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ABSTRACT

This paper is concerned with the creation and subsequent motion of singularities of

solution to classical Rayleigh-Taylor flow (two dimensional inviscid, incompressil)le fluid over

a vacuum). For a specific set of initial conditions, we give analytical evidence to suggest the

instantaneous formation of one or more singilarity(ies) at specific point (s) in the nphysical

plane, whose locations depend sensitively to small changes in initial conditions in the physical

domain. One-half power singularities are created in accordance with an earlier conjecture;

however, depending on initial coiidit ions, other forms of singularities are also possible.

For a specific initial condition, we follow a numerical procedure in the unphysical plane

to compute the motion of a one-half singularitv. This com)utation confirms our previous

conjecture that the approach of a one-half singularity towards the physical domail corre-

sponds to the development of a spike at the physical interface. U nder some assumptions

that appear to be consistent with numerical calculations, we )resent analytical evidence to

su ggest thait a singularity of the one-half type cannot impinge the p1hys caldoai n tLAujL_ ..
Accesion F I"

,i~lne. NTIS CRA&l.
DTIC TAB"

J u stf Cdtioflu;'Jxiiour~ced
_ _ _ ......... 2. .......

By ............. .... ............

Dt ibitioii I

tIYC QtALT TMTtFJlC-ED ;oc-

_ _ _ _ _ _ _ _ _ _ _C_ is t

*Research was supported by the National Aeronautics and Space Administration under N ASA (ontract

No. NASI-18605 while he author was in residence at the istitute for Compuer Applications in Science

and Engineering (|('ASE), NASA Langley Research (enter, Hampton. VA 23665.



1. INTRODUCTION

The motion of the interface of a heavy fluid initially resting on top of a lighter fluid

(Rayleigh-Taylor flow) is a very basic but important problem in fluid dynamics and has

been the subject of intensive research over a long period of time. Recent interest in

the Rayleigh-Taylor instability stems from its disruptive presence in inertial confinement

devices (See Verdon et al (1982) for instance). Emmons, Chang & Watson (1959) studied

the interfacial features experimentally with initially sinusoidal disturbances and found

that for large times, a pattern containing downward spikes and upward moving bubbles

forms. In other experiments (Read, 1984) with Atwood ratio close to one (i.e. density ratio

between lighter and heavier fluid close to zero), a variety of )ubl)les and spikes is formed for

random initial condition. It is clear that there is a significant interaction between bubbles

(or spikes) so that the congregate motion is rather different from a regular pattern.

In the idealized liit of two-dimensional inviscid, incompressible fluid over a vacuum.

direct numerical calculations by Baker, Meiron & Orszag (1982) have shown that an initial

sinusoidal l)erturbation of the interface leads to an ul)ward moving bubl)ble and a downward

moving spike in each period of the (listurbance. The shape of the upward moving bubble

agrees with the steady bubble solutions of Davies & Taylor (1950), while a downward

moving spike accelerates with free fall. For initial conditions containing more than one non

identical undulation per period, the demand for al)propriate resolution makes it difficult

to continue calculations (along the lines of Baker, Meiron & Orszag (1982)) for sufficiently

long-times to identify the effective acceleration of the bubble-til)-envelol)e observed in the

Read experiment (1984).

Given the physical importance of its dynamnics, the Rayleigh-Taylor problem has also

been studied from a more practical perspective since direct numerical calculations based

on the fluid-dynamical equations appear to be impractical even for the simplest of the

Rayleigh-Taylor flows. Model equations have been developed (see Gardner et al (1988)

and Sharp (1984) and references there in) to study the interaction of multiple lbulles and
spikes. Typically these include parameters that in some cases cae be computed ratioiall

by appeal to physical dynamics. Some of the more recent models (Gardner et al (1988))

have been developed in great generality without any of the restrictive assumptions of an in-

viscid incompressible two dimensional flow. While these stu(lies have been quite important

in furthering physical understanding of bubble comlpetition and merger processes, we are

unaware of any direct derivation of model equations from the fundamental fluid equations.

While this paper does not address this problem either, we hope the approach in this paper

will eventually bridge the gap between the direct numerical simulation of fluid equations

and model studies, at least in simple cases.



Here, we explore the dynamics of singularities in the classical Rayleigh-Taylor problem
without resort to any localized approximation (Siegel (1989), Baker, Caflisch & Sicgcl

(1992)). At time t, consider the conformal map z((, t) that maps the interior of a cut unit
circle in the ( plane (Fig. 1) into a periodic strip in the l)hysical domain (Fig. 2) such
that the origin coincides with z = -i oc. The unit circular boundary then corresponds

to the free boundary. We will be concerned with the formation and subsequent motion of
singularities of z((, t) and the complex velocity potential W((, t) in the unphysical domain

> 1. We have several long range goals in furthering such an understanding.

First is the possibility that singularities can be analytically subtracted out in a basis

representation of f and W making them amenable to direct numerical calculations for a

long time. Second is that the bubble and spike interaction can be understood through
the interaction of multiple singularities in the unphysical complex plane. As shown in this
paper, a one-half singularity in j' > 1 approaching I 1 corresponds to a continually

developing spike at the physical interface. The portion of the unit circle I = 1 between
any two approaching singularities contains the image of the bubble boundary in the (

plane. Thus, pairwise singularity merging corresponds to a bubble getting smaller, while
its neighbor becomes larger-a well known process in the Rayleigh-Taylor problem. Third,
it may be possible to reach general qualitative and quantitative conclusions about the

relation of long time bubble dynamics to the specifics of initial conditions in the complex
unphysical plane, which is related to the physical initial condition in an ill-posed way. This

may allow one to construct an appropriate statistical model of bubble interaction in terms

of the statistical features of the initial conditions in the unphysical domain.

In a, previous paper (Tanveer, 1991a), the analytically continued equations for the
two-dimensional Rayleigh-Taylor and water wave problems were derived in the unphysical

domain I > 1. For steady water waves, analytical and numerical calculations were
carried out to establish the relation of water wave crests to one-half singularities of z((, t).

However, for the Rayleigh-Taylor or the unsteady water wave problems, no concrete results
were obtained except to note that certain one-half singularities of z((, t) and W((, t) were

consistent with these equations. It was also noted that in the limit of a one-half singularity

approaching the physical domain, the analytically continued acceleration at a one-half
singularity is the free-fall under gravity, similar to that which is observed for a spike.

Based on this, it was conjectured that a one-half singularity approaching the physical
domain corres ponds to a spike developing at the physical interface. The work presented
here is is a natural continuation of our previous (Tanveer, 1991a) work. This paper is

organized as follows.

In Section 2, we present the analytically continued equations in the unphysical plane



](I > 1 that has been derived previously (Tanveer, 1991a). The equations are presented

in several alternate forms, some more convenient for asymptotic analysis, while others for

numerical computation.

In Section 3, we show that under some assumptions on the single-valuedness of ( as

a function of a characteristic variable in some region of the characteristic space, the only

possible singularity (,(t) of z((, t) and W((, t) in ( is of a "fold" type where each of 1 and

are analytic functions of the variable (( - Cs(t))1 / 2 or (C - C(t))' /3 or (C -
etc. In the case when the fold singularity is of the one-half type, we relate the coefficients

in an expansion in [C - (,(t)]1/2 to the solution in the characteristic plane.

