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1 Forward

Our research program has emphasized innovative computations and theory. The computations and theory
support and enhance each other. We have a coherent approach which depends upon abstracting impor-
tant mathematical concepts and computational methods from individual applications to a wide range of
applications involving complex continua, including wave refractions, flows in elastic and plastic media. and
complex fluid mixing. We have also developed adaptive computational methods for flows with discontinu-
ities and implemented these methods on modern parallel computers.

2 List of Appendixes

There are no appendixes in this report.

3 Report of Research

3.1 Statement of Problem Studied

3.2 Summary of Most Important Work

3.2.1 Discontinuities and Adaptive Computation

The front tracking method [9]. [ 201 is a computational method that incorporates explicit degrees of freedom
to represent dynamical interfaces and wave interaction fronts. The method is highly developed in two space
dimensions, and allows the resolution of complex. chaotic interfaces between two interpenetrating fluids
[18]. It also allows for the refraction of shock waves by interfaces in a number of cases.

Interface methods (such as front tracking) are the only computational methods to duplicate the exper-
imentally correct growth rate of the mixing zone for Rayleigh-Taylor unstable interfaces [16], [ 21]. Front
tracking has provided the best and most extensive computations for this problem to date. In contrast,
modern finite difference methods without interface methods have yielded values about 30% too low in com-
parison to experiment for the growth rate [36]. In spherical geometry, they display severe mesh orientation
effects as well [1]. Front tracking computations were used in systematic studies of single and multi-mode
Rayleigh-Taylor interactions, as shown for example in Figure 1. to establish the dynamics of elementary
multiphase configurations [21] of interacting bubbles, The same computations are now being used to test
turbulence models and multiphase flow models in the high Mach number compressible context [19].

Our main results are (a) parallelization. (b) three dimensional tracked computations (in progress), (c)
complex wave interactions well resolved on a coarse grid and (d) the use of interface methods in tabular
equations of state for multiphase materials.

A. Parallelization. The parallelization of the purely hyperbolic component of the two-dimensional
front tracking code has been fully implemented on the INTEL iPSC/060 hypercube. enabling the parallel
computation of gas dynamics problems. This parallelization was achieved by domain decomposition [13].
[ 12]. [ 11] [ 14]. The spatial domain is divided into a union of disjoint rectangular subdomains. with the
accompanying division of the tracked physical discontinuity curves among the subdomains. An extended
boundary region of n mesh blocks in each direction surrounds each subdomain providing overlap into
neighboring subdomains. Typically n is an upper bound for the finite difference method's stencil radius.
for example n = 2 for the Lax-Wendroff method. Thus. the boundary region for the i.j mesh block lies
entirely in the eight mesh blocks surrounding it (neglecting the slight complication of physical boundaries).
In Figure 1. we show a typical interface for a complex fluid mixing process, decomposed into 16 subdomains.
with the overlapping boundaries displayed as well.

The tracking algorithm progresses iteratively as:
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Figure 3: The passage of a shock wave through a random interface separating two gases
of differing densities. The computation is shown together with two levels of graphical
enlargement. At transition, the transmitted shock is moving faster than the incident shock
leading to the production of a precursor wave. In the finest enlargement, one can see complex
wave diffraction patterns resolved down to the level of a single mesh block, displaying a
unique capability of front tracking. The long time behavior of this solution (Figure 4)
exhibits interface instability similar to that of Figure 1.

as an interpolation scheme for piecewise smooth but discontinuous data. This method was applied to
the representation of data in EOS tables with phase transitions [101. Starting from original data given
on a coarse grid. spline interpolation was used as an initialization, to give piecewise smooth data defined
on a finer grid, Lower order but computationally more efficient linar-bilinear interpolation was used to
interpolate the functions on the fine grid. This mapping of data from coarse to fine grid is computationally
expensive, but is only performed once. For repeated evaluations, a significant improvement in the quality
of the interpolated data was obtained in this way, see Figure 5. This interpolated, piecewise smooth data
was then used to solve Riemann problems for gasses with a real equation of state. It was found that a real
gas EOS Riemann problem could be solved in no more than about 3 to 8 times the time required for a -y -
law gas. This efficiency depended on the use of precomputed and preinverted tables for the sound speed,
the Riemann invariants and for thermodynamic variables expressed as a function of various combinations
of independent variables. With the use of additional tables, a time at most 3 times the " law gas could
have been achieved in all cases studied [35].
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Figure 6: Plot of the growth rate constant vs. the compressibility. The vertical bars indicate
the variance associated with the choice of random number seed.

frequency bubble splitting modes in the envelope description. Unexplained disagreement for computations
at small Atwood number is also noted.

