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S. Tanveer”
Mathematics Department
Ohio State University
Columbus, OH 43210

ABSTRACT

This paper is concerned with the creation and subsequent motion of singularities of
solution to classical Rayleigh-Taylor low (two dimensional inviscid, incompressible fluid over
a vacuum). For a specific set of initial conditions, we give analytical evidence to suggest the
instantaneous formation of one or more singularity(ies) at specific point(s) in the unphysical
plane, whose locations depend sensitively to small changes in initial conditions in the physical
domain. One-half power singularities are created in accordance with an earlier conjecture;
however, depending on nitial conditions, other forms of singularities are also possible.

For a specific initial condition, we follow a numerical procedure in the unphysical plane
to compute the motion of a one-half singularity. This computation confirms our previous
conjecture that the approach of a one-half singularity towards the physical domain corre-
sponds to the development of a spike at the physical interface. Under some assumptions

that appear to be consistent with numerical calculations, we present analytical evidence to

suggest that a singularity of the one-half type cannot impinge the physical domain in finite .
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1. INTRODUCTION

The motion of the interface of a heavy fluid initially resting on top of a lighter fluid
(Rayleigh-Taylor flow) is a very basic but important problem in fluid dynamics and has
been the subject of intensive research over a long period of time. Recent interest in
the Rayleigh-Taylor instability stems from its disruptive presence in inertial confinement
devices (See Verdon et al (1982) for instance). Emmons, Chang & Watson (1959) studied
the interfacial features experimentally with initially sinusoidal disturbances and found
that for large times, a pattern containing downward spikes and upward moving bubbles
forms. In other experiments (Read, 1984) with Atwood ratio close to one (i.e. density ratio
between lighter and heavier fluid close to zero), a variety of bubbles and spikes 1s formed for
random initial condition. It 1s clear that there is a significant interaction between bubbles

(or spikes) so that the congregate motion is rather different from a regular pattern.

In the idealized limit of two-dimensional inviscid, incompressible fluid over a vacuum.
direct numerical calculations by Baker, Meiron & Orszag (1982) have shown that an initial
sinusoidal perturbation of the interface leads to an upward moving bubble and a downward
moving spike in each period of the disturbance. The shape of the upward moving bubble
agrees with the steady bubble solutions of Davies & Taylor (1950), while a downward
moving spike accelerates with free fall. For initial conditions containing more than one non-
identical undulation per period, the demand for appropriate resolution makes it difficult
to continue calculations (along the lines of Baker, Meiron & Orszag (1982)) for sufficiently
long-times to identify the effective acceleration of the bubble-tip-envelope observed in the

Read experiment (1984).

Given the physical importance of its dynamics, the Rayleigh-Taylor problem has also
been studied from a more practical perspective since direct numerical calculations based
on the fluid-dvnamical equations appear to be impractical even for the simplest of the
Rayleigh-Taylor flows. Model equations have been developed (see Gardner et al (1988)
and Sharp (1984) and references there in) to study the interaction of multiple bubbles and
spikes. Typically these include parameters that in some cases car be computed rationally
by appeal to physical dynamics. Some of the more recent models (Gardner et al (1988))
have been developed in great generality without any of the restrictive assumptions of an in-
viscid incompressible two dimensional low. While these studies have been quite important
in furthering physical understanding of bubble competition and merger processes, we are
unaware of any direct derivation of model equations from the fundamental flud equations.
While this paper does not address this problem cither, we hope the approach in this paper
will eventually bridge the gap between the direct numerical simulation of fluid equations

and model studies, at least in simple cases.




Here, we explore the dynamics of singularities in the classical Rayleigh-Taylor problem
without resort to any localized approximation (Siegel (1989), Baker, Caflisch & Sicgel
(1992)). At time ¢, consider the conformal map z((,#) that maps the interior of a cut unit
circle in the ¢ plane (Fig. 1) into a periodic strip in the physical domain (Fig. 2) such
that the origin coincides with z = —7 co. The unit circular boundary then corresponds
to the free boundary. We will be concerned with the formation and subsequent motion of
singularities of z((,t) and the complex velocity potential W((,t) in the unphysical domain

|¢| > 1. We have several long range goals in furthering such an understanding.

First is the possibility that singularities can be analytically subtracted out in a basis
representation of f and W making them amenable to direct numerical calculations for a
long time. Second is that the bubble and spike interaction can be understood through
the interaction of multiple singularities in the unphysical complex plane. As shown in this
paper, a one-half singularity in || > 1 approaching |(| = 1 corresponds to a continually
developing spike at the physical interface. The portion of the unit circle |¢| = 1 between
any two approaching singularities contains the image of the bubble boundary in the (
plane. Thus, pairwise singularity merging corresponds to a bubble getting smaller, while
its neighbor becomes larger-a well known process in the Rayleigh-Taylor problem. Third,
it may be possible to reach general qualitative and quantitative conclusions about the
relation of long time bubble dynamics to the specifics of initial conditions in the complex
unphysical plane, which is related to the physical initial condition in an ill-posed way. This
may allow one to construct an appropriate statistical model of bubble interaction in terms

of the statistical features of the initial conditions in the unphysical domain.

In a previous paper (Tanveer, 1991a), the analytically continued equations for the
two-dimensional Rayleigh-Taylor and water wave problems were derived in the unphysical
domain || > 1. For steady water waves, analytical and numerical calculations were
carried out to establish the relation of water wave crests to one-half singularities of (. t).
However, for the Rayleigh-Taylor or the unsteady water wave problems, no concrete results
were obtained except to note that certain one-half singularities of z({,#) and W{((,t) were
consistent with these equations. It was also noted that in the limit of a one-half singularity
approaching the physical domain, the analytically continued acceleration at a one-half
singularity 1s the free-fall under gravity, similar to that which is observed for a spike.
Based on this, 1t was conjectured that a one-half singularity approaching the physical
domain corresponds to a spike developing at the physical interface. The work presented
here is is a natural continuation of our previous (Tanveer, 1991a) work. This paper is

organized as follows.

In Section 2, we present the analytically continued equations in the unphysical plane
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|¢| > 1 that has been derived previously (Tanveer, 1991a). The equations are presented
in several alternate forms, some more convenient for asymptotic analysis, while others for
numerical computation.

In Section 3, we show that under some assumptions on the single-valuedness of ¢ as
a function of a characteristic variable in some region of the characteristic space, the only
possible singularity (s(¢t) of z((,t) and W((,t) in ( is of a “fold” type where each of % and
‘—:/21 are analytic functions of the variable ({ — g},(t))l/2 or (¢ — Cs(t))]/3 or (( — (,(t}}';/",
etc. In the case when the fold singularity is of the one-half type, we relate the coefficients
in an expansion in [( — Cs(t)]l/2 to the solution in the characteristic plane.

In Section 4, we address the question of singularity formation-how does a singularity of
z((,t) and W((,t) form in the unphysical domain when there is none initially? We consider
several classes of initial conditions for which z(¢,0) and W((,0) are analytic everywhere
in the finite ¢ plane outside the unit circle. We give analytical evidence to suggest that
singularities can form instantaneously at a point in the ¢ plane where 2¢(¢,0) = 0. This
result is very similar to results obtained in similar situations for other fluid flows such as the
Hele-Shaw flow with surface tension (Tanveer (1991b)) or the Kelvin-Helmholtz problem.
In the latter case, recent work of Cowley et al (1992) has shown that the Moore singularity
(Moore (1979,1985), supported by numerical computations of Krasny (1986), Shelly (1992)
and rigorously analyzed by Caflisch & Orlenna (1988), actually forms instantaneously at
some point in the complex circulation variable. We also find that in our problem, for
some initial conditions, a singularity moves in instantaneously from infinity to the finite ¢
plane in the sense that for any fixed ¢ > 0, the singularity is at a finite ( point; yet as
t — 0%, this location recedes to infinity. Our calculations suggests that for certain set
of initial conditions, only one-half singularities can be created; however, there exists other
initial conditions for which singularities of a more complicated form involving logarithm
can occur. In this case, the assumption on single valuedness of ((£,t) that is assumed in
the analysis of Section 3 is violated.

