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Preface

The four parts of this collection of technical articles, reports
and memoranda deal with beamforming studies (12 papers),

frequency line detector/trackers (9 papers), artificial neural
networks (3 papers), and mathematical studies (10 papers).
The content of these 34 papers is discussed in the foreword

provided for each part of this collection.

Dr. William I. Roderick
Associate Technical Director for Technology
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BEAMFORMING STUDIES

Foreword

Sidelobe suppression in acoustic arrays is an important problem that gives rise to
challenging mathematical problems that often cannot be solved analytically. Moreover, the
mathematical problems encountered are sometimes new and, although interesting in
themselves, not studied in the literature. The novelty and size of these problems make the
development of numerical algorithms for their solution very difficult. Papers [1] - [3]* of
this compilation make the point clearly for the case of linear arrays with missing elements.
Supporting mathematical background is found in papers [261 - [28] of this compilation.
Sidelobe optimality is stressed in these papers. A different definition of optimality is
presented in paper [4]. The methods of these four papers are applicable to acoustic arrays
of arbitrary geometry.

Interchannel crosstalk between acoustic channels can occur if array telemetry
systems are imperfect. The potentially debilitating effects of crosstalk on beamforming
performance are analyzed in paper [5]. This paper presents the first theoretical study of the
effect of crosstalk on beamformer performance. It is shown that crosstalk can be corrected
before the channels enter the beamformer, provided the crosstalk levels do not exceed an
upper bound derived from the crosstalk transfer function.

Families of weights (shading coefficients) are often used for linear arrays for
sidelobe reduction. A two-parameter family of weights is given in paper [61 for discrete
and continuous linear arrays. Of particular interest in this paper is the discrete version of
the Kaiser-Bessel window for continuous apertures. More general weight families are
discussed in [7]. Taylor weights are unrelated to these families and are discussed in [8].

A method for optimal and suboptimal weight design suitable only for linear arrays
is presented in papers [91 and [10]. Mathematical results related to this work are found in
papers [31] and [32] of this compilation. Paper [11] shows that phased weights are
unnecessary for optimal sidelobe suppression in steerable linear arrays. Paper [12]
discusses the element location problem for unequally spaced linear arrays.

* Papers are referred to in the order that they appear in the compilation.
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In Situ Optimal Reshading of Arrays with Failed
Elements

MICHAEL S. SHERRILL AND ROY L. STREIT, SENIOR MEMBER, IEEE

(Invited Paper)

Abstract-An algorithm is presented which computes optimal weights computers (such as the HP9836C used here) in only a few
for arbitrary linear arrays. The application of this algorithm to In sItu minutes. Typical execution time for a 25-element array is
optimal reshading of arrays with failed elements Is discussed. It Is shown under 2 min; for a 50-element array, execution time is
that optimal reshading can often regain the original sidelobe level by typically under 10 min. The current algorithm, and the
slightly increasing the mainlobe beamwidth. Three examples are pr th
sented to illustrate the algorithm's effectiveness. Hardware and software HP9836C with its inherent transportability, comprise an
issues are discussed. Execution time for a 25-element array is typically effective system for optimal reshading in situ.
between I end 2 min on an HP9836C microcomputer. II. OPTIMAL ARRAY SHADING

I. INTRODUCTION The wavenumber response of a linear array composed of N

A linear array of discrete elements (sensors) often experi- discrete omnidirectional elements located at arbitrary fixed
Lences element failures in situ. These failures can positions x. is given by

N

significantly increase the sidelobe levels of the array T(k)I= V ex[-ikx] (I)
wavenumber response, depending on how many elements fail
and where the elements are located within the array. We
discuss here an optimal reshading (reweighting) algorithm where w, are the element weights and the independent variable
which can be applied in situ to reduce the sidelobe levels to the k denotes wavenumber in radians per unit length. The element
original design level. In many common element-failure situa- weights are required to be real, but this entails no loss of
tions, optimal reshading can regain the original sidelobe level generality (see below in Section III). Also, from (i), T(-k)
by slightly increasing the mainlobe beamwidth. In arrays = T*(k) for real weights (asterisk denotes conjugation), so it
which experience significant element failures, optimal reshad- is unnecessary to consider negative values for k and we
ing is still possible, but may be of limited use. Three examples confine our attention to nonnegative k.
given below demonstrate a few of the possibilities. The array response as a function of k can be considered to

An algorithm for optimal reshading was first proposed in [ I I be composed of a mainlobe beamwidth and a sidelobe region.
by Streit and Nuttall. Their algorithm utilized the general- The objective of the optimization process is to make I T(k) as
purpose subroutine [21 to solve a specially structured "linear small as possible on the user-specified sidelobe interval. Array
programming" problem. Unfortunately, their algorithm re- weights which achieve this objective are said to be optimal.
quired hours of computation time and large amounts of The optimization process usually produces equivalued side-
computer storage on a minicomputer (the VAX 11/780) to lobes in the sidelobe region.
optimally reshade a 50-element array with five failed ele- Weights that are optimal for a full array do not remain
ments. Consequently, their algorithm is not useful for in situ optimal after the array experiences element failures. To
optimal reshading. partially compensate for failed elements, the array is optimally

The shading algorithm proposed here differs from Streit and reshaded by undertaking the optimization process again and
Nuttall's primarily in that we solve their linear programming incorporating knowledge of which elements have failed. As
problem using a new general-purpose subroutine [3), [4), the examples below will show, the effectiveness of this
herein referred to as Algorithm 635. Algorithm 635 uses the strategy depends upon how many elements have failed and the
special structure of the linear programming problem to reduce location of these elements in the array.
time and storage requirements by orders of magnitude. The sidelobe interval is defined differently depending on the
Algorithm 635 can be incorporated easily in Streit and interelement spacing of the array. For an array with periodi-
Nuttall's original approach. A significant algorithmic im- cally spaced elements and no failures, the sidelobe interval is
provement was discovered in the course of this study and is defined to be [K0, (2ir/D) - K01, where K0 is calculated from
described below. The resulting shading algorithm is fast the desired sidelobe level and the number N of array
enough and small enough to execute successfully on micro- elements. I D is the physical distance from sensor to sensor.

I For an N-element array and - -dB peak sidelobes, we have Ke - (2/D)
Manuscript received March II, 1986; revised August II, 1986. arccos (I1Z) where 2Zv = Ir - (P - 1)

1
11m + [P + (r3 - i)/211/ ,

The authors are with the Naval Underwater Systems Center, New London. re = 10" 0, and M - N - I. The interelement spacing D is assumed to be
CT 06320. half of the so-called design wavenumber, and N is the number of array

IEEE Log Number 8714258. elements before failures.
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Furthermore, the minimization interval can be reduced to [K0, level of the array response as
ir/D I. siice the response of this array is symmetric about k =
v/D. Ko is typically the point on the mainlobe response which mn max 'f,,,- a,,,, w, (5)
is equal in magnitude to the peak of the sidelobes, but this is .,,i , ,,

not always true for seriously degraded and/or aperiodic arrays
(see Example 3 below). For arrays with aperiodically spaced where the complex numbersf, and a,, are defined by
elements, the sidelobe-interval, denoted by [K0, KI 1, must be
chosen by inspection of a nonoptimal beam pattern or some fm = exp [ - ik,,,x I

other means. I T(k)l must be minimized over the full [K0, KI a,,,, = exp -ik,xvx - exp [- ik,,x,]. (6)
range since, in general. an aperiodic array response is not
symmetric about any wavenumber other than k = 0. The The problem (5) is precisely the form necessary for application
ability to specify arbitrary K0 and K, is particularly useful for of Algorithm 635. For theoretical details of this algorithm, the
those applications involving aperiodically spaced elements interested reader is referred to [3].
because lower sidelobe levels may be obtained by looking at Sometimes a few of the optimum weights for arrays with
different minimization regions. failed elements are observed to be negative, particularly those

The optimization process deals with element failures in an on the end elements. If the weights are applied in hardware,
array in the following way. providing a 180* phase factor on the element output may not

I1. Maintain mainlobe beamwidth and permit the be desirable or possible. However. Algorithm 635 allows the
Step lselection of all nonnegative weights: this is implemented by
Stp.Rnsidelobe levels to rthe addition of constraints to (5). Usually. but not always, an

Step 2. Regain, if possible, the original sidelobe level by element is zeroed if it would have had a negative weight. From
(2) it follows that, if all the element weight values are required

Broadening the mainlobe by increasing K0 (step 2) is per- to be positive, they must be between 0 and I. The requirement
formed only if the sidelobe level, even after optimal reshad- that weights w,, •-, w,. , be between 0 and I can be written
ing. has risen to an unacceptable value because of element mathematically as
failures. Thus step I is normal algorithmic procedure. and step 1.
2 requires some iteration in specifying K0 and/or K, because a wn,--' = - n= 1, . N- 1. (7)
compromise has to be made between the mainlobe beamwidth 21 2
and the level of the sidelobes. A

The solution of the array problem in the original formula- lgorithm 635 requires these N - I constraints. Algorithm
tion I I I is mathematically equivalent to solving an overdeter- 635 can also incorporate any number of general constraints of
mined system of complex linear equations. Unacceptably high
sidelobes result if this system is solved in the usual least
squares sense, so it is necessary to solve the system so that the b,, w, -c. <- d,, m = 1, 2, ,L (8)
magnitude of the maximum residual error is minimized. There
now exists (31 an efficient algorithm and corresponding where cm and d,,, are constants. The requirement that WN also
FORTRAN code 141 for solving problems of this sort to high be nonnegative gives
accuracy.

To obtain the beamformer equation in an appropriate format I
to utilize this algorithm, we normalize the peak response of (l- w,-n _
T(k) so that T(0) = I. This gives 2=

N or

w,=l. (2) 1-' E I"" (9)
21 2

We solve (2) for the Nth weight WN and substitute in (I) to
obtain which is clearly a special case of the general constraints (8).

N.-1 Ill. ALGORITHM IMPROVEMENTS

T(k) = exp I -ikx] + w,[exp (-- ikx,,)-exp (-ikxN)I. Several changes to the algorithm presented in [1] enable

significant reduction in the need for computational intensity.
(3) Lewis and Streit (51 have proved that, for a general line array

By sampling T(k) at the M equispaeed points shaded so that it has optimal sidelobe levels when steered
through the same number of degrees either side of broadside,

[K, - KoJ there exists a set of optimal weights that are real. Thus
k,, = K0 + K- (M-1), m= 1, .., M (4) complex weights do not need to be considered. This fact

allows an approximate eight-fold reduction in computation
we can write the problem of minimizing the peak sidelobe time and a two-fold reduction in storage requirements.
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It is clear that the 50-element example run in Streit and IV. ALGORITHM IMPLEMENTATION FOR IN SITt UsE

Nuttall [II was significantly oversampled in wavenumber. An algorithm must be reliable, easy to use, and fast when
Their beam pattern can be reproduced with a four-fold executing on portable microcomputers. to be useful for in situ

reduction in the sampling of T(k) (see Example 2 below), and application. The following section details the most important
this in no way detracts from the practical application of the hardware and software issues addressed to enable in situ
algorithm. A significant reduction in computation time is optimal reshading of arrays with failed elements.
realized by decreasing the n"nber M of beam pattern samples The algorithm has been coded in BASIC and is comprised of
in (4). Algorithm 635 and an array processing driver program.

A significant algorithmic modification made to Algorithm Algorithm 635 solves the linear program for a set of optimal
635 further decreases computation time. We have labeled this weights, given data supplied by the driver program. The
modification "fast costing" and it is an important step in driver performs the initial setup based on several user inputs
making the algorithm feasible on microcomputers such as the and provides all program output.
HP9836C. In order to describe this modification properly, The driver program may be used with linear arrays having
some familiarity with the simplex method of linear program- either periodic or aperiodically spaced elements. Program
ming and reference [3] is assumed. output consists of a graph of the optimal beam pattern, a graph

Algorithm 635 can be broken into two fundamental compu- of the optimal normalized element weights, and several
tational operations called "costing" and "pivoting." "Cost- parameters pertinent to the specific problem. Provision is
ing" determines the so-called minimum reduced cost coeffi- made for storing the weights in a separate data file for possible
cient and requires 2NM multiplications, where N is the use with digital beamformers.
number of discrete array elements and M is the number of A Hewlett-Packard (HP) specific software modification was
samples taken of the beam pattern. "Pivoting" is a basis made by setting up the input data arrays (equation (6)) in
update and requires N2 real multiplications. It is clear that the buffers so that they are accessible for a one-dimensional
speed of the algorithm is intimately related to the number M of multiply. For large-array dimensions, indexing a doubly
samples taken of the beam pattern, as well as the number N of subscripted data array and performing a dot product takes
discrete array elements. Since A4 is larger than N. "costing" more time on the HP9836C than reading in a data array from a
requires more multiplications than "pivoting.*" buffer, doing a MAT multiply, and performing a summation.

"Costing" in the linear array application means that, in each (A MAT multiply is simply an element-by-element multiply of
simplex iteration, the "discretized absolute value" of every two equally dimensioned data arrays.) However. this proce-
sidelobe sample of the wavenumber response function T(km), dure is more time consuming when the input data arrays are
m = I, ' - -, M, is computed to determine the "minimum very small (i.e., the number of elements in the line array is
reduced cost coefficient" of the current "basic feasible small). The break-even point occurs at around 12 or 13
solution." By proceeding through a finite sequence of such elements, so it was decided to incorporate this speed enhance-
"basic feasible solutions," we arrive at the solution of the ment for the longer-running larger line arrays and trade off
"discretized problem." As shown in [3], this implies that the some speed reduction on the smaller line arrays.
computed optimal wavenumber response function can have To obtain fast execution times for in situ applications, we
sidelobe levels that are theoretically at most 0.04 dB higher use one hardware speed enhancement, a 12.5-MHz fast CPU
than the true optimum sidelobe level. 2 "Fast costing" refers card with 16 kbytes of cache memory. This hardware
simply to the fact that we first determine which of the sidelobe supplement is available from HP for use on the HP9836C.
samples T(k,), m = 1, ' • -, M, has the largest true absolute Cache memory is fast memory resident on the CPU card for
value, and then compute the "discretized absolute value" of quick instruction acquisition. The use of the fast CPU board
this one complex number. Therefore, only one "discretized rather than the 8-MHz clock present in the standard computer
absolute value" calculation is performed in each simplex configuration results in an approximate factor-of-two increase
iteration instead of M such calculations. The resulting in observed speed.
reduction in computational effort is significant in microcom- The complete program is precompiled by use of software
puting environments. The drawback is that the use of "fast and a floating point math card available from the INFOTEK
costing" prevents the simplex algorithm from converging to a company. Precompilation reduces most computational por-
solution of the "discretized problem." Fortunately, however, tions of the BASIC code to machine language, giving an
it can be proved that we must approximate the solution in a additional three-fold reduction in computation time. It is also
well-defined sense. In the linear array application, "fast desirable to upgrade the operating system for the HP to its
costing" results in the computed optimum beam pattern latest revision. All work on these problems was run using the
having sidelobe levels that are theoretically at most 0.08 dB BASIC 3.0 operating system and the hardware supplements
higher than the true optimum level. 3 This is a small price to noted above.
pay for major execution time improvements. Computation time is defined as time spent in Algorithm 635

and does not include the small amount of set-up time required
I The theoretical error of at most 0.04 dB is derived by taking 20 iog,0 (sec by the driver program. Computation times are for the

(rp)), where p = 32. The term sec (r/p) is the error bound discussed in compiled BASIC program run on the HP9836C with the
(31. Fast costing squares the error bound, giving sec2 

(1p), or 0.08 dB when special hardware additions mentioned above.
p = 32. The program described here needs just over 303 kbytes of

-7-
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internal memory in addition to the memory required by the spaced array. originall, designed for - 30-dB sidelobes,
operating system to execute on the HP9836C. This is the elements 2 and 4 have failed. Therefore. N = 23, M = 128,
amount of space required by fixing the maximum array size at and K = 0.6877. We first keep the mainlobe width fixed and
N = 50, and allowing at most M = 256 beam pattern allow the sidelobe level to rise. See Fig. I. The peak sidelobe
samples. Users can change dimensions to suit their specific level has risen to - 26.86 dB below the mainlobe. and the
needs, but storage requirements presently are directly propor- mainlobe width is unchanged. If the sidelobe level after
tional to the product NM. Even for a much larger number of reshading is too high. an alternative to discarding or repairing
line array elements, it is unlikely that memory restrictions the array is to broaden the mainlobc beamwidth. In Fig. 2. K0
would prove to be a problem on the HP9836C since extra is increased to 0.775 and the peak sidelobe level diminishes to
memory boards of I Mbyte each are readily available. - 30,04 dB below the mainlobe. A trade-off must always be

Ongoing modifications should further enhance the capabil- made between an enlarged mainlobe beamwidth and an
ity and speed of the BASIC algorithm and driver. The addition acceptable peak sidelobe level. In this case the mainlobe was
of the ability to handle directional sensors is both useful and increased 12.7 percent in order to recover the original sidelobe
straightforward to implement. Execution of identical code on level. Execution times on the HP9836C are between I and 2
the new HP 300 series computers, which have a 16.6-MHz min for Fig. ' and 2.
clock rate, should further reduce the computation time.
Computation times on the order of 5 min for a 50-element B, Example 2: Moderately Effective Reshading
array and I min for a 25-element array are anticipated. This example is taken from Streit and Nuttall I1]. Because
It is possible to nio the BASIC program in its uncompiled of the improvements detailed in Section III. above, the currentstate. The execution of the program with cache memory and algorithm runs fster on the HP9836C than on the VAX I /

the fast CPU board as the only enhancements results in agrtmrn atro h P86 hno h A lcthefatio tims bof approximatly 25hamceforta 5es-element780. although the floating point multiply time on the HP in its
basic configuration is roughly 200 times slower than on thearray and 4.5 min for a 25-element array. VAX.

A copy of the entire program is available from the authors. VAX.Our pecficimpemetaton n H BAIC tilzessevral Consider a linear array with 50 equispaced elements.
Our specific implementation in HP BASIC utilizes several initially designed for peak sidelobes of - 30 dB relative to the
hardware and software devices to achieve computational mainlobe. Fig. 3 shows the classical Dolph-Chebyshev beamefficiency, some of which may not be pertinent to otherefficncy.sme o ferating ss m notineot o e mches, pattern with - 30-dB sidelobes throughout the minimization
BASIC operating systems running on comparable machines. range f K0, (2,r/D) - AK11I. This was computed using the
Users will undoubtedly find it necessary to make modifications r a lg in 6.11 - n. This a c ae uld he

to the code to allow it to run on other HP equipment or in been computed analytically.)BASIC on the VAX. be optdaayial.
Now we suppose that five elements. 7. 22, 40. 43. 50, of the

V. EXAMPLES array have failed. The optimal response after reshading the

The following examples demonstrate the utility of the array is shown in Fig. 4. The peak sidelobe level has risen to

current algorithm for application in situ and provide insight - 25.51 dB. but we have maintained mainlobe beamwidth and
retained full steering capability. In this example N = 45 and

into different situations that might arise when reshading M = 128.
equispaced arrays with failed elements. If optimal reshading This example (Fig. 4) took 7.47 minutes on the HP9836C

can restore the array's original design sidelobe level by and required 292 simplex iterations. The algorithm of Streit

slightly increasing the mainlobe beamwidth, then we say that and Nuttall required 38.4 m and 402 iterations on the VAX.

the optimal reshading has been effective. Optimal reshading is Recovery of the original sidelobe level is possible (Fig. 5).

effective in many common element-failure situations. When The mainlobe beamwidth must be increased by the large factor

the array is severely degraded, optimal reshading is less 25. peent must he exec f th i ts

effective but is still useful in reducing the negative impact of

element failures. These examples demonstrate that the effec- takes 8.98 mi and requires 351 iterations. The constraint that

tiveness of reshading depends upon the number of element all the weights lie between 0 and I is used. It is necessary to
use the constraint in this instance because otherwise a

failures, as well as the location of the failed elements within dslocation of thi rnse from 0 ts.ris
the aray.dislocation of the maximum response from k = 0 results. This

the array. dislocation is due to the presence of too many negatively
Missing elements are modeled by zeroing the appropriate weighted elements.

weights. In these examples, N refers to the number of intact

array elements, M is the number of beam pattern samples. and
K0 is calculated by using the equation in an earlier footnote. C. Example 3: A Severely Degraded Array
We define the mainlobe width to be twice Ko in all three This example shows that. for severely degraded arrays.
examples. recovery of the original sidelobe level may not be possible by

increasing the mainlobe bzamwidth. even after optimal rc-
A. Example I: Effective Reshading shading. Consequently. control of the level of the first sidelobe

This example demonstrates that reshading can restore the must be relinquished in order to gain control of the level of the
original sidelobe level of an array response by slightly remaining sidelobes.
increasing the mainlobe beamwidth. In a 25-clement equi- Consider a 25-element array with elements I I and 14 failed.

iiii ,I n II IIII -8--I
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Fig. 3. Classical Dolph-Chebyshev array response and normalized weights

for N = 50 and - 30-dB sidelobcs.
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Fig. 4. Optimized arry response and normalized weights for 50 elements
with ,elen'ents 7, 22, 40. 43, and 50 failed.

weights. The optimal property of the array problem formula- gain control of the level of the remaining sidelobes. We pick
tion and solution tells us that no weights exist which can the first sidelobe merely for case Of implementation; modifica-
suppress all the sidelobes below a certain level. Thus this array lion of the algorithm to forfeit control of a different sideiobe
has lost too many elements and performance cannot be could also have been done. The need to relinquish control of
restored to its original design levels merely by reshding, the first sidelobe level has only appeared in cases of severe

We have chosen to relinquish control of the first sidelobe to array degradation due to element losses.

-10-
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Fig. 6. Optimal array response and normalized weights for 25 elements with

elements I I and 14 failed.-

VI. CONCLUSIONS Optimal reshading can be accomplished in situ, quickly and
reliably, on portable microcomputers using the algorithm

Arrays that have failed elements cani be reshaded to obtain described here. Arrays with 25 elements routinely run in less
optimal array response functions. Optimal reshading is effec- than 2 min and computation time for a 50-element array is less
tive in many common element-failure situations. When the than 10 min. The algorithm can be applied to arrays of evenly
array is severely degraded, reshading is less effective, but still or unevenly spaced linear geometry.
can be used to reduce the negative impact of element failures. The above examples (and others) support the generally
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Abstract

This algorithm documentation package contains three
appendices: Appendix A* is a reprint of an article in the IEEE
Journal of Oceanic Engineering, volume OE-12, number 1, January
1987, In Situ Optimal Reshading of Arrays with Failed Elements;
Appendix B is a listing for the driver routine in program "Reshade,"
and Appendix C,** a 3-1/2-inch floppy disk containing the program
"Reshade" that runs on any HP Series 200/300 microcomputer.

* Appendix A is the lead document of this compilation.
"Appendix C is not included here.
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IN Sf!u OPTImAL REsHADING OF ARRAYS wmni FAamF EmENm

ALGORITHM DOCUMCNTATION PACKAGE

This document assembles under one cover information on a NUSC-developed algorithm which
computes optimal shading weights for discrete elements (sensors) in linear acoustic arrays. The
algorithm has been found especially useful when elements fail and array reshading is required in
situ. The main attractions of the algorithm are that it loads easily on Hewlett-Packard microcom-
puters, and that it runs fast enough and is accurate enough to suit most sea trial and engineering
development applications. Continuing requests for this information since an invited paper first
appeared in the IEEE Journal of Oceanic Engineering in January 1987 motivated the publication of
this documentation package.

The information included here is in hard copy and floppy disk form: the IEEE pape; In Situ Optimal
Reshading of Arrays with Failed Elements, is reprinted in Appendix A; a program listing of the
application-specific driver routine is given in Appendix B; and a 3 inch floppy disk, containing the
program "Reshade" which runs on any Hewlett-Packard Series 200 or 300 microcomputer, is pocketed
in Appendix C.

GENERAL APPLICATION

When a linear array of discrete acoustic elements is subjected to the rigors of the ocean environment,
individual elements can fail. Element failures are usually characterized by noisy channels, or
intermittent responses, or no response at all. Depending on the number of failed elements and their
specific locations within the array, sidelobe levels of the array wavenumber (k) response can rise
significantly to degrade array performance. Because element weighting values determine array
wavenumber response, weights that are optimal for a fully populated array have to be recalculated
when elements fail. The optimal reshading (reweighting) algorithm described here can be applied
in situ to compute weighting values that can reduce sidelobe levels to approximately the original
design specification. In fact, in the more common situations where "a few" elements fail, optimal
reshading does regain original sidelobe levels. Where large numbers of elements fail, optimal
reshading is still possible but may be of limited use.

The original approach for optimal reshading of a linear array was proposed by Streit and Nuttall in
1982 (see reference 1, Appendix A). At that time, the algorithm was run on a VAX 11/780 and
required hours of computation time and large amounts of mass storage for rudimentary element
failure problems.

The 1987 reshading algorithm incorporates several algorithmic improvements that exploit the special
structure of the underlying linear programming problem to reduce time and storage requirements
by orders of magnitude. The cuirent algorithm is still based on the original theory but is now fast
enough and small enough to execute successfully in minutes instead of hours in the application
environment. Execution time for a 50-element array is typically about 10 minutes. Derivation of the
optimal reshading algorithm and its implementation are given in the references of the paper reprinted
in Appendix A; examples of array reshading are given in the paper itsel.
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TO RUN wRESHADET ...

* Insert the program disk from Appendix B into device/drive.

T "ype the command string LOAD ORESHADE:(devic vpec ler)'

* Press Enter

* When the program is loaded, press Run.

* Follow the prompts.

PROGRAM NOTES
"Reshade" comprises a driver routine in HP BASIC which sets up the necessary variables to be

optimized and a generic optimization routine. The driver is listed in lines I through 481 of the
program-the printout is contained in Appendix B.

The driver included in "Reshade" applies to a linear array of acoustic elements, some of which may
have failed during the course of a sea trial or similar event. Even with the array intact, "Reshade"
allows the user to minimize the sidelobe levels of the array beamformer output, given a certain
mainlobe width. If the minimum sidelobe levels remain too high, it is possible to alter the mainlobe
beamwidth to reduce sidelobe levels. Note that the weights on each element can be set up as
non-negative, if desired.

The program prompts require user inputs, not all of which are self-explanatory For each user input,
values in (parentheses) are those allowed, and values in [brackets] are the defaults. The maximum
allowable total number of array elements is 50; the minimum is three. The computation time for a
50-element array is approximately 10 minutes, while a 10-element array runs in less than one minute.

The algorithm is applicable to both equispaced or aperiodically spaced linear arrays. In the
equispaced arrangement, the wavenumbers kO and kl-which delimit the region in which the
minimization is performed-are calculated automatically from the desired sidelobe level. The final
sidelobe level depends upon the number of failed elements in the array and their location. In this
case, only the inter-element spacing must be specified

In the aperiodically spaced arrangement, every element's position referenced to the forward end of
the array must be specified. If elements have failed (or are missing), they are treated as if they do
not exist. The wavenumbers kO and ki are not calculated automatically for an aperiodic array, and
must be entered manually in units of radians/meter

2
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If unsatisfactory sidelobe levels are still present after running Reshade" for an equispaced arrange-
ment, kO can be increased to provide a larger beamwidth, thus reducing sidelobe levels. For an
aperiodic array kO and k1 can be altered manually to reduce the sidelobe level in the region of
interest.

Resultant weights can be stored in a data file in the following format:

" Equispaced element arrangement-total number of elements, followed by the inter-element
spacing, followed by array weights.

* Aperiodic element arrangement-total number of elements, followed by each element's
position, followed by array weights.

PROGRAM EXTENSIONS AND DIPROVEMENTS
"Reshade" and its associated algorithm have established the validity of in situ computation of linear

acoustic array optimal shading weights. Virtually no sea trial is conducted today without reshading
to compensate for failed elements. Extensions to larger linear array problems are potentially useful.
Improvements and modifications to the original source code are possible in the light of recent
advances in signal processing hardware, and are needed to obtain reasonable computation times for
these larger arrays. With the advent of single-board array processors, the beam pattern computations
done (implicitly) in each iteration in the generic optimization model (KAPROX) may be performed
more quickly and accurately using a floating point FFl This is but one example of software
modifications which will enhance the performance of Reshade."

The generic nature of the optimization routine lends itself to the solution of more general array
problems. These arrays may be multiline, planar, or three-dimensional with arbitrary geometry Each
geometry, however, will require a specific driver routine to set up the problem to be optimized. In
general, the drivers would need the capability to address complex weights, allocate enough memory
for computations, and to take into account any application-specific constraints imposed on the
optimization problem. Additional constraints can be useful; for instance, constraints can sometimes
be used in active arrays to control adverse effects of acoustic coupling between the array elements.

3
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APPENDI B

DWAVR PROGRAM LISTING: "Reshadeft

LUnes 1 through 481

B-1
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I OPTION BASE 1
2 OUTPUT 2 USING -#,B";255,75 1 CLEAR SCREEN
3 PRINTER IS CRT
4 RAD
5 REAL Estore(58),U(256),Tbeam(256),GrresC2S6),Hsens(256)
6 INTEGER Ioexit(18),Itlog(18),Icountc50),Ijswt<3,51)
7 INTEGER Ldim, I,J,K,N,C5,Symf'lag,Cachflag,Floatflag,H
8 CON 'Arrss' Zradii(58),Bradii(4),Cheb(10),Z(50),Zcentr(56)
9 CON 'Arrssl/ ReC(256),Imf(256),Reb(4,50) BUFFER, Imb(4,S0) BUFFER,Rebcentr(
4), Imbcentr(4)
18 CON 'Proj/ Basinv(51,54),Cossln(2,1625),ReaC256,50) BUFFER, Ima(256,50) BUF
FER, Cos4S, Space
11 CON 'Param' INTEGER Ndim,N,L,Logp,Ndimpl,Ndimp4,Sll,Tme,Ni5Cl(lO)
12 CON 'Buffmult' ColreaCSO),Colima(58),Colreb(50),Colimb(59)
13 CON 'Groups' INTEGER Nogroup,REAL Senslen,Xgroup(25),Dgroup,DCS9)
14 CON 'Groupsi' HydsenSC3J,HydroSC32
15 DIM Si 1SC33,Equi$t3J,WeightSC3J,NegwetSC3J,NCwkoSC3J,Data msusS1lS3,Fi lena
meSC 102,Wgtstore$C32,GroupspacesC3l
16 !
17 Data msus$-"tINTERNAL"
18 Cach'fiag=9
19 ON ERROR GOTO 24 POSSIBLE ERRORS IF INTERFACE NOT PRESENT
20 CONTROL 32,1;1 IF CACHE NEMORY IS PRESENT IT WILL BE UTILIZED
21 OFF ERROR
22 STATUS 32,1;Stats
23 IF Stats THEN Cachflag-1
24 Floatflag-9
25 ON ERROR GOTO Redo
26 CONTROL 32,2;1 1 IF FLOATING POINT CARD PRESENT IT WILL BE UTILIZED
27 OFF ERROR
29 STATUS 32,2;Stats
29 IF Stats THEN Floatflag-1
30!
31 Redo: I OBTAIN INPUT DATA
32 LOOP
33 IF NdimB0 THEN
34 Ndim=16
35 ELSE
36 Ndim=Ndim+Tme
37 END IF
39 REPEAT
39 PRINT "ENTER TOTAL NUNBER OF ELENENTS'GROUPS IN ARRAY. (3-50) C"&YALSC
Ndi m)&"J"
40 INPUT Ndim
41 UNTIL Ndtm>2 AND Ndim<51
42 !
43 OUTPUT 2 USING -0,B";255,75 I CLEAR SCREEN
44 REPEAT
45 PRINT "ENTER NUNBER OF SENSORS IN EACH GROUP. C"LVAL$(Hogroup)&"J"
46 INPUT Nogroup
47 UNTIL Nogroup<26
48 IF NogroupwS THEN Nogroupul
49
50 IF Nogroup<>l THEN
51 REDIN Xgroup(Nogroup)
52 OUTPUT 2 USING "6,B";255,75 ICLEAR SCREEN
53 REPEAT
54 Group spaceS*""
55 INPUT "IS ELENENT SPACING WITHIN THE GROUP CONSTANT? CY'N) CYJ",Grou
pspac eS
56 IF LEN(Group spaceS)*8 THEN
57 Group space$w"Y"
58 ELSE
59 Group space$=UPCSCGroup_spaceSC 12)
69 END IF
61 UNTIL Group space~n"Y* OR Group spaceS."N"

B-3



62
63 IF Group_spacess"N" THEN
64 REPEAT
65 H-0
66 PRINT "ENTER POSITIONS OF SENSORS IN GROUP:"
67 FOR I11 TO Nogroup
68 PRINT "SENSOR *"&VRLS(I)&":"
69 INPUT Xgroup(I)
70 IF I>1 AND Xgroup(I)<Xgroup(I-1) THEN H=H+l
71 NEXT I
72 UNTIL H=8
73 ELSE
74 REPEAT
75 PRINT "ENTER SPACING BETWEEN SENSORS IN GROUP: C"&VRLS(Dgroup)&")"
76 INPUT Dgroup
77 UNTIL Dgroup>8
78 FOR II TO Hogroup
79 Xgroup(I)w(I-l)*Dgroup
8 NEXT I
81 END IF
82 ELSE
83 MAT Grre$s (I.)
84 END IF
85
86 OUTPUT 2 USING "#,B'1255,75 I CLEAR SCREEN
87 REPEAT
86 HydsonSm""
89 PRINT "DO YOU WISH TO INCORPORATE A HYDROPHONE SENSITIVITY? (Y/N) EN3H

90 INPUT Hydsens
91 IF LEN(Hydsen$)=O THEN
92 HydsenSm"N"
93 ELSE
94 Hydsen$mUPC$(Hydsen$[l])
95 END IF
96 UNTIL HydsenS-"Y" OR Hydsens"N"
97 !
98 IF Hydsen$-"N" THEN
99 MAT Hsenss (1.)
lee ELSE
181 OUTPUT 2 USING "#,B"1255,75 ! CLEAR SCREEN
182 REPEAT
103 PRINT "ENTER THE PHYSICAL SENSOR LENGTH: (METERS) r"&VALS(Senslen)&"
3-

184 INPUT Senslen
185 UNTIL Senslen)8.
186 1
187 REPEAT
lee HydroS=""

189 PRINT "IS HYDROPHONE TO BE MODELED AS A DIPOLE OR CONTINUOUS SENSOR?
(D/C) EC3"

118 INPUT Nydros
111 IF LEN(Hydro$)=8 THEN
112 Hydro$m"C"
113 ELSE
114 HydroSuUPC$(Hydro$[I3)
115 END IF
116 UNTIL Hydro$u"C" OR HydroSm"D"
117 END IF
ilia
119 OUTPUT 2 USING "#,B";255,75 I CLEAR SCREEN
128 REPEAT
121 PRINT "ENTER TOTAL NUMBER OF MISSING ELEMEHTS/GROUPS I "&VAL*(Tme)&" I
1"
122 INPUT Too
123 UNTIL Tmo>u8 AND Ndim-Tme>2
124 1

B-4
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125 IF Tme>8 THEN
126 REDIM Misel(Tme)
127 REPEAT
128 OUTPUT 2 USING "#,B";255,75 I CLEAR SCREEN
129 PRINT "ENTER MISSING ELEMENT/GROUP NUMBERS (SEPARATED BY COMMAS) I
1Mise1(*)1." 31"

138 INPUT Mise](*)
131 MAT SORT Misel(*)
132 Hue
133 FOR 1-1 TO Tme
134 IF Misel(I)<1 OR Misel(I))Ndim THEN HH+1
135 IF 1>1 THEN
136 IF Misel(I)-Misel(I-1) THEN H=H+I
137 END IF
138 NEXT I
139 UNTIL H-0
140 END IF
141 I
142 OUTPUT 2 USING "#,B";255,75 ! CLEAR SCREEN
143 REPEAT
144 INPUT "ARE ALL ELEMENTS/GROUPS EQUISPACED? (Y/N) CYJ",EquiS
145 IF LEN(Equi$)=8 THEN
146 Equi$="Y"
147 ELSE
148 Equi$=UPCS(Equi$[I])
149 END IF
158 UNTIL EquiS="Y" OR EquiS="N"
151 !
152 REDIM D(Ndim-Tme)
153 New ko: !
154 Symflag=8 I FLAG FOR ARRAY SYMMETRY
155 IF Equi$="Y" THEN I EQUISPACED ARRAY
156 OUTPUT 2 USING "S,B";255,75 I CLEAR SCREEN
157 IF 611=8 THEN S11=38
158 REPEAT
159 PRINT "ENTER ORIGINAL SIDELOBE LEVEL (DB): (0 TO 58)) C-"&VAL$(S11)&
3 3

168 INPUT SI11
161 IF LEN(S11$)<>8 THEN S11ABS(VAL(S11$))
162 UNTIL S11>-1 AND S11<51
163 I
164 OUTPUT 2 USING "#,B";255,75 I CLEAR SCREEN
165 REPEAT
166 PRINT "ENTER ELEMENT/GROUP SPACING (METERS) (8-15) C "&VAL$(Space)&"
3-

167 INPUT Space
168 UNTIL Space>8 AND Space<=15
169
170 NwNdim-1
171 R=ISA(SII/29) I CALCULATE KO
172 R2-R*R
173 R3ISQR(R2-1.)
174 R5-(R+R3)A(I./N)
175 R6=(R-R3)^(1./N)
176 Zo-(R5+R6)/2.
177 Ko-(2./Space)*RCS(l./Zo)
178 Kl-2.*PI/Space-Ko
179 I
188 IF Newko$a"Y" THEN
181 OUTPUT 2 USING "*,B";255,75 I CLEAR SCREEN
182 REPEAT
183 PRINT "ENTER KO: C "tVAL$(,o)&" 3"
184 PRINT "SUGGESTED VALUE IS :";PROUND(Ko,-4)
185 INPUT Ko
186 K112.*PI/Space-Ko
187 IF Hydsen$="Y" OR Nogroup>1 THEN

B-s
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188 PRINT "ENTER i..: I "&VRL$(KI)&' 3"
189 INPUT KI
190 END IF
191 UNTIL Ko>O AND Ko<PI/Space AND Ko<K1
192 Ndim=Ndim+Tme
193 END IF
194
195 C5se
196 FOR lot TO Ndim
197 IF Tme>O THEN
198 FOR J-1 TO Tme
199 IF IuMisel(J) THEN 294
286 NEXT J
201 END IF
292 C5SC5+1
203 D(C5)mSpace*(I-1)
204 NEXT I
285 CALL Symd(Ndim-Tme,Symflag,D(*))
206 ELSE
207 PRINT "ENTER ELEMENT/GROUP POSITIONS (METERS FROM END) :"

208 PRINT "SKIP MISSING ELEMENT/GROUP POSITIONS."
209 IF Newko$"Y" THEN Ndim*Ndim+Tme
210 FOR Io TO Ndim-Tme
211 REPEAT
212 Hae
213 PRINT "ELEMENT/GROUP "&VRLS(I)&" E "&VALS(D(l))&" 3
214 INPUT D(I)
215 IF 1>1 THEN
216 IF D(I)<D(I-1) THEN H-H+1
217 END IF
218 UNTIL HO
219 PRINT D(I)
220 NEXT I
221 OUTPUT 2 USING "#,9"1255,75 1 CLFAR SCREEN
222 REPEAT
223 INPUT "ENTER KO (RRD/METER)',Ko
224 INPUT "ENTER KIs (RRD/METER)",KI
225 UNTIL KI>Ko AND Ko>S0
226 CALL Symd(Ndim-TmeSymf1ag,D(*))
227 END IF
228 1
229 Ndim-Ndim-Tme
238 NdimpluNdim+l
231 Ndlip4uNdim+4
232 IF Equi$-nY" THEN
233 M-64
234 C3w(KI-Ko)/(2.*M-I.)
235 ELSE
236 M=128
237 C3w(KI-Ko)/(M-I.)
238 END IF
239 Logp=5
248 Pls(2^Logp)+l
241 1
242 OUTPUT 2 USING ",B"1255,75 1 CLEAR SCREEN
243 REPEAT
244 Nagwet$m""
245 INPUT "WILL YOU ALLOW NEGATIVE WEIGHTS ? (Y/N) [Y3",NegwetS
246 IF LEN(Negwet$)w9 THEN
247 Neg.et$u"Y"
248 ELSE
249 Negwe%$-UPC*(Negwet$ 1])
250 END IF
251 UNTIL NcguetS-Y" OR NegwetS"N"
252 IF NHguet$w"Y" THEN I NO CONSTRAINTS (Wj)(01
253 L-S

B-6

-24-



254 ELSE 1 1 CONSTRAINT: (SUM(Wj)-.5)C=.5,{Wj-.5)<=.5
255 L-1 1 CHANGE L AND REDIM APPROPRIATE ARRAYS
256 END IF I FOR MORE CONSTRAINTS
257 Ldim-MAX(1,L)
258
259 !REDIMENSION INPUT ARRAYS
268
261 REDIM Ioexit(Logp),Ijsut(3,Ndimpl),Itlog(Logp>,Icount(NdirwZradii(Ndim)
262 REDIM Dradi i(Ldim),Cheb(Logp),Estore(Ndim),Z(Ndim),Zcentr(Ndim)
263 REDIM Daslnu(Ndimpl,Ndimp4),Cossin(2,PI),Rea(MNdim), Ima(M,Ndim)
264 REDIM Ref(M), ImC(M),Reb(Ldim,Ndim), Imb(Ldim,Ndim),Rebcentr(Ldim)
265 REDIM Imbcentr(Ldimi), D(Ndim),U(M) ,Tbeam(2*M) ,Grres(M),Hsens(M)
266 REDIM Colrea(Ndim),Colima(Ndiin),Colreb(Ndim),Coiimb(Ndim)
267 1
268 MAT Daslnu (8.) 1 INITIALIZE COMMONS
269 MAT Cossina (8.)
278 MAT Z- (8.)
271 MAT Cheb= (8.)
272 MAT Coirea- (8.)
273 MAT Colima= (8.)
274 MAT Colrebs (8.)
275 MAT Colimbs (8.)
276
277 IF Negwet$Y" THEN
279 MAT Reb= (8.)
279 MAT Imb= (8.)
288 MAT Rebcentr= (8.)
281 MAT Iibcentr= (8.)
282 MAT Dradii= (8.)
283 MAT Zcentr= (8.)
284 MAT Zradii= (I.)
295 ELSE
296 MAT Reb- (I.)
297 MAT Imbz (8.)
289 MAT Rebcentru (.5)
289 MAT Imbcentr= (0.)
299 MAT Iradii (.5)
291 MAT Zcentr- (.5)
292 MAT Zradii= (.5)
293 END IF
294
295 FOR I-I TO M
296 U(I)=Ko+C3*(I-1) I GENERATE U ARRAY
297 NEXT I
2998
299 IF Hydsen$-"Y" THEN I CALCULATE SENSITIVITY TERM
388 MAT Hsens= (8.)
381 IF Nydro$="D" THEN IDIPOLE SENSITIVITY
382 FOR J-I TO M
383 Constm.5*.5*COS(U(J)*Senslen)
384 Hsens(J)-ConsteConst
385 Constm-.5*SIN(U(J)eSenslen)
386 Hsens(J)nSOR(Nsens(J)4ConsteConst)
38? NEXT J7
38 ELSE I CONTINUOUS SENSITIVITY
389 FOR JulI TO M
318 Hsens(J)ADS(SIN(U(J)*Sens1.n/'2.)/NU(J)*Snslen/2.))
311 NEXT J7
312 END IF
313 END IF
314 1
315 IF Hogroup<)l THEN I CALCULATE GROUP RESPONSE
316 MAT Grress (8.)
317 FOR .7u1 TO M
318 GrimuB.
319 FOR Is1 TO Hogroup
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320 Gre()GrsJ+O(()Xru~)
321 Gri mcGri m-SIN(UCJ)*XgrOUP( U)

322 NEXT I
323 Grrcs<J)=SQR(Grres(J)*GrresCJ)+CriM*Gri m)'Hogroup

324 NEXT J
325 .END IF
326 i
327 FOR Jot TO N
328 Ref(J)sCOS(D(Ndim)*U(J)) IGENERATE F ARRAY

329 Imf(J).-SIN(D(Ndim)*U(J))
338 FOR lot TO Ndtm
331 Rea(J,I)=RefCJ)-COS(D(I)*UCJ)) IGENERATE Hk ARRAY

332 Ima<J,I)umrntC)+SINCD(I)*UCJ))
333 Rea(J,I)SReaCJ,I)*GrrsCJ)*Hsofls(J)
334 ImaCJ,I)sltma(J,I)*GrrtsCJ)*Hflflh(J)
335 NEXT I
336 NEXT J
337
338 FOR 1=1 TO N
339 RefCI )-RefCI)*Grres( I)*Hsens(l)

348 Imf(I )slmf(I)*GrrtS(I)*HSeflSCI)
341 NEXT 1
342 i
343 N.Ndim-1
344 Itlog(1)=20*N !NAX ITERATION COUNT

345 Ioexit(l)8 IPRINT OPTION

346 Ts=TIMEDATE 'INITIALIZE TINE

34? CALL Kaprox(N,ItlOg(*),IoeXitC*),IiSWtC*>)
348 Te=TIMEDATE-Ts !EXECUTION TIME

349 EstorecN)=Cheb(Logp>
350 IcountcN)ftItlogCLogp)
351 I
352 ZsumOe. ICALCULATE FINAL WEIGHT1SUM OF ALL OTHERS

353 Zsum-SUN(Z)
354 Z(Ndim)u1.-Zsum
355!
356 IF Sym? lag THEN SYMMETRIZE WEIGHTS

357 FOR 1-1 TO INT((Ndim)'2)
358 P.CZCI)4Z(Hdim-I+1))'2
359 Z(I)wP
366 ZCNdim-I4IWnP
361 NEXT 1
362 END IF
363
364 IF Tme>8 THEN
365 REDIN Z(Ndtm.Tme)
366 FOR 3-1 TO Tue
36? FOR JuHdimrI TO MiselCI) STEP -1
368 IF J)Nlsul(I) THEN Z(J).ZCJ-1)
369 NEXT J
376 ZCNiseICI))u8.
371 NEXT I
372 END IF
373 I
374 IF Equi*"Y" THEN
375 CALL Calcbeam(Ndlm,N,TmC,MIS@1 Ct),Space,ZC*),Tb&th(*>)
376 ELSE
377 CALL UnsymbeamCNdim,M,Tfi,MISel (*),Ko,KI,Z<t),Tb&Ifl*))
378 END IF
379 i
386 ZmaxumAX(Z(*))
391 IF ZnaxO THEN
382 FOR lot TO NdlmtTme I NORMALIZE WEIGHTS TO 1

363 Z(I)SC(I)-Zmax
384 NEXT 1
385 END IF
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386 1
387 CALL Weight plot(Ndim+TmeM/2,2,Tme,isel(*),SpaceKo,KI,C3,Z(*),Tbeam(*
),Equi$l)
388 OUTPUT 2 USING "#,B"1255,75
389 PRINTER IS PRT
398 PRINT USING "S"
391 DUMP GRAPHICS
392 !
393 CONTROL CRT,12;2
394 FOR 1- TO 9
395 ON KEY I LABEL "" GOSUB Dummy
396 NEXT I
39? ON KEY I LABEL " CONTINUE " GOTO Comp
398 ON KEY 2 LABEL " KEYS OFF/ON " GOSUB Flipkey
399 LOOP
4e8 END LOOP
481 Dummy: 1
482 RETURN
483 Flipkeys 1
484 Kefllpi(Keflip+l) MOD 2
485 IF Keflip THEN
4e6 CONTROL CRT,12;1
487 ELSE
488 CONTROL CRT,12;2
489 END IF
418 RETURN
411 Comps !
412 GRAPHICS OFF
413 OFF KEY
414 WeightS-""
415 REPEAT
416 INPUT "WOULD YOU LIKE A LIST OF THE WEIGHTS? (Y/N) CY]",Weight$
417 IF LEN(Weight$)=8 THEN
418 WelghtS-"Y"
419 ELSE
428 WeightS-UPC$(WeightSlD)
421 END IF
422 UNTIL WelghtS-"Y" OR Weight$-"N"
423 I
424 CALL Prlntinputs(Cachflag,FloatflagNdim,Tme,Sll,Itlog(c),LogpMlsel(c)

,
Space,Ko, KTe,Cheb(*),Z(),Equi$,Weight$,Hegwet$)
425 I
426 OUTPUT 2 USING "#,B";255,75 I CLEAR SCREEN
427 Newkot'""
428 REPEAT
429 INPUT "WOULD YOU LIKE TO CALCULATE A HEW Ko or KI TO GIVE A DIFF. BERM
WIDTH (Y/N) CNJ",Newko$
438 IF LEN(Newko)=8 THEN
431 Newko$="H"
432 ELSE
433 Newko$=UPC$(Newko$EI3)
434 END IF
435 UNTIL Newko$="Y" OR Newko$l"N"
436 IF Newko$="Y" THEN GOTO Newko
437 I
438 Wgtstore$-""
439 REPEAT
448 INPUT "WOULD YOU LIKE TO STORE THE WEIGHTS IN A DATA FILE? (Y/N) CHI",
Wgtstore$
441 IF LEN(Wgtstore$)-8 THEN
442 WgtstoretS"N"
443 ELSE
444 Wgtstore$UPC$(Wgtstore$El])
445 END IF
446 UNTIL Ngtstore$s"Y" OR WgtstoretS-"N"
447 IF Wgtstoret-"Y" THEN

B-9
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448 OUTPUT 2 USING "#,B";255,75 CLEAR SCREEN
449 INPUT "ENTER FILENAME FOR WEIGHT FILE: (10 CHARACTERS)",Filename$
450 OUTPUT 2 USING "#,D"1255,75 1 CLEAR SCREEN
451 INPUT "ENTER MASS STORAGE DEVICES I :INTERNAL ]",Data$msus$
452 IF EquiS"Y" THEN
453 IF Hdim>39 THEN
454 CRERTE BDRT Filenaa.SIData msus$,2,256
455 ELSE
456 CREATE BDRT Fllename$&Data msusS,1,256
457 END IF
458 ASSIGN @Stordat TO Fi1.name$&Data asu*$
459 OUTPUT @Stordat;Ndim+Tme,Space,Z(*)
460 ELSE
461 SELECT Ndli
462 CASE >47
463 CREATE PDAT FiIenam*SDatamsus*,4,256
464 CASE >31
465 CREATE BDRT Filename$&Datamsus$,3,256
466 CASE >15
467 CREATE BDRT FilenameSLDatamsus$,2,256
468 CASE ELSE
469 CREATE PDAT FilenameS&Datamsus*,1,256
478 END SELECT
471 ASSIGN fStordat TO F~lename$&Data msus$
472 OUTPUT *StordatjNdim+Tme,D(*),Z(*)
473 END IF
474 ASSIGN fStordat TO
475
476 END IF
477 GRAPHICS ON
478 PAUSE

479 GRAPHICS OFF
488 END LOOP ! RETURNS TO Redo AT PROGRAM BEGINNING
481 END

B--
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A general Chebyshev complex function approximation procedure
and an application to beamforming

R. L. Streit and A. H. Nuttall
Naval Underwater Systems Center. New London Laboratory, New London. Connecticut 06320

(Received 22 December 1981; accepted for publication 24 March 1982)

A new computational technique is described for the Chebyshev, or minimax, approximation of a
given complex valued function by means of linear combinations of given complex valued basis
functions. The domain of definition of all functions can be any finite set whatever. Neither the
basis functions nor the function approximated need satisfy any special hypotheses beyond the
requirement that they be defined on a common domain. Theoretical upper and lower bounds on
the accuracy of the computed Chebyshev error are derived. These bounds permit both apriori and
a posteriori error assessments. Efforts to extend the method to functions whose domain of
definition is a continuum are discussed. An application is presented involving "re-shading" a 50-
element antenna array to minimize the effects of a 10% element failure rate, while maintaining
full steering capability and mainlobe beamwidth.

PACS numbers: 43.60.Gk, 43.30.Vh

LIST OF SYMBOLS G, (z;a) the projection of the error curve e. (z;a)

f the given complex valued function to be onto the real axis of the complex plane

approximated after a rotation through the angle 0; de-
h .... ,h, the given basis functions; linear combi- fined by Eq. (A3)

nations of these functions are used toap- M,,(f) essentially an approximation to the
proximatef number E. (f); defined by Eq. (A4}

Q. the given finite point set; approxima- & any coefficient vector for which M, (f)
tions to fare constructed on the m ele- is actually attained; a is essentially an
ments of this set. (Ordinarily, Q.. is a set approximation to the vector 6 (see
of complex numbers; however, Q, can above)
be any finite set on whichf and h, are

defined.) W, (f the maximum magnitude error commit-
zl...Z, the elements ofQ ted using the coefficient vector a; de-

Z.,Z,,,fined in Theorem A2
(a ,.a,) = a any vector of complex numbers used as

coefficients of the basis functions u(Z),vLz) the real and imaginary parts, respective-

h , ly, off(z)

e. (z;a) the complex error "curve" of the ap- rk (Z)Sk (z) the real and imaginary parts, respective-

proximation tof afforded by the coeffi- ly, of the basis function h, (z)

cient vector a; defined by Eq. (A 1) RS real m X n matrices whose entries in the

E,(f) the actual maximum magnitude error jth row and kth column are rk (z ) and

committed by the "best" (i.e., Cheby- s, (z,), respectively. Used to construct
shev, or minimax) approximation to , matrix B (see below)by linear combinations of h f,...,h,; de- bc, the real and imaginary parts, respective-
fined by Eq. (A2) ly, of the coefficient a, of basis function

any coefficient vector for which E, (f) is ha
actually attained; & is itself approximat- Ex - g the real overdetermined system on mp
ed by a (see below) equations in 2n unknowns, whose Che-

C" the usual vector space of all n tuples of byshev solution yields a solution & to the
complex numbers problem Eq, (f); see the paragraph con-

p a given integer greater than or equal to taiing Eq. (A6) for details of construc-
2; the larger p, the better will be the ap-
proximation ofa by a (see Theorems A I B1 = g analogous to Bx = g when the solution
and A2) vector 6 is forced to be a vector of real
angles defined in Lemma A2 and depen- numbers; see Eq. (A7) for details
dent only on p other all notations not in this glossary are un-

R, (z;a) the real part of the error curve e, (z;a) derstood to be "local"; that is, they are
i, (z;a) the imaginary part of the error curve used only in the context of the particular

e. (z;a) paragraphs which contain them
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INTRODUCTION First, an initial set of m>n real points Iz,I was specified

The approximation of desired or given functional be- and the Chebyshev norm minimized in the usual fashion,
havior by finite sets of simpler or specified basis functions is a resulting in the coefficient set a' . For this set of optimum
recurrent problem in many fields. For example, in the math- coefficients, the locations 121, of the largest peaks of
ematical field, we might wish to approximate a (desired) le,(z;a) were located, by setting the derivative e,(z;a) to zero
complex integral by a set of (simpler) sinusoidal components. and solving numerically for Iz}I,; the number I of such
Or in an antenna array processing application, weoften want peaks will generally be less than m, but larger than n. [This
to realize a (given) low side-lobe behavior by means of an approach presumes the availability of computable expres-
array with (specified) element locations which are not under sions forf1z) and I h ; (z)) 17.] Then the modified set of points
our control. 'J, were used for another Chebyshev minimization, re-

For the case where the given functional behavior and suiting in coefficient set I a, 7. Repetition of this procedure
the specified basis functions are all real valued and defined stabilized after a few trials with a unique set of Iz, j at which
on a finite discrete data set, and where the approximation is the maximum errors were equal and irreducible. In the ex-
afforded by a real-weighted linear combination of these basis amples tried in Nuttall,3 the number of peaks I at which the
functions, the optimum solution for minimizing the maxi- magnitude error It, (z;a)I was largest and equal turned out to
mum magnitude error, i.e., the Chebyshev norm is in very be n + I. Further discussion of this recursive approach is
good shape due to a fine algorithm given in Barrodale and given in Sec. II.
Phillips."2 Specifically, this algorithm solves the following Our method, as presented in the Appendix, is not inher.
mathematical problem: given real constants I fI , I h, 1, ently restricted to arrays of any particular geometry, but
where I <i<m, 0 <kn, rn >n, the real quantities Io, 17 are does assume that interelement effects (mutual coupling) can
determined that minimize the maximum absolute value of be ignored. In the most general case of a spatial or volume-
the error residuals tric array, the method proposed here can still be applied. All

fothe functions in Eq. (I) are then functions ofspherical coordi-
e -f . akh,, fI] nates (0#), so the finite domain of approximation becomes

so advantage in an appropriately chcaen finite set (6 ,, [) instead of a set
This algorithm has recently been used to good aof complex numbers. This difference does not in any way
an array processing application to design some real symmet- affect the mathematical properties of our method; rather it
tic weighting functions with very good side-lobe behavior, affects the size of the numerical problem to be solved and
subject to constraints on the rate of decay of the distant side consequently, the computer effort required for its solution.
lobes. For large enough arrays, such effort ultimately becomes pro-

Here we wish to employ the algorithm, as described hibitive; where that point lies depends upon the designer and
above for real variables in Eq. (1), for the minimization of the the application.
Chebyshev norm of Although our method is applied only to single-frequen-

e,(z;a)mf1z) - 12) cy design problems for arrays, it can also be applied to broad-
band frequency design by sampling in frequency space as
well. This again adds to the computer effort of solution, but

whenf(z) and I ht (z)Is are complex, and z can take values in does not affect the basic mathematical method.
an arbitrary finite discrete point set. The weighting coeffi- We use no weighting function in Eq. (2), and so the
cients Ia J , may be complex, or alternatively, they may be resulting farfield beam patterns have a level side-lobe struc-
restricted to be real. Applications are afforded by an antenna ture. For example, the classical Dolph-Chebyshev array de-
array with arbitrarily specified element locations, but em- sign can be reproduced by our method. If such a level side-
ploying weights that are restricted to be real, or alternatively lobe structure is not desired, then use of an appropriate
by array weights that are also allowed to be phased (com- weighting function in Eq. (2) is easily incorporated into our
plex). Numerical examples and applications of the tech- method without altering the algorithm in any essential way.
nique, some efforts attempted for extending the method to a
continuum of values of z, and a discussion constitute the rest
of the main body of the paper. In the Appendix the basic 1. APPLICATION TO ARRAY DESIGN WITH A
mathematical theory and algorithm for the minimization of CONSTRAINT
Eq. (2) is developed. Streit and Nuttall' present a FORTRAN Consider a linear antenna array with N elements, locat-
program in a form which should be useful to readers interest- ed at arbitrary fixed positions Ix, I N,, receiving a plane-wave
ed in applying the technique to their own particular applica- arrival of wavelength A from direction 0,, - ir/20o o#/2,
tions; unfortunately the listing is too long to include here. IA relative to a normal to the array. If the array is steered to
brief study of the appendix, especially with regard to Eq. look in direction 0,, - ir/2 0 < 7r/2, then the complex
(A6), should enable interested readers to write their own pro- transfer function of the beamformer is given by
gram. I

Although the above algorithm' is limited to a discrete N

set of points, it has been used fruitfully to minimize the con- T(u) A 1w exp( - id, u), (3)

tinuous error [Eq. (2)] over a real variable z in the interval
[z,,z& ], when fand I h, I are real, in the following manner. where I w, )' are the element weights, and

102 J. Acoust. Soc. Am., Vol. 72. No. 1. July 1982 R, L. Streit and A. H. Nutiall: Chetyshev approximation 182

-32-



d, = 2trxA/A, for I<k<N, 0 -

u = sin 0. - sin 8,.

Observe that the total range of u depends on the look direc- --- -

tion 0; for example, if 0 = 0, then the range of u is the
closed interval [ - 1.I]. The peak response of T(u) should a --

occur at u = 0, so we normalize (without loss of generality)
according to

T(0) =lI U)A.

To realize small side lobes, we must minimize I T(u) for -. _

all u values in some subset U of the total range of u. For ' ,X.,.,,. " " '"
example, if 9, = 0, the total range of u is [ - 1,1], and U
could be the union of intervals [ - 1, - uo] and [u, 1], where FIG. I. Relative pattern for five elements failed
uo > 0 is chosen small relative to 1. For the special case of real
weights, since from Eq. (3). T( - u) = T0(u), we could con- of - 30 dB relative to the main peak. This is of course a
fine attention to U = [u0, I]. The normalization constraint is standard Dolph-Chebyshev case, and gives - 30-dB side
most easily accounted for by solving for wN and eliminating lobes throughout the u range [uo,2 - u, where
it; we obtain then Uo = 0.0538117.' Then 10% of the elements were randomly
T(u) = exp( - id,,u) eliminated from the array, but the remaining weights were

N-I iunchanged; this corresponds to five elements failing in the
- X w, [exp( - id.u) - exp( - id, u)]. (4) array. The relative response of this particular array, with

elements 7, 22, 40, 43, 50 failed, is illustrated in Fig. 1. The
This problem now fits the framework of Eq. (A1) in the ap- peak side lobe has increased from - 30 to - 21.58 dB, a
pendix if we identify degradation of 8.4 dB, and there is a large variety of different

z = u, n = N - i, e.(z;a) = T(u), size peaks.

f(z) = exp( - id., u), a. = w,, When our method withp = 2 and m = 251 equispaced
points in [uo,2 - u.) is applied to this defective array and the

h. () = exp( - id,,u) - exp( - id u), remaining 45 elements are weighted with real coefficients,

Q = finite subset of U. (5) subject to the constraints that the mainlobe width be the

There has been no statement thus far as to the real or same as the ideal 50-element array and that the steering
complex nature of the weights I wk 1. This distinction de- range in u be the same, the resultant array pattern is as dis-

pends upon the application and the capability of the beam- played in Fig. 2. The peak side lobe is now - 23.62 dB, an
former. Both cases fit the above framework, the only differ- improvement of 2.04 dB over Fig. 1; however, there is still a
ence is that the number of unknowns to be solved for will be significant variation in the values of the side lobes due to an
twice as large for the complex weights as for the real weights. insufficient number of phase controls, namely only p = 2.

If the array is half-wavelength equispaced, then the The best real weights resulting from an increase in the

computed element weights will be identical to the classical parameter values top = 8, m = 501 are displayed graphical-
Dolph-Chebyshev weights and can, in this instance, be coin- ly in Fig. 3, and the corresponding array pattern is given in

puted analytically. The general case of arbitrary spacings, Fig. 4. The gaps in Fig. 3 at locations 7, 22, 40, 43, and 50
however, cannot be computed analytically; yet the algo- correspond to zero weighting at the failed elements. The gen-
rithm presented in this paper can always be applied. cral character of the weights is a bell-shaped one of all posi-

In the remainder of this section, we presume that the
elements are equispaced at half-wavelength. Then xi k, /
2 and Eq. (3) becomes

N
T(u)= w, exp( - hrku). (6) ---

A-I

Observe now that T(u) in Eq. (6) has period 2 in u, regardless -_ - -

of whether the weights I wk I are real or complex, or whether
some elements have failed, i.e., zero weight values. This UW (VV Vv A W
means that we can study and control T(u) in Eq. (6) over any --

convenient u interval of length 2, and need not confine our
investigation to [ - 1, 1 ]. In particular, we concentrate on the
u interval10,2] in the following. "0.o

As an illustration of the capability of the minimization
technique of this paper, a 50-element, half-wavelength, equi-
spaced linear array was initially designed for peak side lobes FIG. 2. Relative pattern forp = 2, m = 251. real weights,
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always exists a set of real weights. Thus it is not necessary to
use complex weights in the case of line arrays to achieve best
possible side-lobe levels.)

The use of linear programming to design antenna arrays
is not entirely new. In McMahon et al.' and Wilson,' linear
programming was used to synthesize desired complex trans-
fer functions to within 3 dB of the best possible side-lobe
level. Their method corresponds identically to taking p = 2
in the method presented in this paper, i.e., treating only the
real and imaginary parts of Eq. 12).

The computation of the real weights of Fig. 2 (where
p= 2, m =251, and n = 44) and of Fig. 4 (wherep = 8,

,,, iu,o m = 501. and a = 44) required 1.2 min/205 simplex itera-
tions and 38.4 min/402 simplex iterations, respectively. On

FIG. 3. Best real weights forp = 8, m = 501 the other hand, when the weights were allowed to be com-
plex (replacing n = 44 by n = 88, but leaving p and m un-

tive numbers, but there is significant fluctuation in the actual changed in both cases), the computations required 7.0 min/
weight values, of the order of 10%. The pattern in Fig. 4 has 657 simplex iterations and 179 min/1262 simplex iterations,
a peak side lobe of - 25.20 dB, an improvement of 3.62 dB respectively. The two of these four cases requiring the small-
over Fig. I but still 4.80 dB poorer than the ideal 50-element est CPU times encountered almost no system overhead due
array. to program size. However, the two cases requiring the lar-

When the weights were allowed to be complex and the gest CPU times encountered very significant system over-
maximum side lobe minimized in the same steering range head because their large memory requirements caused sig-
[uo,2 - u0] for p = 2 and m = 501 equispaced points in nificant usage of the virtual memory feature of the DEC
[uo,2 - un), the best complex weights turned out to be virtu- VAX 11/780. The 38.4-min case required over 3.6 million
ally pure real, and the corresponding pattern was almost page faults, while the 179-min case required over 11 million
identical to Fig. 2. A much improved pattern for complex page faults. It is important to bear in mind that the DEC
weights was achieved when we took p = 8, m = 501; in fact, VAX l1/780is essentially a minicomputer, and that without
the best complex weights were real (within 10-6 relative er- virtual memory, only the largest mainframe computers
ror) and the pattern was the same as Fig. 4. Although we had could have solved either of these two problems.
anticipated a better pattern for the complex weight case than
for the real weights, that did not materialize; the best com- IL EFFORTS TO EXTEND THE METHOD
plex weights for this equispaced linear array with five miss-is un- Our basic problem is to minimize the maximum magni.
ing elements were real. The reason for this behavior is un- tude of complex error
known, but it is an encouraging result from the array design
viewpoint, for it indicates that there is no need to allow phas- e.(z;a) = f(z) - a, h (z) (7)
ing at the individual elements; gain alone will achieve all the -"t
side-lobe reduction that can be achieved. This conclusion is over a continuum of values of z, whenf, h, (,and Iak I are
drawn only for the half-wavelength equispaced line array complex. We immediately approximate this desired problem
with omnidirectional element response. (Recently, Lewis by discretizing the z variable to a finite number of values, in
and Streit6 proved, for a general line array steered through order to make the problem computable. Furthermore, at any
the same number of degrees either side of broadside, that z value of interest, we additionally discretize the number of
within the collection of all sets of best complex weights there phase errors we are willing to consider. To be specific, since

the algorithm in Barrodale and Phillips"2 applies only to real
quantities, we consider the "projection" of a rotated version
of the complex error:

.' P(z,) = Re exp(i)e.(z;a)J. (8)
Then, since the argument of complex error [Eq. (7)] is un-

eo known apriori, we let 0 take on a finite set of values spread
over any ir radian interval, and minimize the magnitude of
projection [Eq. (8)1 over all these selected 0 values. This is

' - AM - equivalent to the method of the Appendix.
.: I~ "-In an effort to eliminate this second discretization pro-

cess in 0, a perturbation method was put forth9 that claimed
-. -guaranteed convergence to the optimum weights for any giv-

- M , 's s M en finite discrete set of z values. When applied to the exam-
ples in Barrodale et al..9 the proposed perturbation tech-

FIG 4 Relative pattern forp a m = 501. nique did indeed converge. However, when applied to the
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following example, of approximation of exp(i3x) by the three rior, so as to better control these very likely locations of
basis functions I, exp(ix), exp(i2x), over 100 equispaced maximum error. For example, we might use p = 6 in the
points in the domain [0,ir/4] in x, it sometimes failed to con- interior of a specified real interval domain of z and use
verge, depending on the initial weights employed. The rea- p = 12 or 20 at the two endpoints. This does not add greatly
son for this failure is that the "direction of the minimum" to the total computation, since there are generally far more
furnished by the perturbation is often totally irrelevant, and interior points than (two) endpoints. The program in Streit
the best scale factor to apply to this perturbation is very and Nuttall' may be readily used with different values ofp at
small. Thus there occurs a small random meander in the different data points.
coefficient space, and occasional convergence to a nonopti- The p different phase shifts 0' selected in Eq. (8) have
mum point. A modification of this technique was attempted been chosen here to be equally spaced over a 18(r span (along
wherein the magnitude of the perturbation was bounded. with their 180" mates). This is the most reasonable selection
Although this improved the situation somewhat, conver- in the absence of a priori knowledge of the complex error
gence to the optimum was not always obtained, magnitude and phase because it gives the best upper bound

It was thought that this meander in coefficient space in Lemma A2 of any set of phases. However, one could select
might be eliminated by tracking the exact z values at which any value of 0 to investigate the error; for example, different
Eq. (7) is a maximum. Recall that in the real case discussed in sets of values of tb could be used at various values of abscissa
the Introduction, convergence to the absolute optimum over z. The program in Streit and Nuttall' may be used with any
a continuum of real z values was achieved in a practical ex- desired set of phases at any, or all, of the data points.
ample by re-evaluating the z points of maximum error and The potential for significant round-off error accumula-
using these in a recursive approach. When this idea was ex- tion is always present in linear Chebyshev complex function
tended to the two continuous variables z, 0 in Eq. (8), and approximation. For example, in approximating
only the 2n + I largest error points were retained, conver- f(x) = cos( l 2x) + i sin(3x) by a complex linear combination
gence was not obtained. When, however, the single "point" of the 12 basis functions 1, exp(ix),...,exp(il lx) on the interval
of a maximum, i.e., a pair of values (zA ,k, ), was replaced by a [0,ir/4], the complex coefficients of best approximation were
"patch", i.e., a set of values I (z,,, A) I covering the maxi- observed to be large in magnitude and to lie in all quadrants
mum point (z ,0 k (, the convergence to the absolute opti- of the complex plane; therefore significant numerical round-
mum for the examples considered was apparently achieved. off error occurred during computation of the residuals with-
The patch width in 9, was of the order of a degree in most in algorithm ACM495. Even if the coefficients of best ap-
cases. The problem with this latter modification is that a proximation had happened to be better behaved, serious
large number of computations of the error function and its cancellation error may still occur in some problems because
derivative must be evaluated, and the improvement over the of the very nature of complex arithmetic. It might, therefore,
method of the appendix is insignificant when p there is large. be wise to use a double precision version of algorithm

If the final er- -i; 3q. (7), after application of the meth- ACM495 routinely in complex Chebyshev approximation
od of the Appendix is inadequate due to inadequate sampling problems to alleviate such cancellation errors.
in z and/or C, i, is possible, for a given coefficient set I a,, 1, to A sensitivity analysis on the optimum coefficients may
locate the point (z,,, , ,, ) at which Eq. (8) is largest, and then be in order in some applications to determine their utility.
use a gradient approach to decrease this maximum error at This consideration is completely independent of their nu-
(z, ,b,,,). Of course, the particular point of maximum will merical accuracy. For example, in an antenna array design
jump around as the set I a, I is perturbed; nevertheless, the problem where some elements are spaced significantly less
technique does converge (although slowly) and does lead to than a half-wavelength apart, it might well turn out that the
smaller errors at the maximum of Eq. (8) in a continuum for z optimum coefficients need to be specified with a relative er-
and . ror of better than 10'. Then, although the mathematical

results may be correct and accurate, practical usage is pre-
cluded. This sensitivity can be determined by perturbing the

Ill. DISCUSSION AND SUMMARY optimum weights a few percent and observing if a drastic
It has been observed that two of the locations of maxi- change occurs on the desired side-lobe behavior. (Such ar-

mum magnitude error often occur at the endpoints, if the rays are referred to as super-directive arrays.)
specified domain in Eq. (2) is a real interval. (For example,
see Figs. A l and A2. The example of real coefficients in Fig.
A l had one of the maximum error points at one endpoint, APPENDIX: MATHEMATICAL THEORY AND
but not the other. However, if we had specified domain ALGORITHM
[ - ir/4,ir/4] in that example, we would have observed four Letfand h,,...,h, be complex valued functions defined
peak-error points, two of which would have been at end- on the finite discrete point set Q, = Iz.,z . . For a com-
points, due to the conjugate property of the desired function plex vector a = (a ,...,a .)C", define the complex error
and the basis functions.) Since the endpoints may be the only
ones we can anticipate a priori and specify as locations of f(z) - aA z)_e, )z;a). -Q.. (Al)
maximum error, an obviously useful procedure is to use A
more values of phase shift 0, in Eq. (8) [alternatively, the The discrete linear Chebyshev approximation problem is to
angles 10, 1 in Lemma A2] at the endpoints than in the inte- find a complex vector a = (a...., (EC" so that
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E.(f)- min maxle.(ra)I = maxle.(z;6)I. (A2) '(f=mae(zhI

The quantity E. (fliscalled the discrete Chebyshev, or minil- where the complex vector aeC" is any vector satisfying (A4).
am, error of the approximation on the point set Q,.. (The Then
restriction of 6 to real values is discussed below.) Z f 9,( <.( scIil2pWe do not solve this problem exactly. An algorithm AflzE(sef/lpJ
presented in Barrodale er al.9 for its solution us erroneous; we Corollary A2. 1. Under the conditions of Theorem A2,
have discovered examples (see sec. ii) such that the recursiveM,()Ef( ',f.

Procedure described there need not converge to a solution of The preceding corollary evidently gives excellent upper
Eq. (Al). We will show that problem (A2) can be replaced by and lower bounds on the discrete linear Chebyshev approxi-
a related approximate problem solvable by available linear nmation error E. (f ), and these bounds are readily available
programming techniques. The exact solution of this related after the numerical computation Of 6EC" and M.,, p f) has
problem yields approximate solutions of Eq. (AZ). The error been completed. We point out that the above two theorems
in these approximate solutions to Eq. (A2) can be determined substantially generalize results in Barrodale et a0. p. 854.
and, in fact, made arbitrarily small. using the results we Using the Maclaurin series for sec .x in Theorem A2
prove below; see Theorems At and Al. gives the relative discrepancy

It can be shown by standard mathematical methods'0
that a vector a satisfying Eq. (A2) exists, although it may not 9'.,(f) - E,,(f)
be unique. Sufficient conditions are known that result in 0<- E,,f) sci12j-I
unique 6, but we do not need these conditions here. There- V
fore no further assumptions onf, h,..,h. orthepointsetQ,. t- + 01 .GO sP o
are made. In order to proceed, we need the following results.
Proofs of all these results are given in Streit and Nuttall.' Note that this upper bound on the relative error is indepen-

Lemma A I. If z = x + i y, where x and y are real, then dent off, the point set Q.,, the basis functions I hk 1, and n.
We will now explicitly formulate an overdetermined

)zl = -max (x cos 0 + ysin 0). system of real linear equations to be solved in the Chebyshev
-'S'.norm (to be defined) which is equivalent to solving the prob-

Lemma A2. Let 0 =ir(j - l)/ p, j 1,2,.Z2p, where lem (A4). Referring to the choice of 8,'s in Lemma A2, we
the integer p >2. Let z =x + i y. and let observethat6,, = i+8,. j=1,.p,sndso. from Eq.

(A3), we have
M = max (X Cos0, + ysin 19). G P,(z;a)= -G(z~a), j I p.

Then j.pTherefore, we may rewrite Eq. (A4) as

Mfz<Msecc/(2p)]. M,,,(f) = min max IG,(z,;a)I. (A5)
We are now in a position to describe a problem that we . 1 ~'j'"

can solve exactly and that is related to the given discrete Now, breaking the following quantities into their real and
linear Chebyshev approximation problem (A2). Let the real imaginary components
and imaginary parts of the complex error e., (za) be denoted
by R., (z;a) and I,. (z;a), respectively. For notational conve- Az =Ut) + jo~s).
nitece, we define, for any complex vector ae:C", h. (z) = rh (z) + is, 12), k = 1_.^
G, (za) =A. (z;a)cos 8, +. (z;a)sin 0,, j = ]..2p, (A3) a. bA + ick, k I
where 2. are the angles given explicitly in Lemma A2. we may write
We seek acomplex vector a= (a,.jjrC" satisfyring R.(za)= u(z) - i b. rk(z) + jCSA,(

M.,(f)=min max max G,(z;a), k 9

1. J ,(z;a) =iz) - bksI) SkW C k1)
=max max G,(z;a). (A4)h1 k1

mg. j- f__2P G,tza;a) = u(z,) cos 0, + v(z) sin 0,
With standard mathematical methods, it is easy to see that at b, f r., (z, icos,0, +s.. (z, sin Bjleast one such vector &Ce' exists. The connection between
the problem (A4) and the problem (A2) is explored in the
next few results. c,~ [-, fr(,jsin 0, - sk (zjcos 0,.

Theorem Al. Let p>2 be an integer, and let
0, = Mrjj - 1)/ p, j = 1.,.2p. Then Note that G, (z, ,o) is a real linear equation in the 2n variables

M.,(f)( E. (f)<M,,(fsec I v/(2 p) . 1 b and I c, 1,and that all the coefficients of this equation
are computable directly from known data.

Theorem A2. Let p>2 be an integer, and let Define the mpx2n real matrix B in the partitioned
0, =M jj-l1)/p, j =1,2,..2p. Let form
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G, (z, ;a) arranged in a special order. Therefore the problem
(AS) can be solved by computing a solution to the overdeter-
mined linear system (A6) in the Chebyshev norm; i.e., the
largest magnitude component of the residual vector g - Bx

is minimized over all choices of the vector x.
______- _i __ _ .This equivalent problem in linear algebra can, in princi-
0,. ".- pie, be solved exactly and in a finite number of steps using

____
"' I ' \  linear programming methods. "2 Solutions of Eq. (A6) are

1. . .not required to be unique; every solution of Eq. (A6) is a
I solution of Eq. (A5).

__ _/-An excellent algorithm, which we will refer to as ACM
495, is available in the literature" for solving the overdeter-
mined system of equations Ax = b. A linear program is set
up and solved by the algorithm, so that knowledge of linear

FIG. Al. Error curves for real coefficients m = programming techniques is not necessary to use the algo-
rithm in practice. The computational procedure, internal torB, D, 1the algorithm, actually solves the dual of the primal linear

B B 2  2 program using a modification of the simplex method. The
B 'dual formulation of this problem is available.'" We will not

[B , DJ discuss the details of the linear programming technique in

with the m x n submatrices this paper.
A very simple modification9 of ACM 495 yields an al-

B, = R cos 0, + S sin 0,, = gorithm for solving any real overdetermined system of linear

D, = R sin 0, - Scos 0,, equations in the Chebyshev norm subject to the additional

where R and S are real m X n matrices defined by constraints that all the residuals be non-negative. For a gen-
eral system Ax = b, this problem takes the formA = [,,(z )]. s= [s,(z,)].,

Also, define the real vector minimize max b. - X a kxk),

g. [ 1- 12 .g,2. -9,, .-g9. .1 T subject to the r constraints

of length m p, where

g, =u(z,) cqOs +v(z,}sin, t=.m; j= 1.. p. b - i ajx>O, j= .r.A-I

Finally, define the real vector The solution x,,...,x, returned by this modified algorithm is

x = (b ,...,b . ,c ,,..,c.  IT correct, even though the residuals returned may be in error.

of length 2n. With this notation in hand, it is easily seen that The correct residuals, if desired, must be calculated directly

the overdetermined system of m p equations in 2n unknowns from the solution. Alternatively, if the residuals are required
to be non-positive, then the same modified algorithm will

Bx = g (A6) work with A and b replaced by - A and - b, respectively.
has a residual error vector, defined by Requiring non-negative residuals in the overdeter-

g - Bx, mined system (A6) has interesting geometrical interpreta.
tions. For example, if we take p = 2 in Lemma A2, then

whose m p components are precisely the m p real numbers 9, - 0 and 02 = ir/2. Thus Gt(z;a) and G2(z;a) are merely the

real and imaginary parts of the complex error e. (z;a), and the
2m components of the residual vector g = Bx are precisely

S- .. Ip.2 I I the real and imaginary parts ofe. (z;a) evaluated in all m data/ "
i1 \  points. Therefore, if the system (A6) is required to have non-

02 negative residuals, we have forced the error curve to lie en-
/ tirely in the first quadrant of the complex plane. More gener-

I, /ally, we may always constrain e. (z;a) to lie in a given convex
o - + wedge-shaped sector of the complex plane with vertex at the

OWN.5 iorigin, by making different, but appropriate, choices of the
angles 0, and 02.

0 -Suppose, finally, that the complex solution vector aeC
.of problem (A4) is required to be strictly real, whilef and

... .. 0 I h, I are complex. Then, in the vector x of Eq. (A6),

-I + c, = ..... c, = 0. Thus the overdetermined system Bx = g
of m p equations in 2n unknowns can be replaced by a

FIG A2. Error curves for complex coefficients; m = II. smaller system B.t = g of m p equations in only n unknowns,
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TABLE Al. Coefficients for the real weight case.' cases. Note that p and the phase shifts 10, 1 are as given in
Theorem A l.

M P a, a: a, The optimum real coefficients in Eq. (AS) for the prob-

II 2 0.936738 - 2,443144 2.518388 lem M,, f) are given in Table Al for these choices of m and
6 0.828404 -2.280319 2.396455 p, and a plot of the magnitude of the error for several repre-

18 0.858547 - 2.321885 2425096 sentative cases is given in Fig. A l. The :st approximation of
54 0.844146 -2.301461 2.410611 all cases considered is afforded by m = 1001,p = 54, and its

101 2 0.936781 - 2.443223 2.518458 error curve is plotted as a solid line; its msimum error is
6 0.831314 - 2.284548 2.399525

18 0.865131 - 2.331446 2.432033 0.1078, which is realized at two points in the i erval [0,r/4].
54 0.853823 - 2,315301 2.420506 The cases for smaller m (less sampling of tht .'tbscissa) and

I001 2 0.936785 - 2.443232 2.518466 smallerp (less sampling of the phase of the complex error) are
6 0.831237 -2.284448 2.399461 poorer, for example, the maximumerrorform = ll,p = 2is

I8 0.865213 - 2.331571 2.432127 0.1 184, realized at only one point, namely x = 7r/4.
54 0.853443 - 2.314772 2.420138 We have not plotted the other error curves with real

coefficients for m = 101 and 1001, because they are indistin-
guishable from Fig. Al, as a perusal of Table Al shows. For

where the m p x n real matrix B is defined in partitioned example, the coefficients for m = 11, p = 2 are very close to
form by those for m = 101, p = 2 and m = 1001, p = 2. Thus our

sampling in x is already "fine enough" at m = 11. However,
there is a significant change in the coefficients asp is varied,

BA7) for a fixed value of m; that is, p = 2 yields very coarse phase
sampling of the error curve and should definitely be made
larger.

where the m x n submatrices B .... ,Bp, are unchanged from The Chebyshev error curve (m = 1001, p = 54) in Fig.
(A6, and the real vector = (b,...b,]1. A solution of Al realizes its maximum value at only n - I points, rather
Bk = gin the Chebyshev norm can be computed using linear than at n + I points, where n = 3 is the number of coeffi-
programming and algorithm ACM 495 as before. cients for this example. This is probably related to the fact

We illustrate the procedure by approximating the com- that we have minimized both the real and imaginary parts of
plex functionf(x) = exp(i3x by a weighted sum of the basis the complex error, but have allowed ourselves to use only
functions 1, exp~ix),exp(i2x). That is, we seek to minimize the real coefficients.
magnitude of the complex error curve The solution of the problem MP(f) for complex

weights is given in Table All for the same choices ofm andp
e,(x)=expi3x) - X a, exp[i(k - Ilx] (A8) as above. Again, the change in coefficient values is more

k=l marked with p than with mi. Magnitude-error curves for
over interval 10,7r/4], by choice of a ,a2,a3, by solving the m = I I and 101 are given in Figs. A2 and A3, respectively;
problemM, P (f) ofEq. (A4). Two cases are ofinterest; in the the curves form = 1001 are indistinguishable from those for
first, the coefficients I a, 1, are restricted to be real, whereas m = 101 and are not presented.
in the second, these coefficients can be complex. The number The Chebyshev error curve (m = 1001, p = 54) is now
m, of equispaced x values at which Eq. (AS) is sampled, is symmetric about the midpoint of the interval of interest and
taken to be either 11, 101, or 1001, thereby ensuring that the has four equal error peaks of value 0.0147. This error is 7.3
smaller sample sizes are subsets of the larger sizes. The value times smaller than that for the real coefficient case. Also, the
ofp, which is half the number of phase-shifted values of Eq. number ofequal error peaks now equals I plus the number of
(AS) employed in the error minimization, is taken to be 2, 6, coefficients; whether this property holds generally is not
18, 54, again ensuring the subset behavior of the smaller size known.

