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CHAPTER 1

INTRODUCTION

Interaction between a vibrating cylindrical shell and a surrounding fluid is of keen

interest to many acousticians working in structural acoustics. Much analysis has been done on

the scattering and radiation properties of such a system in the frequency domain. However,

these analyses rarely consider the shell - fluid interaction in the time domain. Hence, the main

objecive of this thesis is to examine energy radiated by a fluid loaded, point driven, finite

cylindrical shell in the time domain.

Due to the cost in both time and resources, relatively few measurements are available

for study in the time domain. Thus, transfer functions for the acoustic pressure and acoustic

velocity in the radial direction of the shell obtained via Nearfield Acoustical Holography were

provided for study by the Naval Research Laboratory of Washington, D. C. A Linear system

model and signal processing techniques were employed at Iowa State University to simulate

the acoustic pressure and normal acoustic velocity at the shell surface for numerous point

excitations. Then integration techniques were used to obtain the total energy radiated by the

shell for a given excitation. This quantity was then normalized by the amount of energy input

by the forcing function to yield the fraction of input energy radiated to the farfield. Along the

way, active acoustic intensity and impulsive power of the shell were examined as a means to

gain physical insight to variations in the percent of input energy radiated by the shell. The

work on this thesis began v ith the problem of implementing the linear system model on a new

computer system at Iowa State University.

Though acoustic pressure and velocity were recreated by using a linear system model

for the interaction bet.veen the shell and the fl-id, the calculation of norm lized energy

radiated to the farfield bv the forcing function producing this pressure and v,.!,-cit'v is net

linear. The idea that this quantity could be influenced in a w;ay that i'- not linear Ly varying the
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time duration of single excitation forces, as well as the time spacing between multiple shell

excitations, served as inspiration for the work performed in this thesis.

It is worth noting that performing the research via computer ciL-mulation and linear

system model techniques instead of actually performing al of the measurements on a fluid

loaded shell saved a great deal of time. Performing a measurement in a fluid loaded

environment and calculating all of the desired quantities for the entire shell can take up to

three or four days. A simulation, however, only requires about two hours of computer time.

Thus, obtaining the results in this thesis would have taken about five years longer if all of the

measurements were done in real life instead of by computer simulation. What's more,

facilities and equipment for performing the actual measurements is costly and only exists at a

few research facilities. Simulating the shell response requires only computer equipment that is

readily available at almost any facility.

One major goal of this thesis was to explain the relationship between the pulse time

duration of the forcing function and the normalized energy radiated by the shell. The second

major goal was to create a model for the behavior of the normalized energy radiated by the

shell when the spacing between multiple pulse forcing functions was varied. Overall, it was

desired to be able to design forcing functions to fit specific normalized energy prameters,

particularly, minimizing the normalized energy radiated by the shell.

Achieving these goals will aid in understanding actual physical phenomena which

occur inside cylindrical shells. Events that could be modeled by this analysis include

operation of a -,tor, opening and closing of valves, and rotation of a propulsion device.

Also, this analyis can be extrapolated to other physical systems which do not consist

of cylindrical shells. Almost any system with a periodic or repetitive excitation, such as

engine valves opening. can be thought of in temis of the analysis done in this thesis. Other

system that could he modeled include ventilation or air-conditicnin : ducts with fans, air

compressor valves, and even assembly line machines.



Chapter 2 develops the linear system model technique for the specific shell geometry

studied in this research. Assumptions used in employing a linear system model, as well as its

advantages and disadvantages are discussed.

Chapter 3 briefly describes the role of Nearfield Acoustical Holography and the

specific parameters for its use in this research.

Chapter 4 details the aspects of implementing fast Fourier transforms on the data

provided for this research. Specific concerns include proper reconstruction of the tr.sfer

function spectra provided for the work, filtering, and zeropadding.

Chapter 5 introduces the Gaussian time window force. Parameters and equations are

explained and developed for single and multiple pulse forces in both the time and frequency

domains. Proper force spectra for use in FFT algorithms and examples of the force in the time

domain are shown.

Chapter 6 explains how various quantities are calculated from the computer simulated

acoustic pressure and normal velocity. Quantities studied include normalized energy as a

function of single pulse time spacing and multiple pulse time spacing, acoustic intensity as a

function of frequency, and the impulsive sound power radiated by the shell as a funciton of

frequency.

Chapter 7 includes the results from two studies that were done. Normalized energy vs.

single pulse force time duration for four shell areas is explored first. Then the results from

varying multiple pulse time spacing for the same four areas are discussed. Physical insight to

the fluid - shell interaction is gained by studying the active intensity. Finally, models to

explain both sets of results are developed using the impulsive power spectrum.

Chapter 8 summarizes results, explains the conclusions, and makes recommendations

for further work. Some criteria for develping forcing functions that produce specific

normalized energy results are discussed, and reconmendations on how to dcvelop better

impulsive power spectrum models are made.



CHAPTER 2

LINEAR SYSTEM MODEL

Perhaps the most fundamental concept employed in this research is the use of a single

input - single output linear system model. The acoustic field around a fluid loaded, point

driven, finite cylindrical shell with spherical end caps is described via such a model. In a

linear system, a single input f(t) is operat--d upon by a transfer function h(-t) in order to

produce an output field quantity y(t). All three quantities may be thought of as either functions

of time or functions of frequency. In this research, a point driving force is operated on by the

fluid loaded cylindrical shell which produces, in turn, the field quantities of acoustic pressure

and velocity. A symbolic diagram of the linear system is shown in Figure 2. 1.

f(t)r- _ h(' ) 1 ylt)

Figure 2.1: A single input - single output linear system model

One important characteristic of such a system is that it adheres to the principle of

superposition. For example, presume a quantity y(t) is produced by the simultaneous

operation on two excitations, fI(t) and f2(t), by li(z). Assume further that if fI(t) and f2(t) were

operated on by the transfer function separately, the field quantities produced would be y1(t)

and v(t), respectively. In a linear system, y(t) would be equal to the algebraic sum ofy 1 (t) and

y A t).

A second important property of linear systems is time shift invariance. This means that
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if, for a given excitation f(t), the result is y(t), the y(t) is independent of when f~t) was applied

to the system. That is, the resulting field quantity will be the same whether the excitation is

applied today, tomorrow, or next week, except the result will be time shifted.

And finally, a linear system model can be described mathematically by a convolution

integral. When the input excitation, f(t) is operated on by the transfer function of the system,

h(,r), the response of the system, y(t) is calculated by

y(t) = Jih(t)f(t- t)d , (2.1.1)

the convolution integral in the time domain. According to the literature, the convolution

process can be carried out much more rapidly and efficiently as a simple multiplication if all

three system quantities are calculated as a function of frequency via the Fourier transform

integral. Equation (2.1.2),

H(f) =f h(T) e 2j rf -rd' (2.1.2)

is the form of the Fourier integral used to calculate the transfer function as a function of

frequency. For the purpose of clarity, h(t) will be referred to as the impulse response function

of the linear system and H(f) will be referred to as the transfer function, or frequency response

function for the system, although the terms are sometimes used interchangeably in the

literature.

Once the linear system response and the input excitation as functions of frequency,

Y(i) and F(f), respectively, are obtained via use of Equation (2.1.2), the convolution integral

in the time domain becomes,

Y(f) = H(f)F(f), (2.1.3)

an easy multiplication in the frequency domain. A desired field quantity can then be calculated

as a function of time via the inverse Fourier transform integral. In this research, the form
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shown below,

y(t) = f Y(f)e- 2 jftdt, (2.1.4)

was used for the inverse Fourier transform.

Describing the shell structu-e which these equations were performed on in this

research necessitates some slight modification of the linear system model notation. For

instance, excitation of the system may occur at almost any location on the shell. To allow for

this fact, all three system properties, whether written as functions of time or frequency, are

also written as functions of xo, the position on the shell where excitations are input. Further,

the operation of the impulse response on the input excitation, as well as the resulting acoustic

field quantity, are functions of where on the shell they are observed. The variable x is used to

denote this characteristic. Thus F(f, xo), H(f, xo, x) and Y(f, xo, x) represent the three system

components in the frequency domain and f(t, xo, x), h(x, xo, x), and y(t, xo, x) describe them in

the time domain. Figure 2.2 shows this idea in the time domain a little more clearly.

y(t, xo , x1 )

y(t, xo, x-)

h(t, x0, x) shell

shaker surface
forcing the

shell

Figure 2.2: Specific linear system model for the shell in this research
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In actual practice, the driving force as a function of time is known, or can he measured

or calculated, as can field quantities such as acoustic pressure or velocity. Then, their

frequency domain counterparts are calculated by Fast Fourier Transform (FFT) - the discrete,

computerized algorithm for performing Equation (2.1.2). Finally, Equation (2.1.3) can be

manipulated to obtain the transfer function,

Y(f, x0 , x)
H(f, x0, x) = F(f, X0) ' (2.1.5)

for the shell being studied. An inverse FFT - the discrete computerized method of performing

Equation (2.1.4) - can then be used to calculate the impulse response for the system,

h(t, x0 , x), if desired.

For ideal accuracy and ease of calculation of the transfer function , the shell should be

driven by a unit impulse forcing function (Tse et al. 53). The Dirac delta function, which will

be denoted 5(t, xo) for the described shell model, is such an impulse function (Bendat and

Piersol 15). According to the literature, the Dirac delta has a Fourier transform, denoted

5(f, X.), which is equal to one for all frequencies from minus infinity to infinity. This allows

Equation (2.1.5) to reduce to

H(f, xo, x) = Y(f, x0, x) (2.1.6)

for an excitation 5(t, x.).

