorbs more and more energy. This absorption
is evidenced by the negative values for normalized energy radiated. If absorption is increased
with increasing ~ for this area of the shell, there may be other areas which absorb as well as
other shell areas which radiate. The net result for the whole shell, as pointed out in
Figure 7.1a, is that increases in absorption by such areas as the driver end was greater than
increases in radiation by the driver end and other radiating areas until a t of 0.002 sec. is

reached, then increases in radiation take over.
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Figures 7.3 and 7.4 present the results for single pulse driving forces with a central
frequency of f, = 3808.6 Hz and a starting time delay of t, = 0.04 seconds for all four shell
areas. For this frequency, T was varied from 0.0005 to 0.02 seconds. Again, the lower limit
was required to maintain force frequency spectrum bandwidth within the 2-8 kHz ronge,
while the upper limit was the maximum 1 for which radiated normalized energy converg zd.

In this case, the fraction of input energy radiated by the entire shell increases steadily
with force time duration, as does that radiated by the driver area only. This time, however,
energy radiated by the non-driver end increases sharply up to a 7 of 0.004 and then decreases
as 1 is increased to 0.02. The driver end also has a different behavior. For smaller time
durations, radiation increases steadily. But as the parameter tau is increased, the radiation
from the driver end reaches a maximum, then begins to decrease until t reaches about 0.005.
After that, the driver end area absorbs an increasing fraction of the input energy as time
duration is increased.

At this point in the experiment, it was expected that the normalized energy radiated by
the whole shell would increase with longer time duration for a central driving frequency of
4785.2 Hz as well. However, as Figure 7.5a shows, just the opposite occurred. Normalized
energy decreases, sharply at first and then more steadily, with increasing pulse time duration.
The fraction of energy radiated by the driver area of the shell first increases sharply, then
decreases somewhat, and finally increases slowly with increasing t. Both ends of the shell,
radiate increasing percentages of the input energy as time duration is made larger, as shown in
Figure 7.6.

For both the 2966.3 Hz and 3808.6 Hz dr.ving forces, it appears that the normalized
energy for the whole shell is dominated by what is occurring at the driver area of the shell. For
4785.2 Hz, however, the driver area and entire shell area have very different behaviors.
What's more, the energy radiated by the shell did not necessarily correspond to the activity on

either end of the shell ends for any of the three driving frequencies.
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This fact is somewhat peculiar because some discontinuities occur on the shell in these areas
that are often expected to radiate large amounts of energy (Smith 1072).

These facts, as well as the other complex behaviors noted in this section, at first
appeared inexplicable from the normalized energy data obtained. But the very different
behaviors of each of the shell areas was similar to the behavior of the plots of impulsive power
spectra shown in the previous chapter. Therefore, impulsive power spectra will be compared

to force spectra in the next section in order to explain the results.

7.1.3. Comparison of Force and Impulsive Power Spectra

Analysis of the impulsive power spectrum for the entire shell, shown in Figure 6.5a,
revealed that both the 2966.3 Hz and 3808.6 Hz frequencies are very large local radiation
maxima, as compared to the rest of the spectrum, for the entire shell. The 4785.2 Hz
frequency, conversely, i1s amid four much smaller radiation peaks.

Further analysis shows that, for driver frequencies situated at local maxima in the
impulsive power spectrum, energy 1s focused into these radiation peaks with increasing pulse
time duration. This is because the frequency bandwidth is decreased while the magnitude of
the force spectrum at the central frequency is increased as the pulse time duration, T, is
increased. This idea is shown more clearly in Figure 7.7 for a blown up portion of the
spectrum shown in Figure 6.5a and force spectra for several pulse time durations.