TABLE All. Coefficients for the complex weight case.

m p RelaI Ina0,) Refa,) Imaa,) Rela,) Imla3)

II 2 0.364737 0.954343 -2.021670 -2.119639 2.669023 1.153207
6 0.378045 0.907888 - 2.016657 - 2.018598 2.648834 1.100488

18 0.373079 0.898715 - 2.003032 - 2.003205 2.639992 1.094451
54 0.371586 0.896504 - 1.999352 - 1.999473 2.637788 1.092947

101 2 0.362962 0.953469 - 2.018255 -2.119960 2.667544 1.154238
6 0.376532 0.904026 - 2.012095 - 2.014055 2.646131 1.099461

18 0.370549 0.893500 - 1.995913 - 1.997062 2.635782 1.093144
54 0.368950 0.890017 - 1.991172 - 1.991 196 2.632622 1.090777

1001 2 0.362947 0.953499 - 2.018253 - 2.120028 2.667560 1.154275
6 0.376502 0.903926 -2.011979 - 2.013914 2.646047 1.099417

18 0.370711 0.893848 - 1.996440 - 1.997545 2.636145 1.093278
54 0.369179 0.890566 - 1.991954 - 1.991974 2.633175 1.091006
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Oil TABLE AV. Maximum magnitude error, computed over 2001 equispaced
points in O.ir/4].

615 
Real coefficients Complex

\ ' 'm p coefficiMt

// I I 2 0.118396 0.017097
6 0.108780 0.013142

i..~l..l~ s / , ~Is1 0.107890 0.015004
54 0.107983 0.015005

'I /101 2 0.118415 0.017329
6 0.108893 0.014946

.003 18 0.107967 0.014733
,. t.O** / ii,. ii.pa m . 54 0.107813 0.014711

1001 2 0.118417 0.017331
1W 6 0.108902 0.014950

18 0.107976 0.014735

FIG. A3. Error curves for complex coefficients; m = 101. 54 0.107821 0.014712

Efficiency and timing estimates for actual calculation of
Upper and lower bounds on the discrete Chebyshev er- complex Chebyshev approximations by the method of this

ror E, (f) for the real and complex coefficient cases are given paper is an important consideration in some applications. If
in Table AIII. These bounds are precisely those presented in we define an operation as consisting of a multiplication fol-
Corollary A2. 1. They correspond to sampling the complex lowed by an addition, then it is known' 3 that the number of
error (AB) both in the abscissax and in the phase ofe3(x). The operations per simplex iteration required by algorithm
lower bounds monotonically increase with increasing m orp. ACM 495 is exactly the number of equations times the num-
The upper bounds decrease with increasing p, but increase ber of unknowns. In our case, the number of equations is
with increasing m. All these trends follow from the fact that m p, and the number of unknowns is 2n if the coefficients are
smaller sample sizes are subsets of the larger sizes. complex, or n if the coefficients are required to be real. Thus

However, the maximum magnitude error, evaluated the operation count per iteration is either 2nmp or nmp. The
over the continuum of x values in the interval [,ir/4] (actu- number of iterations required is difficult to estimate, since it
ally computed on a dense discrete sampling space), obeys depends on the particular problem. However, in randomly
none of the these monotonic relations, as Table AIV demon- generated problems, it has been observed"l that the number
strates. For example, the maximum error in the real case for of iterations, L is approximately the number of unknowns
m = 1,p = 18 is less than that form = ll,p = 54. Also, times some small constant c, where usually 14c-< 3. (Similar
the maximum error in the complex case for m = I1,p = 6 is estimates have been observed 4.15 in more general linear pro-
greater than that for m = 101, p = 6. The reason for this grams as well.) Thus, in our case, I= 2cn if the coefficients
behavior is that we have minimized a discrete approximation are complex and I = cn if they are real.
to our problem of interest, sampling both in the abscissa x The CPU time should be proportional to the total oper-
and in the phase values of the complex error. However, the ation count, which equals the product of the number ofitera-
numerical discrepancies are small, as they must be for rea- tions and the number ofoperations per iteration. That is, we
sonably fine sampling in both variables. (A recursive gradi- expect the CPU time to be proportional to n2m p. For the
ent procedure could be used with any of these coefficient sets particular example here, however, we obtain an excellent fit
to improve the final maximum magnitude error if desired.) to the limited data in Table AV with the equation

TABLE Ali. Bounds on the discrete Chebyshev error E. (f).

m Real coefficients complex ce
Lower bound Upper bound Lower bound Upper bond

II 2 0.083718 0.118396 0.01209 0.017097
6 0.105074 0.108780 0.013963 0.014456

18 0.107307 0.107717 0.014143 0.014197
54 0.107612 0.107658 0.014168 0.014174

101 2 0.083731 0.118414 0.012252 0.017328
6 0.105192 0.108893 0.014436 0.014946

18 0.107556 0.107967 0.014677 0.014733
54 0.107767 0.107813 0.014703 0.014709

1001 2 0.083734 0.113418 0.012255 0.017331
6 0.105191 0.108901 0.014440 0.014950
18 0.107565 0.107976 0.014679 0.014735
54 0.107775 0.107821 0.014704 0.014712

189 J. Acoust. Soc. Am., Vol. 72. No. 1, July 1982 R. L. Streit and A. H. Nuttall: Chebyshev approximation 189

-39-



TABLE AV. Number of simplex iterations and CPU tim, significant numerical round-off error has occurred. In exam-
ple (AS) above (p = 6, m = 101, complex coefficients), theme

Real coefficients Complex coefficients inqaiiswrobevd um iclythldofve(t

P_____p__ ex________________________s_ not six) significant digits. We conclude that the effects of

11 2 6 0.02 10 0.05 round-off errors, although visible in the results, are not siS-
6 £ 0.08 15 0.16 nificant in this example. (Single precision numbers on the

Is 11 0.23 21 0.58 DEC VAX 11/780 have approximately seven significant de-
54 13 0.81 27 2.25 cimal digits.)

101 2 7 0.25 10 0.40
6 9 0.73 17 1.60

18 13 2.65 21 S.78
54 Is 11.39 28 24.27

fo0l 2 9 3.05 13 5.00 'I. Barrodale wWdC. Phillp Soluton ofan Overdetenme!System of
6 10 10.34 17 19.38 Linear Equations in the Chebyshev Norm." Algorithm 495, ACM Trans.

Is 13 48.16 24 105.47 Math. Software 1. 264-270 (1915).
54 16 170.52 28 359.20 1. Barrodale and C. Phillip,"AnImproved Algorithmnfor Dicrete Ce-

Sbyshev Linear Approximation," Proceedings of the Fourth Manitoba Con,-
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The concept of Directivity Index with Beamwidth Control (DIBC) leads to a practical method for the
optimization of element excitations to control the tradeoff between beamwidth and sidelobe level in a discrete
array of arbitrary configuration. This optimization procedure depends on the design frequency, specified
element positions, individual element field patterns, and ambient noise field. Each of these factors can be
specified in a completely general manner. In addition, the optimization procedure can be adapted to
computers of modest memory size by using subarrays of the full array. Examples are included to show the
versatility of this approach to the optimization problem, as well as its limitations. One of these examples is a
105-element cylindrical array.

PACS numbers: 43.60.Gk, 43.30.Vh, 43.28.Tc

I. THE CONCEPT (4) The ambient noise field at the design frequency is

A. Introduction completely known.

Optimization of the element excitations of discrete (5) Element interactions can be ignored.

antenna arrays is a matter of definition for three rea- (6) Element excitations can be phased (i.e., complex).
sons. First, the definition of optimality will dictate The premise that the element excitations must be al-
the appropriate mathematical approach. Seemingly lowed to be phased is not necessary. As is pointed out
subtle changes in the definition of optimality can alter later, we can just as easily require them to be strictly
radically the applicable mathematical methods. Second, real, i.e., either positive or negative. However, ex-
element excitations that are optimal in one sense are cept where noted, we assume that the excitations are
unlikely to be optimal in another sense. Two sets of phere td, w e su e aterexcitation areexciatinseac setoptmalin ts on snse ca be phased because this is the more general situation andexcitations, each set optimal in its own sense, can be allows for better performance.
completely different. Third, the definition of optimal-
ity must reflect directly on the primary design goals The concept of DIBC has been defined and used earlier
for the array. It is pointless to optimize the Directi- by Butler and Unz. "2 In these papers, DIBC is called
vity Index (DI) and then complain that the sidelobes are beam efficiency and is defined by them only for line
too high, because the design goal of low sidelobes and arrays. This article is new in three regards. First,
the definition of optimality (maximum DI) are not di- we apply the concept of DIBC to arbitrary spatial ar-
rectly related. rays and, thereby demonstrate its usefulness in very

This article defines and uses exclusively the con- general situations. Second, we exhibit viable numerical
cept of Directivity Index with Beamwidth Control procedures and techniques for overcoming a variety of
(DIBC). Several advantages, as well as difficulties, mathematical difficulties inherent in the concept of
inherent in this definition are discussed. The primary maximizing DIBC. Third, the above-mentioned method
difficulty in this definition is the requirement of large of optimizing DIBC for general spatial arrays of any
computer memories for large arrays. A technique number of elements, while using only small amounts
employing subarrays of the full array in a systematic of core storage (and no peripheral storage devices),
manner is shown to overcome this problem. The same appears to be completely novel to this article.
technique can be used to solve the following problem as All the examples in this article were computed on
well: Given an array with known element positions and the Univac 1108 under EXEC 8. A listing of the com-
excitations, and given that new elements are to be in- puter program is available in Streit. 3 It is written in
troduced at known locations, how does one excite (or FORTRAN V for the general three-dimensional array
drive) these new elements to improve performance of of arbitrary configuration.
the total array without changing the excitations of any
of the elements of the original array? B. Field pattem and coordinate system

The optimization procedure in this article is appli- The spherical coordinate system of Fig. 1 is used
cable when the following premises obtain: throughout this article; however, a particular direction

(1) The wavelength, A, of the design frequency is (0,0) will be specified by the direction cosines
given and fixed. coso = sinlo cose, cos = sinO sine, cos = cosO . (1)

(2) The number of elements, n, in the array is fixed The most general field pattern treated here is
and all the element positions (x,,ya,z&), k= 1,... ,n are
known and fixed. v(90= a21ri(e,)e(p (9 0)

(3) Individual element field patterns at the design fre-
quency are completely known. where R,(8, 0) is the phased (complex) response of the
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Z of the ratio (4a), and this proves our assertion. This is

not to say, of course, that the maximum value of (4)
and the maximum value of (4a) are equal, only that ex-

citations that maximize the one also maximize the
*other.

Maximizing DI is a limiting case of maximizing DIBC.
, To see this, recall that for a specified direction

(80, 0,), DI is a maximum if the ratio

DI= 'N(9.' O )l V2(0.'O )l 1 5)

ff N(e, 4i)I V2(6, 0)1 sinO do dO
FIG. 1. The coordinate system. is maximized. Now let the ignored region 8 be empty,

let the mainlobe region, M1, contain (8o,0o), and let
kth element, and 8= 0 -1l. Then, excitations maximizing DIBC con-

d( , 0=)fxcosa + vcos+z4 cos) . (3) verge to excitations that maximize DI as the mainlobe
region, DR, shrinks down on the point (0.,40).

Because of assumptions (1) to (6), the field pattern We have defined optimal excitations as those for
V(6, 0) depends solely on the phased (complex) excita- weih defin otimal eo s a thoe fowhich DIBC is maximized for some choice of regions
tions a,,... ,a.. The ambient noise field N(O,b) will M , 8, and S. This allows a measure of control over

enter in the definition of optimal excitations. JAlter- the beamwidth and sidelobe level. By varying systema-
nately, one may think of N(V, 0) as a given non-negative tically the choice of Mf and 8 and maximizing the DIBC
weighting function of the two angles.] for each choice, we can examine directly the tradeoff

C. Directivity index with beamwidth control (DIBC) between beamwidth and sidelobe level for the particular

The antenna designer is required to divide the set of array at hand. The engineer canthen, select those excita-
allTdections, desintedr int rqree disinth reo: tions that best suit his needs. Generally, the larger

all directions, denoted U, into three disjoint regions: the mainlobe region, M1, and the smaller the sidelobe

M11= mainlobe region, region, 8 (for fixed ignored region, 9), the lower the
overall sidelobe level and the greater the beamwidth.

8= sidelobe region, However, this may not always be the case, since side-

9 = ignored region = U - (1 u 8). lobe level does not enter directly into the DIBC ratio
of (4). Nothing prevents the field pattern from havingThis division of directional space is completely ar- narwhgamitdsdeossceuhsdeos

bitrary, except that neither M1 nor 8 can be empty sets narrow high amplitude sidelobes, since such sidelobes

whereas 0 can be empty if desired. Once a particular contribute little to the integral in the denominator of

choice of 1, 8, and 1 has been made, the following def- the DIEC.

inition of optimality is used. Another reason for maximizing DIBC is simply that

Definition I The element excitations a,,... ,a. are it is conceptually easy to do so. All that is required is

optimal excitations for a given choice of regions 3R, g, the solution of an eigenvalue /eigenvector problem (see

and 9 if and only if the ratio Theorem 1), andproblemsof thistype havebeenstudied
extensively in the literature." Numerically, such

fLN(8, 0)1 V2 (9, 0)1 sine d dO problems require considerable care. Fortunately,

DIBC = (4) well-designed computer programs are available for the
JJ N(, )1V2(o, 0)1sinO dOdo solution of eigenproblems.s 6 With the use of these rou-

-, US tines, the solutions of the eigenproblems encountered

is maximized. Any ratio of this form will be referred in the antenna problem seem to be numerically stable.

to as a directivity index with beamwidth control. This is not to say that there may not be arrays that
yield numerically unstable eigenproblems.

We point out that any excitations a,,... , a. that max-

imize the DIBC ratio (4) also maximize the ratio A final reason for maximizing DIBC is more esoteric.
In the process of solving the required eigenproblem,

f N(8,0)I V 2(o, )IsinddO,(4a all the e/genvalue 'eigenvector pairs are computed, not
merely the largest one. It happens that the field pat-

ff. N(9, 0)1V'(o,0)1 sin d do terns corresponding to the lower order eigenvalues
have some interesting featuren [see the figures in ex-

To see this, note that ample (2)]. In addition, it often happens that some of

f ff the larger elgenvalues are close together; i.e., sev-

1+-- eral linearly independent sets of excitations exist
51EC (ff ff' which give DIBC values that lie close together. (For

an analogous situation, see Slepian and Pollak.) What

so that any excitations minimizing the reciprocal of this means in the antennna problem is that, without
DIBC are also excitations that minimize the reciprocal sacrificing antenna performance (as measured solely
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by the DIBC). it becomes a simple matter to examine elements in the array. Make any initial guess at the
numerous different sets of excitations with the aim of optimal excitations. Define distinct subarrays of, say,
improving some completely different design goal of 50 elements each. By working with the first of these
the array. [See (19) below.] This will not be discussed subarrays, new element excitations are computed for
further in this article, these 50 elements, so that the DIBC of the entire 300

element array is increased. Next, new excitations are
It must he mentioned that this approach to the array computed for the second subarray. Cycling through alloptimization problem does not attempt to address sev-optiizaionprolemdoe notattmptto ddrss ev- six subarrays in turn, until DIBC for the entire 300 ele-

eral issues that are of practical interest. First, this sen array cnn be ices furthe b ning te
apprachdoe no guaante tat he arayperormnce ment array cannot be increased further by changing theapproach does not guarantee that the array performance excitations in any of the subarrays, is the essence of

is insensitive to perturbations in the optimum excita-
group coordinate relaxation. The method can be proved

tions. The question of sensitivity to excitation pertur- to be convergent. It yields the globally best excita-
bation can be examined only after the optimum excita- tos o eeylclybs.Acrflsaeeto

tion ar fond. ecod, his pprachdoesnotattmpt tions, not merely locally best. A careful statement of
tions are found. Second, this approach does not attempt the algorithm and further remarks are given in the sub-

to control the efficiency of the array. In other words, setonon n ution of the iennbe b

it can happen that the optimal excitations for a parti- the indirect method.

cular array may drive certain elements at their max-

imum allowed levels while the remaining elements are The rate of convergence of the group coordinate re-
hardly driven at all, so that the total output power of laxation method depends heavily on the size of the sub-
the array is too low for the application. This problem arrays used. The larger the subarrays, the faster the
is common to all amplitude shaded arrays and can be convergence, and the more core storage required.
examined after the optimum excitations are found. Thus, core storage is traded off in a direct manner for
Finally. this approach to array optimization ignores the convergence rate and, hence, for computation time.
element interactions, so that it is possible for optimum In addition, each step of the group coordinate relaxation
excitations derived by this method (or by any other method produces new excitations that increase the
method for that matter) to have undesirable character- DIBC, so that if the computations are interrupted for
istics in this regard. This possibility, as well as the any reason: (1) The last computed excitations are
other two possibilities mentioned above, should be in- better than any of the excitations previously computed
vestigated after optimal excitations are found. and (2) by saving the last computed excitations, the

computations can be resumed without significant loss.

D. Computer storage problem If n, is the number of elements in a subarray used

The primary drawback to maximizing DIBC is that by the group coordinate relaxation process, the total
the number of computer storage locations required storage required (using the program in Streit 3) is ap-
(using the program in Streit) is approximately proximately

N,= 6n 2+ 16n+ t2000 words , (6) N=-6n5+ 8(n+n.)+ 12000 words, (7)

for the case of constant ambient noise field and omni- for the case of constant ambient noise field and omni-

directional elements. Since the total requirement will directional elements. Thus, memory requirements

grow as the ambient noise field and/or element field grow as the square of the subarray size no matter how

patterns require more storage to compute, it appears large the full array may be. By choosing the subarray

that the direct computation of optimal excitations for size sufficiently small, the designer can maximize

any array of 100 or more elements requires either DIBC for large arrays on computers of modest size.

large main-frame computers or computers with virtual The cost, however, is computer time. On the other

memory. However, the storage requirements for hand, if the designer has a dedicated minicomputer of

maximizing DIBC can be avoided. A technique known reasonable size, the cost of computer time is nil.

as group coordinate relaxation' gives a method that can
be tailored to the computer memory available. The
technique is an excellent example of how to trade off
computer memory for computational speed. The more
memory available, the faster the DIBC can be maxi- A. DIBC and the eigmnproblemn
mized. Let the vector a= (a,... ,a,)T be the vector of element

Group coordinate relaxation, in the context of maxi- excitations for the field pattern V(9, 0) given by (2).
mizing DIBC, is simply stated. Suppose there are 300 Then

ff. N(6, 0)1 V2(o, 0t)1 sin0dde=ff, N(8, 0)1V(9, o)J 1 sln~d4d9
=fr N(8. 2)[i a .8 )x( d,(O. @][ a lRl(o,oexp 12-id,( .J)sinf do do

N(8 OW6,OR(,0)e4"'[,o,0 .8 in od , (8)
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where U is an n xn complex matrix. lfU=uH,J, with . TU7 (1
k denoting the row number and j denoting the column min

number, 
then

and this minimum is attained for every eigenvector
corresponding to j,,. Finally, if I - k n, then, for
any constants a .... .at not all zero, we have

x exp 2 [d(O, (P) -d,(O, 0) sin d~bde. (9) A , i -. ,r _ (19)

where z=a z,+ + •+ +jZ,.
Clearly, U is a Hermitian matrix (i.e., UfU), since
it is obvious that us, = v,. Also, U is positive definite, The proofs of the various parts of this theorem can

since be found in numerous sources, e.g., Gantmacher.'

For the immediate purposes, the most important
dTUaaJ f N (8, 0)l V'(0, 0) sintdOdO> 0, (10) part of this theorem is (17). It states that optimal ex-

citations are precisely the components of any eigen-
whenever the excitation vector a* 0 (and provided the vector corresponding to the largest eigenvalue of the
mainlobe region, Ml, is not a set of measure zero, a generalized eigenproblem Uz = AWz, where U and W
pathological condition that is not encountered in this are defined by (9) and (12).
application). Therefore, for every mainlobe region,
ql, the matrix U defined in (9) is an n x n positive def- Theoretically, Theorem w solves the problem of max-mnite Hermitian matrix. Similarly, imizing DIBC in the case where all element excitations

can be phased. But what is the solution if all the exci-

(11) tations are required to be real (positive or negative)?
ff. U In this case, the ratio (13) still holds, but the excita-

tion vector, a, is real, i.e., a=i. Since U and it' arewhere W= wttj is an , x n positive definite Hermitian Hrntaw aeteagbaciett

matrix whose general entry is Hermitian, we have the algebraic identity
-I IY. = Uiru aT(ReU)a

fIf N(B, )R(o )R,(O ) rW, a(ReW)

(2. Now, ReU and ReW are both real symmetric matrices,
x exp. [dj(O, ) -d(0,)) sinOddO. (12) and all the properties of Theorem 1 hold for the real

generalized eigenproblem (ReU)z = (ReW)z. The only
Thus, for a given choice of 11, 8, and 8, we have difference is that now the eigenvectors have all real

components. Therefore, if the excitations are required
DIBC=t rUa/irwa, (13) to be real, the optimal real excitations are precisely

which is a ratio of positive definite Hermitian forms, the components of any eigenvector corresponding to the

Therefore, optimal excitations are those that maximize largest eigenvalue of the generalized real eigenproblem

this ratio of Hermitian forms. (ReU)z = ,(ReW)z , (21)

The mathematical tools for handling ratios of the where U and W are the matrices defined by (9) and (12).
,)rm (13) have been known for at least a century. In the remainder of this article, we concern our-
' e have the following general mathematical result. selves only with phased excitations. Everything that

Theorem 1: If U and W are n x n Hermitian matrices we do, however, can be recast for real excitations
and W is positive definite, then the eigenvalues of the simply by using the real parts of the matrices involved.
generalized eigenproblem A discrete reformulation of DIBC is discussed in the

Uz = ,WZ (14) next section. By way of analogy only, this discrete
version of the DIBC ratio is to DIBC as the discreteare all real. Let , .. j•• , denote these eigen- Fourier transform is to the Fourier transform. Fol-

values. Then, linearly independent vectors z ..... ,z. ForetanfmisothFuirtasom.olcan be found that satisfy lowing this is a discussion of the numerical methods
for the solution of the kind of eigenproblems encounter-

Uz,=ff.,Wz1 , k=l,...,n, (15) edinthisarticle.

and
B. A discrete version of DIBC

EYrWz,= 1 ,I if kfj (16) Maximizing the DIBC ratio (4) is mathematically
10, if k*j tractable, but it is not practical. It requires the solu-

The vectors z,,... ,z, are called the eigenvectors of tion of an eigenproblem, which in turn requires the
the eigenproblem (14). Also, we have evaluation of approximately n' double integrals (9) and

/Eruz 1 (12) over subsets of the unit sphere. Since it is essen-
max( -= j, (17) tial that the mainlobe region, 9R, and the sidelobe re-

'o V WZ/ gion, 8, be quite general in nature (i.e., be defined to
and this maximum is attained for every eigenvector suit the particular application, these double integrals
corresponding to A, , and are in general impossible to evaluate explicitly and are
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p EQUAL PART EQUAL PARTS

p EQUAL PARTS

FIG. 3. One face of icosahedron subdivided into p parts.

desic dome of order p. We define the Fuller points,
FIG. 2. The icosahedron. 10, to be the totality of these points.

The Fuller points, fJ., are uniquely oriented in Car-
tesian space once the vertices of the icosahedron are

also difficult and time consuming to evaluate accurately defined. With some simple trigonometry, it can be
by numerical methods. For these reasons, DIBC itself seen that the 12 vertices of an icosahedron inscribed
is not optimized. What is optimized is a discrete ver- in a sphere of unit radius can be taken to be the 2 points
sion (DIBCF) of DIBC that is not only numerically prac- (0,0,*1), together with the 10 points
tical to use, but is also conceptually simple. [2b(1 -b)/2cos2rk '5, 2b(1 -b2 )1/2 sin2ik,5 , 2b2 -1]

The discrete DIBC definition replaces the surface
integrals in ratio (4) by discrete sums over points
chosen in ill and S. Since 1 and S are not known 2b(l -b2)1/"sin2,(k+2) '5, 1 -2b' ] , (22)
a priori, these points are distributed uniformly over where k=0,I.4andb=l (2cos3n, 10)2'SQRT[l0
the surface of the sphere, with each point contributing - 2SQRT(5)I. The edge length of this icosahedron is
one term to the discrete sum and all terms entering 2SQRT(l -b 2 ) z 1.0515.
with equal weight. Ideally, then, these points must
show no directional bias and must be easy to compute. How many points are there in T,? By inspecting an
Furthermore, it must be possible to choose these unfolded paper model of the icosahedron on which the
points with any desired density on the sphere. Fuller points have been marked, it is easy to see that

A natural choice for points fulfilling these conditions -3, contains exactly 1Op 2 + 2 points. Thus, the number

is easy to describe, but difficult to compute. Choose of steradians per point is approximately 47r/lOp 2

as points the equilibrium positions of a finite number 1.25/p 2 .

of positive charges constrained to lie on the surface of Notice that the Fuller points, I,, are not quite ideal.
the unit sphere. When the number of positive charges Those points chosen near the center of a face of the or-
is 4, 6, 8, 12, or 20, it is intuitively clear that stable iginal icosahedron will be less finely spaced when pro-
points for these charges are at the vertices of the five jected on the sphere than will those points that were
regular Platonic bodies: the tetrahedron, the octa- chosen nearer an edge. This defect in 9F, does not seem
hedron, the cube, the icosahedron, and the dodeca- to be significant in this application. With the Fuller
hedron, respectively. Unfortunately, these are the points defined, we state the following.
only easy cases (see Melnyk et al.9). Definition 2: For a given integer p -1, and regions

The discrete points chosen to define discrete DIBC M, 8, and 0, the element excitations a,,... , a are op-
are the vertices of a geodesic dome. Consider the ico- timal if and only if the ratio
sahedron shown in Fig. 2. Note that in this figure the
Y axis is in the plane of the paper and the z axis is E Me, 0)1 V101 0)1
tilted slightly to show off the configuration. (The x axis DIBCF= \ 0. ' (23)
is not shown, but is, of course, orthogonal to the vz ( .(G, )1V2(6,i,)i)
plane.) This regular figure has 12 vertices, 20 faces,
and 30 edges. Geodesic domes with (almost) any num- is maximized. Any ratio of the form of (23) will be
ber of faces are constructed from the icosahedron by referred to as a directivity index with beamwidth con-
subdividing its equilateral triangular faces in a sys- trol over the Fuller points, JF,.
tematic manner."0 First, subdivide each face into con-
gruent equilateral subtriangles, as shown in Fig. 3; Note that, asp -u, we do not have DIBCF-DIBC be-

i~e. fo eah poitie itegep~ , fndp+1 eui- cause thc "jstribution at the Fuller points does not ap-i.e., for each positive integer p ;! 1, find p+ I equi-

spaced points along each edge and pass lines through proach the uniform distribution as p gets large. In

each of these points parallel to the other two edges, addition, we point out that for every p -, 1, we have the

Next, take all the vertices of the equilateral subtri- inequalities

angles so generated and project them on the unit sphere. 0 DIBCF 1,
By doing this for each face of the icosahedron for a
fixed integer p e 1, we construct the vertices of a geo- provided only that the denominator sum in (23) is non-
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zero. The proof of the lower bound is trivial, and the Martin and Wilkinson give a method and a routine
proof of the upper bound follows from the observation for solving this eigenproblem when M and S are real
that every summand in the numerator of (23) appears symmetric. Both the technique and the routine can be
also in the denominator, adapted to the Hermitian case. Every Hermitian posi-

tive definite matrix S has the Cholesky decompositionThe formulation of D1BCF as an eigenproblem para-
llels that for DIBC. Specifically, we have S=LET , (28)

Mz = MSZ , (24) where L is a lower triangular matrix. Thus,

where M =[Pkj and S- [skI are n x n positive definite Alz - .LT; rZ, L-M.%z = gL TZ , L'I-,1(Tr r)z = 4A: "z,
Hermitian matrices with (LIAr-')x = )x, (29)

= I N(OP)R(OIOR.(O,1) where

£ x :Tz• (30)
x exp 1(2vi/X~dj(8. 0)- d,(O.0)] (25) Therefore, the eigenvalues of L'IZ:-r are precisely

the eigenvalues of (24), and the eigenvectors x of
Ski= N(e, O)R,(8, )RL(6. ) L'rZ r and the eigenvectors z of S'M are related by

0. 0 )e3 n iu s1 (30). Note, also, that (29) is a Hermitian eigenprob-

x (  ( lem, since L"Mlfris a Hermitian matrix, It is,x exp2i/)d(.)d(.) ] 26
f therefore, possible to solve (29) by numerical methods

By Theorem 1, maximizing DIBCF requires the compu- designed for Hermitian eigenproblems that explicitly

tation of any eigenvector corresponding to the largest Use the fact that the eigenvalues are real.' Therefore,
eigenvalue for the eigenproblem (24). The numerical the eigenvalues computed by using (29) will always be

solution of (24) is discussed fully in the next section. real, as required.

There are two considerations that should enter into This computational procedure seems to require a

the particular choice of p for the Fuller points 3;,. prohibitively large number of arithmetic operations;

First, the Fuller points should be numerous enough however, the computations may be done very efficiently
to sample adequately the worst behavior of any real- because of the special structure of the matrices involved.
izable field pattern. In other words, p should be large Forexample,thematrix L-.W7-rcanbecomputed (with-
enough that even the narrowest sidelobe achievable in out inverting the matrix L)by using only Ip complex mul-
the field pattern will contain points in a,. Second, tiplications. This comparesto 'n'complexmultiplications
Theorem I requires that the denominator matrix 9 of in the computation of S-1 alone in (27). In terms of storage
the DIBCF ratio be positive definite. Normally, the required, computation time, and numerical accuracy, the
sampling criterion will effect this automatically. use of (29) and (30) is preferable to the use of (27).

The routine in Martin and Wilkinson6 was adapted to
the Hermitian case, using routines in Ref. 5 to solve the or-

C. Numerical solution of the sigenproblem: dinary eigenproblem. This routine is called PENCLH,
Direct method and its listing is available in Streit.' (The listings of

The eigenproblem (24) is equivalent to the eigenprob- the routines used from Ref. 5 are not available; they are

lem proprietary information under terms of the lease ar-
rangements made with International Mathematical and

(S'M)z ffi . (27) Statistical Libraries, Incorporated.) Finally, it is

In other words, the eigenvalues and eigenvectors of pointed out that the routine PENCLH computes all the
(27) are precisely the same as those of (24). There are eigenvalues and eigenvectors of (24), and not merely
two difficulties in using (27) for numerical computation. the largest eigenvalue and corresponding eigenvector(s).

First, it requires the inverse of the matrix S, whose
only special structure is that it is positive definite D. Numerical solution of the eigmnproblem:
and Hermitian. In general, numerical computation of Indirect method
the inverse of matrices should be avoided if possible. As discussed in the section on the computer storage
Second, (27) is not a Hermitian eigenproblem; i.e., problem, the drawback to the direct method is exces-
S'A! is not necessarily Hermitian even though S and M sive computer storage for large arrays. The group
are both Hermitian. This means that the eigenvalues coordinate relaxation (or indirect) method overcomes
and eigenvectors of (27) must be computed by a routine this drawback, but at the cost of computer time and the
designed for a general complex matrix, and this means loss of ability to compute the lower order eigenvalues
that the eigenvalues can (and do) turn out to be complex eigenvectors. The group coordinate relaxation method
numbers because of numerical roundoff. Since Theorem is detailed by Faddeev and Faddeeva! for the real sym-
1 requires that all the eigenvalues be strictly real metric eigenproblem Ax= Mx. This method can be ex-
numbers, there is numerical error in using (27) caused tended easily to the Hermitian eigenproblem
by destruction of the natural Hermitian symmetry in = . (31)
(24). For these reasons, it is desirable to solve the
eigenproblem (24) directly. Although the method can be extended to arbitrary Her-
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mitian matrices 11 and S, with S positive definite, it that (35) is a ratio of dermitian forms in the para-
is important here to retain the structure of .11 and S meters c0 ,c , . ,. Therefore, by Theorem 1, the
as given by (25) and (26). The reason is that the Her- solution of (35) requires solving an eigenproblem of
mitian forms of .11 and S can be evaluated directly with- size r+ 1. Let
out knowledge of any of the entries of either matrix.
This is the fact that allows the computer storage prob- al=) a,(o) ?lei + ... + (37)

lem to be overcome. be a vector for which the maximum (35) is attained.

The following notation will be very useful. Define the This completes the first step. In the second step, we

basis vectors seek to

e=(I 0 0 ... 0 0)r maximize- f , (38)
IC 0

e(= (0 1 0 ... 0 0)3, where Q, is the vector space of dimension r+ I whose
(32a) general element, x, can be written in the form

e.= (0 0 0 ... 0 I)r  x x coa,)+ cle,.,+ + c,e2, , (39)

Note that each of these vectors is of dimension n. To for some complex constants cCo,... ,c. Since (38)
define vectors e. for n n+ 1, we first set is, again, a ratio of Hermitian forms in the parameters

Pi, iit is an integral multiple of, ic 0 ,c 1 ,... ,c,, we solve an eigenproblem of size r+ 1 to
pit , if (32b) compute a vector

a (2) = i(n o+ 2r e, 1 + . .. +c ,e2,, (40)

where [denotes the greatest integer function. Since for which the maximum (38) is attained. This completes
(32b) requires that 1 fl(pu,)- n. we can now define the second step. Continuing in this fashion defines the

e,,= e)),,). - n+ I . (32c) group coordinate relaxation algorithm.

In other words, we have defined We see that this algorithm cycles through the entire
l (array using subarrays of size ). This is because the

.I-- e2I ... basis vectors {e.} are defined to cycle regularly through

e 2= e,. 2 = e=.2 .. =. the vectors {ei.e,,. .. . ,J. Also, if , does not divide

(33) n evenly, each individual element belongs to a number
of different subarrays as the computation proceeds.

el=e2 ,=e = .... In other words, if r does not divide i, the entire array

Before the group coordinate relaxation algorithm can is not subdivided into disjoint subarrays.

begin, two items must be specified. First, an initial The group coordinate relaxation algorithm generates
guess a sequence of vectors a)o) ,a,,,n(2 ), ... that converges

0(a ), a( 0 ), ... , (34) to an eigenvector corresponding to the largest eigen-
2 value of (24). Convergence is assured regardless of

for the optimal element excitation vector is required. the starting vector, with some highly unlikely excep-
Thevectora(o) should not contain all zero entries,butit tions. These exceptions are easy to state. If any of
is completely arbitrary otherwise. Second, it must be the computed vectors {a1 0 ), all), a(2) ,...} is precisely
decided in some manner to work with subarrays of the an eigenvector of (24) that corresponds to an eigen-
full array of size r 1. It will be shown that choosing value which is not the largest eigenvalue of the equa-
to work with subarrays of size r will mean that general- tion, the group coordinate relaxation method will not
ized eigenproblems of size r+ I will have to be solved, move from this eigenvector. Numerical roundoff error
so computer storage plays an important role in the probably will prevent this in practice. For further dis-
choice of r. Another important consideration is com- cussion and for a convergence theorem whose proof
putation time. In general, the larger r is taken to be, can be extended to the present situation, see Faddeev
the faster optimum excitations of the full array can be and Faddeeva.8 For possible applications of these
computed. mathematical methods to other problems, see Lee."

The group coordinate relaxation algorithm is most An important feature is that the last computed vector,
easily described by exhibiting the first two steps of the a(,,, gives a larger DIBCF than the previous vector,
algorithm. From these steps it is easy to see the gen- a,-). This is easy to see by observing the ratios (35)
eral procedure. In the first step, we seek to and (38).

ma im T
MX Another very useful observation is that the algorithmmaximize -?'---, (35)

eQo T Sx requires knowledge only of a(,) to compute a(,,,. This
means that if computation must be interrupted for any

where Q. is the vector space of dimension r+ I whose reason, it is necessary to store only the last computed
general element, x, can be written in the form vector in order to restart computations.

X c~a1 + c~e,+ .. .+ c~e, , (36) It is now easy to see how to solve the problem men-

for some complex constants co,c,,... ,c,. It is shown tioned in the introduction, namely, how to excite
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(drive) new elements being added to an existing array
without changing the excitations of any of the original
array elements. Let Ns be the number of elements in
the existing array, and let A A be the number of ele-
ments to be added to this array. Now, number the v Y RINGS OF

'S 'A elements in the full array so that the new ele- ELEMENTS

ments are numbered 1,2,.A.. N A , and the elements of
the original array are numbered N A+ 1, N-A 

+ 2,.. .,','
+ N s. The solution of this problem is to perform pre-
cisely one iteration of the group coordinate relaxation X

algorithm with the number of elements relaxed equal to
NA . In other words, set r=A in (36) and compute that
x in eo for which the maximum in (35) is attained. The
required excitations for the additional elements are
given explicitly by a = /, k= 1 N,, where we where shs is given by (26). Because Vo(R,o) can be
have used the notation of (37). computed easily for each (0.0), we see that (44) through

We conclude this section by an examination of the (49) can be computed efficiently in terms of time and

maximum (35). Everything that is said of (35) is easily core-storage requirements. Now, by using Theorem 1.

translated to the maximum (38), as well as all the we see that the maximum of

other maxima required in the group coordinate relaxa- -rG /-rBz , (50)
tion algorithm. Note, first, that putting (36) into (35) is achieved by any vector
gives the identity

rMx Frz = (0o.... 0,)r (51)
FYS max (41)

. Sx - m -T- which is an eigenvector of the largest eigenvalue of
where z = (c,c, .... ,c,)1, and G= 'j, and B= [b.,I are Gz = .Ji. Thus, from (41), we see that
(r+ 1)x (r+ 1) Hermitian matrices whose general en- (52)
tries are given by

_ r lis a vector for which the maximum (35) is attained.

& -=Wo-a(o Ae,, k=I ..... , (42) III. EXAMPLES

gJ Me,, k,=1...r, A. Examplel: A 105 element cylindrical array

and This example illustrates the use of subarrays (i.e.,

-r the group coordinate relaxation method) for computing
S ,Sa,,)' optimum DIBCF with limited computer storage. We

bo-bhoa)Se,, k= 1,... ,r, (43) select an array with 105 elements arranged around a
b- TFSe,, k cylinder. Specifically, we first construct 7 rings of 15
b,e,,=1,... ,r elements each and then place the axis of each of these

Thus, the entries of G and B are computable from the rings along the x axis (see Fig. 4). The exact positions
Hermitian forms of M and S, respectively. Let V,(8, 0) (and element numbers) are given in Table I, where the
be the field pattern of the entire array for the excita- units of length are such that the wavelength X.- 1.
tions a, ) . Then, we have, explicitly, Each element of this array has a hemispherical field

pattern defined in the following manner. We conceive
g0 0 =,~* (9,0IV~(,0)Iof the array as being supported by a (transparent)

cylinder. Through each element, we pass a tangent
O=,8, , 0)Rk(e, ) plane parallel to the cylinder axis. The field pattern

of an element has unit response on the side of the plane

xexpj-(2.i/)4(o0)] , ki1...,r, (45) that does not contain the cylinder and has zero response
on the side that does contain the cylinder. We assume

= k,= 1.... ,r, (46) that the ambient noise field is flat. Also, we choose

where rnt 1 is given by (25), and similarly, p = 32 in the definition of the Fuller points I,, .
The mainlobe region, .1l, is defined as a half cone

bo=, N(8,0)IV'(8,,) , (47) lying above the positive x axis. Specifically, consider
(,.* a, nfl (xus ) the solid cone with axis lying along the positive x axis,

bko= bo= E N(8,-O) with its vertex at the origin, and with a vertex angle
,.e 1 n at , of 400. The xv plane slices this cone into two equal

parts, and the mainlobe region, R, is defined to be
x Vo(O,)R,(,0) expf-(2nr/A)d,(e ,) , (48) that part of the cone that lies above the xv plane (i.e.,

k = 1. r, points having positive z coordinates). The sidetobe
region, 8, is defined to be the set of all directions

bf,= se, k,j= 1,...r (49) that are not in the mainlobe region, MC. There is no
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TABLE I. Coordinates of elements in example 1. ignored region, 8, in this example.

Element Coordinates With the above choices, the DIBCF array problem is

no. i v z completely specified. In this case, we use subarrays
to optimize the full array because the direct method of

1 0.0000 0.7642 0.0000 optimization requires more core storage on the Univac
2 0.3337 0.7642 0.0000 1108 than is available. (If the Univac 1108 had virtual
3 0.6674 0.7642 0.00003 0.6674 0.7642 0.0000 memory, the use of subarrays would not be required.4 1.0011 0.7642 0.0000

5 1.3348 0.7642 0.0000 On the other hand, one might still use subarrays on a

6 1.6685 0.7642 0.0000 machine with virtual memory for a variety of other
7 2.0022 0.7642 0.0000 reasons.) It seems best to use as many array elements

8-14 As above 0.6982 0.3108 as can be handled easily in the available computer
15-21 0.5114 0.5679 storage, so in this case we choose 69 elements, i.e.,
22-28 0.2362 0.7268 roughly two-thirds of the full array. By using the
29-35 -0.0799 0.7600 program in Streit,3 we require only 45 000 words of
36-42 -0.3821 0.6618
43-49 -0.6183 0.4492 main memory.

50-56 -0.7475 0.1589 The group coordinate relaxation scheme required
57-63 -0.7475 -0.1589 roughly 1650 s per iteration, and 5 iterations in all.
64-70 -0.6183 -0.4492
71-77 -0.3821 -0.6618 Thus, total computation time was roughly 2.25 h. Table

78-84 -0.0799 -0.7600 II gives the final (optimal) set of element excitations.

85-91 0.2362 -0.7268 The vertical field pattern is given in Fig. 5, and Fig. 6
92-98 0.5114 -0.5679 gives the horizontal field pattern for these excitations.
99-105 0.6982 -0.3108 We point out that the field patterns in these two figures

have abrupt jumps because the individual element field

TABLE 01. Optimum excitations for example 1.

Element Element Element
no. Magnitude Phase no. Magnitude Phase no. Magnitude Phase

1 0.01497 -2.04150 36 0.00197 1.82093 71 0.03656 2.70718
2 0.04456 1.55478 37 0.00307 -1.47902 72 0.08537 -0.05512
3 0.076 01 -1.27318 38 0.00857 1.588 49 73 0.12945 -2.85812
4 0.09175 2.15264 39 0.01455 -1.39023 74 0.14265 0.61788
5 0.08206 -0.72447 40 0.01616 1.95539 75 0.11732 -2.17831
6 0.05216 2.68648 41 0.01282 -0.94279 76 0.06927 1.34010
7 0.021 26 -0.153 55 42 0.006 53 2.49085 77 0.025 74 -1.30699
8 0.01160 -0.72850 43 0.00811 0.10499 78 0.07023 2.82735
9 0.03588 2.55205 44 0.02391 -2.95328 79 0.18862 0.01720

10 0.06133 -0.39698 45 0.04158 0.42416 80 0.30892 -2.83428
11 0.07342 2.93476 46 0.05011 -2.47388 81 0.35755 0.59043
12 0.06403 0.00079 47 0.04422 0.92678 82 0.30468 -2.26194
13 0.03893 -2.92334 48 0.02716 -1.92583 83 0.18437 1.18512
14 0.01398 0.46931 49 0.01048 1.50198 84 0.06783 -1.59534
15 0.00348 -0.01323 50 0.01266 -1.16074 85 0.05600 2.52014
16 0.01278 3.13121 51 0.03973 2.24429 86 0.13959 -0.31104
17 0.02296 0.29855 52 0.06734 -0.65477 87 0.21923 3.11525
18 0.02717 -2.50653 53 0.07980 2.70791 88 0.24587 0.25434
19 0.02319 0.98764 54 0.06917 -0.20862 89 0.20337 -2.59581
20 0.01409 -1.73254 55 0.04197 -3.12157 90 0.11910 0.86311
21 0.00570 1.78955 56 0.01513 0.26034 91 0.04179 -1.86568
22 0.01032 1.68325 57 0.01676 -2.08531 92 0.02626 2.88925
23 0.02624 -1.20492 58 0.05236 1.52329 93 0.06438 0.22940
24 0.04616 2.09737 59 0.09072 -1.29956 94 0.10232 -2.51417
25 0.057 83 -0.904 29 60 0.109 97 2.13497 95 0.118 89 1.006 83
26 0.05388 2.37697 61 0.09776 -0.74037 96 0.10393 -1.75955
27 0.03679 -0.61724 62 0.06142 2.67618 97 0.06623 1.76756
28 0.01619 2.70356 63 0.02515 -0.16489 98 0.02674 -0.95527
29 0.03297 1.32646 64 0.01874 -2.67888 99 0.01431 -2.54878
30 0.08731 -1.59998 65 0.05833 0.97472 100 0.04566 1.15251
31 0.14626 1.74147 66 0.10512 -1.80774 101 0.08178 -1.63309
32 0.17553 -1.20741 67 0.13227 1.65509 102 0.10300 1.82950
33 0.15743 2.12465 68 0.12180 -1.18257 103 0.09445 -1.01612
34 0.10196 -0.81950 69 0.07979 2.25832 104 0.06124 2.42174
35 0.04099 2.52482 70 0.03212 -0.58940 105 0.02521 -0.41890
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0 e aTABLE 111. Group coordinate relaxation estimates of largest
eigenvaluo' for e'xamtple 1.

10 Iteration no. Estimate of largest cigenvalue

120 1 0.91427
2 0.96100
3 0.96374
4 0.96532
5 0.96559

.40

50

V B. Example 2: A comparison with Dolph-Chebyshev
60, design
-180 -120 -60 0 60 120 180

ANGLE MEASURED FROM x-AXIS (deg) This example serves two purposes. First, it pro-
vides a comparison with the Dolph-Chebyshev lineFIG. 5. Vertical field pattern for example I with excitations array design. Second, it gives some insight into the

given in Able, 1.nature of the lower order eigenvalues/eigenvectors.

Suppose we have a line array of 15 elements that lies
along the v axis (see Fig. 1) with equal spacings of 0.5

patterns have sharp jumps, due to their assumed hemi- wavelength, where the wavelength A = 1. The units of
spherical shape. (These field patterns were computed length are irrelevant. Thus, if the first element lies
by the program described by Lee and Leibiger.2) Also, at the origin with coordinates (0., 0., 0.), the 15th ele-
we point out that the geometry of the array and of the ment has the coordinates (0.,7.,0.). It is well known
mainlobe region, jR1, implies that the optimum field that any line array has a field pattern with cylindrical
pattern be symmetric about endfire in the horizontal symmetry about the array axis. Therefore, we define
plane. That is, in Fig. 6, the field pattern should be 311 to be the set of all directions that lie within 8' of a
symmetric about 00. The fact that it is not is due en- normal to the v axis, and we define S to be the collec-
tirely to ending the computations after the fifth itera- tion of all other directions. Hence, :1 is a 16' wide
tion. Further iterations, presumably, would yield in- annulus and both 3ll and S are cylindrically symmetric.
creasingly symmetric horizontal field patterns. The ambient noise field is assumed to be flat, and the

This method creates a steadily increasing sequence individual elements are assumed to be omnidirectional.
of estimates for the largest eigenvalue. Since there Finally, considering the construction of the Fuller
were five iterations, there were five estimates and points, tF,, we choose p = 24.
these are given in Table I1. Based on this table and The above data completely define the DIBCF array
on the field patterns of Figs. 5 and 6, it would seem problem. In Streit,3 a listing of the entire computer
that additional iterations of the algorithm would be only program required for exactly this example is given.
marginally worthwhile. In other words, to all intents The results of the execution are given in Table IV.
and purposes, the array excitations have been opti- Computation time on the Univac 1108 (under EXEC 8)
mized successfully. was about 41 s. The field pattern in the xy plane is given

in Fig. 7.

TABLE IV. Excitations for 15-element equispaced line array:
Dolph-Chebyehev versus DIBCF.

DIBCF
10 Element no. Dolph-Chebyshev (p = 24)

1 0.34371 0.25687

2 0.35775 0.39520

3 0.50403 0.54024
34 0.65338 0.68290Z W 5 0.79108 0.81242

4 6 0.90242 0.911 88
7 0.97487 0.97920
8 1.00000 1.00000
9 0.97487 0.97920

10 0.90242 0.91188
I6 11 0.79108 0,81242
-i8 -0 0 +90 +180 12 0.65338 0.682 90

ANGLE MEASURED FROM x-AXIS (deg) 13 0.50403 0.54024
14 0.35775 0.39520

FIG. 6. Horizontal field pattern for example I with exclta- 15 0.34371 0.256 87
tions given in Table I.
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0- 0 -
.. - D FOLPH-CHEBYSHEV

- IBCF
-10 10

-20 -20

" 3 A
3 -

-4c

-40 -40
-50--90 -60 -30 0 30 60 90

RELATIVE BEARING (deg) -50-I
-90 -60 -30 0 30 60 90

F IG. 7. Field patterns for excitations in Table IV. RELATIVE BEARING (de,?)

FIG. 8. Field pattern for tigenvector I of example 2.

The Dolph-Chebyshev excitations are designed ex-
clusively for half-wavelength equispaced line arrays region, :111, whereas the field pattern for ; 2 has one
with ominidirectional elements. For a given number of null in 9R1, two nulls for A,, and Ehree nulls for p,
elements, the Dolph-Chebyshev excitations depend only
on the steered direction and on the specified sidelobe C. Example 3: Effects of sampling
level. For a broadside (i.e.. steered normal to the line

of the array) 15 element array, the Dolph-Chebyshev The first two examples did not mention the effects
excitations for a 28 dB3 sidelobe level field pattern are of sanmpling on the field patterns. Specifically, the pa-
given in Table IV. The corresponding field pattern is rameter / in the definition of the Fuller points, .,

shown in Fig. 7 determines how finely we have sampled all spatial di-
rections. Hence, the parameter p influences the re-

We note that the mainlobe shape of the Dolph-Cheby- suiting field patterns. In particular, if p is not suf-
shev y array and the DIBCF array are indistinguishable. ficiently large it is possible for the optimal DIBCF field
The oni difference lies in sidelobe structure. We see pattern to have a split beam.
that by sacrificing approximately 3 dB in the sidelobe
nearest the mainlobe. all the remaining sidelobes can We illustrate this effect by systematically varying p

be made smaller than the overall 28 d.s sidelobe level in the array of example 2. but for a different choice of

of the Dolph-Chebyshev array. t1 and S. Here, we define Iape to be the collection of all
directions whose projection on the xz plane lies within

What about the lower order eigenvalues? The first of the z axis. Specifically, the direction corres-
four eigenvalues'eigenvectors are listed in Table V. ponding to direction cosines t lies in R only if
(Note that the eigenvector of id m in Table V is the same I a /W+ - sin8. In other words, allconsists of
as DIBCF in Table IV, but is normalized differently.) all directions contained between the two planes inter-
Also, the corresponding field patterns are given in secting the vz plane at the angles of + 8' and -8 . The

Figs. 8-11. We remark only that the field pattern for sidelobe region, 8, consists of all remaining directions,
the largest eigenvalue , has no nulls in the mainlobe so there is no ignored region, . Optimal excitations

for several choices of p are given in Table VI. The

TABLE V. The four largest eigenvalues/eigenvectors of ex- field patterns for p 24 and p 16 are given in Fig. 12.

ample 2.

Element no. - 0.9S94 Ai 0.8206 a 0.3231 Aa 0.0383 0

1 0.0916 0.2755 0.4486 0.5106
2 0. 1409 0.3158 0.3666 0.2141 -10-
3 0.1927 0.3289 0.2442 -0.0356
4 0.2436 0.3112 0.1066 -0.2042

5 0.298 02675 -0.0242 -0.2664 -2
6 0.3252 0.1929 -0.1413 -0.2454

7 0.3492 0.1030 -0.2097 -0.1391 -30
0.3567 0.0000 -0.2403 0.0000

9 0.3492 -0.1030 -0.2097 0.1391
if) 0.3252 -0.19290 -0.1413 0.2454 -40
11 0.2898 -0.2675 -0.0242 0.2664
12 0.2436 -0.3112 0.1066 0.2042
13 0.1927 -0.3289 0.2442 0.0356-S
14 0.1409 -0.3158 0.3666 -0.2141 -9 -60 1-0 - 30 60 90
15 0.0916 -0.2753 0.4486 -0.5106 RLTV ERN dg

igs.__-1_._Weremarkonythatthe__eldpattern__or sideloFIG. 9. Feld pattern for elgenvector 2 of example 2.
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0 TABLE VI. Effects of sampling on excitations for example 3.

-10 E lem ent ,

no. 16 24 32 40

. 1 0.2953 0.1275 0.1322 0.1177-20
2 -0.0064 0.1676 0.1792 0.1662
3 0.3846 0.2207 0.2406 0.2232C-30 4 -0.1045 0.2497 0.2613 0.2581

5 0.2990 0.2884 0.2946 0.2934
6 -0.2830 0.3067 0.2991 0.3099

-40 7 0.1753 0.3337 0.3154 0.3259
8 -0.3280 0.3346 0.3117 0.3279
9 0.1753 0.3337 0.3154 0.3259- 5 L 1 - 10 - 0 .2830 0.3067 0 .2991 0 .3099

-90 -60 -30 0 30 60 90 11 0.2990 0.2884 0.2946 0.2934
RELATIVE BEARING (deg) 12 -0.1045 0.2497 0.2613 0.2581

FIG. 10. Field pattern for elgenvector 3 of example 2. 13 0.3846 0.2207 0.2406 0.2232
14 -0.0064 0.1676 0.1792 0.1662
15 0.2953 0.1275 0.1322 0.1177

Largest
We do not present the field patterns for p = 32 and p 40, eigenvalue. p 0.1149 0.1243 0.1165 0.1225
because they are so similar top=24. No. of Fuller 2562 5762 10242 16002

Table VI also shows the effects of oversampling. points go
Note that the optimal excitations for p -- 24 are all sim-
ilar, but they do not seem to be converging to an opti-
mal set. This is probably due to the buildup of numeri- We consider a line array of 25 elements that lies
cal roundoff error in the required sums [i.e., (25) and along the v axis with equal spacings of 0.5 wavelength,
(26)1, but it could also be that p must be chosen even where the wavelength X = 1. Thus, the coordinates of
larger than 40 before the optimal excitations give the the first and last elements are (0., 0., 0.) and (0., 12., 0.),
appearance of convergence. In any event, the impor- respectively. We select the mainlobe region, M1, to be
tance of sampling sufficiently finely is clear, but evi- the set of all directions that lie within 5 ° of a normal to
dently oversampling wastes time and increases the the v axis, and we define 8 to be the set of all other
numerical roundoff error in the computed optimal ex- directions. There is no ignored region, S. The am-
citations. bient noise field is flat and the individual elements are

D. Example 4: Time and accuracy in the indirect assumed omnidirectional. Finally, we select the Fuller

method points, ff28. This completely defines our problem.

Table VII shows the number of iterations required forIt is clear from the definition of the indirect, or various choices of subarray size, n., and stopping cri-
group coordinate relaxation method, that the size of terion, EPSI, defined by
the subarrays used and the stopping criteria for the
iteration procedure both have significant effects on nu- I old eigenvalue estimate EPSI.
merical accuracy of the computed excitations and onI new eigenvalue estimate"
the time required to compute them. The following ex-
ample illustrates how numerical accuracy and compu-
tation time depend on both these parameters. 0 , - * 16

p 24

-10

-20o

-0 -
I II1 ai ItI, I " I li

I tl I j t l II iI1
I II | I ' Il I :
II  L I[I II-5( ~~~-50 

! 
, ,I

-90 -60 -30 0 30 60 90 -90 -60 -30 0 30 60 90
RELATIVE BEARING (deg) RELATIVE BEARING (deg)

FIG. 11. Field pattern for elgenvector 4 of example 2. FIG. 12. Field pattern for example 3.
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TABLE VII. Number of iterations required in example 4. 0

EPSI Time per
10-1 lO- 10 iteration (s) -10 . ITERATION 5

5 9 13 24 83 EXACT

10 5 10 13 95
15 3 4 6 115 2-20
20 3 3 3 140
25 1 1 1 172

-30

As can be expected, the number of iterations required' AllI N

increases with decreasing ESPI and decreases with p , ' ' I 't --

increasing n. Also the computation time per iteration -40 - t

increases with ns.

An important concern is the numerical accuracy of
the computed excitations. This is particularly impor- "°o -60 -30 0 30 60 90
tant in light of the fact that numerical computation of RELATIVE BEARING (deg)

eigenvectors by any method is less stable than the nu- FIG. 13. Comparison in example 4, exact versus iteration 5.
merical computation of eigenvalues. Table VIII shows
the results obtained for n.= 5 by stopping after the
first four complete passes through the array, i.e., for
iterations 5, 10, 15, and 20, respectively. The exact IV. SUMMARY
results are included, also. The field patterns corres-
ponding to excitations of iteration 5 and the exact exci- The concept of Directivity Index with Beamwidth Con-
tations are shown in Fig. 13. Note that, at the end of trol (DIBC) has been defined as the ratio of power in
iteration 5, the field pattern already possesses side- the mainlobe region to the total power in both the main-
lobes in the correct positions although they are about lobe and the sidelobe regions. A mathematically and
3 dB higher than in the field pattern of the exact exci- numerically tractable method for the computation of
tations. Thus, the effect of later iterations is to beat optimum element excitations (i.e., excitations that
down the sidelobes while maintaining the mainlobe maximize DIBC) is presented. A technique known as
beamwidth. group coordinate relaxation is shown to be an effective

TABLE VIII. Example 4 with subarrays of five elements.

Element Iteration Iteration Iteration Iteration
no. 5 10 15 20 Exact

1 0.632 0.410 0.623 0.793 1.000
2 0.813 0.622 0.887 1.090 1.339

3 0.993 0.860 1.173 1.406 1.692
4 1.183 1.117 1.428 1.736 2.057

5 1.394 1.398 1.800 2.082 2.436
6 1.446 1.788 2.218 2.461 2.792
7 1.648 2.079 2.539 2.795 3.145
8 1.840 2.355 2.832 3.096 3.456
9 2.023 2.611 3.100 3.366 3.732

10 2.188 2.842 3.328 3.592 3.955
11 2.541 3.143 3.522 3.783 4.120
12 2.664 3.298 3.654 3.904 4.223
13 2.749 3.392 3.722 3.956 4.254
14 2.806 3.439 3.737 3.951 4.223
15 2.809 3.421 3.677 3.877 4.120
16 3.011 3.271 3.559 3.729 3.955
17 2.951 3.145 3.396 3.541 3.732
18 2.834 2.967 3.174 3.298 3.456
19 2.696 2.756 2.929 3.022 3.145
20 2.489 2.494 2.631 2.700 2.792
21 2.012 2.190 2.290 2.353 2.436
22 1.762 1.887 1.957 2.000 2.057
23 1.511 1.567 1.632 1.658 1.692
24 1.260 1.294 1.313 1.324 1.339
25 1.000 1.000 1.000 1.000 1.000

0.9798313 0.9857357 0.9880019 0.9886998 0.9889890
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The effect of interchannel crosstalk on array performance
Roy L. Streit
Naval Underwater Systems Center, New London, Connecticut 06320

(Received 5 May 1987; accepted for publication 16 July 1989)

It is shown that interchannel crosstalk can always be eliminated before the channel signals
enter the beamformer, provided crosstalk levels do not exceed a maximum permissible upper
bound and are known exactly. The crosstalk upper bound (in decibels) is shown to be - 20
log N, where N is the number of channels in the array. The beam pattern of a general array
with arbitrary crosstalk levels, steered in any direction, is derived. Sample beam patterns are
presented for arrays of 50 and 100 elements. Expected, or average, beam patterns are derived
for interchannel crosstalk coefficients modeled as statistically independent random variables. It
is shown that pointing error can occur when crosstalk has nonzero mean. It is also shown how
to correct for nonzero mean crosstalk before the signals enter the beamformer, provided these
means are known.

PACS numbers: 43.60.Gk, 43.30.Yj, 43.88.Hz

INTRODUCTION cur in the steered direction. Pointing error thus contributes

Interchannel crosstalk is modeled throughout this pa- to target bearing estimation error. Examples indicate, how-
per as a multiple-input-multiple-output linear system. The ever, that pointing error is probably not significant if the
inputs to this linear system are the array's sensor outputs, bound XB is satisfied.
while the system outputs are the inputs to the array beam- Section III of this paper derives the expected, or aver-
former. In Secs. I and II it is assumed that the transfer func- age, beam pattern of an array with the individual crosstalk
tion matrix H of the linear crosstalk system is known exact- coefficients (i.e.. the components of the transfer function
ly. The discussion in these two sections is simplified by matrix H) modeled as statistically independent random
presenting explicitly only the idealized case when crosstalk variables. It is shown that pointing error cannot occur in the

is both instantaneous and frequency independent; however, expected beam pattern, provided the crosstalk between dis-
this simplified presentation in no way is a restriction on the tinct pairs of channels is zero mean. Pointing error can occur
methods and results presented in these sections. A very dif- only when crosstalk is nonzero mean. It is shown how to
ferent crosstalk model is assumed for Sec. 11I. In this section correct for nonzero mean crosstalk before the signals enter
the components of the crosstalk transfer function matrix H the beamformer.
are treated as random variables. Such a model is employed Section IV gives several example beam patterns, and
not to suggest that crosstalk is truly a random system, but Sec. V briefly recapitulates the paper's conclusions. Appen-
rather to gain some rudimentary insight into the conse- dix A states Gershgorin's theorem that is used to derive the
quences ofthe lack ofexact knowledge ofthe crosstalk trans- crosstalk bound XB. Finally, using the crosstalk model of

fer function matrix H. Whether or not such a model is satis- Sec. ll, Appendix B derives the maximum crosstalk vari-

factory for the intended purpose depends on the particular ance allowed for a specified increase in the beam pattern

application. sidelobe level.

Section I of this paper shows that if the interchannel
crosstalk levels do not exceed XB = - 20 log N (in deci-
bels), then crosstalk can always be eliminated before the I. CROSSTALK BOUND
channel signals enter the beamformer. The crosstalk bound Let V. (t) denote the output voltage signal of the nth
XB should be interpreted as a theoretical worst case upper sensor of an N channel array. Let U. (1) denote this signal,
bound on crosstalk levels. This bound is especially important contaminated by crosstalk, at the input to the beamformer.
ifadaptive beamforming is undertaken; that is, given statisti- Ideally, U. (t) = V, (t) when the effect ofcrosstalk between
cally independent array sensor outputs, statistical indepen- channels is negligible. If crosstalk cannot be ignored, then
dence of the beamformer input signals can be guaranteed if {U. (t)} is related to the voltage signals V,(t)._ VN (t) by
the crosstalk bound XB is satisfied. the linear relationships

Section II of this paper shows that, for a general array, N

crosstalk is theoretically equivalent to a channel shading U. (t) = V, (t) + X H., V (t), for I<n<N, (1)
perturbation. An explicit expression for the beam pattern of
a general array, arbitrarily steered, with crosstalk is given.
As will be seen, satisfying the crosstalk bound XB does not where {H., ) are real constants, independent of both time t
necessarily mean that sidelobe levels are not degraded. In and the signals {V.(t)}. For convenience, we define
addition, crosstalk almost always causes pointing error; that H,, = I for all k. Then, for all n and k, HL V, (t) is the
is, the maximum response of the beam pattern need not oc- contribution to the nth beamformer input from the k th sen-
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sor out pul. The units oft he beamformer inputs are not stated In practice, efforts are usually made to minimize cross-
n II ). It is convenient to suppose that U. (1) is a voltage. il talk by appropriate engineering means. We therefore assume
which case the coefficients {11,, ) are dimensionless, that the level of crosstalk between any pair of channels is

Model ( I) assumes that no time delay exists between bounded: that is,
the sensor outputs and their communication to the beam- 1/1, 1-,c all k *n. (4)
former. This assumption is very reasonable in practice, and it
has the important consequence that the crosstalk coeffi- for some constant c. As the complete crosstalk example

cients {H,, } are all real. If some application requires non- shows, linear independence of the beamformer inputs, given

zero time delays, then it is more appropriate to develop a linearly independent sensor outputs, is a very important con-

model in the frequency domain. In that case, the coefficients sideration to keep in mind (especially in adaptive beamform-

{H,, ) are complex and. possibly, frequency dependent. ing) whenspecifyingthesizeof c. Wenowderiveatheoreti-

None of the results developed in this section depend on cal upper bound, denoted XB. which guarantees linear

{H,,A ) being real constants; hence, they apply on a frequen- independence of the beamformer inputs whenever crosstalk

cy-by-frequency basis in the frequency domain when cross- levels fall below XB. Equivalently. wederive a crosstalk level

talk is modeled as a multiple-input-multiple-output linear XB. which guarantees that the inverse of)H exists no matter

system. what the actual crosstalk coefficients H,, are, so long as they

Model ( I ) does not require that the system which corn- are not larger in magnitude than XB.

municates the sensor outputs to the beamformer conserve Gershgorin's theorem applied to H (see Appendix A)

power. It also does not require reciprocity; that is. H,& need together with the inequalities (4) imply that all the eigenval-

not equal H,. However, the model does assume that the ues A of H satisfy the inequality

sensors are properly calibrated and have the same gain. IA - I I< (N - I )E. (5)
Complete crosstalk is defined to be the special case SinceHisinvertibleifandonlyiflH has no zero eigenvalues.

where the output voltage of each sensor makes equal contri- it follows that H is certainly invertible if
butions to every beamformer input channel. Thus, when
complete crosstalk occurs, all the coefficients H., are equal (A'- I )e < I,

to I. From (I) it follows that or
% f. (6)

, This is a sufficient, but not necessary, condition for the exis-
In other words, regardless of the nature of the sensor out- tence of H '. inequality (6) is the crosstalk upper bound
puts, all beamformer input channels are identical. Complete mentioned above. The beamformer inputs { U,, (t)1 are lin-
crosstalk is highly undesirable, early independent if and only if the matrix H is invertible

In matrix form, system ( I ) can be written (and, of course. the sensor outputs { V,, (0} are linearly in-

U(1) = HV(1). (2) dependent). Taking 20 log( ...) gives - 20 log(N - 1)
- 20 log N = XB as the maximum allowed crosstalk lev-

where el (in decibels) between any two channels.

U.(t F = V,1(t) In some applications, the crosstalk matrix H may have/Iv(t (t) special structure, e.g., H may be banded, or block diagonal,
U() ) V(t) or sparse, etc. If such structure is present, it may well mean

that a less restrictive crosstalk bound than the bound XB
, v,'( t)J derived above is appropriate for the given array. Incorpora-

I H, --- , Ition of any such special structure for H into the above deriva-
H,1 I ... H2.tion of XB is straightforward because of the generality uf

'7 .] Gershgorin's theorem; however, we do not pursue this issue
: Hfurther here because of the many different possible struc-

A I "'tures for H.
If the matrix H is invertible, then we have Define E = H - 1. where I is the identify matrix. Thus

V(t) = H' Ui). (3) E has a zerodiagonal, but is otherwise identical to H. Gersh-
gorin's theorem and assumptions (4) and (6) guarantee that

Therefore, crosstalk can he eliminated before the signals en- all the eigenvalues of E lie inside the unit circle in the con-
ter the beamformer by using (3) to recover the sensor output plex plane. Since H = I + Eand the eigenvalues of Eare less
voltages if H is known and the sensors are properly calibra- than I in magnitude, we can write
ted. The requirement that H! ' exists is a critical assump-
tion. In the case of complete crosstalk, for example, the en- H '= (1 + E) ' I - I )"E"
tries of H are identically 1. and so H ' doe,. not exist. It is
important to emphasize that eliminating crosstalk using (3) 1 - E + E - E' + (7)
requires a thorough understanding of the crosstalk mecha-
nism because every entry of the matrix II must be known 1 - E. (8
with considerable accuracy toevaltate the inverse of laccu- Substituting (8) into (3) gives the potentially very useful
rately. approximation
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V"(t) (I- E)U0t. (9) Bt= %b ,(),1)

Eliminating crosstalk using (9) is much more computation-
ally efficient than using (3). The drawback is that (9) is only where
an approximation, whereas (3) holds exactly. b, I~ H,, . H.,,

Using standard results concerning matrices, (9) gives I " ]

the following estimate for the total squared difference be- b. H,: I . H,. a.

tween the true sensor output vector V() and the crosstalk 1 = (12)

contaminated beamformer input vector U(t): b_ H H,. H:. I] La.
U.(t) - ]Thus the broadside beam pattern of a line array with cross-

V.: Hd Xtalk is an ordinary beam pattern with weights {b, } which
are perturbations of the original weights {a. }.

This estimate is useful only when most of the crosstalk coef- In general, however, the time delays {r, ) are not zero.
ficients are zero. Nonetheless. a similar result can be shown to hold. The time

When is the calculation of H 'numerically accurate? If delay used for a channel located at position

the computer uses T> I significant digits. then a sufficient p. = (x, y., z. ). when steered to form a beam in the direc-
condition for numerical stability is that the "condition num- tion of the unit vector u. is
ber" of H not exceed 10'. The condition number of H is ri = (p,.u)/c. (13)
defined to be the ratio of its largest to its smallest singular where c is the wave propagation velocity. To find the beam
value. Assuming that His diagonalizable (a not very restric- pattern of this steered beam, we proceed as follows. Suppose
tive assumption in this application), then the singular values a unit amplitude plane wave of radian frequency w is propa-
of H are precisely the eigenvalues of H in absolute value gating from direction v. Note that v is unrelated to the
(Ref. 1, 4.12.3). Since the eigenvalues of H satisfy the in- steered direction u. Then.
equality (5). the singular values lie in the closed interval
[I - (N- I )E.I + (N-- I) . Toensure numerical stabil- V, () =expIiw(t + i). all k. (14)

ity of H '. we require where the time delay i, is given by

1 + (N- I)< 10 " 
u , = (PA-v)/C. (15)

I- (7%-- 5), The time required for a plane wave to propagate from sensor

Solving for c gives k to sensorjis therefore ;pj - . Becauseof (14). we have

< I (10'-_I I ,((-i,)=expli,(1+P,-r.) ] . (16)

N 1 10' + I) N -I Substituting (16) into (10) and taking the magnitude

This is the same condition (6) which guaranteed the exis- squared of both sides gives the squared amplitude of the
tence of H '. Thus numerical inversion of H is reliable if steered beamformed output:
< ., . that is, if the cros stalk bound X B is sa tisfied . % a. H . [ i p , - rIt is still necessary, however, to estimate the effect of IB() 12

crosstalk on the beam patterns. It is possible for the crosstalk
bound XB to be satisfied and still have poor beam patterns. The right-hand side of this equation is independent of time.

Satisfying the bound XB does not guarantee satisfactory but it does depend on the plane-wave direction v via (15).

beam patterns, as will be seen; it only guarantees that H - Because of the assumption of a unit amplitude plane wave,

exists. this function is the directional beam pattern, denoted here
F(v). Consequently.

II. BEAM PATTERNS F

The beamformer output is the weighted delayed sum of , pi 5  , a x -,

the channel outputs N

= X c, exp(iwA, (17)
B(t) I a. U.(t - r, wee A

I where

where (a.) are the channel weights, and {r. ) are time de- c, 1 I H,l . H.,,j ,exp( - ion')
lays corresponding to a particular steered beam direction. H, I H., a ex .
Substituting the crosstalk effects ( I ) gives p(

B(I) a., H,, , tt -r,, H .,, I a% exp( - ., )I
" '(18)

a,, H,,, V, (t - -(0) In general, then. crosstalk in a steered array is equivalent to a

I,, perturbation of the original weights {a,) after they have

For a line array steered broadside. r,, 0 for all n. For this been phase shifted to steer a beam. Note that the matrix in

particular case. the summation on n can be done separately, (18) is the transpose of H.
giving The perturbation (18) involves both magnitude and
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phase effects, so that pointing error can occur when the time u,' =a, exp( - ita), all A. (22)
delays r. are not all zero. Thus considering the special cases Then. (18) can be rewritten
of line and planar arrays, pointing error can arise in any of
the nonbroadside steered beams. In general nonplanar ar- c'= us + H,,, u,,, . (23)
rays, however, pointing error probably occurs in every . I

steered beam. Examples indicate that pointing error is not
significant when the crosstalk bound XB is satisfied; none- Using (23), (20). and (21 we can write

theless, the only way to be certain in any particular array is to E [c,t c,
calculate the pointing error directly using ( 17) and (18). N A

Note that (18) reduces to (12) ifall the r,'s are zero. --E + Y _ , u, + 1 t.fuW

Note also that (18) reduces to the usual steered beam pat- , 1k :;/
tern if crosstalk is negligible. N A

In the previous section it was pointed out that crosstalk = W, W* + Wx H ./.,*W + u17 !/. W.
can be eliminated before the signals enter the beamformer, " = 

, A

provided the coefficients {H., } are precisely known. How- N N

ever, if the corrupted signals have already entered the beam + E [H.AH . ]
former, then crosstalk can still be eliminated by using (18) .*, .. j

to properly adjust the beamformer weights. The use of beam-
former weights w = D -'H 'Da will result in the desired W +W1(Zj W)+ ,(A WA

weighting Do, where D is the diagonal matrix implicit in + E [H.A H w. .*
(18). Obviously, this is much less efficient than correcting .
for crosstalk before beamforming because w depends on the .. )

steered direction u. =
to,?,*+ UCA'-'WA+8 .5", w. uW, (24)

Ill. EXPECTED BEAM PATTERNS
where in the last equation 6Aj is Kronecker's delta. For con-

The crosstalk coefficients in ( I ) are all real; however, as venience we define for any weighting vector s = (st...,SN
was pointed out previously, they are complex in the frequen- A

cy domain if time delays exist in the crosstalk mechanism. G, (v) = S , exp(iW& ). (25)
Because of this possibility, and because greater generality A I

causes no extra difficulty, in this section we model each The directional beam pattern with crosstalk is therefore.
crosstalk coefficient H. as a complex random variable with from (23), G.(v) I , while the directional beam pattern
mean H,. Clearly, ,1  = I for all k. The time delays {r. ) without crosstalk is, from (22), 1 G.(y)2. The expected
and the designed channel weights {a, } are known and fixed; beam pattern is, from (17),
so taking the mean in (IS) gives 8 N

HN, I R T1 r a, exp( - in-,) E[IF(v)J I E [ccflexpi, -,)J

Zi = T2 I " 2 a 2 exp( - iofr2) Substituting (24) and using the notation (25) gives

7S _ ,, H, ... 1 L.av exp( - ir )j N

for the mean values {Z. of the perturbed weights. It is im- N
mediately evident from (19) that if the crosstalk is zero XexpIaa(A - ), + .. o .,w
mean, that is, l 1

.A = 0 for k -n, then the perturbed weights ' I -
have mean values equal to the original weights phase shifted
to steer a beam in the direction u. =G..(v)GL?() + G (v)G,(Y) - 1G.,(v) 1

Equation ( 18) can be used to com pute the mean value of A. .. .. 2
the beam pattern given a probabilistic model of the crosstalk. + I o A w1 , 2. (26)
The simplest model is to suppose that the random variables \2 /
{H.A ) .. are statistically independent, that is.

E[H,, H,!,,] =0, (20) Using the definition (25), note that

whenever (n.k) * (mj) and k 6n andj24m. In (20), * de- N
notes complex conjugates. It is not assumed that the cross- G (v) X Z& exp(iwp,)
talk coefficients are identically distributed; so we define the

N Nnotation Y wx exp(iwup,) + (F - wA )exp(iwp# )

E [H,,, H,*] = oa',. forall k.n. (21) A =

In particular,. a = I because HA = I identically. For con- ==G.,() + G . ()

venience, let w = (w,,...w,% ), where Substituting this identity into (26) gives the result

1830 J. Acoust. Soc. Am., Vol. 86. No. 5, November 1989 Roy L. Strit.: Interchannel crosstalk and array peormance 1830

-62--

S Ummmmmmn. nlieRa i



E [F(v) =I G,, ()12 + 2 Re[ G,, (v)G* , (v) ] discussion which is relevant here, even though neither dis-
% cuss crosstalk.

+ ,(27)
IV. EXAMPLES

It is important to notice that theonly way themiddle term on As an example of the effect of crosstalk on beam pat-
the right-hand side of (27) can be identically zero is ifF = w. terns, consider an equispaced line array with N = 50 omni-
As was pointed out above, F = w if and only if the crosstalk is directional sensors spaced notionally I m apart. The design
zero mean, that is, R,,- = 0 for k # n. Since crosstalk is not weights {a, } are Taylor weights for a - 30-dB sidelobe level
zero mean in general, (27) cannot be further simplified. (with the number i of controlled nulls set equal to 5). Cross-

The other two terms in (27) also have important inter- talk between any pair of channels is assumed to be such that
pretations. The first term on the right-hand side of (27) is the coefficients {H,, } are all real and positive. These con-
the directional beam pattern free ofcrosstalk. The third term stants are selected from a uniform pseudorandom distribu-
in (27) is a positive constant independent of u and the tion on the interval [0.1,wherecischosentocorrespondto
steered direction v, as can be seen from the definition (22) of a specified maximum crosstalk level. Thus H/A = c12 and is
w. Thus, with zero mean crosstalk, the middle term of (27) not zero mean. The crosstalk bound, XB, is - 34 dB in this
is zero; so the expected beam pattern cannot have nulls. With case. Figure I (a)-(d) shows the broadside beam patterns
nonzero mean crosstalk, it is possible, though unlikely, that for a maximum crosstalk level of - 74, - 54, - 34, and
the middle term may be sufficiently negative so that - 24 dB, respectively. By inspection, crosstalk of - 74 dB
E[F(v)I has nulls. In no case, however, can ElF(v)] be has virtually no impact on thebeam pattern IseeFig. I(a)],
negative, while a crosstalk level of - 54 dB, a full 20 dB below the

Equation (27) can be used to derive an upper bound on crosstalk bound XB - - 34 dB, raises the peak sidelobes by
the maximum crosstalk variance to guarantee that the side- about I dB [see Fig. 1 (b) ]. When the crosstalk is equal to
lobe level of the expected beam pattern does not increase the upper bound of - 34dB, the beam pattern is significant-
more than a specified amount. See Appendix B for the case of ly perturbed and has a peak sidelobe about 8 dB above the
zero mean identically distributed H.A. design sidelobe level of - 30 dB I see Fig. I(c)]. When

It is also clear from (27) that the expected beam pattern crosstalk reaches - 24 dB, the peak sidelobe is 13 dB above
cannot have pointing error when the crosstalk is zero mean. the design level [see Fig. I (d) 1.
In other words, the expected maximum response occurs We point out that the largest individual perturbation of
when v equals the steered direction u, or the original Taylor weights is 0.9%, 8.6%, 600, and I I 1%

in the cases corresponding to Fig. I (a)-(d), respectively.
max E[F(v)J = E[F(u)] , (28) The percentage perturbation was calculated after normaliz-

I ing the Taylor weights and the perturbed weights to sum to
with zero mean crosstalk. Pointing errors can only arise in one.
the expected beam pattern when the crosstalk is not zero Other reatizations of the crosstalk matrix H have been
mean. computed, but are not presented here. They reinforce the

It is desirable to correct for nonzero mean crosstalk lev- fundamental point that, for this 50-element array, crosstalk
els before the signals enter the beamformer. Taking the mean levels should be kept below - 54 dB, or 20 dB below
in (4) gives XB - - 34 dB. The question of whether or not this obser-

I k, 1<,F - vation remains true for larger values of N naturally arises.

Requiring the crosstalk upper bound (6) to hold implies Consider, then, a 100-sensor equispaced array with I-in

that H -'exists. Thus we can write spacing between sensors and Taylor shaded for - 30-dB
sidelobes (with h = 10 controlled nulls). For crosstalk lev-

Q(t) = 1- U(t). (29) elsof -70, -60, - 50, and - 40 dB, the beam patterns

Using the vector Q(t) as the beamformer input vector re- are shown in Fig. 2(a)-(d), respectively. The largest indi-
suits in beamformer input channels with zero mean cross- vidual weight perturbation was 2.1%,6.4%, 18%, and 45%,
talk. The reason is that the correction (29) modifies the respectively. The crosstalk bound XB is - 40dB. Examina-
original model (2), which becomes instead tion of these figures shows that crosstalk levels should be

kept below - 60 dB, or again 20 dB below the upper bound
Q(t) = H. V(0 (30) XB. Evidently, therefore, the crosstalk should always be

Clearly, the effective crosstalk matrix Hr is such that kept 20 dB below the bound XB to prevent significant beam
1. In other words, H, has entries that are zero mean pattern degradation.

on the off-diagonal and unit mean on the main diagonal. The Expected beam patterns for these examples are not pre-
remarks immediately following (3) concerning the use of sented for two reasons. First, as was pointed out previously,
the inverse of H are directly applicable here for the use of the it is desirable to correct nonzero mean crosstalk to zero mean
inverse of h. [ using (30)) before the signals enter the beamformer to pre-

When the crosstalk coefficients are modeled as a joint vent pointing error. The examples here are not zero mean.
Gaussian distribution, so that they are not statistically inde- Second, assuming zero mean crosstalk, then (27) clearly
pendent, expected beam patterns can still be derived. The shows that the expected beam pattern is the crosstalk-free
interested reader is referred to Refs. 2 and 3 for a general beam pattern plus a constant term. The expected beam pat-

1831 J Acoust Soc Am. Vol. 86. No 5. November 1989 Roy L. Streit: Interchannel crosstalk and array performance 1831
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FIG. I. Broadside beam patterns for 50-sensor array rosstalk levels: (a) = - 74dB, (b) = - 54 dB, (c) = - 34 dB. and (d) - 24 dB.

terns for these examples, after correcting the crosstalk to pointing error is not significant. The one exceptional beam

zero mean, are merely the appropriate Taylor beam patterns suggests, however, that certain realizations of the crosstalk

with an appropriate constant term (independent of angle) coefficients might possibly result in surprisingly large point-

added; hence, no nulls appear in the expected beam patterns. ing error even when the bound XB is satisifed.
Examples of this kind are given in Ref. 2.

The pointing error was determined for the above 100
sensor line array when the maximum crosstalk level was set V. CONCLUSION

equal to the bound XB = - 40 dB. Beams were steered A maximum permissible level of crosstalk in an array of

from broadside to endfire in one degree increments, and the arbitrary geometric configuration has been presented. Also,

pointing error determined by direct numerical calculation the beam pattern of an arbitrary array with arbitrary cross-

using (17) and (I8). The pointing error in all but one beam talk, steered in any direction, has been derived.
was found to be within + 0.005 deg of the steered direction. Crosstalk can result in pointing error when steering the

The exceptional beam had pointing error of - 0.14 deg. If array, an effect of considerable importance. When a random

the crosstalk coefficients are fixed once and for all, then variable model of crosstalk is appropriate, it is worthwhile in

pointing error is a smoothly varying function of steering an- practice to correct for nonzero mean crosstalk before the

gle. In these calculations, hjwever, different crosstalk coeffi- signals enter the beamformer. If this is done, particular real-

cients were calculated for different beams; this explains the izations of the crosstalk coefficients may still result in array
one exceptional beam. One tentative conclusion in this ex- pointing error, but the expected pointing error is zero be-

ample is that, as long as the crosstalk bound XB is satisfied, cause the expected beam patterns do not have pointing error.

1832 J. Acoust Soc. Am.. Vol. 86, No. 5. November 1989 Roy L. Stret: Interctannel crosstalk and array performance 1832
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EtIF(V) I= IGMv)I+ (N- )a, cr', (112) ar0.000 822 ,
where or, taking 10 log of both sides,

S'~2 Jw,' B) 2log(o) - 31dB. (BIR)
a. I1- 1 13 On the other hand, if 10 log A = 2 dB, then (87) gives in-

Therefore, the sidelobe level of the expected beam pattern stead
may be written 20Olog(r) < - 27.3 dB. (139)

B 2 + (N - I a.2(134 Interestingly, (118) and (B9) are independent of Nin this
A 2 N a,!case because of the assumption of constant weights.