In Section 4, we address the question of singularity formation-how does a singularity of

z((, t) and W((, t) form in the unphysical domain when there is none initially? We consider

several classes of initial conditions for which z((, 0) and W((, 0) are analytic everywhere

in the finite ( plane outside the unit circle. We give analytical evidence to suggest that

singularities can form instantaneously at a point in the ( plane where z(((, 0) = 0. This

result is very similar to results obtained in similar situations for other fluid flows such as the

Hele-Shaw flow with surface tension (Tanveer (1991b)) or the Kelvin-Helinholtz problem.
In the latter case, recent work of Cowley et al (1992) has shown that the Moore singularity

(Moore (1979,1985), supported by numerical computations of Krasny (1986), Shelly (1992)

and rigorously analyzed by Caflisch & Orlenna (1988), actually forms instantaneously at

some point in the complex circulation variable. We also find that in our problem, for

some initial conditions, a singularity moves iii instantaneously from infinity to the finite C
plane in the sense that for any fixed t > 0, the singularity is at a finite ( point; yet as

t -4 0+, this location recedes to infinity. Our calculations suggests that for certain set

of initial conditions, only one-half singularities can be created; however, there exists other

initial conditions for which singularities of a more complicated form involving logarithm

can occur. In this case, the assumption on single valuedness of ((, t) that is assumed in

the analysis of Section 3 is violated.

In Section 5, we employ a numerical procedure to track the motion of a one-half

singularity that is created at the initial instant of time. We compute not only the location,

but also a few coefficients of the one-half power expansion. So far, numerical computation

has been performed for a very special initial condition. Nonetheless, the result confirms our

previous conjecture that the approach of a one-half singularity corresponds to a continually

developing spike at the physical interface.

In Section 6, we address the question if an approaching one-half singularity of z((, t)

and U7((, t) of the type computed in Section 5 can actually impinge the physical domain

boundary j() 1 in finite time. With cex tain assumptions that appear to be consistent

3



with the numerical calculations in Section 5, our analytical evidence suggests that an

isolated one-half singularity cannot impinge the real domain in finite time. However, this

leaves open the possibility of different kinds of singularity or multiple one-half singularities

coalescing at I1( = 1. This result has a bearing on the work of other researchers. Siegel

(1989) and Baker, Caflisch & Siegel (1992) have studied exact complex travelling wave

solutions to a localized simplification of the Rayleigh-Taylor equations for arbitrary Atwood

ratio. For unit Atwood ratio (the case studied here), Baker, Caflisch & Orlenna (1992)

found a class of travelling wave solutions with one-half singularities, each of which moves

at a constant speed. However, based on a spectrum fit of the numerically computed results

for the full Rayleigh-Taylor problem in the physical domain, they detect a definite slow

down of such singularities at unit Atwood ratio which is at variance with the solution to

the localized approximation. However, it remains unclear from their work if the slowdown

was sufficiently significant to avoid a finite time singularity in the real domain.

Since the analytic continuation of z(., 0) from I 1 to the unphysical plane j(I > 1

is an ill-posed procedure, i.e. arbitrary small deviations of z((, 0) in <~j _ 1 can affect the

location of its zeros of z¢((, 0) in I(1 > 1, it follows that the precise location and number

of such singularities created at initial time will be highly sensitive to initial conditions in

the physical domain. Our results on the correspondence of singularities with spikes at later

times can explain the observod random nature of bubble-spike interaction in the long-term

behavior of the physical interface. In our discussion in Section 7, we make a plausibility

argument on how singularity interactions call explain bub)le competition.

2. MATHEMATICAL EQUATIONS

The conformal map from the cut unit ( circle (Fig. 1) into a periodic strip in the

physical domain as shown in Fig. 2 ( z = -I+ iy ) can be decomposed into

z((,t) = 2 7r + i i7 C + i f(C,t) (2.1)

where f((, t) is oblivious to the branch cut and therefore possesses a convergent power

series representation for CI < 1
00

f(Ct) E a,,(t) C" (2.2)
?1=0

Here we have assumed, without any loss of generality, that the period in the z plane is 27r

and the acceleration due to gravity is unity and is directed upwards (along the positive y

axis). For analytic shape, the convergence of (2) occurs ip to Cl 1 Similarly, there

exists a power series representation for the complex velocity potential

w(C,t) t,,) (2.3)
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We will assume that the initial conditions are symmetric, so that a, and b, are initially

real. From the equations, it is clear that these symmetries are preserved for all later

times. This assumption is only made for simplicity and generalizations for nonsyinietric

disturbances are possible. This means that on the real ( -axis in the interval (-1,1),

Im f = 0 (2.4)

holds for f and the complex velocity potential W satisfies

Im W = . (2.5)

The kinematic condition on the free boundary can be expressed as

DD In p(x,y,t) = 0 (2.6)

on p(.r, y, t) = 1 , where ( p c"V , with v real. In this representation, li p , z and

t can be thought of as three dependent variables depending on x , y and t . Switching

the role of dependent and independent variables, the kinematic condition implies that

Re [ ( ,- - (*-*z1 = 0 (2.7)

where the symbol * here and in what follows stands for complex conjugation. Plugging in

the representation for z from (2.1) on 1 , we find that. (2.7) is equivalent to

Re [(W( (2.8)1 + (fJ 1 + ( f<1

on c 'i for v in the interval [0. 2 7r] . The analytic continuation of this for t(j > 1

(see Tanveer, 1991a for details) is

ft _ W~ I W -(1/Kt)
f= 12 (2.9)

1 + ( f (1 + f(1 + .fc(1/,t)) =

where 12 can be written as either of the following two expressions

I2((,t) = - (2.10)
1 + ..fc((,t)

12((, t) I 0+Z7(2.11)

47ri , C' [('-( [1 + (I f((',)] [1 + 4, f( ,t)(l
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The Bernoulli's condition on the free surface for this time dependent problem can be

written as

Re ['1t - 1±+ (ff f] 2 f1+ fJ 2  (2.12)

on the unit circle c . The analytic continuation of this outside the unit circle (see

Tanveer. 1991a for details) is

ft Iv- 17(11(,t)' (, W f+ L ) = -1, (2.13)

1 f+ 0 + (MI ) +(1 + ±f(1/(t))

where I, can be written in either of the following two representations

ft(l.t)
1((t) W(1/(,t) - ___(__t. (- , - f(-,t) (2.14)

(1 + fM ,t))

1,(&dt) + 1 ,' [c'1 w ((",t) w (-,.) (2.15)
4 'ri =' (' L--J [1 + f(',t [1 +- f,0]

Equations (2.7) and (2.13) can be written in a more convenient form by defining

gy 1 (2.16)

Y2 1 (2.17)

In that case, we get (Tanver (1991a))

,- (R:j + R 2 )YI ) I (yi 2 Ry. - (1 + (I < )Y2 + 1 (2.18)
R3 R, '2 Y2 R22

y2, (R'1 + RYI )Y2< -R2Y IRR -Y2-----) 2 - R3(Y 2 + R3< y

(2.19)
where

R =- , = 1 (2.20)

1 1

R-2 1 + Y2 ( ,) (2.21)

R3 2 (2.22)

'r ( .,,) _1

R., 1=2 + 1 - 12 + g(-,). (2.23)
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Notice that 11 ((, t) and I2((, t) given by (2.15) and (2.10) can also be written as

0(-i '=  (--- [_] gr('. t)12  (2.24)

12((,) 0- 1 (2d.2[5):'
2¢ri '1=  (,' [ -- _ ] Rc [y'((', t)Y2((',t) 0225

since from symmetry properties (2.4) and (2.5) and the relations (2.16) and (2.17), yr*(('. t)

YI (1/(', t) and Y2(', ) = Y2(1/', t) on (' = 1. By using (2.18) and (2.19), equation (2.19)

can be replaced by a relatively more compact equation

[ .- ]- [(R3 + R 2yi) 1- -  = -R,. (2.26)
,Y2 (Y2

By introducing an appropriate characteristic variable such that ( = (,t) and

S0) and defining

l , C 0 l(((,t),t) (2.27)

2 (~,) 0 Y2(,( 0 0 (2.2S)

one finds that equations (2.18) and (2.19) is equivalent to the following set of equations

for C( ,t). yI (, t) and i 2 ( t) (Tanveer (1991a))

(t = -R3 - R2f)I (2.29)

!)I, (YI ( R,< (1 + UI,< )f2 ( + 1 (2.30)

SRIR3 R Q ,+ R32 f1 y2 + R 2. (2.31)

Alternatively. from (2.29)-(2.31). we can derive

(2.32)

fii

=-i -[1 + CI 1 (C(,t),t)]  + (2.33)

Equations (2.29). (2.32) and (2.33) will form the basis of the immerical calculation dv-

scribewd in Section 4.