On the other hand, the focus of energy into a narrower and narrower bandwidth causes
a lesser quantity of normalized energy to be radiated by the shell for a driving frequency of
4785.2 Hz. This time, a blow up of the spectrum in Figure 6.5a reveals that as energy is
focused into 4785.2 Hz, it is drawn away from the largest radiation peak of the four local
peaks. The peak of interest is centered at approximately 4960 Hz, is about three times larger

than any of the other three local maxima, and thus dominates the radiation.
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Similar observations are possible for the other results presented in this section. The
pattern of normalized energy radiated or absorbed may be explained by examining the
impulsive power spectrum for the desired area near the frequency of interest. In some
instances, however, predicting a result is not as qualitatively obvious as the two cases
expounded upon in this section. A quantitative resolution of this problem is left to further
work.

A major consequence of this analysis is that no general relationship exists betvieen
force time duration and the fraction of input energy radiated to the farfield of the fluid. Thus,
to achieve minimization of radiated energy, the impulsive power spectrum must be examined
to determine the relationship between percent of input energy radiated and pulse time duration
for each individual driving frequency. If a qualitative determination is not possible, the
analysis can still be done in the time domain.

7.2. Normalized Energy vs. Two Pulse Time Spacing

7.2.1. Precursory

After relationship between pulse time duration and shell radiation was determined, it
was suspected that including additional pulses to the forcing function might have a significant
effect on the normalized energy radiated as well. Specifically, multiple pulses might lead to
active sound cancellation for the shell, depending on the initial conditions at the time
additional driving pulses are applied to the shell. Further, it was desired to know which initial
conditions for additional pulses resulted in active sound cancellation.

Only two of the previous three frequencies, 3808.6 Hz and 4785.2 Hz, were chosen for
this analysis. The major reason for this is that a 2966.3 Hz driver frequency causes the shell to
vibrate much longer than the other frequencies. Therefore, it was not possible to include more
than one individual pulse and still attain convergence in the normalized energy. Also, it was
desired to include both types of frequencies described and used in section 7.1. One frequency

ocurring at a large local maximum of the impulsive acoustic power spectrum, and another not




vccuring at a large maximum were used in the muitiple pulse time spacing study.

To address all of the possible initial conditions, it was decided to start with a pulse
time spacing of s = 0.0 seconds, and increase the spacing one time bin (40 ptsec) at a time until
the maximum spacing at which convergence of the normalized energy was achieved. Some
initial experiments with the nomnalized energy revealed that only forces with two pulses were
feasible for shell excitation in order to attain normalized energy convergence for a two pulse
tume spacing of approximately s < 0.01 seconds for both Gaussian force central frequencies.
A pulse time duration parameter, T, of 0.005 seconds was chosen for borth central driving
frequencies for the purpose of convergence as well. Further, an initial driving force time delay
of t, = 0.0125 seconds was required for both the 4785.2 Hz and the 3808.6 Hz experiments to
accommodate convergence requirements.

The results were obtained in the same fashion as those for the time durauon
experiment, only in this case the spacing between the two pulses was the variable. Reviewing
quickly, the normalized energy value for a two pulse driver force, much like that in Figure 5.4,
was calculated. Then the spacing was increased one time bin to 40 microseconds and
normalized energy was calculated again and plotted as a function of s (time spacing). This
process was repeated over and over until normmalized energy from a driver force consisting of
two distinct pulses, similar tu Figure 5.5, was achieved. The process was continued until the
maximum pulse separation for which the normalized energy converged was achieved. Results
were calculated for the same four shell areas, the whole shell, the driver only, the driver end,

and the non - driver end, as the pulse time duration results.