We seek the largest value of a for which The bound (B7) on the maximum crosstalk variance is
more strict when the array is shaded (that is, w. # const)

10 log L, - 10 log LG <(10 1og( W) ,(B5) than when it is unshaded (w. = constant). The proof of this

where 10 Iog(A') is the specified level (in decibels) that the fact follows from the conditions for equality in the Cauchy-
expected beam pattern sidelobes are allowed to increase. Schwartz inequality.
Equivalently,

Solving for or' gives

N- I I G -L 0 A I, 1 W,.' (137) 'M. Marcus and H. Mnc, ASuheyofMatrx Theory and Mlaix Inequol.
N- II - ,A21,N=I w~ uiies (Prindle. Weber. and Schmidt. Boston. 1964).

'A. H. Nuttall. Effects of Randon, Shadings. Phasing SErms, and Element

which is the desired relationship. It holds only for zero mean ailues on Beamn Pattcerns of Linearand Planar Arroys. NUSC Technical

and identical variance crosstalk coefficients. Report 6191. Naval Underwater Systems Center. New London. CT. 14

If 10 log A2 = I dB, 10 log L.,= 25 dB, and identi- March 1980.
'D. J. Ramsdate and R. A. Howerton. "Effect of Element Failure and Ran-

Cal weights w.~ = constant # 0, then (B7) gives approxi- dom Errors in Amplitude and Phase on the Sidelobe Levels Attainable
mately with a Linear Array." J. Acoust. Soc. Am. 69. 901-906 (1980).
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A Two-Parameter Family of Weights for
Nonrecursive Digital Filters and Antennas

ROY L. STREIT

Abstract-We derive analytically a two-parameter family of weights The Gegenbauer weights are derived first for a finite dis-for use in finite duration nonrecursive digital rdters and in finite apes- crete aperture. An appropriate limit then gives the Gegenbauer
lure antennas. This family of weights is based on the Gegenbauer or- weighting function for a bounded continuous aperture. Many
thogonal polynomials, which are a generalization of both Legendre and
Chebyshev polynomials. It is shown that one parameter controls the similarities between the Gegenbauer weights and the Dolph-
main Iobewidth and the other parametercontrolsthesidelobetaper. For Chebyshev/van der Maas weights [21, [3] will be evident froma fixed main lobewidth. it is observed that the Gegenbauer weights can the derivation. In fact. these latter weights are limiting forms,achieve a dramatic decrease in sidelobes "far removed" from the main as p -" 0, of Gegenbauer weights. Also, the Kaiser-Bessel
lobe in exchange for a "small" increase in the fust sidelobe adjacent to weighting function (4, pp. 232-2331 for the continuous aper-
the main lobe.

The Gegenbauer weights are derived first for discretely sampled aper- lure is the special case p = I of the Gegenbauer design. This
tures and filters. An appropriate limit is then taken to produce the shows that the Kaiser-Bessel function is implicitly based uponGegenbauer weighting function for continuously sampled apertures Chebyshev polynomials of the second kind, a fact which seemsand fdters. The continuous Gegenbauer weighting function contains to have escaped notice until now. This is interesting since, as
the Kaiser-Bessel function as a special case. It is thus established that
the Kaiser-flessel function is implicitly based on Chebyshev polynomials is well known, the Dolph-Chebyshev/van der Maas weights are
of the second kind. Furthermore, the Dolph-Chebyshev/van der Maas based on Chebyshev polynomials of the first kind.weights are a limiting case of the discrete/continuous Gegenbauer One drawback to the van der Maas weighting function for theweights, continuous aperture is that it has 6-function spikes at the aper-

ture endpoints. The Gegenbauer function do.s not have this

I. INTROD)UCTION feature: that is, the Gegenbauer weighting function for the
continuous aperture is a bounded continuous real-valued func-T HE choice of weights in the design of nonrecursive digital tion across the whole aperture. However. since the van der

T filters and antenna apertures is an important problem for Maas function is a limiting case of the Gegenbauer function as
which there is a large literature. In this paper we present the p - 0, the Gegenbauer function must approximate this be-
Gegenbauer weighting function, so named because it is based havior in the neighborhood of p = 0. The Taylor design (5 1 is
on the Gegenbauer orthogonal polynomials I1 ]. The Gegen- an alternative way to overcome this 6-function behavior of the
bauer weights may be applied equally well to nonrecursive van der Maas function, but it is unrelated to any of the Gegen-
digital filters and both discrete and continuous antenna aper- bauer designs. The proof of this statement is self-evident from
tures. The resulting FIR filter coefficients can be used as a the examples presented later.
shading function for the spectrum analysis of sampled data to The Gegenbauer polynomials C.I(x) are defined here pre.
ceduct sidelohe leakage. Our discuss os in this paper will be cisely as in Szego I11 which is used as our standard both in
restricted to the antenna form of the problem merely to avoid function definition and notation, with only two exceptions.
unnecessary complication in the presentation. Szeg6 uses the notation P,(V)(x) instead of C#(x) and refers to

The Gegenbauer design is a two-parameter family of weight- them as the ultraspherical polynomials. This paper will not at-
ing functions. One parameter, zo, is used to control the beam- tempt to recapitulate any of the known facts about the poly-
width. The other parameter, u, is used to achieve sidelobe nomials that can be referenced in Szeg6. It suffices to say here
taper. Both z0 and p may be varied continuously and indepen- only that C,(x) is a real valued polynomial of degree precisely
dently of each other. The Gegenbauer design is especially use- n, and that the system {CJ(x), CI (x), Cr(x), ..} is orthog-
ful in achieving dramatic decreases in distant sidelobes in ex- onal on the real interval [-I, +1] with respect to the weight
change for "small" increases in the first sidelobe adjacent to function (I - x2)0 0 provided M> - 1, 1A * 0. Moreover, by
the main lobe. Conversely, dramatic increases in distant side- taking appropriate limits and using their hypergeometric
lobes can be exchanged for "small" decreases in the first side- functional form, C(x) can be defined for all real M. See [I,
lobe. This will be clarified by the examples. eq. (4.7.7)]. In particular, if T,(x) and Un(x) denote the

Chebyshev polynomials of the first and second kinds, respec-
Manuscript received August It, 1982; revised November 30, 1982 tively, then I], eq. (4.7.8), (4.7.17))
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and 11. eq. (4.7.2) element weights (wk} when we define

C", (X) ='U(x). n> 0. (2) fir Aren:

The derivation of formulas more general than are perhaps WN-ki Wk , CrtkiN.I k 1o(
necessary in the antenna application is relegated to the Appen- t(A) p N _ k 1 , . (8)

dix. Special cases of these formulas will be extracted as needed

and used without comment in the main body of this paper: JLr N odd:
however, every effort will be made to motivate the discussion.

-. = Wk - C(k).N I(Zo)
If. GKGENBAUER WEIGHTS I'OK A ) N+ lk= I'

DiSCRETE APERTURE N+ I 1 ' 2
The Gegenbauer design for a finite discrete aperture is de- t(k) -k

rived for a single frequency half-wavelength equispaced linear
array of omnidirectional elements. Other than the steering (9)
factor, we will always assume the aperture (discrete or con- Thus, the complex transfer function (3) is given explicitly for
tinuous) is symmetrically weighted about the geometric center these weights by
of the array. The array axis is taken to be the x-axis and all
angles are measured from a line normal to the array axis. F(u) = e in(N.I )u12 TN- I (zo cos v uu)); (10)

Let N be the number of elements in the array (hence N 2), the maximum response occurs for u = 0,
and let the positions of these elements be xk = kX/2, k 1. 2.
•. . A, where X is the wavelength of the design frequency. (In F(0) = 

T_ I (zo); (I)
the Appendix. A denotes an arbitrary real variable, not fire- and the smallest positive value of u such that F(u) = 0 is given
quenc. .) If the array is steered to look in the direction Ot, by
- T2 < 0, < ,r'2, and if the array receives a plane wave of
wavelength X from the arrival direction 0

a . - r/2 < Oa < rr/2, uO = arccos I;-0cos I - .) (12)
then the complex tratser tunction of a linear beamformer is it
given by The half beamwidth as measured to the first null from the

N MRA is precisely u0 .
F(u Z. wk exp( iirku) (3) The Gegenbauer design proceeds in an analogous fashion.

We replace the old constant zo by a new variable z, which will
where be defined later (30); however, for p = 0, z. is still defined by

u 4 sin 0a - sin 0, (4) (5). Now, in the expansion
Inl21

and (w}j "'I are the individual element weights. Symmetrical CA(zM cos u)= " bkn(z,) cos ((n - 2k)u (13)
weighting is assumed, so w k . = w, for all k. Positive k-o

weighting is desirable, but not necessary.
The Dolph-Chebyshev design proceeds as follows for a design the coefficients bk, n(zm) depend on z. and are given explicitly

specification of - S dB peak sidelobe level. Let by
S{ [rv + [-,j k (i 

+ 
m)k- z- l)mz -2m (4

r0 m1,t / Ty " ( (), m! (k- m)!(n- k-rm)!=6 - 1S0s  (5) 0,-

and it A' - 1. Notice that zo > I if and only if the peak side. Both of these identities are special cases of(Ai 8) and (A) 9) of
lobe level is lower than the level of the maximum response the Appendix. Note that bk, n(zo) > 0 for all k, provided that
axis, or MRA. From (A20) of the Appendix, the expansion zA > 1 and u >0. Note also that, by (1), (14) reduces to(7)

in the limit as p -- 0. For numerical computation, the following

T,,(:0 cos u) = Yn21c,,(z 0) cos [(n - 2k)u] (6) form is preferred to (14). Let A = I - Z 2 , so that 0 <A < I
)k-0 y "  )Sn26 when zm > 1, and then compute the right-hand side of

clearly exists. where the prime on the summation means that bk,.n(zu) I (p+n-k-I
I .)

Y the last term in the sum is taken if n is even, and all of it is 2,uz; n - k \ ntaken if n is odd. From (A21 ) we have explicitly k I k

k (rn)k-.,(z2 - l)rnz"2m - (;.n)( )Am. (15)
c ,,( ) =n(n - k - I)! Y m- k- m m

m-0 rn (k m)!(i- k-r)! The binomial coefficients are defined here for any real number
(7) a and any nonnegative integer p by

The coefficients c'k.n(zl ) were first given in this form by van ( 4 1,( a .(.- 4 )...(a- p+ l) p>l
der Maas 131, who derived them using a method different front (0)
that in the Appendix. By inspection, notice that cA.n (zo) > 0 (16)
for all k whenever z0 > I. The coefficients Ck.n(zo) yield the although they are best computed recursively using
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+; I :. ,<,,+ + +++
P) - a+I/~ The ratio in (24) is perhaps best evaluated by computing two

\ G/ p /'~(? different sequences

to avoid floating point overflow at some intermediate point in {Cpl (Ys )1=, and {Cp 1 (yk);=. ( (25)

the computation, numerically from the fundamental recursion 1l. eq. (4.7.17)]
It should be pointed out that (IS) can be evaluated numeri-

cally for all p since, for fixed n and k, (15) is a polynonual in pC" (x) = 2 (p + a - l)xC._ , (x) - (p + 2a - 2)C._ 2 (x).

p. However, (15)is correct only ifp*- 1,- 2 ,- 3 , •. If co- p = 2, 3,4,- -- ,n (26)
efficients are required for, say, p = - 5, both sides of (13) must
first be divided by p + 5 and the limit taken asp + 5 - 0. Con- C.0 (x) = 1, C, (x) = 2x.

sequently, in (15), the factor p + 5 must be divided out alge- The recursion (26) is valid for a * 0, - I, -2, -3, ---. This

braically before numerical computation begins, method may have weaknesses whenever p is very close to 0

The coefficients bk, n(Z) yield element weights {Wk}I when (say, IuI 10- ) because of the division by p in (24); however.

we define p would normally be taken either equal to 0 (to give the Dolph-

for N even: Chebyshev design) or else sufficiently different from 0 to affect
sidelobe levels appreciably. This latter stipulation seems to re-

= bt(k)NI(z) quire 1;11 > l0-4 . In the antenna application, then, computa-
= N tion of the Newton-Raphson iteration step from the recursion

N k ', 2 (26) seems perfectly safe whenever a special precaution is taken
t(k) A '2 -k for p = 0. In practice this author has never seen the iteration

require more than four steps, and he has never seen it converge

for N odd: to the wrong point. If. however, it should ever happen to con-

verge to the wrong point, the Newton-Raphson iteration can
IWk ( ZM) be restarted with the new initial point Y, = I. Also, the in-wV-kl =  k 2 kb1(k)N- 2. -- N + I equality [1, eq. (6.21.3)]

N(k)- I aA") < 0 for all p (27)
_(19) a

With these weights, the complex transfer function (3) is given implies that
explicitly by x o(

F(u)= e iw(N. I)u/2 C_ l (uCos (s ,rU)). (20)

The maximum response of F(u) should occur for u = 0, and is which can serve as a check. Incidentally, inequality (27) holds
for all the positive zeros C,, (x), not merely the largest one.

F(O) = CNI. I(z,). (21) The reason for all this concern over calculation of the half-

(For a discussion of unusual situations when the MRA might beam width (22) is simply to be able to make fair comparisons
not occur at u 0 0, see below in this section.) between sidelobe levels of different Gegenbauer designs, that is,

Th occurat U e vdifferent values of p. It is well known that the sidelobe levels
by in Dolph-Chebyshev beam patterns are sensitive functions of

the beamwidth, and there is every reason to expect similar be-

2arccos (I x) (22) havior in the Gegenbauer designs. Therefore, as p is varied it isUP -- o 2)helpful to maintain a fixed beamwidth; specifically, we always
where 4! , is the largest zero of the Gegenbauer polynomial require u. = uo for all p. This in turn, from (22) and (12),

CK_(x). Thus, for p > - 1/2, x I must lie in the open inter- gives

val (-. +). In fact, it must be very near +1 for values of p I X/_) I _ )
of interest in this application. An explicit analytic expression - I =- cos (29)
for xW) I is not known except in certain special cases (e.g., the z, Z(
Chebyshev polynomials) and so must be solved for numerically, or, converting convenience into a definition,
Thisminor difficulty isreadily overcomeusing Newton-Raphson
iteration. Recall n = N- I. Since [1, eq. (4.7.14)] z, zE sec ( ). (30)

d
C (x)= 2P CXU* (x) (23) From (30) it is now clear that computing the largest zero.x _l.

of CAN - (x) is of considerable importance.
the Newton-Raphson iteration is With the definition (30), all Gegenbauer designs with different

C" (Y22) values of p and fixed zo have the same beamwidth as measured
SYk -(Y,) k = I, 2..• - (24) . to the first null off the MRA. Thus, the beamwidth is varied,2p C- (y) simply by changing the value of zo in exactly the same way as

Y, xO, = Cos (_"n). in Dolph-Chebyshev, i.e., (5).
= 2 An interesting consequence of (30) is that z, might not always
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be greater than I for all ; > 0. This observation follows imnie- the inequality (35) leads to tile conclusion that (36) is art excel-
diately from the derivative (27). Hence. for some critical posi- lent approximation to tile sidelohe envelope lot both even and
tive value of' .say P*, we have :M. = 1. li ( 15) the number A. odd in. Thus. we utilize (36) for all r. Applying results proved
is negative for p > p*. so tile positivity of the weights cannot below in anothet context Ispecifically. set v = 0 in 154) and
be guaranteed without direct calculation because ( 15) is an al- (55)) gives an approximation for the maximum response
ternating series for p>p *. At the critical point p*.A = Oand '

- , 2j2 (r)
the sum in (15) collapses to a single term. Simplifying gives fl/(0) I I 2 M(-712FI37)

bk.,,(:.j= 2 1 ) (31) withrdefinedby(5)and
1" T= ((arccosh r)2 + rr2/4 - / J1I2 (38)

which can be found also in Szego 1I eq. (4.9.19)]. The weights

for the critical case p = p call now be varied merely by chang- where .- 1/2 is the smallest positive zero of the Bessel function
ing ju*. In particular, foi p* = 1, (31) gives the uniformly Jm- 1/2 (x) of the first kind and order ii- 112. and / _ (1 2 (x)
weighted array: that is, w& = I for all k. The beamwidth ob- is the modified Bessel function of the first kind and order
tained from the weights (31) depends on (and only on) the u - 1/2. Therefore, we have the relative level
critical value /* because p* implicitly depends on :0. IF(Il)l I_ 2 p I 1 -o (39)

Since Gegenbauer designs have the two parameters z and p, F)- -n V; j - 112 1 (
with zo controlling main lobewidth. the parameter/p must con-
trol sidelobe behavior. From (20) and (30) we see that side- This result happens to be exact forp = 0, the Dolph-Cltebyshev
lobes occur for u satisfying case, as can be easily verified. Evidently this result also implies

z,, cos ( ru , 4 cos ( 7tno0 ) <1. (32) that the sidelobe height at endfire is a function of n, even when2 and the beamwidth parameter Z are fixed. In oilier words.
In the sidelobe region. then. we can define the sidelobe tapering effect of a given value of p depends on

Cos=0 cos (-I M0. 0 < 0 . n. unless u = 0. Numerical examples bear out the n-" depen
-

2 dence in (39)).
For tile ,nomlent let us suppose 0 <M I. Then. from Szego An important observation based on (35) and (39) is that
I. eq. (7.33.5) for u <0 the sidelobes may well steadily increase as pu ap-

(silt ,)" ( (ces 0)' < 21' n- ' '1(p) (33) proaches endfire. Thlt this is in fact the case is borne out by
the examples given later.

so the transfer functioi F(u) must satisfy It should be emphasized that although the Gegenbauer weights

IFlu)l < ~I :- cos' (n ,rull-
2 2 1 t- m i p F(p )  (34) must be positive if 0 < p < j*. they might not necessarily be

positive if p < 0 or if pu > p*. For p < 0 it can happen that
throughout the sidelobe region defined by (32). For u outside all are positive, or that some are negative. Only numerical com-
the (0, I ) interval, but excluding p = 0, - 1, - 2. .• •, the sharp- putation can show which is the case. If some of the weights are
ness of the inequality (34) is lost. A special case ofa result given negative, it becomes a possibility that the maximum response
in Szego I, eq. (8.21.14) with p = I J implies that might not occur for u = 0.

2FluI <(I - Z2 Cs ( ~ l2 For the Gegenbauer weights it is readily shown that a suffi-
l- cos2 ( t) -

f/ 2i -i cient condition for the MRA to be at u 0 is that CQ(x) attain

its maximum over the interval [- 1, 1] at x = 1. By a well
+O(n-) (35) known result [1, eq. (7.33.1)] the maximum of C.(x) occurs

throughout the sidelobe region defined by (32). Forju outside at x = I if and only if I>0. Thus, a sufficienr condtion for
(35) is asymptotic to n' - /F(;A)asn -. so the leading term u =0 to be the MRA is that tr0. For p<O the MRA de-of the right-hand side of (35) is asymptotic to the right-hand pends on the size of z, and must be verified numerically. From
side of (34). For fixed p. the right-hand side of (35) appears 11, eq. (7.33.1)) the maximum of CnU(x) occurs at or near x =
to be a excellent envelope for the sidelobes of the Gegenbauer 0 when p < 0: therefore, if the MRA is not at u = 0, then the
designs. MRA must be at or near endfire. This observation is rendered

For M > 0, it is clear front (35) that the sidelobe envelope quite reasonable when considered in the light of the examplesmust steadily decay asu approaches endfire, i.e.,u= 1. Since presented later. This author has never experienced a case where
use (26 d a the MRA was not u = 0 for p > - 1/2 and reasonable values of

Zr'.

0, if n odd It would be interesting to know how much energy is contained
in the main lobe of a Gegenbauer design. From (20) and (30),

Q' (0)1= -),", ifn = 2m this requires a tractable form for the integral

we have I (C (z, Cos (1 im 2))] 2 du (40)

IF(ll) = IC'(0)I- 21 -in f-I/f(p) (36) which we do not have. Ontheotherhandthetotal"weighted'"
approximately, for n even. Contrasting this approximation with energy contained in all of the sidelobes is the smallest possible
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for p >- 1.'2. Specifically. if it,, -I denotes a polynonial of where
degree at most n - I. then 1I, eq. (4.7.15)1 for p > - 1 '2i)

11i (I - X2 
)a- 1/2 P1I

x IT (Xx d x= ni + n(+ 147)
"i -I ' "-2L 2

I' -~i l'( + O2u4) NP"m-l"n +l)'( + 1) )n = w- V " _(k~l - / n (48)

2L -2

Furthermore. if ii, I (x) is the minimizing polynomial, then

I1. eq[ (4.7.9)J 
= 4)

C~x).,,n+.-)(x ~ (),.2L

x (- f G(v) 
= 

efr(n 2)u/2 F(u). (50)

Substituting x = z. cos (mii,'2) thus establishes our claim. How. From (20). for the Gegenbauer weights,
ever. a problem with this formulation is that part of the main
lobe energy is included in the total weighted sidelobe energy. e W = c." COS (51
The reason is that the x-interval Ix.,), + II is transformed [use

(12) and (30)1 to the u-interval In order to take the limit in (51) as n -- , we need to establish

I I the asymptotic behavior
arccosT

which is a subset of the main lobe region. For the Dolph- Z, sec ( ). n- (52)

Chebyshev case u = 0. this u-interval goes from the first null
up to the point on the main lobe equal to the overall sidelobe 7' . r (53)

level and, so. is not considerable. For larger values of /. this L

u-interval grows larger because of (27) and thus contributes where 7 is defined by (38). The proof uses the asymptotic
progressively more significant portions to the weighted sidelobe results
energy estimate.

Ill. GFX(;ENBAUEFR WEIGHTS FOR A zo =Cosh iarccosh r) (54)
CONTINtous APERTURE 

(n

'The Gegenbauer weights derived for the discrete finite aper- + I arccosh r) -

ture have a limiting form as n - -0 with total aperture length 2n
2

'

2L held constant. This is essentially the high-frequency limit
of the weights as functions of design frequency. The limiting 2 sec ( arccosh r), n--0 (55)
form is a continuous real-valued function defined on the whole n

aperture and must be nonnegative if 0 <p <p*. The caseu = 0 and
develops 6-function spikes at the aperture endpoints: i.e., the
case u = 0 gives the van der Maas function. Forp>/u* the limit x(N) ___ cos(._-i'/ ,56
is still continuous, but we cannot guarantee by simple inspec- n . .

tion that it is nonnegative across the entire aperture. Forp<0,
the integral (60) below diverges. Apparently (54) was first given in (6) ; it follows directly from

Let the continuous aperture be taken to be the closed inter- the definition of the Chebyshev polynomials and the fact that
val I- L, L I on the x-axis. Rewriting (3) gives r > 1. On the other hand, (56) follows from the Mehler-Heineresult, (A2) of the Appendix, by specializing it to the Gegen-

= N bauer polynomials using (1, eq. (4.7.1)]. Now, from (30),F(u) = W (x) exp (-irrxu) dx (43)
where ZN - sec (I arccosh r) cos(ll i/) sec (-fn-n). n-

N
Wo(x) A F wk B(x- k). (44) 'Lr'k -I =sec " --) I n-

(The integral in (43) includes all of the impulses at I and N.)
Scaling the interval [ I, NJ to the given aperture [-L, L] and with 'defined by (53). We point out that if'is pure imaginary,
using the fact that the weights {wk }i are symmetric gives then the hyperbolic secant can replace the secant in (52). The

L possibility of imaginary r' does not affect the validity of the
G(v) = 2 K() cos (rv) d" (45) following argument.

Finally, from (5 I), normalizing by the factor n' - 2 P/(4) to
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keep G(iv) bounded gives Note that the beam pattern function (58) is a well-defined
n. M- function of v, for all real and complex values of#p (in fact. it is

H() l ,int e Q2L("2W)/nG(V) an entire function of v for all#) so that it can be computed and
-~ inspected in the absence of any corresponding weighting func-

tion. In particular. for negative p the beam pattern function( luv 1 58),grows with increasing , lust as might be expected from theni-2/4 Cos --

lim 2 CA (57) discrete aperture case. However. the beam pattern (58) for
n- _L p < 0 is not realizable as the cosine transform of a continuous

n function on the closed interval, or aperture. I-L. L.

J - V r" I IV T 2  \. E XA M PLES

2  P+) (L (58) The five examples presented here are for the discrete aperturewith 100 elements at a half wavelength spacing and steered

where (58) is merely (A6) of the Appendix. Titus. (58) gives broadside. The half beamwidth, measured from the MRA to
the beam pattern of the continuous Gegenbauer weighting fune- the first null. is 2.565588' and is the same for all five examples.
tion on the interval I-L, L1. The first null of H(v) is This is accomplished by defining zp as in (30) and computing

it in the manner described in detail in Section II. (23)-(28). The

= I{arccosh r)2 + n /4]12 (5)) remaining free parameter,. .we take equal to0.4.0.2.0.0,-0.2,-0.4. successively. The Gegenbauer weights are computed in
the suggested forin (15), and the resulting beam patterns for

which is derived from (58) by using (53). Note that vo is inde- these five values of u are given in Figs. 1-5, respectively. The
pendent of p because of130). independent variable in these patterns is the angle 0

a, not u.
The beam pattern (58) is easier to derive than the continuous the vertical axis is 20 log10 WI(sin Oa)I.

Gegenbauer weighting function. Although one can find the Perhaps the most prominent feature of these five beam pat-
Fourier transforn of (58) as a special case of Sonine's second terns is that the sidelobe structure for a fixed positive value of
finite integral, (AI ). the assertion that this transform is indeed u is "reciprocal" to that for -p. Considerp = ±0.4. for instance.
the limit of the (;egenbauer weights for -i discrete aperture re- If the reader takes a Xerox of both beam patterns and turns one
quires a separate proof. Conceivably the Gegenbauer weights of them upside down on top of the other (literally) and holds
miglt diverge even though the hrtit (58) exists. This in fact the pair up to the ligh:. then it will be abundantly clear what
happens only for u < 0. The proof constitutes about half the "reciprocal" means in this context. The cause of this attrac-
attention of the Appendix. see especially (A). (A22), (A26), live matching of sidelobe envelopes is that the bound (35) is,
(A27). and (A29). The final answer can be found by specializing in fact, very reflective of true sidelobe tapet. Thus, for positive
(A29), using (A25). to yield u the sidelobes decay, while for negative p the sidelobes grow.

For p = 0 the sidelobes neither grow nor decay: they remain
H = ( 2 1 i- constant. The case p = 0 is, of course, the Dolph-Chebyshev

= 20r(pu+ I ) (L7')P' design. The author has not undertaken any further studies to
determine the accuracy of the sidelobe envelope factor.

L 7_ (1.i-' F -t2 ) cos L, dt. (60) Another important feature is that the first sidelobe alone
seems to be extremely important in determining the possible

The continuous Gegettbauer weighting function on the aperture size of the remaining sidelobes. Although this is not a rigorous
is obvious on setting " = Lt. The continuous Gegenbauer func. statement, it does seem to be borne out by these examples. For
tion depends on the parameter p, which we must restrict to p = 0.2 the first sidelobe is increased by about I dB to -29 dB,
m ; 0 for the integral to converge [see (A23)1. It also depends the second sidelobe seems unchanged at - 30 dB, and all the re-
on the beamwidth parameter zo through the variable 7r defined maining sidelobes are uniformly (and progressively) lower than
by (53). the -30 dB Dolph-Chebyshev case (p = 0) with the last sidelobe

The Kaiser-Bessel window is a special case of (60), as is easily depressed about 34 dB. Similar but "reciprocal" remarks hold
seen by setting p = 1. Since the Gegenbauer polynomialsCq(x) for the p = -0.2 case. For p = 0.4 (p = -0.4) the second side.
forp = I are, from (2), the Chebyshev polynomialsofthe second lobe is slightly higher (lower) than -30 dB, but the point made
kind, it is clear that Kaiser-Bessel must be their continuous ana- here is still substantially true.
log. Also. our claim that the van der Maas weighting function The weights for the cases I = 0.4,0.2, and 0.0 are all positive.
isa limiting case of 160) asp - 0 can be seen from For the cases- 0.2 and -0.4, the only negative weights corre-

sponded to the elements adjacent to the end elements.

lim x1"- /0 1 (x) = + 2x) 6(). (61) All five examples have 49 sidelobes on either side of the MRA.
u-o. - This can be attributed to the fact that the Gegenbauer poly-

nomial C.(x) has all its n zeros in the open interval (- I, +1)
Substituting Ir'V/T- t for x in (61) and then substituting in when p >- 1/2. Thus, from (20), ru) must have N- I = 99
(60) yields the van der Maas function. The result (61) was zeros in the open u interval (0, 2). By Rolle's theoren of ele-
pointed out to the author by A. H. Nuttall in a private com- mentary calculus. Flu)must have98pointsIi.e..sidelobepeaks)
munication (71 while the present paper was being drafted. interior to (0, 2) where l/'"(t) = 0. Since IF(u)l is an even func-
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I'ligg 3. Gegenbauer 100 element array; m = 0; first null = 2.565588'
. 

Fig 5. Gepenbauer 100 clement array; i = -0.4; first null = 2.565588'
.

(This is classic Dolph-Chebyshev.)

lion of u, half of these sidelobes must be on each side of the small values of p has not been determined. A careful mathe-
MRA.., matical proof of approximate p linearity of the logarithm of

All five examples exhibit a plateau in the decay, or growth, (39) would be nice to have.

of sidelobes at sufficiently great distances from the M RA. Thisfeature is also an artifact of the sidelobe envelope factor (35). V. DISCUSSION AND SUMMARY

Taken together, these examples indicate that the ratio (39) The Gegenbauer weighting functions for the discrete and con-
is, on a log plot, roughly linear in p for fixed n and beamwidth tinuous aperture. as well as for nonrecursive digital ilters. per-
parameter zo. Whether this linearity is true only for reasonably mits the designer to maintain a fixed specified beamwidth as
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defined via (30) while scanning continuously in u to discrinii- For the case of real M and X, a fourth proof is given here that
nate against spatially distributed noise sources andor extra- depends in an essential way on the identity A). In this con-
neous signals by tapering the sidelobes. The required weights nection. the particular form ofthecoefficientsak.,(yItsimpor-
can be calculated quickly and accurately by the analytic for- tant: that is. the easily derived identity (AIOJ does not seem to
mulas provided here: hence. it might be possible to choose u be all useful, but the identity (AS) is exactly what is needed. It
adaptively to achieve some objective such as maximizingsignal- facilitates the investigation of the limiting form (A27) ofa5 ,,(O)
to-noise ratio. The beam patterns for negative u are particularly as n tends to infinity. The identity (A8) is apparently new how-
interesting in that it may be possible to discriminate against ever, the special case of y = I was known to Gegenbauer.
noise sources that lie nearby (in bearing) the desired signal Equation (A8) is interesting in another regard as well. A sim-
source. and thereby enhance tracking capability, pie inspection suffices to prove that ak(Y) > 0 for all n and k

One advantage of the Gegenbauer weights is that they are whenever y > I andM p >, > 0. The coefficients remain positive
derived for a discrete aperture exactly, and the continuous aper- in the two limiting cases p > 0, A = 0 and p = X = 0. as can be
ture weighting function is then discovered as their limit. If only seen from (A I 8)-(A21 ). In fact, it was only this positivity te-
a continuous aperture function is defined, then it must be sam- suit that the author originally sought.
pled at a finite set of points in any application to a discrete The result (A3) of the Mehler-Heine type is apparently new.
aperture. How this sampling is best done is not commonly dis- It is needed to prove (Al) by our methods. It has additional
cussed, and it leaves a certain ambiguity in the discrete aperture interest in thatit duplicates the result givenby Szego(A2)simply
weights. The discrete Gegenbauer weights given by (18) and by setting ), = 0. Mathematically, however, (A2) and (A3) are
(I0) above do not have this problem. equivalent. The special cases (A4a)and(A4b) involving Cheby-

When steering a Gegenbauer array design, no different prob- shev polynomials are particularly striking.
lems should arise than what is normally expected in the usual Let a and 0 be arbitrary real numbers. For any complex num-
Dolph-Chebyshev design. Gegenbauer designs can be steered ber x, the Mehler-Heine theorem states that
nearly to endfire before encountering the first grating lobe.

A difference beam pattern can be constructed from the Gegen- lim n- P0-0)  os:i" (x , J)0 x) (A2)
bauer weights in the usual way of changing the signs of the C n
weights on one-half of the array. If this is done, the difference
beam pattern is proportional to lC.n(zA sin (tru,2))I. This is where J,(x) is the Bessel function of the first kind of order a
easy to show from the constructions (18)-(20). The result is 11,eq. (1.71.1)1. (2. sect. 3.1(8)]. A straightforward proof of
a beam pattern with a null at u = 0. (A2) can be found in Szego 1l. Theorem 8.1.1 1. SzegO's proof

All the nulls of the Gegenbauer beam pattern seem to shift can be readily modified to show that
strctly away from the MRA as p. increases. This effect is evi-
dent in the examples. It is quite possible to use this effect to
deliberately control null placement to cancel localized noise /eesx
s-urces. A mathematical proof that the nulls must shift in this lim ,

- podS) n -( X y2) Ja (/ - y2)
manner requires knowledge of the relative size of the derivatives n_. _l y
(with respect to ) of all of the zeros of C,(x). Although this o
information is not known to the author, it is not really necessary
to have it in order to utilize the null shifting effect in practice. (A3)

The Gegenbauer weights for discrete and continuous aperturesas drivd b th auhorbeteen arc an Ma 19 I.Thefor all complex x and y. Like the Mehler-Hleine result, this for-
was derived by the author between March and May 198 1. The
mathematical results contained in the Appendix first appeared mula holds uniformly for x and y in every bounded region of
in 1111. the complex plane. The special case a 0 -1/-2 gives the in-

teresting result

APPENDIX

MATHEMATICAL DERIVATIONS ANt RESULTS (cos X

Sonme's second finite integral [8, p. 3761 may be written lim Tn n J= cos V 2r (A4a)

J(x sin c)Js(ycos0)sin 0COS" OdO

"i J oi 0where T,(x) is the Chebyshev polynomial of the first kind (1,
xyJAI - (VXT2  V) (Al) eq. (4.1.7)), while the special casea=0= 1/2 gives

for all complex x and y, and is valid when both Re(u) > - I and cos n, sin (A4b)
ReA) > - I. At least three proofsofthis result are known, One lim n- Un- - y7 " b
involves expanding the integral in powers of x and y; another n- cos Y /
involves integration over subsets of the surface of the unit sphere fl

in R3 . Both are given in 181. The third proof using the gener- where U,,(x) is the Chebyshev polynomial of the second kind
alized Laguerre polynomials L( *)(x) is mentioned in 1121. [I, eq. (4.1.7)1. These follow from (A3) by using Stirling's
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formula and the well-known results [ 1, eq. (1.71.2)1 k (it - 2k + A) (M). _ y - "m
a,.,(') =y (-I)m  (A10)

,Cos Z , ,i/( 2 rn O 12 (i z (A)) ( n0

JL12 z) sin z. (A)-. - A (i - 2k + X) Q (2y 2  - I) (A ll)

We will need another special case of the general result: specifi- where Q, is a polynomial defined for general complex argu-

caly, for p > - l, ment u by

/ X 0' 6(-l)
m ()- U + u 

I 
k-

M

ncos -- m !(k - )! 00 . 2 -

limn 2 . n-0

\os- (A12)

For arbitrary ak and 0, the Jacobi polynomial of degree k ; 0

=Vf /2 J- t2 (%X Tj)M (A) can be written
2,,~a (u)A + j 7- 1I ) (k + a + 0 + ! ), k (k - m + 0 + l)m

where C(x) are the ult raspherical, or Gegenhauer. polynomials 0,-0 ml (k - m)!

(I, eq. (4.7.1)]. (Szego uses the notation P,(")(x) instead of k-r

We derive Sonine's second finite integral by finding an alter- kAI3)

nate form for the left-hand side of (A6). This requires the fol- which follows from (1 eq. (4.21.2)) using the identity (1 ,eq.

lowing result. For u > X > 0, the coefficients aj,(Y) in the (4.1.3)). Setting a= p- X- I and 0= Ai - 2k in (A13)
expansion shows that

In/21 (_____-__ p -- ~~-20u (AI4)
C."(xy)= /2 aA,(y)C,) 2 ,A(x), n =0. 1.2. (A7) QA(u) ()n_.-k P? -A-1. - 2

k Z (Mn- k. I
Expanding the Jacobi polynomial in (A14) using [1, eq.

are given explicitly by (4.3.2)]

ak.,(') = (n - 2k + X)()n- k Prs(u) = ( 0 + ( ),
M-0m! (k - m)! ( I + o)m (I + O)k- m

M-0 m! (k- n)!M(j).k -m+l (•. (AI)

(AS) and substituting u = 2y2 - I gives

where we take 0' = I and(0)o = I whenevertheyoccur. Setting Qk(2y 2 - l)=(P)n_k F_

y = I in (8) gives m- 0

S(n - 2k + X) (W) -k (P - A)k (p- + M)k _ m (y
2  - ,k,- 2 . (A16)

ak'.l k! (A)._)m! (k- t- k ,.I
Thus, (AJ6) and (All) establish (AS).

which is due to Gegenbauer 1l, eq. (4.10.27)]. Furthermore, Two limiting cases of (A7) are easily derived from [I, eq.

for real y > I and p > ?, >0. the coefficients ak,,(y) are all (4.7.8))

positive as can be seen by inspection in (AS). n C. ( X) 
= ". (x), n > I (A7)

The formula (A.8) is derived as follows. Let A X > 0. In liA I
the expression 1i, eq. (4.7.31 )]

and are worth recording. Thus, for 1 > 0,

112/21 112 I/21C.n"x =, -1F_1 (- I )-'!Pn mn-2) (2x)" -2m C' w(xy)= O F - " bk, (y) T. - ,( W, n =0, 1, 2,•--

rn-0 m! (n - 2m)! k-0

we replace x with xy, substitute (A18)
where

( 2 X)n-2m (n-2M)/ 21 (n - 2m + X - 2s) P ( +m)k rn (y
2 

- l)myn-2M
(n- 2M W- ,Q')n.r_,., cn.. 2,(X), bk,,.(y) 2 (p)._,, -

(n 2 S0 s M - 3m-.rn-Y m!.(k -m)! (n - k-m)!

and collect terms to get (A19)
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and will be fimte. I11 = limf, andg = lint g, the bounded conver-

In/2l gence theorem 11), p. 1101 implies
T(x.) )= Y"' CA,y) T,,_ (x), n = 1. 2, 3.

k- 0

(A20'Cos-
(A2) I - 0 A1I4 t dt

where 2P. Cos

k ()k - 0,
2 - )tmyn

-

c,(y) nn - k - I)! .(k-r!(n-(A24)

Let in (0, 1) be rational. Then I - = 2k/n for sufficiently
(A21) large k and n. so that

The notation .' means that 1/2 of the last term in the sum is
taken if it is even, and all of it is taken if n is odd. Note that g( I - = lim g.(l -
inspection shows that Y > I implies that bk.,(.v) and Cn(y Y)
are positive. =_lira (n- 2k) C 1- 2 c -)

Sonine's second finite integral is now derived from (A6). 2X c- x2
Fixx andy. Let N= In/21. From(A7) -f-2k/-

CosX\J-n'- J1A nN ( x) (A25)2j._._t c sX lh - - 25 x/ -' l'Q + l )(x.)A. ,ll

-I k with the last step following immediate from (A6). Thus,(A25)
holds for all " in (0, I by continuity. Similarly, from (AS)

" n1 -'-2 (I + N) -  I '-)If( n - 2k)1-2 and for all "rational in (0, 1).

• n- 2k os n V A- 1A2 0 -lim f.(-

I - 's -12k1
n j 0  g, - l/i nl4l (C

k + X(;j+ l),ki n-2(OA-X- A' + J +p jm)k- m sin 2r :--.
lim M n (A26)

cos" in' (k- rn)! (X+ 1).,,
n

where we have defined for O < I Interchange the limit and the summation, and evaluate the limit
of the mth term (convert Pochhammer symbols to gamma func-

S kn ' - 2 ( I +N i) tonsapplyStirling'sformulaandusek(n- k)=(I- 2)n2/4)
MI~l -O.) = (n- 2k)i- ' \ a ."( = XE-( 0)- toobtain

N A (c(n-2 k)' 2AA) 2 2" 2- 2u+ l)E- ) CIA, (os X~k( 1 _ -. ) ,-

k.0is ni) (tv~ll -t2-
and xF, is the characteristic (indicator) function of the interval m! r(u - ), + m)

[ k k+l k= l,,N-I _ 1'\A(I-V)A- I- I (u+I)[N I+ l k' ,1 21A--2A-V 1) 217A + 1)

,/k k+V I-A (Y.l 2) (A27)

k k+ IQl/
+ I ' V 1] k = N. where 1,(z) denotes the modified Bessel function of the first

order P (see (8, sect. 3.7(2)1). We must require. p> X in (A27)
It can be verified that e, (2k/n) = I for k = 0a Ic, •-• N. to have convergence. Continuity again assures that (A27) holds

Assume for the moment that both If' ,( ')l and lgn( ')l are for all 'in(0, I). Now, interchanging the limit and the sum was

bounded above by integrable functions of . To do this, it

will be seen that we must restrict attention to X > -1/2, p> valid because an upper bound for the total sum can be found.
w )Al >e seen that te mustesritatt n o 1, e. (Since the absolute value of the mth term in (A26) is bounded- i/2, tu>A, so that the integral (l1.eq. (l17.4)] by

1 OX ' (I- )" 
d

-  (A3 B~+) x iX + 1) (1 yI I '-t2) a
1
M

.1" 2r(tu + 1) (Xu + l) n! 'A -X+m)
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where (A30) that the proof can be carried out for complex p and X.

X provided appropriate remarks arc made in appropriate places

+I tZ n2- -1 about the complex case. If such remarks are made, our deni-
B= v-. - ) yation proves (Al ) for Re(pj) > -lIand Re(X) > - 1. Divergence

'm COS -- of ( A23) is seen to be the cause of the restrictions on u and X.
n The nmaterial contained itt this Appetndix was first documented
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Abstract

Array weighting designs of the Dolph-Chebyshev and
Kaiser-Bessel type are based mathematically on orthogonal
polynomials. The theoretical properties of these polynomials give
rise to the desirable properties of the resulting arrays. This paper
presents results for array weights based on a very general set of
orthogonal polynomials called the Jacobi polynomials. Many
interesting array far-field beampatterns are exhibited. A practical
means of computing all the array weights exactly by means of one
fast Fourier transform (FFT) is given. This method is quick and
accurate and can compute the weights for arrays having large
numbers of elements. It can efficiently compute both
Dolph-Chebyshev and discrete Kaiser-Bessel weights as special
cases.
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I. INTRODUCTION

Array weights of the Dolph-Chebyshev and Kaiser-Bessel type are based on
orthogonal polynciiials. The desirable properties of these arrays are due
entirely to the properties of the underlying orthogonal polynomials. In this
paper the mathematical design methodology devel oped i n [1], which parallels
the techniques of the Dolph-Chebyshev designs, is further explored for Jaccbi
polyn oi al s.

Analytical expressicns for the underlying weights are not sought here, as
they are in [1], because such expressions are prcbably not competitive with
the exact FFT based method presented in this paper. The primary purpose of
this paper is to present a unified FFT based method fr computing array
weights based on any of the Jacobi polynomials. This method is quick and
accurate and can compute the weights fr arrays having large numbers of
elements. The Appendix gives a short Fortran program for computing the
weights (given a subroutine for the FFT). This program can efficiently
compute both Dolph-Chebyshev and discrete Kaiser-Bessel weights as special
cases.

This paper represents, in a sense, a c ompleti on of certain ideas about
array design using orthogonal polynomials. Dolph was apparently the first to
use an orthogonal polynomial for desi gni ng an array wei ghti ng functi on. The
polynomial he used was the Chebyshev polynomial of the first kind, Tn(x),
and he was able to prove an optimality cnditi on. Unfortunately his proof of
thi s opti mali ty ccndi ti on reli es on the uni que behavi or of the graph of
Tn(x), and so generalizati ons of the optimality conditi an seem unlikely.
Nonetheless, the use of different orthogonal polynomials can lead bseful
weighting functions. For example, if the Chebyshev polynomial of the second
kind, Un(x), is used in place of T (x) a weighting functi on of
Kaiser-Bessel type results (see [1]). It is also possible to use a general
family of orthogonal polynomials that contains both Tn(x) and Un(x) as
special cases. The Gegenbauer polynomials, C"(x), are one such family;

that is, T (x) and Un(x) are the special cases u - 0 and u - 1,
respectiveTy. This family is used in [1] and gives useful and interesting
designs. The most general of the so-called classical orthogonal polynominals
that contains a)l thqse examples as special cases is the family of Jaccbi
polynomials, Pn'*' 8(x). For a - o - P - 1/2 they reduce to Cn(x).

Do Jacobi polynomials turn out to be useful? The examples presented in this
paper indicate that, although many Interesting new array designs are possible
using the Jacobi polynominals, the most useful designs in this general family
are prcbably those that have already been discussed. Consequently the new
Jacobi designs ml ght be sai d to be, at present, "a soluti on 1 ocki ng for-a-
problem."
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II. WEIGHT GENERATION BY FFT

The far-field beampattern of a general linear beamformer for a linear
equispaced array having 2N + 1 elements (N > 1) with element positions xk -
k x/(D), k - 0,+ 1, ..., N, is given by:-

N
F(u) - wk exp(-i2, ku/(vD)) (1)

k -N

where the integer D > 1 is given and v > 0 is a fixed real constant (vD is the
number of elements pe-r wavelength), " is the wavelength of the design
frequency, and u is defined by

u - sin ea - sin os , (2)

where as, -/2 < 03 < w12, is the steering (look) angle and %a, - v12 <
Oa < 1/2, is the arrTval angle of a plane wave. Both angles are measured
froi a line normal to the array axis. The weights iwkl can be, in general,
any set of complex constants.

Define the functions

D k
to(Z) - L ak z (3)

k --D

nkPn(Z) - Z bk Zk ,n > 0, (4)

k-O

where iakjandibkjare specified constants. By simple algebra

nO

Pn (tD(z)) nD czk (5)
k a -nD

where ickj depend on both jak4 andtbkj. Substituting z - exp(-iwu/(vD))
gives

H(u) - Pn(tD(exp(-iwu/(vD)))) (6)

nD
M k - -nD ck exp(-12wku/(2vD)). (7)

6
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By comparing (7) with (1), it is seen that H(u) is the far-field beampattern
of a linear array with 2nD + 1 elements, equispaced x/(2vD) apart, and with
the weight ck applied to the k-th element. It will be shown that the array
weights Ck can be computed from function values of tD and Pn by means of an
FFT.

When some of the weights ck = 0, the corresponding elements may be
eliminated from the physical array without altering the array's far-field
beampattern. Elimination of zero weighted elements (whenever possible)
minimizes the total number of elements required. This consideration is
especially important when tD and Pn are chosen so that Pn(tD(z)) is
either even or odd in z, for then about half the elements need not be
physically present. This is discussed further in section III.

We now show that the weights 1Ck in (7) can be computed exactly from
(3) and (4) by the fast Fourier transform (FFT). It is stressed that this
procedure is theoretically exact, not approximate, for the jckj .

Let f(u) be any complex valued function of a real variable u which can be
written exactly in the form

p
f(u) = 1 dk e- iku (8)

k = -p

for some complex constants jdk$ . Let

2p - 1

f =1 Fj ei 2 wk j / (2 p ) ,-  k 0, 1, ... , 2p - 1, (9)fk =  
j =0

where

Fj = (-1)J f((p-j)w/p) , j 0 0, 1, ... , 2p - 1. (10)

Thus Ifk1 is the inverse FFT of order 2p of the sequence jFjj. Substitute
(8) into (10), and then into (9) to get

2p- 1
f k 1 E (-I) j  1: d e - i ' rq ( p - j ) / p ( e i fkj /p

2p j =0 q e-p q

1 p 2p 1
=- 1) q (-1) j  ei (q + k)j/p ,

k=0,1,...,2p-1.

7
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The inner sum equals 2p when q + k - + p, + 3p, ... and equals zero
otherwise. Since dq - 0 for pq .> p,-

+k (1 )P (d d p if k - 0 (11.a)

L(-1)P-k d p-k  , k a-1, ... , 2p-1. (11.b)

Now let f(u) - H(vDu/w), where H(u) is given by (7), and p . nD. Then

Fj - (-i)J Pn(to(e-i( n D - j)InD)), j . o, 1, ... , 2nD-I,

and the coefficients ck in (7) are just

_'aD bn , if k - -nD, (12.a)

ck" (- 1 )k-nD fnD-.k ,if k - -nD+l, ... , nD-1 (12.b)

abn , if k - nO, (12.c)

where if 2nD-l is the inverse FFT offFnD-1. The coefficients

nD and cn cannot be computed directly by FFT because of aliasing, as

indicated in (1I.a); however, by direct appeal to the defining equations (3) -
(6), it follows that c-rD and CnD are as given by (12.a) and (12.c),
respectively. In fact, (11.a) can be used as a check on numerical accuracy in
the computations.

It should be obvious that some special forms of tD and Pn can be used
advantageously to reduce the size of the FFT required to compute (12). In
general, however, no special structure exists and the smallest FFT size that
can be used has order 2nD.

In cases where 2nD is not an integer power of two, the FFT is still
applicable by zero filling in tD and Pn- That is, D is replaced by the
smallest power of two which exceeds or equals D, say 0'. The function tD is
then merely considered to be a special case of tD'. Similarly, Pn is a
specia l case of Pn' for some smallest power of two, n', which is greater
than or equal to n. The required size of the FFT is thus 2n'0'. The
coefficients 1Ckc are still given by (12); however, from (7), it must be
the cai that ck - 0 forlk I> nD.

The Appendix gives a Fortran subroutine for computing the array weights
by an FFT, given subroutines for evaluating Pn(z) and tD(z). The program
is specialized to the case D - 1, but it can be easily altered to accommodate
larger values of D. The program is also written on the assumption that 2nD is
a power of two. As discussed in the preceding paragraph, zero filling allows
the most general situation to go through.

8
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III. THE TEN PARAMETER JACOBI WEIGHT FAMILY

The most important special case of H(u) seems to be D = 1. Although
there may be interesting possibilities when D 1 1 (consider, for example, the
identity Tn(TD(C0S 0)) - Tn+D(cOS a), where Tn is the Chebyshev
polynomial of the first kind), these cases are not explored in this paper.

Before proceeding, it is instructive to see first how the usual
Dolph-Chebyshev case for half wavelength equispaced arrays is derived as a
special case of H(u). Let

N - number of array elements
D=1

t 1 (z) - Zf(z-1 + z)/2
Pff(z) - TO),

where Tff(z) is the Chebyshev polynomial of the first kind and the real
constant Z0 is given by

Zo + (Q2 _1) 1/2)1/ (Q - (Q2 _1) i1)1/ n (15)

where

Q - 0 SI/20
S = specified sidelobe level (in dB).

For these values it follows that t1(exp(-iwu/2)) = ZO cos(wu/2) and, from
(6) and (7),

H(u) - Tf( Z0 cos(wu/c)) (16)

n

k ck exp(-iwku/2). (17)

By comparing (17) to (1), it would appear at first glance that this array is
quarter wavelength equispaced with 2f + 1 - 21 - 1 elements. However, every
oY~e-rcoefficient in (17) is identically zero because Tff(z) is always either
an even or an odd function in z. Deleting the zero weighted elements reduces
(17) to two slightly different cases, depending only on whether N is eyen or
odd. These cases are not given explicitly here. Note, however, that N even
implies that 5 is odd and that TF(z) contains no even powers of z, which
means that Tf(z) has (?( + 1)/2 n9p-zero coefficients and, consequently, that
T4(t1(z)) has precisely Fr + - N non-zero terms in the expansion (17).
Similar reasoning holds for i odd.

9
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To summarize: The Dolph-Chebyshev array design is thought of, in the
context of this paper, as a quarter wavelength equispaced array in which half
the elements (every other one) has been zero weighted. Dolph-Chebyshev arrays
of both even and odd numbers of elements are thought of in this way.

From (3), the most general form for 0 - 1 is

tl(z) - a-1 z-1 + a0 + aI z.

For reasons that will become clear, the slightly more restrictive form

t (Z) - z0(r01 z
-1 + a0 + r0 z)/2, r 0 0, (18)

is adopted, where zo, ro, and ao are arbitrary complex constants. The
only useful form excluded by (18) is obtained by changing the sign of the
highest order term; this latter form corresponds to "difference" patterns and,
for ease of exposition, is not discussed further. For the remainder of the
paper, (18) is taken as the definition of t1 (z). Note that t1 (e-iO) =
z0 cos a if ro - 1 and a0 - 0.

The most general class of polynomials Pn(z) considered in this paper are
the Jacobi polynomials, denoted PA,B)(z). They are defined explicitly by

nr (n)(n+,+)k (a+k+l)n ( _±) (19)Pn~' B ( z P=n-- k 0 k )

for all complex values of a, o, and z. For a > -1 and B > -1, the Jacobi
polynomials are orthogonal on the real interval -1 < z < + 1, but they are not
necessarily orthogonal for other values of a and .- Thebest available method
for computing Pn(a,O)(z) relies not on (19) but on the three term
recursion which they satisfy. The published algorithm [2], [3] based on this
recursion is easily modified to compute the Jacobi polynomials for complex a,
o, and z for all values of the degree n that are likely to be of pr~ctical
interest, say n < 150. A thorough mathematical Lreatment of Pn (,B)(z)
is available in r4].

The generalized Laguerre and Hermite polynomials, together with the
Jacobi polynomials, constitute a complete list of the so-called classical
orthogonal polynomials. Array designs can also be based on the Laguerre and
Hermite polynomials and will, of course, be different from those based on
Jacobi's. Although these designs are probably interesting, in this paper
attention is restricted to the Jacobi polynomials.

The use of (18) and (19) giverrise to a five parameter family of weights
which includes nearly all the well known analytic families of weights as
special cases. (The most prominent exception is Taylor weighting). The five
parameters are zo, r8, ao, a, and o. Each parameter can be complex, so
there are actually 10 real parameters if the real and imaginary parts of each
are counted separately. The Fortran program listed in the Appendix is written
for this general case.

10
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The simplest way to explore the properties of these ten parameters is to
perturb each parameter separately while holding the others fixed at some nominal
value. The nominal parameter values chosen here for the examples are those that
give rise to the Dolph-Chebyshev design for an array of 33 elements with a
sidelobe level of -30 dB. Specifically,

c0 - -.50 + 0.0 i
6O - -.50 + 0.0 i
a0 - 0.0 + 0.0 i
ro - 1.0 + 0.0 i (20)
zo - - 1.00B408 + 0.0 i,

where Z0 is computed from (15) with S - -30 dB and " * 32. Recalling earlier
remarks in this section concerning the interpretation of half wavelength
equispaced arrays as quarterwavelength equispaced arrays with zero weights, set
n - 32 in (6) and (7). Thus, in principle, the example is a 2n + 1 - 65 element
uarterwavelength equispaced array. The coefficients fc I are computed from
12). In (12.a) and (12.c), note that the identity [4, {q. (4.21.6)]

bn 2 -n  2n + + n>0,(1
nn ,n>0, (21)

holds and so, from (18),

1 1 -1o _0(2aD , - Zra_- Zro- (22)
D=2 0 0 , 4 - 00r

Each of the ten parameters is both increased as well as decreased from
its nominal value given in (20). Thus there are 21 cases, including the
nominal case itself in (20). Table 1 displays these cases and gives each an
identifying case name. To each case in Table 1 there corresponds a graph of
the far-field beampattern H(u) on the u-interval [0,4] and two bar charts, one
for the real part and one for the imaginary part of the weights corresponding
to that case.

Figure
Number Case Names Value of Perturbed Parameter

1 NOM no deviations from (20)
2 Z.1 Z.2 Z.3 Z.4 zo+.O03 zo-.003 zo+.003i zo-.003i
3 A.1 A.2 A.3 A.4 ao.003 ao-.003 ao+.003i ao-.003i
4 R.1 R.2 R.3 R.4 ro+.03 ro-.03 r0+.03i ro-.03i
5 a.1 e.2 a.3 a.4 aO+.3 aO-.3 *0+.31 *O-.3i
6 o.1 B.2 o.3 o.4 o0+.3 0O-.3 oo+.3i o-.31

Table 1 Perturbed parameter values; deviation from the nominal values (20)

In general, H(u) is periodic with a period of length 240. Since D - 1
and v - 2 in these examples, any interval of length 4 suffices to exhibit all
the structure of H(u).

11

-91-



TM 851015

In all the bar charts presented, upward lines indicate positive weights
and length is proportional to magnitude. Similarly, downward lines indicate
negative weights. These upward and downward lines are ordered from left to
right and correspond to elements numbered from -32 to +32. Any element
receiving a zero weight is indicated by a simple "x" marking its position. In
particular, notice that the nominal case, NOM, of Figure 1 has only 33
non-zero weights. The nominal case, as has been said, is a half wavelength
equispaced array being treated as a quarter wavelength equispaced array. The
weights in each case are normalized by the largest magnitude of any real or
imaginary part; thus, the normalization between cases is not exactly the same.

Figure 1 is the reference case (20) and needs no further comment.

Figure 2 perturbs only zo. The cases Z.1 and Z.2 are expected since
z0 is merely increased or decreased in its real part alone. When zo is
perturbed by adding an imaginary component, the array still has 33 non-zero
weights and so is, in effect, half wavelength equispaced. It is surprising
how much can be added to the imaginary parts of the weights without seriously
degrading the beampattern. The beampatterns in Z.3 and Z.4 are identical.

Figure 3 perturbs a0 from its nominal zero value. Any perturbation
produces a quarter wavelength equispaced array which is symmetrically
weighted. One way to discuss the results is to visualize the 65 element array
as being composed of two half wavelength equispaced arrays---one having 33
elements and the other 32 elements with the elements of the two arrays
interlaced. Thus, perturbing the real part of ao is equivalent to adding or
subtracting the outputs of these two arrays. Perturbing the imaginary part of
a0 is equivalent to adding or subtracting the outputs after first putting
them in phase quadrature with respect to each other. The beampatterns A.3 and
A.4 are identical to each other, but they are NOT the same as Z.3 and Z.4.

Figure 4 perturbs ro from its nominal value of +1. Any small
perturbation produces asymmetrically weighted half wavelength equispaced
arrays. Real perturbations of ro produce only real weights and have
beampatterns without any true nulls. Pure imaginary perturbations do not
alter the beampattern from its nominal case, even though the weights develop
an interesting sinusoidal character in their imaginary parts.

Figure 5 perturbs a from its nominal value of *0 - -112. Any
perturbation produces a quarter wavelength equispaced array which is
symmetrically weighted. Real perturbations yield real weights while pure
imaginary perturbations yield complex weights. The first grating lobe in case
a.1 is at about -8 dB instead of 0 dB; the same is true of the MRA in case *.2.

Figure 6 perturbs B from its nominal value of BO ; -112. Any
perturbation produces quarter wavelength equispaced arrays which are
symmetrically weighted. Real perturbations yield real weights, while pure
imaginary perturbations yield complex weights. The first grating lobe in case
s.2 is suppressed to about -8 dB, while in case B.1 the MRA is depressed to
-8 d8. Figure 6 and Figure 5 should be compared.

12
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The following observations seem to hold:

1. The real part of a controls the "upper" envelope of H(u) near the
center peak.

2. The absolute value of the imaginary part of a controls the "lower"
envelope of H(u) near the center peak.

3. The real part of o controls the "upper" envelope of H(u) near the
first grating lobe.

4. The absolute value of the imaginary part of a controls the "lower"
envelope of H(u) near the first grating lobe.

Other parameters (the imaginary parts of a and zo) also affect the *lower"
envelope of H(u), but the dominant effects seem to be due to the imaginary
parts of a and o. The imaginary part of r does not affect the lower envelope
at all.

By changing the parameters simultaneously in different ways, the
different effects may be combined, at least for small perturbations. Examples
of this are not included here.

13
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real part imag part

NOM

Figure 1. No perturbations; the nominal case (20)
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Figure 2. Perturbations of zo
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Figure 3. Perturbations of a0
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Figure 4. Perturbations of r
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real part imag part
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Figure 6. Perturbations of 0

19

-99-



TM 851015

IV. SUMMARY AND CONCLUDING REMARKS

It has been shown that array weights based on the Jacobi orthogonal
polynomials can be computed exactly by means of FFT. As a special case,
weights based on the Gegenba arpoynomials can also be computed exactly by
FFT, instead of analytically as in (1]. Examples have been presented to show
the effects of varying the ten parameters in the Jacobi family.

Further work in this area is possible. In addition to the Jacobi
polynomials, one may also use the generalized Laguerre and the Hermite
polynomials. In fact, any orthogonal polynomial family that has interesting
structural features can be the basis of a weighting family which inherits this
structure. In a different direction, certain cases for 0 > 1 may yield
interesting designs and have not been explored. The weights corresponding to
all these cases can computed exactly by the FFT method presented in this paper.

20
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APPENDIX

The Fortran program JACWTS listed below assumes that 0 = 1 and that 2nD
is a power of 2. The function to(z) is defined exactly as in (18), and the
polynomial Pn(z) is taken to be the Jacobi polynomial Pn(, )(z).

This program is an implementation of the (exact) FFT method described by
Eq. (12), where aD and bn are given by (22) and (21), respectively. The
user of JACWTS need only specify values for a, 0, ao, rO, and zo. In
JACWTS these variables are referred to by the labels ALPHA, BETA, AO, RO,
ZO, respectively. The arrays X and Y contain, on output, the real and
imaginary parts of the array weights [ckJ . These two arrays must be
dimensioned at least 2nD+1 in the routine which calls JACWTS. The integers n
and D are referred to by the labels N and D, respectively, in the subroutine
argument list. Also, LOGN and LOGO are defined so that N - 2**LOGN and D -
2**LOGD.

This program assumes that a subroutine named JACOBI evaluates the Jacobi
polynomial (19) for arbitrary complex values of a, o, and z. This subroutine
can be based on the published codes in [2) and [33. This program also assumes
that subroutines are available for computing a complex FFT of size 2nD; the
particular ones used here are based on Markel's method and are not listed.
Their names are DPMCOS and DPMFFT. These routines require a work array, C,
dimensioned at least 2nD in the routine which calls JACWTS.

JACTS is written in double precision complex mode to forestall any
numerical round-off error problems that might arise. The test suggested in
Section II (that follows from the resolution of the aliasing effects as in
(12)) is incorporated. It is the only test used to ascertain whether
numerical round-off of significant proportions occurred. No numerical
difficulties have been detected by this test to date, which indicates that the
computation is usually numerically reliable.
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SUSJ!UT1IJE JACJ'rS(X.Y,C,N,LOGN.D,L0GD, ALPHA,BETA,A0,RO,ZO)
CO'4PLX16 ZTIHSR.TSURO.ALPHA,BETA,ZODAO,RO,JACOBI
tTEZR R4,L0GN1,DL0Gfl,TW0?JD
')OU3LE PRECISION rPSTARGP1DXCI) ,Y(1I ,CfL)
DATA PT,' ?SI/3. 14159265359979323900,0.50-7/
N4:T0GNI LOfl4.I

C ;*9.9 ALL WZItGHTS EXCEPT THE FIRST A'ID THE LAST

00 10 Jzt,TAOND
ARG-PI$(lJ0-J~t) /4D
Zs0~CMPLX(COS(ARG1 ,SIN(ARC;))
TzTSU9fl(f, A0,R0,Z0.Z)
H=JACOSI:i,ALP4A, 3EIA,T)
X(J)=I4.0R7.AL~d)
YCJ)z1*Ot ~AGCH)
I=-I

CALL DPMCOSCC,TWOND)
CALL i)O4FTCX,Y,C.M.4.1)

no 15 J:1,T 1t2,ID

XCJ)zL*(J)/T0.')

*.THE. FIRST AND LAST WFIGHjTS
9.250V0,*R0

S:.250ZO/R0

T=1.000

T:T * 4* %

Y(I)=0I:IAGCR)
XCT'iOd0+l )saReAL(T)
Y(T*40+ )zDIAA'C T)

4UMKiiRICAL ACCURACY TEST
ARGUz(A4.SCX~l)wDIAL(RT))ABSCY1)01MAG(R4T)))

+. /(l.000+AaSC ((1)),AaS(C()))
IFCARG.G.TPSL)PlI4T 50

50 FORI4ATV AU'RICAL ROUND.O7F ERROR IS SInNIF!C4NT.')
A ETU Qi
E14D
FU4CTIOA rSU3D(D,A0,Ro0Z0,Z)
COmPC.EX*16 ZpZ'bA0,R0,T3UBD
!TCV, 0

C TRFAT THT CASE Ov1t IG~OqE OTHER VALUES.
T3Ut3D:.500*Z0#( (1.OD0/(Q0*Z)) + AO +. (Rn*Z))
REkT U :
EIJI)
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Abstract

It is shown that Taylor's beampattern for a continuous
aperture can be computed analytically without Fourier
transforming the weighting function itself, thereby achieving
economies in computational effort in some modeling situations. A
short Fortran program is given. An approximate formula for the
half-power beamwidth is derived. It is pointed out that the Taylor
weighting function can be negative for large n, a fact that does not
seem to be well known. In addition, modification of Taylor's design
to force the weighting function to go to zero as a power a of
distance from the aperture endpoints is discussed. For a = 1 and a
= 2, this results in an increase of 5 and 10 percent, respectively, in
the beamwidth.
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I. INTRODUCTION

This Memorandum is a review of Taylor's original weighting function for
continuous apertures. It is presented in some detail in Sections II and III.
It is shown that Taylor's beampattern and weighting function can be computed
easily by analytically exact formulas. Taylor's beampattern turns out to be
the product of a rational function and the beampattern of a uniformly weighted
aperture.

Also reviewed is a modification due to Rhodes of Taylor's pattern for the
purpose of forcing the weighting function to go zero as a power a of distance
from the aperture endpoints. This results in a 5% increase in beamwidth over
the beamwidth of Taylor's original pattern if a - 1, and a 10% increase if
a - 2 (for 11"- 10; see below). These modifications are discussed in Section
IV.

Taylor's original paper [1] derives a symmetric weighting function for a
continuous aperture. He does not discuss or even mention its use for arrays
of point sensors. His method is essentially an ad hoc, but intuitively
sensible, procedure which blends together the desirable characteristics of
uniform weighting and the van der Maas weighting into one weighting design.
The blending is accomplished by careful specification of the beampattern
nulls. The various sidelobe levels do not enter the method's derivation. In
other words, the sidelobes are whatever they turn out to be after
specification of the nulls.

It is often said that Taylor weighting makes the first few sidelobes near
the mainlobe nearly flat; that is, all "near-in" sidelobes have essentially
the same amplitude. This statement is erroneous. See Figure 1, for example,
where the 9 sldelobes ( - 10) nearest the mainlobe would all be at -20 dB if
the statement were true. Instead, the first sidelobe is at -20 dB and the
ninth sidelobe is at (roughly) -25 dB.

It is a useful fact that the beampattern corresponding to Taylor
weighting can be computed analytically, without Fourier transforming the
weighting function. This can be seen from Taylor's original discussion [1],
which is reviewed in this Memorandum. Taylor's original notation is retained
here. Appendix A gives a FORTRAN program which computes the beampattern
and/or the weighting function using the analytical formulas developed below.
In addition, it computes the exact half-power beamwidth.

The aperture is assumed to lie on the p-interval from -w to w. The
weighting function g(p) is related to the far-field beampattern F(z) by

1

F(z) -f g(p) etzp dp. (1)

Taylor assumes throughout that g(p) is a real even function. Consequently,
F(z) is also an even function of z.

It is well known that

5
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F(z) - 2W C F(i) (si :z-a .* sin f lz+m)\ (2)F~~~z)~ -,w Fm (z-m) w{z+m)

where c( w 1 and cm - 2 for m > 1. In other words, knowledge of the
integer samples of F(z) implte- knowledge of F(z) everywhere. A very
different representation of F(z) is the infinite product

0* 2
F(z) -T -Z)- (3)

n-1 n

where {Z1, z2, ...} is a complete list of all the positive zeros of F(z).
It is an interesting mathematical fact that these zeros must all lie on the
real z-axis. For example, uniform weighting g(p) - 11(2w) gives

F(z) . sin z
F~V)

whose positive nulls are {1,2,3, ....) From (3), then,

sin ,z -/ z (4)
WZ nn1 n

a well known identity dating back at least to Euler's time (circa 1750).

By means of his choice of nulls {zn} in the representation (3) of F(z),
Taylor sought a beampattern which had a flat envelope near the mainbea and,
for large z, an asymptotic 6 dBloctave decay rate. He also sought by this
same means a physically realizable aperture to approximate the physically
unrealizable ideal van der Naas function. (It is unrealizable because of the
presence of delta function spikes at the aperture end-polntsp - * w.) Taylor
found a set of nulls Which came close to attaining his first objective and
which did attain his second objective. The "ext section is a description of
Taylor's nulls.

11. TAYLOR'S NULL SPECIFICATION

Taylor specifies the nulls zn of his beampattern, starting with n -n,
to be exactly the same as those of the uniform weighting function; that is,

Zn = n for n -n, n + 1, ... (5)

The positive integer W is a free parameter which can be 'chosen as desired.
Note that -i - 1 gives exactly uniform shading. Note also that the null list
(5) guarantees a 6 dBloctave asymptotic decay rate as z-* . (This follows
from (8) below.)

7
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To complete the list of positive nulls for his beampattern, Taylor
selects (wheni > 1) the "near-in" nulls to be

1i2zn2 (n - for n - 1,2, ... , W- 1, (6)

where

A i 1n (R + R2- 1)

R - 10151120

S a maximum sidelobe level (in dB).

This choice for the first u-1 nulls may seem mysterious at first glance, but
it is a choice based on the ideal van der Naas function [2), defined by

Fo(z, A) - cos ;T 2 -A2 , A>O.

It is an interesting mathematical fact that among all beampattern functions
F(z) such that

(a) F(z) has a Fourier transform vanishing outside the aperture -w to +w

(b) I F(z)l<_ 1 for Iz I A,

the one with the maximum possible value at z-O is the van der Maas function
F(z) - FO(zA). The positive nulls of FO(z,A) are

Zn- = A2 + (n-2)2, n- 1, 2, 3,

Comparison of these nulls with Taylor's ad hoc null specification (4) shows
that Taylor's nulls are related to the van der Maas nulls by a dilation factor
a. The factor o is chosen to be slightly larger than unity to compensate for
the 6 dB/octave decay of the beampattern for z > n. Note that n - gives
exactly the van der Maas beampattern.

III. TAYLOR'S BE/MPATTERN AND WEIGHTING FUNCTION.

Taylor's beampattern can now be expressed, using (3), as

F~Z (7)TI a 
z (Az + (n-i) f n

n-1

8
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The last expression in (7) can be rewritten, using (4), to give

1 ( -. 2(8)

F(z) ( n-4- ) z

n-i1~)Snr

In this expression, limits must be taken whenever z - 0, 1, 2, 3, ... , n-1 to
avoid the indeterminate form 0/0. See Appendix B. Note that Taylor's
beanmattern is identically the product of a rational function (of degree --1
in zZ) and the beampattern of the uniformly weighted aperture, sin(wz)lwz.

It is clear that Taylor's beampattern can be computed analytically from
(8) without computing the weighting function at all. The representation (2)
of F(z) is

W-1
FW 2w F~m)sin w (z-m). + sin ,(z'm)\

F(z) - 2 F(m) z z+m)  (9)

M-0
since F(n) - 0 for n >-i. This is not as efficient as using (8). However, it
does yield an efficient way to compute the weighting function g(p). By
Fourier transforming it term by term and using the fact that F(m) - F(-m),we
get

g(p) .L 1F(0) + 2 F(mi) cos mp1PISicW (10)p)- E
n-1

This is the (spatial) Fourier series of Taylor's weighting function. By
computing once and for all the constants F(O), F(1), ... , F(i-l) using (8),
the series (9) can be an efficient formula for computation.

The beamwidth measured between the first nulls is (from (6) with n-l)

BWNULL - 2o;

where a and A are given as above. An exact formula for the half-power
beamwldth is not available. Table 2 gives half-power beamwidths that were
computed numerically (using a general purpose subroutine in [3, Chapter 7] ).
More useful perhaps is the following approximate formula for the half-power
beamwidth

9
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BW~d 1 1(11) 11 - 1
n-1 k2 (A2+ (n- 2)1)

To prove (11), note that the asymptotic expansion

1 + 1?z2 z-

F(z) - oz (Az + (n- 1) 2) E.dZ'+
n-1 n-n

follows immediately from (7). Since

n-i 1

noMn n1J - n.i n

we have

F(z) . 1- 2 ( _ 1 z2 ,z-. 0
2 ( 2 + (n-

Setting F(z) - 1/2 and solving for z gives (31).

The accuracy of (11) is good in two limiting cases. As 5r-b,-, a-+ 1

and (11) becomes

BW3dB.2 1 1 (12)

n- A2 + (n -. )

The exact answer for the van der Maas function is

BWdB m 2 )A -7 arc cosh (-2 cosh w)2 /

and a comparison with (12) is given in the last row in Table 3. Similarly,
for f1 - 1, the sum in (11) vanishes and

BW Z - - 1.103 radians

10
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which is within 10 percent of the correct answer of BW3dB = 1.207 radians
for the uniformly weighted aperture.

Table 3 gives the relative error between the approximation (11) and the
exact half-power beamwidth for the same entries as in Table 2. It may be
concluded from Table 3 that

(a) the approximation (11) is always on the low side of the exact
half-power beamwidth, and

(b) the correction required to make (11) exact is a constant factor
which depends strongly on the specified sidelobe level and very
weakly on W.

Consequently, a suitable correction factor depending only on specified
sidelobe level would make (11) very accurate.

The Taylor weighting function need not always be a positive function.
The best way to show this is by example. Consider the case ?i - 100 and a
sidelobe level of S - -20 d8. The weighting function is slightly negative
just inside the aperture endpoints (for p =t3.078761, for exanle, Taylor's
weight is -.005519929). See Figure 2. The Taylor function in practice is
nearly always positive for smaller values of n.

9 -10dB (A - .578) -20dB (A- .953) -30dB (A. 1.32) -40dB (A-1.69)

5 1.0475 1.3264 1.5526 1.7323
10 1.0009 1.2818 1.5220 1.7262
15 .9851 1.2641 1.5051 1.7126
20 .9771 1.2548 1.4954 1.7036
25 .9724 1.2491 1.4892 1.6975
30 .9692 1.2452 1.4849 1.6932
100 .9581 1.2313 1.4691 1.6761
- .9533 1.2252 1.4619 1.6680

Table 2. Exact Taylor half-power beamwidths

F_ -lOdB (A..578 -20dB (Aq953) -3OdB (A-1.32) -40dB (A-1.69)

5 7.67% 9.98 % 11.4% 12.2%
10 7.57% 9.91 % 11.3% 12.2%
15 7.55% 9.90 % 11.3% 12.2%
20 7.54% 9.89 % 11.3% 12.2%
25 7.55% 9.89 % 11.3% 12.2%
30 7.54% 9.89 % 11.3% 12.2%
100 7.55% 9.88 % 11.3% 12.1%
O 7.54% 9.88 % 11.3% 12.1%

Table 3. Relative error of approximation (11) to
Taylor half-power beamwidths.

11
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IV. MODIFICATIONS OF TAYLOR WEIGHTING

Rhodes [4,5] shows that the Taylor weighting function g(p) can be made to
go to zero as any power a > -1 of distance from the aperture endpoints by
altering the position of the nulls in Taylor's function F(z). The general
design technique can be viewed as an extension of certain ideas in Taylor's
original paper [1), using mathematical methods developed by Rhodes. The most
important cases are

1. a - 0, which is exactly Taylor's original case; F(z) decays
asymptotically at 6 dB per octave.

2. a - 1, for which the weighting function goes to zero linearly at the
aperture endpoints; F(z) decays asymptotically at 12 dB per octave.

3. a - 2, for which the weighting function goes to zero quadratically at
the aperture endpoints; F(z) decays asymptotically at 18 dB per octave.

The cases a - 1 and a - 2 are given explicitly below, after giving the method
for any a > -1.

A theoretically significant criticism of Rhodes' work is that he does not
prove that his technique is mathematically correct. The available theory (due
to Paley and Wiener, and to Levinson) provides a proof only for -1/2 < a < 1/2
and a-1. As Rhodes states [5], "it is not unreasonable to expect that the
general theory" is valid for all a > -1. In any event, we can proceed to
develop the method for all a > -1 in a purely formal way, ignoring a
theoretical question which may in the end not be of any practical importance.
Taylor's original method is, after all, an ad hoc technique and so is Rhodes'
generalization of it.

Rhodes' development retains the integer n as the breakpoint between the
near-in nulls, which are dilated versions of van der Maas' nulls, and the
outer nulls, which force the asymptotic decay rate for F(z) to be 6(1+ a) dB
per octave. Consequently, in the limit as W-ip -, the van der Maas function is
again obtained for all a > -1, just as in Taylor's original design a - 0.
This means that the desired behavior of the weighting function at the aperture
endpoints is confined to small neighborhoods of the aperture endpoints for
larger 'f. In other words, the weighting function changes rapidly just inside
the aperture endpoints for large n.

The development in (4] is brief and only the case a - 1 is given in any
detail. His later paper (5] gives enough detail to carry out the general
development for a > -1. This requires the identity, valid for a > -1,

T n- (z z 2 r2 (1 +1/)r +i- a/ 2) sin 1(z- 012) (3
T(z) ( : 2  (1+a/2) .7T -12 -,( z -a12) (13)(n + *)

It is proved as follows. A special case (z1 - z2 - a/2 and z3 - z) of a
result in [6, Equ. 1.3(4)) gives

13
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24 z 2\
n- (n +

Dividing by the first term in the infinite product, and then using the
recurrence formula [6, Equ. 6.1.15] and the reflection formula [6, Equ.
6.1.17] whenever necessary, gives

T (z) - (a12)2 r 2 (a/2)
[(a/2)2 - z 2 ] r(a/2 + z) r(*/2 - z)

r 2( 1 + a/2)
- r(1 + z + m/2) r (1 z 12)

r2( + 1) j'(z- ) 1
r

2 + 1)(z ,- ) sin ,(z - (14

17(z + i + 1)

Multiplying and dividing by z - (a/2) on the right hand side of the last
equation yields (13). (We note that above is given without proof by Taylor
[1, Equ. (29)].)

Rhodes defines the general Taylor pattern, F,(z), for a > -1 to be

W-1m

F(z) T 2 T ( n + 2  (15)TT aa2(A 2+ 1) .))(n+a2

n-i a n-n

where

W + /2 + ( _-) (16)

and A is the same as given above (just after (6)). Note that for a 1 0 the
function FO(z) is exactly Taylor's original function F(z). The analog of
(8) for general a is

14

-118-



TM No. 851004

Fa(z) =T an(A +(n - T (Z) (17)

(n )

as is clear from (15) and (13). As z-- , the rational function of degree
n-1 in z2 in (17) approaches a constant and Ta(z) is asymptotic to a
constant (depending only on a) times 1/zll+a. The asymptotic decay rate of
Fa(z) is therefore 6(1 + a) dB per octave. In addition, the asymptotic
decay rate means that F.(z) has a Fourier transform vanishing outside the
aperture [-,, v] for every a > -1 and n > 1.

For a > -1 define the "sampling functions"

G~~()r(z -. + 1) sin w(z - a)sGnM)z (Z) s (18)

cna) r(z +.) ,(z2 - (n + )2)

where

(_1)n( 2n + a)(n + a)/n! , if a 4 0

Cn(a) - 1 ,if a- U, n- 0
(_1)n2, if a - 0, n - 1,2,3,...

Each G~a)(z) is an even function of z. These functions are essentially the

Lagrange interpolating functions for tle pointsf*(n + a/2); n a 0,1,2,...}.
More precisely, the only nulls of G* (z) are of the form A(n + */2) and,
furthermore,

()(*(m if Mn-(19)
n 0, if m , n.

The functions G(")(z) are derived using methods due originally to Paley

and Wiener.

The open theoretical question mentioned earlier in this section concerns
the completeness of the sampling functions (18) with respect to all eyen
aperture-limited functions. As stated already, it is known that nR are

complete for -1/2 < a < 1/2 and for a - 1. For,other values of a > -1, nothing
is known. Proceeding on the assumption that , al are complete for all

a > -1, it follows F.(z) can be expanded in the form

e (Z) " an G(&) (Z)

n-O

15
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for some constants an. From (19) it follows that an - F,(n + (a12)) for
all n. From (15) it follows that an -0 for n > i. Therefore,

n-i

F (z) - E F (n + 6) G(a)(z) (20)
n-O

which generalizes (9).

Denote by g (p) the weighting function corresponding to F.(z). As
just stated, 96(p) vanishes outside the aperture f-w, v]. Question: Does
g(p) go to zero as the power a > -1 of distance from the aperture
endpoints ? Taylor [1] proves that any even function with this endpoint
behavior has a Fourier transform whose nulls are asymptotic to *(n + (a/2)),
but he does NOT prove the converse. Consequently, although g.(p) is even
and has a Fourier transform with the proper null locations, this is not
necessarily sufficient to answer the question in the affirmative. However,
taking the term by term Fourier transform of (20) gives the expansion

w-1

g (p)- F (n + ') Hn)(p) (21)

n-0

where for n - 0, 1,2,

n
Hn~c)(p ) - (2 cos )~ (-1) n - r r U - r cos(rp),IP (22)

0 -)IP2W

where co - I and cr - 2 for r > 0, and

1 for all a, if k-0
G ' (, + 1) ... (a + k - 1) for all i , If k >0.

Since each of the functions H(6)(p) has the correct endpoint behavior,

g,(p) must also have this same behavior.

Just as in Taylor's original case, both the aperture function g,(p)
and the beampattern function F,(z) can be computed independently of each
other using the analytically exact formulas (21) and (17), respectively, for
any a > -1. Appropriate approximations near the points *(n + 412) analogous
to those developed in Appendix B for a a 0, are necessary for computing F,(z)
using (17). Developing these approximations should not present any
mathematical difficulties.

The three cases a = 0, 1, 2 are now given explicitly. Fortran programs
implementing these three cases should be easy to write. The sampling
functions are

16
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G(°)(z) " (1 )n Cn 2 z sin ,z
n (z 2  2 (23)

G(l)(z) . (_,)nl (2n+) Cos z2, in i)2) (24)
nw (z2 _ (n+~ W)

G(2)(z) .()n1 2(n+1)2 sin z15

v Z (z2 - (n+1) )

and the corresponding aperture basis functions are

S()p) - T- Cos np (26)

al(p) - Cos (n+l)p (27)

H( - (-1)n + cos (n+l)p (28)

It should be noted that (23) and (26) are, within a scale factor, identical to
(9) and (10), respectively. In all cases, the aperture function g.(p) is
computed from (21). Consequently, the only potential difficulty is computing
the constants F.(n + a12) for is n - 0, 1, ... , i -1. Fortunately, for
a - 0, 1, and 2, these constants are easy to compute using (17) since the
following Identities hold:

Tow - - (29)

T1(z) -COS wZ
1 - 4z

T2(z) - sin wz (31)
wz (1-z )

The price paid for the desired end effects is an increase in the
beamwidth over the beamwidth of Taylor's original weighting function. The
beam, idth measured to the first null is, for all a > -1,

BWNULL - I

where au is given by (16) above. This gives exactly, for fixed ii,

BWNULL (for any a) a

BWNULL (for -) 0 2 I

This means that for -6 - 10, the beamwidth measured between nulls is 5% larger
for a - 1 and 10% larger for a - 2 than for Taylor's original a - 0
beampattern. It is anticipated that approximately the same percentage
increases occur in the half-power beanwidths.

17
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A different modification to Taylor's nulls can be utilized to produce
asymmetric beamnatterns using complex valued aperture functions g(p). This is
described in (8] for an application in radar to minimize ground clutter. The
magnitude of the aperture function turns out to be an even function, while the
phase of the aperture function turns out to be odd.

V. CONCLUSIONS

Taylor weighting can be modified to force the weighting function to go
zero as any power a > -1 of distance from the aperture endpoints. Taylor's
original weighting (a - 0) results in a pedestal, while for a - 1 the
weighting function goes to zero linearly as in a cosine window and for a - 2
the weighting function behaves like a cosine-squared window at the aperture
endpoints. The endpoint effect is achieved for a modest increase in the
mainlobe beamwidth.