The superposition theory depends critically on a good description of the single (periodic) bubble dy-
namics. An extension of a previous theory for the growth of a single bubble with periodic boundary
conditions, from a three parameter ODE to a four parameter ODE. was presented to remove an earlier
ansatz which lacked physical basis. Two of the four parameters of the new theory are determined. The
remaining two must be determined through explicit numerical calculations. Such a determination, over a
limited range of the independent variables (Atwood number A and dimensionless compressibility .M

2 ) was
presented [22].

The statistical model on which the renormalization group fixed point is based describes an ensemble
of bubbles of the same radius, whose heights are defined by a uniform probability measure restricted to a
bounded interval. The statistical dynamics of flow with bubble merger is developed by treating pairwise
interactions by drawing two adjacent bubbles randomly from the ensemble. The dynamics of each pairwise
merger is given by the superposition hypothesis of [21]. namely that, before merger, each bubble moves with
a velocity given as the sum of a scaled single-bubble velocity, as treated in [22], and an envelope velocity.
The bubble of higher height doubles in size and the lower bubble is removed from the statistical ensemble
at the end of the merger. Differential equations are then obtained for the common radius, average height
and variance of height of the ensemble of bubbles as a function of time. Trhe variance of height is shown
to have a natural interval. Its lower limit is a trivial fixed point corresponding to an (unstable) interface
consisting of bubbles of identical height. Its upper endpoint is defined by instantaneous merger for bubble
pairs of extreme separation. By studying the behavior of the rate of change of variance with time at these
two endpoints, the existence of a non-trivial fixed point is shown. Figure 7 shows a numerical verification
of this renormalization group fixed point for the Rayleigh-Taylor instability.

An extensive body of experiment and computation predicts a constant acceleration for the leading edge
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Figure 7: The numerical verification of a renormalization group fixed point for lhe bubble
envelope of a Rayleigh-Taylor unstable interface. The graphs shown here represent the
superposition of distinct time steps. Both axes are scaled by the renormalization group
dynamics. The fixed point of the bubble envelope is shown in each graph. For the second
correlation, on the right, the entire graph is approximately fixed in scaled variables.

of this mixing region. consistent with the conclusions of the fixed point predicted by tuiis theory. The
upper and lower limits placed on the value of the fixed point in this theory, are shown to yield upper and
lower limits for this constant acceleration that are in full agreement with experiments and computations
on incompressible and nearly incompressible systems. Further studies of the theory, including prediction
of transient behavior, dependence on density ratio and compressibility, assumptions on uniform bubble
radius, and extension to three dimensions remain to be carried out.

,\e are now studying the interior of the mixing zone itself, using computational data from well resolved
direct simulation. Statistical analysis of fluctuating quantities reveals strucl ure which is more complex t han
simple diffusion [8], [ 7]. In particular, steady acceleration (Rayleigh-Taylor unstable) induced mixing of

a randomly perturbed interface shows non monotone density contours and interior structure in second
order correlations of fluctuating quantities. This is consistent with theories of turbulent boundary layers.,
which show at least three distinct regions within the mixing layer. The, study of fluctuating quantities
suggests renormalization group fixed point behavior near the edge of the mixing zone only and in the
nearly incompressible case only [8], [ 7].

3.2.3 Nonlinear Waves and Nonlinear Materials

Striking new developments in the theory of nonlinear waves for conservation laws have given rise to a now
picture for wave interactions in the large. Improved computational algorithms and modeling of physical
phenomena are to be expected as the consequences of these results are explored. It is now widely recognized
that nonlinear waves may contain two or more significant length scales. As a consequence the ratios of
these length scales become important dimensionless paranieers. controlling macroscopic wave speed and
structure [29] for three phase flow, chemically reactive flow. elasticity and MHD waves [3].

Plohr. Marchesin et. al. [28] have produced a very important unifying framework for the fundamental
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