In Section 5, we employ a numerical procedure to track the motion of a one-half
singularity that is created at the initial instant of time. We compute not only the location,
but also a few coefficients of the one-half power expansion. So far, numerical computation
has been performed for a very special initial condition. Nonetheless, the result confirms our
previous conjecture that the approach of a one-half singularity corresponds to a continually
developing spike at the physical interface.

In Section 6, we address the question if an approaching one-half singularity of =((.t)
and W((,t) of the type computed in Section 5 can actually impinge the physical domain

boundary || = 1 in finite time. With certain assumptions that appear to be consistent
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with the numerical calculations in Section 5, our analytical evidence suggests that an
isolated one-half singularity cannot impinge the real domain in finite time. However, this
leaves open the possibility of different kinds of singularity or multiple one-half singularities
coalescing at || = 1. This result has a bearing on the work of other researchers. Siegel
(1989) and Baker, Caflisch & Siegel (1992) have studied exact complex travelling wave
solutions to a localized simplification of the Rayleigh- Taylor equations for arbitrary Atwood
ratio. For unit Atwood ratio (the case studied here), Baker, Caflisch & Orlenna (1992)
found a class of travelling wave solutions with one-half singularities, each of which moves
at a constant speed. However, based on a spectrum fit of the numerically computed results
for the full Rayleigh-Taylor problem in the physical domain, they detect a definite slow
down of such singularities at unit Atwood ratio which is at variance with the solution to
the localized approximation. However, it remains unclear from their work if the slowdown
was sufficiently significant to avoid a finite time singularity in the real domain.

Since the analytic continuation of z(¢, 0) from || < 1 to the unphysical plane [(| > 1
is an ill-posed procedure, i.e. arbitrary small deviations of :((,0) in |(| < 1 can affect the

> 1, it follows that the precise location and number

location of its zeros of z¢(¢,0) in |¢
of such singularities created at initial time will be highly sensitive to initial conditions in
the physical domain. Our results on the correspondence of singularities with spikes at later
times can explain the observed random nature of bubble-spike interaction in the long-term
behavior of the physical interface. In our discussion in Section 7, we make a plausibility

argument on how singularity interactions can explain bubble competition.
2. MATHEMATICAL EQUATIONS

The conformal map from the cut unit ¢ circle (Fig. 1) into a periodic strip in the

physical domain as shown in Fig. 2 ( = = r 4 1y ) can be decomposed into
¢ t) =270+ 1ln ¢ + 7 f(C,1) (2.1)

where  f((,t) 1is oblivious to the branch cut and therefore possesses a convergent power

series representation for |(| < 1

fEGt) = ) anlt) ¢
n=0

®
o
e

Here we have assumed, without any loss of generality, that the period in the = plane 1s 27
and the acceleration due to gravity is unity and is directed upwards (along the positive y
axis). For analytic shape, the convergence of (2) occurs up to || = 1. Similarly, there

exists a power series representation for the complex velocity potential

W) = > bult) " (2.3)

n=9(Q
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We will assume that the initial conditions are symmetric, so that a, and b, are initially
real. From the equations, it is clear that these symmetries are preserved for all later
times. This assumption is only made for simplicity and generalizations for nonsymmetric

disturbances are possible. This means that on the real (¢ -axis in the interval (-1,1),
Imf =0 (2.4)
holds for f and the complex velocity potential W satisfies

ImW = 0. (

o
(W]
S

The kinematic condition on the free boundary can be expressed as

D

— In p(r,y,t) = 0 2.6)

p; neleyst) (2.6)
on p(r,y.t) = 1,where ( = pe'”, with v real. In this representation, In p, v and

t can be thought of as three dependent variables depending on « , y and # . Switching

the role of dependent and independent variables, the kinematic condition implies that

Q)
-~1
e

Rf[CVVC—C*:E:,]:O (

where the symbol * here and in what follows stands for complex conjugation. Plugging in

the representation for = from (2.1) on |{| = 1, we find that (2.7) is equivalent to
Re (W,
Re [ At 1 o _FelWe (2.8)
1+ Cfe 1+ ¢ fl
on ( = e for v in the interval [0, 2 7] . The analytic continuation of this for |¢| > 1

(see Tanveer, 1991a for details) is

CWe + Lwe(1/¢,t

fo Wk pwajen 29)
L+ Cfe (T4+¢f) 1+ cfe(1/¢1)
where [; can be written as either of the following two expressions
. 1/¢.t

L(C.t) = — —f’(]—/Ll)— (2.10)

1+ cfe(zt)

1t e+ CWAC ) + L W)
LG = — ol [“.,H_] _,‘( ¢ O (211
ame Jien=1 ¢ C"=¢) [T+ fe(¢'.t)] [1+,;—: f((ﬁ‘f)l
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The Bernoulli’s condition on the free surface for this time dependent problem can be

written as

W 1w
Re [w, - Wb g 1 Wl (2.12)
L+ck 2 1+ f]
on the unit circle ¢ = ¢' ¥ . The analytic continuation of this outside the unit circle (see
Tanveer, 1991a for details) 1s
. S W We We(1/(,t
I"t _ g k.ft _ f + _ S Q(] /g ) . _ —‘I] (2.13)
1+ ¢ f (1+ ¢ fe) (1 + &+ fe(1/¢.1))
where I; can be written in either of the following two representations
Hh(],t)f,(]— t) 1
L(Ct) = Wl1/¢ 1) = S0 = f(5.1) (2.14)
1+ He(nt)
. 1 ¢’ [¢+ ¢ W' t) We(.1) g}
LG = = Q{ il [g., Q.] — - (2.15)
At Jio= ¢ L =0 T+ f(CWOI 1+ & fo(F01)]

Equations (2.7) and (2.13) can be written in a more convenient form by definin
i A f

Wy

v = 2.16
Y Tt { )
1
Yy = ————. 2.17)
Y2 Ty cr (
In that case, we get (Tanveer (1991a))
i, — (Ba + Ray)in, = CiyeBy, — (1+CL )y +1 (2.18)

R. R; . . , . R .
y2. = (Ry+ Rayr )y2, = —Rayayn, + _C; y2 — fzyf —CRy ¥ — L(Tz)gynyz ~ Ry y2 + R3.y5

(2.19)
where \ \
LWt 1
Ry = - 4 ¢ = —yi(=. 1) (2.20)
‘ 1+ L f(l Y
¢ .
R, = = C ya(=.1) (2.21)
P Ty Tl O™
Ry = (I, (2.22)
Lot
Ry = I 5 = I, + ~.1). 2.23
1 2 + 15 lfg(‘* n 2 yi{ ) ( )




Notice that I,((,t) and I((,t) given by (2.15) and (2.10) can also be written as

. N 1 dC' C+§’ , -1 2 (9 94

Il(éat) - 411 o= CI [ZI.TE Iyl(g ~t)| (-'*'4)

- _ 1 d(’ C+CI * ¢~ -1 DI ¢
IZ(Qat) - Vi ¢]=1 CI |:CI _ C:l Re [yl(( 7”!/2(@ -f)] (-'-"J)

since from symmetry properties (2.4) and (2.5) and the relations (2.16) and (2.17). y1(¢'.t) =
yi(1/¢" t) and y5 (¢’ 1) = y2(1/¢", ) on |[¢'| = 1. By using (2.18) and (2.19), equation (2.19,

can be replaced by a relatively more compact equation

1 1
{—] - [(RB + Ray1)— ] = —Ry;. (2.26)
Cy2 ], Cy2 ¢
By introducing an appropriate characteristic variable £ such that ¢ = (({.t) and