3. PROPERTIES OF A CLASS OF SOLUTIONS

Consider initial conditions for which each of z((, 0) and IV((, 0) are analytic every-

where in J(j > 1 excel)t possibly at oc. Also, assume that there is some open region 1Z
in the plane in 1 1 > 1 so that the image of R under ((it) u ) to certain time T is

containe(l in KI( > 1 with no point mapping to ( oc. Furtlcr. we re(quire that ((J.)t

is sigle valued in 'R. These set of assuml)tions will be referred to later as Assuml)tiol A.

Our results in the next section suggests that Assumnl)tion A can only be valid for arl)itrarv

R in )1( > 1 for 5(1e c-lass (of initial coiditioiis.

Consider an arbitrary closed contour C within 7 where the Assmn)tion A al)ove is

valid ill) to some, time T > 0. WNe now derive some analyticity p)roperties of the solution

in this region il) to tiie T.

It follows friom (2.32) that

(I d i 0. (3.1)

Integration of (2.33) implies that

, J 1 . ] - 1 (3.2)

Initially, ((c. 0) a and !-, and !)2 coin(ide" with !l and Y2 . Thus since zc((, 0) and

11 ( (, 0) are each analytic (Assumption A), from (2.16) and (2.17). it follows that eachf(4f
I and ((U) .

Mid: -,,,, is am analytic flction of ( for I > 1 (except possibly at oc.). Tlms,0) an j 0)

', , and , ,are analytic functions of for jfl > 1 (except )ossil)ly at o)

Thus, from C auchvy's theorenm

[. (hd ((,0) §2( ,0) = 0 (3.3)

Ic( 0) ] - 0. (3.4)

From (3.1) and (3.2). it follows that

• dt ( t .( t (3.5)

[ f ,(6, t) ] - 0 (3.6)

Then from Mocrara's theorem, M id " will be analytic in in - Thi'n,

!/ I ) and !0 2 c; (only h)a]e' 1 h" olesilnglarities of the s'ainc order. However. from (2.20). a
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pol' in i is coliipatibI h only vith a logarith lic" or worse singularity of ((ct) . which

therefore violates Assumption A. Thus. mi(1r Assumption A, wC find that each of fil and

Y'2 Will 1W al analVt ic funi, i( )Ii o in tk, r 1,(iO R

However. dl.spite th analvticitv of It/ and !, as a function of under Assumption A,

each of yh and y2 (and thereforc . and 1V) (al have singularities in the image of 1? in

the ( plane, as we shall now se,. A singularity appears whcnever there is failure of local

inversion of the relation (= ((= . t) into = ((, t). Such a singularity will be referred to

as a fold singularity as will occur a point ,.((t) where

(-())0. (3.7)

For a fold of the simplest kind.

((o(t),t) € 0. (3.8)

It is clear that if we define .,(t) = (( o(t),t). then near 0

1
(-t) ± (dt),t)[ - u(t)] + ... (3.9)

6 = ( G M .t)[ G (0)] + ... 3.10)

, ) = B.2(t) + B: - o(t)) + o (t)) 2  ( )t. (3.12)

Then, it is clear fr'om (2.27), (2.28), (3.9)-(3.12) that

-./((,t) A 1(t) + A 2 (t) ( - (,(t))' 1 '2 + A:i((-( ,) + o(((-():/. 3.13)

and

Y 2 ((,) 3 2 (t) ( - ,(t)) ' 2 + B:j(t)(( - /) 2 o((( - ./2) (3.14)

wh('re

.( (t) - A(t) (3.13)

B 2(t) = 2( 3( ,(t).t)! 2(t). (3.17)

Si11,ilar (,xpressions call be' found for t he other cofhcients. Going throi igh the inversion

pr(cess carefflly, it is ('lear that tle a ha ly t Nitv of i an( 112 at = (t) impliet' t each

9



of yl((,t) and Y2((,t) is analytic in [(- (.(t)]11 2 at ( ,((t). From the definition of Y,

and y2 in (2.16) and (2.17) and that of f in (2.1), it follows that under Assunption A and

condition (3.8), each of z((, t) and W((, t) will be analytic in [( - (q(t)] 1 / ' at ( (q(t).

The speed of such a singularity (, caji be found by noticing that due to (3.7).

(G (t), t) = (t(O(t), t) since ( }(t), t) - 0 for a fold sin,,larity. Therefore from (2.29),

= R3((,(t),) 0 1?,((,(t), 0Y (,t-t (3.18)
Alternatively, on substituting (3.13) and (3.14) directly into (2.18) and (2.19). we find

that the coefficients of the most singular terms as .--' (.,(t) is given iw

A 2  I(., + -42 R 3 0 + R 20 A2 A1  0 (3.19)
dt

B.2-(, ± (Ro + R.2o.4)B'2 - 0 (3.20)
(It

where subscript 0 refers to the evaluation of those quantities at , (.(t) . Note that

each of equations (3.19) and (3.20) are consistent with (3.18). Equating progressively less

singular terms i - (,(t) obtained by substituting (3.13) and (3.14) into (2.18). we get a

set of relations, the first two of which is

21  - 1 ± 4, R 2( ((.(t).t) (3.21)

1

.42 [R,((q(t).t) + R 2,-((((t),t) A1 + R 2((,(t),t).43 ]A2

+ R 2 ( ,(t)t)4.2A: + (.,.4 1B 2 R, ((,(t),t) - (1 +(,I 1 (((,(t),t)) B 2 . (3.22)

Similarly on substituting (3.13) and (3.14) into (2.26) and equating different powers of
-( (1/2 .we find that the leading order ,quation is just (3.20). At the next order. we

find

d [~ 1 ] 1 [-- (J?:,c(C.(t).t)+ R,2((t,(t) A, + R2 ((,(t),t).43 )

- R2((.,(t).t)A2 j . (3.23)

It is clear from tfils expansion that once .41. A2. (,(t) B 2 ( ) and B:3 (t) are knvwn as

;a f 'icti(n of tiiie. one can calculate the coefficients of the higher order terms (say .4:3

a ind B, ) in terms of the already known lower order ternis, provided globlal terms such as

/d ((,( t). t) and [h ( (. (t). t) are known. This is an important ob)servat :1l as it gives us. at

10



least inl principle, a mlethlod of calculating its mlanly coefficients InI thme onle-hlf expanlsionl

inl (3.13) anld (3.14) as, we want, provided thec first few ternis are known. InI Section 5. wve

nmnnieri cally calculate the first few co(efficients and~ also sh~ow how the global terfins (-aii be

calculatedl.

Using a slinular procedure as above, it is clear that if (o( t) is a double zero of (

and~ Assumption A holds1, thme exp~ansioni for ijl (,t) and w2 . )~ill contaim powvers of

(C C( I) /3 Generally for a zero of ( of n-th (legree, onle can expect a series InI

[C Cqt) I ("+I)for each of y' anl Y12-

4. SINGULARITY FORMATION IN THE RAYLEIGH-TAYLOR PROB-

LEM

InI this section, for certain initially analytic z ( C, ) (hience f( (.0)) anld W1( C, ). wvegive

analytical evidlence' t~o suggest the instantanmeous formation of one( or more singlairities III

f( C, t) and W((,. ) inl the unlillvsical domain CI1 > 1 at certain points that depend oi

prop)erties of Z(, 0) aid IV(', 0) ill C > 1.

First, note that, for 0 < t << 1, we canl try a. regular perturb~ation expansion inl t.