18
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c C''l'F TkYLClioS cnlr:urL-S So1 ,!ii FI?4TICf.ri A'!D TPWISPEY FUdNCTILON
c T%.PLT PEQUIiREAE:.T: I *LE. ?At
c : i'HE SOAT14~L APEPTURF f.IES FRJP' -Pr TO +PI
c APCL'EPT OUT I rTTUNS :
c X= abscissas for siw.4na the v-5aiini function
c s =shadin~g ftnctio, 11,aups
c Ps=nunner of s saires:* none CoirputelI it ns =
c k = doscissas for samnlina tne transtpr t'inction
c t =transfer function Values
c nk anumnber of f samples: none comnutel I f nk =1
c noar= thie first noar-1 zeros of f are tnose ot van der Maas
c do = sldelobe level in it~ ef 11itin nolPh-Crievshev array
c fmr = coefticiprts ot th~e shadin; function cosine seTies
c hjdlb = -3 dR teamwifith; not comnuted it owjdo is set to -1.
c nISE'mSTL~t LIv1TS:
c w and s mfust be dimensioned at Least max(ns,+1)
c k and f must be lirefsoned at least mraX~nk,+l)
c fT *r-ust be dimensinned at least noAr
c ThCh*4IrAL MUTES:

C NARZl.'FINI!TY GIVES PLPM-CHFdYSWEV SnAi~Ir.r
c FIFST AEkNPATTERN TMULL = STG4A 4 50~*2.5
c THE CUSiNE SERIES FOR S R4AS nEGREE EXACTWe USARt1
c PkrGA"1%R: Q. i.. STPEIr. mJusc, %CmF 21, 1qP4.
c L.AST REJSION: .IAt-UA~i It, 1985
c

subroutine taylor(x,s,nS,K,t ,nktlnbar,db,fib~ow3do)
double precision X(l),S(1) ,K(i),f(l) ,ob,fmnC1),xpt,a,siqma8.0,ni~q.

+ zeroin,ao,bP~tolIDW31D
data PI/3.141592655979d0/

4=dlog(a~sort(a*A-I.Odl))/tI
siaabr/srt(*a(lbar-.5d0)(bar-.510))
nbart noar-I

it(nbar.eq.1)-Vo to 15
0o 10 t=2,rnoar

fwCjlo(xot,,a,nbarI,siqma)
10 continue

1- f(ns.le.0)qo to 25
do 2n 1=I,ns
s(i )sU.O0
IfCaosCxci) a-t. Cpjii.d-7))qo to 20
sMt);Cx(i) ,tn,nh4T)

20 continue
25 ir(nk.le.,))go to JS

do 3n 1=1,nK
f~i)=q(kri),a~nvari,si~ma)

30 continue
35 Itfow3do.lt.0.10d)l o AU

apO .040
b P sigr'va *sir t ( a a .25 d6)

hw3dlh=2.0J0O*zeroifl(ap,bp,qotolta.nlbarl.5fJIa)
40 continue

return

double precision function n(z,avnbar1,XizmA)
double creciiol pI,oiz,2n,z-oa~sigffa 19
Mara Pi/3.l1.l5q2A536,A979dG/
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10 in' Iczn,noArl
1t(arns(z-k).lt.1.O'i-4)1o to 10

In o'tinue

it(nh~rl.ea.Ojoo to 21

zn:L?/slclma)*42/(a*a,(fl-.5d0)**2)

2A out1nue
21 oizzoi*Z

ret urn~
3A it(K.It.fl)1o to 50

C=1.Oue"
1z(nt,6r1.en.O)oo to 41
lto 40 n~l,noart
zn2Lz/sioma) *4?/(a*a+(m-.Sd0)**2)
ozo*(l.Ud).)znj/(1.flO(z/n)**2)

40 continue

o=(l.QdU-piz*piz*l*Odl-ojz*ciZ/20.dO)/6.vd0)*,I
return

do b() n=1,flbarl
it(fl.eo.k)ao to 60
zr.:(z/s.Lma)**2/(a~a+(n-.5dO)**27
o=Q*(l.Ud0-zn)/(1.noO-(z/n)**2)

60 continue
zn:(z/sliona) **2/ (*a* C I-* dC) **2)

1 I(. 00-Zn)
Cizspi*(Z-k)
o:(l.Q0IO-piz*piz*(I.Odfl-riz*viz/20.oO)/b.od)*'
0=0;(1I)**CIe)e(K/(Z~zz/c))
return
endt
double precision function 9(pofm,flbar)
double precisiOn Potwooi~fmi0)
data twovi/6*2931dS3P71795q6477d0/

(7n n

ifrnnar.eq.l)qo to 20
do 10l i=2,nar
q7O+frn~i)*cos( (i-f)l

10 cop~tinue
20 0=(fMI(!)4q~g)/t~opi

return
end

c
c Com'pute a zero of A real function f In the interval ('Px. Dxi.
c Isouble precision version of Program on po. 164-166 of "Computer
c Netnods for m4etnematieal Computations," 4y Gd.. 7orsvthe,
c Y.A. %.dleolm, and C.S. moler. ProntIce-dill, 1077, out Sliqntly
c altered for usp in comnuting Tayloros 'half-power cea'mwidtfl.

double precision functiom zeroin(axpbx~f ,tnl .adumonoarl ,siqua)
double precision ax,ox~f,tol,adum,sI~ma
Aouole precision aob~c,d,e,ersefa,fbofc,toll ,z'mPt,r,s

10 ersxeps/2.1dl
toll: 1.od'J~eps
if.toll.Ot.0.du)go to lfM

hanx
20
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e=l
30 tteats(fc).,je.aos(fo))jno to 40

eza

'.0 tO1l:2.0)du)*ep58.s(o),.S5d0*tol
Ycrn.5dfl*(C-o)
if(atbS(Xn).le.toll)gn to 90
tfrtb.*.O.0d0)go to 9n~
lf(ah5(e).lt~tnll)ao to 70
if~dbsCfa).±e.abs(fo))qo to 71,
if(a.ne.c)ao to 53
S~frb/f a
022. OdC ~xmf*s
121.0Oc0-s
qo to 60

50 Qzta/±e
rtfb/fc
S~tb/fa

q=(q-1.OeIO)*(r-1 .OdO)*Cs-1.OdjJ
60 lf(p.gt.O0floO)q=-q

psaos ()
£t( (2.0d0'p) .ge.(3.0do*x1?*o-abs(toll*q) )iao t~o 70
if~p.qe.aos(n.d*ec2))go to 70
e~d
to/q

no to 00
70 yl

fa=fb
lf (aos(d) .Qt.toll )tab.~1
ifCdbsCd).1eotoi1)hzt +Sign(tol1,XM)
fb~t(b,adum,nb~kri.slom8)-.SdO
tz( (fb*(fc/asttc) ) ) .t.fl.OdO)oo to 20
QO to 30

90 zeroinso
return
enfd

21
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Appendix B. Calculation of F(z)

For some small number c > 0, say c - 10-4, define

sn zz-kc>O

s(z, k) - r) 2 4

(-1)k j- - (z-k) 2 + T (z-k)4 - " j . Iz-k <c.

Now, if Iz-k[ c for k. 0,1,2,..., F-1, compute F(z) exactly as in (8). If
fz-kl< c for k-O, then compute

F~ :( - g2 (A2+ (n- )F(z) =S(z,OD)z

n-1 n 2 -

If Iz-k <c for k-1, ... , F-1, tfien compute

I W-1 1 -

(-k)(1 2 +z+(k- 72 ) (A 2

z(1 +) n-1 (n-
k n-i J

Use of these formulae eliminates all indeterminate 0/0 forms that arise during
actual computation using (8).

22
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Sufficient Conditions for the Existence of Optimum Beam IMIz TRANSACTIONS ON ANTENNAS AND PROPAGATION, JANUARY 1975

Patterns for Unequally Spaced Linear Arrays with an
Example II. PRELIMINARIES

ROY STREIT Let f(z) be a real valued continuous function defined on the
closed interval Ca,b]. Thenormoff(z), denoted iIfIll..61, isdefined to be

Abstract-Dolph's method for determining the optimum element l fjIi..bI = max [f(X) 1.

currents for half-wavelength equspaced discrete linear arrays is S5

generalized to symmetric discrete linear arrays. The theorem proved Now let hI(x),- • .,h~v(z) be a given finite collection of real valued
gives sufficient conditions for the existence of optimum beam pat- continuous functions defined on the closed interval Ca,b]. The linear
terus foi arrays with elements symmetrically positioned about the span of these basis functions is a proper closed subspice of the space
array center, but with fixed unequal spacings between the elements. of all continuous functions on the interval Ea,b] equipped with this
The conditions are such that the Remes exchange algorithm for max norm. It is known that there exist real constants at,...
minimax approximation of functions can be employed to compute such that
the optimum element currents corresponding to an optimum beam I
pattern directly from the given spacings of the elements. Half-wave- I f(x) - . a,h,(z) II..61
length spaced linear arrays satisfy the conditions of the theorem;
therefore, it provides a new method of calculating the well-known is a minimum. The function h(z) ff E fla hj(z) is defined to be
Dolph-Chebyshev element currents. An example with unequal a minimiax approximation to the function f(z) from the basis
spaciugs is included to show the utility of the method even when the hj(x),* ,hv(X). The crucial property that these basis functions
hypotheses of the theorem may not be met. must satisfy to guarantee the uniqueness of a minimax approxima-

tion is embodied in the definition: the functions hi(z),. .,hv(x)

I. INTROI)UCTION form a Chebyshev basis of degree N on the closed interval Ea,b], if
and only if every nontrivial linear combination of these functions

Optinitun beam patterns and element currents for single frequency possesses at most N - I real roots in the interval [a,b]. A particularly
lioear arrays with a finite number of omnidirectional half-wavelength well-known Chebyshev basis is the collection 1,x, -. -,xN

-
1 on any

.,psaucl elemeits were determined by l)olph [El] through a technique finite or infinite interval. It is possible that a given collection of
iivolviig ihe Chebybhev polynomials. All these beam patterns have functions may be a Chebyshev basis on one interval but not on
eulmal amplitude sidelobes. Sufficient conditions are given here for another. !T can be shown that the functions h1 (x),. . .,h () form
symmetric linear arrays to possess optimum beam patterns with a Chebyshev basis on the interval Ea,b], if and only if the deter-
e4mll amplitude sidelobes. This feature is precisely the fact needed minants
in the caltt.lation of the element currents. h,(X0 hi(X2) ... hI(.s)

1l,e definition of an optimum beam pattern used in Dolph's )
paper will Ite tsed: a beam pattern is optimum if, for a given main h (Xi) h2 (X) .. • (x')
lote he:mwidli, the overall sidelobe amplitude is minimnized. Beam- U(x0,... f • h )0
width is meas red from the maximum response axis to the first null.
The linear irrays considered in this paper are those whose elements
are )mmctricnlly upaced and have symmetrically tapered element hN(Xi) h.v(x2) ... h.v (x.v)

,r..boot the .emter of the array, for all points zx, such that

a :_x1 < x2 < ... <Z XJV_ < XN < b.

The reader is referred to Karlin and Studden £2] for a proof of this
and other equivalent formulations of a Chebyshev basis, as well as
for a proof of the following fundamental theorem.

Theorem

Let ht(W),.. . ,hr (x) be a Chebyshev basis on the interval Ca,b).
Then h(z) = E , . ah,(z), for some real constants a,, is a mini-
max approximation to f(z) on [a,bJ, if and only if there exist at
least N+I points amzo < x < ... < xM<b, M>N, such
that

f(z,) - h(x,) = I If - h IU.. I = 0,. .,M

and the sign of the error alternates from point to point. Further-
more, the approximating function h(z) is unique.

In other words there exists exactly one linear combination of the N
Chebyshev basis functions v'hic.h has at least N + I points of
equiripple (but alternately signed) error for a given function f(z),
and it is this linear combination that formos the unique mininlax
approximation to f(x). If the basis functions do not form a

a.\luiru.ript ef,,', .lanuary 1it. 1974: revised August 17. 1974. Chebyshev basis, however, the minimax error curve need iot be
''lwi,, a ths is %W, the Nasal Underwater mystems Center. New equiripple.

ondoii lortor). New London. Conn. 06320. The Itemes exchange algorithm [33 employs the equal oscillation

error of the minimax approximation to compute the constants
a,, .. -,ax. The algorithm is iterative and has been shown to converge
under very general conditions.
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SUCCINCT PAPENS tlt

Ill. THE SUFFICIENCY THEOREM has & strictly smaller sidelobe level on the interval [n,). Sinlce fo')
has at least N points of maximum error on [uo,r), f(it) has at low t

As stated in the introduction, every linear array considered is N - I oits of maximum error on [ioi,w). It is clear t hat aniy
assumed to be symmetric and to have symmetrically tapered element function which is constrained to agree with f at it it,. which iA
currents about the array's center. If the center of an Mf element everywhere strictly less than f on Eul,w), must interscct f in at leapt
linear array is chosen as the origin of the coordinate system, then the N - I points in the interval [u,,w). Additionally, f(0) - 9 (0), so
field patternt, as a function of the angle measured from a normal to that!f and g must agre with at least V points- in [t),vo). H1iwever,
the array, is proportional to the absolute value of f(u) - 9(u) is then a linear Combination of the functrions (2),

N tw.which has at least N zeros on [O,v), contradicting the definiti~iof
E aiCos sinz 0 <9 2w a Chebyshev basis unless - g. Thoosf is the tiniquo lltim.~ini liplt

j-1 pattern for ',eamwidth of on.
where To complete the proof of the theorem, we neeA to demonistrate

that for each angle 0 >90e, there exists a number 02,, it. < On, < i.

Ar - [ + 'Isuch that the function

X~ wavelength of design frequencyPi)-- cntl+ + Y1Cot-0+ ,skl

xi distance of ith element (counted from the cc r of the array) has d21 - w sine as its first real root greater than or equal to 6'.,
at current of the elements at 2, (ifAfis odd,*,~ is half the current). where V., j v~cos flit is the uniform Approximation to -- rot Nu

on [d,r). Since [do,w) C £"io,r), the collection of fnneliotis 3,
Putting u = v sin 0 and restricting 9 to 0 < 9 :5 w/2 to utilize must form a Chebyshev basis on all intervals Iq ,) so ttist the
symmetry, the field pattern is proportional to the absolute value of function f (u) is well-defined for each do.. Also do. > n implies t hat

N f, > u, ('i as defined earlier) since otherwise the Iwain patterti for

(u 2a. Cos Q ,-u), 0 < u <5 a I beamnwidth of 9, is not optimum. Finally, A~S 1^1 is varied voi-
tonuously, the constants .1.,*,,yv vary continuously, so thatl tlip,

wheret, - x,/Ot/2), i - I,-. - ,N. Wealways haveo 0 :5f <El< ... <5 first real zero greater than 12. varies continuoiusly. Since 0ina lsA he

fiv.Forthefied ptten Pu) efied n (), e dfin thsidlo- taken as close to w as desired, it must be the case that for sooic i;.

leve For the filntern PCui) do ene inor (111w), weheie h iere the first real zero of f(u) greater than ol. is equal towr sin 9.

u, > 0 is the first null of P(u). We define the sidelobe ratio on the
same interval to be the ratio I P(0) I -- 1 P(u) Note that IV. DOLPI{-CHEB)'SHEV SHIADINGS AS A SPElCIAL. (.N.E
both these terms are in linear units. Also, (Ihe symbol for the half-
open interval [a,b) is interpreted to mean the closed interval As mentioned in the introduction, the lDolph-Chebhyshev shadings

[a,b - e), where # is some preselected small positive inmber. We are designed specifically for a half-wavelength equi-paced linea ar.'u.
now state and prove the main result. We consider here only the case of 2N, A' > 1, elements in file arrpy.

For an odd number of element.%. tile arguomeniti re esoacitiallv 'ytil-
Slificiency T/.eorem changed. Counting from the center of the array, the position r,4

Suppose that the functions the ith element is I

form a Chebyshev basis on the interval [0,r), and that t he functions where x is the wavelength of the design frequency. Then

Cos (fu.0 *.cos (cy...u) (3) 2xi (2i -1)

form a Chebys hev basis on the interval Cu.,w) for some real numberX 2

un, 0 < uo w . Then there is an angle 9n, 0 <9,o < r/2, such that so that from (1), the field pattern is proportional to be absolote
for any specified beamnwidth e, 9, :5 9 < wr/2, there exists a unique valuie of
optimum field pattern. This optimum field pattern will have equal 2-I
amplitutde sidelobes. P(u) = a. oDs( y

Peeof': Since the functions (3) form a Chebyshev basis on the
interval [u,,w), there must exist a unique minimax: approximation where ai is the element current of the ,t~h element frontftle centei
to the function -cos Qtxu) from this basis; that is, there exist of the array. The I)olph-"Ihebyshev coefficients are determined for
Constants as, - ,a0x, such that each specified beamnwidth greater than zero. To applY t he I heorcir,

of Section 111, it is necessary to show that the.V floi,,os
-en osu &A ai cos flu + + *av~ cois fy..u. N2 r 2"I* .

Thus ic.is tile magiftude of the maximum error committed by this coo(2),~ (2 N 2
uinif,,rm approximation, then the function and the N' - I functions

fPu) - at Cos flu + - + ON-, Cos t.-,u + Cos txulCO (0 , 1 2A 2 - 3,)(
must oscillate abouit the zero function in the interval Cuo,w) with the en 2) ,cs i 1 ,., 2 2
niagnitlide of the oscillation no greater than el and with at least forin Chebyshev bases onl the intervals [(),r) and Usw lere
(N - 1) + I = N points where the oscillation is exactly tis. Let "Iitt, 0 

= 0 here. Consider, then, Any linear combination of the fxol.
be the first zero of f(u) greater than uo and let 06 - sin-' (it, /w). tiot (4)
We claimn that f(st) constitutes the optimum field pattern for iti-
bearnwidth to the first null of 00. For if this pattern is not optimumin, Lot, elk I, cit-- 0 < it<
there exists another field pattern function 2 /

g(u) - 1 Cos f u + +. + As.. Co s tx~o# + A Cos fyu 21)o '
such that g(0) - (0), u, is the smallest positive root of (it), and g
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TABLE I
OPTIMUM ELUMENT CURRENTS FOR VIELD PATTERNS GIVEN IN

FIG. 1 WITH A COMPARISON TO OPTIMIZED EQUISPACED ARRAYS

uo  .40138 .80138 .66138 .78138 .88138
Element Currents

E em .66524 1.4005 2.60994 4.23857 5.99725

a 2  .56748 1.14597 2. 03999 3.16892 4.32041

a 3  .41913 .79211 1.30817 1.88695 2.41420

a 4  .23500 .39087 .54719 .66452 .73742

a5  1.00000 1.00000 1.00000 1.00000 1.00000

Side-Lobe Level (d) -9.92 -14. 91 -20. 11 -25.12 -29.50

Beamwidth (deg) 9.72 11.68 13.73 15.74 17.50

BDemwidth (deo) 9.69 11.57 13.62 15.65 17.49

for 10-element,
half-wavelength,
equispaced array with
Dolph-Chebyshev for
the same side-lobe
levels.

where Tj-I is the Chebyshev polynomial of degree 2i - 1. Put are not either. The example presented here shows the utility of the
u - 2 cos- (W). Then 0 < z _< 1 and approach even when the hypotheses of the theorem of Section III

'v do not apply.
(u) Ma(z) ( E iTt-i (Z) Ma [4] describes what is essentially the Remes exchange algorithm

i I and applies it to the synthesis of nonuniformly spaced arrays. How-

so that g(z) is a polynomial of degree at most 2N - 1. Thus g(z) ever, Ma seeks approximations to the function f(u) - exp (-Aul),
can have at most 2N - I zeros in any interval. Furthermore, g(z) where A is a positive real number, so that the element currentsis an odd function and soan have at mst N - I zeros i, the interval obtained are only approximately optimum. To find the optimum
(0,i , so that f(u) can have at most N - I zeros in 0,hr). Hence element currents, proceed as in the proof of the theorem in Section III

the functions (4) form a Chebyshev basis on the interval (0,r). to find a minimax approximation to -coo (6u) in the form

Replacing N by N - 1 in this argument shows that the functions (5) -0 4 (6)
also form the required basis. (61) E a COS %U)

By the theorem of Section III, for each specified beamwidth,
0 >_ 0, there exists a unique optimum field pattern and a unique set on some interval Cus,r), ue > 0. The error curve of this approxima-
of element currents. These currents are the Dolph-Chebyshev tion over the full interval [0,) is identically the optimum beam

coefficients for the beamwidth o. It should be pointed out that, pattern for the beamwidth determined by the first null. The param-
if 0 _< 0 < w/(4N - 2), the sidelobes have larger amplitude than eter u alone controls the tradeoff between the sidelobe level and the

the main lobe. The next section shows how the Remes exchange beamwidth. Therefore, II is varied systematically hem
algorithm may be used as an alternative means of calculating the To begin, the Dolph-Chebyshev coefficients corresponding to

Dolph-Chebyshev coefficients, although the usual methods of cal- a sidelobe level of R - -10 dB were used as the initial guess for

culation of these coefficients are preferable to this method. a ,, as, and a4, so that the choice

V. EXAMPLE u, - 2 coo-' (1) 0 - 0.40138

The example chosen is a ten-element linear array with the elements was made, where
located at positions proportional to the abscissas of a ten-point1 iL r1/I
Gaussian quadrature formula: 2 " i r + (r' - IlJ r - (r' - 1)iJ

El- 0.6878s - 2.002 3 with L - M I - 9 and r - 10410. With this initial guess on this
b - 3.13926 interval, the Remes exchange algorithm computed the minimax
14 - 3.99726 approximation (6) in two iterations and produced a result shown
6-4.5000. in Table I. To continue the procedure, us was incremented by 0.01,

and the Renes algorithm employed again using these newly corn-

The length of this array is the same as that of a ten-element half- puted coefficients as the initial guem on this smaller interval. Con-
wavelength equispaced array, but the element positions are sub- vergence occurred in two iterations, the beamwidth increased
stantially displaced from equal spacing. An effort to verify that the slightly, and the sidelobe level reduced to -10.3 dB. Continuing in
functions (2) and (3) form Chebyshev bases in this cae was un- this fashion, us was systematically increased from 0.40138 to 1.02138.
succeful, and direct numerical verification was not attempted. Representative beam patterns appear in Fig I and the corresponding
Instead, the Remes exchange algorithm was employed immediately element currents in Table I. Notice that the beamwidths attainable
to find the element currents, and the observed behavior of the by the Dolph-Chebyshev current amplitudes for an equispaced
algorithm itself was used to make inferences about the functions (2) array ae rermarkably close to those obtained in this example.
and (3). In this case, it will be seen that the functions (2) are not, By inspecting the beam patterns with the three lowest sdelobe
in fact, a Chebyshev basis, and that it is likely that the functions (3) levels, it is seen that each of these beam patterns possesses 5 seros.
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Pig. 1. Optimum field patterns for ten-element symmetrically positioned
and unequally spaced linear array.

Since each of these beam patterns is also identically the error curve
of a minimax approximation (6) on an interval Euo,r), it must be
concluded that the functions (2) do not form a Chebyshev basis on
the interval [0,v). Consequently, the element currents may not be
unique.

For each iteration of the Remes exchange algorithm, the solution
of a system of linear equations is required. If there are N - 1
Chebyshev basis elements, then one equation in N unknowns is
established for each point where equiripple error should occur. By
the theorem in Section II, there must be at least (N - 1) + 1 - N
points of equiripple error. In the five results given for the present
example, there are exactly N - 5 points of equiripple error, counting
one point on the main lobe down at the sidelobe level (at u - ut),
so that unexpected numerical difficulties do not occur. To proceed
further than these results requires the solution of six equations in
five unknowns, because of the growth of the extra lobe at G - 90*.
The straightforward procedure of solving any five of these six
equations proved unsatisfactory because erratic behavior developed
in the sidelobe corresponding to tJe equation deleted. An attempt
to solve all six equations in both the least squares sense and the
least maximum error sense by employing the generalized inverse of
the coefficient matrix also proved unsatisfactory. It would seem,
then, that either numerical difficulties are the cause of the problem
or that the functions (3) do not form a Chebyshev basis. The author
favors the latter possibility.

It should be noted that the Dolph-Chebyshev element currents
for both a 10-element and a 50-element half-wavelength equispaced
array have been computed in the aforementioned manner without dif-
ficulty from - 10 dB to over -70 dB. (In these casm, an extra side
lobe at 90" never develops.) Unequally spaced arrays with as many
as 50 elements have also been successfully treated by this method.

All calculations were performed in double precision on the Univac
1108. Total CPU time, including plot generation for the example
given was 67 a, although a more carefully written program could
have reduced this time by at least a factor of two. A total of 63 sets
of current amplitudes were computed.

VI. SUMMARY

Sufficient conditions for the existence of optimum field patterns
for symmetrically spaced and amplitude tapered linear arrays have
been proved. The theorem proved is a generalisation of the work of
Dolph on 'half-wavelength spaced linear arays. A well-known
algorithm from approximation theory has been employed in an
example to compute the element currents corresponding to the
optimum beam patterns uing only the given element spacings
themselves.
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Absar-A generalization of Dolph's method for the synthesis of " 20

discrete antenna arrays is applied to six different symmetric line arrays. 401
Based on these examples, it is conctuded that I) the held patterns of
optimized symmetric line arrays with the same number of elements and -,
with the same aperture are virtually indistinguishable and 2) optimized
arrays with an odd number of elements are substantially better. In general.
than arrays with an even number of eemntis. o 2500 P

I. INTRODUCTION l0,,

If all the elements in a linear array are equally spaced at a half -20.
wavelength, then Dolph's method 11 ] may be used to compute
the element currents of optimum field patterns for any specified -e.

beamwidth and for any number of array elements. Optimized -4D. , ,
equispaced arrays have two striking characteristics: 1) as the
specified beamwidth is increased, the corresponding sidelobe -
level diminishes and 2) all the sidelobes are of equal amplitude. 0

In the generalization of Dolph's method, both I) the tradeoff 25 cAUSS

between the beamwidth and the sidelobe level and 2) the equal ,
amplitude sidelobe structure are extended to a larger class of -..-

symmetric arrays.
By application of the generalized Dolph method to six specific -0.

arrays, it was noticed that the method was more successful for .iD , -
arrays with an odd number of elements than arrays with an even . ..number of elemeits. All symmetric arrays with the same odd 0 10 20 3 so wo 60 0 50
number of elements and the same aperture as a half-wave TI IA O,
equispaced array seem to possess optimum field patterns with
equal amplitude sidelobes for any specified beamwidth. Only Fig I Field pailcrn% for elemenl currents n Tables I and It

very special even numbered symmetric arrays appear to share
this feature; that is, for nearly all even arrays, element currents and 0 is measured from a normal to the line of the array. A is the
which suppress uniformly all sidelobes do not appear to exist wavelength of the design frequency. 4x,: are element positions
for every desired beamwidth. Equispaced even numbered arrays measured from the array center, and (a.; are element currents.
seem to be the primary exception to this statement. Thus, if M is odd, the center element must lie at the origin and

A second observation based on these examples is this: for thecenterclement current is halfofa u. In Fig. I thefield patterns
fixed aperture, odd number of elements, and desired beamwidth, shown are 20 log,, IP(u), normalized by its maximum absolute
any symmetric set of positions is nearly as good as any other value on [,n), but plotted versus the angle 0 and not u.
symmetric set provided the element currents are optimized for The theorem in [2) is valid for both even and odd numbers of
the given positions. To find unequally spaced arrays with field elements. For the odd case, however, the result can be
patterns substantially better than optimized equispaced arrays strengthened. In the following theorem, the beamwidth is
thus requires either a larger aperture or more elements. If an measured from u = 0 down to the sidelobe level. Also. by
even number of elements is specified, these observations are definition, a collection of continuous functions form a Chebyshev
false: equal spacing is definitely better, in general, because of basis on a finite interval if the zeros of any nontrivial linear
the remarks in the preceding paragraph. combination of these functions number at most one less than the

The directional response of a symmetric line array of M number of functions in the basis.
elements is directly proportional to the absolute value of a
linear combination of cosines: Theorem (Odd Case): If M is odd, then the function

., a cos (4,u), 0 u < 1 P(u) = cos (4 u) + a, Cos (4,). 0 < U <X

where is the unique optimum field pattern for a beamwidth of
arcsin (uo/a) provided

max IP(u)! = min max cos (Gu) + it, Cos(4u))

(A/2)

u = sin 0 ncos u), cos (cs ) I) is a Chebyshev basis on lio.N).
1o> 0

Manuscript received March 2. 1973; revised June 12. 1973.
The author is with the Naval Underwater Systems Center. New London

Laboralory. New London. Conn. 06320 cos (4,u). cos (Zju)I is a Chebyshei basis on (0.0.
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This result is stronger than that given in (2] because the beam- TAHLI I
width is given as an explicit function of mo. This is possible OPtIMUM LULIt n (URRITS fR '5-I. 1%11T RANoo i ARRkA

because Meinardus has shown ([3, theorem 30)) that assumptions m m % - .2-19 o .311 .0 4 4

ii) and iii) together imply that uo must be an extreme point of the Pition 0 0 0 0

approximation i). Therefore. mo is precisely that point on the
main lobe which is down at the sidelobe level. (it can also be . .. :01 .136 .427 1. 115

.777 .254; . 1i .140 b. 313
shown that the first zero of the minimax approximation i) is a I. 930 .122 .5110 1.503 3.964
strictly increasing function of uo, so that the theorem is essentially 2.590 . 193 .775 2.277 5. B95

unchanged if beamwidth is measured to the first null as in [I 3.867 .226 .bM9 2.555 6.440
4. M49 . 11, .41-i 1.223 2. 966

instead of down to the sidelobe level. The only difference is that 5.695 .19:, .721 1.939 4.567

the bamwidth cannot be given as an explicit function of uo . See G. 171 .134 .549 1.390 3.035
(5]) 7.531 .116 .393 .963 2.051

8.675 .206 .644 1.437 2.785
Optimum field patterns (in the odd case) do not necessarily 9.941 .146 .420 .844 1.457

possessexactlyN - I equal amplitude sidelobes nor are optimum 10.780 .125 .329 .594 .911

field patterns necessarily unique unless the assumptions ii) and 12.OD 1.000 1.000 1.000 1.000

iii) are made. The assumption ii) is well known ([3, theorems adelobe -9.998 -20.062 -29.906 -39.950

19 and 20]) to be both a necessary and sufficient condition for level(dB-
the existence and uniqueness of the minimax approximation i). 2.759 4.41 . 7.936
so that without this assumption an optimum field pattern will (d.0
not be unique if it satisfies i). Furthermore, Meinardus ([3,
theorem 30]) has shown that the assumptions ii) and iii) together
imply the existence of exactly N extreme points of the minimax TABLE II
approximation i). Since one of these extreme points must be on OP-iMUM ELeMNT CIRRENTS FOR 25-ELEMENT GAuss ARRAY
the main lobe itself, and every other extreme point corresponds
to a sidelobe, without both these assumptions an optimum field Element U0 • . i 0 .25! uo .341 u. .441

pattern satisfying i) need not possess precisely N - I sidelobes. os3iti,0

A nearly identical result holds for an even number of elements, . ooo .2U.1 1.453 3.051 -3. 3
1.4481 .259 1. 423 5. 693 -5A. 571

but an explicit relation between beamwidth and the parameter Uo 2.939 .249 1 .337 5.231 -50.510

is not available. Meinardus' result applies only to Chebyshev 4.353 .234 1.20. 4.550 -42. 0641

systems containing the constant I as a basis function, a circum- 5.701 . 13 1. o9 3.755 -32. 63.6.963 .101 .117, 2.930 -23.741
stance which occurs for symmetric line arrays for odd M only. .119 . !4 .70D 2.213 -16.252
Thus, the strongest statement possible is that the beamwidth is 9.152 .137 .554 1.596 - 10. 636

smllrthn rsi ( 0 sr.101.046 :113 .415 1.092 -G. 2N9perhaps (slightly) smaller than arcsin (Uo07). 00.7"s . 07? .306 .7614 -4.874
These results can be extended in two directions. First, the 1,.366 .099 .19. .364 .359

synthesis of steered arrays can be performed by computing the 11.772 - .106 .132 .474 -6.670
approximation i) on intervals extending as far beyond t as 12.000 1.000 1.ON 1.000 1.000

desired. Secondly, the fact that ii) and iii) are cosine bases is s.etoh -9.994 -20.1 9 -29.507 -39.371
never used in the proof of the results. Ma (4. p. 215) gives an levelit)

example of concentric continuous rings whose field pattern is a 11amwi*I 2.759 4.587 6.236 8.074

linear combination of basis functions of the form Jo(C4u). tdsw
Therefore. the theorem above also yields an optimality result for
this case.

II. APPLICATION TO ARRAYS WITH ODD NuMaER OF Euum4Ers starting point of mo = 0.1 was picked and the Remcs exchange
Three 25-element arrays called herein (for convenience) algorithm employed to compute the minimax approximation i)

Random, Dolph, and Gauss are considered. The Dolph array is on the subinterval [0. l,x). Then uo was incremented by 0.01 and
equispaced. In the Random array, all the element positions the Remes exchange algorithm was used again on the slightly
except the first and the last are displaced strictly toward the smaller interval (0.11,x). Continuing in this fashion gave a
origin from equal spacings by no more than 0.5. but otherwise in family of optimum element currents. Four sets of element
a random fashion. The Gauss array has elements located at currents for both arrays are given in Tables I and II. Notice
positions proportional to a 25-point Gaussian quadrature that the beamwidth-sidlobe level tradeoff is as expected in both
formula. Thus the Gauss array is substantially more perturbed cases. Also, the element currents appear to be continuous
from equal spacing than is the Random array. All three arrays functions of the sidelobe parameter a

0 
except in the Gauss array.

have the same aperture. For the Gauss array, nonuniqueness is the consequence of
The Dolph positions satisfy the theorem statement (see (2]). violating the second condition of the theorem.

However, for reasons that will be stated later, the Random array The accuracy of the results can be estimated by comparing
does not satisfy condition iii), whereas the Gauss array does not similar results for the Dolph array with those that can be obtained
satisfy condition ii). Therefore, computational difficulties can be explicitly. It was found that the currents were correct to 4 or 5
expected for the Gauss array. Also, the field patterns presented significant decimals. More accuracy was not attained because
for the Gauss array may not be optimum. a discrete version, and not a continuous version, of the Remes

The application of the method to the Random and Gauss exchange algorithm was implemented in the computer program.
arrays is detailed in Tables I and II, respectively, and follows The field patterns for the element currents in Tables I and II
the development in [2]. Since in each case the proper choice of are shown in Fig. I. Even though the element currents and
the subintervals [uor)could not be made beforehand,anarbitrary positions are quite dissimiliar, all three sets of field patterns are
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nearly identical and there is very little difference in the beam- sideloheis may well be reduced in amplitude, hut tinl. at the
widths to be had for the same sidelobe level. However, it can be expense of a bad first lobe. Field pattern " ith al/ the sidclo'he%
sen that the Random array is slightly superior to the Dolph at, say, -30 dB were not computed hevuVti, no0 sulh 1ld
array. To the author's knowledge, this is the first explicit example patterns existed for the Random and (aUi, irra, Sitnce Ohi
of an optimum unequally spaced array which can be shown to procedure is unavoidable, the conclusion must be that the
be superior to an optimum equispaccd array of exactly the same equispaced )olph array is much superior to either of the other
length and the same number of elements. Practically speaking, two arrays. For as long as the extra sodelobe %as, not a problem.
however, the field patterns are virtually identical in all three the three arrays were indistinguishable from the bCainwidth

cases. sidelobe level tradeoff standpoint.
The Random array does not satisfy condition iii) because the The development of the extra sidlohe seem% ine itable in the

field pattern for - 40 dB has 13 zeros. Since the field pattern is a general even case. Since the extra sidelobe prevents a uniform
linear combination of the 13 functions in iii), the Chebyshev suppression of all sidelobes, it follows that optimized arrays
condition fails. That the Gauss array fails to satisfy condition with an odd number of elements hase a stbstanjall% better
ii) is not as straightforward. It can be shown that the smaller the character than optimized arrays with an even number of elements.
interval qf approximation, the less the error of the minimax
approximation on that interval. The four given approximations IV. SUMMASt

(Table 11) satisfy the requirements of Chebyshev's theorem A generalization of Dolph's method is applied to six different
(13. theorem 23]) and therefore should be minimax approxima- arrays. Based on these example., it is concluded that optimized
tions; however, the error of these approximations does not equispaced arrays are as good as any other optimized symmetric
decrease with increasing Uo. Hence, the Gauss array cannot line array with the same number of elements atid aperture.
satisfy condition ii). Another conclusion is that arrays with an odd number of

elements have better behavior than arrays with an even number of
111. APPLICATION TO ARRAYS WITH EvEN NUMBER OF ELEMENTS elements.

The chief difference, numerically, between even numbered
arrays and odd numbered arrays is that the field pattern function REFIERNCES

P(u) does not contain the constant I as a basis function because 1l1 C, L Doiph. "A current distribution of broadside arrais %hichoptimize%, the re|3tlon,hip tieccr h jm~idth and alot - Ile-'no element lies at the array center. Mcinardus" result does not Ptm,. IRE thaet Lirein . ol e4. pr 115 14 ns. June 146

apply, and the problem that develops in the even case is that one 121 R. L. Sireit. "Suficent conditions lor the existene ol optimum hcam
patterns for unequall) spaced linear arrjai % ith an esamp:e." 11 LLtoo many sidclobes develops so that not all of them can be 17.-n Antenna, Pr.paiqoi.. o o AP.2.3. pp I 12 It1 Jan 1I7

suppressed. 131 G. Meinardus, Appr..l.k,11n o 4un11 ,ns hi'..-. atl %unu'r,.ul
Alelhitti. News York: Spnrer.%rlag. 97.

The Remes exchange algorithm establishes one linear algebraic 141 M. T. Mj. Th eor. and Appluartn ,/ Antenna Arraw. Nes York:
Wilte-t ntscicencc. 1974.equation for each sidelob and one equation corresponding to a 151 R. L. Sireci. "tUxtremals and oeros in Marko ,sicn, are monotone

point on the mainlobe down at the sidelobe level. Because of functions of one end point.- in Pr,. (-1. on th lhi',rt Appr,.-
nttan. Calgar). Alia.. Canada. 1975. and in Th,,.t ., App.roima..nChebyshev's theorem, there must be at least N equations in New York: Academic. to appear.

exactly N unknowns when the minimax approximation i) has
been found. For arrays with an odd number of elements, there
is never any difficulty because there are always exactly N equa-
tions in N unknowns (13. theorem 301). The difficulty with even
arrays, then, is that eventually it develops that N + I equations
in N unknowns must be solved exactly, and these equations prove
to be inconsistent.

Three arrays which are the 24-element analogs of the same
named 25.element arrays were considered. The Dolph array
satisfied the theorem statement, the Random array did not
satisfy condition iii), and the Gauss array did not satisfy either
condition ii) or iii). The application of the Remes exchange
algorithm to these three arrays proceeded exactly as in Section
Il1, and field patterns with sidelobe levels of - 10 dB, - 15 dB,
and - 20 dB were obtained. Too many sidelobes never develop
for the Dolph array because of the fact that P(mi) must be identic-
ally zero at u = n (i.e.. 0 = 90°). The other two arrays did
not have this feature, so that inevitably a sidelobe appeared at
a = n. For small m0 . this sidelobe either did not exist or it was
small, but for larger mo. the sidelobe at u = n appeared and
increased in size until it equaled in magnitude the other sidelobes.
At this point, the difficulty of the overdetermined system of
equations developed. In consequence, the minimax approxima-
tion i) does not change until uo has increased to the point that
the first sidelobe is included as part of the main lobe. The extra
equation can then be dropped and further reduction of the
remaining sidelobes is then possible. Dropping the first equation
is equivalent to losing control of the first sidelobe. The remaining
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Real Excitation Coefficients Suffice for Sidelobe A standard argument shows that a solution to problem (I)

Control in a Linear Array exists; however, it may not be unique. In general the excita-

tion coefficients w k are allowed to be complex; we now prove

JAMES T. LEWIS AND ROY L. STREIT that a solution of (0) exists with wk all real. First, denoting
complex conjugates by an overbar,

Absrraci--Mlnimax design of a linear antenna array with arbitrary N I
fixed elements leads to the following mathematical problem. max Z ke-

d
u

minimize max I T(u) I
wkcomplex u0  uI 1  N max w4e- idku

subject to T(O) = I where Tiu) = ZA = I %-A exp (-dku) and dA are real N

numbers. It is proven that this problem has a solution with real ma IN;
excitation coefficients %A. In the antenna application this shows that : ax wkei

'd k
s

there is no need to allow phasing at the individual elements of the u Uto I<l k
array; amplitude otrol aloe will achieve all the sidelobe reduction IE N
possible. An analogous result can he proved for a more general = max wkedu

complex approximation problem. u0 I uI<I k=i

The last equality follows from the fact that uo S I-u I< I if

We consider a linear antenna array with N omnidirectional and only if uo < lu I < i; i.e., the range of u is symmetric
elements located at arbitrary fixed positions {XA} receiving about u = 0. Now
a plane wave of wavelength A from the direction 0 , -ir/2 < N

Oa <r/2, relative to a normal to the array. If the array max 1;=(Re w)e-idkU

is steered to look in the direction B1, -i/2 < 01 < i/2. then xU 1 1
the complex transfer function of the beamformer is given by N

N max (wk + ik)e
- 

ik

T(u) = W k exp (-idku) u0 <1u 1 1 kc= 2

" k=Imax 
N

where {'wk} are the element excitation coefficients, dk = 0"4 uo1 a : wke- dk"
2
fXk/),, and u = sin 0 . - sin B,. The coefficients w k may 2 k

be complex in general. The peak response should occur at u = N
0; we make the usual normalization + i max - idku

N 2 JO Z
"(O) = ,w, =. i

k=1 = max Ihd wke- idkufrom above.
To effect small sidelobes we wish to minimize I T(u) I for u0 'IlulI I A=l
lu I ) u where u0 > 0 is chosen small. This guarantees the existence of a real solution of problem

The total range of u depends on the look direction B,. (I) as asserted, since
First, let us consider only the case of the array steered broad- N NN N
side. Thus 81 = 0 and the range of u becomes -I < u < I
corresponding to - I 4 sin Ba < I for -ff/2< ea < ff/2. Hence Wk = I implies (Re wk) = Re wa I.kl k1l Afl

the problem of selecting excitation coefficients to effect mini-
mum overall sidelobe level becomes a minimax problem. We now note that, since I(-u) I = I1u) I =Ifu) I

minimize when wl, -, WN are real, we can further simplify problem

Wk complex max I T(u)I (1) to
u 0 (<uII minimize

subject to wk real max IT(u)l (Ia)
N .,uo~lul~ t

IN subject to
T(O) L wk = I- N

k=l T(O) = W I.

The case where the array is steered through the same number Ass

of degrees either side of broadside is very similar mathemati- Hence, we can find a solution to problem (I) by solving

cally to the case B1 = 0 and is discussed below, the easier problem (Ia). This has important practical implica-
tions for the design of an antenna array. It indicates that

Manuscript received October 30, 1981; revised January 4. 1982. there is no need to allow phasing at the individual elements;
J. T. Lewis was with the Naval Underwater Systems Center, New amplitude of excitation alone will achieve all the sidelobe

London Laboratory, New London, CT 06320 during the summer of reduction that is possible.
1981, on leave from the Department of Mathematics, University of The above analysis was for the look angle B1 = 0. Now
Rhode Island, Kingston, RI 02881.

R. L. Streit is with the Naval Underwater Systems Center, New Lon- let us regard 01 as not being fixed; then the range of u becomes
don Laboratory, New London, CT 06320. -2 5 u < 2. The problem corresponding to (1) withB 1bounded

-143-



IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION. VOL. AP-30. NO. 6, NOVEMBER 1982 1263

away from endfire is

minimize
Wk max I T(u) I

,,.~ul < 2 -u !

subject to

N

7X(0) = , ; --- !. (2)
k.1

As above, we can show the existence of a solution of (2) with
real excitation coefficients wk.

Now, let us consider a more general complex approxima-
tion problem. Let f, hI, '.., hN be continuous complex valued
functions defined on a closed and bounded set Q in the com-
plex plane. (Q can be finite or infinite.) The minimax approxi-
mation problem is

minimize

a* max I z)-- akhk(z). (3)Zr=Q k-i

Here the ak are allowed to be complex. If for all z E Q. f(i)
f(z), hr(i) = hk(z), k = i, "", N and Q is symmetric with re-
spect to the real axis, i.e., W in Q if and only if q in Q, then a
solution of (3) with real coefficients exists. We omit the de-
tails of the verification.

Finally, we note that real excitation coefficients are not
adequate for every use of a linear array or for every pattern
desired. For example, if a null is required in the pattern at a
point A 0 0, the equation T(X4) = 0 would be added to prob-
lem (I). However, now a solution with real coefficients would
not necessarily exist.
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Abstract

Two different constructive techniques for approximating
positive definite functions by means of finite exponential sums are
explored. One technique constructs the coefficients and the
exponents. The other technique constructs the exponents when the
coefficients are all required to be equal. Both approximation
techniques appear to be suitable for numerical computation. The
techniques extend to completely monotonic functions as well.
Error bounds are proved using elementary methods.

In an application, these error bounds can be used to
eliminate some of the effort and guesswork previously necessary
in two procedures for the design and synthesis of sparse broadband
linear arrays.
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Two Exponential Approximation Methods

1. Introduction

Two design procedures for aperiodic, or space tapered, linear arrays are in-
vestigated in this report in a setting much more general than the usual setting. One
procedure, due to Bruce and Unz [11, gives both element excitations ("shadings")
and positions. The other procedure, due to Maffett [2], gives element positions
under the condition that all excitations are unity. Both seek desirable radiation
patterns minimizing grating lobes. These methods synthesize sparse broadband
arrays that are less sensitive to frequency changes than periodic (equispaced) arrays.

Using either of these procedures, the designer must guess the number of
elements required, perform the appropriate numerical computations, examine the
resulting radiation pattern, and then decide if more elements are required or if fewer
elements will suffice. In this report, error bounds are derived that provide estimates
on the number of elements necessary for a given degree of approximation of the
desired radiation pattern. Thus, some of the effort and guesswork inherent in these
procedures can be eliminated.

Neither of these two methods is intrinsically limited to aperiodic array design.
Generalizations turn out to be worthwhile and of independent interest. Therefore,
this report addresses only the general setting from this point on.

A complex valued function f of a real variable is defined to be positive
definite if and only if, for each integer n>1, the inequality

I f(xi-x)ai.ij >0 (1.1)

i~j = I

holds for all x,, . . xn tR (the real numbers) and a,, . a.n. a C (the complex
numbers). Bochner's Theorem states the following: If f is a continuous function on
R, then f is positive definite if, and only if, there exists a bounded non-decreasing
function V on R such that f is the Fourier-Stieltjes transform of V; that is,

f(x) eiox dV(a), XR . (1.2)

The recent paper of Stewart [3] gives references to various proofs of Bochner's
Theorem and its generalizations. We point out, for future use, that (1.2) im-
mediately implies that the total variation of V equals f(O), and for all real x, f(-x)
equals the complex conjugate of f(x). Goldberg [4] proves that any positive definite
function f is such that If(x)I4f(O) for all real x.

In this report, we restrict our attention, for the most part, to continuous
positive definite functions f on R that can be written

f(x) f eiax dV(a), xtR, (1.3)
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for some real number A such that 0 < A < -. In other words, we have assumed that
V(a) is constant for IaI > A. For functions satisfying (1.3), we develop in an
elementary manner an approximation to f(x) of the form

SM(x) = f(O) I ak ei kx  (1.4)

where IakI < A, k = 1. n. We give an error bound for this approximation in
Theorem I. This approximation always gives positive coefficients and exponents
akER that are located at the roots of an appropriate orthogonal polynomial. We
suspect that these approximations are near-optimal in some well-defined sense. (See
Schabach [5, p. 1018] for a relevant conjecture about a particular function f.)

Under various additional assumptions concerning V, we develop an ap-
proximation to f(x) of tht 2orm

f(0) n" eik

Qn(x) = n -I (1 .5)

where Jok1 < A, k -I .... n, and we give an error bound in Theorem 2. The ap-
proximation Qn(x) cannot be as efficient in general as the approximation Sn(x);
however, Q,(x) has the advantage of being much more easily constructed in practice
for almost any reasonable n (say, n < 106).

Note that both the approximations Sn(x) and Qn(x) are readily written in the
form (1.3) and, therefore, are positive definite. Hence, we must have

If(x)-S,(x)l 4 If(x)I + IS,(x)l 4 2f(0), xzR , (1.6)

since S,(O) = f(0). Similarly, it is always the case that I f(x) - Qn(x)j 1 2 f(0).

It will be shown that Prony's method can be used to compute S,(x). Although
Prony's method in this problem must become numerically ill-conditioned for n
sufficiently large, it may nonetheless be useful for small n (say, n 410).
Numerically stable methods for computing Sn(x) suitable for all n would require an
algorithm other than Prony's method. This is discussed at the end of Section II.

The computation of approximations Qn(x) is shown to depend upon the ability
to compute the numerical value of the inverse function of V (guaranteed to exist by
additional assumptions) at specific points. The level of difficulty involved depends
on V, of course, but the interval is finite, so the problem seems to encounter no
inherent numerical difficulties.

An excellent bibliography of references to the literature on exponential ap-
proximation is contained in [6].

Note that if V in (1.3) is continuously differentiable on the interval (-A, A), then
Via) > 0, and

A
f(x) = f ei*N V'(a)do . (1.7)

From the Paley-Wiener Theorem (see, e.g., [7, p. 134]), this equation uniquely
extends the domain of f to all C and that this extension of f is an entire function
of exponential type at most A.

2
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We close this section with a small collection of positive definite functions.
According to [31, Schoenberg proved that fr(x) = exp[-Ixlr ] is positive definite if
and only if 0 < r 4 2, and Polya proved that any real, even, continuous function f
that is convex on the interval (0, oo), that is, f((x + y)/2) 4 (f(x) + f(y))/2, and
satisfies lim -. f(x) = 0, is positive definite. Goldberg [4, p. 61] proves that if f(x)
is positive definite and a > 0, then the function h(x) = f(x) exp (-ax2 ) is also positive
definite. Finally, if the function f has a Fourier transform that is nonnegative and
integrable, then the function f is positive definite. Specific examples of functions
satisfying this latter property are

sin)x
= f eiGx do , (1.8)~-

2(1-cos Ax) = f"eiax (I - -) da
A2 "-A T (1.9)

e-,f = 1 f eiax  do
_ !~ dG: (1.10)

e-ax- eix e-a°/4a da (a > 0)
-~ (1.11)

V12r-v+ f ( 2

J(kx) (21)- ( 2 - a2)v'/2 eiox do (v > - (2Xv  ni/2r(v + 1/)")-,11.2

where Jr(x) is the usual Bessel function of order v. A final example, one that finds
application in antenna design ([8], [9], and [10]), is

cos(/(Ax) 2-a 2 )--f eiaxdV(a) , a0, (1.13)
-A

where V(-A) = -1/2A,

V( a 2 Al J (' ) dt, -1<0<1 ,
_ (A2-t2)'/

V(+k) = 1/2A + limo_, V(a), and where 1,(x) is the modified Bessel function of
order one. This function is interesting because, for IxI > a/A, it has magnitude not
exceeding 1, while for IxI < a/A, it exhibits very rapid growth achieving a maximum
magnitude of cosh(a) at x = 0. Other examples can be discerned in various tables of
integral transforms, such as [11].

3/4
Reverse Blank
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11. Exponential Approximation With
Arbitrary Coefficients

The idea developed in this section for constructing approximations of the form
S,(x) is simply Gaussian quadrature. A glance at equation (1.3) reveals that we are
particularly interested in Gaussian quadrature with respect to the measure dV(a).
From Szegci [12, p. 25], a system of orthogonal polynomials exists for the measure
dV(a) if V(a) has infinitely many points of increase in the interval [-A, -A] and if the
moments

cm= amdV(a) , m = 0,1,2, . . (2.1)

exist. Since V is bounded above, the moments cm certainly exist. If V has finitely
many points of increase, then f can be written explicitly as a finite sum of ex-
ponentials. Although this special case is not uninteresting (in the context of
economizing large finite exponential sums), we will avoid it by assuming that V has
infinitely many points of increase.

Let a, ..... a, be the abscissas and let b,, .... b, be the corresponding Cotes
numbers of the n-th order Gaussian quadrature formula with respect to the measure
dV(a). Since

Sbk=f I dVa) = f(0) ,
k=I -A

we rewrite the Cotes numbers in the form bk = ak f(O), k = 1, . . . , n. Using this
notation, and applying the quadrature formula blindly to (1.3) gives the ap-
proximation

n
"S,(x) = f(0) I ak eiakx , (2.2)

k I

where

0<ak< 1,k = 1 ... ,n (2.3)

a, + ... +a. = 1 (2.4)

lakl < A, k = 1, .. .. ,n . (2.5)

These three properties are immediate consequences of well known results on
Gaussian quadrature. (See Szeg'6 [12, pp. 47-49].) In addition, these properties
imply that Sn(x) possesses good numerical round-off error behavior when the sum is
evaluated numerically.

We seek an error bound such that

If(x) - Sn(x) 1 Rn(x) , xtR . (2.6)

It is clear from (1.3) and the Riemann-Lebesgue Lemma that f(x)-0 as x--. On
the other hand, it is not hard to see from (2.2) that Sn(x) cannot tend to zero as
x--. The most that can be expected is that Rn(x) becomes "small" for any fixed x.
We will show that as n--, Sn converges to f uniformly on any finite real interval.
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Let n > i. For each xtR, let

En(X) = min max eiax - 2n i(O) l , (2.7)

where the minimum is taken over all polynomials n2n-I(a) of degree at most 2n-I
with complex coefficients. We always have En(x) 4 I for all x, as can be seen by
considering the casen 0 in (2.7).

Lemma 1. For n > 1,

L,(x) 4\vT (x) 2n , xtR.
22n-I (2n)! (2.8)

Proof. From a theorem given in (13, p.781, for any real valued function p(a)
defined on the interval [-1, + 11 and possessing n+ 1 continuous derivatives on
(-1, + 1), we have

E(p) min max I p(o)- (o I) I p(1l+IOM 1
-14041 2n(n + 1)!

for some 4, -1 <4Z < + 1, where the minimum is taken over all real polynomials n. of
degree at most n. For p(a) = cos Ax defined for a in the interval [-1, 1] and for
fixed real numbers A and x, we have

E2,-j (p) - (kc) 2n (Cos W1
22n-1(2n)!

(IX)2

2n.-(2n)!

For q(a) = sin akx on [-1, 1], we have similarly

E2n-I (q) 4 (),X)
2n

2 2n-1(2n)!

From the definition of -n(x), we have

E.A) = min maxIeiai - - n2n_(a)l

S{E2n-(p) + Enl (q)} •

Substituting the estimates for E2n-1 (p) and E2n-1 (q) completes the proof.

We remark, but do not prove, that an example in Meinardus [13, p. 961 can be

extended and used to show that for fixed x,

En(X) < (kx)zn ( + o(l)) ,n--
22n-1(2n)!

6
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It seems reasonable to conjecture that this asymptotic inequality is actually an
asymptotic equality. In any event, we use only (2.8) in this report.

Theorem 1. Let f(x) be a continuous complex valued positive definite function of a
real variable such that

f(x) = f el
° dV(&) , xtR, (2.9)

-A

where V is -a bounded non-decreasing function having infinitely many points of
increase in the finite closed interval [-A, A . Then, for each integer n > 1, there exists
distinct real numbers a, . . . .an and real numbers a, ..... a. satisfying (2.3),
(2.4), and (2.5) and the additional condition

If(x) - S,(x) I < V f(0) (AX) 2 . x&R , (2.10)
22n-2 (2n)!

where Sn(x) is given by (2.2). Furthermore, the left-hand side of (2.10) is never
larger than 2f(O) for all xER and every integer n > 1.

Proof. Let l, .... , an be the distinct abscissas of an n point Gaussian quadrature
formula with respect to the measure dV(a), and let b ..... br be the correspond-
ing Cotes numbers. Let the numbers a,, . . . , a, be defined by the relationship
b = f(O) ak, k = i, . . . , n. Equations (2.3), (2.4), and (2.5) are then satisfied. Fix
xtR. Let p*(a) be any polynomial of degree at most 2n-I such that

max ieiax-p*(a)l = in(X)
-,4 a4 A

where cn(x) is defined by (2.7). Then, defining Sn(x) as in (2.2), we have

n

If(x) - Sn(x) 1jf(x) - f(0) I ak P*(Ok)Ik=1

n

+ If(0)±" akP*(ak)-SSn(x)l
k=l

f lei-x - p*(a)IdV(o)

n

+ f(O) I ak IP*(Ok) - eiakxI
k=I

An
f dV(a) + f(O) En(x) ak

A) k= I

= 2f(0) Ln(x).

7
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Since &,(x) 4 1 is always true, recalling Lemma I completes the proof.

Corollary 1. 1. Any sequence of approximations Sn(x), n = 1,2, . . satisfying
Theorem I converges uniformly to f(x) on every finite interval.

Proof. Immediate.

Corollary 1.2. If, in addition to the requirements of Theorem 1, f(x) is real valued,
then for each integer n 1, there exists distinct real numbers /3,, . . . , /n and real
numbers d,, . . . , dn that satisfy

O<dk<1 , k =1....n (2.11)

di + d2 + .. + dn  (2.12)

O<Pk<A , k = 1 .... n (2.13)

and are such that
n

If(x) - f(O) 7- dk cos I]kxI < f(O) (2)n_4n).

k.=1 24n-2 (4n)! (.4

for all xER. Furthermore, the left-hand side of (2.14) is bounded from above by
2f(O) for all xER and every integer n > 1.

Proof. Since f(x) is real valued, by conjugating (1.1) we see that it must be even.
From f(x) = (f(x) + f(-x))/2 and (2.9), we get

AfQx) f cos ax dVia) . (2.15)

Furthermore, the measure dV(a) can be taken to be symmetric about 0. For each
n ; 1, and for each fixed xER, define

?'A) = min max Icos ax - n2n.l(.a),
-A404(A

where the minimum is taken over all polynomials n2n,,(a) of degree at most 2n-l
with real coefficients. Hence, we always have ?n(x) 4 I by considering the case
n2n-l(a ) a 0. From the proof of Lemma 1,

(Ax) 2fl ER
k'(x) < xER

22n-i (2n)!

Duplicating the proof of Theorem I with 2n replacing n gives
-2n

If(x) - f(0) " ak cos akX g 2f(O) ?2n(x)k=1

for the distinct real numbers a,. ..... a2n and real numbers a, .. a2, that are
the abscissas and Cotes numbers, respectively, of the Gaussian quadrature of order
2n with respect to the measure dV(a). These abscissas and Cotes numbers satisfy
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(2.3), (2.4), and (2.5). Since the measure dV(a) is symmetric about zero, it must be
that a, = -O , = -a-i,, etc., and that a, = a,, , a, = a,,-,, etc. Inequality
(2.14) follows immediately by taking dk = 2an, + and/f k = an, k for k = 1,2 .

n. The properties (2.11), (2.12), and (2.13) follow from (2.3), (2.4), and (2.5). This
completes the proof.

Example 1. The real valued function

sin x
fx) = 2 -J eiax dV(a) (2.16)

with V(a) = a, -1 4 a 4 1, is a positive definite function on R. In this case,
Gaussian quadrature with respect to the measure dV(a) is Gauss-Legendre
quadrature. Thus, from the proof of Corollary 1.2, for each n > 1, we have

snx n X4 n

_ Y~lX- dk COS Pkl X <X k=I 24n-2(4n)! (2.17)

where fi,, . . . , Pn are the positive abscissas of a 2n point Gauss-Legendre
quadrature and d,, ... , dn are the corresponding Cotes numbers. This example
and some computation provides one test of the quality of the error term. Let Rn(x)
be the smaller of the two numbers 2f(0) = 2 and

x
4n

- . (,,4n

24n-2(4n)! n (2.18)

From Table 1, it appears that Rn(x) is an excellent error bound provided
lxi << 8n/e. (Table I was computed on a DEC VAX 11/780 on which the double
precision unit round-off error is only 4 x 10-17.)

Table 1. Comparison of (2.17) for n = 10 (8n/e = 29.43)

x R, 0 (x) f(x) -SI0 (x) maxjf(y)-S 0(y)I,

5 .407 x 10-31  underflow underflow
10 .447 x 10-19 underflow underflow
15 .494 x 10- 12  .491 x 10-13  .491 x 10-13
20 .491 x 10- 7  .164 x 10-8  .164 x 10- 8

25 .370 x 10-3  .290 x 10-5  .290 x 10-5
30 .543 .664 x 10-3  .664 x 10-3

35 .200 x 101 .302 x 10-1 .302 x 10-1
40 .200 x 101 .309 .309
45 .200 x 101 .501 .569
50 .200 x 101 -. 364 .569

This section is concluded by showing that Prony's method (see, e.g., [14, p.
378] or [15, p. 340] ) can be used to compute numerically the approximations of
Theorem 1. We need only find the Gaussian quadrature formula of order 2n with
respect to the measure dV(a), which is equivalent to solving the equations

9
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A "= .
Cm amdV(a)=Y bk aTm=0,I,..2n-l (2.19)

A k _l

for bp..... b n ande&, . . . , an. Since a0 must be real, write s, = In a k, if ak # O,
and sk = 0 if ak = 0. The required equations can now be written as

n
Cm = 7 bems , ,m = 0,1, .... 2n-I.

k=I

This form is precisely the form required for Prony's method. (The use of Prony's
method to compute Gaussian quadrature formulas was pointed out to the author by
Marvin J. Goldstein.) In principle, we require 2n quadratures, the solutions of two
systems of linear equations each of rank n, and the roots of a polynomial of degree
n (in this case, all its roots are known to be real, distinct, and have multiplicity one)
to compute one approximation for which Theorem I holds. Unfortunately, it is
known [16] that any procedure that relies upon the moments must become in-
creasingly numerically ill-conditioned as n increases. Fortunately, the use of
modified moments (i.e., replacing the am in (2.19) with some classical system of
orthogonal polynomials) together with an algorithm other than Prony's method
often results in a numerically well-conditioned problem for finite intervals. See [17]
and [181 for details.

10
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Ill. Exponential Approximation With
Uniform Coefficients

The idea developed in this sectic' ror constructing approximations of the form
Qn(x) in which each exponential term cisers the approximation with equal weight is
basically probabilistic in nature. The integral representation (1.3) of f(x) is ap-
proximated by a Riemann sum whose subintervals are equally probable according
to the "probability" measure dV(a). In this interpretation, V(a) is a cumulativc
probability integral that is used to transform n uniformly distributed points in the
range of V(a) into n abscissas on the real line distributed according to the measure
dV(a). (See [19, p. 314] or 115, p. 389].)

Theorem 2. Let f(x) be a continuous complex valued positive definite function of a
real variable such that

f(x) = f el° ' dV(a), xtR, (3.1)

where V is a continuous and strictly monotone increasing function throughout the
finite closed interval [-A, A]. Then, for each integer n > 1, there exists distinct real
numbers a,, .... a n in the open interval (-A, A) such that

If(x) - Qn(x) I< 2V f(O) AIxI/n , xER , (3.2)

where

Qn(X) = f(O) In ei~k(n k x " (3.3)
k=1

Furthermore, from the remark following (1.6), the left-hand side of (3.2) is
bounded from above by 2f(O) for all xFR.

Proof. Let the real number x be fixed throughout this proof. Define, for k =

0,1,2, ... . 2n,

uk = V(-A) + (V(A) - V(-A)) k/2n
(3.4)

vk = V- (Uk).

Under the hypotheses on V(a), it is clear that V-1 exists and is continuous and
strictly monotone on the closed interval [V(-A), V(A)]. Hence, the numbers vk in
(3.4) are well defined and are distinct. It will be shown that inequality (3.2) holds for

ak = V2k , k =1, 2 .... n. (3.5)

Since

V(Vk + I) - V(Vk) = (V()-V(-A))/2n = f(0)/2n , k = 0,1, .... 2n-I , (3.6)

it follows from the definition (3.3) of Qn(x) that

11
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n 2

Q,(x) = " f exp (i v2k Ix) dV(a) . (3.7)
k f 2k-1 .

By the Mean Value Theorem, there exists Ck in the interval between a and v2, such
that

COS ax - COs v'kIlX = -x(a-v 2 k-1 ) sin 4,X . (3.8)

Thus, a < v2k i implies a < Ck < v 2 .-i and v2k_1 < a implies v2k-1 < 4k < a. From (3.1)
and (3.7),

n fv
2

Re(f(x) - Q,(x)) 7 f (cos ax - COS V2k_1 x) dV(a)
k=I V2k-2

-x J (a-v 2k_1 ) sin 4X dV(a) (3.9)
k=I V2k-2

and so, taking absolute values,

iRe(f(x) - Qn(x))] 4 x " j 2k f 1-v2k-1 dV(a)
k=I V2k-2

X lxi k (v2vk_) (V(V2k) - V(V2k_2))k=I

= 21 lxi f(O)/n . (3.10)

where (3.6) was used in the last step. Similarly,

Ilm (f(x) - Qn(x) )1 4 21 lxl f(0)/n. (3.11)

Clearly, (3.10) and (3.11) together complete the proof.

Corollary 2. ). Any sequence of approximations Qn(x), n = 1,2, .... satisfying
Theorem 2 converges uniformly to f(x) on every finite interval.

Proof. Immediate.
9

Corollary 2.2. If, in addition to the requirements of Theorem 2, f(x) is real valued,
then for each integer n ;0 1, there exist distinct real numbers P1, .... 3n in the open
interval (0,A) such that

If(x)- COS PkX1 f(0) Ajxj/nn k=1 f" (3.12)

Furthermore, the left hand side of (3.12) is never larger than 2f(0) for all xER and
integer n I.

Proof. Recalling (2.15), follow the proof of Theorem 2 with 2n replacing n
throughout. Half of the resulting 2n ak'S are positive. Set the Pk's equal to the
positive ak's. The details are immediate. This concludes the proof.

12
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The proof of Theorem 2 requires that V be continuous and strictly monotone
increasing. It is not clear whether the hypotheses on V can be weakened. On the
other hand, the convergence rate of the approximations Q can apparently be
improved by making further assumptions concerning V. In general, however, better
than n-2 convergence rates cannot be expected. Consider Example 1, where V(a)=a
and fix) = x-1 sin x. From the construction indicated in Corollary 2.2, f(x) is ap-
proximated by

1n sin xQ I(x) I cos(2k-l)x/2n =n k=1 2n sin x/2n (3.13)

It can be shown directly that
Ixsinxl sin x -Q(x)I x

24n 2  x 24n 2  (3.14)

and -xsin x
lim n2[x-' sin x - Qn(x)] = 24 (3.15)

Hence, in this example, the correct convergence rate is precisely n- 2 for each fixed x.
We point out that the upper bound in (3.14) and the limit (3.15) follow by a trivial
application of a suggestive result in P6lya-SzegU [20, Pt. 2, Ch. 1, Pr. !11.
Regrettably, their method seems applicable in this application only to the special
measure V(a) = a.

A further example seems to indicate that the convergence rate of the ap-
proximations Qn can lie between n- I and n- 2 .

Example 2. [4, p. 22] Let A be a finite positive real number. Define V for non-
negative arguments a>O by

(a( -a/2) 0 4 a 4 .,
V(a) = {A/2 A<0A,

and for negative arguments by the relation V(-a) = -V(a), a > 0. Thus, V is an odd
function whose derivative V'(a) = 1 - Ial/ A. Obviously, for all x # 0,

f(x) = f cos ax dV(a) - 2(l-cos A x)
-~) A A X2

and f(O) = A. Now V-1 exists on the interval [-A, A] and, for non-negative.
arguments, is given by

V-'(t) = A(l - VrI -2t/A) , 0 (t A/2.

From the construction indicated in Corollary 2.2,

n I" cos[A(l-vi -(k- )/n )x], (3.16)

and

13
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1fQx) - Qn(X)l 4< A2 jxj/n , xER.

This estimate is not even close to the truth. In fact, an examination of Table 2 in-
dicates that for sufficiently large n the best error bound may take the form

If(x) - Q(x) 4 Kx2

(2n)3/2  (3.17)

for some constant K. In general, we speculate that if V- 1 satisfies a Lipschitz
condition of order r, 0 < r 4 1, then the convergence rate is of order I/n' +

Table 2. Inequality (3.17) forx = 10, A = 1, K = 10-2

n Kx2/(2n) 312  f(x) - Qn(X)

5 .316x 10-1 -. 618x 10-1
10 .112x 10-  -. 117x 10- 1
20 .395 x 10-2 -. 153 x 10-2

40 .140 x 10-2 .649 x 10-4

80 .494x 10- 3  .163 x 10-4

160 .175 x 10-3  .907 x 10-4

320 .618 x 10-4  .400x 10-4

640 .218 x 104  .160 x 104

1280 .772 x 10-5  .614 x 10-5

2560 .273 x 10-5  .229 x 10- 5

5120 .965 x 10- 6  .837 x 10-6

10240 .341 x 10-6 .303 x 10-6

20480 .121 x 10-6  .109x 10-6

40960 .426 x 10-7  .389 x 10- 7

14
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IV. Concluding Remarks

The proofs in this report depend heavily on the finite support of the measure
dV(a) even though the construction of the approximations S,(x) and Q,(x) can be
carried out without modification on infinite intervals as well, provided V(a) is
bounded. Since these proofs cannot be adapted for infinite intervals, the ef-
fectiveness of the resulting approximations theoretically remains an open question.
Intuitively, however, it would seem that only our proofs are limited and that the
underlying approximation process is generally valid.

In computational practice the function V is usually unknown. In many cases,
however, the given function f does possess a nicely behaved Fourier transform from
which V can be readily constructed. The Fourier transform of f can, of course, be
computed accurately and efficiently in many situations using fast Fourier transform
(FFT) methods.

If in the above, V was not monotonic, but of bounded variation on R, ex-
ponential approximations can be constructed as follows. In this case, there exist
monotone increasing functions V + and V- such that V = V +-V- . For each A > 0,
define the "bandlimiting" operator BA by

BA f(x) = f4 eio' dV(a) , xER .
-A

Let I be any finite interval. Given t > 0, choose A > 0 so that I If-BAf I<£, where the
norm is the uniform norm over the interval I. Now, let the two functions

B! f(x)-a eiaxdV±(a) , xcR-A

be approximated using either of the methods of this paper by the two finite ex-
ponential sums, say, E ± (x), so that

IIa~f-E±ll<F.

Let E(x) = E * (x) - E-(x) . Since B~f = B' f - B; f , we have

Ilf-ElI = 1I(f-BA f) + (Bf-E+)-(B-f-E-)l

4 Ilf-B fll + II B+f-E~ll + Il Bf-E-lI<3 .

Thus, exponential sums of degree not greater than deg(E+) + deg(E-) may be
constructed to approximate f(x) with specified accuracy on the interval I.

It is well known [4, p. 60] that if f(x) is measurable, then Bochner's Theorem
still holds for almost all x, but not necessarily all x as in (1.2). Results similar to the
results of this report can also be proven for measurable f with careful attention to
certain details; however, this generalization is not pursued here. Similarly,
Bochner's Theorem has been generalized to locally compact abelian groups 14, p.
72], and perhaps the basic approaches to approximation used here can be extended
to this much more general setting.
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We conclude by commenting that Bernstein's Theorem [21, p. 1601 states that a
necessary and sufficient condition for f(x) to be completely monotonic on the in-
terval (0,o ) is that

fRx) =f e-axdV(a) , 0O<x <'
0

where V(a) is bounded and nondecreasing. It is evident that the methods employed
in this report can be used in a manner entirely analogous to the proof of Theorem I
to develop exponential approximations. That is to say, whenever f(x) can be ex-
pressed as

f(x) = e-a% dV(a)
0

for some finite A > 0, there exist approximations of the form
n

Tn(X) = f(O) '" ak e-OkX

k=l

where
ak>0,k = 1,.... n (4.1)

a, + ... + an =1 (4.2)

>k>0 ,k = 1.. .n (4.3)
and

I f(x) - T(x)j 4 2f(0) (Uj) 2 n e- xl2, 0 4 x < co (4.4)
22n

An alternate approach for approximation of completely monotonic functions can
be found in [221.
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FREQUENCY LINE DETECTOR/TRACKERS

Foreword

Hidden Markov models (HMMs) are well known for their application to automatic
speech recognition problems, where they are used to characterize the time variation of short
term Fourier spectra of the broad band speech signal. HMMs are useful outside the speech
application as well. The application of HMMs to the problem of detecting and tracking i
varying frequency lines is presented in detail in paper [13]. One unique aspect of this
approach is that tracks are automatically initiated and terminated as an intrinsic function of
the underlying HMM algorithm For this reason, the tracker is referred to as an HMM
detector/tracker. Another interesting aspect is that the finite state HMM enables the non-
Gaussian nature of the measurement process to be modeled exactly. Papers [14] and [15]
are the first to present the application of HMMs to frequency line detection and tracking.

Papers [16] and [17] describe extensions of the HMM detector/tracker presented in
[13] to include the exploitation of the phase and amplitude information in the received
signal. The inclusion of this information affects the state conditional measurement
likelihood functions, but it does not alter the fundamental character of the HMM
detector/tracker algorithm.

The ability of HMM detector/trackers to estimate signal-to-noise ratio (SNR) is
documented in [18]. The SNR estimation algorithm is a maximum likelihood algorithm,
and it is derived from a variation of the Baum-Welch training algorithm for general HMMs.

Detection performance can be studied by using an HMM as a signal source model,
either matched or mismatched to the HMM of the detector/tracker. The detection capability
of HMM detector/trackers was first studied in this way in [19]. Paper [20] also discusses
the use of HMMs as signal sources.

Various advanced and special purpose computer architectures have been proposed
for implementation of HMMs for the speech application. Paper [21] studies HMM
detector/tracker implementations on the Connection Machine supercomputer.
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Frequency Line Tracking Using Hidden Markov
Models

ROY L. STREIT, SENIOR MEMBER, IEEE, AND ROSS F. BARRETT

Abstract-This paper demonstrates how the problem of frequency function of time. Such an algorithm is designated here a
line tracking can be formulated in terms of hidden Markov models "frequency tracker."
(HMM's). Frequency cells comprising a subset, or gate, of the spectral
bins from FFT processing are identified with the states of the hidden The purpose of this paper is to show that the problem
Markov chain. An additional zero state is included to allow for the of frequency tracking lends itself readily to formulation
possibility of track initiation and termination. Analytic expressions are in terms of a hidden Markov model (HMM). These
obtained for the basic parameters of the HMM in terms of physically models are used in speech applications to characterize the
meaningful quantities, and optimization of the HMM tracker is care- time variation of the short-term spectra of spoken words.
fully discussed. A measurement sequence based on a simple threshold
detector forms the input to the tracker. The outputs of the HMM The basic principles of HMM's are reviewed in Section
tracker are a discrete Viterbi track, a gate occupancy probability func- 11. For more detailed discussions of HMM's, the reader
tion, and a continuous mean cell occupancy track. The latter provides is referred to [5], [6] and to the references cited therein.
an estimate of the mean signal frequency as a function of time. The The HMM's utilized in this paper are comprised of two
performance of the 11MM tracker is evaluated for two sets of simulated basic parts: a Markov chain, and a set of discrete finite-
data and is found to be remarkably good, comparing favorably to re-
sults from inspection of the signal spectrograms. A comparison of the outcome random variables. The Markov chain has a finite
HMM tracker to earlier, related trackers is presented, and possible number of states and is characterized by its transition
extensions are discussed, probability matrix A. The elements of the A matrix are the

probabilities of transitioning between the states of the
1. INTRODUCTION Markov chain. The set of random variables is character-
estima ion ofIO ized by a measurement probability matrix B. The ele-

THE estimation of the frequency of isolated tones ments of the B matrix are the probabilities defining the
embedded in a noise background is a problem that is probability density functions (pdf's) of the finite-outcome

of interest in diverse fields (e.g., seismology, radar, random variables. Each state of the Markov chain is
sonar, radioastronomy, etc.), and is -currently receiving uniquely associated with one of the random variables.
considerable attention in the signal processing literature The relevance of the HMM to frequency tracking is easy
(e.g., see [11-14]). In the case where the frequency of the to see. The range of frequencies over which the track is
tone is changing as a function of time, a related problem allowed to wander is divided into a finite number of fre-
is that of accurately tracking these changes in frequency. quency cells, and each cell is associated with a state of

One obvious approach is to divide the time series into the Markov chain. In addition, a zero state is included to
finite-sized blocks, and to apply one of the many new fre- allow for the possibility of the track wandering outside
quency estimation techniques to the data in each block, the allowed frequency range or terminating altogether.
The result is a sequence of independent frequency esti- The A matrix represents our knowledge, based on past
mates which, if the signal-to-noise ratio (SNR) is reason- experience, of the likely extent of the frequency fluctua-
ably high, provides an accurate estimate of the underlying tions, or of the track terminating, or of it restarting after
frequency variations. However, .as the SNR is reduced, a previous termination. The inclusion of the zero state is
the scatter in the frequency estimates becomes large, and an important feature, and its presence precludes a simple
"outliers," or estimates far from the true frequency track, characterization of track variation as a Gaussian statistic.
become common. A priori knowledge of the extent and The B matrix characterizes the connection between the
rapidity of the likely frequency changes can be incorpo- underlying state at time t and the measurement at time t.
rated into an algorithm that rejects the highly improbable For the HMM frequency tracker presented in this paper,
outliers and produces smoothed frequency estimates as a the measurement takes the form of a detection. A detec-

tion is said to have occurred in a particular frequency cell
Manuscript received August II, 1988; revised March 28. 1989. at time t if the spectral power in that cell at that time ex-
R. L. Streit is with the Naval Underwater Systems Center, New Lon- ceeds a certain threshold D and is larger than the power

don, CT 06320. on leave at the Weapons Systems Research Laboratory,
Maritime Systems Division, Defence Science and Technology Organisa- In all other cells within the allowed frequency range. If
tion, Salisbury, South Australia, Australia. the power in each cell is less than D, a detection in the

R. F. Barrett is with the Weapons Systems Research Laboratory. Mar- zero state is said to have occurred. Since the B matrix
itime Systems Division, Defence Science and Technology Organisation.
Salisbury. South Australia. Australia. connects the underlying states with the noisy measure-

IEEE Log Number 9034283. ments, it depends on the SNR and the nature of the back-
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ground noise. For the HMM tracker presented here, the pdf of the random variable uniquely associated with state
B matrix is computed analytically. The threshold detector i of the Markov chain is denoted by b(z) where z is a
applied in this way results in a measurement sequence that measurement. Let B denote the vector [ bi (z) 1. For finite-
is highly non-Gaussian in character. outcome HMM's, we also use B to denote the measure-

Once the connection between the HMM and the fre- ment probability matrix B = (by] where by = b,(z,) and
quency tracking problem is correctly formulated, the wide zj runs through the finite measurement set. This abuse of
body of existing knowledge on HMM's is exploited to notation should not cause confusion. (What we call a
yield both discrete and continuous tracker outputs. The measurement is referred to as a "symbol" in the speech
highly efficient Viterbi algorithm is used to obtain the literature [5], [6].)
maximum likelihood frequency track, conditioned on a Simulation of an HMM measurement sequence of
given set of measurements. We refer to this track as the length T, given x, A, and B, is straightforward. The initial
Viterbi track; it is the discrete output of the HMM tracker. state of the Markov chain is chosen according to the initial
The forward-backward algorithm is used to compute the state probability vector w. The initial state uniquely de-
mean cell occupancy track and the probability that no fre- termines the first pdf. The -first measurement, say z ( 1),
quency track is present; both are conditioned on the mea- is chosen according to this first pdf. Next, the Markov
surement sequence. These are the continuous outputs of chain transitions to another (or the same) state according
the HMM tracker. to its transition probability matrix A. This state deter-

The HMM tracker presented in this paper minimizes mines the: second pdf, and the second measurement, say
the effect of noise by looking at the overall track time z (2), is chosen according to this second pdf. Continuing
history for global structure. In practice, only a fixed length in this fashion up to time t = Tgenerates the measurement
T of the measured track is utilized; thus, T measurements sequence
are stored before the output HMM track is calculated. It = {z(l), z2), z(T)}. (2.1)
does not follow, however, that the HMM tracker is a fixed
lag tracker with lag T - 1. It is shown in Section III-C It is important to note that the only output from such an
that the HMM tracker can be used as a fixed lag tracker HMM simulator is the measurement sequence ZT. The
with any lag from 0 to T - 1. state sequence of the Markov chain is not an output.

Section III describes the HMM frequency tracking al- From the HMM simulation procedure, it is clear that
gorithm in detail, and discusses how the HMM tracker the total probability of a given measurement sequence is
can be optimized for a particular application. The perfor- the sum
mance of the HMM tracker on simulated data is discussed
in Section IV. Section V compares the HMM tracker and PZI= P[ZrIl] (2.2)
related work by Kopec [71 for formant tracking using
HMM's in the field of speech processing. Two earlier fre- where = { I(1), 1(2), • • , I (T) } denotes an arbitrary
quency trackers described by Scharf et al. [8] and Jaffer Markov chain state sequence of length T, and PIZT I I I

et al. [9] are also based on HMM's, although it was not denotes the probability of ZT, conditioned on knowledge
recognized at the time, and they are also discussed in Sec- of the state sequence. Explicitly, we have (consider the
tion V. Possible extensions of the HMM tracker are dis- simulation procedure)
cussed in Section VI. The conclusions of the paper are
presented in Section VII. P[ZTII] = {,,(I)bJ(,,Iz(1)]}{a(,,).,(2)b,(2 )iz(2)l}

II. ELEMENTS OF HIDDEN MARKOV MODELS "'"( ).(T)b(T)Z(T)] }. (2.3)

A finite Markov chain has a finite number n + 1 of As is intuitively clear from the HMM simulation proce-
states where n - 0, and is characterized by its transition dure, some state sequences I are, in general, more likely
probability matrix, denoted A = [aj I where i, j = 0, 1, than other state sequences to correspond to the given Zr.