In reality, it is not possible to create a mechanical device which can produce a 6(t, x. )

input on the shell. Some other impulsive force fo(t, xo) is used to create a response yo(t, xo , x)

for determination of the system transfer function using Equation (2.1.6). An excitation may be

considered sufficiently impulsive for use in Equation (2.1.6) if its total time duration is much

less than the period of any natural resonance frequency of the shell. Because little is usually

known about such aspects of shells before the initial detennination of H(f, x,. X. Equation

(2.1.5) is typically used with the original measurement force, fo(t, xo) ,nd the resulting



acoustic pressure or velocity, y0 (t, x o, x) inserted. Two frequency response functions, one for

acoustic velocity and one for acoustic pressure, were calculated via the linear system model

method for use in this research. In the remainder of this thesis, they are denoted as H(f, xo, x)

and Hp(f, x0, x), respectively. Further, the notation used in this paragraph for the forcing

function (subscript o) and its resulting response will be used only when referring to the

quantities used in the initial determination of the system transfer functions in the remainder of

this thesis.

By definition of a linear system and the calculations it facilitates, the acoustic pressure

or velocity for any synthetic force, Fsyn , is then computed by

Psyn(t, xo , x) = FFT- [H p(f, X , x)Fsyn(f, X)I , (2.1.7)

or

)V syn(t, x o, x) = FFT - 1 [H,(f, x,, x)Fsyn(f, xo)] , (2.1.8)

where the subscript p denotes the pressure transfer function, the subscript v denotes the

velocity transfer function, the subscript o denotes the point x where the force is applied, and

the subscript "syn" indicates that a quantity is simulated as a result of computer application of

a synthetic force. A primary advantage of the linear system model is that it -1lows acoustic

fields to be generated for numerous shell excitations while requiring only one initial

measurement to be performed on an actual fluid loaded, point driven shell. Due to the fact that

a computer simulation done by using Equations (2.1.7) and (2.1.8) is much faster than

performing a measurement, tremendous savings of time and resources is another major

advantage of the model. Finally, this method is much more convenient because only a few

facilities capable of producing such acoustic measurements exist.

An important limitation on the linear model does, however, exist. Because the

components of a given system used in Equation (2.1.5) exist only at a finite number of discrete
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frequencies in an actual measurement, the division of the response by input force is done

frequency by frequency. Specifically, this means that only frequencies where Fo(f, xo) exists

can be calculated for a desired transfer function. At all other frequencies, the force has a value

near zero, which would result in very inaccurate results at these frequencies for

H(p or v)(f , xo, x).

More specific information on the role of acoustical holography and FFTs in

implementation of the linear system model will follow.
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CIAPTER 3

ROLE OF NEARFIELD ACOUSTICAL HOLOGRAPHY (NAH)

Nearfield acoustical holography (NAH) is the method used to determine all unknown

desired quantities in the linear system model. Theory and implementation methods of NAH

are thoroughly discussed in the literature (Williams et al.), therefore only a brief overview of

how data was obtained for this research project will be given.

The NAH method requires simultaneous measurement of the driving force at x0 and

the acoustic pressure at many points x in the fluid. For a cylindrical geometry, a force

transducer produces a time history of the input force. At the same time, a robotic arm fitted

with a hydrophone, and a device for rotating the shell about its central axis measure the

acoustic pressure at each point of a predefined cylindrical measurement grid in the acoustic

nearfield of the fluid (Washburn et al.). In terms of the linear system model, fo(t, x.) is the

force measured by the transducer and yo(t, x0 , x) is the time record of the acoustic pressure

measured by the hydrophone at a large number of points x on the grid. Next, an FFT is

performed on f0(t, x0 ) and then on yo(t, x0 , x) at every point on the measurement surface. The

resulting pressure spectra, Yo(f, x., x), and the force spectrum Fo(f, xo), are then substituted

into Equatiun (2.1.5) for each point x to calculate the pressure transfer function, Hp(f, x0 , x),

frequency by frequency The frequency response function can then be subjected to an inverse

FFT algorithm to produce the pressure impulse response function, h p(r, x0, x), at each point x

in the measurement. In general, both functions are also a fiction of rm, where rm is the radial

distance of the hydrophone from the central axis of the cylinder. Also, rm must be greater than

ro, the radius of the shell, and less than r1, the radial distance from the axis which is

determined to be the linit of the acoustic nearfield. Thus, the frequency response function is

written as Hp(f, x0 , x, r,,,), and the impulse response is denoted as hp(T. X ,.x, rm).

Next the NAH method uses an inversion of the Helmholtz-Huygen integral for
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cylindrical geometry to produce a pressure transfer function at any desired radius rh such that

ro <_ rh . A symbolic diagram is given in Figure 3.1. Along with the Hp(f, x0, x, r11)

measurement
surface

i....... ........ ....... ........ : ::::: :: ::::
..... ..... ..... .... -- -- :-- - -: -""- : !:---: i i:5 .. ....... .,. .

. . . . . , _ " ' 1 . . . ' . .... . . . . . . . . . . . . . .... . . .. . . . . . ... .".

...... ...... -------::

Figure 3.1: Symbolic diagram of NAHl process

hologram, a velocity transfer function, denoted H.1(f, xo, x, rh), is calculatedl. The NAH

method only provides the velocity transfer function for velocity" inth,? radial (normal to the

shell surface) direction.
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The holograms for the rb equal to ro were provided by the Naval Research Laboratory

(NRL) in Washington, D. C. Pressure was measured at sixty-four locations in the axial

direction of the shell and sixty-four points around the circumference of the shell. For each of

the resulting 4096 spacial locations, 2048 time samples spaced forty microseconds apart were

recorded. The radius, r., of the shell was 5.54 cm, and the grid points were spaced 0.84 cm

apart in the axial direction of the shell. Further, the circumferential points were spaced evenly

throughout the 27c radian circumference of the shell. The cylindrical shell occupied space from

axial point nineteen to point forty-five, with eighteen extra points on each end.

Since Fo(f, xo) only existed from about 2kHz to 8kHz in the original measurement,

only 508 of the possible 2048 frequencies were stored for each point x in the holograms.

Explanations of the terms in the preceding paragraph, as well as reconstruction of a 2048 bin

spectrum for each x, will be discussed in the next chapter.
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CIIAPTER 4

FFT IMPLEMENTATION

4.1. Overview

As was stated in the previous section, transfer functions for acoustic pressure and

radial acoustic particle velocity consisting of sixty-four axial points, sixty-four

circumferential points, and 508 frequency bins at each of these 4096 (64x64) grid points, w~ere

obtained via the linear system model and NAH for a cylindrical shell. The initial ineasur,_ment

was done with a sampling rate of 25 kHz and 2048 time sample points, resulting in a forty

microsecond spacing between time samples for fo(t, x0 ) and yo(t, x0 , x). According to Fourier

transform theory, the resulting frequency response functions will contain 2048 frequencies

ranging from 0-25 kHz with a 12.207 Hz (Bracewell 189-94).
The number of meaningful frequencies in Hp(f, x0 , x) and Hv(f, xo, x) (the dependence

on r is now dropped from the notation, since all spectra will occur at r = ro from here on) is

reduced to 1024 because the Nyquist cutoff frequency, denoted fc, is 12.5 kHz (half the

sampling frequency). The Nyquist frequency has this effect because for a given sampling rate

and number of sample points, the sample values for a frequency f, will have the same

magnitude, and thus appear to be the same frequency to an FFT, as another frequency

f2 = 2fc - f, only the two frequencies will appear 180 degrees out of phase. This phenomenon

is called aliasing.

A simple analogy for aliasing is shown in Table 1. Because FFTs used in this research

compute spectra with complex values, the value of the frequency f, above, denoted simply a1

gi, can be thought of as having a real part and an imaginary part such that

g = cos27rfIt + isin2:tfIt. Sinflarly, g, = cos2'tft + isin 2rrft, where f, = 2fc - f. as in

the preceding paragraph. Sin(2irfit), sin[2-r(2f, - f,)t]. co,; 2,'tfit), ,id co21t(2fc - fI)t] values

for a time spacing of 40 microseconds and an arbitrary f, of 6000 Hz are given. Opposite
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signs and equal magnitudes on the sine terms and equal cosine terms in the table indicate that

the two signals are "he same frequency only 180 out of phase. Note that the line- magnitude

of the two g terms (the square root of the sum of the sine and cosine parts squared) is equal.

The main idea is that g, and g2 are complex conjugates of each other.

Table 1: Aliasing analogy values for f= 6 kHz and fc = 12.5 kHz

Time t, ptsec 0.0 40.0 80.0 120.0 160.0 200.0 240.0 280.0

cos(27tft) 1.0 0.063 -0.992 -0.187 0.968 0.309 -0.929 -0.426

cos[2wt2fc-f0t] 1.0 0.063 -0.992 -0.187 0.968 0.309 -0.929 -0 426

sin(2r,"ft) 0.0 0.998 0.125 -0.982 -0.249 0.951 0.368 -0.904

sin[27t(2fc-f)tJ 0.0 -0.998 -0.125 0.982 0.249 -0.951 -0.358 0.904

Because Fo(f, xo) only existed from 2 - 8 kHz, only these frequencies could be

accurately obtained for the two transfer functions using Equation (2.1.5). This is because

values of the initial driving force for frequencies outside this range are very close to zero, and

would cause large errors if divided into Yo(f, xo, x). As a result, only 508 meaningful

frequencies remain in the spectra, ranging from 1953.125 to 81,42.069 Hz for each

measurement point in the pressure and velocity holograms provided by NRL. Figures 4.1 and

4.2 show the magnitude of Hp(f., x0 , x) and H,(f, xo, x) for the driver point, xo (a'ial point 25,

circumferential point 33) on the shell. This point was chosen because it tends to dominate

sound radiation in the results.