7.2.2. Results and Discussion
Figures 7.9 and 7.10 plot normalized energy vs. two pulse time separation for two
pulse driving forces with a central frequency of 3808.6 Hz and a pulse time duration of

T =0 005 seconds for the four areas of the shell. Figures 7.11 and 7.12 plot normalized cnergy
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vs. two pulse time separation for forces with the same parameters except with a central
frequency of 4785.2 Hz. In all eight of these plots, the normalized energy for a two pulse time
spacing of zero seconds is the same as that for a one pulse force with t = 0.005 seconds and
the same central frequency. This is because a two pulse force with zero space between ; ulses
is really the same as a one pulse force with twice the amplitude. Normalized energy levels for
one pulse forces of the same central frequency and time duration as the two pulse force were
read from Figures 7.3 through 7.6 for each shell area and are plotted in Figures 7.9 through
7.12 for the corresponding shell area. The one pulse normalized energy is a thick straight
herizontal line pointed out in each of the plots. Plotting this value on the same graph as the
normalized energy vs. two pulse time spacing points out that the fraction of input energy
radiated to the farfield is much less than one pulse for some spacings and much more for
others.

Another observation pertaining to all eight plots in this section is that the fluctuations
in normalized energy values have a definite period as the iwo pulse time spacing is increased.
Namely, they oscillate in a nearly sinusoidal (or cosinusoidal) fashion. The frequency of
oscillation is the same frequency as the central frequency of the excitation force. An
explanation for this fact will be given in section 7.2.4.

Much like the results for single pulse forces, the resuits for two pulse forces varied for
different regions of the shell. For forces with a central frequency of 3808.6 Hz, normalized
energy values for the entire shell were as much as one and a half times that of a single pulse
and as little as one third that of a single pulse. Normalized energy values greater than that for
a one pulse force indicate that the two pulses are acting together to increase the fraction of
input energy radiated by the shell. When normalized energy values are less than that for a
single pulse, the second pulse is actively cancelling out energy that would have been radiated

by the first pulse.
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A key feature of Figure 7.9a is that normalized energy is reduced by as much as fifty
percent for certain two pulse time separations. Figure 7.9b shows that oscillation of the
normalized energy for the driver area decays to the normalized energy of one pul-e and then
begins to build up again. This fact would seem to indicate the presence of a beat frequency in
the oscillation of the normalized energy in addition to the oscillation which matches the
central frequency of the dniving forces. Beat frequencies occur to a lesser degree in the other
seven plots as well. Figure 7.10a is interesting because normalized energy values for the
driver end of the shell become negetive for some two pulse time spacings as the pulse
separation, s, is increased. This means that sound energy is altemnately being radiated and then
absorbed by this area of the shell.

When the central frequency of two pulse excitation forces was increased to 4785.2 Hz,
the amount of active cancellation of sound energy obained for the entire shell, as shown in
Figure 7.11a, was much less than that achieved for 3808.6 Hz. Only at 2 two pulse spacing of
s = 1.2 milliseconds was the normmalized sound energy decreased by as much as a third. The
normalized energy seemed to oscillate only slightly from the one pulse value as two pulse
time spacing was increased. Oscillations in normalized energy for the driver area remained
greater than the normalized energy of one pulse for all but two values of s. Figure 7.11b shows
than only one of these spacings, s =120.0 microseconds, resulted in a normalized energy
value of less than half the one pulse value for the driver area. Large cancellations are observed
for both ends of the shell, as shown in Figure 7.12. However, the normalized energy radiated
by the entire shell seemed to be dominated by the driver area. Evidence of this fact is the small

vanation in normalized energy for both the entire shell and the driver area.

7.2.3 A Look At Active Intensity

Active intensity is a tool used to gain physical insight when dealing with radiating

structures. Since the amount of active cancellation obtained for the entire shell was quite
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different for the two frequencies of section 7.2.2, the presence of a major difference in the
physical behavior of the shell was evident. Active intensity proved quite useful in pointing out
this difference.