It Is clear from (2.18) and (2.26) that

0 KC. 0) + t [{? 3 (C, 0) + R2((C, )Y1(,0)}1Y K~(, 0) + CY I (())!/2~((-0)1Ri1(K,0) + 1

-[1I+ C I,(((,0)]Y2(C.0)Ij + 0(t2 ) (4.1)

IY + ty(CO Cy3( 0 2(C)Y -( 0 R,(0) + (f2). (4.2)
±Y J ( 3 (,O +) 01 2(C.0)(0) }1K

Clearly, since each of Rt1 ((, t), R2 ((, 0), R3 ((, 0) andl 1 ((, t ) involve y' and Y12 inl th~e phYsica1l

doinlaimi C I (where each of them c-an easily be seen to have a regular perturbation

seres in I) one will have a regular pertubation exp~ansion ill powers of t of these globa

qu1anltities as Well. Onl substituting into (2.18) and (2.26). the coefficients of all powers of

t c-an be dletermnmedl, at. least inl princip~le.

This regula~r p~erturation series for t < < 1 b)ecomes disordleredl when the later termis

of the p)ertuirbation expansion is more singular thanl the pre'vioums ternis", wvhich c-anl occur

at soimie finite Co or a~s (-4 oc. Here, we will onlly restrict to brea;kd(owii in time power

series (lime t~o onme or more of the following conditions:

(a) Z( 0 at ( owith Z Q(Co,'0) : 0, TV ((C0 0) :A 0

(b) Z~ 0 at C (Iwith z ((C(i,) $4 0, W((, 0) =0 for all C
(c) As C ~oc, z(C(, 0) - i 2 C"'. for po-sitive 71 ail(l 1V1C 0) b ~"''~fru>1



4a. Birth of a pair of one-half singularities

Here we assume that condition (a) holds at some point Co. In this case, fromn the

definition of f in (2.1) and yj andl Y2 in (2.16) and (2.17), it follows that the asyniptotics

Of YI(K,O0) and1( Y2(K,0) as C--* (a is given by

Y] ~(o0( K- 0)o) (4.3)

Y2( )T(Ca(, 0) (4.4)
Y2(L~,O) Oz~(Ca(,0)(C - Ca)

It is clear that the regular p~erturbation expansion in (4.1) and (4.2) get dlisordleredl as

C -- Ca for any t > 0. Indeed the coefficient of t in (4.1) and (4.2) become the samne

order as the leadinig ordler termis when C C= O(t1 /2). This suggests the choice of

(1-/Ca) (4.5)
t112

as the inner variable. In the limit t -*0+ with ij 0(l), one then finds from (2.18)

andl (2.26) that the solution is given in the similarity form

Y2 t 1 2  
1 () (4.6)

wvlerc

R 2 (C,0) (4.8)

with a assumedl nonzero. With Q(tI /2) error, each of Y1 and Y satisfy

1] + 7 1 ', 9- Y 1 1' 0 (4.9)

Y 2 +ill" 2Y Y' 92YY' -0. (4.10)

The asymptotic matching condlition that (4.6) and (4.7) mnatch to the initial condition that

belmave like (4.3) and (4.4) near the singular point impllies that we must require that for

large J1i

-b (4.11)

-27j (4.12)



where
-, = +((o, O) (4.13)ofc ((O, o ) + .f ((o, 0)

and 1
c =(4.14)

(OK(Kof-O) + Cof((C0,O)

Equation (4.9) and (4.10) with conditions (4.11) and (4.12) can be solved exactly

1,
- 2 - ba (4.15)

2 4

2(11 a) 4 2a2  - 4 - - (4.16)

The above solutions (4.15), (4.16) show that two square root singularities at 71

t-ba, i.e. at C= : (o 4bat for 0 < t << 1 for each of yl((,t) and Y2(( t ), each of

which is consistent with the expansion (3.13) and (3.14) for sufficiently small Co To:: v"4bat I

Going to the definition (4.6) and (4.7), it is clear that for t << 1, e'ach of A, (t), A 2 (t).

B.2 (t) are directly determinable from (4.15) and (4.16) at each singularity.

4b. Singularities involving logarithms

Her(, we assume condition (b) at some point (t. With this initial condition, clearly
from definition of y and Y2 in terms of IV and f , y, = 0 and g2( ,, 0) has an initial simlle

pole at C Co. In this case, it is appropriate to introduce the inner variable

1 [I ]t (4.17)

vab (0o

(),0= g&Y1(((,, ),t (4.18)

J(,0 ,0 t) =((71, 0), 0) (4.19)

where

a = Y2(1/(o,O) R 2 (0,0) (4.20)Co
1

b - (4.21)
CO.f(o,O) + (2fc( o,0)

On substituting (4.18) and (4.19) into (2.18) and (2.26). it is clear that for q= 0(1) and

t << 1, with O(t) error, we( can write

- 1Y 1' + 21Y' = -1 (4.22)
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2'[1- Y 1] + Y2 [1 + 1 '] = 0 (4.23)

where the prime denotes derivative with respect to qj. Now to match to the initial condition,

it is clear that as i? -' oc,
1

1-(,t) (4.24)
1

71

Since the boundary conditions and the leading order equations do not involve t explicitly,

to the leading order for t << 1, each of Y'I and Y2 will be purely a function of 71. WVe can

write the solution down implicitly as

-1/2 d' kx'/2 (4.26)

y2 C/2cx/2 (4.27)

YI i = .- 1/2( 1 _e' X / 2 ) - 6Jo dx (4.28)
A,3/2

Since z;(N) is an analytic function and q, = 0 in the finite X plane except at the origin,

it follows from formulae (4.27) and (4.28) that the only singularities of I" and Y, are at

0, which corresponds to q = oc, and at X = c, where as Re - -- -cc. 71 takes a

finite value
1 f-0 [ x/2 -1]

rjo 21 X 3/2 (4.29)

There are two possible values for 1/0, depending on the choice of the branch of x 1/2. From

numerical integration, we find

710 = ±1.2533i. (4.30)

These two points are the only singularities of Y]1(z) and 12(71) in the finite 71 )lane. Note

that if Re N -4 cc,, then 71 -- o and so at 71 = oc, there are other possible behaviors,

besides (4.24) and (4.25). However, this behavior occurs in the other branch sheet of the

Riemann surface generated by the branch points 71o (given by (4.29)). To deduce the nature
of the singularity of 1 and 12 near I; '/o, we notice that

- 21n (ij - 7Io) + 31n ln('j - I/o) + .. (4.31)

so that for q/ -- t/O,

Y - r0o-(r/-/o) In (?/ - 1/o) + .. (4.32)
1

Y2 " - ,1O)[2 In (TI - ,0)] 2 .. (4.33)
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These singularities at specific 71o correspond to moving singularities in the ( plane at

(o - v"a-Coiot, as can deduced from (4.17). These singularity locations can be expected to

be accurate only for t << 1, because of the limitation of our analysis.

4c. One-half singularity birth at infinity

We now assume condition (c) holds. We will show that this results in the l)irth of a

one-half singularity at infinity.

From given conditions for case (c), we get

Yg((,0) b, (" (4.34)

g2((A,0 - b2 -" (4.35)

for some constants b, and b2 with ?I > 1 and m > 0. In this case, we find that the regular

perturbation expansion in powers of t break down for ( so large that ( t'1  = 0(1) or

larger. Hence, it is appropriate to introduce an inner variable

- ( 1''. (4.36)

Then upon substituting
1

y I(7q,t0,t) = t I ,,)(.7

Y2(((1, t),t) = t../" Y'(20-t) (4.38

into equations (2.18) and (2.26) with 71 = 0(1) and t << 1, we obtain the following

relations (with 0(t) error):
-Y + 1',1' - 71', ,;' = 0 (4.39)

1?