((&,0) = € and defining

TEIANIAINY (2.27)
y2(G(E:4).1) 0,98
iale ) = HEEE (2.28)

one finds that equations (2.18) and (2.19) is equivalent to the following set of equations
for {(&,t), y1(€.1) and g(€.1) (Tanveer (1991a))

Ct = —R3 — RQ:{]] (229)
!)lt = C&l.’)l CE R1< - (1 + CI]<)!}2 C£ + 1 (230)

-~ R ~ R . . " X » R' o
Y2, = —QlJZ - T Uz e — ¢ R4< Ge !/-22 + R:;( Ce y.ﬁ + —Ez-yly-z. (2.31)

Alternatively, from (2.29)-(2.31). we can derive

1 . . :
[—.A ] = Ry (C(E1).1)Ce (2.32)
Cy2 t
J . . Ce 1 .
Equations (2.29). (2.32) and (2.33) will form the basis of the numerical calculation de-

seribed 1 Section 4.




3. PROPERTIES OF A CLASS OF SOLUTIONS

Consider initial conditions for which each of z¢((.0) and W:((.0) are analytic every-
where in || > 1 except possibly at oo, Also, assume that there is some open region R
i the € plane in [§] > 1 so that the image of R under ((€.#) up to certain time T is
contained in |¢] > 1 with no point mapping to ¢ = oc. Further. we require that ((£.1)
1s single valued in R. These set of assumptions will be referred to later as Assumption A.
Our results in the next section suggests that Assumption A can only be valid for arbitrary
R in }¢] > 1 for some class of initial conditions.

Consider an arbitrary closed contour C' within R where the Assumption A above is
valid up to some time T > 0. We now derive some analyticity properties of the solution
in this region up to time 7.

It follows from (2.32) that

Sl =0 31
a o C T 7Y (1]

Integration of (2.33) implies that

d i ] % 1
ol A = 1§ —. 3.2)
dt [% @ C Y2 c @ C Y2 (

Initially, ((£.0) = € and y; and g, coincide with y; and y,. Thus since z(¢. 0) and

(¢, 0) are each analytic (Assumption A), from (2.16) and (2.17). it follows that cach of

20) . ) : . . .
(,/2('( o and ﬁlll,lw((k( “)] 1s an analytic function of ¢ for || > 1 (except possibly at oc). Thus.

! ) v (£.0)
cemmen M ey e

Thus, from Cauchy’s theorem

are analytic functions of € for [§] > 1 (except possibly at o).

1
f ; = 0 3.3
M ARTATAY) } (3.3)
y1(£.0)
f = 0. 34
[f{ CTE0) e ] (3.4)
From (3.1) and (3.2). it follows that \
1
Al —————— =0 3.5
[7{ £C(E.f)!)2(£.f)] (3.5)
n(&.1) |
Cennen| =% 3.6
[7{ e mlen ] (3.6)
yi(€.1)

Then from Moerara'’s theorem, and will be analytic in € in R. Then.

| __nte.l)
CLEN Y€1) L& Dy(E.1)
yil &) and g, can only have pole singnlarities of the same order. However. from (2.20). a
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pole in 7, is compatible only with a logarithmie or worse singularity of ((£,#) . which
therefore violates Assumption A. Thus, under Assumption A, we find that each of g, and
g2 will be an analytic function of £ in the region R.

However, despite the analyticity of yy and g, as a function of £ under Assumption A,
cach of y; and y, (and therefore f and W} can have singularities in the image of R in
the ¢ plane, as we shall now sce. A singularity appears whenever there is failure of local
inversion of the relation ¢ = ((£.1) into & = £((.t). Such a singularity will be referred to

as a fold singularity as will occur a point §(#) where
Ce(&o(t). 1) = 0. (3.7)

For a fold of the simplest kind,
Cee(bo(t).t) # 0. (3.8)

It is clear that if we define Co(1) = C(&o(#).t). then near € = £y(1),

1 )
C=(o(t) + 5(55(60(1‘%7‘)[6—En(f)]z + . (3.9)
Ce =Cs<(En(f).f>[£—£o(f)] 4+ .. (3.10)
G(Et) = A (1) + Ao ()€ = &olt)) (1)(E — &)’ + O(E = &(1)* (3.11)
J2(E.1) = By(t) + Ba(€ — &(1) + O(& — &) (3.12)

Then, it is clear from (2.27), (2.28), (3.9)-(3.12) that

N(Ct) = At 4 Aa(t) (=GN + A3(C=C) + o(¢ = Ca Y (3.13)
and

Ua(Cot) = Bo(f) (C = CotN'? 4 Ba(h)(C = C) + o((¢ — ¢, (3.14)

where
10(1) = Ay (1) (3.15)

2

Ay = —— At 3.16
2| \/Cfs(fn(”-f) (1) (3.16)
Ba(t) = \/2Cee(Eo(1). ) Ba(1) . (3.17)

Similar expressions can be found for the other coetlicients. Going through the inversion

process carefully, it is clear that the analyticity of g and y, at & = £(1) implies that cach
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V2 oat ¢ = (4(t). From the definition of y,

of y1((,t) and y2((,t) is analytic in (¢ — (,(1)]
and y2 in (2.16) and (2.17) and that of f in (2.1), it follows that under Assumption A and
condition (3.8), each of z((,t) and W((,t) will be analytic in [( — (,‘(1‘)]]/2 at { = ((1).
The speed of such a singularity g, can be found by noticing that due to (3.7).
;;I—,Q(fo(f) t) = Ce(o(t). 1) since Ce(€p(t). 1) = 0 for a fold singnlarity. Therefore from (2.29),

Co = —R3(Calt)t) = Ra(Calt)ot) yi(Colt).1). (3.18)

Alternatively, on substituting (3.13) and (3.14) directly into (2.18) and (2.19), we find

that the coefficients of the most singular terms as ¢ — (,(#) is given by

{

A2 2G04 Az Ry, + RBogdy 4 = 0 (3.19)
and ;
d

By 5( + (Rsy + Roydi)By = 0 (3.20)

where subseript 0 refers to the evaluation of those quantities at ¢ = (o(t) . Note that

each of equations (3.19) and (3.20) are consistent with (3.18). Equating progressively less
singular terms in ¢ — (4(#) obtained by substituting (3.13) and (3.14) into (2.18), we get a

set of relations. the first two of which 1s

. 1 .
A = 1 4 5 45 R (Gl 1) (3.21)

. 1 .
Ay = 5 [Rac(Colt)t) + Ryc(Calt)it) Ay 4 Ry(Cult) t)Az] Ay
+ Rp(G() ) Aeds + GAyBaRic (G t) — (14 GLi(Ca(#).1)) Bz (3.22)

Similarly on substituting (3.13) and (3.14) into (2.26) and equating different powers of

(C— C.«)‘/z . we find that the leading order ~quation is just (3.20). At the next order. we
find
T L 2 ML R () + Rec(CltRt) Ay + Ry (CG(H)H) A
o len | T3 lan (Rac(Calt)t) + Rae(Cult)t) Ay + Ry (u(1),1) A3 )
B;
- y ..w f .f Il’ — 323
Ry(Co(1). 1) zBfC.q ( )

It 1s elear from this expansion that once Ay Ay, (o) By(t) and Bj(t) are known as
a function of time. one can ealeulate the coeflicients of the higher order terms (say Ay
and B3 ) in terms of the already known lower order terms, provided global terms such as

Ra(Co(t)t) and Iy o(Co(1). 1) are known. This is an important observation as it gives us, at
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least in principle, a method of caleulating as many cocflicients in the one-half expansion

5, we

in (3.13) and (3.14) as we want, provided the first few terms are known. In Section
numerically calculate the first few coeflicients and also show how the global terms can be
calculated.