4.2. Spectral Reconstruction

In order to multiply synthetic force spectra by the transfer function spectra for the

purpose of simulating sound radiation for the shell, the 508 point spectra provided must be

reconstructed into spectra of 2048 frequencies. Once again, the 2048 pmints are mandated by

the original measurement situation - all transfer functions and impulse response functions

must have the same number of points, with the same spacing, as the original measurement.
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Figure 4.2: Original 508 frequencies of H f, x, x) obtained from INRL
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When beginning this process, it is helpful to note soe properties of FFT aigorithins

as they are carried out by computer. Most FFTs take an input array of N (2048 in this research)

time points and return an array of N frequency coefficients. If both arrays are passed to the

FFT as complex values, the phase shift of each frequency of the returned array is also given.

Typically, the first bin of this returned array contains a zero hertz value, or DC offset, which

has no corresponding alias frequency. The next N/2 frequency bins contain ll frequencies up

to the Nyquist cutoff, f.. Thus, fc is placed in the N/2 + I bin of the array. Finally, the alias

frequencies are placed in bins N/2 + 2 to N with the relationship described in Equation (4.2. 1),

([H porv) (f, xo, X)i+ = [H(por.) (f, x0, x) ]* ) (i=l .,N/2-1) . (4.2.1)
pr) (pr)N-Pt+1 "

* Denotes complex conjugate.

The equation is a result of the fact that Fourier series theory presumes data given to an FFT

are periodic functions which repeat every N points (Bendat and Piersol 11-13). Further, each

value at a given bin i is the complex conjugate of the value at the bin Ni2 + i. Realizing these

facts about FFTs, the provided spectra were constructed into 2048 bin spectra for each -f the

4096 hologram points by first placing each of the 508 given frequencies in the proper slots

from zero hertz up to f.. This corresponds to bins 161. through 668 in a 2048 point spectra.
Finally, the alias frequencies are placed in bins 1382 through 1893, according to Equation

(4.2.1). The resulting spectra for the driver point are shown in Figures 4.3 and 4.4 for

comparison to Figures 4.1 and 4.2, respectively.

4.3. Need to Time Shift Data

When the calculation of the two transfer functions ,.as perforated, the starting time of

the force excitation, and thus the pressure and velocity of the system, was lost. Because this

staruing time appears as a phase hift in the frequency dcmain and is te .;an"_ for th,,:

inputforce as it is fer pressure or velocity, it iL-; dJFeJcd nut ".ihcr Equatinr. (2.1_5) is

performed. As a result, no start or end of the signl i apparent when the tramsfer functions are
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Figure 4.3: 2048 bin Hp(f, x0, x.), reconstructed via Equation (4.2.1) for the driver point, xo
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Figure 4.4: 2048 bin H,(f, x0, xo), reconstructed via Equation (4.2. 1) for the driver point, Xo
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again transformed to the time domain. Figure 4.5 demonstrates this fact for the pressure and

Figure 4.6 demonstrates for the velocity impulse response functions for the driver peint.

These are obtained by taking the inverse Fourier transform of Hp (f, xo, x) and Hv(f, xo, x).

3.0 106, 

2.0 06 - - Reconstructed Pressure Impulse Response

2.0 10
_1.0 10 6

1 -. 0 106

-2.0 106 I

-3.0 10 o If

0.0 20.0 40.0 60.0 80.0 100.0
Time, msecs

Figure 4.5: Pressure impulse response hp(T, xo, xo) without time shifting

It is now necessary to time shift the data by an appropriate amount. A 121 tap Kaiser-

Bessel filter was recommended by NRL and used in this project, which resulted in a time shift,

denoted to, equal to sixty-one time bins. Thus, to was 2.44 milliseconds. As will be

demonstrated later, this time shift is very important for applying synthetic forces to the data,

whether performing the convolution in time or the multiplication in frequency. Time shifting

the data is performed as in Equation (4.3.1),

- (2ntfto)

h(Por.)(T' X x) = FFT-1 [H 1(porv)(f, xo, x) • e . (4.3.1)

and can be (lone as a separate operation, but is usually incorporated in a filter. Tle results after

tune shifting are transformed to the time domain and shown in Figures 4.7 and 4.8.
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Figure 4.6: Velocity impulse response h,(-, xo, xo) without time shifting
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Figure 4.7: Pressure impulse response hp(, Xo, Xo,) time shifted sixty-one time bins
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Figure 4.8: Velocity impulse response h,(-t, x0 , xo ) time shifted sixty-one time bins

4.4. Importance of Spectral Symmetry

A simple demonstration is probably the most clear way to convey the importance of spectral

symmetry that was described in Equation (4.2.1). Figure 4.9 shows the error produced in the

pressure impulse response function when its corresponding spectrum is made symmetric

about the N/2 bin rather than the N/2 + 1 bin. This figure shows that moving the alias

frequencies by just one point causes error in the pressure impulse response with a maximum

magnitude of about three percent of the maximum correct impulse response. This error grows

to over ten percent when the second half of the spectra is made symmetric about the N/2 - 1,

only two frequency bins away from the correct bin. These errors seem large even though an

error of one or two bins in the point of symrnetry appears to be a minor mistake on the surface,

but an inverse FFT views all the alias frequencies in the second half of the spe .iru;n as having

incorrect magnitudes.
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Figure 4.9: Symmetric minus unsymmetric pressure impulse response function.

Figure4.10 shows that the unsymmetric pressure frequency response actually

produces an impulse response with a large imaginary portion when using complex valued

FFTs, as opposed to one with zero magnitude, which is produced by a symmetric Hp(f, X0, x).

This imaginary pan must be viewed as errant, since only real signals are possible in the time

domain. Its maximum amplitude is also roughly 3% of the maximum amplitude of the correct

impulse response function.

4.5. Filtering

Another very important step in the FT implementation of the linear system model is

filtering. Filtering multipiies every spectrum in the pressure and velocity transfer functions by

a smooth frequency domain function, or filter. The data provided by NRL was filtered by a

Kaiser-Bessel filter which had a central frequency of 5 kttz, a bandwidth of 6 kHz and a time

shift of 61 bins. This filter was also made symmetric about the Nyquist frequency in the same
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Figure 4.10: Imaginary part of pressure impulse response due to lack of spectral
symmetry (should be zero)

way as the data was. The central frequency and the bandwidth correspond to the 2-8 kHz

spectra provided in the data. Figure 4. 11 shows the filter used in this research.

The need for filtering is twofold. First of all, the filter incorporates the needed time

shift previously described. The second, and the most important reason for filtering, is

continuity of the data. Figures 4.3 and 4.4 show pressure and velocity spectra for the driver

point on the shell. Careful observation of these spectra indicates that they drop suddeniy to

zero at the edge of the spectra These sharp drops appear as discontinuities to the FFT

algorithm. Figure 4.12 shows that the filter removes these discontinuities by multiplying the

entire spectrum by a smooth, continuous function, namely the filter. Notice that the edges of

Hp(f, x,, x) shown in Figure 4.12 are brought gradually to zero, and that the outline matc,:es

that of the filter shown in Figure 4.11. The same filter was applied to all poins of the vbelcity

transfer function as well.

The inverse FFT algorithm relies on this continuity when returning a spectrum to the
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Figure 4:11: Kaiser-Bessel filter with 5 kHz central frequency, 6 kHz bandwidth, 61 bin

time shift, and symmetric about the Nyquist frequency
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Figure 4.12: Filtered pressure transfer function Hp(f, x0 , x) for the driver point, x.
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time domain (Bracewell 8-11). Combined with this assumption is the fact that the FFT uses a

linear combination of each bin in the frequency spectrum to produce a time domain

description. The result is that, depending on the si-e of the edge discontinuity compared to the

rest of the data, percent errors ranging from small to very large can be produced. Figure 4.13

shows the filtered minus the unfiltered pressure impulse response for the driving point of the

shell. Note that the maximum magnitude of the difference is about 10% of the maximum

amplitude of the filtered pressure impulse response shown in Figure 4.12.

2.0 10 ,

1.5 10' Filtered Minus T-Shift Pressure Impulse Response i

1.0 101
5.0 104

-0.0 10°0

5 -5.0 10' -
-I.0 10y

-2.0 105h --
0.0 20.0 40.0 60.0 80.0 100.0

Time, msecs

Figure 4.13: Filtered minus time shifted pressure impulse :esponse for the driver point

Comparison of Figure 4.14 and Figure 4.7 shows that the filtered pressure impulse

response has a more clearly defined starting point than the time shifted only counterpart. Most

of the difference in Figure 4.13 is a result of this feature.

4.6. Considerations for Zeropadding

The way in which the convolution integral. Equation (2.1.1). i:; implemented with

FEFIs requires zeropaddmg. Zeropadding is the process by which a signdl in the time domain
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Figure 4.14: Filtered pressure impulse response for the driver point of the shell

is made longer than its original length by placing zeros on the end of the signal. For this

research, both transfer function data at each point x in the holograms and the synthetic forces

were transformed to the time domain after the proper reconstruction and filtering was

performed. Then the signals were made twice as long by placing zeros in bins 2049 through

4096. Finally, both the transfer functions and the synthetic forces were transformed back to

the frequency domain for use in Equations (2.1.7) and (2.1.8).

Two main types of computer algorithms exist for the purpose of carrying out the

convolution integral shown in Equation (2.1.1) for discrete, finite data and force arrays. The

first is the linear, or sometimes referred to as the picket fence algorithm. The second type is

the circular convolution algorithm which, due to the nature of the FFT algorithm, is the type

of convolution actually performed when pressure and velocity are cdcuhated in the frequency

domain via Equations (2.1.7) and (2.1.8).