Figures 7.13, 7.14, 7.16, and 7.17 show the active intensity, 1(¢,z), for the entire shell
when dniven by various forces with two pulses. Figures 7.15 and 7.18 show differences in the
active intensity. Axial points z = 19 to z = 45 and circumferential points ¢ = 1 to & = 64 of the
measurement surface are plotted since they correspond to the shell surface. Other points in the
measurement surface outside the shell are not displayed because the amount of the sound
radiated by the shell leaving through these points is negligible. The coordinates of the driver
point, ¢ =33, z=25, are pointed out on all plots in this section. Active intensity and
difference in active intensity values are rep. "=nted by 100 different shades of grey in the
plots. Values are scaled so that the largest value is black and the smallest value is white.

Fiyure 7.13 displays the active intensity for a driving force with two pulses and
f, =380 6 Hz, t, =0.0125 seconds, t=0.005 seconds, and s =0.0 seconds. This spacing
correspc nds to a point where normalized energy radiated is equal to the value for one pulse in
Figure 7 Ja. Since active intensity values range from positive to negative, black regions
represeni places where a large amount of sound energy is exiting the shell and white areas
represen. areas where a large amount of energy is entering the shell. Thus, black areas
represen’ areas radiating sound while white areas represent areas absorbing sound. The color
of grey i-. the strip along the left edge of the plot represents an area which is neither radiating
nor absc-oing energy. The aspect of this plot that is most important is that a large percentage
of the arca of the shell, particulai:y over and near the driver is radiating large amounts of
sound. Meanwhile, only a small portion of the shell is absorbing sound in large quantities.
Two areas, one in the top center and one in the bottom center of the plot, appear to be radiating
or absorbing energy in much smaller quantities compared to the other areas previously noted.

In Figure 7.14, active intensity is plotted for a force consisting of two pulses where A1
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Figure 7.13: Active intensity, 1(¢.z), for the entire shell resulting from a driving force with
f, = 3808.6 Hz, t; = 0.0125 seconds, t = 0.005 seconds, and s = 0.0 secends
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14: Active intensity, I(¢,z). for the entire shell resulting from a driving force with
f, = 3808.6 Hz, 1, = 0.0125 seconds, t© = 0.005 seconds, and s = 0.00012 secs.
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Figure 7.15: Active intensity from Figure 7.13 minus active intensity from Figure 7.14
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force parameters are the same except s = 0.00012 seconds. This force spacing corresponds to
the first dip in Figure 7.9a which has a normalized energy value that is below 0.004,
significantly less than the value for a single pulse. Radization and absorption patterns in this
plot are almost exactly the same as those in Figure 7.13.

Plotted in Figure 7.15 is the active intensity for a pulse spacing with maximum Ey
minus that for a spacing which results in a large active cancellation. The subtraction was done
point by point. In this plot, black represents areas where this difference is large and positive
while white areas represent places where the difference is large and negative. Thus black
regions in the plot represent shell areas where the force with s = 0.0 seconds caused the shell
to radiate much more sound than the force with s =0.00012 seconds. White regions show
where the force with s = 0.0 seconds caused the shell to absorb more energy than the force
with s = 0.00012 seconds. Areas with the same grey coloring described in Figure 7.13 show
little change when the spacing is increased. The most interesting feature of this plot is that the
same areas which radiated or absorbed a lot of sound for s = 0.0 showed the largest difference
in amplitude when the spacing was increased to 0.00012 seconds. This fact is evidenced by
the similarity in appearance between all three plots. Figure 7.15 indicates, therefore, that a two
pulse time spacing of 0.00012 seconds caused a decrease in the percentage of sound radiated
by the shell by decreasing the amplitude of radiation, or absorption, in the areas of the shell
where they are largest.