Using a similar procedure as above, it is clear that if £(t) is a double zero of (¢
and Assumption A holds, the expansion for y,((,t) and y,(¢.1) will contain powers of
(¢ — Cs(t ))‘/3. Generally for a zero of (¢ of n-th degree; one can expect a series in

[ — Gt )]1/(7'“) for each of y; and y,.

4. SINGULARITY FORMATION IN THE RAYLEIGH-TAYLOR PROB-
LEM

In this section, for certain initially analytic (¢, 0) (henee f(¢,0)) aud W(C.0). we give
analytical evidence to suggest the instantaneous formation of one or more singularities in
F(C. 1) and W((.t) in the unphysical domain || > 1 at certain points that depend on
properties of z{(,0) and W(¢.0) in |¢] > 1.

First, note that, for 0 < t << 1, we can try a regular perturbation expansion in f.
It is elear from (2.18) and (2.26) that

(¢ = y1(C.0) + ¢t [{R3(¢,0) + Ra(C.0)y1(C.0)} y1 (C.0) + Cya (€. 0)y2(C. OV (€. 0) + 1

—[14 ¢L (€. 0)y2(C. 0)]] + O(F*) (4.1)
1 1 Rx(C~0)+Rz(C-0)’!/1(C-O)} . 2 .
. S — Ri(C.0 O(t?). 4.2
Cy2 Cyz(C.,())+ { Cy2(¢,0) ¢ (GO + 0 (42

Clearly, since cach of R{((, 1), Ro(C, ). R3((.t) and I (¢, #) involve y; and y, in the physical
domain ¢ < 1 (where each of them can casily be seen to have a regular perturbation
series in 1), one will have a regular perturbation expansion in powers of t of these global
quantities as well. On substituting into (2.18) and (2.26). the coefficients of all powers of
t can be determined, at least i principle.

This regular perturbation series for ¢ << 1 becomes disordered when the later terms
of the perturbation expansion is more singular than the previous terms, which can oceur
at some finite (o or as ¢ — oo. Here, we will only restrict to breakdown in the power
series due to one or more of the f()ll()wing; conditions:

(a) e = =0 at Q = (g with = ¢ Q() # 0. II/ Q(), 7/—‘ 0
(b) z¢ =0 at ( = (o with z:¢(C0,0) # 0, W((.0) =0 for all ¢.
(¢) As  — 00, 2¢(¢,0) ~ ~ by (™= for positive m and T3 (C.0) ~ by covtm=1 for > 1.




4a. Birth of a pair of one-half singularities

Here we assume that condition (a) holds at some point (p. In this case. from the
definition of f in (2.1) and y; and y; in (2.16) and (2.17), it follows that the asymptotics

of ¥1(¢,0) and y2(¢,0) as { — (o is given by

1
Coz¢c(€o,0)(¢ = Co)

¥1(¢,0) ~ (4.3)

W¢(¢0,0)
Coz¢¢(€0,0)(¢ —Co)

It is clear that the regular perturbation expansion in (4.1) and (4.2) get disordered as

(4.4)

.I/Z(C’O) ~

¢ — (o for any t > 0. Indeed the coefficient of ¢ in (4.1) and (4.2) become the same

order as the leading order terms when ¢ -- ¢ = O(#'/?). This suggests the choice of
(1-¢/C)
as the inner variable. In the limit ¢ — 0% with 4 = O(1), one then finds from (2.18)

aud (2.26) that the solution is given in the similarity form

g1 =a' 7 Yi(n) (4.6)
ye =t Yi(n) (4.7)
where _
o = f2(0.0) (4.8)
Go

with a assumed nonzero. With O(t'/2) error, each of Y7 and Y; satisfy
Y, + Y —2Y7Y) =0 (4.9)

Yy 4 ¥ 4+ 2Y,Y] —2Y1) = 0. (4.10)

The asymptotic matching condition that (4.6) and (4.7) match to the initial condition that

behave like (4.3) and (4.4) near the singular point implies that we must require that for

large |7
N ab
Yi(n) ~ (4.11)
Ya(n) ~ —, (4.12)
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where

W¢(Co,0)
h= — — . - 4.13)
Cofee(Co0) + f:(Co.0) (
and )
¢ = (4.14)

T G Fec(G00) + Cofe(60-0)
Equation (4.9) and (4.10) with conditions (4.11) and (4.12) can be solved exactly

‘ (12
Yi(y) = %l — % — ba (4.15)

Ya(n) = ‘ \/U_'ZTZ(,_Q[y) -Vt - 41)(1]2 . (4.16)

4b%a?

The above solutions (4.15), (4.16) show that two square root singularities at 7 =
+V4ba, i.e. at ( = (o F CoV/4bat for 0 < ¢ << 1 for each of y,((,t) and y2(C.t). each of
which is consistent with the expansion (3.13) and (3.14) for sufficiently small |¢o F(oV4abat|.
Going to the definition (4.6) and (4.7), it is clear that for t << 1, cach of 4,(%), A,(t).

B,(t) are directly determinable from (4.15) and (4.16) at each singularity.
4b. Singularities involving logarithms

Here, we assume condition (b) at some point (5. With this initial condition. clearly
from definition of y; and y, in terms of W and fe, y; = 0 and y,(¢, 0) has an mitial simple

pole at ¢ = (p. In this case, it is appropriate to introduce the inner variable

1 ¢ -

= 1— 2|/t 4.17)

1 \/713[ Lo]/ (4.17

y}(?],f) = \/gyl(C(n,f),t) (4.18)

Ya(n.t) = \/gtyz(c‘(n-f).f) (4.19)

where
R2((0.0
a = y2(1/Co,0) = —2%?—)- (4.90)
b= ! (4.21)

—Cnfc(Co.O‘) + G fec(Co,0)
On substituting (4.18) and (4.19) into (2.18) and (2.26). it is clear that for 5 = O(1) and

t << 1, with O(t) error, we can write

Y+ 1Y = - Y, (4.

SV
3%
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il -N]+Y2(1+Y¥{]=0 (4.23)

where the prime denotes derivative with respect to 1. Now to match to the initial condition,

it is clear that asn — oo,

. 1

Yo(n,t) ~ o (4.24)
. 1 ox
Yi(n,t) ~ —;. (4.25)

Since the boundary conditions and the leading order equations do not involve t explicitly,
to the leading order for t << 1, each of Y7 and ¥, will be purely a function of 7. We can

write the solution down implicitly as

~ 1 fX eX'/2 1
N 5/ dx’[—\:,s,g—] (4.26)
Yy, = \/2eN/? (4.27)
. iy 1M eX'/2 1
V=TV - e - a/ e (4.28)
= JO

Since n(y\) is an analytic function and 7, # 0 in the finite x plane except at the origin,
it follows from formulae (4.27) and (4.28) that the only singularities of ¥; and Y; are at
v\ = 0, which corresponds to = o0, and at Yy = oo, where as Re \ — —o0, 1) takes a

finite value

—o0 2
No = ~%/0 d\%z/;—l] (4.29)
There are two possible values for 19, depending on the choice of the branch of x!/2. From
numerical integration. we find
no = £1.2533:. (4.30)

These two points are the only singularities of Y;(7n) and Y2(7n) in the finite  plane. Note
that if Re Y — oo, thenn — oo andsoatn = oo, there are other possible behaviors,
besides (4.24) and (4.25). However, this behavior occurs in the other branch sheet of the
Riemann surface generated by the branch points 1o (given by (4.29)). To deduce the nature

of the singularity of ¥ and Y3 near n = 50, we notice that

v o~ 2ln(n—ny)+3nin(y—n) + . (4.31)
so that for n. — 1o,
Y] ~no—(m—mo)In(n—mp) + .. (4.32)
. 1
Y, ~ 5(7} —n0)[2 In (n — 710)]2.. . (4.33)

<
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These singularities at specific 79 correspond to moving singularities in the ¢ plane at
Co — Vablonot, as can deduced from (4.17). These singularity locations can be expected to

be accurate only for t << 1, because of the limitation of our analysis.
4c. One-half singularity birth at infinity

We now assume condition (c¢) holds. We will show that this results in the birth of a
one-half singularity at infinity.