Suppose we have a discrete force array and a pressure transfer function array for a
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given point x, both containing only four data points in the time domain for the purpose of easy

illustration. Presume further that these arrays have values f1 , f-,, 3 , f4 and hpl, hp2, hp3 , hp4 ,

respectively. Then the pressure array, P1, P2, P3, PA4, resulting from the picket fence

convolution algorithm is given by Equations (4.6.1) to (4.6.5)

p1 = fl "hp 1, (4.6.1)

P2 = f h 2 +f 2 hpl, (4 3.2)

3= f1 h 3 +f 2 " h 2 +f 3
" hp1 , (4.6.3)

P4 = f hp4 + f2 
h p 3 + f 3 *h p 2 + f4 

h p
1 , (4.6.4)

or

pi= fn'hp(i-n+1) i= 1 toN (4.6.5)
n = n+1n~l

The resulting pressure array is also shown in Figure 4.15 for fI = 2, f, = 1, f3 = 3, f4 = 2, and

hp, = 1, hp2 = 2, hp3 = 1, hpa = 1, where * denotes convolution and N = 4 for Equation (4.6.5).

Resulting pressure array values are Pt = 2, P2 = 5, P3 = 7, P4 = 11, which are considered to be

the correct pressure values for this force and pressure impulse response in the time domain

(Bracewell 24-48).

If the same force and pressure impulse response function are convolved via the

circular convolution integral in their present form, the resulting pressure is quite different, and

incorrect. This is because the circular convolution presumes that the arrays are arranged in a

circular fashion, and uses all points in both the force and pressure impulse response arrays.

Equations (4.6.6) to (4.6.9),

P1 = f1 " hp + f2 - h, 4
+ f hp3

+ f hr 2 (4.6.6)
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Figure 4.15. Pictorial diagram of the picket fence convolution algorithm for N = 4

P = f I hp2 + f2 " hp + f3 "hp4 + f4 hp3 (4.6.7)

P3 = f1 hp3 +f 2 h 2 +f 3 " hp1 + f4 hp4 , (4.6.8)

= f1 " hp4 +f 2 " h 3 
+ f3 hp2 +f 4 hp , (4.6.9)

demonstrate this fact for N = 4. This idea is shown pictorially in Figure 4.16. The new result is

P1 = 10, P2 = 10, P3 = 9, P4 = 11. To better understand circular convolution, imagine the

transfer function circle being placed upside down on top of the force circle with f, and hpl

aligned. Equation (4.2.6) then multiplies all aligned quantities and sums the products to obtain

the first pressure value. Then the upside down pressure transfer function circle is' rotated one

position counter clockwise and the process is repeated. In this case, four iterations of this
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process were performed to obtain the pressure result shown in Figure 4.16. If, however, the

forcing function and the pressure transfer function are zeropadded, the correct result can be

obtained as showvn in Equations (4.6. 10) to (4.6.13)

pi = f I*h+f.h+f +-1 *h +5 f -h +±f7 - h, + f8 -h , (4.6. 10)

p 2 =f Ch +f,-h ,+f 'h + ,,h ,5 4 hp7 +fshp 6 +f p5f 7 hp4 +f8 'hP.' (4.6. 11)

P3 =f I.h, 3 + fZ . 2+ f3.-h, 1 + f 4 h 8 +±f5 -h, 7 + f 6 -h,6 + f 7. hi,5 + f5 h 4 , (4.6.12)

P4 = f I *h 4 +f2 h 3 +f3 * hp2 +f4 -hpI+ f5-h 8 + f6 .hP7 + f7 h, 6 + f8 h, 5 - (4.o. 13)

f3  f4h33P

Figure 4.16: Pictorial representation of the circular convolution algorithm for N = 4

Since f5 through fg and hp through h.8g are zero becituse they were extra -eros added on for

the purpose of zeropadding, Equations (4.6.10) to (4.6.13) reduce to be exactly, the same as
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Eqnations (4.6.1) to (4.6.4), respectively. This means that zeropadded arrays convolved via

circular convolution give the same result as non-zeropadded arrays convolved via picket fence

type convolution. Thus, the circular convolution can only be done correctly if the two a.-rays

to be convolved are zeropadded to at least twice their original length. Because circular time

domain convolution is the type represented by the multiplication in frequency domain of

Equations (2.1.7) and (2.1.8), all data and forces were inverse Fourier transformed to time,

zeropadded, and returned to frequency for further processing.
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CHAPTER 5

DESCRIPTION OF FORCES

5.1. Measured Force

In the initial measurement, only the time signal of the driving force, fo(t, x.) was

known. This measurement force was a chirp, consisting of a sine wave swept uniformly from

2000 Hz to 8000 Hz. The force time duration was only about 25% of the total acquisition

time, so the measurement contained a build up ard decay of the fluid loaded cylinder's

acoustic radiation as well as its structural vibration. An FF" was performed to obtain Fo(f, xc.)

for calculation of the pressure transfer function via the deconvolution process already

described.

5.2. Synthetic Forces

A Gaussian windowed cosine function was chosen as the synthetic force input to

simulate shell sound radiation. This force was chosen due to ease of computation and control

of time duration and frequency bandwidth. 'The Gaussian force consists of a single frequency

cosine wave windowed by a Gaussian exponential function. For a fcrce consisting of a single

Gaussian pulse, the analytic expressions in the time and frequency domains are shown in

Equations (5.2.1) and (5.2.2),

f~y~txo = os2rfo~ to l-rr t t t/ 2

-= cos [,2f(t-t,)Ie (5.2.1)

and

F2ynjf t.) = n 2 tef2  j  f to  [
Fsyef x,) = (c/2) e e + e (5.2.2)

The frequency of the cosine portion, also re:ferred to i,; the central frequenc; (in l!z), is

represented hy fo. The quantity to is a time delay at which the puke is centered, T is a con.tant

that is related to the time duration of a single puke, ind j --1. E.amnples of the Gaussian
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Figure 5.1: Example of the Gaussian window force with fo = 500 Hz, c = 0.0125, and
to = 0.04s a) in the time domain (top), and b) in the frequency domain (bottom)



32

force in time and frequency domains for a central frequency of 500 Hz are shown in Figure

5.1. For simplicity, the force has an amplitude of one unit in the time domain, although the

function could be scaled to any amplitude. Also, units are not important, since results of forces

are compared to one another. Only the relative change produced by forces is of interest, not

the value of individual results. In Figure 5.1b, only the first half of the spectrum required 'or

the FFTs is shown. All forces used for simulation of sound radiation were made symmetric

about the Nyquist cutoff frequency in the manner described in sections 4.2 and 4.4.

Gabor (434) relates the force time duration and frequency bandwidth to the constant t

via the uncertainty relations

At = t,.t/2, (5.2.3)

and

Af = (1/T) ..1/(2rt), (5.2.4)

where At is the force time duration and Af is the frequency bandwidth. Note that as t (tau) is

1.00 L ,,

S0.80,

0.80 . / ,;IncreasingTau

0.60'

0.40 , // a

/ / , ,

0.20

0.00 ... ,' -
0.0000 0.0200 0.0400 0.0600 0.0800 O. 10003

Time, secs

Figure 5.2: Gaussian force time window duration increases with tau
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Figure 5.3: Gaussian force frequency bandwidth decreases with increasing tau

increased the frequency bandwidth decreases while the force time duration increases. This

fact is pertinent in section 7.1 of the results. Figures 5.2 and 5.3 demonstrate this relationship.

Finally, the Gaussian force is easily modified to include multiple pulse forces

N

f5Yn(t
' xo) = cos [2rfo (t - to - (i- 1) s) I e , (5.2.5)

and
N-

Fsya~fXo) E /2)erjf [I.*+(i -1)s e-) (f- f°)'t +e (f + f.)t}
Fs x0) = , (/2) e' e + e ( ) (5.2.6)

i=1

where all parameters are the same as before, and s represents the space between successive

force pulses in seconds. The total number of pulses, N, is limited by the total sample time and

the tine duration of each pulse. Pulses may be spaced from zero seconds apart to as much as

will fit in the total sample time. In this research, all forces used in simulating acoustic

radiation were designed to be contained entirely within the original sample time of 83
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milliseconds (2048 times 40 microseconds). Only multiple pulse forces with uniform time

duration between pulses are calculated in the equations above. The equations could be easily

modified to include non-uniform spacing by removing the summation symbol and including a

different variable, such as t1 , t2, etc., for each successive pulse. Also note that the force has

analytical descriptions in both the time and frequency domain. Either may be used to calculate

the desired force, and then the force can be transformed to time or frequency by FFTs with

negligible error. However, it is recommended that a force be created in the frequency domain

for use in sound simulation via Equations (2.1.7) and (2.1.8) in the time domain to make sure

it decays within the 83 milliseconds of the original time sample. Further, only a version of the

time domain force provided by Gabor was used in this thesis. The frequency domain

description was derived from the time domain description using Fourier transform techniques

( Bracewell 98-120). This section concludes with examples of single and multiple pulse forces

shown in the time domain for two different pulse spacings by Figures 5.4 and 5.5.
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0.60.t - 4

0.20-

02L "VP- -

-0.60L ,I

-1.00'

0.0000 0.0200 0.0400 0.0600 0.0800 0.1000
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Figure 5.4: A multiple pulse Gaussian time force with zero seconds between pulses:
fo = 500 Hz, s = 0.0 seconds. T = 0.01, and t. = 0.02 seconds



35

1.00

0.60 L 1 1

-0.20 
-

-0.60 I'

-1.00'
0.0000 0.0207 0.0415 0.0622 0.0830

Time, secs

Figure 5.5: A multiple pulse Gaussian time force with 0.02 seconds between pulses;
fo = 500 Hz, s = 0.02 seconds, -t = 0.01, and to = 0.02 seconds



36

CIIAPTER 6

CALCULATED QUANTITIES

6.1. Overview

Applying a synthetic force to the entire shell produces enormous amounts of acoustic

data. For each applied force there are 64 axial and 64 circumferential spatial locations which

have 2048 time steps for both the acoustic pressure and the normal acoustic velocity. One

possible means of viewing so much data is animation. Another method could be to view a

series of snapshots of the data in time. Neither of these methods, however, are adequate for

presentation in a thesis. Thus, total energy radiated by the shell was the means chosen to best

show all of the data for the entire shell. Calculation of this quantity and some other quantities

useful in explaining the results will be discussed in this chapter.