Figures 7.16 to 7.18 show the same comparison as that done in Figures 7.13 to 7.15,
only this time a central frequency of f, = 4785.2 Hz was used. All other parameters were the
same for Figures 7.13 and 7.16, and Figures 7.15 and 7.17, respectively. Again, the spacing
s =0.00012 seconds corresponded to a normalized energy value in Figure 7.11a that was
below that for one pulse. In these plots, however, only three areas on and near the driver point
appear to be radiating sound in significant amounts. A few other areas throughout the shell

appear to be absorbing energy in significant quantities, but most of the shell is absorbing or
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Figure 7.16: Active intensity, I(¢,z), for the entire shell resulting from a driving force with
f, =4785.2 Hz, t, = 0.0125 seconds, T = 0.005 seconds, and s = 0.0 seconds
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Figure 7.17: Active intensity, I($,z), for the entire shell resulting trom 2 Ariving force with
f, =4785.2 Hz, t; = 0.0125 seconds, t = 0.005 seconds, and s = 0.00012 secs.
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Figure 7.18: Active intensity from Figure 7.16 minus active intensity from Figure 7.17
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radiating sound in much smaller quantities than the white or black areas shown in the plots.
Once again, all three plots have a very simiar appearance, indicating that only amplitudes
were changed and not the position where radiation or absorption occur.

The most significant difference noticed when the two sets of plots are compared is that
when the shell is driven by forces with f, = 3308.6 Hz, much more variation in absorption and
radiation levels is observed than for forces with fj = 4735.2 Hz. Therefore, it is concluded that
forces with a center frequency of 3808.6 Hz radiate a higher percentage of input energy
because they cause more areas of the shell to radiate than those with a center frequency of
4785.2 Hz. Also, alarger difference in the amount of normalized energy radiated is observable
when two pulse time spacing is varied for forces with f, = 3808.6 Hz than for those with
f, =4735.2 Hz because the former cause the sheil to have more areas which can have a
significant change in radiation or absorption.

Although this analysis does little to explain why, in terms of the shell structure, the
behavior of the shell 1s so different for the two central frequencies studied, it does point out a
similanty between the pulse time duration and two pulse time spacing results. Specifically,
that the amount normalized energy radiated by the shell is different for different shell areas for
both studies. Therefore, the impulsive acoustic power will be used to explain the resul.; for

normalized energy as a function of time spacing for forces with two pulses in the next section.

7.2.4. Impulsive Power Specirum Model

Mcdeling the variation in normalized energy as a function of the time spacing between
two force pulses in terms of the impulsive acoustic power is begun by examining the
excitation force as a function of frequency. Equation (5.2.6) is repeated for N =2 and the
dependence on x left out,

. N - 2
—r{(f-111} —r{(ffy ]

) e +e , (7.2.1)

Zmift Imflt +s
Fooolf = (1/2) (¢ e e ™HH"
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In this case F(f) is the sum of two individual one puise forces. Call these two forces F; (i) and
Fa(). such that F(f) = F{(f) + F5(f). Equation (7.2.1) shows that F; and F> are equal except for
a time shift. s, the time spacing between the two pulses. Thus, for a two pulse force in the

frequency domain,

Fy () = Fy(f) - e (7.2.2)
and
F(f) = Fy(f)- [1+e7%™. (7.2.3)

This expression can also be written as,

F(f) = Fl(D.c(—jZﬂfs)/Z_ [e(jans),/2+e(—j2nfs)/2]‘ (7.2.4)
or more conveniently as
F(f) = 2-Fy(f) - ¢ 2972 cos [ (2nfs) /2] . 1.2.5)

Next, recall the expression for total energy radiated by the shell in Equation (6.4.1)
which related the product of the forcing function and its complex conjugate to the impulsive
acoustic power in the frequency domain. Computing the product of the force with two pulses

in Equation (7.2.5) and its own complex conjugate via
F(f)-F' () = 2-F(f)-F,*(f) - [cos (2nfs) +1], (7.2.6)
and substitute this result into Equation (6.4.1), the result is
Eoe = [2-Fy(-F (9 I, (hdf+ [2-F,(® F (0 M, (Heos (2nfs) df. (7.2.7)

Further analysis reveals that F(f) times its own conjugate is merely the magnitude of

F| squared. Thus, when the total energy is normalized by the total input energy ..{ the forcing

-
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function, the nommalized energy, En, can be thought of as

EMERROR I, (Ddf + ja(f) I1,,, (D cos (2nfs) df, (7.2.8)

where

Fi(f) F," (D)
f) = _[ ‘(DE:.L_@I = "__1(9,:_, (7.2.9)

n in

Hence, & is a constant of proportionality related to the magnitude of the forcing function at a
given frequency and the input energy, E;;,, given in Equation (6.2.5).