From given conditions for case (c¢), we get
31(C,0) ~ by ¢ (4.34)

y2(€,0) ~ by CT™ (4.35)

for some constants b; and b, withn > 1andm > 0. In this case, we find that the regular
perturbation expansion in powers of t break down for ¢ so large that ¢ t'/* = O(1) or

larger. Hence, it is appropriate to introduce an inner variable

n=Ct/m, (4.36)
Then upon substituting
1 . -
yi(Cln1),8) = 7 Y, ) (4.37)
y2(C(m,1),8) = t™/™ Ya(, 1) (4.38)
into equations (2.18) and (2.26) with = O(1) and t << 1, we obtain the following
relations (with O(t) error):
Y+ Lyl gy =0 (4.39)
n
1 m
T - ==Y, Y+ —]=0 4.40
Yt - ] 2[1+mﬂ (4.40)

where the prime denotes derivative with respect to n keeping t fixed. The initial conditions

(4.34) and (4.35), translate to the following equation for n — 0
Yi(n) ~ bhiy" (4.41)

Ya(n) ~ bep™™. (4.42)

The solution to (4.39) and (4.40) that matches with the asymptotic conditions (4.41).

-\ 1/n ]
n:(b) e (4.43)
b]

(4.42) is given implicitly as

-
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Ya = 07/ b, Y™/ M1 — nYy). (4.44)

From (4.43), it is clear that 7 is a regular function of ¥ everywhere in the finite complex

Y7 plane except at the origin. Further, it is clear that ;%'—'l— has a simple zero at Y, = ,1—1
Thus, it is clear that the ounly singularity(ies) of Y7 in the finite 7 domain (other than
n = 0) 1s located where
1 1/n
o = (_> e~ (4.45)
byn

Note that this corresponds to n distinet locations corresponding to n distinet branches in

(4.43). The behavior of Y] and Y, near such an g is clearly

1 n Y
1) ~ - - \/_2;,1/1:—11,}/ vy — o)t o+ L (4.46)

From (4.44). it follows that

¥ ~ 1,;”/"1)2,,"'/"+‘\/—27;1/~—I1,;/”(1/11(7,_7,0)'/2 + ... (4.47)

Thus. i the case when m > 0 and n > 1, there is instantaneous generation of n
12 smgularity(ies) at oo that move into the finite ¢ plane. The behavior of y; and y, at
cach singularity is clearly seen to be consistent with (3.13) and (3.14). We find that for
f -1

() =" (4.48)
1
4 == (4.49)
nt
Az(f):fﬁ“'\/——‘271‘/"—11);/"r‘/" (4.50)
Byt) =~ titm b;"/"b'zn"'/"H\/—271‘/"‘11)}/"r'/". (4.51)

5. NUMERICAL CALCULATIONS AND RESULTS

So far. our numerieal calculations have been limited to initial conditions of the special

form

HE0)=0 (5.1)
W(C.0)= —eC. (5.2)

This corresponds to a sinusoidal perturbation in the vortex sheet strength at an initially
Hat interface. It is likely that the numerical procedure deseribed below can be generalized

to other cases; however. our primary motivation in this caleulation was to see if indeed the
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approach of a one-half singularity as (3.13) and (3.14) towards |¢] = 1 corresponds to a
spike at the physical interface and illustrate through a simple example how the unphysical
domain calculation allows us to extract all the relevant information about such a singularity.
We chose this special initial condition for simplicity. Further, we only studied the details
for e = 0.1, although we checked to see that similar qualitative features appeared for other
e. From the analytical evidence presented in Section 4c, one can expect only one singularity
forming at oo, which according to (4.37) and (4.46) will start moving down the negative
real ¢ axis towards ¢ = —1. This is confirmed by the numerical results presented here.
We use the unphysical equations in the form (2.29), (2.32) and (2.33). The variables
Loand 24 at

Cy2 C¥2
2NV uniformly spaced out points on cach of two circles in the €-plane centered at the origin

which are advanced in time are the the 6 N complex point values of C(£.#),

of fixed radii py and p;. where 1 < p; < pg. These set of 2N points in the € plane
will henceforth be referred to as collocation points. V. chosen between 64 and 256 in all
the calculations presented, is taken to be a power of 2 to allow convenience of fast Fourier
Transform.

We now describe the step by step procedure to determine the right hand side of (2.29).
4 and &
Cu2 Cy2
at these points. This lets us advance these variables in time, using a standard ordinary

(2.32) and (2.33) at the collocation points at any time t once ((€.1), are known
differential equations solver.
Step 1:

From the known point values of ¢ we use a fast Fourier Transform in Arg £ to compute
the derivative (¢ at the collocation points. We then evaluate yi(((€,#).1) and yo(C(€.1).1).
using the relation (2.27) and (2.28) at each collocation point.

Step 2:

Assuming that the image ((£.1) of [{] = py is outside the unit ¢ cirele and that each

of y;y and y, are analytic functions of ¢ on and inside this curve (assumptions checked

aposteriori), we obtain

e 1 yi1(C(€.1). 1)Ce(£.1) .

N (Co.t) = Sy fiﬂ:m 6 -G (5.3)
oy 1 y2(C(E ). #)Ce (€. 1) -
y2(Co.t) = 7 -ﬂl=m G (5.4)

R Y1 (CE) 1CelEn) -
nole ) =50 }{em. CO—Gf (2]

We compute y (e, #) and y(e”. 1) for N uniformly spaced out 1 in the real interval

(0.27). The integrals in (5.3)-(5.5) were implemented by using a real angular variable 7 in
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the representation £ = p; €'’ and then using a trapezoidal rule that uses the N uniformly
spaced points in © over the interval (0, 2 7).
Step 3:

Using the computation in Step 2, Re[y; y3] and 1 =1 |2 are computed at N uniformly
spaced out points on |(| = 1 circle which is then used to compute ¢; and ¢; (for 0 <

J < N/2)in the Fourier representations

Refyi (e hys (e )] = Y ¢j e'i” (5.6)
j=-—00
1 ., & 3
—She ) = Y & eV (5.7)
j=—o0

This is then used to calculate R3(((€,t),t) and I; (C(€,t),t) at the collocation points by

using the representations

Ry(C.t) = —co( —2) ;") (5.8)
=1
Lig(Ct) =2 §:Jq<1—‘ (5.9)
that follow from (2.11), (2.15) and (2.22).

Step 4:
Using (5.3)-(5.5) and taking (o =
R; and R, by using ( 20) and (2.21).

Once steps 1 through 4 are implemented, we are in a position to evaluate the right

: (f TED for each of the collocation points, we compute

hand side of (2.29), (2.32) and (2.33) at the collocation points. This allows us to advance
each of (, j; and Z% in time by using a standard ordinary differential equations solver.
We monitored the computed values of [((&,1)] at the collocation points to make sure that
they were outeide the unit circle, or otherwise (5.3)-(5.5) will not be valid. Further, when
|¢} < 1.04, we discontinued calculations since accurate evaluation of the integrals in (5.3)-
(5.5) required a value of N larger than 256, the largest value we allowed in our calculation.