6.2. Normalized Energy

Total energy of the shell proved to be a very valuable means to analyze the results for

the entire shell. To more fully understand this quantity, it is helpful to look at a fundamental

power balance for the situation as presented by Mann et. al. (1661). The total change in energy

of a given volume V can be represented by an integral of the instantaneous intensity over any

surface S enclosing the volume, which is stated in integral form as

atfff [E(t, x)kif + E(t, x)P0 t] dV = -f f1i(t, x)dS, (6.2.1)

where E(t, X)kin is the kin,.tic energy, E(t, x)pot is the potential energy, and Ii(t,x) is the

instantaneous acoustic intensity normal to the surface S where S is the surface enclosing the

volume V. Thus, calculating the right hand side of Equation (6.2.1) provides the total energy

leaving the shell at an instant. S is designated as the hologram surface where the acoustic

pressure and normal acoustic velocity transfer functions exist.

Because all synthetic forces are now applied at the same point, the x0 dependence is
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removed from the notation in further equations. Then the instantaneous acoustic intensity

normal to the shell is provided by

Ii(t, 0, z) = p(t, 0, z) -v(t, 0, z), (6.2.2)

where p(t, 0, z) is the acoustic pressure given by Equation (2.1.7), and v(t, 0, z) is the normal

acoustic velocity given by Equation (2.1.8), with the dependence on x. dropped from the

notation. The general field point x in Eqns. (2.1.7) and (2.1.8) is now given by the coordinates

p and z to denote circumferential and axial dependence, respectively.

Second, an intermediate quantity called instantaneous acoustic power, denoted fIi(t),

is calculated for the whole shell by

z7=L 02=2 n

11(t) = f f Ii(t, 0, z)dodz, (6.2.3)
z' 0= 0,--0

where the limits zI = 0 and z2 = L represent the entire 64 axial points in the pressure and

velocity holograms, and the limits 01 = 0 and 02 = 2-n represent the entire 64 circumferential

points in the holograms. It is useful to note that the instantaneous power can be calculated for

any z1 , zi, 01, and 02 within the 64 by 64 point measurement hologram. This fact will be

utilized in the results section. An example of the instantaneous power for the entire shell is

given in Figure 6.1 a for a one pulse Gaussian synthetic force. The most important feature of

this plot is that power is alternately positive and negative. The positive values signify that the

shell is radiating energy into the fluid and negative values -;gnify that the shell is absorbing

energy form the fluid. Thus, sound is being radiated by the shell to the fluid and being

reabsorbed by the shell from the fluid

Third, the total energ-y leaving the shell via sound radiation is obtained by

I

E(t) = 1li(T)dT. (6.2,4)

where Et) represents the total energy which has been transferred from the shell to the fluid up



38

0 1

4

0-.0 io0,

-2. 10
-3.0 105r,-

0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040
Time, secs

8.0 i01

7. 0 1i0'

6.0 10"

5.0 10

S4.0 105'

3.0 1 0-13

2.0 10 4
1.0 1

0.0 100::
0.00 0.01 0.02 0.03 0.04 0.05 0.06

Time, secs

Figure 6. 1: Instantaneous power and total energy radiated fnr the entire shell produced hy
a single puke Gaussiani force with fo. = 3MS-6 Hz, 0.01. and
to = 0.0 1seconids



39

to this time. An example of total radiated energy for the entire shell is shown in Figure 6. l b.

Note that total energy fluctuates and then finally converges at tc . Thus, E(tc) represents the

total energy radiated by the shell for this particular pulse. A second example of total radiated

energy is shown in Figure 6.2, but in this instance E(tc) is never reached because the radiated

energy does not converge within 83 m-illiseconds. Only energies that converge at a distinct t,

as pointed out in Figure 6. 1b are reported in this research. It is important to notice that the

quantities calculated in Equations (4.2.2) to (4.2.4) could have been calculated in the

frequency domain as well, but then the existence of t. could not be observed.

2.0 106[ -- _, _

1.6 106

-J

! 6r

= 8.0 oN-

4.0 101-

0.0 10 °

0.00 0.02 0.05 0.07 O.C)
Time, secs

Figure 6.2: Total energy radiated by the entire shell when driven by a one pulse Gaussian
force with fo = 2966.3 Hz, t = 0.02, and to = 0.04 seconds

The fourth step in computing normalized energy is performed. Namely, the total

mechanical energy input by the iynthetic driving force is computed by

E = [f(t,00, z) -v(t, 6 07)] dt dA, (6.2.5)
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where E. is the total input mechanical energy, and f(t, 4 o, zo) is the force at the driver point.

The resulting shell velocity at the driver point is given by v(t, 00, z.), which, from the

boundary condititions, must be equal to the normal acoustic velocity. Finally, dA represents

the differential area of the driver point.

Finally, the normalized energy radiated by the shell is the quotient

E(t )
EN = E n , (6.2.6)

where EN is the fraction of the total energy input by the driving force that is radiated as sound.

The need to compute this quantity is clearly seen by comparing an example of the results that

is not normalized with an example of the input mechanical energy . Figures 6.3 and 6.4 show

2.5 10' , -hii
2010'

1.5 105

Z.31.0 ' 4 '
I 1

I5.0 104

0.0 100 -

0.000 0.002 0.004 0.006 0.008 0.010 0.012 0.014
Two Pulse Time Spacing, secs

Figure 6.3: Total energy, E(tc), radiated vs.two pulse force time separation for the entire
shell resulting from driving forces with f. = 4785.2 Hz, t, = 0.0125 seconds,
and t = 0.005 seconds

such examples. Note that while the total energy radiated. E(tc., varies as a function of the ime

separation of two pulses, so does the input mechanical energy. Thus, it is not po.,sible to

determine if an increase in radiated energy occurred because of the interaction between pulses
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Figure 6.4: Input mechanical energy, Ein, vs.two pulse force time separation resulting from
driving forces with f. = 4785.2 Hz, t. = 0.0125 seconds, and -t = 0.005 seconds

or because of a change in the amount of input mechanical energy. Thus, normalized energy is

more significant than simply reporting the radiated energy E(tc) because it incorporates the

amount of energy input to the system as well as the amount radiated. A larger value of E(t c )

means only that more sound was radiated, while a larger value of EN means that, for a given

amount of input energy, a greater percentage of that energy was radiated by the shell as sound.

6.3. Acoustic Intensity

Another quantity of interest that is used to help explain some of the results presented

in this thesis is active acoustic intensity. This quantity represents the time integral of the

instantaneous acoustic intensity normal to the shell boundary, in Equation (6.2.2). However,

the active acoustic intensity is calculated in the frequency domain via
2f,

I(0, z) = f { [F,,(f)Ho(f, , z)J,[,. F .,(f)Hv:(f. 0. z)] (If, (63.1)

where Fsnif) is the synthetic forcing function at the driver as a function of frequency, Re
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denotes the real part of the complex frequency domain product, H p (f, 0, z) is the pressure

transfer function, and H,(f, 0, z) is the normal velocity transfer function.

6.4. Impulsive Acoustic Power

The final quantity that is used to explain results, is the impulsive acoustic power.

Impulsive acoustic power is defined in this research -

2Re {H (f, 0, z)- Hv *(f, p, z)} ddz, (5.4.1)

a function of frequency. Impulsive acoustic power is best thought of as the time average at

each frequency of the energy per unit area radiated by a purely impulsive force. A purely

impulsive force has an amplitude of unity for every frequency. Impulsive acoustic power,

imp, similar to instantaneous power, can be computed for any z 1, z2 , 01, and 02 ef the

hologram surface data provided by NRL. This represents the sound power radiated from a

particular area of the shell for an impulsive force. A major difference, however, is that

impulsive acoustic power is a function of frequency, while instantaneous power is a function

of time.

Total energy radiated by the entire shell up to 83 milliseconds (the total sample time)

when excited by a force F(f) is related to the impulsive acoustic power by

Etot = [F(f) ' F*(f)] .imp (f)df, (6.4.2)

if the limits in Equation (6.4.1) include the entire surface area of the shell. Actually, the

integration limits used in this research were 0 kHz and 25 kH; because of the sampling time

and other parameters discussed in Chapter 4. Recall that when the total energy radiated by the

shell converges, Equation (6.2.4) yields E(tc).

Impulsive power was computed for four areas of the shell. The first area was the entire

shell, which was approximated -as an integration over all 04 axial and 64 circumferential
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points. The second area was a small sector around the driver point corresponding to

integration from axial points 24 to point 26 and circurnferential points 32 to 34, and is referred

to as the driver area. The end of the shell nearest the driver was the third area of integration.

Axial points 18 to 20 and circumferential points 1 to 64 comprised this area, which is referred

to as the driver end area. Finally, the impulsive power due to the end of the shell farthest from

the driver was computed. The integration was performed over axial points 44 to 46 and

circumferential points 1 to 64 for this region and will be referred to as the non-driver end area

of the shell. Figures 6.5 and 6.6 show the Impulsive power for the four areas described. These

plots will be very important in explaining the first section of results. The three frequencies

used in the explanation, 2966.3 Hz, 3808.6 Hz, and 4785.2 Hz, are pointed out on the plots.