- I "1 Y2 [i I " = 0 (4.40)

where the prime denotes derivative with respect to q keeping t fixed. The initial conditions

(4.34) and (4.35), translate to the following equation for 71 --+ 0

Y, (q1) -- b, 1 (4.41)

Y'2(71) " b2 l - ' (4.42)

The solution to (4.39) and (4.40) that matches with the asymptotic conditions (4.41),

(4.42) is given implicitly as
,= -

/ (4.43)
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Y2 = bl"1 211Y-1l/1[l[ - nY] . (4.44)

Fromi (4.43), it is clear that 71 is a regular function of YI everywhere in the finite complex
Y1- plane except at the origin. Further, it is clear that dhas a simple zero at Yd a Y, Iilh itr *t} L

Thus, it is clear that the only singularity(ies) of F in the finite 7/ dolain (other than

1 = 0) is located where

1 _°  fI/,, (4.45)

.Note that this corresplonds to ii distinct locations corresponding to it (listinct )ranches in

(4.45). The l)ehavior of Y' and )2 near such an q( is clearly

- -2 / b 10 - /2 + (4.46)

Froii (4.44). it follows that

V ,,b/,, u,/,+1 -21l/"-lb IO c _ 1)0)2 + (4.47)

Thus. in the case when ti > 0 and ni > i. there is instantaleous generation of ti

1"2 -iiutmularity(ijes) at Dc that move into the finite plane. The behavior of y, and Y2 at

,';'h miihularitv is clearly seen to be consistent with (3.13) and (3.14). We find that for
1.

(.(t) = -(4.48)

1
41(t) - - (4.49)

A 2 (t)= t+-' -2n1/ 1 - 1 "b'/"C1 11 (4.50)

"-t) - ' - 2n b/, 2 ,, 'f/fl+I 2i1/?-1b,/"cI/n. (4.51)

5. NJMERICAL CALCULATIONS AND RESULTS

So far. ci" nunerial calculations have been limited to initial conditions of the special

fot II I

0((,o) = 0 (5.1)

)((,0) -(. (5.2)

This 'orresodl)(s to a sinus')idal perturl)ation in the vortex sheet strength at an initially

flat iut(.rfa,'e. It is likely that the numerical procedure d(escril)ed below ,ain be generalized

to other cases; however. our primary motivation in this calculatio was to see if indeed the
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approach of a one-hialf singularity as (3.13) and (3.14) towards I( 1 corresponds to a

spike at the p~hysical interface and Illustrate through a sipeexampIle how the unlpllsical

(lonlaill calculation allows us to extract all the relevant infornmat ion about such a singularity.

We chose this special initial condlitionl for simpllicity. Further, we only studliedl the details

for e: = 0.1, although we chiecked to see that similar qualitative features app~eared for other

c. From the analytical evidlence p~resenltedl in Section 4c, one( (-all exp~ect only one( singularity

fornming at oc, which according to (4.37) and (4.46) wvill start mnoving dowvn the negative

real ( axis towardls ( -1. This is confirmled byV the numnerical results presented here.

We ulse the llllphlysical equations inl the forin (2.29), (2.32) anld (2.33). The variab~les

which are adlvancedl ill time are the the 6 -V complex point values of (( . t) -I- anl(l YI at
(~Y2 .2

N uniformly sp)acedl out points oil each of two circles inl the -plaiue ceniteredl at the origin

of fixed radl pa and j , where 1 < j), < po. These set of 2.V points inl the l)lalle,

will henceforth be referred to as collocation polints. N, chosen b)etweenl 64 andl 256 i all1

the calcullationls lIresentedl, is taken to b~e a p)ower of 2 to allow convenience of fast Fourier

Transform.

We nlow dlescrib~e the stel) by step) procedlure to dletermnine the right hand side of (2.29).

(2.32) and (2.33) at the collocation points at any tinme t once-( ((c. t ), -I- and -"J are known
01Y2 (J12

ait these points. This lets us advance these variab~les inl tine, using a standard ordinary

(different ial eqjuaftions5 solver.

Step 1:

From the known p)oint values of we use a fast Fourier Transform inl Arq to compIulte

the (lerivative ( at the collocation p~oinlts. Wethen evaluate y/i ( , t ), t ) and !/2 ( (.t ). t )

iusing the relation (2.27) andl (2.28) at e'ach collocationl point.

Step 2:

Assuming that the image ( .t) of j), is outsidle the unit ( circle and that each

of Y1 and Y2 are analytic functions of 4onl and inside this curve (assumptions chiecked

aJpost('riori ), we obtainl

!/I (Lo~ 0 7r C('i 0,- (5.3)

[7C IP (O - (5.5

W~e conhImute l/j (r,", t ) and !12(( ", t ) for N uniformly sp~aced out v Ii the real interval

(0.27r). The integrals inl (5.3 )-(53.5) were implemented by using a real angular variable 1-1 inl
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the representation = pi ei and then using a trapezoidal rule that uses the N uniformly

spaced points in f over the interval (0, 2 7r).

Step 3:

Using the computation in Step 2, Rc[y 1 y*] and I jy I2 are computed at N uniformly

spaced out points on Cl 1 circle which is then used to compute cj and j (for 0 <

j < N/2) in the Fourier representations

00

Re[y,(e'.',t)y*(' ,t)] = c ejL' (5.6)

i1 " 2  ijv
1 ',l= , . (5.7)

j =-00

This is then used to calculate R 3((( , t), t) and Il(((s,t),t) at the collocation points by

using the representations
00

R3 (, t) = -Co( - 2 E c x' -j  (5.8)
j=l

I11 ,'t) = 2 E j I (- -  (5.9)

j=1

that follow from (2.11), (2.15) and (2.22).

Step 4:

Using (5.3)-(5.5) and taking (0 = t) for each of the collocation points, we compute

R 2 and RI, by using (2.20) and (2.21).

Once steps 1 through 4 are implemented, we are in a position to evaluate the right

hand side of (2.29), (2.32) and (2.33) at the collocation points. This allows us to advance

each of (. -- and --L in time by using a standard ordinary differential equations solver.
(Y2 (Y2

We monitored the computed values of IC( t)l at the collocation points to make sure that

they were outcidc the unit circle, or otherwise (5.3)-(5.5) will not be valid. Further, when

I(I < 1.04, we discontinued calculations since accurate evaluation of the integrals in (5.3)-

(5.5) required a value of N larger than 256, the largest value we allowed in our calculation.

As a biproduct of the above calculation, we get the physical interface location since

the knowledge of Y2((, t) on the unit circle gained in Step 2 allows us to reconstruct (uip

to a time dependent constant) the conformal mapping function z((, t) on 1- 1 since

z(C'vt) = z(1,t) + dv 2 (v1,t) . (5.10)

Note that z(1, t) cannot be found from the unphysical equations since YJ and Y2 involve

the derivative z(. However, for any symmetric initial condition, z(1, t) is purely imaginary.
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It is well known that the average height (in the physical z domain) -1 2J" ydx s ,,rserved

in time and so
2~ irJ d Im z(iv,t) Rc Z,(iv ,t) j di' Im z(ez, 0) Rc z,('z, 0). (5.11)

Since z((,O) is known initially, (5.11) can be used to compute z(1,t) in (5.10), which

allows us to compute z(civ,t) completely. For pirposes of comlpting the integrals in

(5.10), (5.11), we used a trapezoidal rule using the N uniformly spaced out points on the

unit ( circle, where y2 is known.

We also computed the following integrals using a trapezoidal rule and the values of

the functions at the collocation points

N 1 1 d ( T j d{4f (5.12)

1 /p d - 1 d - 5.13)0= 27r-i [=o 27ri Ip '

1 d' Po 1 d, (5.14)

SO k-f d 4L -2 d (.5zo= 27ri I =po0 27ri I Ip,

A= 1 - d 1 / d, (5.16)2ri I:,0 (: 27ri. "=0, ,-

21 I__l,___{ 1 - j d ifr{ (5.17)

2-i I _) 27_' = _

b2 d d2? 1 12 (5.18)2ri 1 =poo - 27ri 1 =p, '

Here ( is obtained at the collocation points through fast Fourier transforming ( as a

function of Arg on = P0 and l p.