As a biproduct of the above calculation, we get the physical interface location since
the knowledge of y,(¢,t) on the unit circle gained in Step 2 allows us to reconstruct (up

to a time dependent constant) the conformal mapping function z(¢,t) on |(] = 1 since

(e, 1) = 2(1,1) +/yd1/ (5.10)
0

yQ(CWI ’ t) .
Note that :(1,¢) cannot be found from the unphysical equations since y; and y; involve

the derivative z¢. However, for any symmetric initial condition, z(1,t) is purely imaginary.
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It is well known that the average Leight (in the physical = domain) ;- f:” ydr is conserved

in time and so
2w _ ) 2m ) ]
/ dv Im z(e'”,t) Re z,(e'" 1) =/ dv Im z(e'”,0) Re z,(e',0). (5.11)
0 0

Since z(¢,0) is known initially, (5.11) can be used to compute z(1,t) in (5.10), which
allows us to compute z(c'”,t) completely. For purposes of computing the integrals in
(5.10), {5.11), we used a trapezoidal rule using the N uniformly spaced out points on the
unit ¢ circle, where y, is known.

We also computed the following integrals using a trapezoidal rule and the values of

the functions at the collocation points

Nomgmf s f  ael (5.12)
T Jiel=po  S6 2T Jig=p, Ge
R S T it =t M (5.13)
<7 Jlgl=po  G& =T Jjg=p e
. . .
= b deE L el (5.14)
T Jlgl=p0  G6 2T Jig=p e
1 -2 1 -2
<0 = 57 dfg_&‘ T 5. de&' (5.15)
=T Slg=p0 G ST jg=p Ge
. 1 J1C 1 71 C.
i = L de Lot (5.16)
T Slg=po G827 Jigl=p o CE
-1 1€ 1 J1,C
A= g a1 g gl (5.17)
=T Jlgl=po - G& =M Jjg=p G
. 1 718 1 72
By= — defose _ deYote (5.18)
20 Jigl=po  Ce 2T Jigg=p G

Here (¢e 1s obtained at the collocation points through fast Fourier transforming ¢ as a
function of Arg € on €] = pg and |&] = p,.

It was observed that for ¢ small enough, all the integrals (5.12)-(5.18) were zero up
to numerical accuracy (five digits in the worst case presented here), as must be the case if
there 1s no singularity of the integrands within the annular region in the £ plane between
|€] = po and |€] = py. Then, after some time, which was found to depend on the choice
of po. the value of Ny changed dramatically over a short period of time before settling
down to a value of 1 {up to five digits). The transient time when Ny was significantly
different from 0 or 1 became progressively shorter as N was increased. We interpreted this

result to mean that around this time, a zero (1) of (¢ crossed from [£] > po into the
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region |£] < po. The dependence of the results on N is not expected as the numerical
quadrature is not adequate during the short period of time when &y(t) is very close to
|€] = pa. Note however, this inaccuracy has no impact on the actual solutions to (2.29),
(2.32) and (2.33) since it was found that the right-hand sides of (2.29), (2.32) and (2.33)
were well behaved when this happened. This is not unexpected since there is no division by
Ce in implementing steps 1 through 4. as necessary to calculate the integrals (5.12)-(5.18).
Figures 3 and 4 show the images of 256 nniformly spaced out points on |£] = py = 5. at
t = 1.4 and t = 1.6, just before and after Ny changed its value from 0 to 1. At ¢ = 1.4,
the zero of (¢ 1s at £ = —5.295 and the corresponding (, (singularity location in the ¢
plane) is at -2.061. The apparent cusp in Fig. 3 is because (¢ is close to 0 at £ = =5 due
to the proximity of &. At a slightly later time when £, is exactly -5, we get a true cusp.
The image of |€] = 5 in the ¢ plane at t = 1.6 clearly shows that the curve is not simple
and that it intersects itself. We clearly see that the failure of one to one correspondence
of £ and ¢ on this curve. Relating the geometric nature of the observed image in Fig. 4
to general mapping properties of an analytic function, it is clear that there is a zero of (g
in |€] < po. as is consistent with the computed value of Ny = 1 at this time. We also

monitored the image of |€] = p; and it was found that throughout our calculations. its

image consisted of a simple curve completely outside |¢| = 1. Figure 5 shows the image of
256 points on [€] = p; = 1.5 under ((£.#) at t = 2.4. Another property that was apparent
in our calculations is that the image under ((£,¢) had the effect of moving points both
radially outwards and tangentially away from ¢ = 1, which corresponds to the bubble part
of the mterface, while points tended to move both radially inwards and slide tangentially
towards ( = —1, which corresponds to the upward moving spike (recall gravity is upwards)
in the physical domain. This tendency is clear in Figures 3-5. There are a lot more points
near the negative real ¢ axis than the positive ¢ axis, even when all the points were initially
uniformly spaced out on a circle centered about the origin. Furthermore, the points near
¢ = —1 have moved closer while image points near ¢ = 1 are further away than they were
initially (Recalling ((£.0) = £). Since the image ((€.t) defines the motion of characteristic,
it is clear that information from the unphysical plane tends to flow towards a spike that
will make the spike features sensitive to small changes in specified initial conditions in the
physical domain || < 1. Near the bubble however, the opposite will be true. Further

implications of this property will be discussed in Section 7.

From the calculus of residues, it follows that for ((£€.t). analytic in €, when a zero
of {¢ is i1 the annular region the computed & n (5.13) is indeed the location &o(t) of
the zero of (¢. Further, the value in (5.14) will be the corresponding image (.(#) in the

¢ plane. The value zy in (5.15) is clearly Cee(&o). Further. the computed :il . :12 and Bz
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in (5.16)-(5.18) has to correspond to to §i(€o.t). §i, (€0, t) and §2(&y.t). Whenever the
calculated Ny = 1, the relations (3.15)-(3.17) are used to compute 4, 4, and B, in the
expansion (3.13)-(3.14). The calculation had to be discontinued when any of the following
conditions occurred

(1) The image of any of the collocation points on ((€,t) for |£] = py was in || < 1.04 since
this made it difficult to get a sufficiently accurate result in the quadratures (5.3)-(5.5) for
N not exceeding 256.

(i1) The image of any collocation points on |€] = pe under the computed (€. 1) came inside
the unit ¢ circle as this made the evaluation in (5.8) and (5.9) sensitive to the small errors
m ¢; and ¢;.

(ii1) Whenever |£y| computed in (5.12) was smaller that p;. as otherwise we could not
ensure that the singularity (,(#) was outside the image of || = p; in the ¢ plane, as
necessary for (5.3)-(5.5) to be valid.

Since we were interested in tracking the singularity, the choice of py and p; in our
calculations was dictated by the necessity that the caleulations could be carried out over
a significant interval of time for which Ny was nonzero and none of the conditions (1)-(111)
resulted. For all the calculations reported in the table below, we used p; = 1.5. though we
changed p; between 1.25 and 2 to ascertain that the calculations of the physical interface
did not depend on the choice of p; as would be the case if the image of [€] = p; n the
¢ plane did not contain any singularity of y;((.t) and y2(¢.1). The interfacial location
also agreed with a standard physical domain code based on satisfying (2.8) and (2.12)
at uniformly spaced out points on the unit ¢ circle. with f and 1 having a truncated
representation of (2.2) and (2.3). This helped us further confirm that there was indeed no
singularity of y; and y, for [(] < |(s]. We also ensured that the values of the integrals in
(5.12)-(5.18) at any time t were independent of p; when Ny had settled to the value 1. The
value of py was varied from a maximum of 50 to a minimum of 3.0 in order to track the
singularity at various stages of its motion. For a large value of py. the value of Ny settled
to a value of 1 at a relatively small t. However, in such cases the computation could not
be carried out for a long time because of the limitation of condition (ii) cited above. In
that case. one or more points on the secondary lobe (as in Fig. 4) of the image of [€] = py
tended to move in in.o || < 1 before long. For smaller values of py in the range we
tried, computation could be carried out for a significantly longer time: however for such
cases, singularity tracking was not possible for ecarlier times since &(1) was then outside
|€] = po. However, smaller py allowed us to track (, in the later stages when ( was getting
fairly close to -1 when the corresponding interface shape near ¢ = —1 showed a developing

spike. We also noted that for two different po. in the overlapping time interval when the
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computed Ny had settled to a value of 1, there was agreement in the computations (5.12)-
(5.18). This provided an additional check on the code and on our assumption that there
was indeed only one singularity in this case.