Finally, all four plots are shown in linear and not logarithmic scale because the impulsive

power is negative for some frequencies in three of the four areas. Such an area actually

absorbs sound power of that frequency instead of radiating sound power.
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CHAPTER 7

RESULTS AND DISCUSSION

7.1. Normalized Energy vs. Pulse Time Duration

7.1.1. Precursory

In an earlier paper (Mann et al.), it was concluded that the percent of input energy

radiated as sound power for a fluid loaded, point driven, cylindrical shell increased as force

time duration of a one pulse Gaussian force, increased. It appeared, however, that this

conclusion was incorrect due to the very specific type of frequencies studied. It was decided

that an insufficient number of frequencies of different types were studied to support the

conclusion. Therefore, the study in this thesis was done to test the earlier conclusion.

Three frequencies, 2966.3 Hz, 3808.6 Hz, and 4785.2 Hz were chosen for study. The

first two were chosen for duplication of the earlier results. The first, 2966.3 Hz, was reported

to be a very resonant frequency of the shell by NRL, while the second was concluded to be a

very acoustically radiant frequency (Mann et al. 1663). Finally, 4785.2 Hz was chosen since it

occurred amidst a group of several local maxima in the impulsive power spectrum for the

entire shell (look back to Figure 6.5a) and because it was reported to be both structurally

resonant and acoustically radiant, though not as radiant as 3808.6 Hz, by NRL.

Normalized energy as a function of single pulse time duration was calculated for each

of the three frequencies and each of the four shell areas, r,.sulting in a total of twelve sets of

results. The normalized energy vs. single pulse time duration for each area of interest was

obtained by first calculating normalized energy for a synthetic force of short time duration,

then calculating it again for a force of increased time duration. This process was repeated until

increasing the parameter -r caused the force time duration to be so long that the energy did not

converge in the 83 milliseconds available for time domain viewing. The following sections

describe the results and use the impulsive power spectra to explain the results.
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7.1.2 Results and Discussion

Figures 7.1 and 7.2 present te results for driving forces with a single Gaussian pulse,

and with f. = 2966.3 Hz and to = 0.04 second- for the four shell areas described earlier. The

pulse time duration variable 'r was varied from 0.0004 to 0.01 seconds. A lower limit of

0.0004 seconds was required in order to keep the driving force frequency spectrum bandwidth

within the 2-8 kHz range of the data, while the upper limit of 0.01 seconds was the ma-imum

-z for which the normalized energy converged for this central driving frequency (2966.3 Hz).

In Figure 7. la, the fraction of energy first decreases, and then increases steadily from a

minimum as pulse time duration is increased. Although the results presented here are in

agreement with those in the paper by Mann et. al., referred to earlier, for equal values of -r

compared. However , the general trend predicted is contradicted by the extra values studied in

this thesis.

Some insight into why an increase in input energy may not necessarily increase

radiated energy is gained by examining the three partial shell areas. Energy radiated by the

driver area, Fig. 7.1b, as well as the non-driver end area, Fig. 7.2b, steadily increases with

force time duration while the driver end area absorbs more and more energy. This absorption

is evidenced by the negative values for normalized energy radiated. If absorption is increased

with increasing - for this area of the shell, there may be other areas which absorb as well as

other shell areas which radiate. The net result for the whole shell, as pointed out in

Figure 7.1a, is that increases in absorption by such areas as the driver end was greater than

increases in radiation by the driver end and other radiating areas until a ' of 0.002 sec. is

reached, then increases in radiation take over.
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Figures 7.3 and 7.4 present the results for single pulse driving forces with a central

frequency of f. = 3808.6 Hz and a starting time delay of to = 0.04 seconds for all four shell

areas. For this frequency, T was varied from 0.0005 to 0.02 seconds. Again, the lower limit

was required to maintain force frequency spectrum bandwidth within the 2-8 kHz r2ige,

while the upper limit was the maximum t for which radiated normalized energy converged.

In this case, the fraction of input energy radiated by the entire shell increases steadily

with force time duration, as does that radiated by the driver area only. This time, however,

energy radiated by the non-driver end increases sharply up to a c of 0.004 and then decreases

as -c is increased to 0.02. The driver end also has a different behavior. For smaller time

durations, radiation increases steadily. But as the parameter tau is increased, the radiation

from the driver end reaches a maximum, then begins to decrease until "t reaches about 0.005.

After that, the driver end area absorbs an increasing fraction of the input energy as time

duration is increased.

At this point in the experiment, it was expected that the normalized energy radiated by

the whole shell would increase with longer time duration for a central driving frequency of

4785.2 Hz as well. However, as Figure 7.5a shows, just the opposite occurred. Normalized

energy decreases, sharply at first and then more steadily, with increasing pulse time duration.

The fraction of energy radiated by the driver area of the shell first increases sharply, then

decreases somewhat, and finally increases slowly with increasing "r. Both ends of the shell,

radiate increasing percentages of the input energy as time duration is made larger, as shown in

Figure 7.6.

For both the 2966.3 Hz and 3808.6 Hz dr~ving forces, it appears that the normalized

energy for the whole shell is dominated by what is occurring at the driver area of the shell. For

4785.2 Hz, however, the driver area and entire shell area have very different behaviors.

What's more, the energy radiated by the shell did not necessarily correspond to the activity on

either end of the shell ends for any of the three driving frequencies.
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This fact is somewhat peculiar because some discontinuities occur on the shell in these areas

that are often expected to radiate large amounts of energy (Smith 1072).

These facts, as well as the other complex behaviors noted in this section, at first

appeared inexplicable from the normalized energy data obtained. But the very different

behaviors of each of the shell areas was similar to the behavior of the plots of impulsive power

spectra shown in the previous chapter. Therefore, impulsive power spectra will be compared

to force spectra in the next section in order to explain the results.

7.1.3. Comparison of Force and Impulsive Power Spectra

Analysis of the impulsive power spectrum for the entire shell, shown in Figure 6.5a,

revealed that both the 2966.3 Hz and 3808.6 Hz frequencies are very large local radiation

maxima, as compared to the rest of the spectrum, for the entire shell. The 4785.2 Hz

frequency, conversely, is amid four much smaller radiation peaks.

Further analysis shows that, for driver frequencies situated at local maxima in the

impulsive power spectrum, energy is focused into these radiation peaks with increasing pulse

time duration. This is because the frequency bandwidth is decreased while the magnitude of

the force spectrum at the central frequency is increased as the pulse time duration, "r, is

increased. This idea is shown more clearly in Figure 7.7 for a blown up portion of the

spectrum shown in Figure 6.5a and force spectra for several pulse time durations.

On the other hand, the focus of energy into a narrower and narrower bandwidth causes

a lesser quantity of normalized energy to be radiated by the shell for a driving frequency of

4785.2 Hz. This time, a blow up of the spectrum in Figure 6.5a reveals that as energy is

focused into 4785.2 Hz, it is drawn away from the largest radiation peak of the four local

peaks. The peak of interest is centered at approximately 4960 Hz, is about three times larger

than any of the other three local maima, and thus dominatcs the radiation.
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Similar observations are possible for the other results presented in this section. The

pattern of normalized energy radiated or absorbed may be explained by examining the

impulsive power spectrum for the desired area near the frequency of interest. In some

instances, however, predicting a result is not as qualitatively obvious as the two cases

expounded upon in this section. A quantitative resolution of this problem is left to further

work.

A major consequence of this analysis is that no general relationship exists betv,-'en

force time duration and the fraction of input energy radiated to the farfield of the fluid. Thus,

to achieve minimization of radiated energy, the impulsive power spectrum must be examined

to determine the relationship between percent of input energy radiated and pulse time duration

for each individual driving frequency. If a qualitative determination is not possible, the

analysis can still be done in the time domain.

7.2. Normalized Energy vs. Two Pulse Time Spacing

7.2.1. Precursory

After relationship between pulse time duration and shell radiation was determined, it

was suspected that including additional pulses to the forcing function might have a sig~iificant

effect on the normalized energy radiated as well. Specifically, multiple pulses might lead to

active sound cancellation for the shell, depending on the initial conditions at the time

additional driving pulses are applied to the shell. Further, it was desired to know which initial

conditions for additional pulses resulted in active sound cancellation.

Only two of the previous three frequencies, 3808.6 Hz and 4785.2 Hz, were chosen for

this analysis. The major reason for this is that a 2966.3 Hz driver frequency causes the shell to

vibrate much longer than the other frequencies. Therefore, it was not possible to include more

than one individual pulse and still attain convergence in the normalized energy. Also, it was

desired to include both types of frequencies described and used in section 7.1. One frequency

ocurring at a laige local maximum of the impulsive acoustic power spectrum, and another not
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uccuring at a large maximum were used in the multiple pulse tuine spacing study.

To address all of the possible initial conditions, it was decided to start with a pulse

time spacing of s = 0.0 seconds, and increase the spacing one time bin (40 psec) at a time until

the maximum spacing at which convergence of the normalized energy was achieved. Some

initial experiments with the normalized energy revealed that only forces with two pulses were

feasible for shell excitation in order to attain normalized energy convergence for a two pulse

time spacing of approximately s ; 0.01 seconds for both Gaussian force central frequencies.

A pulse time duration parameter, -, of 0.005 seconds was chosen for both central driving

frequencies for the purpose of convergence as well. Further, an initial driving force time delay

of to = 0.0125 seconds was required for both the 4785.2 Hz and the 3808.6 Hz experiments to

accommodate convergence requirements.