,n. Let 7r be the initial state probability vector of the In other words, some terms in the summation (2.2) are
Markov chain. Thus, at the start time t = 1, the proba- larger than others. Since the "true" state sequence cor-
bility that the Markov chain is in state i is wi. The prob- responding to ZT is not observable, we define an optimal-
ability that the chain transitions from state i at time t to ity criterion and use it to select an "optimal" state se-
statej at timet + I is ai wheret = 1,2,3, • • • . Note quence. We define an optimal state sequence to be any
that the transition probabilities aij are independent of time state sequence for which the probability P[Zr I1 is a
t. Markov chains with an infinite number of states are not maximum. Optimal state sequences are not necessarily
considered. unique because the maximum P[ZT I I] may not be

The tracking application presented in this paper re- uniquely attained; however, the HMM's developed in this
quires only HMM's with a finite number of different pos- paper appear to give unique optimal state sequences, ex-
sible outcomes or measurements. However, we also con- cept in situations which are of little or no importance in
sider HMM's with measurements that are arbitrary the application. Other definitions of optimality are possi-
complex-valued vectors because this kind of HMM is use- ble and potentially useful (see [51), but only the definition
ful in some applications (see below in Section V). The above is used in this paper.
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We refer to an optimal state sequence corresponding to The probabilities a,(j) are calculated with the recursion
a given Zras the Viterbi track, denoted Iv[Zr], and to the a,(j) rjbj(z(1))
probability

Pv[ZT] = max PZT I ] (2.4) a,,jj = bjzt) c,( i, t = 2, "",T
.-

as the Viterbi score of ZT. Both the Viterbi track and the (2. 10a)
Viterbi score are easily computed using the so-called Vi- and the probabilities 6,( ) are calculated with the recur-
terbi dynamic programming algorithm. The Viterbi algo- sion
rithm gives the globally optimal state sequence as re-
quired by (2.4). Furthermore, the computational Or(j) =

complexity of the Viterbi algorithm is linear in T, the
length of the measurement sequence. This makes it a very 0,(j) = aib(z(t + )) 0 1 I). (2.10b)
efficient algorithm in many applications. i=0

For a given observation sequence (2.1), the Viterbi al- We define the state occupancy probabilities at time t by
goithm is defined as follows. For t = 1, define

51() =In ~ +Inb~((1), o<~ v(i) = c,(i) 0,(i)/P[IZT] (2.11)6 1,( j ) = In j + In b ( z ( 1 ) ) , 0 < 5 j :5 ns o t aso that

01(j) = arbitrary (2.5) .

and, fort = 2, 3, • , T, define i (0

6,(j) = lnbj(z(t)) + max {5,-(i) + nai} The state occupancy probability y, ( i ) is interpreted as the
0 is, probability that the Markov chain occupies state i at time

(2.6a) t, conditioned on the measurement sequence. We shall see
in Section III how the state occupancy probabilities are

0,(j) = argmax {6, 1 (i) + In aij} used to define the continuous output of the HMM fre-
osi.,n (2.6b) quency tracker.

where the argmax function gives the smallest index i for The computational complexity of the Viterbi algorithm
which the maximum is attained. The Viterbi score is is (n + 1 )2Tadditions if the natural logarithm of the com-

ponents of the B matrix can be stored. If the measurement
PV[Zr] = max {r(j)} (2.7) pdf vector B must be computed for each symbol in ZT,

oSj-,R then the complexity is [(n + 1 )2 + c,] Tadditions where

and the Viterbi track is given by cl is the complexity (measured in units equivalent to ad-
dition) of computing the natural logarithm of the compo-

vIZr] = {Jv(1), Iv(2), , Iv(T)} nents of the vector B for an arbitrary measurement.

where The computational complexity of the forward-back-
ward algorithm is (n + 1) T multiplications if the B ma-

Iv(T) = argmax {4(j)} (2.8a) trix is stored and I(n + 1)2 + c 2] Tmultiplications if the
0 s j n, measurement pdf vector B is computed for each measure-

and for t = T - 1, T - 2, 1, ment in ZT where c 2 is the complexity (measured in units
equivalent to multiplication) of computing the compo-

I(t) = 0,+ i(v(t + 1)). (2.8b) nents of the vector B for an arbitrary measurement. The
imperative need to rescale to prevent underfiow (dis-

For greater computational efficiency, the natural loga- cussed in 16)) requires an additional (n + I) T divisions.
rithms of the components of T, A, and B are usually pre- An important concept in the application of HMM's is
computed and stored for finite-outcome HMM's. "training." In the case when many different measurement

The so-called forward-backward algorithm is used to sequences are known for the same HMM, maximum like-
provide state occupancy information on the hidden Mar- lihood estimates of the model parameters v, A, and B can
kov chain state sequence. We define the forward proba- be computed using the so-called Baum-Welch reestima-
bilities cr,(j ) by tion algorithm. Training is not used for the frequency

a(j) = P[z(), ••z(t) and 1(t) tracker presented in this paper. Further background infor-
[ amarion on HMM's, including a discussion of training, is

i 5 t < T (2.9a) found in [5], 161, 110] and in the references cited therein.

and the backward probabilities 0,(j ) by III. FREQUENCY TRACKING WITH HIDDEN MARKOV

= Pz(r + 1), z(, + 2), .. ,z(T)j1(t) = A MODELS

A permissible frequency track is defined to be any state
I t :s T - i. (2.9b) sequence that is a realization of the Markov chain char-

-173-



STREIT AND BARRETT: FREQUENCY LINE TRACKING USING HUM'S

acterized by v and the A matrix. The states representing prised of the mean cell occupancy (MCO) track, denoted
frequency cells are numbered from I to n and are referred I(t), and the gate occupancy probability (GOP) func-
to as the nonzero states. The collection of nonzero states tion, denoted Go(t). They are defined by
is called the gate, and the gate size is said to be n. The
unique state representing the absence of the frequency Go(t) = I- y,(O) = I y,(i) (3.1)
track is numbered 0 and is referred to as the zero state.
Track initiation and track termination are defined to occur and
whenever the state sequence transitions out of and into the
zero state, respectively. The SNR does not affect the tran- IM(t) = y,(i ).jGo(t) (3.2)
sition probabilities between the nonzero states because
these transitions are related only to possible frequency where the -y, ( i) are the state occupancy probabilities given
track variations inside the gate; however, the SNR does by (2. 11) and theA are the center frequencies of the cells.
influence track initiation and termination. An important Note that the sums in (3.1) and (3.2) do not include the
issue in optimizing the performance of the HMM tracker term i = 0; hence, the MCO track is conditioned on the
is the definition of the row and column of the A matrix track at no time occupying the zero state. The MCO track
corresponding to transitions out of and into the zero state. is continuously variable in the frequency range spanned
This issue is discussed in Section III-D. by the gate. The standard deviation vm(t) associated with

The frequency track is not directly observable, except the MCO track is defined by
at infinite SNR, and is inferred from measured data. The
measurements are random functions of the frequency o2(t) = X y,(i)[j - IM(t)]/Go(t). (3.3)
state, and the pdf's of these random functions constitute ,
the B matrix of the HMM tracker. As discussed in Section The MCO track is undefined whenever the GOP function
I, a simple threshold detector is used to estimate which is identically zero because, in this case, the track occupies
frequency cell, if any, in the gate is occupied by the fre- the zero state with unit probability, i.e., the track has ter-
quency track. The measurements are, therefore, estimates minated. In practice, the MCO track should be terminated
of the state of the Markov chain. By setting a detection whenever the GOP function is near zero. This can be done
threshold D to control false alarms, it is possible to ob- by setting a threshold for Go(t) or by setting a threshold
serve the zero state. The size of D depends on the SNR, for the MCO track standard deviation ou(t). Alterna-
but it also affects track initiation and termination. For ex- tively, the decision can be based on the state of the Viterbi
ample, if D is too large, no detections are made and only track at time t. Examples of the Viterbi track, the MCO
the zero state track (i.e., no track) is measured. Conse- track, and the GOP function are given in Section IV.
quently, setting the detection threshold is an important Once a transition into the zero state occurs, the track is
issue in optimizing the performance of the HMM tracker. terminated. If the track is reinitiated in the gate at some
This issue is discussed in Section III-D. later time, the question arises as to whether or not these

The threshold detector is not the only detector possible, two tracks correspond to the same frequency track. The
but it is one that is commonly used in practice when fre- resolution of this question depends on the particular ap-
quency cells (usually FFT bins) constitute the tracker in- plication and on how much additional information is
put. Besides its simplicity, our main purpose in using the available. It is outside the scope of the present paper.
threshold detector is to show that the HMM tracker is ap- In the remainder of this section, we discuss in turn the
propriate whenever it is possible to estimate (analytically detailed mathematical structure of each of the components
or otherwise) the B matrix from some underlying model of the HMM tracker. The important topic of optimization
of the physical process. The performance of the frequency of the tracker is fully discussed in Section III-D.
tracker is obviously tied closely to the particular detector
selected. A. Definition of the Transition Probability Matrix

The HMM tracker accepts as input a measured track In terms of the A matrix, the probability of track initi-
(i.e., a sequence of measured states) and produces both ation into frequency cell j is given by the transition prob-
discrete and continuous output tracks. The discrete output ability a0j, and the probability of track termination out of
is the Viterbi track or maximum likelihood estimate of the frequency cell j is given by a,0 . For the HMM tracker
state sequence. The Viterbi track is necessarily a valid presented here, it is assumed that the track initiation and
track, i.e., the Viterbi track is a realization of the Markov termination probabilities, denoted u and v, respectively,
chain characterized by it and A. However, the Viterbi are independent of the state j within the gate, i.e., forj
track is not a typical random walk because it is condi- = 1, 2, • • • , n, we have
tioned on the measurements. For example, the Viterbi
track, the true track, and the measured track all coincide ao, = u/n (3.4a)
for infinite SNR. In this paper, the HMM tracker is set up a 0 = V. (3.4b)
so that "smooth" tracks have a higher likelihood than
"rough" tracks at all finite SNR's. If the A matrix is to be a valid transition probability ma-

The continuous outputs of the HMM tracker are com- trix, each of its rows must sum to unity. Thus, from
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(3.4a), we have with amn and normalize the "outer" n - I elements so
a0= - u. (3.4c) that e sums to I - v; denote this vector by cl. If no ele-ment of cl exceeds amin, then stop. Otherwise, replace the

This completes the definition of row and column 0 of the "inner" elements di. - 1, dj, and dij . i of e with am,, and
A matrix. The best choice of u and v depends on the par- normalize the "outer" n - 3 elements so that e sums to
ticular application and, in principle, these parameters can I - v,; denote this vector by c2. If no component of c 2
be determined by training the HMM. Alternatively, in exceeds amin, then stop. Otherwise, continpe the algo-
Section II-D, it is shown how to choose u and v, to op- rithm until a vector, say c, is found whose components
timize the performance of the HMM tracker without train- do not exceed amin. The ith row of the A matrix is then
ing. In this section, however, u and v are treated as free defined in partitioned form by (v, c,). In this algorithm,
parameters. if indexes i < I or i > n are encountered, the correspond-

Let the ith cell in the frequency domain be denoted by ing element is ignored. Note that the A matrix defined in
If, f ]' = 1, 2, nthis fashion is balanced and the transition probabilities ai,

are as nearly equal to the natural probabilities d,1 as pos-

where - co < fl < f2 < ... < f, < + o. The center sible without unbalancing the gate.
frequency Ji of the ith cell is then given by j = ( f +
f, + )/2. If the frequency track lies in the ith cell at the B. Derivation of the Measurement Probability Matrix
current time step, the location of the track at the next time The fact that at a given time the signal frequency lies
step is assumed to be characterized by a Gaussian distri- in a prescribed frequency cell does not necessarily mean
bution with mean !, and standard deviation d where d is a that a detection occurs in that cell. The presence of ran-
measure of the "process" noise. Hence, the probability dom noise can result in some other cell within the gate
that the frequency shifts from the ith cell to thejth cell at fortuitously recording greater spectral power than the
the next time step is g80 where power in the correct cell. Alternatively, if no cell within

the gate records a power greater than the preset threshold
-=1/2 ( - fx'd )21 D, then a detection is registered in the zero state. The B

= (2rd) - /  exp {-(/2)((f - )d df. matrix, therefore, depends on the background noise char-
acteristics, the SNR, and the threshold D. In this section,

(3.5) the SNR and the threshold D are treated as free parame-

Note that gj is not a function of the SNR. ters. How they are chosen to optimize tracker perfor-
The natural definition of the transition probabilities be- mance is discussed in Section III-D.

tween the nonzero states of the Markov chain is It is assumed that the data time series is of the form

a z(to + kT) = A sin [p(to + kT) + El + nk (3.7)
a = (I - v)g.i ga ,  i,j= 1, 2, n.

k I 1,where to is the initial time and T, is the sampling period.
It is also assumed that the signal amplitude A, phase E,

(3.6) and angular frequency p remain constant over the period

However, this definition results in an "unbalanced" gate, NT, which is the data acquisition time for a Fourier trans-
i.e., the diagonal elements dii are not independent of i for form of size N. The noise is taken to be zero-mean and
i > 0. If the gate is sufficiently unbalanced, then in cer- Gaussian in nature so that
tain instances, the Viterbi track can be skewed toward the (nkn)) = 6 so 2  (3.8)
outer cells in the gate. A moment's reflection shows that
the problem is caused by the finite gate size and that fre- where the angular brackets denote an ensemble average,
quency cells at the edge of the gate have the largest self- 6 denotes the Kronecker delta function, and a 2 is the var-
transition probabilities. The problem is not significant iance of the noise.
when the standard deviation d of the process noise is fairly The discrete Fourier transform, denoted x (q), at an-
small compared to a cell width, but it grows progressively gular frequency q of the time series in (3.7), is given by
more severe as d gets larger. N-I

To overcome the unbalanced gate problem, the transi- x(q) = (I/N) F z(to + kT,) exp (-jqkT,). (3.9)
tion probabilities between the nonzero states of the HMM k8o

tracker are derived from the natural probabilities a, and Transforming the complex variable x(q) into polar co-
the termination probability v in the following manner. ordinates gives
Define X(q) = Re" (3. Oa)

am,- = min di,.
I:sis = Ce# + De (3.10b)

Now, for i > 0, elements (a,i, ' • ' , aj, ) of the ith row where (R, q1) denotes the amplitude and phase of )((q).
of the A matrix are obtained from the row vector e = (dj I', The amplitudes and phases of the signal and noise com-

I, as follows. Replace the "inner" element 4,, ponents of X are denoted by (C, 46) and (D, 0), respec-
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tively. From (3.7), (3.9), and (3.10), it follows that fines the B-matrix element Boo. From (3.16), we have

C = (A/2N) sin [N(p - q)T,/2]/sin [(p - q)T/2] D

(3.1la) B ; ,II P2(r) dr

and = [1 - exp ( -D2N/o2)] ". (3.17)

11 (N - 1)(p - q)T 1 2 + pto + - ir/2. It is possible, however, that the random noise contribu-

(3. lib) tion to the time series results in the amplitude in one or
more of the cells being larger than the threshold D. This

The pdf of the amplitude R is given by situation corresponds to a false alarm. The probability of

P(R) = (2RN/o2)1o(2RCN/& 2) a false alarm in the ith cell is given by

. exp [-N(R2 + C 2 )/& 2 ] (3.12) B0 = (1 - Boo)/n, i = I. 2, "" ,n. (3.18)

where I0 is the modified Bessel function. Note that P(R) In the case where a signal is present in one of the cells
is a noncentral Rayleigh density function, within the gate (i.e., m = 1, 2, , n), we have three

The Fourier transform in (3.9) is normally calculated disjoint cases:
only at the discrete values q, i = 1, 2. , n where n 1) a detection is registered in the correct cell (i.e., I =

is the gate size. For a detection to be registered for a par- M);
ticular observation frequency qm, two requirements must 2) a detection is registered in an incorrect cell (i.e., i
be met. First, the amplitude Rm of the Fourier transform * m, i * 0);
at frequency q,, must be larger than the amplitudes Ri , . 3) no detection is registered in any cell (i.e., i = 0).
at all other frequencies qi, ,m within the gate, and second, The probabilities B,,, Bin. ,, .and B,,o corresponding
the amplitude R, must exceed the prescribed threshold D. to these three cases are given by the expressions
IfRi < D for all i within the gate, a detection is registered MI
in the zero state (i.e., m = 0). B,, = PI(r)[l - exp (r2N/2]f - dr

To simplify the problem, we assume the case where the
discrete angular frequencies q, are given by (3.19a)

q, = 2ri/(NT) (3.13) =2

and where the true signal angular frequency p lies close B,, = [1 - exp(-D 2N/a 2)] 0 P1 (r)dr
to one of the qi (say, q,,), i.e., (3.19b)

2m/(NT. (3.14) Bm.im = [I - Bm. - Bm,,l/(n - 1). (3.19c)

Substituting (3.13) and (3.14) into (3.11a), we have in
this case This completes the definition of the B matrix.

C = (A/2)5,,. (3.15) C. The Initial State Probability Vector

Substitution of (3.15) into (3.12) leads to two separate The final component of the HMM tracker is the initial
expressions for the pdf: state probability vector r. The best choice for ir depends

i= m; PI(Ri) = (2NR,/a 2 )Io(ARiN/o 2 ) on the application. For instance, when the entire mea-
surement set Z- is utilized, as in the examples in Section

exp [-N(4R 2 + A2)/(4a2 )] IV, it is appropriate to choose w to be independent of the

(3.16a) measurements. In this case, a good strategy is to force
automatic track initiation by starting in the zero state;

i m; P2(R,) = (2NR/a 2) exp [-NRi/a 2 ]. thus, w, = Ao, for i = 0, • • • , n. Alternatively, r can be
taken equal to the long-term state occupancy probability
vector/u for the A matrix where u is defined by the matrix

Equation (3.16a) describes the pdf of R, in the case when equation ;LA = u. (The vector u exists uniquely and is
the true signal lies in the ith frequency cell, and (3.16b) nonnegative because the A matrix is positive.) In this pa-
represents the situation when no frequency is present in per, however, we utilize the former choice because of its
that cell. simplicity and because it makes the HMM tracker per-

We are now in a position to calculate the various ele- form like a kind of detector.
ments B,., of the B matrix. We consider first the case where In applications where measurements are taken of an on-
there is no signal present in the frequency cells within the going track, it is reasonable to suppose that the measure-
gate (i.e., m = 0). If the amplitudes measured in all cells ment set ZT is comprised of the most recent T measure-
lie below the threshold (i.e., R, < D for all i), then no ments where T is fixed. As indicated in the previous
detection is registered. The probability of this event de- paragraph, for the first data set, the HMM tracker should
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use an initial probability vector that is independent of the looks like uniformly distributed noise in the gate (even at
data. For subsequent data sets, however, iw should be up- infinite SNR). For frequency line tracking, an estimate of
dated so that it is dependent on earlier measurements. In d can be derived from an estimate of the stability of the
effect, the updated ir characterizes the impact of track his- line. If such estimates are not available, the best value to
tory of the HMM track estimates for the current measure- use for d can be assessed by trial and error. Examples in
ment set. We describe two updating methods that depend Section IV show the effect of different values of d on the
on the fact that time t + 1 for the previous measurement output of the HMM tracker.
set is identical to time t for the current set. The simplest The HMM tracker is a time-invariant optimal tracker of
update assumes that the Viterbi track for the previous an intermittent signal that has a specified SNR whenever
measurement set is correct at time t = 1. If Iv( 1 ) denotes it is present. We refer to the specified SNR as the tracker
the state of the Viterbi track at time t = 1, then the ?r SNR. If the true SNR is greater than the tracker SNR, the
update for use with the current measurement set is taken HMM tracker may interpret genuine frequency changes
to be row Iv( I ) of the A matrix. Alternatively, the state in the measurement sequence as random noise so that the
occupancy probability vector 7 2(i) from the previous estimated tracks may be too smooth and may persist after
measurement set at time t = 2 can be used as the r update the true signal has terminated. On the other hand, if the
for the current measurement set. This method is compu- true SNR is smaller than the tracker SNR, the HMM
tationally less efficient than the former method; however, tracker may interpret random noise in the measurement
based on simulated data, it seems to give slightly more sequence as being incompatible with the assumed process
accurate estimated MCO tracks, noise, and the net result may be premature track termi-

The HMM tracker is a fixed interval tracker, i.e., for nation. Both effects may occur if the true SNR is fluc-
each input measurement sequence ZT. the output se- tuating above and below the tracker SNR over the mea-
quence is an estimated track at each time t = 1, 2, • - • , surement sequence ZT. For robust HMM tracking, the
T. When overlapped measurement sets are utilized, as in tracker SNR should be set somewhat smaller than the es-
the preceding paragraph, any time TE in the output HMM timated mean of the true SNR when avoidance of pre-
track sequence can be chosen to correspond to the track mature termination is critical in the application, and
estimate for the current measurement set. For example, greater than this estimate when belated termination is more
we define the GOP function with lag TL = T - TE by important. Alternatively, the tracker SNR can be set by

trial and error just as the process noise standard deviation
Go(t; TE) = 1 - YTr,.(O). d is often selected. Examples in Section IV show the ef-

Similar definitions can be made for the MCO track and fects of different tracker SNR s on the HMM tracker out-
the Viterbi track. If we choose TE = 1, the HMM tracker puts. It is seen that the HMM tracker is reasonably insen-
functions as a fixed lag tracker with a lag TL = T - 1. If sitive to SNR mismatch.
TE = T, the HMM tracker has no lag, i.e., TL = 0. Based To define an optimal detection criterion for the HMM
on simulated data, it would appear that the variance in the tracker and to set the detection threshold, we use the long-
MCO track increases as TE increases from 1 to T; how- term state occupancy probability vector, denoted t = ( t 0,
ever, this subject is outside the scope of the present paper il, " - - , A,) of the A matrix. We then show that, for
and is not discussed further, optimal detection, the threshold D is a function of the

other parameters defining the HMM tracker. The value of
D. Optimization of the HMM Tracker D influences the frequency of occurrence of false alarms

The performance of the HMM tracker is completely de- and false dismissals in the detection process. We define a
termined by the parameters u, v, and d characterizing the false alarm as a measurement (i.e., a detection) in a non-
A matrix and the parameters D and SNR characterizing zero state when the zero state is the true state. Thus, the
the B matrix. However, it is not intuitively obvious how probability of a single false alarm in state i > 0 is B0i.
to go about setting reasonable numerical values for all Since we have assumed that the A matrix characterizes the
these parameters. We propose the following approach. frequency track, the long-term total false alarm probabil-
The process noise parameter d and the SNR parameter are ity PFA is given by
each selected independently of the other parameters in the
straightforward manner discussed below. The remaining PFA= B& = O( 1 - Boo) (3.20)
three parameters, however, are interdependent and are se-
lected by solving three nonlinear equations in three un- where the last expression in (3.20) follows because the B-
knowns. One equation is derived from an optimal detec- matrix rows sum to unity. Similarly, a false dismissal is
tion criterion, and the other two equations are derived defined as a measurement in the zero state when a nonzero
from optimal tracking criteria. All three optimality crite- state is the true state. Thus, if the true state is i > 0, the
ria are discussed below, probability of a single false dismissal is Bi0, and the long-

The process noise standard deviation d is similar to the term total false dismissal probability PFD is given by
process noise term in a standard Kalman filter. The smaller
the value d, the straighter the frequency track is assumed P ABo = (I - uo)BO. (3.21)
to be; the larger d becomes, the more the frequency track P = o
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The last expression follows from the fact that Bio is in- quence is defined by
dependent of the index i for i > 0.

Let a and 0 be nonnegative numbers that add to unity z, = [(n + 1)/2],
and that represent the relative importance (in the specific fort = [T/2] - [La! 2 ] + 1,
application) of false alarms and false dismissals. The er-
ror detection criterion is defined by , [T/2] - [LB/2 ] + LB

CED = ,PFA + ADPD (3.22) z, = 0, otherwise (3.27)

The optimal threshold is therefore that value of D which
minimizes CED; thus, since p is independent of D, we where [x] denotes the greatest integer less than or equal
require D to satisfy to x. This exemplar sequence is comprised of midgate

measurements of duration La in the center of a string of
CED O= + 00 - AO) = 0. (3.23) zero state measurements. Let Gog(t) denote the GOP
aD 3 + D function corresponding to (3.27), with the HMM tracker

For the A matrices used in this paper, it is easy to show, started in the zero state. Intuitively, GoB (t) = 0 at time
using (3.4), that = 1, rises monotonically to some maximum value attime t = T/2, and thereafter decreases monotonically to

Mo = V/(u + v). (3.24) time t = T. The tracker initiation criterion is defined by

Substituting (3.24) into (3.23) and then differentiating Cos = max GoB(t) (3.28)
(3.17) and (3.19b), it follows that the optimal threshold IssT

satisfies the nonlinear equation and its optimal value is defined by CoB = 1/2. With this

F 1_I optimality criterion, the HMM tracker gives a 50% prob-
PI(D) 2 - 1 -ij ability that the exemplar sequence (3.27) is identified as

a aV B I a track by the GOP. In other words, sequences of mea-
exp (-D2N/a2 (3.25) surements in the gate of duration less than LB are treated

by the tracker as likely false alarms, and sequences of

where PI(D) is given by (3.16a). Equation (3.25) can be duration greater than LB are treated as likely new tracks.
solved by a variety of simple iteration procedures, e.g., Similarly, an exemplar tracker termination measure-
the bisection method. Obvious modifications are required ment sequence is defined by
in (3.25) if either nv = 0 or Ou = 0.

An interesting special case of (3.25) occurs for a = z, = 0,
u/(u + v) and # = v/(u + v). The optimal threshold fort = [T/2] - [LE/ 2 ] + 1,
is then independent of u and v and dependent only on the
tracker SNR. For these values of a and 0, the criterion • • • , [T/2] - [LE/2] + LE
CED is physically meaningful because it emphasizes false
alarms when the frequency track is unlikely to be in the z1 = [(n + 1)121, otherwise. (3.29)
zero state (i.e., $L is small) and emphasizes false dis- This exemplar sequence experiences a "drop out" of du-
missals when the track is unlikely to be in the gate (i.e., tis Emplarheqene of a drop ut"moftdu-
A is large). This choice of a and f is not necessarily the ration LE in the center of a midgate measurement se-best choice for the specific application, however, and we quence. Let GoE(tr) denote the GOP function correspond-

best oice ors the speific apt, h o , a ing to (3.29), with the HMM tracker started in state [ (ndo not pursue the matter further here. + 1)/2]. Intuitively, GoE(t) 1 at time t = 0, falls
As the tracker SNR goes to infinity, the ratio Bsi/Bre monotonically to some minimum value at time t = T/2,

goes to zero. Neglecting this ratio in (3.25) gives the sim- and thereafter increases monotonically to time t = T. The
pler approximate expression 2tracker termination criterion is defined by

P(D) = (2nND/a 2)(av/3u) exp [ -D 2N/ a2]. CoE = min GoE(t) (3.30)
(3.26) Is,<

This expression must be solved iteratively for D, but it and its optimal value is defined by COE = 1/2. HMM
does not require the evaluation of integrals as does (3.25). trackers satisfying this optimality criterion give a 50%
The threshold satisfying (3.26) is independent of the probability that the exemplar sequence (3.29) is not con-
tracker SNR, and dependent on u and v. sidered to be a track by the GOP. Thus, sequences of zero

To obtain a threshold from (3.25), we must first specify state measurements of duration less than LE are treated by
u and v. We use the GOP function to define optimal the tracker as likely false dismissals, and sequences of
tracker initiation and termination criteria. We then show duration greater than LE are treated as likely terminated
that, for optimal tracking, the parameters u and v are tracks.
functions of the other parameters defining the HMM Optimal values of u and v are determined by first se-
tracker. An exemplar tracker initiation measurement se- lecting durations La and LE that ate suitable for the spe-
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cific application, and then solving the three nonlinear
equations (3.25), COB = 1/2, and COE = 1/2 simulta- (a)
neously forD, u, and v. This set is equivalent to a system

in only u and v because D is given as a function of u and
v by (3.25) and because d and the tracker SNR are already
specified. CoB and COE are readily computed for any given (b)
pair of (u, v) values using the HMM tracker. Conse-
quently, straightforward iteration procedures can be used Fig. I. The continuous (a) and intermittent (b) true signals used for the

to find optimal values for u and v. In practice, we proceed investigation of the HMM tracker. The frequency cells are marked along

by using the HMM tracker to compute the right-hand sides the y axis and the time divisions along the x axis.

of (3.28) and (3.30) for a small grid of (u, v) pairs after
first computing D using (3.25) at each gridpoint. The grid F , , 'I.

is adjusted by inspection until near optimal values of COB (a) , .
and COE are found. , 'I',. ,

IV. APPLICATION OF HMM FREQUENCY TRACKER TO ¢ / 'r" " ' '

SIMULATED DATA (b) 3", '

The performance of the HMM frequency tracker is
Fig. 2. Intensity-modulated "spectrograms" for the signals of Fig. I. The

evaluated by application to simulated data. The advantage signals are embedded in white Gaussian noise. SNR values of -23.0

of simulated data over real data is that the underlying, and -20.0 dB are used for (a) and (b), respectively.

'hidden" state sequence in this case is precisely known,
thus enabling the objective assessment of the tracker per-
formance. (a) Ilit

For the purposes of evaluation, two sets of simulated
data are generated. Each set consists of a frequency-mod-
ulated sine wave added to white Gaussian noise. The fre-
quency excursions of the modulation spans five of the fre- (b)

quency cells employed in the Markov model. In the
examples considered here, the gate size is set to nine, and
the gate is centered about the mean signal frequency. The
total number of states in the Markov chain is thus ten, (c)
counting the zero state.

The frequency modulation characteristics for the two
data sets are displayed in Fig. 1. The y axis is divided
into the nine discrete frequency cells employed in the
HMM, and the x axis is divided into 100 time steps. The (d)

true signal frequency as a function ot time is indicated by
the cell occupancy track. For Fig. 1 (a), the signal is pre-
sent throughout the total time period, while in Fig. 1(b), Fig. 3. Results of applying the HMM tracker to the data of Fig. 2(a). Pa-
it is present only intermittently. rameters employed are: tracker SNR = -23 dB, d = 0.333, u = 0.24,

Intensity-modulated "spectrograms" for the two data v - 0.016, D = 0.0278. (a) The output of the MCO tracker; the shaded
area contains all the tracks within one standard deviation of the meansets are presented in Fig. 2. The signals of Fig. I are track. (b) The probability of zero state occupancy [i.e., y, (0) = I -

added to white noise and the power spectra of the resultant Go(t)] as a function of time. (c) The measurement sequence; the cells
sums are then calculated. The power spectra are shown as corresponding to the zero state are shown underneath the cells of the

a function of time in the spectrograms of Fig. 2. The SNR gate. (d) The Viterbi track; the cells corresponding to the zero state are
shown underneath the cells of the gate.

values in Fig. 2(a) and (b) are -23 and -20 dB, respec-
tively. The underlying, hidden state sequence is difficult
to discern in Fig. 2. The MCO track is shown in Fig. 3(a). The shaded area

The various outputs of the HMM tracker for the contin- marks the bounds lying one standard deviation estimate
uous signal frequency are displayed, together with the aM(t) on either side of the optimal track. The MCO track
measurement sequence, in Fig. 3. The measurement se- does not directly estimate the possibilities of track initia-
quence, which indicates the cell containing the maximum tion and termination. However, track initiation and ter-
spectral power if the power exceeds a prescribed thresh- mination can be included by defining a threshold on the
old or the zero state if the power in no cell exceeds the MCO track standard deviation or by calculating the GOP
threshold, is shown in Fig. 3(c). The zero state is shown function and setting an appropriate threshold there. The
slightly displaced from the other frequency cells, and in probability of zero state occupancy, i.e., I - Go(t), is
this example remains unoccupied at all times. The mena- shown in Fig. 3(b). This probability starts high because
surement sequence forms the only data input to the HMM the HMM tracker is initialized in the zero state.
tracker. The Viterbi track for this data set is displayed in Fig.
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3(d), and is seen to provide an excellent reconstruction of _ _ _ _ _ _ _ _

the true state sequence of Fig. 1(a). The Viterbi track does (a)

not initiate until three time steps after the start of the data
sequence. The delay is explained by the initiation of the
HMM tracker in the zero state and by the large fiuctua- p/ > / ',-' I
tions in the measurement sequence at the start of the se- (b)

quence. This delay is consistent with the high probability
of zero state occupancy in Fig. 3(b) and the large variance
in the MCO track over the corresponding period. The pa-
rameters used in the HMM tracker for the continuous sig- (c)
nal frequency are listed in the caption of Fig. 3.

The results from the application of the HMM tracker
for the intermittent signal frequency [Fig. 1(b)] are dis-
played in Fig. 4, and Fig. 4(a)-(d) correspond to the anal-
ogous results shown in Fig. 3(a)-(d) for the continuous (d)

signal. For the intermittent signal, the Viterbi track is seen

once again to provide an excellent reconstruction of the ....................
true state sequence of Fig. 1(b). In this case, the capabil- Fig. 4. As for Fig. 3, but for the data of Fig. 2(b). Parameters employed

are: tracker SNR = -20 dB, d = 0.333, u = 0.3. v = 0.0092, D

ity of the Viterbi track to terminate and initiate as the sig- 0.0386.

nal drops out and reappears is clearly demonstrated. From
Fig. 4(a), it is seen that the MCO track follows the true
state sequence closely during the periods when the signal (a)

is present, and exhibits a large variance when the signal
is absent. Similarly, the probability of zero state occu-
pancy is also large when the signal is absent. The setting
of a threshold on the MCO track standard deviation or on
the probability of zero state occupancy could be used to (b)
implement track termination and initiation for the MCO
track. The results would then agree closely with those ob- __ ,_., _._......

tained from the Viterbi track. The HMM parameters used
for these examples are listed in the caption to Fig. 4.

As we have indicated earlier, for optimal performance ... .........
of the HMM tracker, the parameters of the HMM shoulk ...

represent as closely as possible the characteristics of the ......... ........ ......................
line being tracked. The process noise parameter d is a
measure of the likelihood of the track changing fre-
quency. In Fig. 5, the Viterbi track for the continuous (d)
signal is presented as the value of the process noise pa-

rameter d is decreased from 0.667 to 0.167. For the high-
est value of d, the track tends to follow the measurement Fig. 5. The Viterbi track for the data of Fig. 2(a). showing the effects of

sequence too closely, with the result that the Viterbi track varying the process noise d. Values of d are: (a) 0.667, (b) 0.333. (c)

exhibits a fine structure that is not present in the true state 0.222, (d) 0.167. Other parameters are the same as in Fig. 3.

sequence. On the other hand, when d is small, the tracker
fits the measurement sequence by a series of straight line tracker is likely to terminate, even when the signal is still
segments, separated by track terminations and reinitia- present (as the HMM was designed for a stronger signal),
tions. In this case, the tracker finds it less "costly" to and is more likely to follow the measurement sequence
terminate and reinitiate the track than to allow the track too closely (as the HMM attaches an overimportance to
to step to an adjacent frequency cell. We refer to this phe- each measurement). These two modes of behavior can be
nomenon of termination and reinitiation as "punctua- seen in Fig. 6(d).
tion. " The value of 0.333 for d seems to provide the op- The dependence of the probability of zero state occu-
timal track for this data set. pancy on the tracker SNR exhibits a similar range of be-

In Fig. 6, the effect of varying the tracker SNR is in- havior to that of the Viterbi track. In Fig. 7(a)-(d), the
vestigated for the intermittent signal of Fig. l(b). In this probabilities of zero state occupancy are shown for the
case, the SNR of the true signal is -20 dB, and the Vi- same range of HMM parameters as was used in Fig. 6(a)-
terbi track exhibits optimal results when the tracker SNR (d). For a tracker SNR of -25.2 dB. the probability of
is equal to the true SNR. If the tracker SNR is less than zero state occupancy is always less than 0.5 (except near
the true SNR [e.g., Fig. 6(a)], the tracker is less likely to the start of the data sequence) and the Viterbi track ter-
terminate, even when the true signal is absent. If the minates only once. This termination is a punctuation
tracker SNR is considerably larger than the true SNR, the caused by the necessity of reducing the cost of making a
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optimal performance of the trackers is dependent on the
(a) tracker parameters being suitably matched to the signals

under investigation. However, it has been our experience
that even in a case where some mismatch of parameters
is unavoidable (e.g., the tracking of real signals), the two
tracks still provide remarkably good reconstructions of the

(b) underlying signal, and agree consistently with what would
be obtained from careful inspection of the original spec-
trograms.

V. COMPARISONS TO RELATED TRACKERS

.c) A. Formant Tracking

Kopec [7] studies the problem of tracking formants in
speech using HMM's. Formant tracking is similar to fre-

Rquency line tracking, and Kopec's paper and this paper
(d) have much in common. Both papers use finite-state, fi-

nite-outcome HMM's, and both use the same kinds of
states. Moreover, Kopec uses a "distinguished nonnu-

Fig. 6. The Viterbi tracks for the data of Fig. 2(b), showing the effects of merical state" to represent the absence of a formant, just
varying the tracker SNR. Values of the tracker SNR are: (a) -25.2 dB, as we have used the zero state to indicate the absence of
(b) -23.0 dB. (c) -20.0 dB. (d) -17.0 dB. a track in the gate. The different applications, howevet,

require different definitions of the measurement sequence.
(Kopec uses the codebook vectors that result from vector

(a) quantization, whereas we use the frequency state esti-
I- mates of a threshold detector.

....................................... A significant difference between Kopec's paper and our
paper is that he uses the MCO track, but not the Viterbi
track. One reason he rejects the Viterbi track is that his

________________ __ frequency ceils are from 50 to 100 Hz wide, and so any
discrete track estimate is inherently unacceptable. In our

................. application, however, the frequency cells can be made as
small as desired by increasing the FFT resolution. An-

(c) / " -- other reason he does not use the Viterbi track is that it
does not provide a way to define or set a formant detection
threshold. In our application, we are able to define the
HMM tracker so that there is excellent correlation be-
tween zero state occupancy for the Viterbi track and low

(d) \ /./ \ \ \ j values of the GOP function; therefore, there is no neces-
_ _ _ __ sity to set a threshold on the GOP to determine the pres-

ence or absence of the track. Nonetheless, in practice, we
................. would still set such a threshold for the GOP.

Fig. 7. The probability of zero state occupancy for the data of Fig. 2(b).
showing the effects of varying the tracker SNR. The parameter values
are the same as in Fig. 6. The zero state occupancies associated with the B. Relationship with a Dynamic Programming Tracking
Viterbi tracker are also shown for comparison. Method

In a set of earlier papers (e.g., see 18]), Scharf et al.
spurious five-cell frequency change. As the tracker SNR present a dynamic programming method for tracking fre-
increases, so does the probability of zero state occupancy, quency and phase. Although they do not identify it as
until in the region where the tracker SNR is considerably such, their algorithm is equivalent to an HMM using real-
larger than the true SNR, this probability becomes exces- valued continuous measurement vectors. They assume the
sively high, and spurious terminations occur in the Viterbi frequency is constant for the duration of each block of
track. time series data, and then allow a transition to another of

From the data shown in Figs. 1-7, it is apparent that a set of discrete frequencies. These discrete frequencies
both the Viterbi and MCO tracks provide very good re- correspond to the states of the underlying HMM. They do
constructions of the hidden, true signal behavior. The two not, however, include a zero state to indicate the absence
tracks are mutually consistent. Track termination and ini- of a signal. They use the Viterbi track exlcusively and do
tiation capabilities are intrinsic to the Viterbi track and, not discuss the MCO track.
can be built into the MCO track Figs. 6-7 indicate that The fundamental equation of Scharf et al. is the loga-
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rithmic likelihood function, denoted LLF, which is given Doppler, and the other is passive sonar tracking of Dopp-
by ler and delay.) They also give a detection statistic that

T T they claim enhances signal detection despite target mo-
LLF = - 1 (l/2a,)1z, - s,12 + lnp(x, Ix,_), tion, but do not present examples of its use or discuss the

,i false alarm rates that might be anticipated.
(5.1)

VI. POSSIBLE EXTENSIONS OF THE HMM TRACKER
Here { 1, .t. }dentesa squece f dscrte re- It is seen in Section IV that the HMM tracker is an

quency states, the vector z, is a block of time series data exceen algorit or frqueny lie track ided

commencing at time t, the vector s, is the complex expo- excellent algorithm for frequency line tracking, provided

nential signal vector corresponding to a frequency x,, and that the underlying HMM is optimized for the line under

a, is the standard deviation of the random background study. A number of extensions to the present work that

noise at time t. The measurements in the HMM of Scharf could enhance the performance of the HMM tracker even

et al. are the observed time series data blocks; thus, the further are now discussed.

first term in the LLF is equivalent to the B matrix in the In the application of HMM's to speech processing, the

HMM, and the second term in the LLF is equivalent to training of HMM's is a well-established concept. Train-
the A matrix of the HMM. The dynamic programming ing is mentioned briefly in Section II, but it is unnecessaryalgrithe A atSof he H. Teednai por raxim ming ( for the analyses carried out here for simulated data. With
algorithm that Scharf et al. present for maximizing (5.1) real data, however, training the HMM will enable the de-
is equivalent to the Viterbi algorithm (2.5)-(2.6). termination of the optimal values of the A matrix, B ma-

C. Bayes-Markov Tracking trix, and ?r for the line being considered. These parame-

Jaffer et al. [9] present a recursive Bayesian technique ters are likely to depend on the SNR, and on the nature

for tracking dynamic signals in noise. Although they do and amplitude of the frequency modulation of the line.

not present it as an HMM, their technique is equivalent Suitable training of the HMM should result in better fre-

to a finite-state HMM using real-valued continuous mea- quency tracking for real data.

surement vectors. It uses a one time-step recursion to up- Extending the present tracker to include the possibility

date the posterior pdf of the state conditioned on the mea- o more than one line being present in the frequency gate
sure daa, ut i dos nt teat equnce of would enable the tracking of lines whose frequencies aresured data, but it does not treat sequences of close together, and would include the possibility of fre-

measurements collectively. The MCO track, if used with

zero lag, is similar to the tracker of Jaffer et al. quency tracks crossing. One implementation of such an

Jaffer et a!. define the states of their model to be FFT extension is to allow multiple detections when the spectral

resolution cells just as we have done, but they do not de- power in more than one frequency cell lies above the de-

fine a zero state to denote the absence of a signal. A mea- tection threshold D. Each state is then no longer uniquely

surement is a (real) vector whose components are the associated with a frequency cell or the zero state, but de-

magnitudes of the output FFT's in the resolution cells. scribes one of the following possibilities: 1) no detection
Let P [X, = j IZ, denote the posterior pdf of the signal in any frequency cell, 2) a detection in only one frequency

t s n cell, or 3) detections in two (or more) frequency cells.

sequence Z,. The fundamental equation of their method The A and B matrices would have to be reformulated in a

(neglecting scale factors) is manner consistent with this interpretation.
The concept of an HMM state can also be extended to

nincorporate both the frequency and its time derivative. The
P[X =jjZ,] = b(z, IX, = j) aiP[X,-I = ilz,-I] advantage of such an extension is that the dynamic char-

(5.2) acteristics of the line tracks can be more completely rep-resented by the A matrix, with a consequent improvement

where b(z, IX, = j) is the pdf of the current measurement in the tracker performance; the disadvantage is that the
vector z, conditioned on state j. Using Bayes' theorem, number of states is increased by a factor equal to the num-
they show that ber of time derivative resolution cells, with a consequent

increase in the required computing time. The proposed
b(z,IX, = j)= fS+N(z(j))/fN(z(j)) extension would enable a more meaningful comparison of

where fs+ N(z(j )) and fN(z,(j )) are the signal-plus- the HMM tracker to existing alpha-beta and Kalman
noise and noise only pdf's, respectively, of the data in trackers (see, e.g., [I 1]-[13]) which typically use a track
cell j. They define the initial state probability vector to be derivative model.
uniform. Bayes' theorem can be used to show that (5.2) The examples presented in Section IV are investigated
is identical to one step of the HMM forward algorithm using a finite-time window of length T = 100. The pos-
(see (2.10a)). sibility of sliding windows is discussed in Section III-C.

Jaffer et al. do not explicitly define the A matrix, but For frequency tracks that change substantially in fre-
the kind of matrix they have in mind is clear from the quency over a long time, it would clearly be computa-
context and from the two interesting examples they pre- tionally advantageous to employ smaller windows and an
sent. (One example is pulsed radar tracking of range and "adaptive" gate whose center freiluency and width
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change as the window slides over the data sequence. The estimators for underwater acoustic data," J. Acoust. Soc. Amer.. vol.

use of an adaptive gate, combined with the treatment of 79, pp. 1461-1471, May 1986.15 L. R. Rabiner and B. H. Juang, "An introduction to hidden Markov
multiple tracks within a gate, would significantly extend models," IEEE ASSP Mag., vol. 3, pp. 4-16. Jan. 1986.
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tracker could be the instantaneous frequencies obtained tions of Markov chains," Ann. Math. Statist., vol. 41. no. I. pp.
from a Wigner-Ville time-frequency analysis of the data. 164-171, 1970.

[II] T. R. Benedict and G. W. Bordner, "Synthesis of an optimal set of
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Contr., vol. AC-7. pp. 27-32, July 1962.
In this paper, the application of HMM's to the problem [12] Y. Bar-Shalom and T. E. Fortmann, Tracking and Data Association.
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113] R. F. Barrett, A. K. Steele. and R. L. Streit, "Frequency line track-
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I INTRODUCTION statistical analysis. At high SNRs adequate
comparisons can be made using simple error measures

The problem of producing accurate target tracks (e.g. rims tracking error) on a few data sets, but

from noisy measurements is of great current at low SNRs. such measures can be misleading and
interest for the automation of signal processing one must resort to ensemble statistical measures of
systems. Trackers are classified as either linear tracker performance. Such statistical performance
or nonlinear systems. Examples of linear trackers comparisons are especially important when

are the alpha-bete and Kalman trackers. Examples discussing track initiation and track termination.
of nonlinear trackers are the probabilistic data
association (PDA) and hidden Markov model (HMM) 2 DEFINITIONS
trackers. This paper deals exclusively with these
two nonlinear trackers. In this paper, we treat the problem of tracking the

time variation of the instantaneous frequency of an
Linear trackers estimate the track using simple isolated tone embedded in additive white noise as a
deterministic or statistical dynamic target motion post-detection process applied to the evolving
models to develop filters for the target position short term Fourier spectra of the sampled time

estimates. The problem with linear trackers Is that series. Separating the tracking problem from the

they are sensitive to outliers and false detection problem can lead to suboptimal tracking
measurements. The nonlinear PDA methodology can be performance. but it is an approach commonly used in
applied to (single input) linear trackers to practice.
overcome the problems caused by outliers and
multiple input measurements. Application of the PDA The choice of detector is important because the

methodology to the Kalman tracker results in the output of the detector determines the tracker input

PDA-Kalman tracker studied in this paper. measurements. Throughout this paper we use a simple
threshold detector because of its widespread usage

The 0434 tracker, which Is a recent development, and ease of implementation. No interpolation is

models the target measurement sequence as a employed to smooth the intrinsic quantization
probabilistic function of a Markov chain. The effects of this detector because interpolation Is
states of the Markov chain define the target not justified at low SNR. Other well known
states, and the transition probability matrix of problems associated with the threshold detector are

the Narkov chain defines possible target motion, outliers (false detections) and missed detections.

The probabilistic function describes exactly the These problems cause serious tracking errors In
non-Gaussian nature of the measurement process. The linear trackers; however, as the examples will

340 tracker provides a unified mathematical show, our PDA. 300 and 340/A trackers are robust

framework for describing important tracking problem against outliers and missed detections and are
issues. In particular, the 340 tracker initiates capable of tracking down to the input quantization
and terminates tracks automatically as an intrinsic level.
feature of the tracking algorithm. It does this by
incorporating a special state into the I4arkov chain All the trackers considered here can, In principle,

to designate the absence of a target. The 3430 accept multiple measurements as inputs i.e.. the
tracking algorithm Is equivalent to a sequence of tracker input Is the set (possibly empty) of centre

matrix-vector products. frequencies of all FFT cells whose amplitude
exceeds the detection thresholds however, if the

A new development Is the 3430/A tracker which Is a detection threshold is not exceeded, no frequency

H430 tracker that also uses the amplitude of the measurement is made for the current scan, or block

input measurements as additional information. The of time series data. On the other hand, the tracker

inclusion of amplitude information does not input can be a single measurement. i.e. the FFT

significantly Increase the complexity of the HM4/A cell having the largest amplitude if the amplitude

tracker over that of the H310 tracker. The H310/A exceeds the threshold. :

tracker Is the only tracker In this paper that uses
amplitude information. (For a discussion of the The PDA trackers considered here use either single

performance of the H304/A tracker as a signal or multiple measurements and ignore the amplitude

detector see Barrett & Streit, 1989.) of the measurements. The only H0 tracker

considered here accepts just single measurements,

This paper compares the PDA, H1. and HHt/A while the only H10/A tracker uses single

tracking algorithms when used for frequency line measurements together with their associated

tracking on two different simulated data sets. amplitudes.

These examples (and others not given here) show
that quantitative comparisons of the frequency line 3 PROBADILISTIC DATA ASSOCIATION TRACKING
tracking algorithm (FLTA) require careful

We present PDA as a method for converting a single-
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Input-single-output (SISO) tracker into a multiple- track within the gate, are therefore governed by
Input-single-output tracker. PDA assumes that only the transition probability matrix. A, of the markov
one of the multiple input measurements corresponds chain.
to the target being tracked. It further assumes
that measurements In the next scan will be normally Measurements of the frequency track are
distributed with the mean and eovarlance predicted characterlsed by a detection probability matrix. B.
from the current scan. PDA is thus applicable to Thus, for each possible target state, the threshold
any SISO tracker in which measurement mean and detector outputs are measured target states with
covariance at the next scan are predicted. probabilities that are computed analytically from

the SNR and the threshold. The SNR assumed for

Track input measurements are gated. thus creating this 8-matrix calculation is called the tracker
the possibility of false dismissal of the target SNR; In effect, it is the lowest SNR at which
measurement. Using the PDA assumptions, the tracks are initiated and estimated.
probability of false dismissal is easily evaluated.
The usual gated PDA method uses a variable gate to The H00 tracker is fully specified by the A- and B-
achieve constant probability of false dismissal. matrices, together with the Initial state
For the FLTA, we use a fixed gate so the false probability vector yr. Initially.1r corresponds to
dismissal probability varies from scan to scan. a target In the zero state. This forces automatic

track initiation. If the tracking window slides
Let ai be the probability that the i-th measurement along as new data are collected.1l' is updated using
corresponds to the target, and let a0  be the current 100 tracker output.
probability that none of the measurements
corresponds to the target. Similarly. let f, be The HMM/A tracker cannot utilize a B-matrix because
the track frequency estimate generated by using the amplitude is a continuous quantity. Instead, it is
i-th measurement in the underlying SISO tracker, necessary to compute the likelihoods of the
and let f0 be the predicted track frequency when no measurements, conditioned on each possible target
measurement is made. Then the PDA tracker output state. There are a finite number of states, so
is given by these conditional likelihoods can be stored as a

matrix.
N

fPDA " Soto o i a (1) The HMM and HMM/A trackers output both a discrete
(quantised) track and a continuous track. The

quantised track is the Viterbi track; i.e.. of all
where N is the total number of detections in the possible tracks (realisations of the Markov chain).
gate. For the PDA Kalman tracker, the error the Viterbi track is the one most likely to account
covarLance associated with fPDA is also computed for the measurement sequence. The continuous track
(Bar-Shalom & Fortmann. 1988). and it is used with is essentially the expected track, with the

fPDA to make the measurement mean and covariance expectation taken over all possible realisations of
predictions in the underlying SISO Kalman filter, the Markov chain. Strictly speaking, the expected
The probabilities (ai) are easily computed and track Is conditioned on the track not occupying the
require only the evaluation of a truncated Gaussian zero state, as well as on the measurements. The
density function. The nonlinear dependence of all total probability of the zero state track
PDA trackers on the measured track input data is (conditioned only on the measurements) at each
due to the nonlinear dependence of the point in the window is thus a necessary complement
probabilities (ai) on the data. to the continuous track estimate. The gate

occupancy probability (GOP) is defined as one minus
4 HIDDEN MARXOV ODEL TRACKING the probability of the zero state track, and it is

the GOP that is plotted in the examples in the next
1004's are probabilistic models that are commonly section.
used in speech applications. Their utility in
tracking applications seems not to be recognised in The discrete output of the H00 tracker is computed
the general literature, except for a paper by Kopec using only n

2
T additions, while the continuous

(1986) who uses them to track formants, or output uses n
2
T multiplications, where n Is the

resonances, in spoken words. The 1M0 tracker number of Narkov chain states and T is the number
presented in this paper is similar to Kopec's of scans in the window. The discrete and continuous
formant trackerl however, the FLTA application algorithms are easily vectorised. Similar remarks
permits the analytical development of the hold for the 1004/A tracker once the necessary
parameters defining the underlying I00. conditional likelihoods have been computed.

The 100 tracker is a fixed Interval FLTA; i.e.. It S. EXAIPLES
takes a fixed length sequence, or "window", of
measurements and outputs a track estimate for each The simulated data were obtained by generating a
time in the window. By sliding the window along as sine wave triangularly swept in frequency with a
new data are collected, the track estimate evolves period of 132 scans, a centre frequency of S, and a
in time. Alternatively, one may simply increase maximum deviation of 3. Uncorrelated noise is then
the window size. Either way, the H0 tracker is added to the sine wave, Fourier transformed, and
used only to compute the output track estimate for then passed to a threshold detector. One hundred

each given tracking window. The quantised scans of the output of the threshold detector are
frequency track is modelled as a finite state then used as the input for the various trackers.
Markov chain. A "faded" or "zero" state represents The signal is absent until scan 15 when the SNR is
a track whose SNR is less than the tracker SNR (see increased instantaneously to 3 dB (in an FFT cell).
below)s the remaining "active" states represent a The SNR is kept at that level until scan 79, when
track occupying an FFT cell inside a fixed gate and the signal ceases. All the trackers use a gate
having an SNR greater than the tracker SNR. Track width of 9 FFT cells.
initiation is defined as a transition from the
zero state to any active state, while track Figure I illustrates the cell occupancy of the true

termination is defined as a transition from any track. This track was obtained using an H10

active state into the zero state. Initiation and tracker, with data similar to that above, except
termination of tracks, as well as movement of the that the SNR was increased until no false
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detections were obtained when the signal was an optimization procedure will require the

present. The track Initiates out of and terminates development of ensemble statistical tracker

into the zero state which is Indicated by the dots performance measures which could then be used to

appearing in the window below the 9 active states compare the performance of different trackers. This

In the gate. Note in this figure the last three is the subject of future work.

scans for which the signal is present. Any tracker

will have difficulty tracking these three The input measurement data used for the 100 and

measurements. H4M/A trackers are different even when they

originated from the same dsta set. This arises

....... because of the different detection thresholds used

-= ..... .. 'j for M0 and 1004/A. A finite detection threshold Is
IdkS. U essential for the proper operation of the 1004

tracker since the threshold level is an input to

-1 .the HH algorithm and indicates the significance of
0 I0 20 30 50 50 60 70 60 90 100 an Individual detection. For these examples the

SCAN NUMBER best threshold for the 100 tracker was found to be

FIGURE 1. Track output at high SNR. 1.8 times the average noise level. For the H00/A
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o,.. . . ,.. . S. . -.. ..
0 0

4...q * ". ". 1 1 ."" I." i- i.•

C,

07 . .. • °
,-'-..

s -... • A A A ... .. . I ' %
• ........ . . ..

_____o ___o ___o ___o________o_ .0.. o 300zo 0 10 20 30 'do so 60 70 30 90 IO

SCAN NUMBER SCAN NUMBER

FIGURE 3. Input data, discrete track output 9 GOP FIGURE 5. Input data. discrete track output 9 GOP

for 3004/A tracker; data nst 1. for 104H/A tracker; data set 2.

Figures 2-5 show the input data, the discrete tracker, the significance of each measurement is

(Vlterbi track) output, and the gate occupancy contained in the amplitude information. Raising the
probability of the 100 and P.04/A trackers using the detection threshold In this case therefore tends to

two different data sets. For the first data set reduce the Information available to the tracker,

both the trackers initiate early due to spurious and the threshold is best kept small (Barrett &

data. but the H0M initiates in the correct state Strait, 196).
while the 3.04/A does not. Both tracks terminate

three cells early. For the second data set, the 100 Figures 6-9 show the input data, the track output,

fails to track the variation, but this Is hardly and the logarithm (base 10) of the estimated
surprising when one looks at the input data. The covariance of the frequency estimate for PDA

3*64/A on the other hand has additional Information, trackers that use single and multiple gate
viz. the amplitude of the measurements, and this measurements for the same two data sets. Note that
information is critical to good tracking in this even for a single data set there are slight

data set. The H04/A initiates correctly, but differences in the single gate measurement input

terminates six scans early. data used for the PDA and 3004. This is due to the

use of different detection thresholds. It was not

Figures 2-5 show very clearly the effects of possible to find a common detection threshold for

statistical variations between the two data sets use with both PDA and HH0 because PDA required a

which can result in significantly different higher threshold than 340 for successful tracking.

performances. This shows that both the H30 and

300/A trackers need to be optimized for good The PDA tracker implemented here is a causal

performance in the ensemble statistical sense. Such tracker. I.e. has no lag, and consequently one
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expects some delay In following dynamic track CONCLUSIONS
variations. The reluctance of the PDA tracker to
change state resulted in tracks that lingered in The development of ensemble statistical tracker
the wrong state for up to five scans before performance measures must be accomplished In order
switching to the correct state. The severity of to:
this problem might be reduced by putting some lag (1) optimlse the tracking performance of any
into the PDA tracker (Hahalanabl. Prasad a Garg. tracker, especially the HMDl and HMN/A
1986). trackerss

(1i) provide a basis for comparison of all
The most significant problems with our PDA tracker frequency line tracking algorithms and
are the issues of track Initiation and track (1ii) provide a means of comparing the automatic
termination. In these examples the tracker was track initiation and termination
initiated In cell five, but the signal did not characteristics of different algorithms.
exist so the tracker followed noise until scan iS. These issues are especially important at low SNRs
Similarly, the tracker followed noie aftcr the because then only ensemble statistical tracking
signal terminated after scan 79. When the PDA behaviour is meaningful.
tracker Is following noise one would expect the
covarlance of the frequency estimate to be large. Our PDA algorithm as currently configured cannot
However, as can be seen In these figures there is satisfactorily initiate or terminate a track using
no way to set a threshold on the estimated FDA covariance estimates. The I04H and H4/A
covariance that would satisfactorily indicate the trackers appear to offer significantly Improved
presence or absence of a signal. capabilitles in this ares, but ensemble performance

measures are necessary to quantify track initiation
The multiple gate measurement PDA tracker shows and termination in a meaningful way.
little evidence of greater stability over the
single gate measurement PDA for those two data From the discussion of the examples it is clear
sets. However, other date sets have shown that that the incorporation of amplitude Information
multiple measurements appear to give some into our PDA tracker could offer some improvement
robustness to the PDA tracker, making it less in performance. On the other hand the incorporation
responsive to outliers, but at the cost of of multiple gate measurements into both the 104 and
rendering it somewhat less responsive to state i40/A trackers could also enhance their

changes. performance. These extensions to our trackers would
make them more directly comparable.
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Finally, the incorporation of phase information Bar-Shalom. Y. and Fortmann. T..(1980). Tracking

into FLTAs is a most promising way of improving and Data Association. Orlando. Florida. Academic

their performance. Similarly, the incorporation of Press.
derivative information Into @IM based FLTAs should
improve their performance because of better signal Kopec. G.E. (1986). Format tracking using hidden

modelling. Karkov models and vector quantisation. IEEE Trans.
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1. INTRODUCTION
This paper has several purposes. The first purpose is to compare via

simulation the performance of six different frequency line tracking
algorithms (FLTA's) when used in conjunction with a simple threshold
detector. The second purpose is show that the probabilistic data
association (PDA) method for handling multiple detections is not limited
to the Kalman filter context in which it has hitherto been presented. In
particular, we present a PDA alpha-beta tracker that handles multiple
detections without sacrificing algorithmic simplicity. The third purpose
is to discuss a new tracker based on hidden Markov models (HMM's). An
important and intrinsic feature of the HMM tracker is that it initiates
and terminates tracks automatically.

In this paper, we treat the problem of tracking the time variation of
the (instantaneous) frequency of an isolated tone embedded in additive
white noise as a post-detection process applied to the evolving short term
Fourier spectra of the sampled time series. Separating the tracking
problem from the detection problem can lead to suboptimal tracking
performance, but it is an approach commonly used in practice.
The choice of detector is also important, but throughout this paper we

use a simple threshold detector because of its widespread usage and ease
of implementation. No interpolation is employed to smooth the intrinsic
quantization effects of this detector because interpolation is not
justified at low SNR. Other well known problems associated with the
threshold detector are outliers (false detections) and missed detections.
These problems cause serious tracking errors in the conventional trackers
studied in this paper; however, as the examples will show, PDA trackers
and the HMM tracker are robust against outliers and missed detections and
are capable of tracking down to the input quantization level.

The three conventional trackers studied in this paper are the alpha-beta
[1], Kalman [2), and fixed lag Kalman smoothing trackers [3]. Each
requires as input a single detection. The tracker input is the centre
frequency of the FFT cell with the largest amplitude; however, if the
detection threshold is not exceeded, no frequency measurement is made for
the current scan, or block of time series data.

The two PDA trackers studied in this paper are the PDA alpha-beta and
the PDA Kalman [4) trackers. (A PDA fixed lag Kalman smoothing tracker is
also possible [5), but we have not yet implemented it). All PDA trackers
accept multiple detections as input; i.e., the tracker input is the set
(possibly empty) of centre frequencies of all FFT cells whose amplitude
exceeds the detection threshold.
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The last tracker studied in this paper is the HMM tracker [6]. It can
accept as input either multiple detections or the strongest detection;
however, the version studied here uses the same input as the conventional
trackers mentioned above. It is unique among the trackers studied in this
paper in its ability to initiate and terminate tracks automatically.

2. BRIEF DESCRIPTION OF THE TRACKERS
2.1 The Conventional Trackers

The conventional tracking algorithms accept a single input frequency
measurement and generate two output gquantities: the track frequency
estimate f and the time derivative f for the current scan. The
mathematical form of the track dynamic models assumes that f is constant
over the scan update interval, a reasonable assumption if the change in f
over the scan update interval is small. The two Kalman trackers modify
this simple dynamic model for f by corrupting it with additive Gaussian
process noise; however, the alpha-beta tracker does not explicitly include
a process noise term. Process noise accounts for mismatch between the
assumed track dynamic model and true track dynamics. The fixed lag Kalman
smoothing tracker [3] differs from the other two conventional trackers in
its utilisation of track measurements from scans in advance of the (fixed
lag) estimation point to improve the output track estimate.
The problem with conventional trackers is that they are linear systems.

Consequently, their response to outliers is governed by their impulse
response function, while their response to missed detections is by
comparison much less important. Outliers and missed detections are common
at low SNR, so optimising a conventional tracker is essentially equivalent
to optimising its impulse response function. One way to avoid the impulse
response function issue is to avoid trackers that are linear functions of
the measurement sequence. The PDA trackers and the HMM tracker discussed
below are nonlinear systems, and their response to outliers is much
superior to that of the conventional trackers.

2.2 The PDA Trackers
We present PDA as a method for converting a single-input-single-output

(SISO) tracker into a multiple-input-single-output tracker. PDA assumes
that only one of the multiple input measurements corresponds to the target
being tracked. It further assumes that measurements in the next scan will
be normally distributed with the mean and covariance predicted from the
current scan. PDA is thus applicable to any SISO tracker in which
measurement mean and covariance at the next scan are predicted.

The conventional Kalman tracker predicts the target state and error
covariance, and the predicted measurement mean and covariance follow from
the general Kalman system equations. On the other hand, the alpha-beta
tracker predicts the target state, but not the error covariance. For the
FLTA, we interpret the target state as the predicted measurement mean and
supplement the constants a and B with another constant 02 denoting the
covariance of the measurements in the next scan. The PDA alpha-beta
tracker is completely specified by (a, B, a).
Track input measurements are gated, thus creating the possibility of

false dismissal of the target measurement. Using the PDA assumptions, the
probability of false dismissal is easily evaluated. The usual gated PDA
method uses a variable gate to achieve constant probability of false
dismissal. For the FLTA, we use a fixed gate so the false dismissal
probability varies from scan to scan.

Let B. be the probability that the i-th measurement corresponds to the
target, and let B be the probability that none of the measurements
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corresponds to the target. Similarly, let f. be the track frequency
estimate generated by using the i-th measurement in the underlying SISO
tracker, and let ? be the predicted track frequency when no measurement
is made. Then the PDA tracker output is given by fPDA = B f + E B. f..

00 

For the PDA alpha-beta tracker, the necessary predicted measurement mean
and covariance are the obvious ones obtained from f and (a, B, a). For
the PDA Kalman tracker, the error covariance associaYed with is also

to mae the PDAcomputed (see [4j), and it is used with TPDA to make the measurement mean
and covariance predictions in the underlying SISO Kalman filter.

The probabilities (B.) are easily computed and require only the
evaluation of a truncated Gaussian density function. The nonlinear
dependence of all PDA trackers on the measured track input data is due to
the nonlinear dependence of the probabilities {B) on the data.

2.3 The HMM Tracker
HMM's are probabilistic models that are commonly used in speech

applications. Their utility in tracking applications seems not to be
recognised in the general literature, except for a paper by Kopec [7] who
uses them to track formants, or resonances, in spoken words. The HMM
tracker presented in this paper is similar to Kopec's formant tracker;
however, the FLTA application permits the analytical development of the
parameters defining the underlying HMM.

The HMM tracker is a fixed interval FLTA; i.e., it takes a fixed length
sequence, or "window", of measurements and outputs a track estimate for
each time in the window. By sliding the window along as new data are
collected, the track estimate evolves in time. Alternatively, one may
simply increase the window size. Either way, the HMM tracker is used only
to compute the output track estimate for each given tracking window.

The quantised frequency track is modelled as a finite state Markov
chain. A "faded" state represents a track whose SNR is less than the
tracker SNR (see below); the remaining "active" states represent a track
occupying an FFT cell inside a fixed gate and having an SNR greater than
the tracker SNR. Track initiation is defined as a transition from the
faded state to any active state, while track termination is defined as a
transition from any active state into the "faded" state. Initiation and
termination of tracks, as well as movement of the track within the gate,
are therefore governed by the transition probability matrix, A, of the
Markov chain.
Measurements of the frequency track are characterised by a detection

probability matrix, B. Thus, for each possible target state, the
threshold detector outputs are measured target states with probabilities
that are computed analytically from the SNR and the threshold. The SNR
assumed for this B-matrix calculation is called the tracker SNR; in
effect, it is the lowest SNR at which tracks are initiated and estimated.

The HMM tracker is fully specified by the A- and B- matrices, together
with the initial state probability matrix, n. Initially, n corresponds to
a target in the faded state. This forces automatic track initiation. If
the tracking window slides along as new data are collected, n is updated
using current HMM tracker output.

The HMM tracker outputs both a discrete (quantised) track and a
continuous track. The quantised track is the Viterbi track; i.e., of all
possible tracks (realisations of the Markov chain), the Viterbi track is
the one most likely to account for the measurement sequence. The
continuous track is essentially the expected track, with the expectation
taken over all possible realisations of the Markov chain. Strictly
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speaking, the expected track is conditioned on the track not having faded,
as well as on the measurements. The total probability of a faded track
(conditioned only on the measurements) at each point in the window is thus
a necessary complement to the continuous track estimate.

The discrete output of the HMM tracker is computed using only n2T
additions, while the continuous output uses n2T multiplications, where n
is the number of Markov chain states and T is the number of scans in the
window. The discrete and continuous algorithms are easily vectorised.

3. EXAMPLES
All six trackers are compared in Figure 1, and the nonlinear trackers

are compared in Figure 2. The gated input measurement is indicated by a
dot, and the tracker output is the continuous curve. The data are
obtained by generating a sine wave triangularly swept in frequency with a
period of 400 scans, a centre frequency of 10, and a maximum deviation of
5. The added uncorrelated noise level and the detection threshold are set
to give a reasonable number of false detections and missed detections.
The conventional and HMM trackers use the largest detection in the gate;
the fixed lag Kalman smoother has a lag of 10 scans; the PDA trackers use
all detections in the gate; the HMM tracker uses a window of 250 scans.
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2 •
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FIGURE 1. Input data and tracker outputs for: a) alpha-beta, b) Kalman,
c) fixed lag Kalman smoother, d) PDA alpha-beta, e) PDA Kalman, f) 11MM.
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The PDA trackers are initiated at the correct track value and the HMM
tracker is initiated in the faded state. In Figure I the SNR is constant
over all scans. It shows that the nonlinear trackers are rcbust against
outliers, whereas the conventional trackers are not. In Figure 2 the SNR
starts low, increases linearly to scan 100, is constant to scan 150, and
decreases linearly to scan 250. The track is the same as in Figure 1, but
the false alarm rate is increased by decreasing the detection threshold.
The PDA trackers are incorrect at low SNRs. The automatic track
initiation and termination of the HMM tracker is clearly evident.
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FIGURE 2. Input data and tracker outputs for: a) PDA alpha-beta, b) PDA
Kalman, c) continuous output 11MM, d) discrete output 11MM.
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An extension to the Hidden Markov Model (HMM)frequency line tracker of Streit and Barren (1990) is presented. In
this extension, the FFT amplitudes and phases in a restricted set of states centered on the signal frequency are passed
to the tracker as an input. The result is an improved tracking performance and a new ability of the tracker to follow
frequency fluctuations within one FFT bin.

1. Introduction The input to a frequency tracker is generally some form

of frequency estimator, and in this area also, a number of new
The estimation of the frequency of isolated tones approaches have been developed. These methods offer

embedded in noise, and the tracking of changes in these improvements in either accuracy or resolution over
estimated frequencies as a function of time are two related conventional spectral analysis techniques. For the case of a
topics that have recently received considerable attention in the single tone embedded in noise, the Phase Interpolation
signal processing literature. Techniques for the solution of Estimator (PIE) and Generalised Phase Interpolation Estimator
these problems have found applications in many diverse fields (GPIE) provide near optimal frequency estimates, even at low
(e.g., radar, sonar, seismology, etc). SNR. For examples, see McMahon and Barrett (1986, 1987).

In a conventional frequency tracking problem, the In these methods, the phase information from
incoming data are divided into blocks of contiguous time successive FFTs is used to refine the estimate of the signal
series. Fast Fourier Transforms (FFrs) are then performed on frequency so that frequency changes of less than the width of
each of these blocks to obtain frequency spectra as a function one FFT cell can be measured. Previous track history is not
of time. The resolution of the frequency spectra is restricted to taken into account, and the frequency estimates for different
one FFT cell (or the reciprocal of the data acquisition time for time blocks are independent. At low SNR, the 2 ambiguity in
the FFT integral). The conventional frequency tracking FFT phase can occasionally result in 'outliers' far removed
problem consists of estimating the true signal frequency from from the correct frequency.
the FFT spectral data.

The purpose of the work described in the present paper
In an earlier paper (Streit and Barrett (1990)), we have is to include FF1 amplitude and phase information into the

studied the formulation of frequency line tracking in terms of a HMM frequency tracker described by Streit and Barrett (1990).
Hidden Markov Model (HMM). In this approach, the The added information affects the performance in two different
frequency domain considered by the tracker is restricted to a ways. Firstly, the intrinsic tracker quantisation error can be
subset, or gate, of the available FFT cells. For each time block, reduced so that frequency variations within one FFT cell can be
the cell containing the maximum power within the gate, readily tracked. Secondly, the added information enables the
provided that power exceeds a detection threshold, is passed to new tracker to out-perform the earlier tracker, even if the
the HMM tracker. Based on a priori knowledge of some intrinsic tracker quantisation error is kept to one FF1 resolution
specified parameters describing the statistical nature of the cell (as in the earlier tracker). The problem of outliers that
track, the HMM tracker reconstructs the time variation of the occurred with the PIE algorithm is avoided because these
signal frequency within the gate. A zero state is included to extreme frequency fluctuations are suppressed by the Markov
allow for the case when the signal terminates or the signal chain process model of the HMM tracker. The extended HMM
frequency wanders outside of the prescribed gate. Full details tracker thus combines the high accuracy frequency estimation
of the HMM frequency line tracker are contained in an earlier capability of the PIE algorithm with the accurate tracking and
publication. track initiation and termination capabilities of the HMM

tracker.
An extension of this basic tracker was developed by

Barrett and Streit (1989) and Steele et al (1989). The tracker
was modified so that it received as input the FFT amplitude in 2. Frequency Tracking Using HMas
the cell with the maximum spectral power. This extra
information was fouind to enhance its performance by enabling
tracking and detection at lower signal-to-noise ratios (SNRs) In the frequency tracking problem described by Streit
than without amplitude (see Barrett and Streit (1989)). and Be- ett (1990), the range of frequencies, or gate, over
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which the track is allowed to wander is divided into a finite we describe a HMM tracker in which the concept of a 'mea-
number m of frequency cells. A zero state is included to surement' is further extended beyond that of Streit and Barrett
allow for the possibility of the track wandering outside of the (1990) and Barrett and Streit (1989). For each block of time
allowed frequency range, or terminating altogether. series data, the amplitude and phase of the FFT for each cell

within the gate are determined. The complete specification of

The transitions that occur between states as time the FFT amplitudes and phases in all gate cells for two con-

progresses are characterised by a transition probability matrix tiguous blocks of time series data is deemed a 'measurement'.
A. The elements of the A-matrix are the probabilities of As before, the B-matrix is interpreted as the likelihood of any

transitions between the states of the Markov chain. These particular measurement, conditioned on each of the underly-

probabilities depend on the initiation and termination ing Markov states.

probabilities (u and v) of the track, and on the process noise, d. Following Streit and Barrett (1990), it is assumed that the
The elements of the A-matrix are calculated from the basic data time series is of the form:
premise that the probability distribution for a frequency z (to/ U.T) = A sin [i, (to+ kT) + (] + n (
change in the tracked line is a Gaussian centred on zero. The (1)
width of this Gaussian distribution is controlled by the process
noise d. In addition to a change from one frequency cell to where to is the initial time , and Ts is the sampling period. The
another within the gate, transitions may also occur from within amplitude A, phase C and angular frequency ,2, are assumed
the gate to the zero state (track termination), or from the zero to remain constant over the period NT,, which is the data
state to a state within the gate (track initiation), acquisition time for a Fourier transform of size N. The noise

nk is taken to be zero mean and Gaussian in nature, with a

The specification of the measurement probability variance of cr2, so that
matrix B is also necessary to define the HMM. In the basic
HMM tracker of Streit and Barrett (1990), a measurement is = ""i (2)
defined as the specification of the frequency cell in which the where t denotes the Kronecker delta.
maximum spectral power resides, provided that power exceeds The discrete Fourier Transform x(w) at angular frequency
a prescribed threshold. An element of the B-matrix is then the . of the time series in Eq. 1 is defined in Streit and Barrett
likelihood of such a detection in one of the cells of the gate, (1990) and can be expressed in the form:
conditioned on the true signal residing in a particular state of
the Markov chain. The calculation of the elements of the B- X (w) = Re"
matrix is carried out under the assumption that the time series = Cc"€ + DJ(3)
data comprise a constant frequency sinusoidal signal embedded
in white Gaussian noise. The likelihoods depend on the SNR where R and ,l represent the amplitude and phase of A(.;). The

of the line being tracked and on the measurement detection amplitudes and phases of the signal and noise components are

threshold. denoted by (C, O) and (D,B) respectively.
The joint Probability Density Function (PDF) of R and i

The last remaining quantity to be specified to the has the form

tracker is the initial state probability vector t. This vector R R2 - 2ARcos ,l - 0) + A2

specifies the occupation probabilities of the various Markov P (R, ,Y) = .e 20"" (4)
states at time zero.

where a' = u2 /2N
There are three outputs from the HMM tracker

described in Streit and Barrett (1990). The first is the Viterbi The signal phase 0 differs for the different time blocks. If

track, which is the optimal state sequence (in a maximum we define 01 to be the phase corresponding to the signal for

likelihood sense) conditioned on the measurement sequence. the first of two contiguous time blocks, and 02 to be the phase

The Viterbi track is thus a discrete output. The second output, corresponding to the second time block, then

which is continuous, is the Mean Cell Occupancy (MCO) 02 - 01 + ,NT. (5)
track. From the A and B matrices, the likelihood of the
occupancy associated with each Markov state as a function of For real signals, such as that defined in (1), the approximation
time can be calculated. The mean cell occupancy (for cells in (5) is only valid at frequencies far removed from zero.
within the gate), and the associated standard deviation can then However, if the analytic signal is used instead of the real
be obtained. The third output of the HMM tracker is the Gate signal, eq. (5) becomes valid at all frequencies.
Occupancy Probability (GOP). The GOP function is the Eq. (5) implies that the angular frequency ij is related not
probability, as a function of time, of a frequency with the to the phase in each cell, but to the difference in the phases
required parameters lying within the selected gate. The in the cell containing the signal for the two contiguous time
complementary function to the GOP (i.e., 1 - GOP) is the blocks. We are thus interested more in the phase change in
occupation probability of the zero state, a cell as time progresses, than in the absolute value of the

phase. Our concept of a 'measurement' is thus extended to

3. Inclusion of FFT Phase include the simultaneous specification of the quantities R.I,
Rn2 and 772 - 17.1 where R.I, 17.1 are the amplitudes and
phases of the Fast Fourier Transforms in cell n at time t = to,

The performance of any tacker clearly depends on the and R,2, v',2 are the corresponding quantities at time I = to +
amount of information that is available to it. In this section NT,. where I <n _< m With this definition of a measurement,
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overlapping causes successive measurements to be correlated, Fig. la shows an intensity modulated representation of
which is contrary to the HMM model. This contradiction is the spectral power in the cells of the gate as a function of time.
ignored here, but the overlapping can easily be removed if it Frequency increases in the vertical direction, while time
results in difficulties. increases horizontally. Each cell is I Hz wide in the frequency

The likelihood of the measurement, conditioned on an direction and I Sec. long in the time direction. The total time
initial signal amplitude A and frequency & , can be shown window spans 100 seconds and there are 9 cells in the
to have the form: frequency gate. The parameters of the HMM are listed in the

Figure caption. The SNR is defined as A2/2o 2. The signal

B (D)= 1J P (R.1 ,R,1 2 , 2 -R. [A, D) (6) consisted of a frequency modulated tone with the modulation
n=1 having the form of a sinusoid of amplitude 2 Hz and period 50

where seconds.

P (R. , R. 2 -
7mi A, ,) = x_____ The measurement sequence, which is input to the basic

2r,-4 xtracker, is displayed in Fig. lb. The effect of the noise is clear

[R!, + + 2A 2  (7) in the appearance of the track. In Figs. Ic - le, the Viterbi

0Az\ tracks arising from the HMM, HMM/A and HMM/AP trackers
are displayed. The zero state is shown below the other state
cells. An improvement to the quality of the output through

In eq.(7), 10 represents the modi...d Bessel function and Figs Ic - le is apparent, as the amount of input information

/R2 + 2  , ((8 presented to the tracker is increased. The improved quality
n/ + R22 + 2R.R2 cos 7.2-'7. - , N T, )  (8) manifests itself in fewer abrupt terminations and re-initiations

of the track (i.e., entries into the zero state), and in fewer oudi-

The implementation of the HIMM tracker with phase and ers.
amplitude included differs from the earlier implementation
described in Streit and Barrett (1990) in a number of important The results displayed in Fig. I are typical. However, a
points. Firstly, because the presence of phase information quantitative comparison of the three trackers can only be made
enables frequencies to be estimated to a greater accuracy than by comparing their average performance for a statistically
one FFT cell, the states of the HMM need not coincide with the significant set of realisations of time series data. The results of
FFT cells. In the present work, the frequency range spanned by such an investigation will be published later.
each HMM state is arbitrary. The state width and process noise
d can be adjusted to reflect the increased estimation accuracy, In Fig. 2, the results for a set of data where the
particularly at high SNRs, allowed by the phase information, frequency modulation of the signal has been reduced to 0.6 Hz

The second difference lies in the fact that the likelihood amplitude are displayed. All other details are the same as for
function in eq (6) can be highly peaked as a function of C if the Fig. 1. The frequency cells in the intensity modulated display
SNR is fairly high. The calculation of likelihoods at the centre of Fig. 2a are I Hz wide. However, for the displays 2b and 2c,
frequencies of the gate cells may therefore not be an accurate the frequency scale has been expanded by the factor 3.33 so
enough representation of the average likelihood over the span that the frequency cells are now 0.3 Hz wide.
of the state. This effect can be countered, either by selecting
the frequency span of each state to be significantly smaller Fig 2b displays the results of the PIE frequency estima-
than the spread in the likelihood function, or alternatively by tion routine. The general trend of the modulation is apparent in
integrating B (Co) over the frequency span of the state. The the expanded display, but many outliers are observed. The
particular selection will depend on the accuracy desired in the frequency estimates that were outside the range spanned by the
frequency track. state cells are shown in the zero state.

Figs. 2c and 2d show the Viterbi tracks and MCO
4. Discussion of Results outputs from the HMM/AP tracker. The MCO display shows

two traces that are respectively one standard deviation above
and one standard deviation below the MCO track. The GOP

Results of the application of the HMM frequency line function is displayed in Fig. 2e (ranging from values of 0 to 1)
tracker to two sets of simulated data are presented in Figs. I and indicates a high probability that the signal was present at
and 2. In Fig. 1, the results from three different versions of the all times.
tracker are compared. These versions are those of i) Streit and
Barrett (1990) in which no FFT amplitude or phase information The increased accuracy of the HMM/AP tracker (and
is passed to the tracker; ii) Barrett and Streit (1989) in which the PIE) arises from the exploitation of the phase information
the FFT amplitude from the cell containing the maximum available in successive FFTs. This information was not
power is used; and iii) the tracker presented here where FFT available to the HMM and HMM/A trackers and so the fine
amplitudes and phases in all the cells are passed to the tracker. structure in the frequency modulation could not be detected by
For convenience, these three trackers are designated HMM, these trackers.
HMM/A and HMM/AP respectively.
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5. Conclusion McMahon D.R.A. and Barrett R.F. (1987)
Generalisation of the Method for the Estimation of the
Frequencies of a Tones in Noise from the Phases of Discrete

The HMM frequency line tracker presented by Streit Fourier Transforms

and Barrett (1990) has been extended by the inclusion of FFT Signal Processing Vol. 12. pp371-383
phase information into the tracker input measurement
sequence. As a result, the tracker exhibits an improved Steele A.K., Streit R.L. and Barrett R.F. (1989)
performance, and is able to accurately track smaller frequency Nonlinear Frequency Line Tracking Algorithms
changes than was previously possible. Proc Australian Symp. on Sig. Proc. and Appis., Adelaide.

pp258-262

References Streit R.L and Barrett R.F. (1990)

Barrett R.F. and Streit R.S. (1989) Frequency Line Tracking Using Hidden Markov Models

Automatic Detection of Frequency Modulated Spectral Lines [EEE Trans. ASSP V38, pp586-598

Proc Australian Symp. on Sig. Proc. and Appls., Adelaide,
pp2 83 -287

McMahon D.R.A. and Barrett R.F. (1986)
An Efficient Method for the Estimation of the Frequency of a
Single Tone in Noise from the Phases of Discrete Fourier
Transforms
Signal Processing Vol. 11, pp169- 177
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Fig.1 Frequency tracks for a sinusoidally modulated (2 Hz
amplitude) tone in noise: a) intensity modulated spectrogram; Fig. 2 Frequency tracks for a sinusoidally modulated (0.6 Hz

b) Measurement sequence for basic HMM tracker. c) Viterbi amplitude) tone in noise: a) intensity modulated spectrogram;
output for basic HMM tracker, d) Viterbi output for HMM/A b) PIE frequency estimates; c) Viterbi track from HMM/AP
tracker e) Viterbi output for HMM/AP tracker. tracker; d) MCO track from HMM/AP tracker; 0) GOP
(HMM parameters are u = 0.5. v - 0.1, d = 0.3, Thresh. = 0.0, function from HMM/AP tracker.
N - 1024, NT = I sec, SNR = 0.008 (-21 dB), Cell width = I (HMM parameters as for Fig. 1. except that cell width is 0.3

Hz) Hz)
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Friequency Line Detector/Tracker
Using Hidden Markov Models
With Amplitude Information
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Abstract

Four different methods for utilizing amplitude in hidden
Markov model (HMM) detector/trackers are presented. All four of
the HMM detector/trackers are algorithmicaly identical in their
basic structure. The only differences between the proposed
trackers are confined to the conditional probability density
functions (PDFs) of the input measurements. The fundamental
HMM algorithm structure is presented in matrix form, and the
necessary conditional PDFs for the four detector/trackers are
derived.
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Introduction

The papers [i, 21 are the first papers to discuss the inclusion of

amplitude information into detector/trackers based on hidden Markov

models (HMls); however, these papers do not give a detailed description

of the way in which amplitude information is utilized. Of the many

ways to include amplitude information into the measurement sequence of

the HMM detector/tracker, four are described here. We denote these four

detector/trackers by HMM/AOO, 11MM/AO1, HHMM/AIO, and H00/All. The

notation H10/A.* indicates the presence or absence of decision and

quantization steps (defined below) in the obvious manner. H1MM/All is

identical to the detector/tracker described in the fundamental HMM

detector/tracker paper [3], and HMH/AIO is Identical to the best of the

detector/trackers discussed in papers [1) and [2]. Familiarity with

the content and notation of [31 is assumed here.

An important feature of detector/trackers based on HMMs is that

they all have fundamentally identical algorithmic structures.

Different input measurements change the measurement likelihood

function, but do not otherwise affect the detector/tracker algorithm.

Because of this feature, we describe below only the H0

forward-backward algorithm that is used to construct the probability

field from which the continuous outputs of the HMM detector-tracker are

derived. The discrete output is the Viterbi track, and it is computed

by a dynamic programming algorithm. The minor changes required to

compute the Viterbi track are analogous to those required for the

continuous outputs. For further background, see [3).

The detector/tracker H04/All uses a fixed frequency gate, that is,

a fixed contiguous subset of size n X 2 of the full set of DFT

(discrete Fourier transform) frequency cells. The DFT size is N X n

and the fixed gate cells are indexed, for convenience, 1. 2..... ,n.

Amplitude information is utilized only indirectly, that is, the input

measurement to HM/All is the index of the DFT cell having the largest

amplitude, provided this cell exceeds a specified threshold, D, and

1
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lies within the gate. The measurement z is the output of a two step

measurement process. The first step, called the decision step, chooses

the largest amplitude DFT cell. The outputs of the decision step are

the DFT cell index I t 1 and its amplitude ri. The second step, called

the quantization step, quantizes the amplitude rI to one bit. The

amplitude threshold determines the one bit quantization breakpoint.

The output of the quantization step is the DFT cell index I if rI ? D,

and the integer 0 if r I < D. The measurement process of the HMM/All

detector/tracker therefore suppresses (compresses) available amplitude

data in the each step. The data compression steps affect

detector/tracker performance in different ways.