It was observed that for t small enough, all the integrals (5.12)-(5.18) were zero up

to numerical accuracy (five digits in the worst case presented here), as must be the case if

there is no singularity of the integrands within the annular region in the plane between

11 = p0 and Ifl = p,. Then, after some time. which was found to depend on the choice

of Po, the value of No changed dramatically over a short period of time before settling

(lown to a. value of 1 (up to five digits). The transient time when No was significantly

different from 0 or 1 became progressively shorter as N was increased. We interl)reted this

result to mean that around this tine, a zero 0 (t) of 4 crossed from Ik1 > P0 into the
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region 1 1 < P0. The dependence of the results on N is not expected as the numerical

quadrature is not adequate during the short period of time when o(t) is very close to

-= p,. Note however, this inacuracy has no impact on the actual solutions to (2.29),

(2.32) and (2.33) since it was found that the right-hand sides of (2.29), (2.32) and (2.33)

were well behaved when this happened. This is not unexpected since there is iio division by

in implementing steps 1 through 4, as necessary to calculate the integrals (5.12)-(5.18).

Figures 3 and 4 show the inlages of 256 uiiformly spaced out l)oints on 1V1 = p= 5, at

t = 1.4 anl t = 1.6, just )efore and after No changed its value from 0 to 1. At t 1.4.

the zero of ( is at &0 = -5.295 and the corresponding (, (singularity location in the (

plane) is at -2.061. The apparent cusp in Fig. 3 is 1)ecause (, is close to 0 at = -5 due

to the proximity of o. At a slightly later time when 0 is exactly -5, we get a true cus).

The image of 5 = in the ( )lane at t = 1.6 clearly shows that the curve is not simple

aid that it intersects itself. We clearly see that the failure of one to one correspondence

of and C on this curve. Relating the geometric nature of the observed image in Fig. 4

to general mapping properties of an analytic function, it is clear that there is a zero of (f

in V I < po, as is consistent with the comilmuted value of N'0 = 1 at this tille. We also

monitored the image of Ij pi and it was found that throughout our calculations, its

image consiste(l of a simple curve completely outside CI 1. Figure 5 shows the image of

256 1)oints on 1= = 1.5 inder ((c, t) at t = 2.4. Another property that was apparent

in our calculations is that the image under (( ,t) had the effect of moving points both

radially outwards and tangentially away from ( = 1, which corresponds to the bubble part

of the interface, while points tended to move both radially inwards and slide tangentially

towards ( -1, which corresl)onds to the ul)ward moving spike (recall gravity is upwards)

in the physical domain. This tendency is clear in Figures 3-5. There are a lot more points

neaar the negative real ( axis than the positive ( axis, even when all the points were initially

uniformly spaced out on a circle centered about the origin. Furthermore, the points near

( = -1 have moved( closer while image points near ( 1 are further away than they were

initially (Recalling ((i, 0) =). Since the image ((c, t) defines the motion of characteristic,

it is clear that information from the uiniphysical plaiie tends to flow towards a spike that

will make the spike features sensitive to small changes in specified initial conditions in the

l)hysical (lomain I( < 1. Near the buibble however, the opposite will be true. Further

implications of this )roperty will be discussed in Section 7.

From the calculus of residues, it follow. that for ((a, t). analytic in , when a zero

of ¢,, is ini the anmlar region the compultedl o in (5.13) is indeed the location o((t) of

the zero of (. Further, the value iii (5.14) will be the corresponding image (.,(t) in the

( plane. The value, Z0 in (5.15) is clearly ( ). Further. the computed .41 . .42 and B2
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in (5.16)-(5.18) has to correspond to to 01(co, t), (40, t) and Y2(40, t). Whenever the

calculated No = 1, the relations (3.15)-(3.17) are used to colmute .41, .42 and B 2 in the

expansion (3.13)-(3.14). The calculation had to be discontinued when any of the following

conditions occurred

(i) The image of any of the collocation points on ((c, t) for VI Pi was in I(I < 1.04 since

this made it difficult to get a sufficiently accurate result in the quadratures (5.3)-(5.5) for
N not exceeding 256.

(ii) The image of any collocation points oni Po under the comluted ((4. t) came inside

the unit ( circle as this made the evaluation in (5.8) and (5.9) sensitive to the small errors
inl cj and ci-

(iii) Whenever V01 comlted in (5.12) was smaller that p1. as otherwise we could not

ensure that the singularity (,(t) was outside the image of P, PJ ill the ( plane, as

necessary for (5.3)-(5.5) to be valid.

Since we were interested in tracking the singularity. the choice of po and pi in our

calculatiolls was dictated by the necessity that the calculations could be carried out over

a significant interval of time for which NO was nonzero and none of the conditions (i)-(iii)

resulted. For all the calculations reported in the table below, we used pI = 1.5. though we

changed p, )etween 1.25 and 2 to ascertain that the calculations of the physical interface

did not depend on the choice of p, as would be the case if the image of I l = p in the

( plane did not contain any singularity of yi((J.) and !12((. t). The interfacial location

also agreed with a standard physical domain code based oil satisfying (2.S) and (2.12)

at uniformly spaced out points on the unit ( circle, with f and IV having a truncated

representation of (2.2) and (2.3). This helped us further confirm that there was indeed no

singularity of g! and y-2 for I(I < 1Q.,I. Ve also ensured that the values of the integrals ini

(5.12)-(5.18) at any tiie t were independent of pi when No had settled to the value 1. The

value of po was varied from a maximum of 50 to a mininmm of 3.0 in order to track the

sinigularity at various stages of its motion. For a large value of po, the value of No settled

to a value of 1 at a relatively small t. However, in such cases the computation could not

b~e carried out for a long time because of the limitation of condition (ii) cited above. In

that case, one or more points on the secondary lobe (as in Fig. 4) of the image of 1V1 =I p'

tended to mov in in..o 1I < 1 before long. For smaller values of p() in the range we

tried, computation could be carried out for a significantly longer time: however for such

cases, singularity tracking was not possible for earlier times since 0(t) was then lotside

p(. However, smaller p0 allowed its to track (., in the later stages when , was getting

fairly close to -1 when the corresponding interface shape iear = -1 showed a developing

spike. Ve also noted that for two different p0, inl the overla))ing time interval wheii the
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computed No had settled to a value of 1, there was agreement in the computations (5.12)-
(5.18). This provided an additional check on the code and on our assumption that there

was indeed only one singularity in this case.

Table 1 lists the various quantities of interest as a function of time. The results have

been checked by appropriately doubling N until there was no variation in the results.
With the limited number of N < 256, we had difficulty ensuring desirable accuracy for
t greater than 2.4. Tl,,t physical interface at t = 2.4 is shown in Fig. 6. The image
of ( = - I corresponds to the spike observed at x = r. The curve marked 1 in figures
7, 8, 9, 10 show (,, A, 42 and B2 as a function of t, where we used (3.15)-(3.17) and
the comluted quantities in (5.12)-(5.18). The curve marked 2 is the analytic prediction
(4.48)-(4.51), where b, = -e = -0.1, b2 = 1, n. = 1 and m = 0. Since the theory in
Section 4 requires t << 1, we get surprisingly good agreement even for t not all that
small. Figure 11 shows Im z(1, t) and Im z(-1, t), the vertical location of the bubble tip
and spike respectively. Though, the spike does not appear very well developed in Fig. 6,
Fig. 11 shows that that the long time asymptotic range has been reached where the spike
accelerates upwards (the direction of gravity) with the acceleration approaching free fall.
Fig. 12 shows the product Rc[A 2 B*] as a function of time. In this case, since each of A 2

and B2 are real, R( [A2B*] = A2B 2.This quantity appears to reach a, minimum and then
increase. Thus Al1(t), as defined in (6.32), goes through a maximum and then decreases.
XX'e take this as an indication that 1 (t) does not blow up in finite time. We cannot rule
out the possibility that the observed trend in All (t) reverses at at an even longer time; but
given that the spike has reached its asymptotic acceleration towards the the end of our
calculations, we do not expect this to happen. In the following section, analytical evidence
will be presented to show that under the assumption that fr All (t)dt does not blow up in
finite time, an isolated one-half singularity of the type (3.13) and (3.14) cannot reach the

physical domain (I= 1 in finite time.