The results were obtained in the same fashion as those for the time duration

experiment, only in this case the spacing between the two pulses was the variable. Reviewing

quickly, the normalized energy value for a two pulse driver force, much like that in Figure 5.4,

was calculated. Then the spacing was increased one time bin to 40 microseconds and

normalized energy was calculated again and plotted as a function of s (time spacing). This

process was repeated over and over until normalized energy from a driver force consisting of

two distinct pulses, similar tu Figure 5.5, was achieved. The process was continued until the

maximum pulse separation for which the normalized energy converged was achieved. Results

were calculated for the same four shell areas, the whole shell, the driver only, the driver end,

and the non - driver end, as the pulse time duration results.

72.2. Results and Discussion

Figures 7.9 and 7.10 plot normalized energy vs. two pulse time separation for two

pulse driving forces with a central frequency of 3808.6 Hz and a pulse time duration of

= 0 005 seconds for the four areas of the shell. Figures 7.11 and 7.12 p!ot normalized energy
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vs. two pulse time separation for forces with the same parameters except with a central

frequency of 4785.2 Hz. In all eight of these plots, the normalized energy for a two pulse time

spacing of zero seconds is the same as that for a one pulse force with -t = 0.005 seconds and

the same central frequency. This is because a two pulse force with zero space between ulses

is really the same as a one pulse force with twice the amplitude. Normalized energy levels for

one pulse forces of the same central frequency and time duration as the two pulse force were

read from Figures 7.3 through 7.6 for each shell area and are plotted in Figures 7.9 through

7.12 for the corresponding shell area. The one pulse normalized energy is a thick straight

horizontal line pointed out in each of the plots. Plotting this value on the same graph as the

normalized energy vs. two pulse time spacing points out that the fraction of input energy

radiated to the farfield is much less than one pulse for some spacings and much more for

others.

Another observation pertaining to all eight plots in this section is that the fluctuations

in normalized energy values have a definite period as the two pulse time spacing is increased.

Namely, they oscillate in a nearly sinusoidal (or cosinusoidal) fashion. The frequency of

oscillation is the same frequency as the central frequency of the excitation force. An

explanation for this fact will be given in section 7.2.4.

Much like the results for single pulse forces, the results for two pulse forces varied for

different regions of the shell. For forces with a central frequency of 3808.6 Hz, normalized

energy values for the entire shell were as much as one and a half times that of a single pulse

and as little as one third that of a single pulse. Normalized energy values greater than that for

a one pulse force indicate that the two pulses are acting together to increase the fraction of

input energy radiated by the shell. When normalized energy values are less than that for a

single pulse, the second pulse is actively cancelling out energy that would have been radiated

by the first pulse.
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A key feature of Figure 7.9a is that normalized energy is reduced by as much as fifty

percent for certain two pulse time separations. Figure 7.9b shows that oscillation of the

normalized energy for the driver area decays to the normalized energy of one pu!he and then

begins to build up again. This fact would seem to indicate the presence of a beat frequency in

the oscillation of the normalized energy in addition to the oscillation which matches the

central frequency of the driving forces. Beat frequencies occur to a lesser degree in the other

seven plots as well. Figure 7.10a is interesting because normalized energy values for the

driver end of the shell become negetive for some two pulse time spacings as the pulse

separation, s, is increased. This means that sound energy is alternately being radiated and then

absorbed by this area of the shell.

When the central frequency of two pulse excitation forces was increased to 4785.2 Hz,

the amount of active cancellation of sound energy obained for the entire shell, as shown in

Figure 7.11a, was much less than that achieved for 3808.6 Hz. Only at a two pulse spacing of

s = 1.2 milliseconds was the normalized sound energy decreased by as much as a third. The

normalized energy seemed to oscillate only slightly from the one pulse value as two pulse

time spacing was increased. Oscillations in normalized energy for the driver area remained

greater than the normalized energy of one pulse for all but two values of s. Figure 7.1 lb shows

than only one of these spacings, s = 120.0 microseconds, resulted in a normalized energy

value of less than half the one pulse value for the driver area. Large cancellations are observed

for both ends of the shell, as shown in Figure 7.12. However, the normalized energy radiated

by the entire shell seemed to be dominated by the driver area. Evidence of this fact is the small

variation in normalized energy for both the entire shell and the driver area.

7.2.3. A Look At Active Intensity

Active intensity is a tool used to gain physical insight when dealing with radiating

structures. Since the amount of active cancellation obtained for the entire shell was quite
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different for the two frequencies of section 7.2.2, the presence of a major difference in the

physical behavior of the shell was evident. Active intensity proved quite useful in pointing out

this difference.

Figures 7.13, 7.14, 7.16, and 7.17 show the active intensity, I(0,z), for the entire shell

when driven by various forces with two pulses. Figures 7.15 and 7.18 show differences in the

active intensity. Axial points z = 19 to z = 45 and circumferential points 0 = 1 to 0 = 64 of the

measurement surface are plotted since they correspond to the shell surface. Other points in the

measurement surface outside the shell are not displayed because the amount of the sound

radiated by the shell leaving through these points is negligible. The coordinates of the driver

point, p = 33, z = 25, are pointed out on all plots in this section. Active intensity and

difference in active intensity values are rep- "nted by 100 different shades of grey in the

plots. Values are scaled so that the largest value is black and the smallest value is white.

Fi3"ure 7.13 displays the active intensity for a driving force with two pulses and

fo = 380, 6 Hz, to = 0.0125 seconds, T = 0.005 seconds, and s = 0.0 seconds. This spacing

correspcnids to a point where normalized energy radiated is equal to the value for one pulse in

Figure '7 9a. Since active intensity values range from positive to negative, black regions

represeni places where a large amount of sound energy is exiting the shell and white areas

represen. areas where a large amount of energy is entering the shell. Thus, black areas

represer" areas radiating sound while white areas represent areas absorbing sound. The color

of grey '- the strip along the left edge of the plot represents an area which is neither radiating

nor absc,- ing energy. De aspect of this plot that is most important is that a large percentage

of the arca of the shell, particulaily over and near the driver is radiating large amounts of

sound. Meanwhile, only a small portion of the shell is absorbing sound in large quant-ties.

Two areas, one in the top center and one in the bottom center of the plot, appear to be radiating

or absorbing energy in much smaller quantities compared to the other areas previously noted.

In Figure 7.14, active intensity is plotted for a force consisting of two pu! es where L'I
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force parameters are the same except s = 0.00012 seconds. This force spacing corresponds to

the first dip in Figure 7.9a which has a normalized energy value that is below 0.004,

significantly less than the value for a single pulse. Radiation and absorption patterns in this

plot are almost exactly the same as those in Figure 7.13.

Plotted in Figure 7.15 is the active intensity for a pulse spacing with maximum EN

minus that for a spacing which results in a large active cancellation. The subtraction was done

point by point. In this plot, black represents areas where this difference is large and positive

while white areas represent places where the difference is large and negative. Thus black

regions in the plot represent shell areas where the force with s = 0.0 seconds caused the shell

to radiate much more sound than the force with s = 0.00012 seconds. White regions show

where the force with s = 0.0 seconds caused the shell to absorb more energy than the force

with s = 0.00012 seconds. Areas with the same grey coloring described in Figure 7.13 show

little change when the spacing is increased. The most interesting feature of this plot is that the

same areas which radiated or absorbed a lot of sound for s = 0.0 showed the largest difference

in amplitude when the spacing was increased to 0.00012 seconds. This fact is evidenced by

the similarity in appearance between all three plots. Figure 7.15 indicates, therefore, that a two

pulse time spacing of 0.00012 seconds caused a decrease in the percentage of sound radiated

by the shell by decreasing the amplitude of radiation, or absorption, in the areas of the shell

where they are largest.

Figures 7.16 to 7.18 show the same comparison as that done in Figures 7.13 to 7.15,

only this time a central frequency of fo = 4785.2 Hz was used. All other parameters were the

same for Figures 7.13 and 7.16. and Figures 7.15 and 7.17, respectively. Again, the spacing

s = 0.00012 seconds corresponded to a normalized energy value in Figure 7.11 a that was

below that for one pulse. In these plots, however, only three areas on and near the driver point

appear to be radiating sound in significant amounts. A few other areas throughout the shell

appear to be absorbing energy in significant quantities, but most of the shell is absorbing or
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fo =4785.2 Hz, to = 0.012.5 seconds, T = 0.005 seconds, and s = 0.0 seconds
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radiating sound in much smaller quantities than the white or black areas shown in the plots.

Once again, all three plots have a very similar appearance, idicating that only amplitudes

were changed and not the position where radiation or absorption occur.

The most significant difference noticed when the two sets of plots are compared is that

when the shell is driven by forces with fo = 3808.6 Hz, much more variation in absorption and

radiation levels is observed than for forces with fo = 4785.2 Hz. Therefore, it is concluded that

forces with a center frequency of 3808.6 Hz radiate a higher percentage of input energy

because they cause more areas of the shell to radiate than those with a center frequency of

4785.2 T-Hz. Also, a larger difference in the amount of normalized energy radiated is obserable

when two pulse time spacing is varied for forces with fo = 3808.6 Hz than for those with

fo = 4785.2 Hz because the former cause the shell to have more areas which can have a

significant change in radiation or absorption.

Although this analysis does little to explain why, in terms of the shell structure, the

behavior of the shell is so different for the two central frequencies studied, it does point out a

similarity betveen the pulse time duration and two pulse time spacing results. Specifically,

that the amount normalized energy radiated by the shell is different for different shell area- for

both studies. Therefore, the impulsive acoustic power will be used to explain the resul,.; for

normalized energy as a function of time spacing for forces with two pulses in the next section.