The distinction between HMM/AOO, HMM/A01, HMM/AiO, and HMM/All is

their different measurement processes. The HNM/AOO measurement process

eliminates both the decision and quantization steps. Since HMM/AO0

utilizes all the available amplitude information, its performance

should be the best of the four. The HMM/AlO measurement process

eliminates the quantization step, but not the decision step, of the

basic 1MM measurement process. The HMM/AOl measurement process

eliminates the decision step but not the quantization step. As

described above, the HMW/All measurement process uses both decision and

quantization steps.

A detector/tracker HMM must have two types of states -- those

corresponding to "signal absent" hypotheses and those corresponding to

"signal present" hypotheses. If either type of state is not used,

then the HMM cannot be described as a detector/tracker. In the

frequency line tracking application utilizing fixed gates, a signal can

be absent because it has faded or because It has exited either to the

right or to the left of the fixed gate. The signal can be present in

more than one way also, i.e., the signal can lie in any one of the DFT

cells In the gate. For this discussion, we use n "signal present"

states and one "signal absent" state. The "signal absent" state is

indexed 0 and called the zero state. The n "signal present" states

are numbered from I to n and correspond to signal frequency lines

centered in the n DFT cells of the gate.

2

-212-



TM. 911143

HMM Detector/Tracker Algorithm

Let Z = (zI  .... zT ) denote a measurement sequence of length T

1 that is input to an n+1 state HMM detector/tracker. The forward

algorithm computes the vectors at t e Rn+  by means of an algorithm that

is easily stated in terms of matrix products. Let ' denote matrix

transposition. Then the forward algorithm is defined by

a = B(zI ) W

(1)

at+ 1 = B(zt+1 ) A' at, t = 1, .... T-1,

where v e Rn+ l is the initial state probability vector, A = [aj I e
R(n+l)x(n+l) is the state transition probability matrix, and, for

arbitrary measurements z, the matrix B(z) e R(n+l)x(n+l) is defined by

B(z) = Dig [b (z), b (Z) .... , bn (z),

and where b (z) denotes the likelihood function of the measurement z

conditioned on the signal state 1, 1 = 0, 1, ... , n. Similarly, the

backward algorithm computes the vectors 1t e Rn + 1 by means of an

algorithm that is equivalent to the matrix product

T
1 1 - . 1 )' G Rn+l

(2)

Ot = A B(zt+ 1 ) it+ 1,  t = T-1 . 1.

Probabilistic interpretations for the vectors at and 0t are given in

(3). The continuous detector/tracker outputs are derived (see [3])

from the probability field, denoted by F(t,i). The numerical value of

F(t,i) is the probability the signal occupies state I at time t,

conditioned on all the available measurements Z. It is defined in

terms of the components a t(i)) and 43t(i)} of at and Pt by

F(t,l) - at(1) 1t(i)[ atk W t1k)W (3)

k-O

3
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In equation (3), t ranges from 1 to T, and I ranges from 0 to n. An

arbitrary nonzero scale factor K t can be applied to the diagonal matrix

B(z t ) without altering the probability field F(t.i) because such scale

factors cancel out in the definition (3). The Judicious use of scale

factors can result in reduced complexity In the required likelihood

functions, and give greater insight into the underlying theoretical

structure.

From equations M1)-3), it is clear that the different measurement

characteristics affect the detector/tracker output only via the state

likelihood functions b i(z. The algorithms are otherwise blind to the

measurement. The likelihood functions b I(z) for each of the four

amplitude measurement processes are derived below. Two probability

density functions (PDFs) of the measured amplitude r in a DFT cell are

required. The PDF of r conditioned on the simple hypothesis "signal

in state I * 0" is given by

P1 (r) = (2rN/r ) 10 (ArN/ 2) exp[- N(4r 2+A2 )/(4o)], (4)

and the PDF of r conditioned on the simple hypothesis "signal in state

I = 0" is given by

P2 (r) - (2rN/W) expl- Nr 2/W2, (5)

where 10(.) denotes the modified Bessel function and N is the size of

the DFT. The derivation of these PDFs assumes zero mean white Gaussian

noise of variance a2 and a signal frequency line of amplitude A that is

centered in the DFT cell. It is necessary to integrate these functions

in certain of the HMM detector/trackers. Note that the function P2 (r)

is easily Integrable in closed form, but that P (r) Is not. Further

details are given in [3).

4
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Description of HMM/AOO

This measurement process does not use either decision or

quantizatlon steps. Therefore, no quantization threshold is used,

i.e., D = 0. The measurement available to the detector/tracker at any

given time t takes the form z = (rl, r2 ' ... , r n), where rI is the

measured amplitude of the I-th DFT cell In the tracking gate. There

are two cases. If the signal state Is the zero state, no signal is

present In any of the n DFT cells of the gate. Since the measured

amplitudes r I in each cell are independent, we have

n

b0(z) H P2(r), (6)
J=1

where K is a nonzero state independent scale constant to be determined.

Similarly, if the signal state is I t 1, then a frequency line lies in

the center of the i-th DFT cell. Because of the center cell

assumption, the amplitude measurements are independent from cell to

cell, so that

rn
bI(Z) - K P2 (r() r (7)

jsi

We now choose K SO that b (z) = 1, that Is, K is the reciprocal of the

product on the right hand side of equation (6). Therefore,

1, 1:0

b (z) P1(r ) (8)=1 ii I 1.

P 2 (r )

It Is interesting to note that the function b (z) Is a most powerful

hypothesis test on measured amplitude r I for "signal In state I t 0" vs

"signal In state I = 0".

5
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Description of HMM/AO1

This measurement process does not use a decision step, but does

use a quantization step. A threshold D > 0 defines the one bit

quantization breakpoint. (The case D = 0 is clearly not useful in this

application.) The measurement input to the detector/tracker at any

given time t takes the form of a set:

z = DFT gate cells whose amplitudes equal or exceed D }.

The measurement set z identifies indirectly those gate cells whose

amplitudes do not exceed D. No other information about cell amplitude

values is contained in z. If the measurement set z is empty, it

contains the useful information that no cell in the gate exceeds D.

There are two cases. If the signal state is the zero state, no

signal is present and, because of the cell amplitude Independence

assumptions,

b#(z) = J P 2 (r dr [ f P2 (r) dr n (z)

where #(z) is the number of measurements in the set z. If z Is empty,

then #(z) = 0. The integral from D to w is the probability that the

amplitude in a cell exceeds the threshold D, while the integral from 0

to D is the probability that the amplitude is less than D. Suppose the

signal state is i ? 1. If i E z, then

b Iz) = K P2(r) d P (r) dr P2r) dr (z)

I ID 0"

Alternatively, in the "missed detection" case, I 9 z and

bz I = K [[P 2 (r) drj 1#(z) [ fP 2(rM dr n-1(z)-i [ P M dr]

I D "0

Setting K so that b (z) = I gives

6
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1, if1.

bjZ)F P 1(r) dr if I z(9

(z FO J P2(r) dr(9

JD P I(r) dr IfICZ
PD P2(r) dr

The function b I(Z) Is a most powerful hypothesis test on each of two

measurements types, namely

(1) ambiguous detection (that Is, I e z), and

(2) missed detection (that is, i 9 z),

for "signal in state 1 & 0" vs "signal in state I = 0".

7
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Description of HMM/AIO

This measurement process uses a decision step, but not a

quantization step. Because there is no quantizatlon step, the

threshold D is set to 0. (N.B. The paper [1) considers the general

case D 2 0 and concludes, on the basis of simulation, that D = 0 Is

optimal for detection performance. ) The measurement available to the

detector/tracker at any given time t takes the form

z = ODFT gate cell kl has amplitude rk, and all gate amplitudes : r I.

The measurement z contains the DFT cell index k, its amplitude rk and

the Information that no other cell In the gate has greater amplitude.

If the signal state is zero, then

b0(z) = K [ [k P2 (r) dr P2 (rk).

If the signal state is I x 1, and I * k (the missed detection case),

then

bI(z) = K [ Jk P2 (r) dr ] P (r) dr ] P2 (rk).

If I = k, however, then

b (z) = K P2(r) dr PI(r ).

Setting the scale factor K so that b0(z) = I gives the result

a
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1,if I=O0

Pl~rk)if I= k

b I(Z) =P 2 ( r k (10)

FO k P r dr if I * k.

Jok P2(r) dr

The function b I W is a most powerful hypothesis test on the

measurements types, namely

(1) correct detection (that is, i= k) with amplitude r k and

(2) missed detection (that Is, I *k) with amplitude r ko
for "signal In state i 2: 0" vs "signal In state 1 0".

9
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Description of HMI/A11

This measurement process uses both a decision and a quantization

step. A quantization threshold D > 0 determines the one bit

quantization breakpoint. The measurement available to the

detector/tracker at any given time t is one of the following:

z 0  = {no DFT gate cell has amplitude exceeding D)

zk = (DFT gate cell k has maximum amplitude and its amplitude - D1,

where k = 1, 2, ... , n. The measurements z 0 and zk contain no

information about the maximum amplitude other than the fact that it

does or does not exceed the threshold D. Note that the measurement z 0

contains no information on the location of the gate cell of largest

amplitude. If the signal state is zero, then for measurement z 0

bo (z O ) = K IrP 2 (r) dr

and, for measurements zk# k z 1,

bok = K P2 (r) P(P) dp dr a n

kD l 2 Jo 2

The identity follows from a normalization argument (i.e., the sum over

all k a 0 of bo(zk) equals K) and the fact that bo(zk) is constant for

k x 1. If the signal state is i 0, then for measurement z 0

(r) ]n-1

b I(z 0  0 K P I(r) dr][J P2 (r) dr

10
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If the measurement is zi, then

n-i
bI(z I  = K (r) P2(p) dP dr.

The function P2(r) is easily integrated, so

2

b I(z) K J I (r) ( 1 - exp(- r 2 N/r2) n-i dr.

D

Thus, evaluating b I(z ) requires numerical integration of a one

dimensional integral. Finally, if the measurement is zk , k 9 (0, 1),

then

n-2

b I(z k) = K J P2 (r) I{f P(p)c ] [[foP 2 (p) d] dr.

Normalization arguments give the equivalent expression

K - b1 (z0 ) - bi(z i)
biZk = n - I

The expressions above, with K = 1, were first given in [3], and are

easy to utilize in practice.

It is worthwhile rewriting the above equations in a form that

exhibits their theoretical character. To this end, for each positive

integer n, we define the random variable 0n - max M i. ---.. R, where

the random variables R are independent and identically distributed,

with common PDF given by P2 (r). Conditioned on the event 0m k D, the

PDF of 0 is given by
n

11
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n P P2 (r) I () n- (f2 (r) ] fP2r(p)fPIdn-1 dr.

where the denominator Is the conditioning term required to make Qn (r) a

valid PDF. By substituting the definition (5) of P2(r) and performing

the required integrations, an explicit formula for Qn(r) can be

obtained, If desired. We now choose the scale factor K so that bo(Z k

= 1 for all k k 0. Utilizing the functions Q n(r) gives the result

1, for i= 0 and all z

FO P (r) dr ,for 1 0 and z z
f0 P2 (r) dr

0I P (r) dr, for I * 0 and z = z

P2 (r) n(r) dr, for I * 0 and z z

SQ(r) dr-, for I *O0and z z.

f P2(p) d,

The function b1 (z) is a most powerful hypothesis test on the

measurements z k ) for the "signal In state I t O" vs "signal In state I

= 0". Note that the last two expressions In (11) are expectations of

likelihood ratios.

12
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Concludiniz Remarks

The four detector/trackers presented here have a common HM

algorithmic structure that is easily implemented. The only

computational difference between them lies in the calculation of the

state conditional PDFs of the available measurements. In all four

detector/trackers, however, these PDFs can be precomputed either as a

list of all possible measurement outcome probabilities, or as a

likelihood function lookup table with, say, spline interpolation. With

sufficient attention to the PDF calculation details, all four

detector/trackers should run at approximately the same speeds.

H1M/AOO should be the best of the detector/trackers since it makes

use of all the available amplitude data. H)04/AiO and HMM4/A11 can be

used for tracking on spectrogram displays that compress the measured

amplitude data in ways that are compatable with their measurement

processes. Of these two, HMM/AIO should give better performance than

HMM/All because HMM/AIO has more amplitude information available than

HMM/Ail. Finally, HMK/AOl may be useful in applications in which the

true signal is mismatched to the signal model used here. This

possibility deserves further study.

13
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Abstract

Frequency line detector/trackers based on hidden Markov
models (HMMs) are designed for optimum detection and tracking
performance at a specified design signal-to-noise ratio (SNR). In
practice, their performance is observed to be robust to mismatch
between the design SNR and the true SNR, especially when the
true SNR exceeds the design SNR. A natural way to improve
performance further is to estimate true SNR in an attempt to
match the design SNR of the HMM detector/tracker to the true
SNR. This memorandum derives maximum likelihood estimates of
signal and background noise power for a specific HMM
detector/tracker (known as HMM/AO0), using the Baum-Welch
reestimation, or EM, method. The estimates are derived by
exploiting the intrinsic training capabilities of general HMMs, so
the approach of this memorandum is not limited to the one HMM
detector/tracker presented here. Different HMM detector/
trackers will generally yield different estimators for signal
amplitude and noise power.
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INTRODUCTION

The papers (1, 2] are the first papers to discuss the Inclusion of

amplitude Information into detector/trackers based on hidden Markov

models (HMMs), but neither paper discusses the estimation of signal and

noise powers. This memorandum gives a derivation of maximum likelihood

estimates of signal amplitude and background noise power for the best

of the four HMM detector/trackers described in 13], namely, HMM/AOO.

Maximum likelihood estimates of signal amplitude and backgnd

noise power are derived from the likelihood structure imposed on the

measured data by the detector/tracker HMM/AO0. The likelihood

structure of HMM/AOO is highly non-Gaussian in nature because It arises

from the "hidden" Markov chain and the specialized measurement

likelihood functions appropriate to the frequency line tracking

application. The methods used here for HMH/AOO can, In principle, be

applied to derive signal and noise power estimates for the other HMM

detector/trackers presented in (31; however, estimators for these other

trackers are not presented here.

The detector/tracker HMM/AOO uses a fixed frequency gate, that Is,

a fixed contiguous subset of size n i 1 of the full set of DFT

(discrete Fourier transform) frequency cells. The DFT size is N t n

and cells of the fixed gate are indexed, for convenience, 1, 2, ...

n. The HMM/AOO measurement process utilizes all the available amplitude

information, that Is, the output of the measurement process at time t

Is the vector

zt = (rlt , r2t ... rnt} ,  (1)

where rit is the measured DFT amplitude in gate cell I at time t.

The detector/tracker HMM/AOO has two types of states -- one

corresponding to the "signal absent" hypothesis and others

1
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corresponding to "signal present" hypotheses. (If either type of state

is not used, then the HMM cannot be described as a detector/tracker. )

The "signal absent" hypothesis Is Indexed 0 and called the zero state.

The "signal present" hypotheses are numbered from 1 to n and correspond

to signal frequency lines centered In the n DFT cells of the gate.

2
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BACKGROUND ON THE DETECTOR/TRACKER HMM/AOO

Let Z = (z1 , z2 ..... z T ) denote a measurement sequence of length

T ; 1 that is input to the n+l state detector/tracker HMM/AOO, where

the measurements zt are defined by (1). The forward algorithm computes

the vectors at . Rn + 1 by means of an algorithm that is easily stated in

terms of .atrix products. Let ' denote matrix transposition. Then the

forward algorithm is defined by

a, =B(z1)

(2)

=t+1 B(zt+1) A' at# t = 1, T-1,

where xe Rn+l is the Initial state probability vector, A = [a ij e
R(n+l)x(n+l) is the state transition probability matrix, and, for an

arbitrary measurement z, the matrix Bz) e R (n+1)x(n+1) is defined by

B(z) = Diag [bo(Z), b1 (z), .... b*n(W)]

and where b I(z) denotes the likelihood function of the measurement z

conditioned on the signal state 1, 1 = 0, 1, .... n. Similarly, the

backward algorithm computes the vectors 9t n + l by means of an

algorithm that is equivalent to the matrix product

9T  = ( 1 1 ... 1 )' e Rn+1

(3)

3t = A B(z t+ ) 1t+1 ,  t = T-I . .

Probabilistic interpretations for the vectors at and 9t are given in

[4]. The continuous detector/tracker outputs are derived (see [4] for

further details) from the probability field, denoted by 7t(I). The

numerical value of it(1) Is the probability the signal occupies state i

at time t, conditioned on all the available measurement sequence Z. It

is defined in terms of the components {a t(M) and fgt(M of the

vectors at and $t by

3
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n -

1k=O

In equation (4), t ranges from 1 to T, and I ranges from 0 to n.

Although it Is not immediately clear, it can be shown that

n
[ (1) = 1

1=0

for each time t. The name "probability field" for Tt(1) was first used

in (7], where its Image enhancement property was first described.

A statistic closely related to the probability ijeld is the "gate

occupancy probability", denoted G O. The Cop is defined by

T T n

G - E [ - = E E t(l (5)

t=i t-1 i=1

The zero state is excluded from the sums (5), so the statistic G isop

conditioned on signal presence somewhere within the gate. An important

interpretation of the G Is that it represents the fraction of timeop

for which a signal Is present within the gate. The G is potentiallyop

useful as a detection statistic.

From equations (2)-(4), it is clear that measurements affect the

detector/tracker output only via the state likelihood functions b i(z).

HM/AOO Is otherwise blind to the measurement. The likelihood
functions b (z) are derived in terms of the following two probability

density functions (PDFs) of the measured amplitude r in a DFT cell.

Define the noise parameter p = 1/a-2, where -2 is the power (variance)

of the zero mean white Gaussian background noise. The PDF of r

conditioned on the hypothesis "signal in state i 0 0" is the Rician PDF

defined by

4
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P (lA, p) = (2rNp) 10 (ArNp) exp[- Np(r
2 + A2/4)], (6)

where I (-) denotes the modified Bessel function of order u, and N is

the size of the DFT. The derivation of this PDF assumes the signal

frequency line of amplitude A is centered in the DFT cell. The PDF of

r conditioned on the hypothesis "signal in state I = 0" is the Rayleigh

PDF defined by

P2 (rlp) = (2rNp) exp[- Nr 2p]. (7)

Note that P 2(rip) a- Pl1(rjO,p). Plots of P 1(rlA, p) for several values

of A for fixed noise power Np = 1 are given in Figure 1.

As is shown in [3], for the measurement zt, the state conditional

likelihood functions take the form

K t(p )

bI (zt) - bI(ztIA,p) = I (rIt:A,p)  (8)

P 2(rit IA, p )  tP'

where the "scaling" function Kt(p) Is given by

n

Kt(p) = H P2 (rktAp). (9)
k=1

The expressions (8) and (9) can be simplified If desired by substituting

the equations (6) and (7).

Note that the symbol A has been used to denote both the Markov

chain transition probability matrix and also the signal amplitude.

Both uses of the symbol A are somewhat conventional, and it is

inconvenient to change either. This abuse of notation should cause no

confusion.

5
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DERIVATION OF MAXIMUM LIKELIHOOD ESTIMATION EQUATIONS

2

Estimates of signal amplitude A and background noise power 4 are

derived using the EM (Expectation-MaximizatIon) method (5]. When the

EM method is applied to HMK's, the EM method is more commonly known as

the Baum-Welch reestimation algorithm (6]. The derivation in this

Appendix is a variant of Baum-Welch that accomodates continuously

variable parameters and the specialized likelihood structure of the

frequency line estimation problem. The discussion here assumes

familiarity with the fundamental HMM detector/tracker concepts as

described in (4] and with the definition of HMM/AOO as described in

(3]. To the extent possible, the notation of [4] is used here.

For times t = 1, 2, ... , T, the measurement z t E Z is given by

(I). The "missing data" in the sense of the EM method is the state

sequence I of the Markov chain. Let

I = {i(1), 1(2)....... i(T)} E .?,

where the index i(t) denotes the true signal state at time t, and I

denotes the set of all possible state sequences. (N.B. We use the

notation i(t) instead of the more common i t to avoid the use of

subscripted subscripts in the sequel.) The n+1 Markov chain states are

numbered consecutively from 0 to n, so 0 s i(t) s n for all time t.

Let Z' = Z v I. The PDF of Z', conditioned on the detector/tracker

HMM/AOO, is parameterized by signal amplitude A and white Gaussian

background noise parameter p = I/0.2 and is given by

T

Y(Z'IA,p) = i1 (1 ) bi()(zlJA.P) 9 ai(tl}i(t) bi(t)(ztlA,p). (10)
t=2

The transition probability matrix A = aj I E R(n+l)x(n+1) and the

initial state probability vector i = I R n+  define the Markov

6
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chain, and are specified a priori by the detector/tracker HMM/AOO,

while the likelihood function bk(ztlA,p ) is given explicitly by

equations (8)-(9) above. As required by the EM method, PDF Induced on

the set I of all state sequences is derived from Bayes Theorem and is

given by

• (Z'lk IAp) 1
X(IIZA,p) = ;(ZIA, p) (11)

where, from the HMM likelihood structure,

ZIAp)= z (Z'IA, p). (12)

I-Ey

For future use, note that

Z X(IIZ,A,p) = 1 (13)

Ie5

Z X(IIZ,A,p) = Mt(t)), (14)

Il5\i(t)

where 7t M E Rn +  is the likelihood vector computed from

equation (4). In equation (14), the notation Iel\i(t) means that the

sum is over all state indices I except i(t). The proof of (13) is

obvious, while the proof of (14) requires examining the probabilistic

interpretations of the forward and backward likelihood vectors, denoted

Rn+l Rn+l
by at e and Pt G ,respectively, and computed from equations

(2)-(3). The dependence of at and 1t on the parameters A and p is

implicit In the notation. The result (14) Is essentially a corollary

of Baum's Theorem stating that, for all t,

n
2{ZIA, p) = t a= t(I(t))ist (i(t)). (15)

Further details of the proof of (14) are omitted.

7
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The expectation step of the EM method is defined by

Q(ApIA',p') a E[ log (Z'IA,p) I Z,A',p' I

•Z X(IIZ,A',p') log 9(Z'IZ,A,p). (16)

161.

In (16), the parameters A' and p' are assumed given, and the goal is to

maximize Qby choice of of A and p. Taking the logarithm of 1(Z'IA,p)

In (10) and substituting Into (16) gives

T

Q(A,pIA',p') = c + Z X(IIZ,A',P') log bi(t)(ztA,p). (17)

I t=1

where c denotes a constant Independent of the parameters A and p.

Isolating the sum over i(t) In equation (16), and using the result

(13), gives

T n

Q(A, pI A',p') =c + Z log b i(t) (z tIA~p) X (IIZ,A',p')

t=l I(t)=O Ie\i(t)

T n

=c + v'j(1) log b (ztIA,p). (18)

t=l 1=0

where 1 7 t(A',p') e n + 1 is the state occupancy likelihood vector

defined by equation (4) for the given parameters A' and p'.

Substituting expressions (8)-(9) into equation (18) gives the function

Q(A,pIA',p') as an explicit function of the parameters A and p.

A stationary point of Q(A,pIA',p') with respect to independent

variables A and p satisfies the equations

T n

- L L ,(I) L log b(ztIA,p) = 0 (19)

t=l 1=0

T n
- L (I) L log bi(ztIA,p) = 0. (20)

t=1 1=0

8
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The required partial derivatives in (19)-(20) can be computed from

(8)-(9). Using the fact that M(.) - I1(.), the required partial

derivatives are

log Kt(p) - 0,
NA

log -P) 1 p N r 2

9P [P(tIAp P I P t IAlNP 1

R- log I( -p) -( 2 rit Io(ArjtNP) ,

SP 2(zt IA,p) 10 (AritNp)

P(zt IAp) ( 1I N II(ArtN) NA2p
8_ log 2t tc(p) = .- 1 ntN4

jp P2 (zt IA,p) t ArtNp)

+ n - nNp r ]
where

n
r2 1 r2
t = n - t

i=1

For later use, we define

T T n
2 2-2

T r n T ' (21)

t=l t-l n-l

Substituting these partial derivatives into the first necessary

condition (19) and simplifying gives the nonlinear equation

T n Ii(AritNP)

A - 2 E E _ _t _t N (22)
t-1 1=1 0 I t

9
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where the coefficients *It m *it(A'm ' ) are defined by

Oit 7t ((23)
T G'

op

In equation (22), G' m G (A',p') denotes the gate occupancy

probability defined by equation (5) for A' and p'. The definitions

(23) and (5) imply that # t a0 and that

T n

E E ot = 1. (24)
t=l 1=1

The coefficients {0t ) are independent of the unknown parameters A and

p. Equation (22) is one of the two coupled estimation equations. The

other equation is derived by substituting the necessary partial

derivatives into (20) and simplifying terms. This gives

2 1 - G (A',p') A2
-- a - =r 2 1 A_ (25)
N • p r n 4(5

Equation (25) is the second estimation equation. Substituting (25)

into (22) gives a single nonlinear equation in the signal amplitude A,

namely,

T n r2 - 2I I (Ar It  (r2 - GOPA2/(4n))
A 2 tt i . (26)

L L i 1 t 2
i=I I(Art / r - G A /(4n))

The weights (0't1 are not updated while solving equation (26)

numerically for the signal amplitude A; therefore, equation (26) can be

solved by any suitable one dimensional iteration method such as

bisection, Newton-Raphson, etc. Care should be exercised to account

for the possibility of multiple solutions of (26). After A is found,

the noise parameter p is computed from equation (25).

10
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The EM method requires that the global maximum of Q be found.

This aspect of the derivation Is necessary if the EM algorithm is to be

proved mathematically convergent. The proof is omitted.

The maximum likelihood estimates are computed by an "Inner-outer"

iteration. The EM algorithm is the outer iteration, while the inner

iteration is, say, a bisection or gradient descent method for solving

the necessary conditions (22) and (25). The EM algorithm is explicitly

stated as follows:

EM Algorithm for Maximum Likelihood Estimates AML and p KL

1. Initialize: A(O) > 0, p(O) > 0, k = 0.

2. Set k = k + 1.

3. Let A'=A(k-1) and p'=p(k-1). Then:

a. Using equations (2)-(4), compute the vectors {at. t ,  I T

b. Solve equations (22) and (25) for Ak} and p(k).

4. Test for convergence: Done?

NO: Loop to step 2.

YES: Set AML = A(k) and p ML = p(k).

11
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THE SPECIAL CASE OF ONE DFT CELL IN THE GATE

It is interesting to examine the estimation equations in the

special case where no tracking is required. If the Markov chain has

one state corresponding to a DFT cell and no zero state, the signal

must always be present in the only state of the Markov chain. Thus,

t (1) a 1 for all time t and for all choices of signal amplitude A and

noise parameter p. Similarly, G o 1. The EM algorithm is notop

iterative because there is no "missing data" in this special case.

(N.B. The EM algorithm Is equivalent to maximum likelihood estimation

when there is no "missing data.") Substituting 7t a G a nC

l/T into the estimation equations (22) and (25) gives

T 1 (AMtNp)
A F.(27)

t=l I (At Np)
t=1 0 t

2 2

0* 1 2 A( 9
2= - A2  - (28)
N N p 4

where

T
2 1 2 (29)

t=1

and where at =r 1 t is the amplitude of the only DFT cell in the gate

(see equation (M). Solving for the noise parameter p in (28) and

substituting into (27) gives a single nonlinear equation to be solved

numerically for the signal amplitude A. Explicitly, this equation is

A T 1(Wt/L 2 A2/4)30)
t~l 1t loAt/(a - A /4))

Equation (30) is a special case of equation (26), and the remarks made

12
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after (26) concerning numerical solution apply to (30) also. The noise

parameter p Is computed from (28) after A has been computed from (30).

The estimation equations (27)-(28) can be derived directly by

maximum likelihood methods without using the HHIKA0O tracking

structure. The measurement sequence 2 = (il' '2 .... ,T) is a

sequence of independent realizations of a random variable whose PDF Is

the Rician PI(rIA,p) given by (6). Therefore, the posterior likelihood

function of Z is

T

(ZIA,p) = P1(,t IA, p).
t=l

Omitting scale factors independent of A and p, the posterior likelihood

function of Z is written more simply as

T

2(ZIA,p) = pT exp(_NpTA2 /4) exp NpT ] 2 I0 (ANpat). (31)
t=1

Differentiating 2 with respect to A and p, setting the result to zero,

and simplifying gives the necessary conditions (27)-(28) for maximum

likelihood estimates of A and p.

Equations (27) and (28) are natural to the frequency line SNR

estimation problem. Related results for optimal detection problems

have been discussed elsewhere. Helstrom [9, Chapter VII, Section 1(b)]

examines the optimum likelihood-ratio receiver for the sequential

frequency line detection problem, and gives several references to

earlier work.

13
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CONCLUDING REMARKS

The estimation equation (25) for noise power in a bin, o2 /2N, is

interpreted as the sample mean of the square of all the measured

amplitudes in Z, corrected by a term representing the signal power

smeared over the entire gate and over the full time history T. This

interpretation of the correction term is reasonable because the

division by n smears the signal over the DFT cells in the gate, and

because the multiplication by G smears the signal over time. Sinceop

the G estimates the fraction of the time interval T during which theop

signal occupies the gate, the estimation equation (22) for signal

amplitude A is Interpreted as an estimate of signal amplitude when

signal is present in the gate. Without the G factor, the estimate ofop

A would be biased low by signal absence.

The estimation equation (22) for A is a weighted average of the

measured amplitudes {r t} over the full measurement sequence Z. The

weight applied to an amplitude rit Is interesting because it is a

product of a factor representing the "global" properties of the

detector/tracker HMM/AOO and a factor representing the "local"

statistical properties of the measured amplitude In a DFT cell. The

global properties are those associated with the probability field

(It(I)), and must be computed by the recursions (2)-(4}. The local

properties are those associated with the ratio of Bessel functions

(discussed In the Appendix) and are computed easily from knowledge of

the measured amplitude In each DFT cell.

An alternative to solving the estimation equations (22) and (25)

Is to use them simply as estimators for A and o /N. If successful,

this would obviate the need to solve the equations numerically.

Another alternative Is to estimate the noise power using data In DFT

cells that presumably contain no signal. If this Is done, the

estimation equation (25) can be eliminated, although the equation (22)

must still be solved. In any event, further study of these equations

is merited.

14
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APPENDIX

The function I(x), defined by the Bessel function ratio

Il(X)

I(x) * 1 (A. 1)
1o(X)

is of independent interest. I(x) is an odd function because 1(X) is

odd and 1 (X) is even. The function I(x) is plotted in Figure 2 for x

k 0. Using the identities I;(x) = I (X) and IY(x) = Io(X) - I(X)/x,

the derivative of I(x) is given explicitly by

I'(x) = 1 - 1 I(x) - I2(x). (A.2)x

I'(x) is plotted in Figure 3. The apparent singularity of I'(x) at x =

0 is removable since I(x) = x/2 asymptotically as x --> 0; hence, I'(O)

= 1/2. From Figures 2 and 3, it is clear that, for x 2 0, I(x) is a

cumulative distribution function (CDF) and that I'(x) is a PDF. A

formal proof of this fact (due to A. H. Nuttall) is given in this

Appendix. From the identity [8, equation (9.6.19)]

Io(x) = exp( x cos e ) de, (A.3)
00

it follows by differentiation that

I(x) = Il(X) = cos e exp( x cos G ) de (A.4)

0

I'(x) = I'(x = cos2 G exp( x cos e ] de. (A.5)
0 1

0

Differentiating I(x) in (A.1) gives I'(x) = N(x)/I 2(x), where the
0

function N(x) = Io(X) I'(x) - I(x) I (x). Substituting I(x) =
0 1 0 1

I I(x), and the identities (A.3) - (A.5) into the expression for N(x)

gives the result

is
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N(x) exp( x cos e) de 1 [Jcos2 x exp( x cos e ) de

- [ cos e exp( x cos e ) de

Fix x k 0. Substituting into (A.6) the functions

a(e) g exp[(x cos G)/21

b(e) * cos e exp[(x cos 0)/21

and applying the Cauchy-Schwartz inequality shows that N(x) ? 0.

Equality holds In the Cauchy-Schwartz inequality if and only if, for

some constant c, a(O) M c b(O) for all e In the interval [0. ii].

Since a(6) 0 c b(O), N(x) cannot equal 0. It follows that I'(x) =

N(x)/I 2(x) > 0. Therefore, I(x) Is strictly increasing for x 0. From
0

the asymptotic result, valid for fixed P, (8, equation (9.7.1)]

x2

I(x) = e 1- 4v 0 + O(x -2) x -- , (A.7)

it follows that I(x) --> 1 as x -- > w. Therefore, I(x) Is a CDF.

The mean value of I'(x) does not exist because, like the Cauchy

density, I'(x) has such a heavy tall that its first moment is infinite.

The heavy tail is evident from Figure 2. A proof of the unboundedness

of the mean value follows from the asymptotic formula (A.7).

16
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Figure 1. Plots of Pl(rIA,p) for Np=l and values of A corresponding to

the stated values of signal-to-noise ratiot

Signal power - -0 dB, A - 0
Signal power - -10 dB, A - .447214
Signal power - -5 dB, A - .795271
Signal power - -4 dB, A - .892308
Signal power - -3 dB, A m 1.00119
Signal power - -2 dB, A m 1.12335
Signal power - -1 dB, A m 1.26042
Signal power - 0 dB, A - 1.41421
Signal power - 1 dB, A - 1.58677
Signal power - 2 dB, A - 1.78039
Signal power - 3 dB, A - 1.99763
Signal power - 4 dB, A m 2.24138
Signal power - 5 dB, A m 2.51487
Signal power - 10 dB, A m 4.47214
Signal power - 15 dB, A 7.95271

17

-245-



1.0

0.8-

0.6-

0.4-

0.2-

0 2 4 6 8 10

Figure 2. Plot of the CDF I(x), defined by equation (A.1).
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Figure 3. Plot of the PDF I'(x), defined by equation (A.2).
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SU3OUAY Three methods for the detection of narrowband signals of unstable frequency embedded in a white
Gaussian notse background are Investigated. The fIrst" method. known as the Maxlmum-Power-Track
detector, divides the frequency domain Into gates containing a fixed number of FF7 cells. The mximum
spectral power within the gate Is integrated over time and used for detection purposes. The MPT detector
is fast and easy to Implement. The other detectors involve an extension of the Hidden Parkov Model (HMM)
frequency trackue developed earlier by Streit and Barrett (1988) to allow for detection. The HMM trackers have
been extended to allow for the inclusion of amplitude information In the input measurement sequence. It is
found that the MPT detector Is a simple and effective detector, and that the extended HM. detectors
represent a significant improvement, albeit at the cost of increased computational Complexity.

I. INTRODUCTION discussed in Section 3. A comparison of the results
from the three approaches is presented in Section 4.

The detection of stable frequency lines embedded
in white Gaussian noise is a well-studied problem in
detection theory. in this case, the optimal 2. 1= NhXXWK-VOEzt- TCM DxTROTOR
detector is the conventional integrated power
detector. Tn the usual implementation, the sampled The HPT detector represents a straightforward
time series is divided into non-overlapped data attempt to enhance the poor performance of the
blocks, and Fast Fourier Transforms (FFTs) of each conventional detector for fluctuating signal
block are computed. The size of the blocks is frequencies. A gate of frequency cells is defined,
chosen to give the desired frequency resolution for with the number M of cells in the gate chosen large
the problem under study. it is assumed that the enough to encompass the extremes of the frequency
signal frequency is stable enough so that the signal meanders. For each of the T blocks of data, the
remains entirely within the same FFT frequency Cell Coll Containing the maximum spectral power is
from data block to data block. The spectral power selected from all cells within the gate. A
within each FF7 cell is then summed over all the measurement threshold is set for the spectral power.
data blocks, and a detection is registered whenever If the power in the selected cell exceeds this
the integrated power in one cell exceeds a
predetermined detection threshold. This threshold measurement threshold, the cell's power is added toil et y cnsierig te cse hennoie oly 8 a sum that accumulates the total power in the
is et by considering the case when noise only in selected cells over the window of T data blocks.
present. The Probability Distribution Function The accumulated total power is designated the "gate(PDF) of th.2 noise power is lassmd to be Gaussian.
When the nose is not white Gaussian, p i ower-. A detection is registered whenever the gatewhn e noise is "pnotwhite, Gausian ithe i power exceeds a detection threshold. This thresholdnecessary to is set by estimating the gate power in gates
noise backgiound so that the filtered noise has the containing only noise, in the some manner as for a
desired .wtitical characteristics (e.g., unit conventional detector. The conventional detector
variance, white). represents a special case of the NPT detector with

M - 1.
In the case when the frequency of the signal to be

detected is unstable (i.e., the signal frequency The simplicity of the MPT detector enables a
wanders over several FFT frequency cells), the statistical analysis to be carried out of its
detection performance of the conventional integrated performance. In the analysis, we assume that at the
power detector becomes degraded. Instead of the time the frequency is computed for each data block
spectral power being concentrated in one frequency L, a signal is present with amplitude A in the
cell from data block to data block, it becomes centre of the m-th FFT frequency cell. The
smeared over several cells in the frequency "gate". background noise is assumed to be white, z~ro-man
The integrted signal power in individual cells GaU*sian with a broadband noise power of o . The
within the gate may then not exceed the detection signal frequency lies in different FFT cells at
threshold, and a missed detection will ensue. iffre c ti es n deent o )T e aTdifferent times (i.e., m depends on L). The FF7

In this paper, we compare three methods for the data blocks are of size N.

detection of unstable frequencies embedded in white Under these assumptions, the PD? F(p) of the
Gaussian noise. The first method, discussed in spectral power contribution p of each F? data block
Section 2, is known as the Maximum-Power-Track (MPT) te tol gte owr i give by:
detector, and represents a simple but effective to the total gate power is given by:
extension of the conventional detector. The other
two methods are based on the Hidden Markov Model
(H04). They are extensions of an earlier work on
the use of the HMt for frequency line tracking
presented by Streit and Barrett (1988), and are
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2 2 - ". "1 L~aCX6Xb PreswnteQ Dy QLKW.LL alto QZZOLL
.=(1988) and Barrett , t tal (1 9 do not US* phase

F(p) - [ :Ple(de P (elde (la) or amplitude information, yet they are effective
a (trackers. We have included amplitude information in

0 0 the MM tracker used in this paper. This extension

re p S D 2 is straightforward and does not materially alter the
probabilistic methods used in the 39W4 tracker.
However, the addition of amplitude information

P - results in better detection performance at lower
r SNRs than the original 2004 tracker described by

" P1 
(
p) P2 (eide Streit and Barrett (1908) and Barrett, et.al.

°0 1 (1988). The KH tracker with amplitude information
P0 p p included is denoted by the acronym XM/A, and its

[. .0 .~ ltracking performance is discussed by Steel*, .t.al.,+ (n-1) P 2 
(p )  

0P IaWdellf P 2(ede (lb) (1989).

2 The H(04 trackers (either with or without amplitude
for p > , information) can reconstruct the signal frequency

track in several different ways by utilizing the
where D is the measurement power threshold, and different features of a general probabilistic
8(x) is Dirac's delta function. structure that is defined from the mathematical

structure of H05 . The two features of interest in
In Equation 1, PI () is the PDF for the spectral this piper are the posterior likelihood function

power in the -.ell containing the signal, and P 2(e) that gives the likelihood of the entire mesurement
sequence, and the gate occupancy probability (GOP)

is the corresponding PDT in cells containing no function that gives the likelihood of the signal not
signal. The PDFS, PI () and P 2(e), are given by: occupying the zero state (i.e., signal presence at

each time step). complete details are given by

(0 H~ ~ / 1r x -N(40 2 (2) Streit and Barrett (1986). dsus i h
P 1 (e) - I,- exp - - Ia)

1 2142 The first HNK5/A detector we discuss i e
44 log-likelihood ratio (U.k/A) detector. The

likelihood functions used are the ones that the

and 22)/A tracker defines under the "signal present" and
and r-N "signal absent' hypotheses. The "signal present"

P (a) - exp :-_ (2b) hypothesis is true if the measurement sequence is a
2 I2) -11 realisation of the synthetic signal source

I characterised by the detector's INK, while the
"signal absent" hypothesis is true if the sequence

where 1 0 () iz *-he zeroth order Bessel function, is a realisation of a synthetic noise source

characterised by the zero state of the detector's
The gate power is obtained by the sumation of T HJ0. The parameters defining the detector's JN are
independent realisations of the stochastic the assumed SM06, the process noise standard
variable p. Under the assumption that T is large, deviation d , the track initiation probability u and
the mean and variance of the gate power are readily the track termination probability v. The UJA/A

calculated from Equations 1 and 2 by making use of detector is optimal in the Neyman-Pearson sense;

the Central Limit Theorem. The variance of the i.e., for a given probability of false alarm, the
3PT detector can then be studied2 as a function of probability of signal detection is a maximm. we
the measurement power threshold D by the numerical stress that the LLR/A detector is optimal if and
evaluation of Equations 1 and 2. From such a study, only if the posterior likelihood function defined by
it was tour,d that the optimal value of D for this the 214/A tracker is exactly matched to the signal.
detector is zero. Mismatch necessarily causes the LLR/A detector to be

a sub-optimal detector.
In Section 4, 'he Peceiver Operating Characteristics
(ROC) and minimum total error versus SNR curves are The second detector is the GOP/A detector, so named
presented for the MPT detector. Section 4 alo gives because it integrates the GOP/A function that the
detection perfozmance comparisons with the H22 HMM/A tracker uses to decide on track initiation and
detectors described next in Section 3. termination at each time step. When the HM04/A

tracker initiates a track automatically, it is
3. DETCTRXO BASED ON Hels effectively registering a detection. The GOP/A

detector is therefore employing the intrinsic signal
The HMM trackers presented by Streit and Barrett detector of the H94/A tracker. Because this detector

(1968) and Barrett, et.al., (1986) for tracking is an integrator, it can be interpreted as an
time-varying frequency lines are post-measurement estimate of the fraction of the total measurement

device trackers. The FFTs of a sequence of blocked time interval for which a signal with certain
non-overlapped sampled time series data are passed specified values of the 10 parameters (SUR, d, u

through a similar gated threshold detector to that and v) is present. Analysis of the detection

of the MPT detector. The detector output is the performance is made difficult by the fact that the
measured frequency of the signal, i.e., the midpoint GOP/A function values are highly correlated from
of the FFT cell within the gate having the largest time sample to time sample because the 1304/A tracker
amplitude is the measurement, provided this is a fixed interval tracker. The GOP/A detector is
amplitude exceeds the measurement threshold. If the not equivalent to the LLR/A detector, and no
threshold is not exceeded, the measurement is optimality criterion is known for it.

defined to be the "zero state". Thus, at every time

step a measurement is made. Because of the zero Analytic expressions for the ItOC curves of the UL./A
state, the 04N trackers have the intrinsic and GOP/A detectors are unknown. Preliminary
capability of automatic track initiation and theoretical results suggest, however, that the
termination. underlying conditional PVbr for the relevant

-252-



statistics, u1,Qer tne nypotheses oa "sgna. present" ,JP/A aetector (dasneck line). FJg.2 Snows the

and "sianal absent", are asymptotically log-normal minimum error as a function of SNR for the MPT

for bot' detectors. Further support is given by the detector and all of the HMM detectors investigated

observation that the ROC curves obtained below by here (i.e., the GOP and LLR detectors, both with and

simulation are straight lines on normal probability without amplitude information).

paper.
The first conclusion to be drawn from Fig. 2 is that

It will be seen in Section 4 that the GOP/A detector the MPT detector is a very good detector, and it is

is superior to the LLR/A detector. Since the LLR/A not until amplitude information is included that the

uses an optimal detection statistic, the question two HM detectors surpass the performance of the MPT

naturally arises as to how the LLR/A detector can be detector. The MPT detector represents a substantial

inferior to the GOP/A detector. The answer is that improvement over the conventional detector, and

the detector HMH, used in the LLR/A to characterise regularly produced correct detections with simulated

the "signal present" hypothesis, is not matched to data when no peaks were observable in the
the Mim used to simulate the input measurement conventional power spectrum.

sequence. The LLR/A detector is therefore

sub-opti-1i f:r the simulated data. The optimal measurement threshold for the MPT

detector is zero. For the Hm/A detectors, as noted

4. RESULTS in Section 2, the optimal measurement threshold (as
detqrmined from simulation studies) is sufficiently

Of the di'lerent detectors discussed above, only the small that missed measurements occur only

performance of the MPT detector lends itself to infrequently. However, for HiM detectors with no

theoretical analysis. Consequently, the detectors amplitude information, the optimal measurement

are compared in this paper by using simulation. The threshold is significantly different from zero. The

comparisons are made on the basis of ROC curves at comparisons in Fig. 2, where all detectors have a

different :NRa (Fig. 1) and plots of the minimum zero measurement threshold, is therefore somewhat

total error rate as a function of SNR (Fig. 2). For unfair towards the last two detectors. However,
any SNR, as the signal detection threshold is raised optimisation of the measurement threshold does not
or lowered, the relative frequency of occurrence of improve the performance of these two detectors to

false alarms and false dismissals is varied. There the point where they equalled the MPT detector in

exists an optimal detection threshold for which the performance. This is remarkable considering the

combined s.4 of these two sources of error is relative complexities of the three detectors, and

minimised. Fig. 2 displays this minimum error rate indicates the importance of amplitude information to

as a function of SUR. the detection process.

Simulated measurement sequences were generated by The inclusion of amplitude information in the Hm

using the HMm/A tracker as a synthetic source. A detectors results in approximately a 1.6 dB

simulated measurement sequence is a sequence of improvement in performance at an SNR of 0.002

measurements at the output of the threshold (i.e.,-27 dB). In other words, the SNR would have
measurement device when a signal of specified to be increased by 1.6 dB before the performance of

characteristics is input to it. The device the Him detectors without amplitude information
measurement threshold is preselected and fixed, would equal that of the HM/A detectors. Here, we
Thus, to simulate the "signal present" case, it is are defining SNR to be the ratio of signal power to
necessary to specify only the track SNR and the broadband noise power. The best of the detectors

track process noise. The track is started in the was the GOP/A detector, which was marginally

middle of the gate and is prevented from terminating superior to the LLR/A detector, and 0.8 dB superior

by setting the track termination probability, v, to to the HPT detector. From the ROC curves in Fig. 1,

zero. (Note that this model of "signal present" it can be seen that for an SNR of 0.002 and a false

differs from that assumed by the Hm detector only alarm probability of 0.2%, the probability of

in the under.;! ng track initiation and termination detection for the MPT detector is 70% but is almost

probabilities.) The "signal absent" hypothesis is 90% for the GOP/A detector. This improved
simulated by starting the track in the zero state, performance is achieved at the expense of a

and setting SHR - 0, u - 0 and v - 1. Thus, the considerably increased numerical complexity.

simulated "signal absent" measurement sequence
consists of a sequence of independent measurements 5. CONCLUSIONS AND CONCLUDING REMARKS

emitted from the zero state of the Hm.

The MPT detector is recommended in applications
Input data to the each of the detectors comprised a requiring simplicity, ease of implementation, and

set of 10000 simulated measurement sequences, each robust detection performance on unstable, or time-

of length 100 time steps, for both the "signal varying, frequency lines. The MPT detector is very

present" and "signal absent" cases. The input data simple to implement, yet it gives better detection

to all detectors were identical. The HMM/A performance than the conventional detector for

parameters u, v and d are unchanged by the addition unstable lines. Measurement outliers do not

of amplitude information to the original HMM significantly affect the MPT detector because the
tracker, ar.o have been discussed in earlier track estimate implicit in the MPT detector is the
publications by Streit and Barrett, (1988) and detection sequence itself. Missed detections do not
Barrett, et.al., (1988). The process noise standard occur because numerical evaluation of Equations 1

deviation d for the simulated "signal present" and 2 shows that the optimal measurement threshold

measurement sequence was set to 0.333 (in FFT is zero.
resolution cell widths). The parameters for the GOP
detectors were: track initiation probability u - To achieve better detection performance than that

0.00029, track termination probability v - 0.000035; given by the MPT detector, it seems necessary to

process noise standard deviation d - 0.333; track the frequency line accurately and to include

measurement threshold D - 0. amplitude information in the tracker. The best Hm
detectors studied in this paper utilize amplitude

Fig. 1 0o-s the ROC curves for the MPT detector information and significantly out-perform the MPT

(solid lines) and the best of the Hm detectors, the detector. However, the Him/A detectors require
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The Moments of Matched and Mismatched Hidden
Markov Models

ROY L. STREIT, SENIOR MEMBER, IEEE

Abstract-An algorithm for computing the moments of matched and tion of one such preprocessor for the SIIWR problem, and
mismatched bidden Markov models from their defining parameters is [8] describes one suitable for frequency line tracking.
presented. The algorithm Is of general Interest because it is an exten- Throughout this paper, it is assumed that a satisfactory
sion of the usual forward-backward linear recursion. The algorithm
computes the joint moments of the posterior likelihood functions (i.e., preprocessor is available, but no assumptions are made
the scores) by a multilinear recursion involving the joint moments of about its specific nature. The output of the preprocessor
the random variables associated with the hidden states of the Markov constitutes the observation sequence. In practice, this se-
chain. Examples comparing the first two theoretical moments to sim- quence is truncated to have finite length T where T is se-
ulatlon results are presented. They are of independent interest because
they indicate that the distribution of the posterior likelihood function lected according to the application needs. The truncated
scores for matched and mismatched models are asymptotically log-nor- sequence is denoted by Or = { (t), t = 1, 2,
nual in important special cases and, therefore, are characterized T }
asymptotically by the first two moments alone. One example discusses The act of computing specific numerical values for the
the effect of a noisy discrete communication channel on a suboptimal various parameters of an HMM is called "training."
classification method based on the distributions of scores rather than Training takes place on the outputs of the preprocessor
on maximum likelihood classification, when it is given multiple realizations of a specific signal

class. If the Baum-Welch reestimation algorithm is used
I. INTRODUCTION for training, then training is equivalent to solving a math-

H IDDEN Markov models (HMM's) are statistical ematical optimization problem to determine maximum
models that are developed in diverse applications to likelihood estimates of the HMM parameters [2]. In this

characterize different classes of nonstationary time series paper, it is assumed that the training phase is completed
or signals. Subsequently, H'.., are utilized for the au- and that the HMM's developed are adequate models for
tomatic classification of an unknown signal into one of each of the signal classes of interest (e.g., the vocabulary
these signal classes. In spc J;h applications, they are used words in the SIIWR problem or the target/SNR charac-
to characterize the time variation of the short-term spectra teristics in the tracking application). We denote by
of spoken words. An example is the speaker-independent HMM (i) the HMM parameter set defining the ith signal
isolated word recognition (SIIWR) problem where class. An important consequence of these training as-
HMM's characterize the words (or parts of words) in a sumptions is that HMM (i) can be used as a synthetic
finite size vocabulary. Different words are characterized signal source, that is, HMM (i) can be used to simulate
by different HMM's [1]. In target tracking applications, the output of the preprocessor when the ith signal is input
HMM's are used to characterize the time variation of a to it. We use the notation Or e HMM (i) to mean that the
target track measurement sequence. A specific example is observation sequence Or is a realization of a random vec-
the narrow-band frequency line tracking problem where tor whose statistical distribution is defined implicitly by
HMM's characterize possible target frequency shifts as HMM(i).
well as noise in the measurement sequence for finite sig- HMM's are used for classification of an unknown ob-
nal-to-noise ratio (SNR). Different HMM's characterize servation sequence Orby exploiting a probability measure
different target track dynamics and different SNR's [8]. A or posterior likelihood function, as depicted in Fig. 1. The
brief description of the mathematical structure of HMM's posterior likelihood function is defined on the set of all
is given at the beginning of Section II. truncated sequences { Or } by utilizing the mathematical

An application-specific preprocessor is critical to the structure of HMM's. Thus, the likelihood of a given Or

successful use of HMM's in the application. This prepro- depends critically on the numerical values of the param-
cessor maps (or transforms) an arbitrary input signal s (t), eters defining the underlying HMM. The ith HMM recog-
t > 0 into a discrete observation sequence { O(t), t = 1, nizer computes the posterior likelihood function f (Or).
2, • }. Reference [1, pp. 1077-10781 gives a descrip- If HMM (i) is a finite symbol HMM (see Section II be-

low), then ft (Or) is equivalent to a probability, that is,

Manuscript received July II. 1987; revised January 3. 1989. f((O ) = Pr [Or l HMM(i)], i = 1 ''" , p. (1)
The author is with the Naval Underwater Systems Center. New London.

CT 06320. The maximum of the computed likelihoods identifies or
IEEE Log Number 8934008. classifies the original signal s (t) that was input to the pre-
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MMM: From (2), it is clear that Fi, (x) is a cdf because it is a
nonnegative increasing right-continuous function, and the

• limit ofF(x)isOasxgoestoO-and I asxgoes to +Co.
SFor continuous symbol HMM's, the summation over Or

in (2) must be replaced by integration over Or. Algo-
rithms that calculate Fj directly from the HMM parame-
ters are not known. For later reference, note that, in gen-

Fig. 1. Classificationofunknown signals(i) asoneofpsignalsforwhich eral, F0 (x) * Fji (x).
trained HMM's are available. The moments of dF (x) are defined by the Riemann-

Stieltjes integral
processor. It is well known that this classifier is optimum *
in the Neyman-Pearson sense; that is, for a specified Mij(k, T) = _ XkdFi(x), k = 0, 1, 2,

probability of incorrect classification, the probability of
correct classification is a maximum [3]. (3)

The fundamental problem studied in this paper is the If F~i (x) is differentiable with derivative F (x), then the
determination of the probability density function (pdf) of moments can be written equivalently as the Riemann in-
the test statistic fi (Or) when Or e HMM (). In other tegral
words, if Or is a random vector generated by HMM (j),
what is the pdf of the numerical values of the ith posterior M. (k, T) = XF' (x)dx.
likelihood function f (Or)? Note that the HMM's are -*
matched if i = j and mismatched if i * j. This paper The moments depend on the length T of the observation
presents an algorithm for computing explicitly the mo- sequence because Fij (x) depends on T, as seen from (2).
ments of the desired pdf up to any required order directly They uniquely determine dFij (x) when they are all finite
from the underlying parameters of the HMM's involved, and the characteristic function of dFij (x) has a finite ra-
and presents examples that compare the first two theoret- dius of convergence [4]. For finite symbol HM's, it is
ical moments to simulation results. The algorithm is of clear from (1) and (2) that dFi(x) = 0 for x < 0 and x
general interest because it is an extension of the usual for- > 1. Thus,
ward-backward linear recursion [2] for HMM's. It com-
putes the joint moments of the likelihood functionsf (Or(T) ( kdF (X) < 1
by a multilinear recursion involving the joint moments of M=(
the random (observation) variables uniquely associated
with the hidden states of the HMM's. The examples are so that all the moments are finite. The series
of independent interest as well. First, they indicate that
the desired pdf is asymptotically log-normal in important Oj (w) = Mij (r, T) (iw)r/r!
special cases and, therefore, is completely characterized
(asymptotically) by the first two moments alone. It is not for the characteristic function of dFo (x) is absolutely
obvious how the central limit theorem can be used to ac- convergent with an infinite radius of convergence be-
count for this result. Second, the examples show that a cause, for fixed w0 * 0, each summand is bounded above
suboptimal classification method using preset detection in magnitude by I Wo I rr!, and thus the radius of conver-
thresholds for the likelihood functions f (Or) may be gence must be at least as large as I w0 I• Consequently, for
useful in certain instances. This point is discussed at the finite symbol HMM's, the moments of dF, (x) uniquely
end of this section. determine dFj (x). A similar argument holds for contin-

The distribution we seek is defined via its cumulative uous symbol HMM's, provided the likelihood functions
distribution function (cdf), denoted by Fij (x). It is intu- f (Or) are bounded on the set of all sequences { OT }. In
itively appealing to attempt to define Fij (x) by setting this paper, we assume that the likelihood functions are

Fi (x) = Pr [f (Or) < x and Or HMM (j)] bounded because such an assumption is not particularly
restrictive for applications.

where x is any real number; however, such a definition is Receiver-operator characteristic (ROC) curves [3] are
ambiguous because the meaning of the probability mea- commonly used in the radar and sonar communities to
sure Pr [ • I is unclear. Instead, for finite symbol HMM's, provide quantitative assessments of the correct and incor-
we define rect classification rates for classification schemes based

Fj(x) = H(x - f (Or))fj(0,) (2) on likelihood functions. ROC curves can be used for the
Or same purpose here. To develop a ROC curve for a given

where the function H( - ) is defined by c lassification-related test statistic, say q, under two hy-
potheses Hi and H, the conditional pdf's (using the no-

H(x) = I if x - 0 tation in [3])

H(x) = 0 ifx < 0. PqlH,(QIH,) and pq.iH,(Q'H,)
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that define the test statistic q under the different hy- cision threshold ui, for each pair of hypotheses Ore
potheses H and Hj, respectively, must be known. For HMM(i ) and Ore HMM(j) is not available. Instead,
each real number u, - oo < u < + oo, we define the prob- the thresholds must be set by direct examination of the
ability ROC curves.

The test statistic qsubopt is identical to q.,p in one impor-

PF(U) , I (QIHi )dQ tant special case. If HMM (i) is such that fi (Or) in the
qdenominator of qopt is a constant function of Or, then

and the probability qsubopt can be scaled so that q,,bp, = qopt: A situation that
might require such an HMM(i) is one in which white

W = noise is being modeled, for then one might anticipate that
PD( u ) = jP 4 H( tlj) dQ. all observation sequences at the output of the preprocessor

are equally likely. The classification statistic is more ap-
The ROC curve for q is simply the locus of points propriately referred to as a "detection" statistic in this
(PF (u), PD (u)) parameterized by u. The parameter u is instance. Thus, a ROC curve for the optimum detection
usually treated as a decision threshold in applications, statistic can be developed from the moments computed by
Suppose the decision threshold Uthsh is selected. Then if the algorithm given in Section II.
q a Uthsh, the classifier decides Hj. The probability of The use of qsubop, in preference to qop, is appropriate
this decision being correct is PD, and the probability that only if the associated conditional pdf s for the ROC curves
it is incorrect is PF. PF and 1 - PD are usually referred are "well separated" from each other, and if the appli-
to as the false alarm and false dismissal probabilities, re- cation places great emphasis on control of the false alarm
spectively. Analogous remarks pertain if q < Ulh,sh. Note or false dismissal probabilities. In this situation, both qopt

that the ROC curve for u = -oo goes through the point and qsubopt are very likely to perform well; however, es-
(1, 1 ) and for u = + o it goes through the point (0, 0). timated ROC curves for qopt would have to be obtained

The ROC curve of the optimum classifier depicted in from very large simulations, especially if very small false
Fig. 1, under the hypotheses Ore HMM (i) and Ore alarm probabilities or false dismissal probabilities are re-
HMM (j), is determined for the likelihood ratio test sta- quired in the application. On the other hand, ROC curves
tistic for qsbopt can be obtained reliably without simulation. In

qop = fj (Or)/fi (Or). any event, classification performance using qsup, should
bound the classification performance using qopt.

The required conditional pdf for qo, is defined by the cdf

L, (x) = F H(x - {f(O)/fi (Or)})fj (Or). II. THE MOMENT ALGORITHM

OT

No recursion for Lij (x) is known, so the only way to eval- Every HMM is comprised of two basic parts: a Markov

uate it is by doing the summation; however, this is im- chain and a set of random variables. The Markov chain

practical because the number of terms in the summation has a finite number of states, and each state is uniquely

grows exponentially in T. Simulation is probably the best associated with one of the random variables. The state

method for estimating the ROC curves for the optimal test sequence generated by the chain is not observable, i.e.,

statistic qopt. In any event, a decision threshold u1 must the Markov chain is "hidden." At each time t = 0, 1, 2,
be set to enable classification to proceed. The "natural" , the Markov chain is assumed to be in some state;

threshold to set is uij = 1 for all i and j, for then the it transitions to another state at time t + I according to
maximum likelihood determines the classification, the its transition probability matrix. At each time t, one ob-

classification decision is unique (except for ties) and the servation is generated by the random variable associated
with the state of the Markov chain at time t. The obser-

classifier depicted in Fig. I is obtained. However, in gen-
eral, it is not necessary to make the natural choice. The vations are referred to as symbols. If the random variables

best choice depends on the false alarm and false dismissal assume only a finite set values, the HMM is referred to

requirements for each pair of hypotheses Ore HMM (i) as a finite symbol HMM. If the random variables assume

and Ore HMM (j) in the application, a continuum of values, the HMM is called a continuous

The ROC curve of the suboptimal classifier, under the symbol HMM. The full parameter set defining an HMM

hypotheses HMM(i ) and HMM(j), is determined for is comprised of the initial state probability density func-

the test statistic tion of the Markov chain at time r = 0, the Markov chain
state transition probability matrix, and the pdf's of each

qboW = fj (Or) of the random observation variables.
The required conditional pdf's for qubpt are given by The reader is referred to [2] for further discussion of
dFji (x) and dF, (x), respectively. As shown in Section HMM's and the basic algorithms related to them. Of par-
II, the moments of dFj, (x) and dFj (x) can be computed ticular importance is the forward-backward algorithm that
to any desired order; hence, the ROC curve for qubop, can, is used extensively in this section. It is not necessary to
in principle, be approximated to any required accuracy read the remainder of this section to understand the ex-
without resorting to simulation. A natural choice of de- amples presented in Section III.



STREIT: MOMENTS OF MATCHED AND MISMATCHED HMM'S 613

The algorithm is presented separately for finite and con- The sets Si (x) and Si ( y) are disjoint if x * y. Also, the
tinuous symbol HMM's in Section I-A and II-B, respec- union or Si (x) over all x in Xq is the set { Or } of all
tively. Since the presentation uses only the forward part observation sequences. Now, from definition (2), it fol-
of the forward-backward algorithm, the algorithm may be lows that
named the forward moment algorithm. Section II-C con-
tains a statement of the backward moment algorithm and dFq (x) = F% (x+) - F% (x-)
an identity that is analogous to the Baum identity of the = f(Or). (4)
usual forward-backward algorithm. OrES,(,:

A,. Finite Symbol HMM's Substituting (4) into (3) gives

Let HMM(v) be a hidden Markov chain with n(,) My (k, T) = x k f(OT
states, P = 1, • - . Subscripted indexes will always be XX, OTeSi(W

% ritten as functions of their subscripts (for instance, n (v) = E { f. (Or) } "f, (Or)
is used instead of n,) to avoid the later use of subscripted Xq OTESt(X)

subscripts. Let the state transition probability matrix of = F Pr [OrHMM(i)Ik Pr [OrIHMM(j)]
HMM(Y) be denoted as A" = [a'()(,)] for i(v), j(v) Or

= 1, • " " , n (v). Let the initial state probability vector (5)
of HMM(v) be denoted as r" = [wr',)] for i(v) = 1, where, in the last equation, we have used (1). It is clear

.• , n(p). from (5) that Mij (k, T) * Mji (k, T), in general, fork
We first restnct attention to finite symbol HMM's, that > 1. Fork = 1, however, we have Mij (l, T) = Mj, (I,

is, we suppose that every observation sequence Or = T) for all i, j, and T.
O(t), t = 1, . T} is such that The expression in (5) is computable directly from the

O(t) e V = { V, • . , vJ} parameters of HMM(i ) and HMM(j ); however, such a
calculation is not practical except for small T because thewhere V is the set of all possible output symbolb of the computational effort increases exponentially in T. To see

preprocessor. The true nature of the symbols in V is of no this, note that the forward-backward algorithm 121 cal-
importance here. HMM's assume that O(t) is a random culates Pr (OrI HMM(,)] using n 2 ( ,) T multiplica-
variable whose probability density function depends on tions. Thus, each summand in (5) requires [n(i)
the current state of the Markov chain. Let the discrete n (j)]2 T2 multiplications. There are mT different possi-
probability density function for HMM ( ,) when it is in ble observation sequences Or = { 0 (t), t = 1, • - , , T }
state i ( ) be denoted as Bi,) for i ( v) = 1, • • • , n ( ,). because each O(t) can be any one of the m output sym-
'Eus, each Bi'(,) is a row vector of length m. Stacking bols in V. Thus, direct calculation of (5) requires a total
these row vectors gives the n () x m symbol probability of [n(i ) n(J )12 T mT multiplications.
matrix We now derive a recursion for (5) that requires com-

B', putational effort that grows only linearly with T. The re-
cursion is derived for a more general expression that con-

B' -tains (5) as a special case. For k = 1, 2, • ,define

R(k, T) = X II Pr [OrIHMM(P)]. (6)

Note that The application of (6) to compute moments is straightfor-
ward; for example, R(k + 1, T) equals M21 (k, T) when

, , HMM(2) = .... = HMM(k + 1). Note that R(k, T)
can be interpreted as a joint moment of HMM's. that is,

where we define as a joint moment of the likelihood functions f (Or) of
the HMM's.

b;,,)(O(t)) = Pr [O(t) HMM(,) and state i(p)]. The derivation of the recursion for R(k, T) proceeds

The assumption that the training phase is completed means as follows. The forward recursion portion of the forwar I-
that the parameters HMM() = (7r', A', B') are known. backward Agorithm gives the expression

For finite symbol HMM's, F (x) has a finite number (7)
4 jump discontinuities. Let Xj denote the set of all values Pri.OI HMM(v)] = X CA(i(P)) (7)
of x for which Fj (x) is discontinuous. Definition (2) im-
plies that the discontinuities of Fj (x) occur precisely at where, for 2 :s t T,
the different possible values off, (Or). Define the subset [n 1
Si(x) of the set of all observation sequences {Or } by a,(j(i)) = L ' ' _1(i(Y))ar,,, b;,,.,(O(t))

S,(x) {OT:f(Or) = X} (8)
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and well as the indexes i ( ), and because of (11), we have
c,'( (p)) = w ',) bj(,) (0 ( l1)). (9 ) gjj ( ), " ' , j (k ))

Substitute (7) into (6) to obtain = r(j( 1), • • , j(k))

(Y) k 
n('

k,

R ( k , T ) = T I a . ( ( i ) ) f l 3 , [ a , v l.j , f, _ B i ) , ' , i ( k ) )
j, O 'I . " ',k - i..) = I =L' ' P ) . v j L, .. I \

- t r(j(l), ,j(k)) (10) (12)
j(',) ..- I. where

where we define, for t = , • T, kk r ( (I), . . j (k )) = Il1 bj(,) (O (r))

, ,' .jlk = Z -T - a (j(i'). (11) 0(1) ,=

One interpretation of AT is that it equals R(k, T) given = ,I b;, ) ( V s). (13)

that HMM(v) must end in state j(v), v = 1, • • , k. Note that r is the joint moment of the random observation
We seek a recursion for -r. First suppose that 2 < t _t vateahats uitel o cit e e t the anom bsrvaio
T. Then, substituting (8) into (11) gives variables uniquely associated with he state j( ) of

HMM (v).

1,(j(l), j(k)) Equation (12) is the desired recursion for 2 _< r T.
For t = 1, substituting (9) into (11) gives

=~~A Z I,, ,.(j(1). --.j(t))
0, k

n . k k;t(i(8 ) a ()j(n) I

,.= (, k ]-A bkT,,(O (I))1 0 0(I -- Ik k1, -.I bj ) (O (t)) fl r (j ( l) , . . .- ,j (k )) 1I v ,(,. ( 14 )

n(,) [k 1 [ ,- Let k = 1. From the definition, it is clear that R (1, T)
,) L J = 1 for all T, regardless of HMM ( 1 ) because the sum in

I.)- t ,- , .V (6) is over all Or. To check independently the recursion
1,-L k.(12)-(13), note that, from (13),

r(i(l)) = bj(1)(V.3 ) = I r T.

., bjp(,)(0o(t)) 'j l ) = .

From (14), we have
Because c._ I(i (p)) does not depend on the last symbol
O(t) in the observation sequence 0, = {0(1), . ,,(j(l)) = 'ri().

O(t) ), we have Hence, from (10), we obtain
,.,(j( l1), ' j(k)) "(,l x( ) =1

R(l, 1) ==1.

nl,) 
k {(I)=1

,()- . - , The recursion is verified forT= 1. ForT= 2, from(12),
. k • we have1) 

nil)

S b)'j(,)(O(t))I . f.L(j(l))= .iO00) [P-1 fl)1i())I

Because the sum over 0(t) is independent of the obser- =
vation sequence,_I = {0(l), . O(t - I),as
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so that, from (10), for every permutation a of the k integers j(2), , j(k
n(I) + 1 ). The proof of (16) follows easily from (13) because

R(, 2) T(I)ai)).multiplication is commutative. Thus, one only need con-
R((,W)= -(at , I J sider indexes that satisfy

I(I 1 rj(1) -- n(l) and

i()= )(( 1 <j(2) --<j(3) -" -j(k + 1) - n(2).

The number of ordered index sets (j(2), -.. , j(k +
and the recursion is verified for T 2. 1 )) is equal to the number of combinations of n (2) lettersand taken k at a time, when each letter may be repeated any

The first nontrivial special case is k = 2. In this case, nmber a time, to k. letererepeationy

R(2, T) is identically the first moment M12 ( 1, T). From number of times up to k. Storage is therefore proportional

(12), wehave for2 5 t 5 T to

/,(j(l), j(2)) 
Nk + I

= r(j(1),j(2)) - (n(2)(n(2) + 1) . (n(2) + k - 1)n(1)

n(I) n(2) /
p. ,2(2))a(,)J(I)a2).(2 ) which is significantly smaller than the [n(2)]kn( 1) stor-

i )=I i(2)= - age that would otherwise be necessary. The total multi-
and, from (14), plication count is also reduced proportionately.

Once r has been computed and stored for a given value
"(j(,>?j 2 ) of k, the recursion (12) can be computed for any length T

where, from (13), of the observation sequence. For each of the Nk sets ofindexes {j(v)} in (12), the sum over all Nk indexes
r(j(I),j(2)) = ijbJ1) ( V) b] 2, ( V). { i(P) } must be undertaken. This sum appears to require

s-I kN t multiplications; however, by using the nested form,

From (10), then, we have .(I) [ n(2)
n,,) n(2) Za all).() Z

R(2, T) = Z I (j(l),j(2)). i()- i =

exesivly j()=-I j(2)= [f1 aI(k) fkIIil)
-omputation of R(2, T) = M12(1, T) is therefore not a

i(  k)j(k)A,-il), i(k)
excessively laborious.I .k-Id

The evaluation of R(k, T) using the recursion (12) is it is possible to use approximately
properly broken into two parts. The first is the precalcu-
lation of r (j(l),-. ,j(k)) for every possible value Nk+NkI+ ...N2 + N =((N- )
of the indexes j(P). This requires (k - 1) m Nk multi- GN-l1
plications and Nk storage locations, where instead. If lower order terms are nellected, computing one

r 1 1/k iteration of (12) requires about N k multiplications. For
N = I I n(v) (15) an observation sequence of length T, computing tT re-

"'' quires on the order of N2
k T multiplications. If N = 8 and

is the geometric mean of the number of different states in T = 32, then 2.2 x 1012 multiplications are required for
the various HMM's and is not necesarily an integer. If N k = 6. Assuming a multiplication takes I us, the calcu-
= 8 and if there are m = 16 different observation sym- lation requires 611 h and is clearly impractical.
bols, then computing and storing r for k = 16 requires Significant reduction in computational effort is possible
262 144 storage locations and 2.1 x 107 multiplications, in some cases by utilizing the underlying symmetries in
Storage is clearly more crucial an issue than multiplica- it,. For example, if HMM (2) ... HMM (k + i),
tions. then

It is possible in some cases to utilize the underlying ii,(j(l),j(2), .-. ,j(k + 1))
symmetries of r to reduce both storage and computational
effort. For example, if HMM(2) ... HMM(k + =/jj(l),a(j(2)),''' ,o(j(k + 1))) (17)
1), then for every permutation a of the k integersj(2), • • , j(k

(j(1), j(2), ••, j(k + 1)) + I ). The proof of (17) follows easily by induction from
(12) because multiplication is commutative and because

= r((j(l), a(j(2)), ... , a(j(k + 1))) (16) r satisfies the same symmetry property (16) in this case.
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Thus, the recursion (12) need be computed for only Nk +. I tion of the random variable O(t). The posterior likeli-
sets of indexes. The total multiplication count is reduced hood function f, (Or) is a probability density function for
to 4Nk + I T, which is significantly smaller than the N 2

k T continuous symbol HMM's, as opposed to a simple prob-
multiplications that would otherwise be needed. For the ability (see (1)] for discrete symbol HMM's. Thus, for
above example requiring 611 h, if N = n( 1) = n(2) = real vectors Z and 0 with & < 0, we have
8 and if the symmetry (17) is utilized, the calculation-
would be reduced to roughly a 96 min calculation. Utiliz-
ing symmetry is clearly significant in that it can turn an
impractical long calculation into a feasible shorter one. (22)

Underflow is potentially a problem when the recursion
(12) is computed. It can be easily overcome in exactly the where dOT = dx1 ... dxT.
same manner as pointed out in [2] for preventing numer- For continuous symbol HMM's, the functions Fj (x)

ical underfiow during the calculation of the forward- are defined just as in (2), but with a T-fold integral over
backward algorithm. Specifically, let lr, be computed ac- Or replacing the T-fold sum over OT. Thus, we have the
cording to (12) and then multiplied by a scale factor c, differential
defined by I

c,= 'r(il), ,J(k)). (18) tr
where (. ) denotes the Dirac delta function. From (3),

Then use the scaled values of /i, in the recursion (12) to

compute 1, which is in turn scaled as shown in (18). Ml (k, T) = xdF0i (x)
If we continue in this fashion and recall the expression in
(10), it follows that

R(k, T) = ( I) (19) 1

Because the product cannot be evaluated without under- f ka0~ ~xa(X -- f (OT) dx dOT
flow, we compute instead 

O T

log R(k, T) =- I log c, (20) {f(0O-)} fj(Or)dOT (23)

Any convenient scale factor can be used instead of (18). which is the continuous analog of (5). It is clear from (23)
A potentially useful one might be to take Z, = N . Using that Mj (k, T) = Mj9 (k, T) in general only for the special
Z, would eliminate the effort of computing the sum in (18) case k = 1. The analog of (6) for continuous symbol
before scaling. HMM's is

B. Continuous Symbol HMM's R(k, T) I... -, f,(Or)dO. (24)

The objective of this section is to show that the moment -----------
algorithm for discrete symbol HMM's can be carried over T-fold

essentially unchanged to continuous symbol HMM's. In The forward-backward algorithm for computing the
fact, it holds also for continuous vector symbol HMM's; posterior likelihood function for continuous symbol
however, only the continuous symbol HMM's are treated HMM's is modified [5J as follows:
here for simplicity.

Throughout this section, it is assumed that each output
symbol O(t) is a real random variable defined on some f(Or) = C a.(i()) (25)

underlying event space V. The probability density func-
tion of O(t) is uniquely defined for each state i(,) = 1, where t(j(',)) is computed exactly as given by the re-
. • • .n(,) of each HMM(,), i, = 1,2, - • - , and is cursion (8) and (9), with the only difference being that

denoted as bh(,) (x). Thus, for real numbers a and with bj'(,) (O(t)) in (8) is now interpreted as the probability
a < 0, we have density function implicit in (21). Consequently, (10) still

holds exactly if we define

Sbi'(,)(x)dx = Pr[a : O(t) < 0 1HMM(P) j,(j(l),... ,j(k))

and state = i( )]. (21) = ." . (, 26)

An observation sequence Or = {x,, t = 1, 2, • , T) }
is a sequence of real numbers x, with x, being a realiza- ,.ford
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as the analc of (11). Proceeding as before with t-fold 111. COMPARISON OF THEORETICAL MOMENTS TO
integrals replacing t-fold summations gives exactly the re- SIMULATION
2i, uue-i (12). but with the one-dimensional integral Ergodic Markov chains are those for which it is possi-

A ble to transition from everv state to everyv other state, al-
f I ,j(k)) =b(,) (.x) dx (27) though not necessarily in one step. Left-to-right Markov

chains are those for which transitions to lower numbered
in place of(13). states are not allowed, that is, have probability zero.

The remarks in the preceding section concerning stor- These two types of chains are sufficiently different that
ag,. multiplication counts, and symmetry properties all they are considered separately in the examples.
apply for continuous symbol HMM's. The primary dif- One interpretation is that ergodic HMM's are models
ference is that (27) requires an integral evaluation instead of quasi-stationary signals. while left-to-right HMM's are
(. , I tnri ! suni as in (13). This evaluation increases the models of transient signals that ultimately become sta-
initial computational overhead, but once (27) is com- tionary (because the highest numbered state is not exited
puteJ. the algorithm (12) proceeds exactly as before. once it is entered). One might therefore expect these two

types of HMM's to affect classification performance in
C The Forward-Backward Moment Algorithm different ways. The three examples given in this section

-in. moment algorithm presented above in this section support this expectation.
used the forward probabilities defined by (8)-(9). It is Using the above interpretation, the examples may be
equally feasible to use the backward probabilities for the described as follows. The first example shows that clas-
same purpose. They are defined by sificatioa using the suboptlmi statistic is, reiably dis-

tinguishes between sufficiently long quasi-stationary sig-
0r(j(O)) = n rals with a reasonable amount of computation&! effort.

and, for T - 1 > t a 1. by The second example shows that short quasi-stationary and
n(0 transient signals look significantly different to the HMM

0,(j(X)) aj,,fl.j,)bj(,(O(t + I))3,+ (i(,)). transient recognizer, butnotto the HMM recognizerbased
Jon the quasi-stationary signal. The third example shows

The backward moment algorithm computes, for I <s t < that noisy observations of transient signals adversely af-
T - 1, the function f - fect classification performance by making the transient

k signal appear to have a stationary component. which is
,j(l) , j(k)) = Z Ii 01(j(,)) then misclassified by the HMM transient recognizer.

0, -1I
A. Two Ergodic HMM 's

where o, = {O(t + 1). • • (T)}. The backward HMM(1) and HMM(2) are five-state, eight-symbol
recursion is given by ergodic models whose parameters are given (rounded to

TT(Aj(), , j(k)) = I three significant decimals) in Tables I and II, respec-
tively. HMM ( I I clearly generates observation sequences

and, for T - 1 - t >1, by of uniformly distributed symbols. HMM(2) is more com-

r,(j(l) . j(k)) plex in structure, but every symbol can be generated in

n,,) k every state. The fundamental question of interest here is

- Z t r (f(i the following. How long must an observation sequence
,0)_ = i be to guarantee that the suboptimal classification statistic

.. qsubopi is highly reliable (say. 99% correct) and has a low
r,W ((l), , i(k))r(i( 1), . i(k)). false dismissal rate (say. of 0.5%)'? We will give what

may best be described as a semiempincal answer to this
The derivation of this recursion is similar to that of (12)- question.
(13). Because of the nature of HMM ( I ). it is easy to see thatIt is straightforward to show that for any t, I < t _ T.

.) fj(Or) = Prf ()THMM(I)1 = 8-i.
R(k. T) = Z #,(j(l), ,j(k))

j() tIn other words, the posterior likelihood function based on
"HMM () is constant because all observation sequences

7,( j(1). • j(k)). are equally likely if Or E HMM ( I ). In particular. f1 (0r

Note that the case t = Tis (10). This identity is the analog cannot distinguish Orc HMM (I) from Ore HMM (2)
for R(k, T) of the well-known Baum identity 121 for like- and thus is useless for classification.
lihood functions, i.e., The posterior likelihood function based on HMM(2),

instead of HMM(I), is useful for classification. Ten-
f,(OT) = X a,(i(a')) ,(i(')), thousand observation sequences Or of each HMM were

,= i generated, and the posterior likelihood f2 (Or) was com-
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TABLE I 3.
PARAMETERS OF HMM ( I)

NUMBER OF MARKOV STATES - 5

NLMBER OF SYMBOLS PER STATE - B

INITIAL STATE PROBABILITY VECTOR:
2.00E-01 2.001-01 2.00E-01 2.OOE-01 2.00E-01 "

TRANSITION PROBABILITY MATRIX:
2.001-01 2.001-01 2.0OE-01 2.0OE-01 2.001-01
2.001-01 2.00E-01 2.001-01 2.001-01 2.001-01
2.001-01 2.00E-01 2.001-01 2.001-01 2.0OE-01
2.001E-01 2.0OE-01 2.00E-01 2.001-01 2.0OE-01
2.00E-01 2.0OE-01 2.00E-01 2.00-01 2.001-01

SYMBOL PROBABILITY MATRIX (TRANSPOSED):
1.25E-01 1.25E-01 1.25-01 1.25E-01 1.25 -01-4 -SY -

1.251-01 1.25E-01 1.25E-01 1.25E-01 1.251-01 Fig. 2. Histogram of lOOOOvalues of log dF 2 (x) forT =25. (The nor-
1.25E-01 1.25E-01 1.25E-01 1.25E-01 1.251-01 mal curve has the sample mean and variance given in Table 111.)
1.25E-01 1.25E-01 1.251-01 1.25E-01 1.251-01
1.25E-01 1.25E-01 1.251-01 1.25E-01 1.251-01
1.25E-01 1.25E-01 1.25E-01 1.25E-01 1.25E-01
1.251-01 1.251-01 1.25E-01 1.25E-01 1.25E-011.25E-01 1.25E-01 1.25E-01 1.25E-01 1.25E-01

TABLE If
PARAMETERS OF HMM (2), ROUNDED TO THREE SIGNIFICANT DIGITS 5

NUMBER OF MARROV STATES - 5

NUMBER OF SYMBOLS PER STATE * B

INITIAL STATE PROBABILITY VECTOR:
I.O0+OO 0.OOE+00 0.OOE+OO O.OOE.O0 0. 00

TRANSITION PROBABILITY MATRIX: . - - -9ii 0 0 --
1.401-01 2.35E-01 3.08E-01 1.24E-01 1.94E-01
1.401-01 1.14E-01 2.99E-01 2.131-01 2.341-01 Fig. 3. Histogram of 10 000-values of log dF 2 , (x) for T = 25. (The nor-
4.37E-02 3.20E-01 1.72E-01 1.27E-01 3.38E-01 mal curve has the sample mean and variance given in Table I1.)
9.73E-02 4.97E-01 1.53E-02 1.151-01 2.751-01
2.36E-01 2.491-02 4.27E-01 2.82E-01 2.98E-02

SYMBOL PROBABILITY MATRIX (TRANSPOSEO): and orj are related to the moments Mij (k, T) by the for-
1.811-01 1.22E-01 7.091-03 1.481-01 7.04E-02
1.39E-01 8.28E-02 3.23E-02 9.13E-02 1.33E-01 mulas
2.67-02 1.60E-01 5.07E-02 1.08E-01 2.34E-01
1.79E-01 1.66E-01 2.18E-01 1.30E-01 5.97E-02
1.56E-01 1.58E-01 2.151-01 2.09E-01 2.35E-01 Aij = 2 log My (1, T) - (1/2) log Mj(2, T) (28)
1.19E-01 5.75E-02 1.11E-01 1.02E-01 1.03E-01
1.76E-01 1.32E-01 2.40E-01 6.61E-02 1.76E-02 o2 = log Mi, (2, T) - 2 log M1(1, T). (29)
2.37E-02 1.22E-01 1.17E-01 1.46E-01 1.47E-01

It is stressed that (28) and (29) hold exactly if and only if
dFis (x) is truly log-normal. For finite symbol HMM's,
dFi1 (x) is necessarily discrete, so that both (28) and (29)

puted using the forward-backward algorithm. Fig. 2 must be viewed as approximations. Sufficient conditions
shows a histogram of the natural logarithm of dF22 (x) for under which it may be proved that dFj (x) is, in some
T = 25. The observation sequences are thus matched to sense, approximately log-normal are unknown. Although
the posterior likelihood function. Fig. 3 shows a histo- the central limit theorem is surely responsible for this log-
gram of log dF21 (x) for T = 25. In Fig. 3, then, Or is normal behavior, it is not clear how to apply it in this
mismatched to the likelihood function. As is clear from setting.
Figs. 2 and 3, the difference between the mean values of Table III gives a comparison between the mean and
the log likelihood functions is about 1.4 standard devia- standard deviations of log dF2s (x) estimated from 10 000
tions. Thus, the potential exists for using log dF22 (x) to observation sequences Or and those calculated from (28)
classify observation sequences; however, T = 25 is not and (29). This table shows good agreement between the
long enough to classify with a high probability of detec- approximations of (28) and (29) and the sample means
tion (i.e., PD) and a low false alarm probability (i.e., and variances. It also establishes that observation se-
PF). quences of length T = 400 are long enough to distinguish

A useful observation drawn from Figs. 2 and 3 is that between O e HMM (1) and Or e HMM (2) with high
the probability density function of log dF2j (x) is nicely reliability. That is, the difference between the mean value
approximated by the normal distribution. Let uij and ui of log dF2, (x) and the mean value of log dF22 (x) is about
denote the mean and standard deviation of log dFi, (.x). 5.2 standard deviations. Assuming log dF21 (x) and log
Then, if dF, (x) is log-normal, it is easy to show that As dF22 (x) are normally distributed, as they appear to be,
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TABLE III TABLE IV
COMPARISON OF Two ESTIMATES FOR THE MEAN AND STANDARD DEVIATION PARAMETERS OF HMM (3)

OF log dF, (x) FORj = 1, 2

NUMBER OF NARKOV STATES - 5

T al u Eq. 26 NUMBER OF SYMBOLS PER STATE - B

J 1 : -10.6 -10.6 0.5 0.721 INITIAL STATE PROBABILITY VECTOR:
10 -21.3 -21.2 1.11 0.92 1.OOC.00 0.00(400 0.00(400 0.00(00 0.00(400
15 -31.9 -31.8 1.24 1 .1020 -42.4 -42.4 1.35 125 TRANSITION PROBABILITY MATRIX:

21 -53.0 -52.9 1.47 1.38 6.O-01 4.00E-01 O.OOE.0 0.001400 0.00(400
50 -100.8 -105.6 1.93 1.91 0.00(400 7.0OE-01 2.00(-01 .00C-01 0.00E00
100 -211.4 -211.5 2.62 2.61 O.OOE+00 0.OOE400 6.00E-01 4.0O(-01 0.00+00
200 -422.6 -423.0 3.60 3.76 0.00(4.00 O.OOE00 0.OOEO0 7.001-01 3.00(-01
400 -845.0 -845.8 5.09 5.30 0.0E+O0 0.0(C400 0.0O(400 O0.0(400 1.O0(+00

- 2 5 -10.1 -10.1 0.69 0.59
10 -20.3 -20.3 0.90 0.84 SYMBOL PROBABILITY MATRIX (TRANSPOSED):
15 -30.6 -30.5 1.06 1.03 9.00(-01 1.00E-01 O.OOE.00 O.OO+OO O.OOE400
20 -40.8 -40.6 1.23 1.20 1.00E-01 6.00E-01 0.00+00 0.0O(+00 0.00E+00
25 -51.0 -51.0 1.31 1.34 0.0E+00 2.00E-01 3.00E-01 0.0O(+00 0.0O00O
50 -102.1 -102.1 1.92 1.90 O.0O+0 1.001-01 6.00E-01 1.00E-01 0.0O(+00
100 -204.4 -204.4 2.66 2.69 O.OOE-0 0 0.OOE.0 I.00E-01 2.OOE-01 O.OE+00
200 -408.9 -409.0 3.71 3.80
400 -818.0 -818.1 5.33 5.37 O.OOE+00 .OOE+00 O.OE+00 4.00(-01 1.00E-01O.OOE1+.00 .O0EO-,)O O.OOE+00 3.00(-01 6.OO(-01

0.00(400 0.00(.00 0.00(400 0.00(400 3.00(-01

then classification using qsubopt has a probability of correct
classification of 99% for a false alarm rate of 0.5%.