6. EVENTUAL FATE OF A ONE-HALF SINGULARITY

We now want to understand the fate of an isolated singularity of the type given by

(3.13) aid (3.14). once it is already close to the unit circle in the ( plane.

Note that (2.21), (2.22) and (3.18) imply that
_ 1
1.( 2((,(0),0) - Y2( 0,t y1((C.,(M),) (6.1)

Now, from (2.25). (3.13) and (3.14), it follows that

I2 ((,,t) 7r dI [Civ + - ] Q(,,,t) (6.2)
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where

Q(v, t) Re [ Y*(ew. 0, Y2(e',t) i,.(6.3)

It is convenient to define

Q,(v,t) Re [A*(t) B 2(t) (Civ -
( ,(t))' /2 j (6.4)

Q2(v,t) Re [A*(t) B3 (t) (C iv - (,(t)) ] (6.5)

Q-(t) Re [A*(t) B(t)J ICiv - ("(t)l. (6.6)

If we denote
R, =RZV°  

(6.7)

then for R --4 1- , the behavior of Q(v, t) in the vicinity of 1/() is given by

Q(,t) = Q1(,,t) + Q2 (,,,t) + Q3 (,,.t) + 0(1/ -,,013/2). (6.8)

Now let's define

1 2 1 ((1,t) = 2 7r dv i + ] Q(0,t) (6.9)
1 02 r [ iv - C., I

122((.,,t) j 2 dv ±fs + Q2(V,t) (6.10)

2 3 (,,t) - 2e j d, d civ + ] Q 3(1,t). (6.11)

By changing the integration variable from v to -v in each of (6.9), (6.10) and (6.11),

it is not difficult to establish the property that for 1 < j < 3

I2j((.,,t) 7- di, L -g  j Q(-v, t). (6.12)

Now note that from l)revious exl)ressions (6.4), (6.5) and (6.6)

Q,(-,t) Re [A (t) Bj(t) (civ - ( /') ] (6.13)

Q2(-I,t) Re [A, (t) B*(t) (ev -(*(t)) ] (6.14)
Q:(-t,t) Re [A2(t) B*(t)] few - ((t)f. (6.15)

Each of (6.13) and (6.14) are clearly seen to be the real part of simple analytic functions

for ( = e . Therefore, it immediately follows that

1 1/2

2 C. (*(0) (6.16)
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1I-2.((,,(t),,) = -A, (t) B* (0(,, (.*(t)).( .7

Now conside(r I23(( t(),) . From (6.6) and (6.11), it follows that

123((.1t) ,) - R( [A*(t) B2 (t)] j ,tr Ie * t )I i + (6.18)

Using (6.7) and p)eriodicity and symmetry of the iiitegran(1, it follows that

(R 2  _ 1) Rf [,(t) B 2(t)] 11 9
7r [()7 (R2 + 1 - 2 R co. ,) /2 "  (6.19)

Now we wamt to ,consi(er the asyml)totics of (6.19) in the limit R 1- . To do this it

is convenieiit to b)rcak the integral range in (6.19)

J 1±1 (6.20)

where 1 > > ( > > (fR - 1) . For the" first integral in (6.20). t ie leading order a symnpt oti Cs

Cal 1be fomn(d by re)lacing R )v 1. For the second integral in (6.20). tie leading order
I '

asym)tot cs can b (e found by first siilxifying the o. i i l)v 1 - i, and then replacing

the integration variable 1! 1 y b . where il = (R - 1) 11 . One then finls the leading

1(ld('r asyl~lptotics of (6.19) as

I, 3(ct).t) ..- 2 - R (A.*B 2 ) 2 _, +

- ,7 2 slit 1 (1 + 2) /

[J "~2 (1

(6.21)

Each of these integrals can be ('omplte(d exactly with f dropping out completely oi

a(lition. XVe find

I: t).t) -2 f-) R (A*(t) B2(t)) [3 l 2 - In (R-i) + o(1)]. (6.22)
7

Now let (col)1te

I1(m(t),t) I,(Q(t),t) - I 2 1( ,t),) - I(q(t),t) - I2 (Qt)t). (6.23)

It is clear that

IR(((t),t) - 2 . r [ 7, ± it I ,I,' .t) (6.24)

where

Q(,.) - (2(i,.t) - Q2,'.t) - Q3(,.t). (6.25)
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This can1 also be written as

- 1 2,, R2+ 1 - 2iRsIn(i' - i.,))1

I]?(, t), 0) - f) di [1+ - '2Rco.s( - J ( 0' t (6.26)

As 1? --+ 1- , the ab)ove expre'ssif1, reduices to

-R_ 1 (I1' Qji (I.,t) [I + o( 11

12 
71

Jo 1 i cot -(1, - 1)) QuO (I,t) [1 + 0(1) 1 (6.27)

whe(re' the( subIsc'riPt 0 inl QR refers to its evaluation with c(. . \otice( thaIt froml

the l)-havior (6.8), each of the integrals ill (6.27) exists.

Now note the fact that if for anly complex (., singularity. necar which the asynilphtIC

behIav'ior o)f Yi anoIIl Y2 Is AiVeii by (3.13) and (3.14), there is a sinlgulairity at in the

nieighb~orhoodl of which

yj ((.t) = A*(t) + -4*(t) (* ~(t))' + A*(t)(( - +' ± (( _(*)3/2. (6.28)

Now as R --+ I- , the point -Conmes .iose to )- and so the last term Ii (6.1)

vie1 (1

- 1.t) f. 1 4(f 2 1/2

+A A(t) B* __ (*(t)) + o(J? - 1) (.0

Taking the real I)art of (6.1), using (6.7), (6.16), (6.17), (6.22), (6.27) and (6.29) ili the

;1sylnltotic ilililt I? -* 1- , We get

Al .1(f) (R - 1) in(J? - 1) + 31II2 (t) (R - 1) + o(R? - 1) (6.31)

All(t) R(ff [A*(t) BA(t (6.32)

6_ 11)2_ R( [A*(t) B,2(t)] - I / 1(1" Q?,("t)(.3
7r(t 2 7r 2 -2 (o.s (v t/((.33
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The solution of (6.31) to the leading order is

i (R - 1) =In (ft0 - i) cJt' dt' M, (')* (6.33)

If we assumile t hat J' M, (t )dt does ilot blow up for any finite tune, thenl it follows from

(6.34), that there wviii be ab~sence of finite time singularity. This assumption is consistent

with the results from numerical calculations as rep~orted ini the p)rev'ious sectionl, though

for a special initial condlition. In that case, recall that J1,1 (t) actually ap)pearedl to dlecrease

after sufficiently long tile.

7. DISCUSSIONS AND CONCLUSION

V,,e have analyzed soime prop)1erties of the unphysical equation dlerivedl earlier by Tanl-

veer ( 1991a). For early times, for a specific class of analytic IV((, 0) and z((, 0) in Mc2 > 1

(except possibly at inifinity), we noted how onle or more singularities canl form at a p)oinit inl

I( I > 1, where :(((, 0) is zero. One-half singularities are shown to be generated, though

wve sliowx that other singularities of a imuch more complicated foriii involving logarithmls

are possible. Further, analytical evidIence suggests that oine or more one-half singularity
imy be b~orn at (~oc, wvhich moves to the finite ( p~lanle instantaneously. The numerical

collp Itatiloll, although for a special case, clearly shows that onle-half sinigularities onl their

apphroach towardls the p)hysical dlomamn corresp~ondls to a continually developing spike. The

connuectioni of more complicated singularities with interfacial features is yet to be mlade.