Now suppose that, instead of an impulsive acoustic power spectrum with many
frequencies as shown in Figures 6.5 and 6.6, the impulsive acoustic power spectrum being
studied has values greater than zero at only two frequencies, f, and f;, where £ is the central

frequency of the excitation force containing two pulses. This idea is shown pictorially in

Figure 7.19.
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Figure 7.19: Diagram of an impulsive acoustic power spectrum consisting of only two

frequencies, f, and f}, where f; is the center frequency of the driving force
spectrum shown in the diagram




Then, according to Equations (7.2.8) and (7.2.9), the normalized energy as a function of two

pulse spacing, s, for such a spectrum is the sum,
Ey = alf)- I'Iimp(fo)- [1+cos2nf s] + aff,) - Hmp(fl) - [1+cos2nfs].  (7.2.10)

Further, if a(f,) Iigp(f,) = alfy) Iip(fy) then
Ey = [a(fo)ﬂimp(fo) + on(fl)Himp(fl)] (L+cosm(f +f)s+cosn(f ~f)s). (7.211)

As an example Equation (7.2.10) was computed for the case where f, = 3808.6 Hz,
f) = 3881.8 Hz and a(f,) Mimp(fo) = o(fy) Iimp(fy) = 1.0. Two pulse spacing was varied from

s = 0.0 to s = 10.16 milliseconds, and the results disniaycd in Figure 7.20. After examining
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Figure 7.20: Computed result of Equation (7.2.10) for f, = 3808.6 Hz, f, = 3881.8 Hz, and
afy) Mimp(fo) = a(fy) Mimp(fy) = 1.0

Eq. (7.2.11) closely, it is obvious that the normalized energy is oscillating with a frequency of
(3808.6 + 3881.8) / 2, and is windowed by a beat frequency of (3881.8 - 3808.6)/ 2. Close

study of Figure 7.20 confirms this observation.
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It is now very apparent that the impulsive acoustic power mcede! describes what is
happening with the normalized energy in Figures 7.9 to 7.12, even though the impulsive
power spectra for these plots consist of many frequencies, as shown in Figures 6.5 and 6.6. In
fact, the plot in Figure 7.20 bears a good deal of resemblance to that shown in Figure 7.9a.

The main oscillation in the plots occurs at a frequency close to f, because
o(fy) I'Iimp(fo) will be much larger than for any other frequency due to the Gaussian aature of
the force magnitude. Thus, f, dominates the integration over all frequencies in Equation
(7.2.9). All of the graphs in Figures 7.9 to 7.12 appear to begin their oscillations at the same
normalized energy values as that for the one pulse force for the same area and time duration.
According to Equation (7.2.10), this value, for the special case we are considering in this
section, is o(f;) mmp(fo) + o(fy) I'Iimp(fl), when the space between pulses is zero and
appropriate f, and f, are chosen for each case. This value will not oscillate because the pulse
spacing will never change, but will depend on the variation in o(f) for each frequency in the

excitation force spectrum as force time duration is vasied.
S~ AR




CHAPTER 8
CONCLUSIONS

8.1. Summary and Conclusions

To properly calculate the total sound energy radiated by a structure via computer
simulation, the quantity must converge within the total sample time of the original
measurement. Ensuring that this is so is only possible by computing, in the time domain, the
total sound energy radiated for some of the forces. Then a judgement can be made on the point
of energy convergence for each type of force to be used for simulation of sound.