Computing the posterior likelihood functionf 2 (CT) for times may be computed explicitly [6); however, simula-
T = 400 requires n2 T = 10 000 multiplications; thus, tion was used here instead. In 10 000 observation se-
computational requirements forf 2 (0400) are small enough quences generated for HMM (3), it was found that the
for practical application. Furthermore, the forward-back- mean and standard deviation of the first passage time was
ward algorithm for computing f2 (OT) is mathematically 10.9 and 4.8, respectively. The least first passage time
equivalent to a nested sequence of matrix-vector multi- was three transitions, and the largest first passage time
plications. Consequently, it is possible to reduce total was 43 transitions. Thus, observation sequences for prac-
computation time by the design of a "black box" to ex- tical purposes become stationary for t 2t 50.
ploit this special structure in hardware. Fig. 4 and Table V clearly show that dF33 (x) is a "well-

behaved" distribution, even though HMM (3) is not er-
B. Mixed Ergodic and Left-to-Right HMM's godic. However, dF33 (x) is not as closely approximated

by a log-normal distribution as are dF21 (x) and dF22 (x),
HMM(3) is a five-state, eight-symbol left-to-right as evidenced by the discrepancy in Table V between the

model whose parameters are given in Table IV. It has a sample statistics and the statistics that would hold if
structure that might conceivably arise in the SIIWR prob- dF33 (x) were truly log-normal.
lem. Note that HMM(3) never leaves the fifth state once Ten-thousand observation sequences of HMM (l) and
it is entered. Consequently, all sufficiently long observa- HMM (2) were generated and the posterior likelihood
tion sequences ultimately contain only the three symbols f3 (OT) was computed using the forward-backward algo-
V6, V1, and Vs.Note also that the symbol V8 occurs if and rithm. The observation sequences are thus mismatched to
only if the fifthstate has been entered. It follows that an the posterior likelihood function. Table VI gives the num-
observation sequence OT containing the symbol V8 and ber of sequences for which f3 ( O) = 0. Better than 99 %
subsequently containing any of the five symbols V,, V2, rejection of the simulated ergodic HMM observations was
V3 , V4, or V5 must have posterior likelihood zero, i.e., attained when T = 10, that is, when the observation se-
s (OT) = 0. Other forbidden symbol sequences may also quences were about as long as the mean first passage time
be noticed. It will be seen that these facts makefA(OT) a of HMM(3) into state 5. Total rejection of the 10 000
powerful discriminator against ergodic observation se- ergodic observations occurred for T = 20.
quences. To summarize briefly, this example will show The ability of fA (OT) to reject observations of OT 6

that short observation sequences of quasi-stationary and HMM(2) is much more impressive than the (r) re-
transient HMM's look very different to the transient HMM jection of OT e HMM (3). The lack of symmetry Fij (x)
recognizer. On the other hand, all observation sequences * F, (x) is striking in this instance. Table VII gives es-
look somewhat alike to ergodic HMM recognizers. timates of the mean and standard deviation of log dF23 (x),

When HMM (3) enters its fifth state, it becomes sta- and Fig. 5 is a histogram of the case T = 25. The mean
tionary and, consequently, significantly less interesting, values of the 10 000 samples and those predicted by (28)
Insight into the length of the transient portion of HMM (3) agree very well; however, dF23(x) is not as well approx-
observation sequences is gained by estimating the first imated by a log-normal as dF22 (x) and dF, I(x), as seen
passage time of HMM (3) into its fifth state, that is, the from the discrepancy in the sample versus the predicted
number of transitions in the Markov chain before its fifth standard deviations. In any event, it is clear by comparing
state is entered. The mean and variance of first passage Table VII to the lower half of Table III thatf 2 (Or) cannot
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I I

-6 -, 4, - -, -3 48 -a -a -i -at -- -a
Fig. 4. Histogram of 10 000 values of log dF33(x) forT - 25. (The nor- Fig. 5. Histogram of 10 000 values of log dF23(x) forT -25. (The nor-

mal curve has the sample mean and variance given in Table V.) mal curve has the sample mean and variance given in Table Vii.)

TABLE V sideration to determine the noisy symbol sequence. How-
COMPARISON OF Two ESTIMATES FOR THE MEAN AND STANDARD DEVIATION

OF log dF,3 (x) ever, no particular preprocessor is proposed here, and so
we resort to modeling noise in much the same way that

,..n vai. rd.M auart4 Shannon modeled noisy discrete memoryless channels [7].
T Sample Eq. 2s di:, Eq. 21 This approach can give an indication of the successful
s - 5.9 - ., 1.92 113 classification rate as a function of the probable number of10 -1. -. a 2.30 1.1 incorrect symbols in an observation sequence, but it can-

is -18.6 -10.2 2.72 2.33
20 -23.5 -22.6 3.22 2.21 not provide an assessment of the effect of signal-to-noise
2s -26.1 -26.3 3.61 2.1$
so -50.5 -41.2 4. S .s ratio on classification because such an assessment re-

quires knowledge of the preprocessor.
Denote by hk the probability that the observation sym-

TABLE Vt bol V is altered to symbol Vj by the noise mechanism and
NUMBER OF Or e HMM(i) FoRWHICHf(Or) 0. i - 1, 2 define the m x m noise probability matrix H = (hkj]. It

is assumed that H is independent of the state of the Mar-
T___ __ I_ __ __ _ kov chain and of time t. Consequently, the output of a

s 3 9172 given HMM corrupted by noise is equivalent to another
1131 .97I HMM that is noiseless. If X = (w, A, B) are the param-

20 10000 I0000 eters of a given HMM with noise matrix H, the parame-

ters of the equivalent noiseless HMM are K = (w, A,
BH). The proof is straightforward: the product bikhk, is

TABLE Vii the probability that the state of the Markov chain is i and
COMPARISON OF Two ESTIMATES FOR THE MEAN AND STANDARD DEVIATION

OF log dF23(x) that symbol j is produced, given that symbol k was the
output of the given HMM. The sum over k of bihki gives

T 344:1 st.2.,l kvit the component 6, of the equivalent noiseless HMM sym-
_______ s,_______.___ _,__, _ _.bol probability matrix B. Clearly, Sj equals the (i, j)
S 0.8 -Ws 0.51 0.0 component of the product BH, so that B = H.

10 21 .4 -21. 0.91 0.611
15 - 32.0 -32.0 1.02 1.04 The noise probability matrix H must be row stochastic,
25 52.9 -2.7 1.0 1, that is, every row sum must equal one. The HMM-gen-29 -53.2 -.. 5 1.05 1.2
so -109.4 -109.6 1.11 1.43 erated symbol V is altered by noise to one of the available

symbols, so that row k must sum to one.
Because H has row sums equal to one, the matrix B is

reliably distinguish Or e HMM (3) from Or E HMM (2) a valid symbol probability matrix for the equivalent noise-
when T = 50. However, since the first passage time of less HMM, that is, each row of A = BH sums to one. We
HMM (3) is almost certainly less than T = 50, increasing have
the observation sequence length to improve reliability is ,
not appropriate if the underlying intent is the classifica- j 60 = b k

tion of the transient portion of HMM(3). j.i j-1 k-I

C. Left-to-Right HMM with Noise = F bX F
In this example, the effect of noise on the reliability of - ."

the q.", classifier is assessed for the left-to-right model
HMM(3). The right way to study noise in finite symbol = bi
HMM's is to add the noise to the original time series s(t) k-I

and then analyze the particular preprocessor under con- = 1.
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The worst case noise grobability matrix, denoted H° , TABLE VIII
has the constant entry h = 1/m for all i and j. In this NUA.eR OF Or v HMM (3) + NOISE FOR WHICHf, (Or) = 0 AT VARIOUS
case, VALUES OF Er

-- •ihk 0.17UA Q 0.9 .00I0.00

k-I mk-I m__
5 2194 236 23Consequently, F. with noise probability matrix H°  

10 3s06 44 31 1is $305 651 64 1are indistinguishable. In fact, H0 makes all HMM's sta- 0 9 103 13
tistically equivalent to the ergodic HMM ( 1) given in Ta- 2S 163 13 2 11

so IX*43 2UM 34S 34

ble I.
Let Pr[ ViI be the relative frequency of occurrence of

the symbol Vi in observation sequences of length T before TABLE IX
the addition of noise. Thus, we have 1:Pr[ VjI = 1. After PARAMETERSOFHMM(4), ROuNDED TO THREE SIGNIFICANT DIGITS

alteration by noise, the probability of correct occurrences
of V in Or is then Pr [ V I h,. The probability that the sym- NuStI OF lAllOV STATES -

bol 0(t) Or is Correct is NUMER OF SYMBOLS PER STATEl -

M INITIAL STATE PROBABILITY VECTOR:
DT Pr[VJ]h, (30) i..0oO o.oo14o0 o.oo00 o.oooo o.oo+OO

i I TRANSITION PROBABILITY NATRIX:
6.0oe-01 4.oo1-01 o.o(,.0 0.00100 .o0+oo

and the probability that O(t) is incorrect is o0ooE+Oo O.ooE--0 6.0oO-o 4.OO[+; 0o+OOo
00(400 0.001.oo 0.oO+OO 7.OO-01 3.0oE--1

ET = 1 - Dr. (31) 000100 0.001+00 0.00(*00 0.001+00 1.ooE+oo
SYMBOL PROBABILIlTY MTRIX (TRANSPOSE[D):

For the examples here, given a specific value of ET, we 8:99E-0 I.00E-01 1.43E-04 1.43E-04 1.43E-04
choose the simple noise probability matrix H defined by 1.oo(- 5.09E01 1.43E-04 1.431-04 1.431-041.43E4-4 2.00E--1 3.00E--1 1.43E-04 1.43E[-04

1.431-04 1.001-01 5.991-01 1.001-01 1.431-04
h. = I - ET, all i 1.431-04 1.431-04 1.oo0-01 2.001-01 1.43E-04

I.43(-04 1.431-04 1.431-04 4.00E-01 1.00-01
1.431-04 1.431-04 1.431-04 3.001-01 5.991-01

hij = 1' all i j. (32) 1.431-04 1.43E-04 1.43(-44 1.43E-04 3.001[-01

For this choice of H, DT is independent of the actual val-
ues of Pr ( VJ, as is clear from (30) and the fact that examine the total false dismissal probability for
EPr[V] = 1. HMM(4), which is the HMM equivalent to HMM(3)

Noise tends to make observations of all HMM's look with the noise matrix H given by (32) with ET = 0.001.
like observations of HMM (1), and ergodic observation The parameters of HMM (4) are given explicitly in Table
sequences tend to have forbidden symbol sequences for IX.
the left-to-right HMM (3). The first natural issue is there- Denote by Fo (x) the cumulative distribution function
fore to determine how many forbidden symbol sequences Fox) = [Fi(x) - F (0)j/[Fj(-) - Fj(0)j. (33)occur as a function of the incorrect symbol probability ET. Q x f F x i 0l[#to #().(3

Table VIII gives the results for various values of T and Ten-thousand observation sequences Or were generated
ET, based on simulations of 10 000 observation se- from HMM (4) for T = 25. As given in Table VIII, 121
quences. It shows that forbidden symbol sequences are sequences resulted in zero posterior likelihood function
less likely for small T than for large T. This table also values (that is, fA (Or) = 0) and the remaining 9879 non-
shows that noisy observations of HMM(3) do not have zero values of f3(Or) give the histogram shown in Fig.
as high a proportion of forbidden symbol sequences as 6. By comparison to Fig. 4, it is clear that no significant
observations of HMM ( 1) and HMM (2), even for Er = difference between log dF3(x) and log dF33 (x) is evi-
10%, as can be seen by comparing Tables VI and VIII. dent. Therefore, the misclassification rate due to noise-
One may conclude from Table VIII that Er must be small induced shifts in the statistics of d4(x) is very small.
and T must be short to minimize misclassification due to The suboptimal classifier qbm for HMM (3) thus gives
forbidden symbol sequences. For instance, if T = 25 and 98.8% correct classification and a 1.2% false dismissal
ET = 0.001, the false dismissal probability is apparently probability when used with noisy observations character-
at least 1.21%. Shorter T, however, causes smaller shifts ized by Or e HMM (4).
in the statistics in the likelihood function, and thus in- Because ET = 0.001 in this example, each observation
creases the misclassification rate. Consequently, a trade- sequence 025 has probability 0.025 of having at least one
off exists between short T and long T. incorrect symbol. Of 10 000 observation sequences, the

The total false dismissal probability can be expressed expected number.'ith at least one incorrect symbol is 250.
as the sum of the false dismissal probability due to for- Nearly half ( 121 ) contained forbidden symbol sequences
bidden symbol sequences and the false dismissal proba- and caused the only significant misqlassification problem.
bility due to noise-induced shift in the statistics of the The other half apparantly made no contribution to the
nonzero values of the posterior likelihood function. We probability of false dismissal.
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il- fidently establish the required performance. An alterna-
tive in this case is to use the suboptimal statistic qubo,,
because the ROC curves can be approximated in principle

|I to any required accuracy without simulations.
The suboptimal statistic qubopt is identical (to within a

l* constant scale factor) to the optimal statistic qop when the
problem is more akin to detection than to classification.
That is, if the application is that of distiguishing the

* presence of a signal embedded in noise from the presence
of noise alone, and if the HMM noise model is a "trivial"

Omodel as defined above, then the optimal detection statis-
--4, -, -is -i -is -2 -i5 tic and qsuwop are identical. As a result, in this case, the

Fig. 6. Histogram of 9879 samples of log dF3..(x) for T = 25. (The nor- moments of the optimal detection statistic can be com-
mal curve has the sample mean = -28.156 and the variance = 3.6167.) puted using the forward-backward moment algorithm, and

the ROC curves for the optimal detection statistic can be

It would be desirable to be able to compute the mo- approximated to any required accuracy.

ments of Fi (x) instead of Fij (x). Alternatively, it would REFERENCES
be desirable to be able to compute the amplitude of the Il L. R. Rabiner. S. E. Levinson, and M. M. Sondhj. "On the applica-
impulse (delta function) in dFj (x) that seems to be pre- tion of vector quantization and hidden Markov models to speaker-in-
sent in the left-to-right HMM's considered here. In other dependent isolated word recognition." Bell Syst. Tech. J.. vol. 62, pp.
words, if we write 1075-1105. Apr. 1983.

121 S. E. Levinson. L. R. Rabiner. and M. M. Sondhi. "An introduction
dFj (x) = A06(x) + dFP (x), (34) to the application of the theory of probabilistic functions of a Markov

process to automatic speech recognition." Bell Syst. Tech. J.. vol. 62.
then an algorithm to compute A0 directly would be worth- pp. 1035-1074, Apr. 1983.

131 H. L. Van Trees, Detection. Estimation, and Modulation Theory. Partwhile. Knowing A0 and the moments of Fij gives the mo- I. New York: Wiley, 1968, sect. 2.2.2.

ments of Fi (x). However, developing such an algorithm 141 A. Papoulis. Probability, Random Variables and Stochastic Processes.
t wNew York: McGraw-Hill. 1965. p. 158.
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Chapter 14
Connection Machine Implementation of Hidden

Markov Models for Frequency Line Tracking

Jose L. Mufioz* Roy L. Streit*

1 Introduction

In [1] Streit and Barrett explored the utilization of Hidden Markov Models
(HMMs) for frequency line tracking and detection. This paper explores the
implementation of [1] on the Connection Machine, a massively parallel SIMD
machine, and its data parallel programming model. The reader is referred
to [1] for specific details of the HMM and its application to frequency line
tracking and detection. Frequency tracking is the estimation of frequency
trajectories that are a result of a tone changing in frequency as a function
of time.

As presented in [1] HMM processing produces two principal outputs (1)
the Viterbi track (a discrete track), and (2) the Mean Cell Occupancy track
(a continuous track). The CM implementation of HMM produces these two
tracks and augments them with an additional probability field display, not
,,reviously explored, representing quality of the track estimate.

2 Background

It is necessary to first discuss the elements of HMM in order to present its
particular implementation details on the CM. The frequency space is divided
into gates, a contiguous set of FFT frequency bins, with one signal allowed in
a gate. Input to HMM is. qience of measurements, z[t], over time within
a gate, where a mea; , 'epresents an estimated frequency state. A
measurement at freque.-, Lte i is said to exist if the magnitude of the
signal at frequency bin r Ater than a predetermined threshold and is
greater than the magnitud. other frequency bins. Such a measurement
is said to be in the HMM e. If no magnitude within the gate meets
these criteria then the measurement is said to be in the HMM zero state.
A batch of size T consists of a sequence of these measurements, Z, over T

*Naval Underwater Systems Center, New London, CT 06320, e-mail:
munozOnusc.arpa.
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Figure 1: Characteristics of A and B matrices.

consecutive FFT samples, i.e., Z - z[0],z[1],z[21,...,z[T- 1] where z[0]

represents the oldest measurement and z[T - 1] the current measurement.

Other key elements of HMM consist of an A matrix and a B matrix each

of size (n + 1) * (n +t 1), where n represents the number of HMM states

(the one is required to include the HMM zero state). The A matrix is the
transition probability matrix of a Markov chain that represents the likely

extent of the frequency fluctuations, track initiation and track termination.

Element a[ij] is the likelihood that the signal will be in state i at time

t + 1 given that it is in state i at time t, where i and j = 0,...,n. The B

matrix represents the connection between the measurement at time t and

the underlying state at time t. Element b[i,j] is the likelihood that the

measurement was made at state j given that the signal was actually in state

i, where i and j = 0, . .. , n. Finally, an initiation vector 7r represents the
signal likelihood at time 0. Element ir[j] is the probability that the Markov

chain is at state j at time t = 0 where .j = 0,. .. , n. The ir vector is typically

an A row. It is via the 7r vector that one batch of data is associated with the

next batch of data. A 7r vector for the new batch is based on information

obtained from the previous batch. Characteristics of the A and B matrices
can be seen in Figure 1. Details on calculating A and B can be found in [1].

The B matrix is a function of the signal-to-noise ratio (SNR), and therefore

a particular I-MM frequency tracker is SNR specific.

The CM implementation has two principal sections: (1) initialization and

(2) processing. In the initialization section, processing and display geome-

tries are defined and the A and B matrices are calculated and loaded into
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the CM. The processing section is divided into two parts, one for Viterbi and
the other for Mean Cell Occupancy (MCO). They share a common display
and data generation section.

3 Approach and Observations

The CM is a data parallel architecture and consequently performs best when
it can work on massive amounts of data in parallel. The approach, therefore,
attempts to maximize the potential for data paralelization.

Because the gates are independent of each other, parallelization among
the gates is straightforward and such a parallelization would work just as well
in an MIMD architecture. The opportunity for data parallelization exists
only within the gate and among the various time steps. Both the Viterbi and
MCO are dynamic programming models with a significant sequential depen-
dence along the time domain. Consequently, it is not possible to capitalize
on any parallelization in the time domain with the algorithms as described
in [1]. Therefore, the initial effort focused on parallelizing data at each time
instant within a gate.

This was achieved by replicating data within a segment, where a segment
consisted of the gated data plus the zero state. This provided the ability to
take advantage of vector multiplications and/or additions wherever possible.
To exploit the parallel computation a transposed version of the A matrix was
required, AT, in order to facilitate working with the 7r vector and with (10).
Hence, the 7r vector is obtained from columns of AT.

Because send communication is about twice as fast as get, every attempt
was made to avoid a get operation (indeed, none are used). Strict interpre-
tation of the algorithms imply a get operation, either getting a value from a

past or future time step. Therefore, it was found necessary to implement an
equivalent form of the backward recursions so that the data for the previ-
ous iteration (i.e., past time step) was calculated from the current time step
(details may be found in the algorithm description).

The CM supports two types of send operations: NEWS (or nearest-
neighbor) sends and general communication (or remote) sends. For the vir-
tual processor (VP) ratios and data element sizes typically encountered in
the application, the performance timings of remote sends to NEWS sends

was found to be 2:1. Therefore, NEWS send is the preferred communication
method. However, information from any particular time step to its "past" or
"future" neighbor nominally requires remote communication since we do not
assume any a priori relationship between the measurements z[t] and z[t + 1]
or z[t - 1]. In order to replace the remote send with a NEWS send, the data
is first replicated everywhere within the segment and then a NEWS send is
executed. Data replication was accomplished via scan-with-add "upward"
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followed by scan-withcopy "downward" operations within the defined seg-

ments. Note that the remote forms of the send would have required (1)
obtaining the state in the "future" or "past" time frame which is to receive

the data, (2) either calculating the send address in situ or from a predefined

table of entries (via aref), and (3) then performing the send operation. Ex-

ecution timings of each of these approaches verified, although by a narrow

margin, that the replicate/NEWS send is the preferred method over the re-

mote send. Once the data is transferred to the appropriate time frame it is

guaranteed that the correct state has immediate local access to Lhe data since

all states have identical copies of the data. This made the implementation

of (2), (3), (5), (8) and (10) straightforward.

3.1 Geometry and Initialization

A 3-D geometry is used for the processing, as shown in Figures 2a and 2b.

The x-axis performs double duty; both frequency and state information is

maintained along the x-axis. The y-axis represents time, with the oldest

data existing at y = 0 and the newest data at y = (T - 1) where T is the

batch size (i.e., number of FFT samples to be processed as a unit). The z-

axis represents, along with the x-axis, state space. The size of the geometry
is:

([frequency+frequency/(n-states+1)])*([T])*([n-states+ 1 ])/2

where the square brackets represent the smallest power of two that is greater

than or equal to the value being evaluated. The value n-states is the size

of the gate used for the HMM processing with one added to account for

the zero state. The frequency axis is augmented by one zero state per gate

(represented by the frequency/(n-states+1) term). Finally, the division by

2 is required to account for the FFT process.

The z-axis is loaded, from the front-end, at y = 0 with copies of the A,

B, and AT matrices that have been previously calculated, with each segment
getting the same copy. Once loaded the natural log equivalent of the matrix is

evaluated to facilitate Viterbi processing and an initial 7r vector is obtained
as column zero of AT. All of the matrices are loaded such that rows are

along the x-axis and columns are along the z-axis. Finally, all of this data is

replicated along the y-axis via a spread operation. The x-axis is segmented

into size of (nstate+1) with the frequency information loaded into the cells

(no frequency data is entered at the zero state cells). Previously evaluated

measurements are first scrolled "up," i.e., towards older time with the oldest
time information removed from the batch. New FFT data is inserted at
T - 1 from the front-end host and a measurement is performed at each gate

in parallel with the measurement subsequently copied along the z-axis.

-278-



208 Josg L. Mur OZ AND Roy L. STREIT

frequaey (ie. state) X axis

(old) :*0

e-

t=T-l

gatezer'o state
Y axis -- segment -- P E

Figure 2a: X-Y plane of 11MM compute geometry.
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Figure 2b: X-Z plane of 11MM compute geometry.
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4 Processing

4.1 Viterbi Processing

4.1.1 Viterbi forward processing

Calculation of the Viterbi track as presented in [1] begins with the following
algorithm:

Forward Viterbi : z[t], measurement at timet

t=0: [0,j]=lnrU]+lnbj,z[0]] j=0,...,n (1)

40'[0, j] arbitrary
t = 1,...,T -l1:

[t,j]=lnb[j,z[t]]+max{6[t- 1,i]+Ina[i,j]} i=O,...,n (2)

'I'[t,j] = argmax{[t- 1,i]+Ina[i,j]} i = 0,...,n (3)

where argmax returns the smallest index for the maximum attained. The

natural logarithm is used to control potential numerical underflow.
From (1) through (3) we see that Viterbi forward processing starts at

time t = 0 (i.e., y = 0), selects a column of lnB as identified by z[O] and
adds the 7r vector to that column resulting in 6[O,j]. This 6 is first repli-
cated and then sent down to time = 1 into the CM field prevdelta. For
time > 0, the prevdelta vector is added to each column of lnA. A maxi-
mum is evaluated along the z-axis (columns) as well as the smallest index
at which the maximum occurred (argmax function) is obtained. This row
vector of maximums is transposed into a column vector and replicated ev-

erywhere in the segment. z[t] is used to select a column from lnB and the
vector of maximums is added to it, creating a btt,j] for this time step which
is subsequently replicated within the segment. The results of the argmax

evaluation are stored in vector T for use by the backward processing. The
6[t, j] just calculated is then sent down to the next time step (more recent)
into its prevdelta value and the process is repeated for T - 1 time steps.

4.1.2 Viterbi backward processing

The following algorithm is used for Viterbi backward processing:

Backward Viterbi :

t = T- 1 : VT- 1] = argmax{6f[T- 1,j]}, (4)

t < T- 1: VJt] = V [t + 1, Vft + 1]), t = (T- 2),...,0. (5)

At this point 6[t,j] and the 'I vector are defined for all time steps. The
Viterbi backward processing begins at time = (T - 1) by determining the
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index at which 6[t,j] is a maximum resulting in V[T- 1]. Once initialized it
is possible to calculate V for the previous time steps from the current time
step by rewriting (5) as:

v[t - 1] = *[t, V[tl]. (6)

Consequently, it is only necessary to index into the current if vector
using the current V to obtain the V for the previous time step. The value
obtained is sent up to the V field of the previous time step. This process is
repeated T - 1 time steps. The Viterbi track estimate for the batch of size
T is taken to be V at time = T/2.

4.1.3 Display and new data

Once the Viterbi track has been evaluated the V value at time = T/2 is
displayed on the CM frame buffer in a waterfall display, i.e., newest data
at the top with the oldest data "falling off of the display" at the bottom.
Each HMM gate is associated with a particular color. (More generally, the
V value at any particular time could be selected for display; time = T/2 was

chosen on the basis of estimated track variance.)
Following data display a new p vector is selected to associate the next

batch with the current batch. The V field at time = 0 is used to index into
the AT matrix to select the appropriate column to be used as the next p
vector. The entire Viterbi process is then repeated when new FFT data is
made available.

4.2 Mean Cell Occupancy Processing (MCO)

4.2.1 Calculation of alpha (forward processing)

MCO processing is analogous to Viterbi processing. The algorithm for for-
ward processing is:

Forward probabilities: z[t], measurement at timet

t=0: a[0,jI=rUj*bjz[]I/s(0], j=O,...,n (7)

t=l...T-l:

a[t,j] = b[j,z[t]] * -(a[t - 1,i] * a[i,j])/s[t], j =0,...,n. (8)
i=0

The quantity s[t] in (7) and (8) is a scale factor required to control
numerical underflow in the a's.

For time = 0: An a vector at time = 0 is initially calculated by mul-
tiplying the 7r vector with a column of the B matrix as identified by the
measurement zO]. A scale factor, s[0], using this a is evaluated and used to
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scale the a just obtained. This same scale factor is later used in the 03 (back-
ward) processing. The resulting a is then replicated within the segment and

subsequently sent down to the field prevyalpha in the next time frame (i.e.,
more recent time).

For time > 0: The prevyalpha vector received is multiplied by the A

matrix producing (nstate+) column vectors. A sum along the columns is
performed and the resulting row vector is transposed into a column vector
that is then replicated everywhere in the segment. This is then multiplied by
a column from the B matrix as identified by the measurement z[t] producing
a[t,j]. A scale factor, s[t], is calculated and used to scale the a[t,j] just

obtained and saved for later use by the 3 processing. The resulting ait, j]
is then replicated along the x-axis and subsequently sent down to the next

time frame with the process repeated for T - 1 time steps.

4.2.2 Calculation of beta (backward processing)

The beta, or backward processing, follows the alpha processing. The algo-

rithm is:

Backward probabilities: z[t], measurement at timet
t T T- 1 : O[T - 1, j]-- 1/s[T - 1] (9)

t T T- 2,...,0

/0[t,j] = '(a[j, i] * b[i, z[t + 1]] * /[t + 1, i])/s[t], j = 0,..., n. (10)
i=O

As before, s[t] in (9) and (10) is a scale factor required to control numer-
ical underflow. The same scale factor previously calculated for a[t,j] is used

for the /3's.
Beta processing goes backward in time from (T - 1) to zero. /0 for time

= (T - 1) is set to 1.0 scaled by the scale factor obtained at T - 1. Once
initialized in this manner it is possible to calculate /3 for the previous time
step from the current time step by rewriting (10) as:

n

/3[t - 1,j] = 1- a[j,i] * b[i,z[t]] *0[t,i]. (11)
s=O

The beta processing therefore proceeds by selecting the appropriate col-

umn from the B matrix using z[t] as the index and replicating that column

everywhere within the segment. This is then multiplied by the / for the
current time step (which has been previously scaled). This result is then
multiplied by the AT matrix producing (nstate+l) column vectors. A sum-
mation along each column is then performed and the resulting row vector
is subsequently transposed to form a column vector. The resulting vector is
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then replicated everywhere within the gate along the x-axis and is then sent
up as the /3 for the previous time step. Once it is received by the previous
time step it is scaled using the scale factor for that time step. The process
is then repeated T - 1 times.

4.2.3 Gamma and MCO processing

Following the calculation of the a and the /3 the next step is to calculate
the state occupancy probabilities, 7's, and the Mean Cell Occupancy. The
algorithm is:

State occupancy probabilities (track quality):

n_Y[t, i] = ([t, i .* #[t, i])/ E ([t, i].*/PIt, fl) (12)
i=1

Mean Cell Occupancy (M):
n n

M[t] = -(e,[t,i] * f:[i])/yE-Y[t,i], (13)
i=1 --1

where f,[i] = (f[i] + f[i + 1])/2
7'

a 2[t] = -7[ti][fji]- M[t]] 2 /(l- y[t,0]). (14)
i=1

The - calculations are executed in parallel for all time steps.
The a and the 3 vectors are multiplied and the resulting vector stored

temporarily. The elements of this resulting vector are summed and subse-
quently applied to the stored vector via a division operation resulting in a
,y[t,i] for each time step. This value is then copied as a column vector into
gamma-pi for subsequent use as the 7r vector for the next batch. The -y col-
umn vector is then transformed into a row vector via a transposition. The
resulting row vector is then multiplied by a row vector representing the center
frequency of the ith cell, f,, that was previously calculated and stored. Ele-
ments 1... nstate of the resultant row vector are added and the resultant is
divided by (1.0- 7t[t, 0]). The result is the mean cell occupancy, MCO, a sin-
gle variable that is then replicated everywhere in the segment. (f - MCO)2

is then calculated and subsequently multiplied by -y[t, i] with the resultant
row vector elements I... nstate summed and divided by (1.0 - 7[t, 0]) ter-
minating in a square root operation resulting in the standard deviation a,
completing the 7 calculations.

4.3 Mean Cell Occupancy Display

The ir vector for the next batch is obtained by selecting the second to oldest
time slot (time = 1) and copying over its garmapi field into the p vector.
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Next, the time slot at which data is to be displayed is selected, T/2.
The o value obtained is replicated everywhere in the segment and is then
subtracted from MCO. The resulting value is compared to the x-coordinate
with points greater than or equal to the x-coordinate set to a color particular

to that gate. o is then added to MCO and that value is compared to x-
coordinate, with points less than or equal to the result set to the gate color.
The result is a series of points set to a color if they are within u of MCO.
This data is then sent to the framebuffer for display.

4.4 Probability Field Display

Equation (12) results in the -t vector. As defined, each element of 7 is
bounded by .0... 1 and represents for each HMM state i, the likelihood that
the signal is in that particular state. -y can therefore be used as an estimate of
track quality. The track quality is displayed for the non-zero states in grey-
scale at each gate location with a greater confidence in the track estimate
appearing as brighter areas on the display.

Using this information an analyst can more intelligently interpret the
track trajectories displayed. Initial experimentation with the probability
field has been found to be very effective as an image enhancement device in
the context of presenting track trajectory information and shall be further
explored.

5 Performance

HMM was first implemented on a Sun 4/260 to act as a baseline. FFT
size, number of HMM states and batch sizes were selected that were felt

to be representative for problems of interest resulting in CM VP ratios of
16, with 25 gates. The HMM algorithms described above were implemented
on a CM-2a with 8192 processors and 32-bit hardware floating point, Sun
4/260 front-end, executing Version 5.2 of the CM software. The CM code
was instrumented to obtain performance information. A detailed geometry
was defined by analyzing the data movement patterns. Little data is moved
along the y-axis and what is moved uses strictly NEWS communication that
happens only once in a cycle; along the z-axis there is a requirement for data
replication for various operations; the majority of the data movement occurs
along the x-axis with requirements for data replication and orientation. As a
result, the CM's defined detailed geometry instruction was used with weights
of 10, 1 and 8 for the x, y and z axes, respectively (only their relative ordering
is significant, the actual values are not important). Table I provides timing
information obtained from the Sun4 execution and Table 2 CM execution
timings for both default geometry and the detailed geometry.
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Sun 4/260 Single 25
Times(sec) Gate Gates
Viterbi 0.03 0.75
MCO 0.05 1.25

Table 1: Processing time on Sun4 (display and signal generation times not
included).

CM (VP=16) Baseline Detailed Improvement
Times (sec) Geometry Geometry
Viterbi 1.42 1.28 10%
MCO 1.94 1.59 18%

Table 2: Processing times on CM. 25 gates (display and signal generation
times not included).

Clearly, for a 25 gate problem sequential execution on a Sun4 outperforms
the CM implementation. It would appear that the CM can outperform
the sequential implementation only by virtue of executing multiple gates in
parallel, or via the MIMD model. This would indicate that:

1. The particular implementation described in this paper was not able to
take full advantage of any inherent data parallelism, or

2. There is insufficient data parallelism in the application.

The "break even" point between the sequential and parallel implementations
is 43 gates for Viterbi and 32 gates for MCO.

5.1 Enhancements

5.1.1 Multi-line HMM

The CM implementation provided the opportunity to investigate enhancing
HMM. As previously discussed, HMM requires that at most only one signal
be present in a gate. A slight modification to the CM implementation pro-
vided a suboptimal approach supporting more than one signal in a gate. The
modification consisted of staging the data so that the first stage has access
to the complete frequency magnitude information as described in previous
sections. Once a measurement determination has been executed by this first
stage, the data at that frequency bin is removed, either by making it zero or
replacing it with noise, and the altered data is then passed, via spread along
the z-axis, to a second stage for processing.

Second stage processing is an exact copy of the first stage processing, the
only difference is that the second stage does not have access to the complete
data set. The second stage processing then proceeds to make a measurement
using the altered data; it therefore has the opportunity to find a second line
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in a gate if it exists. Viterbi and MCO processing then proceeds as before,
with each stage using the measurements pertaining to it, and the stages

running in parallel.

The performance of multi-line HMM depends on (1) the frequency sta-

bility of the lines within a gate, and (2) the SNR difference between the

lines. Preliminary results obtained have found such an implementation to

provide adequate capabilities when the SNR of the two lines are sufficiently

different. An optimal HMM approach to multi-line tracking is presented in

[4].

5.1.2 "Mostly Forward" HMM

The dynamic programming requirements of HMM result in an implementa-
tion that is O(T) in computational performance, i.e., a problem of size 2T

will take twice as long as a problem of size T, all other parameters being

equal. Therefore, the sequential aspects of the problem are driving its per-

formance since the data for (t + 1) or (t - 1) must be available before one

can proceed with the forward or backward process.

In an attempt to moderate this behavior, the Viterbi algorithm was

slightly modified. The initial batch, i.e., T time samples, was treated as
previously described. However, subsequent batches did not update the 7r
vector. In this manner it was not necessary to recalculate the T - 1 previous

T[t]'s. It is only therefore required to calculate 'I[T - 1] using z[T - 1] and

6[T - 2], going "mostly forward." The backward Viterbi process remained

unchanged.

This modification improved run time performance by over 50%, resulting

in an execution time of 0.55 sec for the same size problem identified in Table

1. Preliminary results with this modification provided reasonable results,
suggesting that updating the 7r vector may not be required (for comparable

tracking accuracy, the batch size T must be increased slightly). Clearly, a

similar modification could be made to the MCO tracker, with a comparable
improvement in its run time performance, although such a modification has

not been implemented at this time.

6 Conclusions

Clearly it is possible to implement a dynamic programming model, such as
HMM, on the CM. Its performance will be strongly affected by the number

of dependent steps required to solve the problem. While some improve-

ments were identified that alleviated this "problem," such as the "mostly
forward" approach, these improvements would be just as applicable to a

purely sequential implementation such as that implemented on the Sun with
an attendant improved run time performance.
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While previous CM efforts at NUSC have achieved dramatic improve-
ments by replicating data, it was not possible to effect a corresponding ben-
efit with the straightforward intuitive implementation as described in this
paper. Data replication did not perform as well as initially expected due
to (1) no convenient method for replicating data within a segment other
than combining a scan-with-oper followed by a scanwithcopy (where oper
represents some arithmetic operation), and (2) the data reference patterns,
as implemented, required several vector transpose operations requiring re-
mote sends. Future efforts will focus on perhaps a different topology that
would keep information in in-processor arrays and thereby avoid some of
the NEWS communication (beneficial only if aref costs are less than NEWS

communication); or an implementation avoiding vector transpositions. Nei-
ther of these approaches, however, is truly exploiting the data parallelism

model as exemplified by the CM. What is required is an approach that con-
siders the input measurement sequence space as a unit and treats the output
probability field accordingly. This is indeed a topic for future work.

There also exists a need to enhance the HMM approach via (1) devel-
opment of an HMM capable of handling more than a single line in a gate
(the multi-line approach presented above is a viable "workaround" in the
interim), (2) development of an HMM capable of handling lines that cross,
(3) development of an HMM such that track termination would be sensitive
to "direction," i.e., leaving the gate on the left or right, thereby enabling
initiation of a new track at the adjacent gate, or a true loss of signal, (4) an

implementation with adaptive gates, i.e., gates that are not assigned a priori
but are defined where a measurement is made, in situ, with the measurement
placed in the center of the gate, and finally (5) implementation of HMM that

can take advantage of the amplitude and phase information inherent in the
data [3].

In addition, the CM implementation provides the opportunity to run
multiple SNR hypotheses in parallel (recall that the B matrix is sensitive to

SNR). This could be accomplished by running each of the possible candi-
date SNRs along different dimensions of a CM geometry. The data fusion
aspect of such a multiple model approach is an additional area of future

investigation.
Experience garnered from this and related CM efforts at NUSC has re-

sulted in the identification of CM capabilities for possible future considera-
tion: (1) VP ratios at other than powers of 2, since a small change in the
size of a problem can have significant effects on its performance, (2) the need
for higher-order languages to support both implicit and explicit communi-
cation, (3) specification of other than cartesian geometries, e.g., spherical
or cylindrical, that could efficiently utilize the processing and communica-
tion resources, (4) improved debugging aids, (5) addition of performance
monitoring, code instrumentation (profiling), (6) efficient implementation
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of a "segmented spread," i.e., from an identified coordinate copy a datum
everywhere within a segment (spread works along an axis), and finally (7)
application specific subroutine packages such as image processing, signal
processing, etc.
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ARTIFICIAL NEURAL NETWORK STUDIES

Foreword

Artificial neural networks (NNs) are specialized computer architectures for
classifying multivariate feature sets. Paper [22] establishes that feed-forward NN
architectures can implement asymtotically optimum classifiers, when properly trained, and
that maximum likelihood estimation methods can be used as NN training algorithms. The
statistical approach to NN classification and training is pursued much further in paper [23].
In this paper, particular attention is given to training algorithms suited to small data
problems, that is, to problems in which only a small amount of training data for one or
more classes is available. The approach enables general nonlinear discrimination, and it
generalizes Fisher's classical method for linear discrimination. A maximum likelihood NN
training algorithm is derived, using a variant of the Expectation-Maximization algorithm.
Paper [24] shows how to use the output of the maximum likelihood training phase to
develop maximum entropy estimates for the class a priori probabilities.
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ABSTRACT

A three-layer feed-forward neural network (NN) that implements the
optimum Neyman-Pearson (N-P) classifier is described. This NN is useful
whenever it is appropriate to characterize (1) input classes as multivariate
random variables, and (2) input data vectors as realizations of one of the
multivariate random variables. The purpose of the NN is thus simply to
compute the conditional likelihoods necessary for the N-P classifier.
Because the N-P classifier is optimal, the classification performance of the
NN is optimal too. Therefore, three-layer feed-forward NN classifiers can
equal but not exceed the performance of the well known N-P classifier.

The optimal N-P classifier requires multivariate probability density
functions (PDFs) characterizing the input classes. Class PDFs are
approximated (arbitrarily closely) by mixtures of multivariate Gaussian PDFs.
Supervised training of the class PDFs from input data vectors is, thus,
equivalent to training the NN. Maximum likelihood training of the PDFs Is
performed by the EM algorithm (or by any other suitable optimization method).

1. INTRODUCTION

The discussion of NNs in this paper is limited to the fundamental
problem of classification, or recognition, of a given input vector as one of
several possible outcome pattern classes. For the purposes of this paper,
then, a NN is a specialized device for pattern recognition. The discussion is
also limited to conventional feed-forward three-layer NNs. A node is a
computational unit that forms a weighted sum of all its Inputs and then
passes the result through a nonlinearity. The nonlinearity is characterized
by a real-valued nonlinear function h. together with a threshold r. Thus the
output of a node is the numerical value of the function h when its argument
is the weighted summation minus the threshold t. Different nonlinear
functions h have been proposed; typically, they are monotone non-decreasing
functions, and are asymptotically constant for large arguments (positive and
negative). The weights used to form the weighted sum within a node are
called the interconnection weights. They are uniquely defined for each
interconnection, that is, between each communication link between node and
node and between node and input. The weights can be positive, negative, or
zero. The problem of assigning appropriate interconnection weights and nodal
thresholds is known as the training problem.

The maximum likelihood methodology presented in this paper provides a
unified theoretical viewpoint for understanding NNs and for developing
computationally effective training algorithms. The methodology is rooted in
a classical statistical and mathematical framework that is esthetically
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satisfying and potentially very significant for the future development of NN
architectures. One significant advantage of this methodology is that the
important "exclusive-or" classification problem is easily solved.

N-P classification requires knowledge of the PDF of the input data
vector X, conditioned on each of the various class membership hypotheses.
For M outcome classes, N-P classification requires M conditional PDFs.
Let g (X) denote the conditional PDF of the J-th class, and let a denote the
a prigri probability of class J. Then the N-P classification edtlmate for
the input vector X is the class J* for which

gj.(X) = max a gj(X). (1)

Since fa } are typically unknown, they are often treated as free parameters
and are tsed to adjust the probability of incorrect classification. N-P
classification is optimum in the sense that, for a given probability of
incorrect classification, the probability of correct classification is
maximized. Hypothesis testing is described in many places, e.g., [1].

The NN presented in this paper requires that the output layer have M
nodes, and that each output node evaluate one of the outcome class
conditional PDFs. Estimation of the conditional PDFs is therefore a central
issue. In this paper, conditional PDFs are approximated by mixtures of
multivariate Gaussian PDFs. (It is well known that very general PDFs can be
approximated to arbitrary accuracy by Gaussian mixtures.) Both the training
algorithm and the NN structure are affected by this approximation. The PDFs
of the Gaussian components in the mixtures are computed by the first
two, or hidden, layers.

Training the NN presented in this paper is undertaken on the training
data to obtain estimates of the outcome class mixture PDFs. Knowledge of the
class PDFs enables the design of a NN architecture with a performance that
can be readily tested without building the NN. The supervised training
algorithm is an established maximum likelihood algorithm for estimating
mixture PDFs known as the EM (Estimation and Maximization) algorithm [2].

The NN described in [3] is in some ways similar to the NN described in
this paper. For instance, both approaches model the output classes
statistically using mixtures of multivariate Gaussian PDFs. However, they
also differ in significant ways. In (31, the number of first layer nodes
equals the number of training vectors, and the Interconnection weights
between the inputs and the first layer nodes are proportional to the
components of the training vectors. In this paper, however, the number of
first layer nodes is independent of the size of the training set, and the
Interconnection weights are nontrivial functions of the training vectors.

2. NEYMAN-PEARSON NEURAL NETWORK DESCRIPTION

2. 1 Tbe Outut Layer
In the context of this paper, an output node is conceptually identified

with an outcome class hypothesis. The defined purpose of an output node is
thus to compute a numerical value equal to the likelihood of the input vector
X, conditioned on an outcome class hypothesis characterized by a multivariate
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mixture PDF. The NN performs N-P classification by selecting the outcome
class of the output node having the largest numerical value.

It is assumed in this section that the multivariate PDFs for every
component population in the various class mixture PDFs are computed by the
second hidden layer. The design of the hidden layers to accomplish the
required PDF evaluations is described for Gaussian components in Section 2.2.

Let G denote the total number of different components in the outcome
class mixture PDFs, that Is, each of the M possible outcome classes is
comprised of some combination of the G population components. The number of
required second hidden layer nodes is therefore G. Let pI(X) denote the
multivariate probability density function of the i-th mixture component, and
let w denote the proportion of population I in outcome class J. The
numberi X are non-negative and satisfy the equations

G

I= i, J = 1, .... M. (2)

It follows that the output of the J-th output layer node is given by
G

g(X) = I ij Pi (W, j = 1, .... M. (3)

The output from the second hidden layer, given the input vector X, is the set
of numbers fp.(X}. Consequently, to enable the NN to compute the M class
PDFs {g} In (3), the Interconnection weight between the i-th node in the
second Jhidden layer and the J-th output node must be the mixing proportion
it ij.Estimating the class PDFs thus sets these NN weights directly.

Because the NN is intended to be the optimum N-P classifier, the
nonlinear function of an output node is given by the linear function

h3(x) = a x, (4)

for all real values x, where a is the a priori probability of the output
class. The output node thresholds are zero for N-P classification.

2.2 Gaussian Component Architecture For The Hidden Layers

The purpose of a node in the second hidden layer Is to compute and pass
to the output layer a numerical value equal to the likelihood of the input
vector X (of length N) under the hypothesis that it Is a realization of a

component population in one of the mixture outcome classes. Consequently, in
the case that the component population is a multivariate Gaussian with mean
vector p and positive definite covarlance matrix 2, the output p(X) of a

second layer node has the mathematical form

=M U N -/ exp 1 (X _ A)T E (X _ A) (5)

where l denotes the determinant of the matrix X. The mean vector p and
covarlance matrix X are estimated during the NN training phase. One way to
compute p(X) within the confines of the hidden layers of a conventional NN
architecture Is described In this section.

The covariance matrix E of the Gaussian distribution (5) Is positive
definite, so it has the Cholesky factorization E = L L', where the matrix L
is lower triangular (i.e., the entries of L above the diagonal are zero) and
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has positive diagonal entries, and where ' denotes the matrix
transpose. Substituting Into (5) and simplifying gives

p(X) = ( (2)N zi ] - 1 / 2  exP - 1 1 L-1 X - L 11 2 }, (6)

N
where II * II is the usual Euclidean norm on R

The second layer nodes are required to have no inputs In common. This
requirement probably increases the number of first layer nodes in the overall
NN, but It does not fundamentally alter the NN structure. That is, a
fully-connected NN in which certain of the interconnection weights between
the hidden layer nodes are set to zero satisfies the requirement.

The hidden layer architecture from the input layer to a second layer
node is characterized by the following quantities:

1. Nodal nonlinear functions in both layers
2. Nodal thresholds In both layers
3. Number of first layer nodes
4. Interconnection weights between the input and first layer
5. Interconnection weights between first and second layers.

In the following paragraphs, these quantities are explicitly defined in terms
of the mean ji and covariance E of the Gaussian PDF.

Implementation of expression (6) within the hidden layers requires
a different nodal nonlinearity in each layer. The nonlinear function
required for a first hidden layer node is given by

2h (x) = lxi. (7)

The first layer nonlinear function is thus especially simple to implement.
The nonlinear function required for a second hidden layer node is given by

h (x) = (2mr) N~ JX exp( 1 x J(8)
These nodal nonlinear functions are different from those typically utilized
in NN applications.

Expression (6) yields a mathematical expression for the thresholds of
the first hidden layer nodal ronlinearities in terms of the trained
parameters p and X characterizing the Gaussian component. Specifically, the
threshold ri for the i-th first layer node is given by

T I= M /L-111 ) /1, I = 1 ..... N. (9)

Thresholds for the second layer nodes are Identically zero.

The expression (6) implies that the number of first layer nodes
connected to a given second layer node Is equal to N, the dimension of the
input vector X. Because of the requirement that the G second layer nodes
have no input first layer nodes In common, the total number of first layer
nodes in the overall NN Is equal to the product N.G.

The expression (6) also implies that the Interconnection weights between
the components of the input vector X and the nodes of the first hidden layer
be proportional to the components of the inverse of the Cholesky factor L.
This follows from the nature of the argument of the norm [[ * It in (6). The
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Interconnection weight between i-th input and the J-th first layer node is
therefore the (1,J) componentIof the inverse of L. About half of these
weights are zero because L Is upper triangular. The Interconnection
weights between the two hidden layers are all unity, because the sum
(implicit In the squared norm in (6)) is unweighted.

3. TRAINING THE NEURAL NETWORK

Supervised training in the context of this paper means that the correct
outcome class of each data vector in the training set is known beforehand.
Thus, an outcome class is known only from a collection of data vectors, and
training proceeds by using these vectors to estimate the defining parameters
of the outcome class mixture PDF. The algorithm proposed in this paper is
the EM algorithm that was originally described in (2]. The EM algorithm is
applicable to very general mixture PDF estimation problems, but it takes on
an especially simple form when applied to multivariate Gaussian PDFs.
Details of the EM algorithm for Gaussian and non-Gaussian PDFs are given in
[2] and (4].

G denotes the maximum number of different component populations in the
mixture PDF of a particular outcome class. if G is initially unknown, it
must be selected in some fashion ard adapted as necessary. The number G is
not estimated by the EM algorithm. After training Is completed, however, G
can be changed as desired, and training restarted.

Let X denote the set of data vectors in the training set corresponding
to a given outcome class, and let T 2 1 denote the number of vectors in the
set X. It Is assumed that the vectors in T are realizations of independent
identically distributed trials of the outcome class. Let n denote the mixing
proportion of the I-th component population, and let the i-th multivariate
Gaussian component PDF have mean vector pI and covariance matrix Ei . The
parameter vector characterizing the mixture PDF is A - { (i p' I } 

, I
= , ..., G }. The likelihood function (0XIA) Is defined by te product

T
9(XA) = j g(X t1), (10)

t=1 N
where the mixture PDF g(XIA), for any X E R, is given by (cf., (3) and (5))

G )Ni l/2 1-112T I

g(XlA) = X, ((21)NiI exp (X -1 ) 11 (X - 11 (11)

It is clear that computing a (global) maximum likelihood estimate for A is a
highly nonlinear problem. In addition, the likelihood function 9(TIX) often
has distinct local maxima. In practice, an appropriately selected local
maximum Is usually used instead of the global maximum.

The EM algorithm Is an iterative algorithm that computes stationary
points of the posterior likelihood function (10) without taking gradients, or
derivatives. It begins with an initial guess, say A, for the optimum
parameter vector, and each iteration gives a new parameter vector, say A,
that is~guaranteed to Increase the value of the posterior likelihood (10)
unless A is a stationary value for 9, In which case A = X. Consequently, if
the EM iterates are bounded, the EM algorithm must converge to a stationary
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point of 9. In practice, stationary points found by the EM algorithm are
usually also points of local maxima. By restarting the the EM algorithm with
different initial guesses X, and choosing the best of the local maxima so
obtained, a satisfactory maximum likelihood estimate for A can be found.
Convergence rates of the EM algorithm are discussed in [4].

4. CONCLUDING REMARKS

Training the NN architecture described in this paper can be performed
using readily available computing resources. This is a significant feature,
and it is a consequence of the general statistical methodology described
herein. Explicit formulae for nodal thresholds and Interconnection weights
in terms of the estimated mean vectors and covarlance matrices of the
Gaussian mixture components are given. These formulae eliminate the need to
train the NN explicitly, and refocus the training effort directly onto
established statistical algorithms for estimating mixture PDFs.

Alternative NN implementations for Gaussian PDFs are possible. In
addition, NNs can be designed for centrally symmetric non-Gaussian
distributions. Details are given in [5] and []. A maximum likelihood

method for unsupervised training is also discussed in [7].

The EM algorithm is a normalized counting algorithm, and it is readily
incorporated into adaptive schemes for updating the NN weights and thresholds
as new data is added to the training set or, alternatively, as old data is
deleted. The advantages of such adaptive training methods for NN
applications are potentially significant. Feedback from the training data
into the defining parameters of the NN described in the paper is greatly
facilitated by the computational simplicity of the EM training algorithm.
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Abstract

A maximum likelihood method is presented for training
probabilistic neural networks (PNNs), using a Gaussian kernal, or
Parzen window. The proposed training algorithm enables general
nonlinear discrimination and is a generalization of Fisher's method
for linear discrimination. Important features of maximum
likelihood training for PNNs are (1) it economizes the well known
Parzen window estimator while preserving feed-forward NN
architecture, (2) it utilizes class pooling to generalize classes
represented by small training sets, (3) it gives smooth discriminant
boundaries that often are "piece-wise flat" for statistical
robustness, (4) it is very fast computationally compared to
back-propagation, and (5) it is numerically stable. The
effectiveness of the proposed maximum likelihood training
alogrithm is assessed, using nonparametric statistical methods to
define tolerance intervals on PNN classification performance.
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1 Introduction

Classification is the following decision problem: given an input vector X, decide

to which of several known classes the input X belongs. The classes are assumed

to be mutually exclusive and exhaustive. Useful characterizations of the classes

are assumed to be either unknown or unavailable and must be estimated from a

given collection of labelled training samples (i.e., input vectors corresponding to

each class). The absence of a priori class characterizations is the major difficulty in

classification.

The training samples available for each class reflect the intrinsic variability of

the class. Measurement errors are normally present in the training samples also,

but such errors are subsumed here in the guise of class variability. Class variability

models developed in this paper are based on the following fundamental assumptions:

1. Each class is a multivariate random variable with a continuous class conditional

probability density function (PDF).

2. Every input vector X is a realization of one of the classes.

3. Each vector in the training sample set T is a realization of the random variable

corresponding to its class label.

From the first two assumptions it follows that the well known Bayesian classifier 11,

Chapter 13] is the optimum classifier in the sense of minimizing the overall misclas-

sification risk. The implemention of a homoscedastic Gaussian mixture (defined in

Section II) approximation to the optimum classifier in a probabilistic neural network

(PNN) structure is discussed in Section II.

Obtaining meaningful class conditional PDF estimates for classes represented

by only a few samples in the training set 7 is a difficult and thorny problem, but

one that occurs often in practice. We treat the small sample size problem by a new

sample pooling method that generalizes a classical statistical technique due to Fisher

1
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[2, Chapter 4]. We refer to this new method as Generalized Fisher (GF) training,

and it yields (local) maximum likelihood estimates of the class conditional PDFs.

GF training is discussed in Section III and derived in the Appendix. A discussion

of the training of a priori class probabilities and misclassification costs is given in

Section IV. Examples of GF training on small, moderate, and large size training

sets T are presented in Section V, and the effectiveness of GF training for these

examples is assessed in Section VI using a nonparametric statistical method called

tolerance intervals. Concluding remarks are given in Section VII.

2 Neural Network Implementation of Mixture

Gaussian PNNs

The purpose of this section is to show that a four layer feed-forward PNN using

a general Gaussian kernal, or Parzen window, can implement exactly the general

hnmoscedastic Gaussian mixtures used in this paper to approximate the optimum

classifier. Maximum likelihood training of the PNN is discussed below in Sections III

and IV. The structure of the required PNN is represented in Figure 1. Each compo-

nent of this PNN has a specific interpretation and, moreover, all the interconnection

weights and nodal thresholds are given explicitly by mathematical expressions in-

volving the defining parameters of the mixture Gaussian PDF estimates and the a

priori class probabilities and misclassification costs.

Let N denote the dimension of the input vector X, and let M denote the number

of different class labels in the training set T. For j = 1,..., M, let Gi ,- 1 denote

the total number of different components in the j-th class mixture PDF. Let pi(X)

denote the multivariate PDF of the i-th component in the mixture for class j, and

let 7ri denote the proportion of component i in class j. The "within-class" mixing

2
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proportions wij are non-negative and satisfy the equations

G,

M.(1)

The PDF of class j, denoted by fj(X), is approximated by a general mixture PDF,

denoted by gi(X), that is,

G,
f(X) - g3(X) = 1 ijPij(X), j - 1,... , M. (2)

In this paper, only multivariate homoscedastic Gaussian mixtures are considered,

hence p,3(X) has the form

pij(X) = (21r)-N/JE- 1/2 exp (-'(X - pj) t E-(X - yij)j, (3)

where pij is the mean vector and E is the positive definite covariance matrix of

pij(X), and where superscript t denotes transpose. The covariance matrix E is

chosen independent of the class index j and the component index i for reasons

discussed in Section III. The results presented in this Section are readily extended

to the more general (heteroscedastic) case of different covariance matrices. For

details, see [3].

Let a, denote the a priori probability of class 1, that is, {l} are the "between-

class" mixing proportions. Let cj, denote the loss associated with classifying an

input vector X into class j when the correct decision should have been class 1. The

risk pj(X) of classifying the input X into class j is the expected loss, so that

M
PA(X) ; E citalgl(V). (4)

1=1

The decision risk pj(X) is, thus, approximated by a mixture of Gaussian PDFs, as

is seen by substituting (2) into (4). The minimum risk decision rule is to classify X

into that class j having the minimum risk, that is, j = arg min{pj(X)}. The decision

j is the optimum Bayesian classification decision [1, Chapter 13] if 9j(X) E fj(X)

for all j, that is, provided the approximation (2) is an equality. (Ties for minimum
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risk occur with probability zero, so they can be decided arbitrarily in practice.) The

simple task of selecting the minimizing index j can be performed in many ways, and

it has been pointed out [4] that a NN structure can be used for this task if desired.

The nodes in each of the four layers play specific roles in the PNN. The output of a

fourth layer node is the risk pj(X) of choosing class j, as given by the approximation

(4). The fourth layer therefore requires as many nodes as classes, namely M. A

fourth layer node is conceptually equivalent to a decision risk. The output of a third

layer node is gj(X), the approximate class conditional PDF given by equation (2).

A node is needed for each class, so there are M third layer nodes. A third layer

node is conceptually equivalent to a statistical hypothesis. The output of a second

layer node is the likelihood pij(X) of a component in a class mixture. A second layer

node is needed for each Gaussian component in each class, so there are

G - G, + G2 +...- + Gm

second layer nodes. A second layer node is conceptually equivalent to a multivariate

Gaussian random variable. A first layer node is needed for each degree of freedom in

the X' distributed exponent (the expression in braces in equation (3)) of every mul-

tivariate Gaussian component. There are N degrees of freedom and G components,

so there are NG nodes in the first layer.

The activation function appropriate for a node depends upon the layer in which

it resides. All fourth and third layer nodes use the identity function with a zero

threshold, or bias. The second layer nodes use the function exp(-x/2) with a zero

bias. The first layer nodes all use the activation function IxI, but the biases vary

from node to node across the layer. Explicitly, the first layer biases are given by

= [L-'A/ijIk, i = 1,...,G, j = 1,...,M, k = 1,...,N,

where L is any square root matrix factor of the covariance matrix E, that is E = LL'.

The Cholesky factor is one such square root. The bias rjk depends on the destination
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second layer node via the mean vector pij. Further discussion of the activation

functions and biases of the first three layers of the PNN are given in [3].

The description of the trained PNN is completed by defining interconnection

weights between the layers, and giving their specific roles in the PNN. We begin with

the top two layers and work down the NN. The interconnection weight between node

I in the fourth layer and node j in the third layer is the product alcj. These weights

characterize decision risk formation. The interconnection weight between a third

layer node (class mixture) and a second layer node (Gaussian component) is zero if

the component does not belong to the class mixture, and is the mixing proportion

irij if it is component i of the class j mixture. These weights characterize mixture

formation. The interconnection weight between a second and a first layer node is

either 1 or 0, depending on whether or not a given degree of freedom (first layer

node) belongs to a given Gaussian random variable (second layer node). These

weights characterize x2 random variable formation. Finally, the interconnection

weights between the first and input layers are given by the entries of the inverse of

the square root matrix factor L of the covariance matrix E. There are a total of G

components, and L- 1 is N x N, so this gives GN 2 interconnection weights. If L is

chosen to be the Cholesky factor of E, then L- 1 is lower triangular and nearly half

the weights between the first and input layers are zero. Alternatively, the matrix L

can be chosen so that it characterizes the discrete Karhunen-Lo~ve transformation

corresponding to E, that is, L 1 - A-1/ 2UI, where E = UAU t is the singular value

decomposition of E. In this case, the sparsity of L 1 is not immediately evident. A

more detailed description of interconnection weights is given in [3].
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3 Generalized Fisher Training of Probabilistic

Neural Networks

The PNN proposed by Specht [5] is a special case of the PNN described in Section

II, as is seen by setting the costs cl = 0 for all I and cil = 1 for j # 1, and noting that

the fourth layer is essentially superfluous in this case. Specht's PNN implements the

Parzen window PDF estimator [6] using the so-called product Gaussian (i.e., uncor-

related Gaussian) window. The Parzen window sets the interconnection weights and

nodal activation functions. Specht's PNN is thus a three layer feed-forward NN that

uses mixtures of uncorrelated Gaussians to estimate the class conditional PDFs.

Specht's PNN is an excellent tool for initial exploration of new large training sets.

Nonetheless, its usefulness in practice is limited by two factors. Firstly, because it

is based on the Parzen window estimator, the total number G of Gaussian compo-

nents must equal the number of samples in the training set T. Therefore, it requires

large amounts of data storage when extensive training sets are available. Secondly,

an intrinsic smoothing parameter must be estimated on the basis of classification

performance. Since robust estimates of classification performance are difficult to

establish for small sample size, estimates of the smoothing parameter may be un-

reliable in practice. Both factors can often be mitigated by heuristics suited to the

particular application. The contribution of generalized Fisher (GF) training is that

it successfully treats both these problems without the need of heuristics.

The GF trained PNN requires significantly fewer nodes and interconnection

weights than Specht's PNN in most problems of practical interest. A careful com-

parison of the two architectures below the third layer shows that the GF trained

PNN is more efficient in both nodes and weights if

T a < (5)
O1N'

where P is the sparseness index of the inverse square root matrix factor of the
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covariance matrix E, that is, L- ' has j3N 2 nonzero entries. L- I is fully dense if

R = 1 and least dense (diagonal) if fi = 1/N. By choosing L to be the Cholesky

factor, the index f# can always be made at least as small as (N + 1)1(2N) ;, 1/2.

From inequality 5, it is clear that the trained PNN is most effective in reducing node

and weight requirements in large training set problems. For small training sets, the

reduction in the number of nodes and weights depends on the sparseness index fP of

L- 1.

We begin the discussion of GF training by reviewing a classical treatment of the

two class discrimination problem: Fisher's linear discriminant (FLD). FLD is based

on the premise that both classes are multivariate Gaussian random variables with a

common covariance matrix E, but different mean vectors p, and P2. The available

training set T is assumed to be correctly labelled, and we write T = TI UT 2 , where

Ti denotes the subset of T with class label j. The sample means

Xj 1,2, (6)

estimate the means Pi and P2, where #() denotes the cardinality (number of sam-

ples) of a training set. The covariance matrix E is estimated by Fisher's within-class

scatter matrix
1 2

(X - - (7)#Mj=1 Xe

The estimation error for E is reduced by pooling the sample data, i.e., by using

all samples in the training set T. Given these estimates, the log-likelihood ratio is

evaluated for an unknown vector X to be classified. The classification decision is

obtained by comparing this ratio to an appropriate threshold. Contours of constant

log-likelihood ratio are in this case hyperplanes in the feature space (i.e., RN), and

the hyperplane corresponding to the threshold value is the FLD.

The FLD is known to be robust in the sense that linearly separable classes are

often successfully discriminated in practice when neither class is truly Gaussian.

Even when both classes are Gaussian but have different covariance matrices, some

7
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authors have observed that the FLD is often a better classifier than the optimum

quadratic discriminator. For fixed training set size, the increased estimation error

in the two covariance matrices that results from not pooling the training samples is,

presumably, the cause of the relatively greater robustness of the FLD in this case.

Pooling the training samples provides a natural way of developing PDF estimates

for classes that have few samples in the training set 2". In applications where samples

from different classes have broadly similar correlational structure, it is reasonable

to pool the training samples when the sample size is small. Moreover, in practice,

in the absence of a priori information to the contrary, it is probably inevitable that

pooling will be used to generalize small sample set classes. Pooling is the basic

strategy adopted in this paper.

GF training is a generalization of the FLD methodology. It uses a homoscedastic

"mixture of mixtures" assumption to formulate a posterior likelihood function £ for

the entire training set T. An ordinary homoscedastic mixture PDF is a mixture

in which the components share a common covariance matrix E. By the term ho-

moscedastic mixture of mixtures, we mean that a common covariance matrix E is

used within each class mixture and also across all classes represented in the training

set T. The likelihood function C is highly nonlinear in the defining parameters of

the mixture of mixtures, and it is not generally possible to factor it into terms de-

pending on only one class label. Maximum likelihood parameter estimates for each

class PDF are therefore jointly dependent on training samples across all classes.

Maximum likelihood parameter estimates for the mixture of mixtures are ob-

tained numerically by utilizing an algorithm based on the Expectation-Maximization

(EM) method [7]. The derivation of the GF training algorithm is given in the Ap-

pendix. The remainder of this Section is devoted to formulating the likelihood

function C, to stating the most important properties of GF training, and to inter-

pretating its maximum likelihood solution. Equations (74) - (78) summarize the

GF algorithm iteration from step n to step n+l.

8
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The parameters A defining the homoscedastic mixture of mixtures comprises the

following variables:

e = the a priori probability of class j,

* 7rij - the mixing proportion of component i in class j,

* pij - the mean vector of component i in class j, and

•E = the common covariance matrix of all Gaussians.

Thus, A comprises a total of M + G + NG + N 2 real variables, though not all of

them are independent (e.g., E is symmetric and mixing proportions sum to 1). For

j = 1,...,M, let
Ai 7ri, ,}a-_

denote the parameters defining the homoscedastic Gaussian mixture for class j. The

labelled training set T is partitioned into the disjoint subsets

T = T 1 U T 2 U ... U TM,

where 1'j comprises those samples in T with class label j. The posterior likelihood

function £(TIA) is defined on T by assuming that the samples in Tj are independent

for each j, and that the class labels are assigned correctly. From these assumptions,

it follows from equation (23) in the Appendix that the GF log-likelihood function is

MlogC(TIA) = E F, log [ajgj(XlJj)],

j=1 X4ET

where the function gi(XIAi) is identical to the class PDF gi(X) defined by equation

(2). Estimating the parameter set A is the central task of GF training.

The GF training algorithm converges to a local maximum likelihood estimate

AML for A. The EM method for mixtures is derived in [8] for one class, i.e., the

special case M = 1. It is extended to the GF likelihood function in the Appendix.
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GF training is an iterative procedure that computes stationary points of the posterior

likelihood function Z without taking gradients or derivatives. It begins with an

initial guess, say i, for the optimum parameters, and each iteration gives a new

parameter estimate, say A+, that is guaranteed to increase the value of the posterior

likelihood function C unless i is a stationary value of C, in which case 1 E A+ .

Consequently, if the GF algorithm iterates are bounded above, as they typically are

in applications (see the Theorem in the Appendix), the GF training algorithm must

converge to a stationary point. In practice, stationary points of £ are also points of

local maxima. By restarting the GF training algorithm with different initial guesses

A, and choosing the best of the local maxima so obtained, a satisfactory maximum

likelihood estimate for A can be found.

An intuitive understanding of the shape of the decision (discriminant) surface

can be gained in certain instances. Consider the two class problem. The FLD always

has a linear decision boundary, as remarked above, but GF training will not result in

linear decision boundaries in general. The nonlinear decision boundary will be very

flat (linear) wherever the input vector X lies "close" to only one component in each

of the two classes. The reason is that the log-likelihood ratio behaves locally like the

FLD in this case. Intuitively, then, the GF decision surface comprises several nearly

flat sections that are joined together by smoothly varying transitional surfaces. This

intuitive image suggests that GF training may be robust against overtraining on the

sample set T when G is in some sense small compared to the size of the training set

T. The image also suggests a "decision directed" method for obtaining piecewise

linear discriminants, and this is discussed briefly in Section VII.

Finally, GF training has an important translation property that shows clearly

that GF training is based on PDF estimation and not on class discrimination. To

be explicit, for . = 1,. . . , M, let Ti denote the training set Tj after translation by

a given vector 4,, and let T denote the union of all sets %P,. Suppose GF training

applied to the translated training set %P converges to the parameter set A,, and
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that GF training applied to the set T converges to the parameter set AT. Then

the parameter sets A, and AT are translates, that is, they are identical, except that

the mean vector in At of the i-th component in the j-th mixture is uij + Oj, where

pij is the corresponding mean vector in AT. This result assumes that the initial

parameter sets are also translates. It follows from the translation property that

the estimated class conditional PDFs are independent of the between-class sample

separations. Classification performance of GF training is therefore determined by

two independent factors: (1) the separation of the class means, and (2) the detailed

shape of the individual class conditional PDFs.

4 Training A Priori Class Probabilities and Mis-

classification Costs

The GF training algorithm gives explicit maximum likelihood estimates for the class

a priori probabilities {cr} without iteration. From equation (74), the maximum like-

lihood estimate of ai is &j = #(2T)/#(T), or, in words, &j represents the relative

abundance of class j in the training set T. Clearly, the training set T contains sig-

nificant a priori class probability information only if it has been carefully compiled.

Standard statistical practice requires screening the training set to eliminate out-

liers and other anomalies. Moreover, it may also be necessary to screen the training

set to ensure correctly labelled samples. If careful attention is not given to these

important tasks, the resulting training set T will contain little or no meaningful

information regarding the class a priori probabilities. In this case, the likelihood

function C must be modified slightly. It becomes

M

log C(TIA \{ctrj) = E E loggi(XA 3)
j=1 XETJ

where A \ {fj} denotes the parameter set A with {aj} removed. It is straight

forward to show, using the methods of the Appendix, that the GF training algorithm

11
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modified for this likelihood function is identical to equations (75) - (78). The sole

difference is that {a} are no longer estimated. We will refer to both algorithms as

GF training algorithms.

The preceding comments should not obscure the fact that it is still necessary to

train class a priori probabilities in applications in which these quantities cannot be

estimated from the training set T. Although one may resort to information theoretic

concepts such as entropy [9], a more appropriate recourse for many applications is to

exploit a priori information not immediately available from within the training set T,

as it is defined in Section I. The same is true as well concerning the misclassification

costs {c,,}. Training these fundamental quantities is important if near-optimum

classification performance is to be attained in practice.

The essential difficulty is that the likelihood function C(TIA \ {fa}) is indepen-

dent of the misclassification costs {cjl} and the probabilities {ai}. No maximum

likelihood training algorithm can estimate factors missing from the fundamental

likelihood structure. Thus, £ must be modified to include dependence on a priori

information. This task requires intimate knowledge of the particular application

together, perhaps, with additional observation time history. Although time history

can be included in T, it is clear that training {cji} and {a} may require an exten-

sive modification of C(TIA \ {a,}) and involve information and methods outside the

scope of the present paper.

5 GF Training Examples

Three examples are presented to illustrate the effectiveness of GF training on dif-

ferent size training sets. To focus clearly on the small training set problem, the

same classes are used in all the examples, and training is performed on different size

subsets of the available training set T. The effect of using different subsets of T on

classification performance is assessed in Section VI.
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Each example comprises three classes defined on R 2, that is, the dimension of

the input vector X is N = 2. The samples in T are measured data, not simu-

lated. Because of the way T was gathered and screened in the application, the

relative abundance of sample data for each class does not reflect the a priori class

probabilities {%}. The class prior probabilities a3 are chosen equal to 1/3. The

misclassification costs cij are defined by equation (4) and are chosen equal to 0 if

I = j and equal to 1/2 if 1 # j. The optimum classifier is, with these choices,

equivalent to the well known maximum likelihood classifier.

Given model orders {Gj 1, GF training is defined for these examples by equations

(75)-(78). The best choice of Gj, the number of (bivariate) Gaussian components in

the mixture PDF for class j, is a model order selection problem, and its solution is

application dependent. Typically, Gj should be chosen as small as possible without

losing classification performance. The study of the order selection problem is greatly

facilitated by the numerical robustness of GF training; however, this important

problem is outside the scope of the present paper. Overtraining is the only aspect

of this problem upon which we will comment.

GF training requires initial values for the class mixture parameters. For class j,

the initial mixing proportions 7rii were chosen equal to 1/C 3 . The initial covariance

matrix was the within-class scatter matrix (cf. equation (7) for two classes) for the

training set. The initial mean vectors for Example 1 were chosen randomly within

a square containing the appropriate class samples. The initial mean vectors for

Example 2 were a subset of those for Example 1, and Example 2 contained those

for Example 3. No effort was made to restart GF training to determine if the local

maximum likelihood solutions obtained were globally optimum.

To facilitate the discussion of the examples, we define the decision risk by

p(X) = min {PI (X), p2(X), pa(X)), (8)

where the decision risks {pj(X)} are approximated by the right hand side of equation
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(4). The decision assurance is defined by

6(X) = max {Ct~gI(X), c 2 g2 (, Cx3 3 (X)} (9)

where the estimated class PDFs {g,(X)} are defined by equation (2). The optimum

class decision is identified by the index j', where

j° = argmin{p(X),p 2 (X),Ps(X)}. (10)

Because of the particular choice of costs and class priors, we also have the equivalent

expression j* = arg max{g, (X), g2(X), g3 (X)}.

GF training is very efficient in the examples presented in detail below. The con-

vergence criteria required a relative increase of 10' in the log-likelihood function,

that is, iteration ceased when the current value of log C increased by a factor less

than or equal to 1+10- 4 times the previous value of log £. GF training for Example

I converged in 53 iterations and used approximately two minutes of wall-clock time

(including all file handling and I/O operations). Example 2 converged in 26 itera-

tions in about 5 seconds, while Example 3 converged in 18 iterations in well under

one second. The GF algorithm is implemented in single precision FORTRAN on a

Sun SPARC-station I.

5.1 Example 1: Large size training set, T

The training set T = T , U T 2 U T3 comprises 1960, 720, and 500 two-dimensional

training samples in classes 1, 2, and 3, respectively. Example 1 trains using all the

available samples in T with the choices G = 8, G2 = 4, and G3 = 2 for the number

of class mixture components. This choice for {G3 } reflects the relative diffuseness

(as compared to an uncorrelated Gaussian distribution) of the training samples in

the various classes. The trained mixing proportions and mean vectors of the class
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mixture PDFs are listed in Table 1. The inverse of the trained covariance matrix is

= 17.590 -0.76978 1
-0.76978 6.0786

The eigenvalues of E are 56.6850 and 165.911, so E is numerically stable.

I Class 1 Class 2 Class 3

component

number - p p p

1 0.196423 85.165 0.454747 58.643 0.517638 50.180

111.075 11.885 49.849

2 0.174009 115.670 0.227895 75.009 0.482362 50.180

43.677 18.953 49.849

3 0.158688 115.499 0.182448 38.771

79.179 10.130

4 0.144088 98.808 0.134909 16.085

88.775 6.652

5 0.111436 114.690

56.922

6 0.091604 99.392

144.360

7 0.073182 83.966

57.609

8 0.050569 117.437

123.854

Table 1: Mixing Proportions and Mean Vectors for Example 1

Figure 2 is a scatter plot of the training set T, together with a graph of the three-

class discriminant function obtained after GF training is completed. The graph of
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the discriminant function is the boundary line between the regions of the (input)

plane that map into the three different classes under the optimum decision rule

(10). Inspection of Figure 2 indicates that good generalization of the training set T

has taken place. Overtraining has not occurred, since overtraining is characterized

by highly convoluted discriminant curves and the nonlinear discriminant curves in

Figure 2 are smooth.

Figures 3, 4, and 5 depict the level curves, or contours, of the estimated class

PDFs. The likelihood levels corresponding to the contours in these and subsequent

figures are given in decibels referenced to the maximum PDF level, or dB//max.

Generally, to plot a function in dB//max, it is normalized by its maximum value,

and then 10 times its base 10 logarithm is taken. Thus, -20 dB//max is equivalent

to a level that is 10- 2 times the referenced maximum PDF level. The use of decibels

is justified by the dynamic range of the likelihood functions involved. The maximum

values of the class PDFs are 4.29 x 10- , 7.91 x 10- , and 16.41 x 10- ' for classes

1, 2, and 3, respectively. Class 3 has the largest maximum because it has the most

compact PDF.

The large x marked on Figures 3-5 is the approximate location of the point of

maximum likelihood. The locations of the mean vectors of the trained Gaussian

components are marked with squares. Note that in class 1 the maximum likelihood

does not occur at the mean vector of one of the Gaussian components.

Scatter plots of the training data have been superimposed on the contours in

Figures 3-5. Sample data are marked with simple dots. In each class virtually all

the training data lies within the -20 dB//max contour. Since the -20 dB//max

contours of the classes intersect and their maxima do not greatly differ, perfect

separation of the three classes is not achieved.

Although two Gaussians were permitted for class 3, GF training merged them by

superimposing their means, as is seen from Table 1. Merging indicates that class 3 is

overmodeled, that is, G3 = 2 is too large. The common covariance matrix structure
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is easily seen in the PDF level curves for class 3, depicted in Figure 5. Fitting a

single Gaussian to only class 3 samples would give a slightly different covariance

matrix. The difference is due to pooling samples across classes, i.e., the covariance

matrix E depends jointly on the entire training set T, not just the samples for any

one class.

The decision risk p(X) gives much more insight into the class structure than the

simple discriminant curve alone. Figure 6 depicts the risk p(X) in dB//max, where

the maximum risk is 4.94 x 10- . The region of greatest decision risk occurs between

classes 2 and 3, and this fact agrees very well with the good visual separation between

the scatter plots of class 1 and the other two classes. The risk p(X) thus not only

confirms, but also quantifies, our intuition in the matter. Note that the discriminant

curve runs along the ridges of the graph of p(X).

The decision assurance 6(X) is depicted in Figure 7. The maximum assurance is

5.47 x 10- . The assurance function 6(X) is useful as an indicator of the correctness

of the optimum decision. An outlier is easily classified by noting its relation to the

discriminant curve, and the risk p(X) associated with this decision is very small,

as can be seen from Figure 6. Nonetheless, one should not feel too comfortable

with any decision concerning an outlier. Screening outliers is accepted statistical

practice, and screening can be facilitated by setting a threshold on the assurance

6(X). If 6(X) is not sufficiently large, then no classification decision is made. This

is equivalent to postulating an additional "null" class having an appropriate diffuse

PDF. Note that the discriminant curve runs down the valleys of the the graph of

6(X).

Classification performance estimates derived from the training set are optimisti-

cally biased, as is well known. However, overtraining has not occurred, so such

estimates should not in this instance be significantly biased. Classification perfor-

mance estimates are given in Table 2, and are presented primarily for comparison

with the next two examples. Note that the largest off-diagonal entry of the con-
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fusion matrix corresponds to misclassifying class 2 samples as class 3. This also

corresponds to the region of greatest risk p(X).

I I InputClass JSample Size

Decision Class 1 Class 2 Class 3 Input Training

Class 1 98.32% 1.67% 0.20% 1960 1960

(1927) (12) (1)

Class 2 0.97% 93.61% 0.80% 720 720

(19) (674) (4)

Class 3 0.71% 4.72% 99.00% 500 500

(14) (34) (495)

Table 2: Confusion Matrix for Example 1

5.2 Example 2: Moderate size training set, T/1O

Example 2 trains on the set T/10, a fixed (randomly selected) subset of T with 196,

72, and 50 training samples representing classes 1, 2, and 3, respectively. The choices

G, = 4, G 2 = 2, and G 3 = 1 are made in this example to reflect the reduced training

set size, given the choices of {Gj} in Example 1. The trained mixing proportions

and mean vectors of the class mixture PDFs are listed in Table 3. The inverse of

the trained covariance matrix is

= 1 [ 12.345 -3.2255]
-3.2255 5.8022

The eigenvalues of Z are 73.164 and 223.24, so E is numerically stable.

The discriminant boundary and decision risk p(X) are depicted in Figure 8. The

maximum risk is 4.23 x I0 - . The discriminant boundary is effectively piecewise

linear in this example because the reduced model orders {Gj} make the GF discrim-

inant more prone to have locally flat behavior, as described above in Section II.
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The risk function p(X) has two discernable peaks (local maxima) that correspond

to binary decision problems (i.e., two-class problems). There was only one peak in

Example 1.

The decision assurance in dB//max is depicted in Figure 9. The maximum assur-

ance is 4.15 x 10- . The covariance matrix structure, discernable in the elliptically

shaped likelihood contours of Figure 9, is slightly rotated from that of Example 1,

but this difference does not significantly alter the overall class likehood distributions.

It is interesting to note that the point of intersection of the three arms of the GF

discriminant lies in a small valley (i.e., local minimum).

Classification performance was estimated on the full training set T. The con-

fusion matrix is given in Table 4. As is evident from Table 4, GF training on the

reduced size set T110 gives excellent classification performance. Note that class 3

is never misclassified as class 1. Correct classification rates are slightly less than

those for Example 1, possibly because the larger testing set has reduced the small

positive bias evident in the confusion matrix of Example 1. Note that the largest

off-diagonal entry in the confusion matrix corresponds to the largest peak in the risk

p(X), and the second largest off-diagonal entry corresponds to the second largest

peak.