The numerical complutation also suggests that the characteristic field in the lunlhysical

lle( is pointed away from thme bubble andl towardls the spike. With anl assumpiltioni that

appears to be consistent with the nuimerical calculation for time special case, our anmalytical

(vidlence suggests that anl isolatedl one-half singularity of the type given in (3.13) and (3.14)

canniot reachl thme physical ommaini in finite time. \Xe have inot investigatedl the question of

finite timec singularity in the phlysical dommaimi when possibly multiple one-half sigularities

iiierge or other forums of singularities are p~resenmt, ando this remains anl open 1uestilm.

It Is clear that, the location of formation of initial singularities depend oin the slpecifics

of time initial 'oniditionis :,((,.0) aindU(~ 0) ini I( > 1. Clearly, it is possib~le to make

arb~itrary smiall p~ertuirbationi iin the p)hysical domain < 1 that significantly alters tihe

location and number of singularities that are formed in K I > 1. Further, our nmumnerical

comimplit at ion, though for a special cae appears~u' to indhicate that the characterist ic field inl

thle 1muiphivsical planle is directed away from the bubb)1le anid towards thme spike. This feature

a1ccoumut s for the sensit ivityv of spike to initial conditions ini tihe physical plane. Further, if

()ii( wecre to pertu1111 thle Initial conioitioni (5.1) and (5.2) 1by placing an adiditionial singularity

vi'1 > 1 that is weak ini the -Muise that its conitrib~ution to the right lianilde of (2.29)
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is small, then the characteristic field generated in this prolbleuii will be close to what has

been coniputed in Section 5. Since a singularity moves along with the characteristic field.

oiie cali expect that in due time, this additional singularity will also approach ( - 1.

which corresponds to the spike.

This suggests that in a general way, it might be true that weaker singularities have

the tendency to merge with stronger ones. If this is generally true, we speculate this as a

possible reason why bubble comipetition results in a doninant bubble. The image umer

z( (, t) of an arc oil =I 1 between two approaching singularities must contain the bubble

region, since each spike possibly corresponds to a singularity. If the singularities me'rge

pairwise in the ( plane, the corresponding bubble region between these two singularities

will disappear resulting in one lrger bubble. However, if multiple singularities of ilearly

equal strength results from an initial condition, this merger can be expected to take a

while as the characteristic field will be alnost equally affected by all the singularities. The

trani;ient dviianiics observed in experimient can be expected to depend on the location of

initial singularities and their motion, the randomness resulting from the ill-posedness in

determiniing z((,0) and W((,0) in I(I > 1, when they are only giv.,'n in the physical

domnain I(] < 1. Confirniation of this scenario must await further investigations in the

future.
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t A, A., B 2  Spik Bubbl
0.24 -41.27 -15.20 4.249 -1.541 0.3626 0.024527 -0.023940
0.40 -24.38 -8.994 2.639 -1.244 0.4721 0.041930 -0.040243
0.60 -15.72 -5.820 1.868 -1.095 0.5843 0.065733 -0.061680
0.80 -11.28 -4.201 1.516 -1.046 0.6857 0.092863 -0.084978
1.00 -8.533 -3.209 1.327 -1.048 0.7808 0.12467 -0.11087
1.20 -6.657 -2.539 1.221 -1.083 0.8712 0.16283 -0.14008
1.40 -5.295 -2.061 1.161 -1.142 0.9555 0.20949 -0.17333
1.60 -4.268 -1.711 1.132 -1.220 1.029 0.26745 -0.21131
1.80 -3.477 -1.454 1.126 -1.315 1.085 0.34039 -0.25464
2.00 -2.860 -1.269 1.141 -1.426 1.108 0.43316 -0.30381
2.20 -2.381 -1.141 1.181 -1.559 1.080 0.55200 -0.35913
2.40 -2.013 -1.062 1.248 -1.729 0.9805 0.70441 -0.42066

Table 1: Various parameters characterizing the one-half singularity. The last two

columns contain 1i z(-1,t) and w z( 1, t), the vertical locations of the slpike and

the bll)ble.
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Fig. 1: The comphIlex ( cut uit circle.
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Fig. 2: The physical z = r' + iy lplaile.
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Fig. 4: The image of 256 uniformly spaced out points on 5 at t 1.6. a

little after 0 has (rossed into 1 < 5.
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Fig. 9: A2 is shown lere as a function of t in the curve 1. Curve 2 corresponds to the

analytical prediction using small t analysis.
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Fig 10: B-2 is show her asafnto ftIntcre1Iuve2crepnst

I

I.
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t

Fig. 10:/5"2 is shown here' as a fiziitioii of I in the curve, 1. Curve' 2 COrrC's)ollds to

the analytical predic'tion using small t analysis.
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Fig. 11: Plot of Im z(1,t) and Im z(-1,t), the vertical location of the bulbble-ti 1p

and tihe spike as a function of t.

40



Re[A 2132-]

If)

1.5 2.0 Non DimTime

t

Fig. 12: Plot of Rc[A 2B*] against t.

41



Form Approved

REPORT DOCUMENTATION PAGE OMB No 070-0188

PuObiC reo rtng bu'dOen for ,!n, colecton of nforratIor estmated to e age * hour Der reworse inCiUdIng the time for revewng InstruciOns searching e.,st,ng data Source,
gathering and ma,ntinn. the (lat needed. and comotefng and re .wnq re oliemon Ot ,nform ation Send Commrnents regarting thi Durden tinrte or any other weOci of th's
collectornt of ntormatOn nciUd nc suggest oh% for reducng n s Ouroe ! .vastngton keaoquarte,% Serice c,,recorate for rntOfr .bon Operatons and Reportj 1215 ,etersOn
Da,,s "igh ea . S ,te 204 .ihngton. 4A 22202-4302 and tO the Off-e or M a-gerhent and Budge' Paperwor. Reducl On ProjeCt (0104-0 8 ashington DC 20503

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

August 1992 Contractor Rfo rr
4. TITLE AND SUBTITLE S. FUNDING NUMBERS

SINGULARITIES IN THE CLASSICAL RAYLEIGH-TAYLOR FLOW:
FORMATION AND SUBSEQUENT MOTION C NAS1-18605

6. AUTHOR(S) WU 505-90-52-01
S. Tanveer

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

Institute for Computer Applications in Science REPORT NUMBER

and Engineering ICASE Report No. 92-37
Mail Stop 132C, NASA Langley Research Center
Hampton, VA 23665-5225

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING

National Aeronautics and Space Administration AGENCY REPORT NUMBER

Langley Research Center NASA CR-189690
Hampton, VA 23665-5225 ICASE Report No. 92-37

11. SUPPLEMENTARY NOTES

Langley Technical Monitor: Michael F. Card Submitted to Proc. Roy. Soc.
Final Report London A

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Unclassified - Unlimited

Subject Category 34, 59

13. ABSTRACT (Maximum 200 words)

This paper is concerned with the creation and subsequent motion of stngularities
of solution to classical Rayleigh-Taylor flow (two dimensional inviscid, incompres-
sible fluid over a vacuum). For a specific set of initial conditions, we give ana-
lytical evidence to suggest the instantaneous formation of one or more singular-
ity(ies)\at specific point(s) in the unphysical plane, whose locations depend sensi-
tively to small changes in initial conditions in the physical domain. One-half
power singularities are created in accordance with an earlier conjecture; however,
depending on initial conditions, other forms of singularities are also possible.

For a specific initial condition, we follow a numerical procedure in the unphys-
ical plane to compute the motion of a one-half singularity. This computation con-
firms our previous conjecture that the approach of a one-half singularity towards the
physical domain corresponds to the development of a spike at the physical interface.
Under some assumptions that appear to be consistent with numerical calculations, we
present analytical evidence to suggest that a singularity of the one-half type cannot
impinge the physical domain in finite time.

14. SUBJECT TERMS 15. NUMBER OF PAGES

singularities; Rayleigh-Taylor flow 43
16. PRICE CODE

A03

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

Unclassified Unclassified

NSN 7540-01-280-5500 Standard Form 298 (Rev 2-89)
P2gs rs eo ty ANSI Sid 139-11
29 1 t02