Table 1 lists the various quantities of interest as a function of time. The results have
been checked by appropriately doubling N until there was no variation in the results.
With the limited number of N < 256, we had difficulty ensuring desirable accuracy for
t greater than 2.4. Tle physical interface at ¢+ = 2.4 is shown in Fig. 6. The image
of ( = —1 corresponds to the spike observed at + = 7. The curve marked 1 in figures
7. 8,9, 10 show (,, A1, A, and B, as a function of ¢, where we used (3.15)-(3.17) and
the computed quantities in (5.12)-(5.18). The curve marked 2 is the analytic prediction
(4.48)-(4.51), where by = —e = —0.1, b, = 1, n = 1 and m = 0. Since the theory in
Section 4 requires t << 1, we get surprisingly good agreement even for ¢ not all that
small. Figure 11 shows I'm z(1,t) and Im z(—1,t), the vertical location of the bubble tip
and spike respectively. Though, the spike does not appear very well developed in Fig. 6,
Fig. 11 shows that that the long time asymptotic range has been reached where the spike
accelerates upwards (the direction of gravity) with the acceleration approaching free fall.
Fig. 12 shows the product Re[4; Bj] as a function of time. In this case, since each of A,
and B, are real, Re [4,B}] = A,B,. This quantity appears to reach a minimum and then
increase. Thus A (t), as defined in (6.32), goes through a maximum and then decreases.
We take this as an indication that A (t) does not blow up in finite time. We cannot rule
out the possibility that the observed trend in M, (¢) reverses at at an even longer time; but
given that the spike has reached its asymptotic acceleration towards the the end of our
calculations, we do not expect this to happen. In the following section, analytical evidence
will be presented to show that under the assumption that filo M, (t)dt does not blow up in
finite time. an isolated one-half singularity of the type (3.13) and (3.14) cannot reach the

physical domain [(| = 1 in finite time.
6. EVENTUAL FATE OF A ONE-HALF SINGULARITY

We now want to understand the fate of an isolated singularity of the type given by
(3.13) and (3.14). once it is already close to the unit circle in the ¢ plane.
Note that (2.21), (2.22) and (3.18) imply that
Cs

== - L({ (). t) — ?jz(cif).t) Ui (Co().1). (6.1)

Now. from (2.25). (3.13) and (3.14), it follows that

. 1 [ v,
L(Ct) = 5= / di [C_.‘,T—_F—]Q(”-f) (6.2)
T Jo € —(.w
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where
Q(v,t) = Re [yi(e™. t),t) ya(c™ ) ] . (6.3)

It 1s convenient to define

Q:(1,t) = Re [A;(f) BQ(t)(ei”—Cs(f))l/z] (6.4)
Q2(.t) = Re [A](t) Ba(t) (¢ ~ Cult)) ] (6.5)
Qs(r.t) = Re [A3(t) Ba(t)] | — (o). (6.6)
If we denote
(s = R ™, (6.7)

then for B — 17, the behavior of Q(v,t) in the vicinity of 14 is given by

QUnt) = Qi(mt) + Qa(nt) + Qs(mt) + Oflw — ') (6.8)
Now let’s detine
1 2n Cs
Iy((s t) = 5 / dv - Qi (v, t) (6.9)
2T Qs
1 Wb (G,
Iy2(Ceyt) = or / [€ ¢ ]Q?("»f) (6.10)
LT _Qe
1 27 u/ + R
Pa(t) = 5= [ a [e : ]Qz(" ). (6.11)
T 0 —‘Qq

By changing the integration variable from v to —v in each of (6.9), (6.10) and (6.11),
it 1s not difficult to establish the property that for 1 < ; < 3,

w L
12] Cvaf) - T 5 / [ g
Q

&

Q;(=1.1). (6.12)

Now note that from previous expressions (6.4), (6.5) and (6.6)

Qui-11) = Re |4i(t) Bj(H) (¢ = ¢t | (6.13)
Q2—v.t) = Re [4;(t) Bi(t) (¢ = (5(1)) ] (6.14)
Qs(—v.t) = Re [A,(t) B3(1)] | — (1)), (6.15)
Each of (6.13) and (6.14) are clearly seen to be the real part of simple analytic functions
for ¢ = € . Therefore, it immediately follows that
) 1 ) 1/2
Ia(C{t)t) = —Ai(t) By(#) (C_(f—) ~ G (1) (6.16)
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Iy(Co(t)t) = —A(t) Bi(t) (—— — ¢(1). (6.17)

Now consider Ip3(Co(t),1) . From (6.6) and (6.11), it follows that

g
“m}.(&m)

1 2m _
L3 (Ca(t) 1) = o Re [A5(t) By(t)] / dv et — ()]

0

. 1
W
¢ 1)

<

Using (6.7) and periodicity and symmetry of the integrand, it follows that

R -1 " .
];g:;('k..«(f).f) = —(_______) Re [_13(’) Bz(f)] / . a1 -
T o (R + 1 = 2Rcosv) "

(6.19)

Now we want to consider the asymptotics of (6.19) in the limit R — 17 . To do this it

is convenient to break the integral range i (6.19)

/ :./ +‘/ (6.20}
0 ¢ 0

where 1 >> ¢ >> (R—1). For the first integral in (6.20). the leading order asymptoties
can be found by replacing B by 1. For the second integral in (6.20). the leading order
asvinptoties can be found by first simplifying the cos v by 1 — % 1?2 and then replacing

the integration variable v by # . where v = (R —=1) 7. One then finds the leading

/ﬂ dv N '/'/(R-” dr.
. 251'71,%1/ 0 (1 + ,72)1/2 .

(6.21)
Each of these integrals can be computed exactly with ¢ dropping out completely on

addition. We find

order asymptoties of (6.19) as

R-1

T

I‘_g.’{(gw(f).f) ~ =2 R((:‘l}Bz)

R-1
Ina(Co(t) ) = =2 ( —) Re (A3(8) Bo(t)) 3In2 — In(R—-1) + o1) . (6.22)
T
Now let compute
TR(C1) ) = L(C()t) = In(Ca(t)t) — Dol Co()t) — Laa(Ce() 1) (6.23)
It is clear that , _
1 w 1% ~q
IR(C(t) ) = o= / dv [(——i—.s'—}()le(lhf) (6.24)
=T Jo o — (s
where
Qrirty = Qurt) — Qi(int) — Qa(int) — Qa(i ). (6.23)
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This can also be written as

) Qrli.t). (6.26)

1 2n | [_.R2 +1=2iRsin(v — 1y
dv
0

I .q t ’t = — S
r(Cs(1), 1) o> 1+ R%? —2Rcos(1 — 1)