Results from the first study, the relationship of single pulse force time duration to
normalized energy radiated by the shell, exposed the fact that the calculation of energy is not
linear. The percentage of input mechanical energy acoustically radiated by the shell is found
to depend on how the forcing function spectrum interacted with the spectrum of the impulsive
acoustic power for the region of the shell being studied, and is not dependent, in general, on
the amount of mechanical encrgy input to the shell. For a frequency occurring at a large local
maximum in the impulsive acoustic power spectrum, normalized energy increases with
increasing pulse time duration. This is because the corresponding narrowing of the force
frequency bandwidth and increase in force spectrum magnitude around the central frequency
of the forcing function cause more input energy to be focused into the local maximum of the
impulsive acoustic power spectrum. Conversely, energy is focused away from a larger peak,
which occurred next to the small local maximum in the impulsive power spectrum, as pulse
time duration is increased for the other central frequency studied. Thus, if one is de<igning a
forcing function which will minimize sound radiation, the impulsive power spectrum must be
studied to determine if long or short pulse durations are needed for a particular central

frequency of the driver. Such subjective observations are much tougher to make for situations

where the behavior of the impulsive acoustic power spectrum is iict so obvious. Proposing a




method to make predictions quantitatively is left to recomendations for further work.

In the second study, varying the time spacing between pulses of a force with two
pulses caused fluctuations in the normalized energy radiated by the shell. The fluctuations
oscillate at the same frequency as the central frequency, f;, of the excitation force. Again, the
results can be predicted for simpler situations by simultaneously examining the force and
impulsive power spectra. Then a two pulse spacing which produces the least amount of : >und
raciation can be found and used when designing a forcing function for active cancellation. A
simple model using » impulsive acoustic power spectrum existing at only two frequencies,
one of them being the center frequency, f,, of the driving force, is sufficient for understanding
the basic variations observed in normalized energy results for force with two pulses of various
time spacings. Further development of this model, as well as a means for chosing coefficients
when o(f) Thinp(fo) # alfy) Tl p(f}), and predicting exact values of normalized energy is left
for further work.

8.2. Recomendations for Further Work

The first step in carrying on further work on this research would be to produce a
computer alogonthm that would accurately predict the results obtained in Chapter 7. Once
convergence of the total sound energy radiated by the shell is established for all forces to be
used, the total energy radiated could be calculated via Equation 6.4.2 and then normalized by
Equation 6.2.6. All frequencies in the impulsive acoustic power spectrum would be taken into
account, and no subjective determination of which two frequencies could accurately model
the normalized energy for a given situation would need to be made. Also, exploration of a
means to model the impulsive acoustic power spectrum with more than two frequencies, say
five or ten, but less than the entire spectrum is necessary.

This would save a great deal of time compared to the current method because the
impulsive power would only have to be calculated once. The force spectrum and its conjugate

would be multiplied by the impulsive power only once, instead of the 1024 (64 times 64)
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required to multiply the force by each of the two transfer functions. The parameter of intrest,
either time duration or two pulse time spacing, could be varied and then the normalized
energy calculated much more quickly. Another possibility is to include an option that would
search for the type of force which produced the lowest fraction of input energy radiated to the
farfield. This capability would then point out the force or forces which are correctly designed
for minimal sound radiation. Further work in this direction would fellow directly from the
work done in this thesis.

However, the next step would be more difficult. This step would be to try to
understand which initial conditions for the second pulse cause an increse in the normmalized
energy and which ones cause a decrease. For instance, it would be interesting to find a
correlation between the fluctuations shown in acoustic pressure, velocity, instantaneous
power, and the time integral of the instantaneous power, and the fluctuations in normalized
energy.

Finally, it is very desirable to understand why, in terms of the mechanics of the shell
structure and fluid - shell interaction, normalized energy varied the way it did in the results. It
is likely that this endeavor would lead to employing modal analysis techniques on the shell.

But further analysis in the time domain could also prove to be very useful.
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