7.2.4. Impulsive Power Spectnm Model

Modeling the variation in normalized energy as a function of the time spacing between

two force Pulses in terms of the impulsive acoustic power is begun by examining the

excitation force as a function of frequency. Equation (5.2.6) is repeated for N = 2 and the

dependence on x. left out,

Fsn/( = (-/2) (e 2jt +e° Jfft'+ ] ) e- " +e ' (7.2.1)
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In this case F(f) is the sum of two individual one puise forces. Call these two forces FI(Jf and

F2(f), such that F(f) = FI(f) + F,(f). Equation (7.2.1) shows that F1 and F- are equal except for

a time shift. s, the time spacing between the two pulses. Thus, for a two pulse force in the

frequency domain,

FI(f) = F(f)" e - j2 fs .  (7.2.2)

and

F(f) = F1(f)• [1 + e - j 2n]. (7.2.3)

This expression can also be written as,

F(f) = F1 (f) -e( - j2 n fs)/ 2 [e (j2 n fs)/2 +e(-j2x f s)/ 2
1  (7.2.4)

or more conveniently as

F(f) = 2- F(f) - e(J 2 .fs)/2 cos [ (2fs) /2] . 17 .2.5)

Next, recall the expression for total energy radiated by the shell in Equation (6.4.1)

which related the product of the forcing function and its complex conjugate to the impulsive

acoustic power in the frequency domain. Computing the product of the force with two pulses

in Equation (7.2.5) and its own complex conjugate via

F(f) • F* (f) = 2. F1(f) -FI*(f) - [cos (2tfs) + 1], (7.2.6)

and substitute this result into Equation (6.4.1), the result is

Ett= f 2' F1 (f) F* (f) . i. P(f)df + f 2" F1 (O" F* I(f) " -imp(f)cos (2ntfs) df. (7.2.7)

Further analysis reveals that F1(f) times its own conjugate is merely the magnitude of

F1 squared. Thus, when the total energy is normalized by the total input energy ,J the forcing
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function, the normalized energy, EN, can be thought of as

= f a f). H.,(f)df+ H a .f) -limp(f)cos (2tfs) df, (7.2.8)

where

[F(f)- F1 *(f)] F I(O (

ct(f) = -= . .* (7.2.9)Ein E in

Hence, c is a constant of proportionality related to the magnitude of the forcing function at a

given frequency and the input energy, Em, given in Equation (6.2.5).

Now suppose that, instead of an impulsive acoustic power spectrum with many

frequencies as shown in Figures 6.5 and 6.6, the impulsive acoustic power spectrum being

studied has values greater than zero at only two frequencies, fo and fl, where fo is the central

frequency of the excitation force containing two pulses. This idea is shown pictorially in

Figure 7.19.
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Figure 7.19: Diagram of an impulsive acoustic power spectrum consisting of oAy two
frequencies, fo and fl, where f. is the center frequency of the driving force
spectrum shown in the diagram
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Then, according to Equations (7.2.8) and (7.2.9), the normalized energy as a function of two

pulse spacing, s, for such a spectrum is the sum,

EN = a(fc,) -11 m(f.) [ 1 + cos27tf~s] + a(f 1) H.l m (f 1) [1 + cos2-%f Is] (7.2.10)

Further, if cz(f0) rl m pk(fo) = ct(f1 ) fl~ip(fl) then

EN = [cc(f,)H1imp(fO) +c w J)Himp(f 1)] (1 + cos~c (f. + f ) s + cosit (f0 -f ) s) . (7.2. 11)

As an example Equation (7.2.10) was computed for the case where f. = 3808.6 Hz,.

f 3881.8 Hz and ax(f 0 ) rlinp(fo) = (x(f 1) 11imp(fi1) = 1.0. Two pulse spacing was varied from

s =0.0 to s =10. 16 milliseconds, and the results rdiLriayc-i in Figure 7.20. After examining

5.0 I

4.0-

S3.0

. ~ 2.0 r\.....

1.00

0.0 204.0 6.0 8.0 10.0 12.0
Tw.,o Pulse Time Spacing, msecs

Figure 7.20: Computed result of Equation (7.2.10) for fo = 3808.6 Hz, f, = 3881.8 Hz, and
cgfo) Hlimpffo) = o((f 1) FIixnp(f 1) = 1.-0

Eq. (7.2. 11) closely, it is obvious that the normalized energy is oscillating with a frequency of

(3808.6 + 3881.8)1/2, and is windowed by a beat frequency of (3881.8 - 3808.6) /2. Close

study of Figure 7.20 confirms this observation.
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It is now very apparent that the impulsive acoustic power model describes what is

happening with the normalized energy in Figures 7.9 to 7.12, even though the impulsive

power spectra for these plots consist of many frequencies, as shown in Figures 6.5 and 6.6. In

fact, the plot in Figure 7.20 bears a good deal of resemblance to that shown in Figure 7.9a.

The main oscillation in the plots occurs at a frequency close to fo because

a(fo) rlimp(fo) will be much larger than for any other frequency due to the Gaussian iature of

the force magnitude. Thus, fo dominates the integration over all frequencies in Equation

(7.2.9). All of the graphs in Figures 7.9 to 7.12 appear to begin their oscillations at the same

normalized energy values as that for the one pulse force for the same area and time duration.

According to Equation (7.2.10), this value, for the special case we are considering in this

section, is c(fo) rIimp(fo) + ct(fl) r'imp(fl), when the space between pulses is zero and

appropriate fo and f, are chosen for each case. This value will not oscillate because the pulse

spacing will never change, but will depend on the variation in ct(f) for each frequency in the

excitation force spectrum as force time duration is'\ried.
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CHlAPTER 8

CONCLUSIONS

8.1. Summary and Conclusions

To properly calculate the total sound energy radiated by a structure via computer

simulation, the quantity must converge within the total sample time of the original

measurement. Ensuring that this is so is only possible by computing, in the time domain, the

total sound energy radiated for some of the forces. Then a judgement can be made on the point

of energy convergence for each type of force to be used for simulation of sound.

Results from the first study, the relationship of single pulse force time duration to

normalized energy radiated by the shell, exposed the fact that the calculation of energy is not

linear. The percentage of input mechanical energy acoustically radiated by the shell is found

to depend on how the forcing function spectrum interacted with the spectrum of the impulsive

acoustic power for the region of the shell being studied, and is not dependent, in general, on

the amount of mechanical energy input to the shell. For a frequency occurring at a large local

maximum in the impulsive acoustic power spectrum, normalized energy increases with

increasing pulse time duration. This is because the corresponding narrowing of the force

frequency bandwidth and increase in force spectrum magnitude around the central frequency

of the forcing function cause more input energy to be focused into the local maximum of the

impulsive acoustic power spectrum. Conversely, energy is focused away from a larger peak,

which occurred next to the small local maximum in the impulsive power spectrum, as pulse

time duration is increased for the other central frequency studied. Thus, if one is de-qigning a

forcing function which will minimize sound radiation, the impulsive power spectrum must be

studied to determine if long or short pulse durations -re needed for a particular central

frequency of the driver. Such subjective observations are much tougher to make for situations

where the behavior of the impulsive acoustic power spectrum is not so obvious. Proposing a
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method to make predictions quantitatively is left to recomendations for further work.

In the second study, varying the time spacing between pulses of a force with two

pulses caused fluctuations in the normalized energy radiated by the shell. The fluctuations

oscillate at the same frequency as the central frequency, f., of the excitation force. Again, the

results can be predicted for simpler situations by simultaneously examining the force -nd

impulsive power spectra. Then a two pulse spacing which produces the least amount of lund

raciation can be found and used when designing a forcing function for active cancellation. A

simple model using v, impulsive acoustic power spectrum existing at only two frequencies,

one of them being the center frequency, fo, of the driving force, is sufficient for understanding

the basic variations observed in normalized energy results for force with two pulses of various

time spacings. Further development of this model, as well as a means for chosing coefficients

when ctf o) q-imp(fo) #- a(fl) rFimp(f1), and predicting exact values of normalized energy is left

for further work.

8.2. Recomendations for Further Work

The first step in carrying on further work on this research would be to produce a

computer alogorithm that would accurately predict the results obtained in Chapter 7. Once

convergence of the total sound energy radiated by the shell is established for all forces to be

used, the total energy radiated could be calculated via Equation 6.4.2 and then normalized by

Equation 6.2.6. All frequencies in the impulsive acoustic power spectrum would be taken into

account, and no subjective determination of which two frequencies could accurately model

the normalized energy for a given situation would need to be made. Also, exploration of a

means to model the impulsive acoustic power spectrum with more than two frequencies, say

five or ten, but less than the entire spectrum is necessary.

This would save a great deal of time compared to the current method because the

impulsive power would only have to be calculated once. The force spectrum and its conjugate

would be multiplied by the impulsive power only once, instead of the 1024 ,64 times 64)
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required to multiply the force by each of the two transfer functions. The parameter of intrest,

either time duration or two pulse time spacing, could be varied and then the normalized

energy calculated much more quickly. Another possibility is to include an option that would

search for the type of force which produced the lowest fraction of input energy radiated to the

farfield. This capability would then point out the force or forces which are correctly designed

for minimal sound radiation. Further work in this direction would follow direu:tly from the

work done in this thesis.

However, the next step would be more difficult. This step would be to try to

understand which initial conditions for the second pulse cause an increse in the normalized

energy and which ones cause a decrease. For instance, it would be interesting to find a

correlation between the fluctuations shown in acoustic pressure, velocity, instantaneous

power, and the time integral of the instantaneous power, and the fluctuations in normalized

energy.

Finally, it is very desirable to understand why, in terms of the mechanics of the shell

structure and fluid - shell interaction, normalized energy varied the way it did in the results. It

is likely that this endeavor would lead to employing modal analysis techniques on the shell.

But further analysis in the time domain could also prove to be very useful.
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