As R — 17, the above expression reduces to

R-1 [*7 Qr, (v.1)
Ip(Co(t)t) = — v 2 1 + o1
r(Cs(1).1) - /” W onts — ) [ o(1)]
l' 2 1
- — dv cot — (v —uwy) Qr, (1, t) [1 + o(l)] (6.27)
2 Jy 2
where the subseript 0 in Qg refers to its evaluation with ¢, = ¢ . Notice that from

the behavior (6.8), each of the integrals in (6.27) exists.
Now note the fact that if for any complex ¢, singularity. near which the asymptotic
behavior of y, and y, 1s given by (3.13) and (3.14), there 1s a singularity at ¢ in the

neighborhood of which

I (Ct) = A1) + A5 (€= NP+ AL =) + ol ¢ =L (6.28)

and
pACt) = By (C= G + By —-¢) = o (6.29)
Now as R — 17, the point IZ comes cjose to ¢ = ¢ and so the last term in (6.1)
yields
1 ) N 1 " 1/2
—y2( = (f).f) yilGalt) 1) ~ Ay(t) By (T—(f_) — (1)
Ga Cs 1 . (6.30)

+Ai(t) By ( - G (1) + olR-1)

Cs(1)

Taking the real part of (6.1), using (6.7). (6.16), (6.17). (6.22), (6.27) and (6.29) in the

asymptotic imit B — 17, we got

R = M{(H)(R-1)In(R=1) + My(t)(R=1) + o(R 1) (6.31)
where 5
M(t) = —i Re [A3(H) Ba(h) ) (6.32)
62 1 - ) Q. (1. 1)
A\[z(f) = - e [:12(f) B2<f” ‘7; /(; di 29 cos (]/ — ’/U) . (633)




The solution of (6.31) to the leading order is

t

In(R-1) = In(Ry — 1)(1‘[10 My

(6.33)
ot ey - .

If we assume that [(0 M, (#)dt does not blow up for any finite time, then it follows from

(6.34), that there will be absence of finite time singularity. This assumption is consistent

with the results from numerical calculations as reported in the previous section, though

for a special mitial condition. In that case, recall that A (t) actually appeared to decrease

after sutficiently long time.
7. DISCUSSIONS AND CONCLUSION

We have analyzed some properties of the unphysical equation derived earlier by Tan-
veer (1991a). For early times, for a specific class of analytic W(¢,0) and =(¢,0) in (] > 1
(except possibly at infinity), we noted how one or more singularities can form at a point in
IC] > 1, where z(¢,0) is zero. One-half singularities are shown to be generated, though
we show that other singularities of a much more complicated form involving logarithms
are possible. Further, analytical evidence suggests that one or more one-half singularity
may be born at ¢ = oo, which moves to the finite ¢ plane instantaneously. The numerical
computation, although for a special case, clearly shows that one-half singularities on their
approach towards the physical domain corresponds to a continually developing spike. The
connection of more complicated singularities with interfacial features is yet to be made.
The numerical computation also suggests that the characteristic field in the unphysical
plane is pointed away from the bubble and towards the spike. With an assumption that
appears to be consistent with the numerical calculation for the special case, our analytical
evidence suggests that an isolated one-half singularity of the type given in (3.13) and (3.14)
cannot reach the physical domain in finite time. We have not investigated the question of
finite time singularity in the physical domain when possibly multiple one-half singularities
merge or other forms of singularities are present, and this remains an open question.

It is clear that the location of formation of initial singularities depend on the specifies

of the initial conditions z(¢.0) and W({,0) in |¢

> 1. Clearly, it is possible to make
arbitrary small perturbation in the physical domain [(| < 1 that significantly alters the
location and number of singularities that are formed in || > 1. Further. our numerical
computation. though for a special case, appears to indicate that the characteristic field in
the nuphysical plane is directed away from the bubble and towards the spike. This feature
acconnts for the sensitivity of spike to initial conditions in the physical plane. Further, if
onc were to perturb the initial condition (5.1) and (5.2) by placing an additional singularity

in [¢] > 1 that is weak in the sense that its contribution to the right hand side of (2.29)
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1s small, then the characteristic field generated in this problem will be close to what has
been computed in Section 5. Since a singularity moves along with the characteristic field,
one can expect that in due time, this additional singularity will also approach ¢ = -1,
which corresponds to the spike.

This suggests that in a general way, it might be true that weaker singularities have
the tendency to merge with stronger ones. If this is generally true, we speculate this as a
possible reason why bubble competition results in a dominant bubble. The image under
2(¢,t) of an arc on || = 1 between two approaching singularities must contain the bubble
region, since each spike possibly corresponds to a singularity. If the singularities merge
pairwise in the ¢ plane, the corresponding bubble region between these two singularities
will disappear resulting in one larger bubble. However, if multiple singularities of necarly
eqaal strength results from an initial condition, this merger can be expected to taxe a
while as the characteristic field will be almost equally affected by all the singularities. The
transient dynamics observed in experiment can be expected to depend on the location of
mitial singularities and their motion, the randomness resulting from the ill-posedness in
determining =((,0) and W({,0) in |(| > 1, when they are only giv.n in the physical
domain || < 1. Confirmation of this scenario must await further investigations in the

future.
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t o Cs A, A, B, Spike Bubble
0.24 —41.27 —-15.20 4.249 —1.541 0.3626 0.024527 —0.023940
0.40 —-24.38 —-8.994 2.639 -1.244 0.4721 0.041930 -0.040243
0.60 —-15.72 —-5.820 1.868 -—1.095 0.3843 0.065733 —0.061680
0.80 —11.28 —4.201 1.516 -—1.046 0.6857 0.092863 —0.084978
1.00 —8.533 -3.209 1.327 ~—1.048 0.7808 0.12467 —0.11087
1.20 —6.657 —-2.539 1.221 -—-1.083 0.8712 0.16283 —0.14008
1.40 -5.295 -2.061 1.161 —1.14% 0.9555 0.20949 —0.17333
1.60 —4.268 —-1.711 1.132 —-1.220 1.029 0.2674> —0.21131

1.80 —-3.477 -1454 1.126 —1.315 1.085 0.34039 —0.25464
2.00 -2.860 -1.269 1.141 -1.426 1.108 0.43316 —0.30381
220 —-2381 -1.141 1.181 -1.559 1.080 0.55200 —0.35913
2.40 -2.013 -1.062 1.248 —-1.729 0.9805 0.70441  —0.42066

Table 1: Various parameters characterizing the one-half singularity. The last two
columns contain I'm z(—1.t) and I'm z(1.t). the vertical locations of the spike and
the bubble.




Fig. 1: The complex ¢ cut unit circle.
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Fig. 3: The image of 256 uniformly spaced out points on
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hefore the erossing of £ into €l < 5.
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Fig. 4: The image of 256 uniformly spaced out points on [€] = py =5 at ¢t = 1.6. a

little after & has crossed into |€] < 5.
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Fig. 5: The image of 256 uniformly spaced out points on €] = py = 1.5 in the ¢ plane

at t = 2.4, which remains a simple curve.
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Fig. 6: The shape of the interface at ¢+ = 2.4 when normalized by the wavelength 27.

A spike can be noted at ;= = 0.5 corresponding to ( = —1.
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Fig. 70 The trajectory of the singularity Co(#) as a function of # is shown by the
curve marked 1. Curve 2 correspond to the analytical prediction (4.45) using a small

t analysis.
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Fig. 8: Ay is shown here as a function of ¢ in the curve 1. Curve 2 corresponds to the

analytical prediction using small ¢ analysis.
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Fig. 9: 4, is shown here as a function of ¢ in the curve 1. Curve 2 corresponds to the

analytical prediction using small ¢ analysis.
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Fig. 10: B, is shown here as a function of ¢ in the curve 1. Curve 2 corresponds to

the analytical prediction using small # analysis.
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Fig. 11: Plot of Im z(1,t) and Im z(—1,t), the vertical location of the bubble-tip

and the spike as a function of t.
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