5.3 Example 3: Small size training set, T/100

Example 3 trains on the set T/100, a fixed (randomly selected) subset of T/10 with

20, 7, and 5 training samples representing classes 1, 2, and 3, respectively. The

number of components per class are further reduced to G, = 2, G2 = 1, and G3 = 1.

The trained mixing proportions and mean vectors of the class mixture PDFs are

listed in Table 5. The inverse of the trained covariance matrix is

= 1 f 11.230 4.9816 1
4.9816 8.8180
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Class 1 Class 2 Class 3

component

number i p p ,

1 0.366496 113.240 0.814163 61.862 1.00000 50.801

50.896 15.743 51.445

2 0.248630 89.122 0.185837 17.166

93.863 7.785

3 0.235406 114.376

85.979

4 0.149468 95.555

142.098

Table 3: Mixing Proportions and Mean Vectors for Example 2

Input Class Sample Size

Decision Class 1 Class 2 Class 3 Input Training

Class 1 97.19% 1.53% 0.00% 1960 196

(1905) (11) (0)

Class 2 1.79% 92.64% 1.80% 720 72

(35) (667) (9) 1

Class 3 1.02% 5.83% 98.20% 500 50

(20) (42) (491)

Table 4: Confusion Matrix for Example 2
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The eigenvalues of E are 66.010 and 204.149, so E is numerically stable.

The discriminant boundary and decision risk are depicted in Figure 10. The

three arms of the discriminant boundary are nearly linear in this example because

of the small model orders {Gi). The class decision regions are unbounded in this

example. The class 3 region is bounded in the other two examples. The risk function

p(X) has only one peak, and it lies in the same location as that of Example 1. The

maximum decision risk is 8.72 x 10- 5.

The decision assurance in dB//max is depicted in Figure 11. The maximum

assurance is 4.57 x 10- 4 . The covariance matrix structure, clearly visible in Figure

11, shows that the covariance matrix E is significantly rotated from that of the

other two examples. The reason is the small model order for class 1. It happens

during training that one Gaussian models the most densely clustered samples, and

the other models the most significant portion of the remaining samples in class 1.

Since class 1 samples dominate the within-class covariance matrix calculation and

the densely clustered samples dominate (cf. the mixing proportions of Table 5) in

class 1, the covariance matrix E reflects the dense portion of class 1 samples. This

effect is evident in Figure 11.

Classification performance was estimated on the sample set T that was used as

the training set for Example 1. The confusion matrix is given in Table 6. Note

Class 1 Class 2 Class 3

component

number T p 7r

1 0.757665 106.663 1.00000 61.286 1.00000 48.823

71.176 15.857 49.063

2 0.242335 106.816

109.032

Table 5: Mixing Proportions and Mean Vectors for Example 3
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that class 3 is never misclassified as class 1. Correct classification rates are very

similar to those of Example 2. The largest off-diagonal entry in the confusion matrix

corresponds to the peak of p(X), just as in the other examples. Clarly, GF training

on the greatly reduced size training set T1100 seems to be nearly as good as that

attained by using the entire training set T.

Input Class Sample Size

Decision Class I Class 2 Class 3 Input Training

Class 1 97.65% 1.11% 0.00% 1960 20

(1914) (8) (0)

Class 2 0.46% 91.81% 0.80% 720 7

(9) (661) (4) _

Class 3 1.89% 7.08% 99.20% 500 5

(37) (51) (496)

Table 6: Confusion Matrix for Example 3

6 Tolerance Intervals for Assessing Classification

Performance

Example 3 is one realization of a larger "experiment" conducted by randomly se-

lecting subsets of specified size from the training set T. In this section we assess

quantitatively how representative this example was of the larger experiment by using

a nonparametric statistical method known as tolerance intervals. Tolerance intervals

are similar to confidence intervals in their use, but they are defined and derived very

differently.

We define a training tial Z on a fixed size subset of a given labelled training set

7 in the following manner. Firstly, a (uniform) random sample S of the specified
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size is drawn from T without replacement. The subset S is returned to T before the

next training trial begins. Next, GF training is conducted on the set S. The initial

parameter set A required by GF training may be fixed or generated randomly, but

the same initialization procedure must be used in all training trials. On convergence

of the GF training algorithm, classification performance is assessed on the set T \ S.

In the examples presented in Section V, classification performance is measured by a

confusion matrix. In this Section we also consider the total error rate.

Training trials are independent trials of a multivariate discrete random variable.

The trials are independent because of the independence of the subsets S drawn

from T, and the trials are discrete outcome because there are only a finite number

of different possible subsets S that can be drawn from T. Finally, the trials are

multivariate because the outcome is the calculated confusion matrix together with

the total error rate. In principle, the PDF of the training trials can be found exactly

by systematically running through the entire list of all possible subsets S of the

training set T; however, except for very small training sets T, such a procedure is

computationally prohibitive.

Suppose momentarily that the total error rate, denoted by c, is the only outcome

of a training trial and that its PDF is continuous, not discrete. Denote the PDF of e

by E(c), and let n independent training trials with outcomes l, f2,..., C, be given.

Then the population fraction or coverage, u, of the PDF E(e) between min ek and

max ek is given exactly by

u = f' E(z)dz.

Wilks shows [10] that the PDF of u, denoted P(u), is independent of the PDFE(c)

and is equal to

P(u) = n(n - 1)u- 2 (1 - u).

Robbins shows [11] that order statistics are the only statistics which yield distri-

bution free tolerance intervals. If we want coverage u > 1003% with probability
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lOOa%, then n must be chosen so that

Prfu> =a = P (u)du. (11)

The PDF of the total error rate for a training trial is discrete. The result by Wilks

is applicable to univariate discrete PDFs, but (11) changes to Pr{u > } a in

this case. For a proof of Wilks' result for discrete PDFs, see [12].

In general, a training trial outcome includes the confusion matrix and total er-

ror rate. The PDF of the confusion matrix is discrete and multivariate. Wald [13]

derives distribution free tolerance intervals for continous multivariate outcomes by

computing order statistics on each vector component separately and by carefully

choosing a multidimensional interval (block). Tukey extends Wald's results to more

general choices of multidimensional blocks [14] and to discrete multivariate PDFs

[15]. The curves given in [161 are valid for continuous multivariate PDFs. These

curves may be used to obtain lower bounds on the confidence a for discrete multi-

variate PDFs [15), just as in the univariate case.

From the curves in [16], taking n equal to 50 ensures coverage 90% = 100#% and

confidence 95% = 100a%. Results for n = 50 independent trials of the experiments

T/10 and T/100 are shown in Table 7 and in Table 8, respectively. The corre-

sponding tolerance intervals for the total error rate in percentages are 3.6 ± 1.1 and

8.4 ± 5.3 for T/10 and T/100, respectively. The tolerance intervals for the confusion

matrices were obtained using Wald's method [131 for selecting the multidimensional

block. Table 7 shows that GF training yields good class characterization when a

T/10 training set is used. The largest tolerance intervals are for class 2 because

class 2 data overlaps both class 1 and class 3 data. Table 8 shows that GF training

does not perform as well on T/100 training sets. In particular, large performance

variations are possible when trying to distinguish class 2 data from class 3 data.

Table 8 clearly shows that the excellent results obtained in Example 3 are at the

high end of the tolerance interval (block) for the experiment T/100.
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7 Concluding Remarks

The examples of Sections V and VI give convincing evidence of the utility of GF

training. Although the classes in these examples are nearly linearly separable (cf.

Figure 10 and Table 6), the important translation property discussed in Section IV

implies that linear separability is not the central issue for GF training because we

can always train on widely separated translates of the individual class training sets

T. The examples show that GF training has obtained very reasonable estimates of

the class conditional PDFs, that is, the available class training samples have been

generalized in some sense. Highly nonlinear discriminants are by-products of good

class conditional PDF estimates.

A "decision directed" generalized Fisher (DDGF) method can be used, if desired,

to obtain a strictly piecewise linear approximation to the GF discriminant surface.

The DDGF method classifies an input vector X into the class j* such that (i*,j ") =

arg max{ajrijpij(X)}. The component decision i" is also part of the DDGF decision.

If the required maximum is taken first over the component index i, and then over

the class index j, it is seen that the DDGF method is equivalent to a two stage

decision and is implementable in a feed-forward NN structure that avoids using

exponential nonlinearities. In the first stage, a "within-class" decision determines

which component generated the given input vector. There are as many within-class

decisions as there are classes. In the second stage, a final "between-class" decision

is made using the representative class components determined by the first stage.

Decision (%) Class 1 Class 2 Class 3

Class 1 97.1 ± 1.2 1.2 ± 0.6 0.0 ± 0.0

Class 2 1.5 ± 0.7 92.1 ± 2.5 1.2 ± 1.2

Class 3 1.4 ± 0.9 6.6 ± 2.2 98.8 ± 1.2

Table 7: Tolerance Intervals for T/10 Experiment
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Both the within-class and between-class decisions have piecewise linear discriminants

because of the Gaussian PDF structures in each instance. The within-class mixing

proportions {iriij are the a priori probabilities for the within-class decisions, while

the between-class mixing proportions {ai} are used for the between-class decision.

An interesting aspect of GF training is that, because only one covariance matrix

E is used across all classes, the principal components analysis (PCA) based on E is

common to all M classes. A common PCA, taken together with the spread-of-the-

means of the components, are potentially useful tools for investigating dimensional

reduction of the feature space in all classes simultaneously. This unique aspect of

GF training merits further study.

The GF training algorithm derived in the Appendix easily accommodates sev-

eral useful extensions. Three extensions are mentioned here. Supervised / unsuper-

vised GF training can be undertaken on training sets in which some of the training

samples are unlabelled. Unsupervised GF training is the special case of all unla-

belled training data. This extension is especially useful for applications in which the

cost or difficulty of correctly labelling all the training samples is prohibitive. GF

training iterations can be made adaptive and run "closed loop" if the class PDFs

are time-varying. This extension requires reformulating the GF likelihood function

with Bayesian prior distributions [81 for the mixing proportions, mean vectors, and

covariance matrix of the class conditional mixture PDFs. Adaptive GF training is

potentially useful in applications in which class statistics are either non-stationary or

are treated as non-stationary to ensure robustness and a degree of fault tolerance.

Decision (%) Class 1 Class 2 Class 3

Class 1 96.0 -3.0 5.8 ± 5.0 0.0 ± 0.0

Class 2 1.4 4 1.4 82.8 ± 10. 5.2 ± 5.2

Class 3 2.5 4 1.6 21.3 ± 16. 97.5 ± 2.3

Table 8: Tolerance Intervals for T/100 Experiment
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GF training can be extended to mixtures of discrete PDFs and continuous non-

Gaussian PDFs [7]. These extensions may enable reduced PNN size (because of the

increased modelling efficiency) in applications requiring discrete feature vectors or

continuous non-Gaussian feature vectors. These extensions are not mutually exclu-

sive. For example, adaptive GF training is possible with supervised / unsupervised

training sets T.
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A Appendix: Derivation of the GF Training Al-

gorithm

The Generalized Fisher (GF) training algorithm is based on the Expectation - Max-
imization (EM) method described in reference [7]. The EM method consists of two
steps: The first step is called the expectation step or E-step, and the second is called
the maximization step or M-step. The E-step extends the likelihood function £ to
the unobserved or "missing" data, and then computes an expectation of over the
missing data to obtain an auxiliary function Q. The M-step maximizes the func-
tion Q with respect to the parameter set to be estimated. Reference [7] describes
the conditions required for the EM method to converge to a local maximum of the

likelihood function C.
Suppose independent samples of a random vector X with dimension N are ob-

served, where X has a mixture of mixtures conditional PDF given by

MX E ajgj(XIAi) (12)
j=1

where

M
Ma = 1, (13)

C,
j(14gJ(XI),j) =" E rijpij(XI.Xij) (14)

i=1

= , (E-)N2'21 exp 1-- (X - p1i)E-'(X P.ui)] (15)
G,

= , (16)

and the symbol X denotes the transpose of X. The number of components GC
can be different for different class mixtures. Note that the between-class mixing

proportions {j} and the within-class mixing proportions {ij } are contained in the

interval [0, 11.
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The parameter sets

A,, = {p, ,,E) (17)

A, =fi { ir, Ai1}i' 1  (18)

A = {o )l (19)

are unknown. In this appendix the GF training algorithm is derived for estimating

the unknown parameter set A from the training set T, and it is based on the EM

method. The following discussion will be devoted to developing the expectation

step (E-step) and the maximization step (M-step) of the EM method applied to the

mixture of mixtures PDF model in equation (12). The training set T is partitioned

(labelled) so that for each component gi(XIAj) of the mixture f(XIA), Tj of the

observations of X are from gj(XIA) :

S T= { k-j =2 (20)

where

T = T. (21)
j=1

The posterior likelihood function for the unlabelled training set T is

£,(TI.A) = ( TI M L (1 cjgj(xn,l,) (22)TI""TM n=1 =

using equation (12) and the independence of the training samples. The multinoial

coefficient is required in equation (22) because the training set T is unordered. Since

the multinoial coefficient is a constant and only scales the likelihood function, it

is dropped for the rest of this discussion. The likelihood function of the labelled

training set T becomes

£C(TIA) 1 ri( O~IXA A)(
j=1 k=1i

M T,
-H H olJgj(XkjIJ) (23)

j=i k=i
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where 6(.) is the Kronecker delta function. Substituting equation (14) in equation

(23) yields

£(TI) =l1-i iJ ipij(Xkjl ,,) • (24)
j=1 = (rfi =

If ai = 0 for some j, then £(TIA) = 0. Therefore, we require that aj > 0, j -

1..M.

The missing data in this problem is the index, i, of the PDF pjj(-Ai) within the

mixture gj(.) from which Xj originated. The "complete data" in this case is the

set

= = {{Xk, ik=}I=" = 1u, (25)

where i1, denotes the component index of the PDF from which Xkj was drawn. Note

that ikj is not observed and that 1 < ikj _ Gi. The conditional PDF for T' is

MT,
Y(T'A) =- II aJgj(YI, )

j=1 k--1

M1, E Ilrlj P1(YkAi))
j=1 k=1

M T, G,

I' II ajE rjPjp(Xkl I)b(l (i))
j=1 k=1 \1=1

fI C~j ari~pi(XkjIAi,) (26)
j=1l k--1 

1=

where 6(.) is the Kronecker delta function. The PDF of I - {i&j} conditioned on T

and A is then

AC(ZIT, A) = (T(27)

Substituting (23) and (26) into I yields
M T" lfljpij(Xkj[ll)

I

(IlT, A) = 'I -[ (XkjjA,) (28)

MT,

-- Iwt A(Xk,) (29)
j= f=1
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where
w( . = P [-(x - ( (30)

W (Xk, j exp [-!(X - p.,)'E-1(X - P0,)] (3

Note that wlj(Xkj) > 0, and wij(Xkj) = 0 if and only if ir0 = 0. It is straight

forward to verify that

(.IjT,A) = 1, (31)

where the sum over " is shorthand for the T-fold sum
G, G, G2  G2  GM G M

E =  , -' F, , "'" F, -' E ... E . (32)

S ii=1 il--111 i12=1 i 2 2=
1  iM=1 iTMM=I

Similarly,

E K(IT, A) = wj(XLJ) (33)
.T i, ll f i %j

where the sum over I \ iki is the same as the sum over I except that the sum over

the index ikj is deleted. Note that C(.) defines a probability on the discrete space

of indices ".

The E-step of the EM method is defined to be

Q(AIA') = E{log'(T'IA)IT,A '}, (34)

where the expectation is taken over the set of all possible indices I = iki and is

conditioned on T and A', where A' is a given parameter set of the form (19). By

definition of expectation,

Q(AIA') = log[AF(T'IA)]K(IT,A) (35)

= EE 'log[aj7rqPqj(XkjjAtj)] :(2"1T, A') (36)
T" j=l k-f-1I--ij

MT,= E E E (g[IIT,'()1T 3')

I j=1 k=2

MTj

+ 0log[7. p,,(XIAli)] A(IIT, A'). (37)
" j=1 k=1
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The first term simplifies easily using equation (31) because

>-I-T[logaj(Z jT,A') = T'log a3 ) '(IT, A') (38)
j=1 )"

M

E Tj log a1 . (39)
j=1

Using equation (33), the second term in equation (37) simplifies to

M TFF loXip,(2,,) (ZIT, A')
, j:og[7rjjPji(XkjjAtj)]

X j=1 k=1 I=ikj

M T, G,
= 109 og[1r,p,1 (XA,,:1 )]  K(IT,,A') (40)

j=l k=l 1=l II~ikj Aik,

M T, Gj

- XIY2log[ir1pj(Xj AI)1w,(Xkj) , (41)
j=1 k=1 1=1l=ikj

where

Wi-(Xkj) Ij exp [-(X - ,,)4(AE) (X - i,,j)] (42)
,,,,~x,) =%'= i-, e,,p [- (X - p',)(E)'(X - , ) X=X,

Therefore, from equations (37), (39) and (41)

M MGTi

Q(A IA') = F ',j log a3 + ZE E10log[r 13p1(XkIA,,)I W ,(Xk,). (43)
j=1 j=1 i=1 k=1

Note that if 7rij = 0 for some i and j, then Q(AA') = -oo.

The M-step of the EM method is achieved by maximizing Q(AIA') with respect

to the parameter set A given the previous estimate A'. In [17], Juang proves that

maximizing Q is equivalent to maximizing C; hence, an iterative procedure for max-

imizing Q over the parameter set A will cause the likelihood function C to mono-

tonically increase. This maximization problem is solved either by differentiating Q

with respect to each parameter in the set A, setting the resulting partial derivatives

equal to zero, and then solving for each parameter, or by the method of Lagrange

multipliers if parameter constraints are necessary. In the following development, it
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turns out that the parameters {a, V, A} are uncoupled from each other and from E

in the equations defining the necessary conditions for maximization, so they can be

solved for separately. The parameter E is a function of the parameters {ij}.

The expression for Q in equation (43) may be rewritten as

M M G, T
Q(AI E) = + Elog , + W (Xkj)o 19r

j=l jI= i=1 k=1

M G, Ti

+ E , W~i(Xk )logpi(Xkj1A ij) (44)
j=1 i=1 k=1

M
= Q.+ZQj+Q. (45)

j=1

Note that Q. depends on)y on {a}, that Q? depends only on {r.,i = 1,... ,G},

and that QP depends jointly on E and the vectors {fii,i = 1,..., Gi,j = 1,..., M}.

In addition, to maximize Qj for each j, we require that 7rjj > 0 for all i. Consequently,

if Q., Q and QP are each maximized separately, then Q is also maximized (see Juang

[17] for the special case of M = 1).

Starting with the parameter set {j, a, Q0 is maximized subject to constraint

(13). The appropriate Lagrangian for {ai} is

OQ0+ ( Ci-1), (46)

where -f is the Lagrange multiplier. Differentiating with respect to aj yields

_ = i +- 0; (47),9ai ai

hence,

7;- (48)

Substituting into the constraint (13) yields
M Tj 1 M T

1 = -E-=--"jffi = -- " (49)
j=1It I =
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Therefore, y = -T, and
Tj Y* (50)Gj.

Note that the estimates {&j) are an immediate consequence of the labelling (par-

titioning) of the training set Tand that &j > 0, as required. By Lemma 2 in [10],

{&j) is the unique global maximum of Q,.

To estimate {r1j,i = 1,... ,Gi}, the term QJ is maximized subject to the con-

straint (16). In this case, the appropriate Lagrangian is

= Q{+ ,j -1 ,(51)

where -y is the Lagrange multiplier. Taking the partial derivative with respect to ir

yields

F, =EwI(Xkj) + ) 0 (52)
k=1

or
I1T,

"J = --- w,2 (Xkj). (53)
l' k=1

Substituting (53) into constraint equation (16) results in

1G, T

-- EEwI(Xkj) = 1. (54)
7 i=1 k=1

Since G,

w J = 1, (55)

it follows that y = -Ti. Hence, the estimate of the mixing proportion is, from

equation (53),

i= f , W(Xkj). (56)
i k=1

Note that ij > 0, as required. Again, by Lemma 2 of [10], the estimate {j} is the

unique global maximum of Q,.
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The new estimate of the covariance matrix E is found by differentiating Qp with

respect to E = [Ej]:

VEQp - E E wi 3(Xk,) [='1 + -E(Xk1 - piI)(Xk, - ,i)tE - 1]
j=1 i-=1 k=1

= 0, (57)

where VE is defined as the matrix operator

VE - (58)

From equation (42),

M Ti G, MT, MEE F, w -(Xkj) = EE1 F = = T, (9
11 (59)

j=1 k=1 i=1 j=1 k=1 j=1

and the estimate of the covariance matrix is therefore

1M G, T,
E E E ji ,W (Xkj)(Xk1 -Pi,)(Xk3 - ,ij). (60)
j=1 i=1 k=1

Note that E is in the convex hull of outer products of vectors, and that the n.an

vectors pij in equation (60) are the maximum likelihood estimates of the true means.

The estimate of the mean vector pij is also found by differentiating QP:

T,
V --,ijQp = E W(Xkj)PE1 (Xkj - Pij) = 0-. (61)

k=1

Note that in this case, p is defined as a vector of length N, and that V,, is defined

for general vectors p = (p,..., PN) as

V. -- j (62)

Hence, from equation (61) the estimate of the mean vector pj is

T k-I Wfi(Xkj) 
(63)
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Note that the estimate Ai, is in the convex hull of the training set for label class j,

and that Aj is independent of the covariance matrix estimate t.

Equations (60) and (63) produce the unique global maximum of Q., provided

a reqularity condition is imposed on the training set T. For vectors ci E RN,

j = 1,...,M, define the set

U {Xkj + c,}k_] C RN, (64)

where 7R[.] denotes the closed convex hull. The training set T is defined to be "full

rank" if the set r(cl,..., CM) has at least N + 1 extreme points for every choice

of the vectors {cj}. The full rank assumption on T guarantees that the estimated

covariance matrix t given by equation (60) is positive definite.

The following theorem proves that iteration step of the EM method is well de-

fined for GF training. The theorem does not imply global maximum likelihood

convergence of the GF training algorithm.

Theorem If the training set T is full rank, and if the mixing proportions rii 3 0

for all i and j, then Qp has a unique global maximum as a function of the

covariance matrix E and the mean vectors {i,, i = 1,..., Gij = 1,..., M}.

Before proving this theorem, note that the full rank requirement on T is not very

restrictive. For example, if any one class has N + I training samples, and after

arbitrary translation, any N of the translated samples are linearly independent,

then the pooled training set T is full rank. However, the set T can also have full

rank even if none of the individual classes in the pool have full rank. This is an

important consequence of pooling across classes. For instance, if M = N and each

class has two samples, that is, Tj = {X 1,, X 2j}, then the set T is full rank if and

only if the vectors {X~j - X2j},__= span RN. Also, note that class training sets that

contain only one sample do not contribute to the rank of T. Clearly, the geometric

condition on the convex hull embodies many equivalent algebraic statements.
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The following proof of the theorem is in the spirit of Liporace's proof of a similar

result [18, Appendix]. From the definition of QP in (45) and pji(XjAj) in (15),

SM 0j T,
,= , w.,(Xi) [-N log(21) + log JAI - (Xk3 - ,k,)'A(Xkj - uk)].

j=I i=1 k=1 (65)

where A = E'. Parameterizing QP in terms of the precision matrix A, instead of

the covariance matrix E, allows the development of an explicitly negative expression

for the second derivative of QP at a critical point. Let the point A = {A, pj, i =

1,.. . , Gj,j = 1,... ,M) satisfy the necessary conditions (60) and (63) for a critical

point of QP. Expressing A as a convex combination of two arbitrary points A' and

A2 in the domain of QP such that A' 0 A2, Al 96 A and A2 9 A yields

4 = , + (0 - O)P,,'j (66)

and

A=OA'+(1-O)A. (67)

Note that 0 in (66) and (67) is uniquely defined, is independent of the indices i and

j, and satisfies 0 < 0 < 1. Substituting (66) and (67) into (65) and differentiating

twice with respect to 9 yields (after tedious calculation)

R-1 _ G M T+ (68)

892 j=1 i=1 k=1

where

R = = D?1 -D?12
R 2 ODI + (1 - O)DJ (69)

R, =2( - A(, - ,), (70)

R -= p,) A(X- - (1 -)), (71)

D' and D2 are the diagonal entries of UtAIU and U'A 2U respectively, and where U

is a nonsingular matrix diagonalizing A' and A2 simultaneously. Note that R > 0,
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and that R = 0 if and only if A' - A2. (N.B. Had we not reparameterized in terms

of A, this term would be nonpositive). Because the training set T is full rank, A is

positive definite; thus, the term Rj > 0, and R.j = 0 if and only if ju, = p,? for

some i and j. At least one of the terms {R, wij(Xki)Rij} is strictly positive because

A1 #0 A2 and because ;'ij # 0 for all i and j (this implies w!,(Xkj) > 0). The term

Rik does not vanish, but the sum over its indices does vanish; that is,

m 0, T,

M,
FF ,j (X k 3) R,2

j=1i i-=1 k=1i

= E2 4( 4 - ?,.)'A Z, u, (Xki)(Xi - Opl. - (1 -
j=1 --1 k=1

=0. (72)

because of the necessary condition (61) at a critical point (recall the definition of

pq at a critical point from equation (66)). It follows that

a--3 < 0. 
(73)

Hence, a critical point of QP is a local maximum. Since QP has a unique critical

point, all that remains to be shown is that QP attains its maximum. Because the

training set T is full rank, Qp is bounded above. But Qp -+ -oo uniformly as its

defining parameter vector goes to the point at infinity, so the supremum of QP must

be a maximum (i.e., Qp attains its maximum).

To summarize the GF iteration, first note that the mixing proportions { a} may

be computed at the beginning from equation (50):

Tj (74)

Now let A( be available from the previous iteration, and define the weights

rXk) exp [-(xk 3 - /41 ))t(E(R))-(Xj _

( N, exp [-](XA)' _ )(E(n))(XkJ - ,i')) (75)
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The new intercomponent mixing proportions are updated using equation (56):

= E W!n(xkj) (76)
Jk=1

Since wi!7+) = 0 if and only if Nr7) = 0, GF training can not be initialized with any

zero mixing proportions. Specifically, we require that 7r!? 0 0 for all i and j. The

mean vectors are updated using equation (63):

+1) = !)(xj) (77)
AUj - (n

k=1 l Xj

The new covariance matrix is found from equation (60):

1 m G, 2,
- EE ZZZw;(n(Xk,)(Xkj - PI(37 11)(X -(+1) (78)

j=1 i-- k=1

Convergence of the GF algorithm can be tested in two ways. First, Q(A(+')IA(n))

can be computed using equation (43):

M

(+Il = Tog ctj - log ((2,r ("+1)I1I2) (79)
.1=1

Mlogiri 1 
-G ,(X , " , -

+ E Z D!7) (Xkj o 7')' - ( nj ))(E(n+,)-,(X k, +))i
j=1 i=1 k=1

Then Q(A(n+1)IA(,)) can be compared to Q(A(n)IA(n-1)) to determine if the parameter

estimates have stabilized. If the estimates have stabilized, then the algorithm is

terminated. Alternatively, GF training can be terminated if the likelihood function

£(TIA(n)) as a function of n ceases to increase at a sufficient rate.
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Figure 2 Optimum Discriminant Boundary Curve, With Scatter Plot of All Samn-

pie. Superimposed
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Figure 4 Contours of Class #2 Conditional PDF in dB//max, With Scatter Plot

Superimposed
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Figure 5 Contours of Class #3 Conditional PDF in dB//max, With Scatter Plot
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Figure 6 Contours of Decision Risk p(X) for Example #1 in dB//max
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Figure 8 Contours of Decision Risk p(X) for Example #2 in dB//max
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Figure 9 Contours of Decision Assurance 6(X) for Example #2 in dB//max
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Abstract

Optimum Bayesian classification requires knowledge of class
a priori probabilities. Maximum entropy class priors are proposed
here as a natural choice for applications in which the class a priori
probabilities are unavailable and cannot be estimated.
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CLASS PRIORS FOR ENTROPY MAXIMIZATION

INTRODUCTION

The correct scalings of class probability density functions

(PDF's) for optimum classification are the class a priori

probabilities. This note derives "natural" class priors that are

useful in applications in which class a priori probabilities are

unknown. Their utility stems from the natural way in which they scale

class PDF's to accomodate relative variations in PDF support and

peakedness. A theoretical Justification for these priors in terms of

maximum entropy is derived.

PRESENTATION

It is assumed here that class PDF's are estimated from available

class training samples. The differential entropy H(X) of a random

vector variable X defined on R n with continuous PDF p(x) is defined by

H(X) = - J p(x) log p(x) dx. (1)
IRn

The Integral In (1) is the expected value of the function log p(x). If
A(XT a 1 samples of X are given, and from these samples an estimate p(x)

for p(x) has been developed, then the (posterior) sample entropy is

defined here by

T
A
H(X) - - L log (Xk), (2)

k-I

where ix, ... xT) denotes the available samples of X. Note that
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T
A T1/T

exp(- H M P= [k-
A

Thus, exp(- H(X)) is exactly the geometric mean of the numbers {p(xk)).

Suppose that there are m i 1 classes characterized by the random
vector variables X ... Xm  defined on Rn with corresponding

continuous PDF's p1(x) .... p,(x). Given training samples of these
A A

random variables, estimates pI(x), .... pm(x) of the class PDF's are

developed by methods (e.g., Parzen windows) not relevant to the present

discussion. The proposed prior for each class is proportional to the

reciprocal of the geometric mean of the estimated PDF. Let H(Xi )

denote the sample entropy (cf. equation (2)) of XI derived from the

available training samples for X , and let aI denote the proposed prior

for class 1. Then ai is given by

A

exp(H(X ))

A

kal

The denominator in equation (3) normalizes aI so that Z a, = 1.

Intuitively, the priors {I } scale down high peaks of class PDF's whose

support is compact, and scale up the broad plateaus of class PDF's

whose support is widely distributed.

The class prior probabilities (3) can be written in terms of class

entropy powers. The entropy power N(X) of a general random variable X

is defined by

N( exp(2H(X)). (4)
2ire

The entropy power N(X) is the average noise power of a Gaussian random

variable having differential entropy H(X). The prior ai is clearly

proportional to the square root of the sample entropy power N(X I ) of

2
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the i-th class.

Theoretical justification for use of the class priors (3) proceeds

as follows. Let Y denote a memoryless source modeling the class

sampling process. Y is a two step process. The first step selects a

random variable, or class symbol, X from the list (XV . . ... Xm) with

probability a V The second step selects a sample x from the random

variable X selected in the first step. The likelihood of x Is p,(x).

The source Y output is the pair (Xix). An important distinction is

that Y is not equivalent to a source P whose outputs x are selected

from a random vector variable whose PDF is the mixture

m

p(x) = I pi (x).

I=1

The difference between the sources Y and F is that output from Y

contains class label information, while the output from 7 does not.

The differential entropy of 7 is

m

H(Y) - - I I n a I Pi(x) log [aI pi(X) dx. (5)

Equation (5) Is derived by noting that the output symbol (X1 ,x) occurs

with likelihood a, PI(X), so that the differential entropy is the

appropriate sum and integral of this likelihood multiplied by its

logarithm. It follows easily from equation (5) that

m

H()-- a ( (log a, - H(Xi)]. (6)
i-1

We seek a stationary point for H(7) over all 4a 1) satisfying Z = 1.

A straightforward application of Lagrange multipliers shows that the

unique stationary point Is

3
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exp(H(X ))
a (7)m

Iexp(H(X k)

k-i

This stationary point is a maximum for the differential entropy H(Y),

as can be shown by examining the second order derivatives. The priors

(7) are therefore maximum entropy priors for the class sampling process

Y. The priors (3) are sample entropy versions of the maximum entropy

priors (7). The maximum entropy H(Y) corresponding to the priors (7) is

the negative of the logarithm of the denominator of equation (7).

Given independent class training samples, class priors can be

estimated by maximum likelihood (ML) methods. As is easily shown, ML

class a priori probability estimates are proportional to the relative

abundance of the Individual class training samples. ML priors are thus

independent of class PDF structure. Unfortunately, In practice the

class training samples are very often screened in such a way that the

relative abundances of class samples contains no information about

class priors. In such situations, it Is common practice to choose

diffuse class priors, that Is, all class a priori probabilities are set

equal to 1/n. Diffuse priors are thus blind to class training samples

and class PDF structure. The maximum entropy priors proposed here are

a more natural choice than diffuse priors for Bayesian classification

applications because they maximize the entropy of the class selection

process Y. Maximum entropy priors defined by equation (7) depend on

class PDF structure and are independent of relative class training

sample abundance.

4
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MATHEMATICS

Foreword

Complex function approximation by linear combinations of complex valued basis
functions is well understood, both mathematically and numerically, if least squared error is
used to measure the closeness of the approximation. However, the difficulty of the
complex approximation problem is dramatically increased by a change in the error criterion.
Papers [25] - [28] study the problem using the I,, norm error criterion. (The I.. norm is
known by several names, e.g., Chebyshev norm and maximum error.) Only two methods
are currently known for solving general I.,, approximation problems numerically. One
approach is via iteratively reweighted least squares problems, and this approach is studied
theoretically in paper [25].

The other approach to I.. approximation is via semi-infinite programming (SIP), a
specialized variant of cutting plane methods for convex optimization. The SIP approach is
presented in papers [26] - [28]. Application of this work to linear acoustic array
beamforming problems is given in papers [1] - [3]. The provision of magnitude constraints
in the SIP problem formulation also enables its application to active conformal array
beamforming problems in which acoustic effects between the elements (projectors) must be
limited (f, [paper 2, page 31). An application of SIP methods to the solution of systems
of indefinite finite difference equations by polynomial iteration methods is presented in
paper [29].

Papers [30] and [31] describe concertina-like variations in the detailed structure of a
special class of real valued functions (Haar systems) generalizing the Chebyshev
polynomials. These theoretical results support observations made while studying the linear
array problems described in papers [9] and [10]. The remaining papers [32] - [34] also
document results encountered in the course of other investigations.
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ABSTRACT

It is known that the best uniform norm solution of overdetermined complex valued
systems of equations satisfying the Haar condition for matrices is also a best weighted
1. norm solution for each p ; 1, for some weight vector depending on p. This paper
presents an alternative proof of this result which is valid for arbitrary matrices A. The
proof relies on the fundamental theorem of game theory. It is shown that a saddle
point (z*, ,*) of a certain function gives a uniform norm solution, z*, of Az - b and
a weight vector X* of the equivalent weighted l, norm problem. With appropriate
qualifications concerning the weights, it follows that the worst (i.e., largest) possible
weighted least 1,, norm error is also the best (i.e., least) possible Chebyshev error. For
p - 2, it is shown that the weight vector X* solves a nonlinear optimization problem
which can be posed without reference to solution vectors of Az - b. In other words,
the problem of finding the best uniform norm solution of Az - b, when stated as a
convex optimization problem, has a convex dual which for p -2 can be posed
independently of the primal variables z. The dual variables are the weights A.

I. INTRODUCTION

This paper is an investigation of solution of overdetermined systems of

complex linear equations using the uniform, or I, norm. An equivalent
alternative context in which results can be presented and interpreted is
complex function approximation on discrete point sets. It is in the latter

context that Motzkin and Walsh [1, 2] prove that the best uniform norm
solution of an overdetermined real system Ax = b is equivalent to a weighted
least pth power solution for each p > 0, assuming that the matrix A satisfies

*This work was supported by the Office of Naval Research Project RR01407-01 and by the

Independent Research Program of the Naval Underwater Systems Center.

LINEAR ALGEBRA AND ITS APPLICATIONS 64:57-76 (1985) 57
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the Haar condition for matrices. Their results are extended to complex
systems by Lawson 131, who also gives an algorithm for constructing the
weights of equivalent least pth power problems for p > 1. A nice summary of
these results is given in [4, 51.

An alternative proof of the Motzkin-Walsh result for p > 1 is given in this
paper. The proof does not assume the Haar condition and, in fact, is valid for
arbitrary complex matrices A. With appropriate qualifications concerning the
weights, it is also proved that the worst (i.e., largest) possible weighted least
pth power error is also the best (i.e., least) possible uniform error. This result
seems to be new, although it is implicit in the proof of the convergence of
Lawson's algorithm. Lawson, however, does not state it explicitly.

Theorem 1 states that the function 0,, defined by (1), has a saddle point
in a certain domain. All other results follow essentially as corollaries. This
approach is very different from that of Motzkin and Walsh. The proof of
Theorem 1 relies oi a connection between the solutions of overdetermined
systems of equations (or, equivalently, approximation on discrete point sets)
and the fundamental theorem of game theory. This relationship does not seem
to be mentioned elsewhere.

The special case p = 2 is particularly interesting. In Theorem 3 below, it
is shown that the weights for the equivalent least squares problem solve a
nonlinear mathematical programming problem. So far as is known to the
author, these weights have not been previously characterized in quite this
manner. A special subcase is a problem posed by J. J. Sylvester in 1857. It is
discussed in Section IV. Theorem 3 can also be used to prove a result due to
de la Vallee Poussin [6] for real systems and extended to complex systems by
Rivlin and Shapiro [7]. It is discussed in Section V.

Motzkin and Walsh prove their function approximation results on the
interval [0, 13 as well as on discrete point sets. It is therefore likely that greater
generality is possible in our Theorem 1 which permits its application to
systems having an infinite number of equations in a finite number of
unknowns. For the purposes of this paper, however, Theorem 1 in its present
form is satisfactory.

The Motzkin-Walsh results do not give insight into how the correct
weights for the equivalent least pth power problem might be constructed.
Lawson's original algorithm is apparently the only one currently available,
and its convergence proof assumes the Haar condition for A. The algorithm
requires the solution of a sequence of weighted least pth power problems,
updating the weights at each step of the sequence. The correct weights are
obtained in the limit. The special case p = 2 is of the greatest computational
interest, since least square problems are easily solved. The major drawback to
Lawson's algorithm is that convergence can be, and often is, very slow in
practice [8].
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Alternatives to Lawson's algorithm can be based on Theorems 1 and 2. In
other words, general algorithms for computing a saddle point of a given
continuous function can be applied to the problem at hand, i.e., to p, below.
In particular, such algorithms would be applicable to the case p = 1 which
Lawson's algorithm does not treat. Conversely, since the Lawson algorithm
can now be interpreted as a procedure for computing a saddle point of p, for
p > 1, it would be interesting to know whether or not Lawson's algorithm
constitutes a special case of an existing algorithm for computing saddle points.
If not, perhaps it can be extended to construct saddle points of more general
functions.

II. THE THEOREMS

Let the complex matrix A = [a,] e Cm " and the vector b = (b,)E C"'
be given. Let 1 < p < oo. Define op: C" X R' - R by

op(z, I lI b,p- a,,,,

where z=(z,)eC" and A=(X,) ER"'. Define A= {ER"':X>0 and
X I + " " - + A m = 1). Note that A is convex. A point (z*, A*) is defined to be
a saddle point of p on C" x A if (Z)*, X*) E Cn × A and

o(z*, X) < 'P,( -*, XA) < 'p%(z, X*).

The central result is the following theorem. Its proof relies on the fundamen-
tal theorem of game theory and is postponed to Section III.

THEOREM 1. For every matrix A 4 Cm "' and vector b r C', the func-
tion p has a saddle point on the set C" x A.

No assertion of uniqueness of the saddle point is made by Theorem 1.
Sufficient conditions for uniqueness are not pursued in this paper.

It should be noted that Theorem 1 is valid for all n > 1 and m > 1.
Define the uniform norm 11 11 of any vector in Cm to be the maximum

modulus of its components. A Chebyshev solution of the system of equations
Az = b is any vector z * for which

11b - Az*11. = min 11b - Azjj.. (2)
z C C"
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A weighted least pth power solution of Az = b is any vector z * for which

%(z*, A)= min°%(z, A), (3)

where A is the given set of nonnegative weights. The next theorem connects

Chebyshev solutions and weighted least pth power solutions.

THEOBEM2. Let (z*,X*)EC"x A beasaddle point for %, 1< p <oc.
Then

(i) z* is a Chebyshev solution of Az - b;
(ii) z* is a weighted least p th power solution of Az = b for the weight

vector A*.

Furthermore, the saddle value %o,(z *, X*) is the error of the Chebyshev

solution, i.e., *0(z*, \*) = lib - Az*Il,.

Proof. By a well-known result [14, Theorem 3.15], %o has a saddle point
(z*, A*) on C" X A if and only if

max min %( z, A )=p( z*, X*)- min max (z,A (4)A eC)r."

Let the largest of the m quantities Ibi - Ea ,z occur foir, say, i = k (depend-
ing of course on z). Then

m"xP(zA)i= bk- akjz j
1 '

as can be seen by taking A k = 1 and A = 0 for i 0 k. Equivalently,

max (z, A) Jlib - AzlIj.

Consequently,

0%(z *, A*) = min max %(z,A)= A min jib- AzL,
z r=C"Ae A z e C"

and z* is a Chebyshev solution of Az = b. The saddle value (z *, ,*) is the
Chebyshev error. Next note that

max min 4(zA)= min %p(z, X*), (5)
Xe A zcC" z eC'
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and so z * is a weighted least pth power solution of Az = b for the weight
vector A*. This completes the proof. U

COROLLARY 1. Define, for all X E A,

min O(z, A). (6)=C

Then, under the conditions of Theorem 2,

1,(A) < 0p(X,*) = lib - Az *1l..

Proof Immediate from (5). U

Another way to say this is as follows. The error of a weighted least pth
power solution of the system Az = b is 4Op(A), and this error is maximized
over allowed weights X E A for X*. Furthermore, the maximum of such an
error equals the minimum of the Chebyshev error of Az = b.

COROLLARY 2. The vector b is a linear combination of the columns of the
matrix A if and only if the saddle value of qSP is zero.

Proof. Let (z *, *) be a saddle point of o. If 0(z*, A*) = jib - Az*ll,
= 0, then b = Az*. Conversely, if b = Az for some z e C", then OPf(A)= 0
for all X, so that max 4P(A) = 0 = pp(z*, A*). E

The vectors z * and X* are defined jointly via the saddle point property of
-o . Theorem 2 shows that z* also solves an optimization problem that does
not require knowledge of N*; that is, z* is a Chebyshev solution of Az = b.
In many cases this property alone will uniquely determine z*. Theorem 3
below will show that an analogous situation exists with regard to X* for the
special case p - 2. The distinction of the case p = 2 is a consequence of the
fact that 4k(A), as defined by (6), can be expressed explicitly in terms of A
alone. For other values of p, use of an implicit function theorem seems to be
necessary.

Define the complex matrix L(X)= [L,,()] ,E CX n by

L(A) = A~diag(A) A, (7)

where AH is the conjugate transpose of A, and diag(A) is the m X m diagonal
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matrix whose main diagonal consists of the components of A. Thus,

L 1(A) = AJ,,a,,, v, j ..... n. (8)
i-I

The complex matrix M(X)r C(n +1x (n I is defined by bordering L(X):

[L(X) ~A
M(X) () = - () (9)

where P(X)= (ft(X)) E Cn is given by

,()= X,,a,,, j= . n, (10)
3-I

and a(X) r R is given by

a(X)= Xb,.ll

i-I

Note that both L(X) and M(\) are Hermitian matrices.
The matrix A = C" ×"

n with m > n is said to satisfy the Haar condition for
matrices if and only if every collection of n rows of A has rank n.

THEOREM 3. Let m > n, and let A satisfy the Haar condition for
matrices.Let (z*, X*) be a saddle point of 02 (z,A ) on Cn x A with saddle
value 02(z*, X*)> 0. Then

min lib - AzjI. = lib - Az*ll. (12)

= 02(Z* )(13)

L detM(X*) ]1/2
det L(,*) (14)

[ det M(\) 11/2,max -- --
AI [ det L(X) (

where the maximum (15) is taken over A E A with det L(\)* 0.
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Proof. Both (12) and (13) follow from Theorems I and 2, so it is
necessary to prove only (14) and (15). The definition (6) for p = 2 is

() mMin EA,- _,a,z, (16)

By Corollary 1,

max ap 2(\). (17)
A e A

Since the saddle value is positive, we restrict attention throughout the
remainder of this proof to those vectors A for which 02(\) > 0. (By Corollary
2, the vector b is linearly independent of the columns of A.) Since A satisfies
the Haar condition for matrices, it follows that X has n + 1 or more positive
components, for otherwise it is easy to see from (16) that 02(XA) = 0. Conse-
quently, the Hermitian form of L(,A),

:HL(A.)z = zAHdiag(A) Azf "ix, a, 1 2

must be positive for nonzero vectors z. Hence, det L(X) * 0, and the normal
equations

L(A)z = [AHdiag()A]b=#(X) (18)

are nonsingular. It is convenient within the confines of this proof to define the
auxiliary symbols

z.+=-- -1 , = .... n. (19)

Rewriting the normal equations

n in m

E Xd,,a,,z, = Y_ b , =l..... n, (20)
j-li-I i-I

and using the symbols (19) gives

n+1 M

E E , =,,a,,z P= 1....n. (21)
j--3i-I
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Now, from (16), for any z satisfying the normal equations,

m n 2

in nl+l
= N , - a,,-,

i-I +-1 1

pri n+1 n+1

Reversing the order of the triple sum gives

n+I n+1 I

2(\) = ;,_F ~~,Z
-I j-1 a-I

n + I ii,=A A , n a, ,. , 1, 1 ( 22 )

where, in the last equation, (21) was used to set to zero the double sum for the
cases = 1....n, and for P=n + 1 the value z,, 41 = -1 was substituted.
Rewriting (22) without the symbols (19) gives

n In m

2i(\)+EXAua 1 = AXbjb, (23)

Thus (20) and (23) constitute n + 1 equations in the n + 1 unknowns z, and
02(A). This system can be written[L(A) :0 Jl [)= () 1

The coefficient matrix clearly has rank n + 1 and so is nonsingular. Solving for
02(A) using Cramer's rule gives

2(,\ det M(X) (4)
Q ()L)-- det L(A) "

Substituting (24) for 2 in (17) concludes the proof. U
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If the Haar condition hypothesis on A in Theorem 3 is replaced by
rank A = n, then the result (15) does not hold in general, because det L(,*)

can vanish at a saddle point (z *, A*) for 12. Consider the following example.
Let m = n + 1. Let the first n rows of A be the identity matrix, and let the
mth row of A be identically 0. Let b, ... =b.=0 and b,.=y>0. One
saddle point (z*, A*) of 02 is . z: = 0 and A .=0,
,\* = 1. The saddle value 02(z*, X*) y > 0, but the n X n matrix L(A*)
contains only zero entries and det L( \*) =0. Note that X* is unique in this

example.
The determinants in (24) are actually Gram determinants for the indefi-

nite inner product on C m defined by

m

(u, v)= xiAui3 for X > 0.
i-I

For a definition of Gram determinants, their properties, and a nearly equiva-
lent derivation of (24), see [9, pp. 176-187].

III. PROOF OF THEOREM 1

The proof applies the fundamental theorem of game theory to the
function 0,,. The variant of the fundamental theorem that is utilized is stated
for functions defined on Cartesian products of convex subsets of real Euclidean

spaces. Although # is defined on C" x A, by an obvious device it can be
thought of as being defined on R 2 " x A instead, without suffering any loss of
generality in what follows. The complex notation is retained for ease of

exposition.
The function #, is continuous in both variables and, as the next lemma

shows, it is a convex function in its first variable and a concave function in its

second variable.

LnsmA 1. For 1 e p < oo, the function op is convex-concave on C" X A;
thatis, for a+,3 -1, a0, 13)0,

S,(az +flw, X) a#,(z, A)+ flop(w, A),

#"(:, aX+P0 ? a ,(Z , A ) + /,,( =, -),

where z and w are elements of C", and A and y are elements of A.
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Proof. Let t,=b,-Eaoz j and sfib,=-Fa,,w,. Then

b, - a ij~azj + owl) = at, + psi.
I

From the definition of #,,

#(az + wA, A) = ( ,A'P(at. + Psi) '

= a M(., X)+p,(w, A),

which proves that ,, is a convex function in its first argument for each A. To
prove that #,, is a concave function in its second argument, fix z and let
Q -\=#,(z, X) and Q.,= #(z,y). The case p---I is obvious, so assume
I< p < oo and let q satisfy l/p + 1/q = 1. Then

a-op( z, A ) + Pl~( z, y ) = aQx +4 PlQ.,

= )(TO 9), + ( P 'oQ){ 1/'

x (-'/')' + (zIt.Io }' lp

= 0 +,O P "t

i-I

#,(z, aX + fly).

This completes the proof of the lemma.

The following theorem is due to H. Kneser (10]. See also (11, pp. 8-131.
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THEORE M 4. Let E C R' and F c R" be convex sets. Let the function
f: E x F -* R be convex on E for each fixed y ( F and concave on F for each
fixed x C E. If one of the sets E and F is compact, and if the function f is
continuous in the corresponding variable, then

sup inf f(x, y) = inf sup f(x, y).
EzeE. zEVEF

Applying Kneser's theorem to op gives

sup inl "(z, A)= inf sup'0P(z, ).
A4A -CC" -e C" A EA

Now, by a standard argument, for each A the infimum

inf *0(z,A)
e C~

is attained for some z. Furthermore, the resulting function of A is continuous
on the compact set A and so attains its supremum. Thus, the supinf can be
replaced by max min. Similarly, for each z, the supremum

sup 40(z, A)
A A

is attained for some A, since ip is continuous on the compact set A. By a
standard argument, the resulting function of z attains its infimum. Hence,

max min io(z,X) - min maxO0(z,X). (25)
A rAzcC" -eC "AeA

The existence of a saddle point follows immediately. Choose A* such that

min ,(z,\*) =max min (z,X).

'r C" AAzC

Choose z such that

max0(z*,X) =min max 0(z,A).
A r. A:zeC"AeA

Then

) p(z*, \*) for all ZeCn

and

0,(z*,A) < p(z*,A) for all AeA.
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The last two inequalities, by definition, show that (z*, A* ) is a saddle point of
op. This completes the proof of Theorem 1.

IV. SYLVESTER'S PROBLEM

It is worthwhile observing the form (15) takes in the special case of
finding the best complex constant to fit given complex data. Specifically, find
z * e C such that

max Ib,-z*l=min max Ib,--I. (26)14 i Cmo z C=C 1 i ';M

This problem is equivalent to a problem posed by J. J. Sylvester in 1857, i.e.,
given m points in the plane, find the smallest circle containing them all. The
center of the smallest circle is the constant z*, and the radius is the min max
in (26). In this case, the matrix L(A)= [A I + + A,, = is the I l I
identity matrix, and M(A) is the 2 x 2 matrix

no

E X ,l ,, . X ilb ,l 2

oi-1 i-I

Hence, from (15), we need to compute

max( i ,I2 - .2 lXb 1  (27)
A A i-I lI

The problem (27) is equivalent to the quadratic program:

QP. min rG\ - cr
A C= R"

subject to X >0 and XI+ +A. =1,

where the real matrix G E Rn on is given by G - Re(bbH) = (Re b XRe b)T+
(Im bX Im b)T, and the components of the real vector c = (c,)C Ron are given
by c, = 1b, I2. It is easy to see that G is a positive semidefinite matrix of rank at
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most 2. The objective function of QP is thus convex, and any locally optimal
solution A* of QP is a global solution. It then follows from the normal
equations (18) that the best constant is given by

m

*= A *b. (28)
i-1

The maximum in (27) is positive when m > 1 and at least two of the data
points b, are distinct. To see that (27) is nonnegative, simply note that

rn 22 2

,< I'/\b,12  IXM/21
i-I i -

m

= .IXb, I2.
i-I

The second inequality is strict under the conditions cited, so the maximum is
positive.

Discussion of the history of Sylvester's problem, together with an efficient
computational algorithm for its solution, is given in [12]. The algorithm given
there solves the natural extension of Sylvester's problem to data points given
in higher dimensional Euclidean spaces.

It is curious that a simple alteration of the problem substantially alters the
difficulty of its solution. Instead of (26), consider

nmax ]b,-az*l=min max Ib,-a,zl (29)

for a = (a )r C' given. The matrix L(X,) is

L(X)= IX,Ial2+ +,Xmam12 C1 x1,

and the matrix M(X) is

m InF-. X~la, 2 . XAijb,

i-I i-I C 2
X2.M(A) m m

X Xai,, X Ib, 12

t-I i-I
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Clearly, computing the maximum of det M( A )/det L( \) is not simply equiva-
lent to a quadratic program in this case. (Computationally, however, it may
be solvable by parametric quadratic programming methods.) Given a solution
vector X*, then

m

EX idb,

z. _,- (30)

SX*I a,I'
i-I

is a solution of (29), as can be seen from the normal equations (18).
When all the given data points b, are real, the problem (26) has a trivial

solution. Let r and s be indices for which min b, and max b, occur,
respectively. The best constant z* in (26) is real and z* = (b + b,)/2.
Considering (28), it is evident that a solution of (27) is X*, = *, = 2 with all
other X*, = 0. The maximum in (27) is thus equal to Ib - b,1/2, a fact not
immediately apparent from (27) itself.

V. NEW PROOF OF DE LA VALLEE POUSSIN'S THEOREM

Let A f C I"  ) Xn, and let A, denote the n X n matrix obtained from A
by deleting the ith row, i = 1. n + 1. De la Vaflee Poussin [6] proves the
following result for real systems. Rivlin and Shapiro [7, pp. 692-694] show
that it holds for complex systems also.

THEOREM 5. Let A C C(" + I)xn satisfy the Haar condition for matrices,
and let bGC "+ . Then

1(' - b, det A,
min 11b -Azl. "n+1

F, Idet AI
-I

We use Theorem 3 above to derive (31). The procedure is to solve the
maximum problem (15) explicitly for X* and, from A*, deduce (31). As a side
benefit, once X* is known, the Chebysbev solution vector z* can be
constructed numerically by solving the A* weighted least squares problem. In
principle, this is equivalent to solving the normal equations (18) with A = X*.
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In contrast to the proof based on Theorem 3, the original proof of (31)
proceeds by minimizing the number Q = lb - Azl[], directly. It turns out
that this can be done relatively easily and in such a way that the Chebyshev
solution z* can be constructed. Thus, the original proof and the proof based
on Theorem 3 solve the "primal" and the "dual" problems, respectively.

We first establish a general algebraic identity concerning determinants.
Special cases of this identity will be used in the solution of (15).

LEMMA 2. Fori= ._ m, let AIEC, xEiC", and y,EC". Then, for
m > n > 1,

)det( Y ,iXiyJT)

= h, (,) det[x ,( ... x1 .f )]det[y,(, ,..... i,,,]. (32)

where [xx( , (.... xj.)] and [y,(,) ., y,(.)] denote the n X n matrices whose
t-th columns are x,(,) and Y,,,), respectively, t = 1. n, and the sum is over
all indices i(1)i.(n) such that 1 '< i(1)< i(2)< ... < i(n)< n. For n >
m > 1, the determinant of the left hand side of (32) is identically zero.

Proof. Let X E Cnxm and Y E C"' denote the matrices whose tth
columns are Xtx t and yt, respectively, t = 1 .... m. Then

det( EXix1 T) = det(XY)

The Binet-Cauchy formula [13, pp. 8-10] for the determinant of the product
of two rectangular matrices has two cases. For n > m > 1, it states that
det(XY T)= 0. For m > n > 1, in the present notation, it gives det(XY T)=y~).., yT,)] u
Edet[Ah( 1)r 1)..... X.)x.(fi)]det[y. (n)] with the sum ranging over
all indices with 1 < i(1)< i(2)< ... < i(n)< m. The identity (32) follows
immediately by factoring X,(t) out of column t in the first determinant, and
noting that the determinant of a matrix and its transpose are equal. This
concludes the proof. U

If yj = f, for all i, then

det A -- H 1 .,)Idet[x,,. , 2. (33)
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It is an important fact, implicitly used in the next lemma, that the coefficient
of each product A,,,)... A,, in (33) is nonnegative. Note also that (33) is
nonnegative when all A, > 0.

LEMMA 3. Letn >_l. Fori n+... ,n+, letX, (R, x0 C",y, e C"+1.
If every subset of n of the vectors x X. xn. 1 is linearly independent, then
the ratio

det (34)
det Xixixi

attains its maximum over all A - A for which the denominator is nonzero. A
maximizing vector is

A* det S, I
, = det i = L...i . n + 1, (35)

Idet S,I
t-I

where S, denotes the n x n matrix [x1 . ,..x,_ix +1 , ... ,x,+ 1], i . n
+ 1. The maximum value of (34) is

Idet[yi,..... Yn,+1Ie ). (36)

The vector A* is unique if and only ifdet[y, ... ,Yn+j] 0.

Proof. From (33), since each x, e C" and m = n + 1, then

det x Axjx IX, IdetS'I, (37)

where S, is as in the lemma statement. Because the vectors { x,, i 1. n,
i * t } are linearly independent, det S, 0 0. Consequently, the vector A* given
by (35) is a well-defined element of A, and the determinant (37) does not

-382-

• t6 i H



OVERDETERMINED COMPLEX EQUATIONS 73

vanish for A - X* . From (33), since each y, e C" and in = n + 1, then

det iE X,y'y1  A1 ) , Idet[y, .... y., 1J 2. (38)

If det[y 1 ... , y, ] vanishes then A* may as well be selected as the maximiz-

ing vector. Suppose now that det[y 1 . .. Y. +] * 0. The maximum ratio of the
determinants in (34) is therefore positive. Hence, from (38), we may restrict
attention to vectors A > 0. The ratio (34) can now be written as
Idet[l...,y. .+ ]I2/f(A), where

I det S,

Maximizing the ratio is equivalent to minimizing f( A) subject to X E A. A

minimizing vector is necessarily positive in this case, so we form the

Lagrangian

.Y(X, a) = f(X)+X + .+ +,.- )

Stationary points of £ satisfy

a A2 +ea=O, tSI ...n+1,

a
-. (A, a) =A + +.-- + I -1 =0.

These equations imply that a > 0, that

Idet S, 1

that V f=IdetS 1 I+ +IdetS,.+.1 l, and that A*, is the only stationary
point. It is obvious from the definition of f(X) that this stationary point is a
minimizing point for f. The minimum value of f is

n +l 'IdetS, 1 i2detS, 12

E -- =t--I X., f-1 I det S, I/ vr-
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so the maximum value of the ratio of determinants is as claimed. This
completes the proof. a

The proof of de la Valle Poussin's result (31) is now easy. From (7) and
(8), since A ( C(n+l)X, the matrix

n+1

L(\)= E XRHR , Cnxn,
i-I

where R i denotes the ith row of the matrix A. Similarly, from (9)-(11),

n+1M(,) ?R OEc '"+ I)X' "" 1),
i-I

where i, denotes the ith row of the augmented matrix [A b] e C " 1)X(n+.

From Lemma 3,

det M(A) 1/2 Idet ', -+ 1  (39)

E Idet[RH,.... ~i, RH + . +

Since the determinant of the conjugate transpose of a matrix is the conjugate
of its determinant, we have

Idet[R H.... R+] idet.A.,

where A, is defined as in (31). Expanding det[RAH'.AH+1J=det[A b]
along its last column shows that the right hand side of (39) is identically the
right hand side of (31). That the left hand sides are also equal follows from
Theorem 3.

The unique A* ( A for which the maximum (39) occurs is

= Idet AJi i n +l.

Y, Idet A,I
t-I

Consequently, the Chebyshev solution z* of Az = b is the (unique) solution
of the X weighted least squares problem for Az = b.
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VI. CONCLUDING REMARKS

The general Chebyshev problem (2) can be posed as a convex optimiza-
tion problem in the following way.

PROBLEM. Minimize

{e:e(R, zeC")

subject to

12
b a 1 z1  e, i= . .

Its convex dual can be developed in a manner similar to, but more general
than, that pursued in [12] for Sylvester's problem. This approach is based on
Wolfe's dual and the Kuhn-Tucker conditions. It yields Theorem 3 after
somewhat tedious, but insightful, algebraic manipulations. In particular, the
gradient equation of the Kuhn-Tucker conditions turns out to be the system of
normal equations of the weighted least squares problem.

Theorem 2 can be extended to "weighted Chebyshev" solutions of
Az = b. Let w = (w,) i R"' be any nonnegative vector, and define

l(Z, A; W) =-- I A b - a , p >

The proof of Theorem 1 can be trivially modified to show that -A(z,A; w) has
a saddle point (z*, Aw) on C" x A for every nonnegative weight vector w.
Consequently, as in the proof of Theorem 2, z is a w weighted Chebyshev
solution of Az=b and also a A weighted least pth power solution of
Az =b. Further generalization of Theorem 2 to nonlinear systems may be
possible by replacing, in the definition (1) of op, the functions f(z)= tb, -
EaZl with more general real valued convex functions of z.

REFERENCES

I T. S. Motzkin and J. L. Walsh, Polynomials of best approximation on an interval,
Proc. Nat. Acad. Sci. U.S.A. 45:1523-1528 (1959).

-385-



76 ROY L. STREIT

2 T. S. Motzkin and J. L. Walsh, Polynomials of best approximation on a real finite
point set I, Trans. Amer. Math. Soc. 91:231-245 (1959).

3 C. L. Lawson, Contributions to the theory of linear least maximum approxima-
tions, Ph.D. Thesis, UCLA, 1961.

4 J. R. Rice, The Approximation of Functions, Vol. 2, Addison-Wesley, 1969.
5 J. R. Rice and K. H. Usow, The Lawson algorithm and extensions, Math. Comp.

22:118-127 (1968).
6 C. J. de la Vallee Poussin, Sur la mithode de |'approximation minimum, Ann.

Soc. Sci. Bruxelles, Seconde Partie, Memoires 35:1-16 (1911).
7 T. J. Rivlin and H. S. Shapiro, A unified approach to certain problems of

approximation and minimization, 1. Soc. Indust. Appl. Math. 9:670-699 (1961).
8 A. K. Cline, Rate of convergence of Lawson's algorithm, Math. Camp. 26:167-176

(1972).
9 P. J. Davis, Interpolation and Approximation, Dover, 1975.

10 H. Kneser. Sur un th6orime fondamental de la theorie des jeux, C. R. Acad. Sci.
Paris 234:2418-2420 (1952).

11 E. G. Gol'stein, Theory of Convex Programming, Translations of Mathematical
Monographs, Vol. 36, Amer. Math. Soc., Providence, R.I., 1972.

12 D. J. Elzinga and D. W. Hearn, The minimal covering sphere problem, Manage-
ment Sci. 19:96-104 (1972).

13 F. R. Cantmacher, The Theory of Matrices, Vol. I, Chelsea, 1960.
14 M. Avriel, Nonlinear Programming, Prentice-Hall, 1976.

Received 17 August 1983; revised 6 March 1984

-386-



A Note On The Semi-Infinite Programming Approach
To Complex Approximation

R. L. Streit and A. H. Nuttall

-387-



%()I tt h 5 41 it M ! It It,-'

APIK I' I. ,

A Note on the Semi-Infinite Programming
Approach to Complex Approximation

B) Roy L. Streit and Albert H. Nuttall

Abtract Several observations are made about a recently proposed semi-infinite programming
(SIP) method for computation of linear Chebs.,,he approximations to complcx-valued func-
tion.s. A particular discretization of the SIP problem is shown to be equivalent to replacing the
usual absolute value of a complex number with related estimates, resulting in a class of
quasi-norms on the complex number field C. and consequently a class of quasi-norms on the

space ((Q) consisting of all continuous functions defined on Q C C. Q compact. These
quam-norms on (( Q I are estimate, of the I, norm on 0tQ) and are useful because the best
approimation problem in each quasi-norm can be solved by solving i) an ordinar% linear
program if Q i, finite or (II) a simplified SIP if Q is not finite

Glashoff and Roleff [1] solve a semi-infinite program (SIP) which is shown to be
equivalent to the linear approximation problem for functions in C(Q). where C(Q)
is the space of complex-valued continuous functions on a compact (and not

necessaril, finite) subset Q of the complex plane C and is equipped with the uniform
norm

Their method is a two-step procedure: the first step applies the usual simplex
method of linear programming to solve a discrete approximation of the SIP: the
second step uses the end result of the first step as the initial starting point in a
Newton-Raphson iteration to solve a certain system of nonlinear algebraic equations
whose solution (if feasible) is a solution to the linear approximation problem
(Problem I below). The purpose of this note is to make some observations about the
linear program of their discrete first step. which closely connects its solution with the
solution of the approximation problem. A knowledge of the SIP definition and
solution method is not needed to understand the results presented here. The
interested reader is referred to [1]. [2]. [3]. and to their bibliographies. We point out

that Theorems I and 2 were first proved in [4). where a method identical to the first
step of Glashoff-Rolefrs procedure for finite Q was discovered independently of

knowledge of 11 and of semi-infinite programming. Readers interested in practical
examples and an engineering application of linear complex approximation are also
referred to 141.

Receivcd Februars 24. 1982.
19)(O Muiicti.-t, Suhcct (lasi iliaion. Primarn 651)15. 65E05. 65K05: Secondary 30C30. 41A50.
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Let h (z). h(:) and f(z) be given functions in C(Q). For any set of complex
parameters a = {a. . a,}, define

(2) L(a; z) = akhk(z).
k=1

Problem 1. Compute a set of complex parameters a* (a a:) such that, for
all parameter sets a,
(3) 11 f- L(a*" z)11 11 fI - L(a; -:)11 .

We set
(4) E,,(f 11 f i- L(a*; :)I(..

Let p ;1 2 be a positive integer. Define the angles

O= ir(j-)/p j .2....,2p,

and let S = {j. Define, for any complex number z.

(5)z 1 :1 k max {Re(:)cos 0 +lm(z)sin0}.
I J< 2

p

It may be readily verified that:
(i) Izp 0 and Iz z 1 = 0if and only if: = 0.

(ii) I z + w < I z" p + I ,w p for all complex : and w.
(iii) Given a complex. I a: lp I a I I 1,, for all : if and only if arg a E S.
(iv) For a and a. complex. I -: 1p , I: I lim 0 o Io a,: 1 = 0. and lim ,:.,o I a:,, I"
0.
Thus Iz 1. is not a norm on C because (iii) is not sufficiently strong- however, it is

a quasi-norm because of (i), (ii), and (iv). See [5, pp. 30-32). From the well-known
identity

(6) max {Re(z)cos0+Im(z)sin0},
0<0<2w

it follows that I z p < z I. In addition it can be shown that
z7 1,,p -1i; Iz z1.sec( -I-), p > 2,

for all complex z. To see (7), it is helpful to visualize the set of all z in C such that
I z lp = I as an equilateral polygon of 2 p sides whose inscribed circle is the unit circle
I1z= '.

It is easy to verify that

(8) IIli --=max f(z),,
zEQ

is a quasi-norm on C(Q) for each integer p ;- 2. Further, from (7),
(9)Ilflp~lfl~llllsec (p ! ).

We now define a new (partially) discretized version of Problem I.
Problem 2. Fixp -- 2. Compute a set of complex parametersa {a

such that, for all parameter sets a,

(lO) 1f/- L(a**; z)lP < 1f/- L(a; z)ll.
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We set
( 1) Enp, ) = 1 Lf - L (a**:".lp

THEOREM i. EP(f ) < E,((f E.,(f )sec(C, ).

Proof. We have
E,,,(f) 11 fl - L(a*; :)11lP < 11 f- L(a**; :)11ip < 11f - L(a*; :)l11 E,,(f)

1lif- L(a**" :)1 1 f Il- L(a**.:)ll sec(; - E,,p(f)sec( .

THEOREM 2. E,(f) 1 Ilf- L(a**; :)11, < E,,(f)sec(lr.

Proof.

E.(f) = If- L(a*" )l1 1 If- L(a**: )11, if- L(a**: :)l1sec -1

COROLLARY ]. En,,(f) 1 If - L(a** :-)II1 < E,,(f )sec(2P).

COROLLARY 2. For each p >- 2. E,,( f) 0 if and onlv if Er,,( f) 0.

COROLLARY 3. If E,((f 0.

0 <1f- L(a"; :)l1, - E,(f) +0 _ 4 I 0

(12) 0 E.(f) p p

and the upper bound is independent of the compact set Q. n. f, and the functions
h..... h,.

Proof. The indicated ratio is bounded above by the constant - I + sec( :'4.
It is not necessary that the domain of approximation Q be a subset of the complex

plane C. All that is required is that land h. h. be defined on a common domain
Q and that a solution to Problem I exists.

If the point set Q is not finite, then both Problems I and 2 can be readily
transformed into linear SIP's with linear objective functions and infinitely many
linear constraints and then can be solved in the manner of Glashoff and Roleff [1].
The difference is that, for Problem 1, there is one constraint for each element of the
Cartesian product S X Q, where S-= (71 in C: 171 = I); whereas for Problem 2,
there is only one constraint for each element of S. x Q, where S. ={-(q in C:
174 = i). It can happen in certain applications that the bounds proved above show
that Problem 2 is adequate for some fixed p a 2. The numerical solution procedures
of Glashoff and Roleff may then be appropriately, and potentially signifi,.antly,
simplified.

On the other hand, if Q is finite, Problem 2 becomes an ordinary linear program,
although Problem I remains an SIP. The finite Q case is precisely the first step of
the Glashoff and Roleff method for solving Problem I. It is not hard to see that, for
Q = (z,....z.) C C, Problem 2 may be reformulated as solving an overdetermined
system of mp real linear algebraic equations in 2n real unknowns in the usual
Chebyshev (I.) norm. Full details for setting up the linear equations can be found in
[4]. (This formulation works for any choice of T =- {6k ) provided only that 8k E T if
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and only if Ok + r E- T.) This real system may be written in the following block-par-
titioned form:

R Cos 0, + S sin 0, R sin 0, - S Co , 1 4Cos , [4- - vSill 1

SRcosO 2 + Ssin0 2  Rsin0, - ScosO, icos0, + r sin0,

(13) :-

Rcos + Ssin, R sin 0- S cos 0 u cos 0, + 1, sin 0

where we define

.v = I Re( a.)] G R " ," Im(,,,) C R".

u = [re(!( zk ) R", v, I[hn(/(,)) E R"

and tlae two m X n matrices

R = rj =[Re(h(z,))J S[I (:,)).

Computer CPU time and storage requirements may present severe practical limita-
tions on the numerical solution of (13) in certain problems of genuine interest. See
Streit and Nuttall 141 for an antenna array example with i = 44. p = 8, and
mI = 501 which required 1262 simplex iterations and 179 minutes on the DEC VAX
11/780 to solve (13) using the general purpose algorithm 16]. If. however, the special
structure of (13) is exploited, very significant reductions in both time and storage
requirements are possible, see 17].

At least two situations might arise where the effective use of tie structure of (13)
in its solution would be important. First. the Glashoff-Roleff method for any given
Q requires the solution (by Newton-Raphson or any other workable iterative
method) of a nonlinear system of algebraic equations. If the initial point is not
sufficiently good, then this procedure either does not converge or it converges to a
nonfeasible (hence, incorrect) point. Since initial points are constructed by solving
(13). it is conceivable that very large systems may have to he solved (even for small
n) to get a sufficiently good initial point. The other reason for studying the special
structure of (13) is simply that n may be very large to begin with. In the kind of
applications mentioned in 141, it would not be at all unreasonable to find n ; 100.
Even for small p. the system (13) is then very large. Either case presents an
interesting problem with a large 100% dense linear program having special structure,
instead of the more typical situation of a large sparse linear program having
relatively little special structure other than sparsity.

Solving the overdetermined system (13). while requiring nonnegative residuals, can
have interesting geometrical interpretations. For example. take p = 2 so that 0, = 0
and 02 = wr/2. Thus, the 2m components of the residual vector of (13) are precisely
the real and imaginary parts of the complex error e(z) = f(z) - L(a: :) evaluated
at all m data points. Requiring nonnegative residuals means that we have forced the
error curve e(z) to lie entirely in the first quadrant of the complex plane. Further-
more, it is easy to see that we may force e(z) to lie in any convex wedge-shaped
sector "IlV of the complex plane by making appropriate alternative choices of the two
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angles 0 and 0,. Further exploration of this idea shows that upper and lower bounds
for the error .( f ) defined by

W.(/) minn max If(z) - L(a; :)1I
aEC" :EQ

subject to:f(:) - L(a; z) E 'd1,: E Q,

can be obtained in terms of W.p( f ) defined by
W.(f) min max Jf(z ) - L(a-. z)l

aEC" :EQ

subject to:f(z) - L(a; z) E 'Y, z E Q.

This technique requires an appropriately modified set of angles 0,,. .-02p. A
solution of W,( f ) can then be found numerically by computing the 1. solution of
an overdetermined system of the form (13) with the additional requirement of
nonnegative residuals.

LEMMA. Let Q be finite. The 2n columns of the coefficient matrix in (13) are linearly
dependent (over the real number field) if and onlv if the n functions { h1 . h are
linearly dependent on Q (over the complex number field).

Proof. There exist complex numbers aj = x, + ivl. I < k < n. not all zero.
satisfying III a, hAi = 0 if and only if III, a hAl, = 0. This latter equation is
true if and only if

max Re( ajh(z)) +ilm( ah,(z)) =0.
:EQ1 /= / 1p

which holds if and only if, for each z, E Q and 0, E Sp (I <j p),

( X.x&Rehk(:,) - y.lmh&(z,))cos ,k=1

+ ( xklmhk(,)+y..eh(zi,))59sin, =0.

Rearranging and using the notation of (13) gives

(RcosO. + SsinO,)x + (Rsin - Scos)y= j ..

which means that the columns of the coefficient matrix in (13) are linearly depen-
dent. This completes the proof.

THEOREM 3. Let Q contain m < 2n distinct points, let the functions {h .... h } be
linearly independent on Q, and let a** satisfy (10) where p ; 2. Then

(14) If- L(a**, z)ll, = E.,(f)sec .-

Proof. If f is linearly dependent on h. . h,, then E,(f) = 0 and. from Corollary
2, E,,p(f) = 0 and (14) is trivially true. Suppose then that f is linearly independent
of h|, .... , h. Let a** satisfy (10). Then a** is a Chebyshev (I.) solution of the
system (13), and the maximum residual has magnitude Ep(f)>O. From the
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preceding Lemma, the rank of the coefficient matrix in (13) is 2n. Hence there exists
[8, p. 29] another solution d of (13) such that

11lf- L(6; z)11 p = E.p(f)

and a subset of at least 2n + I of the mp equations (13) has residuals equal in
magnitude to Enp(f). (We cannot take a = a** in general, because we have not
assumed that the coefficient matrix in (13) satisfies the Haar condition for matrices.)
Now these 2n + 1 extremal equations must be distributed among the m < 2n points
of Q. Therefore, at least one point z in Q is assigned at least two equations.

Claim. No point in Q can be assigned more than two extremal equations. Note
first that the residuals of the p equations in (13) corresponding to a given point z in
Q are precisely

r. = A cos 0 + B sin 0,, j =1...p

where A and B are the real and imaginary parts of f(z) - L(d; z), respectively. Let
K(z) denote the set of indicesj of the extremal equations assigned to the point z. If
K(z) is not empty, then the equations

(15) IAcos0+ BsinGI= E,,,,(f), jEK(z),

must hold simultaneously. Since E,,(f) > 0, it is clear that, if K(z) contains more
than two indices, the system (15) is inconsistent. This proves our claim.

Thus, let z be a point in Q which is assigned two extremal equations. Let
K(z) = {j, k) withj : k. Then the equations (15) imply

I A + iBI= E.P(f)sec(0/2),

where ,0 is the smallest angle measured between the four angles (j, Ok. 0j + , 6 k +

7r}. Since Theorem I cannot be violated, we must have = ir/p. This concludes the
proof.

If the coefficient matrix in (13) satisfies the Haar condition, then the norm (14) is
attained for at least t = min{2n + I - m, m) distinct points z in Q. In this case,
6 = a**, so every point having two of the 2n + I extremal equations has the
residual (14). There must be at least t such points, considering the claim established
in the proof of Theorem 3.
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SOLUTION OF SYSTEMS OF COMPLEX LINEAR EQUATIONS IN THE 1.
NORM WITH CONSTRAINTS ON THE UNKNOWNS*

ROY L. STREITt

Abstract. An algorithm for the numerical solution of general systems of complex linear equations in
the ,,, or Chebyshev. norm is presented. The objective is to find complex values for the unknowns so that
the maximum magnitude residual of the system is a minimum. The unknowns are required to satisfy certain
convex constraints; in particular, bounds on the magnitudes of the unknowns are imposed. In the algorithm
presented here, this problem is replaced by a linear program generated in such a way that the relative error
between its solution and a solution of the original problem can be estimated. The maximum relative error
can easily be made as small as desired by selecting an appropriate linear program. Order of magnitude
improvements in both computation time and computer storage requirements in an implementation of the
simplex algorithm to this linear program are presented. Three numerical examples are included, one of
which is a complex function approximation problem.

Key words, complex linear equations. Chebyshev solution, convex constraints, complex approximation,
semi-infinite programming, 1, norm

1. Introduction. The numerical solution of general systems of complex linear
equations in the I., or Chebyshev, norm is a mathematical problem that arises in
several applications. The objective is to find complex values for the unknowns so that
the maximum magnitude residual of the system of equations is minimized. The
unknowns are not allowed to assume any complex value whatever; instead, they are
required to satisfy convex constraints of the form that can occur in the applications.

Let n, m, and r be positive integers. Let the matrices AE C" ' , Be C"', and the
row vectors f E C"', g E C', a E C", d E R", and c E R' be given. The vector of unknowns,
z E C", is also taken to be a row vector. (Row instead of column vectors are used for
notational convenience in § 2.) The problem is stated as follows.

Problem.
(1) min IIzA-fl

20 C"

subject to:

(2) Iz - a d,

(3) zB- 1 -- c,

where the Chebyshev norm 1 of a vector is the maximum modulus of its components,
and where the modulus I-I of a vector is defined to be the vector consisting of the
modulii of its components. The simple constraints (2) are essential to the solution
algorithm presented in this paper, but the more general constraints (3) are optional.

It is assumed that c > 0 and d > 0. Zero components of c and d are equivalent to
equality constraints of the form zH = e. If H has rank q:_ n, then q of the unknowns
can be solved for explicitly in terms of the remaining unknowns and substituted out
of the problem. The reduced problem has n - q unknowns and the same mathematical
form as ()-(3).

In this paper the problem (I)-(3) is replaced by a discretized problem. The
discretized problem is a linear program which is generated in such a way that the

* Received by the editors July 5, 1983, and in revised form October I. 1984. This work was supported

by the Office of Naval Research Project RR014-07-01 and by the Independent Research Program of the
Naval Underwater Systems Center. This paper was written during the author's stay as a visiting scholar in
the Department of Operations Research, Stanford University, Stanford, CA 94305.

t Naval Underwater Systems Center, New London, Connecticut 06320.
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relative error between its solution and a solution of the problem (1 )-(3) can be estimated
without knowing the solution of either. Furthermore, the maximum relative error can
easily be made as small as desired by selecting an appropriate discretized problem.
See Theorem I below.

The starting point for the discretized problem is the following simple observation.
Let u be a complex number whose real and imaginary parts are uR and u', respectively.
It is easy to show that

(4) Jul= max (ukcosO+u'sinO).Ose<2v

Let p be a positive integer, and let D = {01,. • -, 0,} be a subset of the interval [0, 21r).
The discretized absolute value is defined by
(5) lul - max (u R cos e+ u' sin 0).

@ED

Although the set D can be arbitrary, it is convenient to assume that D consists of the
pth roots of unity, that is,

(6) 0, =(k-l)21r/p, k=l,2,. .,p,

and to assume that p = 2 , K ,- 2. It follows that

(7) lul-- Jul S lUlI, sec (r/p).

No other choice of D can give a tighter upper bound in (7). The requirement that p
be a power of 2 facilitates computational efficiencies in solving the optimization problem
(5) and is discussed in § 2. With these two assumptions, a relative accuracy of 5
significant digits in (7) requires that p - 1024. Other properties of the discretized
absolute value are given in [13].

The discretized version of (1)-(3) is developed by first transforming it into an
optimization problem and then replacing all absolute values with discretized absolute
values. The discretized problem can be written in the following manner.

Discretized problem.

(8) mint R.ZE, "'

subject to:
(9) 1M, - fjhI>D!_5E, j= M, ,m

(10) 1z, Z j - - ,, I D1,...,r,

011) Izj -a.,ILD--d, j l. . n,

where A, and B, denote the jth columns of the matrices A and B, respectively. It is
shown in § 2 that the discretized problem is a linear program in 2n + I unknowns with
(m + n + r)p inequalities. This linear program cannot be assumed to be sparse since
the matrices A and B are completely dense in many applications.

The discretized problem is most easily solved by solving its dual. The revised
simplex method applied in a straightforward manner to the dual problem requires
O((m + n + r)np) storage locations and O((m + r)np) multiplications per simplex iter-
ation. It is shown in this paper that the factor of p can be eliminated from these
estimates by successfully exploiting the special structure of the dual. These economies
leave unaltered the sequence of basic feasible solutions (vertices) which the simplex
method generates enroute to the solution of the dual. Thus the impact of the parameter
p is limited to its effect on the total number of simplex iterations required to reach
the solution. As will be seen, p affects the number of columns in the dual constraints
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and not the number of rows, so the growth of total computational effort as a function
of p is not great.

A Fortran program for solving the discretized problem has been written and
documented [11]. This program does not implement all of the economies which are
possible because of practical considerations discussed in § 2. The program as written
requires O((m + r) n) + 0(p) storage locations and 0((m + r)n) + 0((m + n + r) 1092 p)
multiplications per simplex iteration. Also, for reasons stated in § 3, the solution of
the discretized problem for large values of p is approached via smaller values of p.
The discretized problem for p = 4 is first solved and its solution used as an advanced
start for the p = 8 discretized problem. The program continues doubling p at each stage
until a specified value is attained. This program is practical for modest values of m, n,
and r for large values of p.

The following theorem proves that a solution of the discretized problem is an
approximate solution of the original problem. It also proves that the maximum relative
error in this approximate solution can be made as small as desired by appropriate
choice of p. Similar results for the unconstrained problem are given in [12], [13], and

[91.
THEOREM 1. Let z* E C" solve problem (1)-(3), and let E**E R and z**E C" solve

the discretized problem (8)-( 11 ). Then

(12) E** - 11z*A -fl., - Jz**A -fjj.! - F** sec (7r/p)

(13) lz**B - gl - c sec (7r/p),

(14) Iz** - al i-- d sec (7r/p).

Proof Since jz7* - ajD - d, for each j, it follows from (7) that

Iz** - al - Iz,** - aj(D sec (#r/p)- d sec (r/p).

This proves (14), and (13) is proved the same way. The following sequence of

inequalities establishes (12):

E** -max Iz**Aj -fjjI,

- max Jz*Aj -fjj

max Iz*Aj -fjl = U1z*A -fll

- max Iz**Aj -fj] = Blz**A -fil=

- max ]z**A, -filr, sec (ir/p)

r ** sec (ir/p)

where the max in all cases is over j = 1, • • •, m. This concludes the proof.
There is one hazard in replacing the original problem with the discretized problem.

The constraints of the discretized problem have a larger feasible region than the original
constraints, so it is possible that the discretized problem has solutions when the original
problem is infeasible. The feasible region of the original problem is approximated
more and more closely as p is increased, so the discretized problem ultimately fails to
have a solution for sufficiently large p when the original problem is infeasible. If the
original problem is in some sense "nearly" feasible, but in reality is infeasible, the
discretized problem may possess solutions for very large values of p. Thus one may
be deceived in certain problems. An alternative viewpoint is that any false solution
obtained in this manner to infeasible problems actually represents a "reasonable"

-401-



SYSTEMS OF COMPLEX LINEAR EQUATIONS 135

solution to a poorly defined problem. Whether or not this view is sensible depends on
the application. An example is given in § 5.

The problem (1)-(3) has a mathematically straightforward solution when all the
quantities are real valued instead of complex. The real valued problem is exactly
equivalent to a linear program in n + I variables with 2(m + n + r) inequality constraints
and can therefore be solved in a finite number of steps. The complex valued problem
is less simple. Eliminating complex arithmetic by substituting in the real and imaginary
parts of all complex quantities yields, after squaring the constraints, a mathematical
programming problem in 2n + 1 variables having a linear objective function and
m + n + r quadratic constraints. No method is available for solving problems of this
kind in a finite number of steps. Since it is a convex programming problem and the
functions involved have easily obtained derivatives of all orders, many different
algorithms are potentially applicable for its approximate solution. The only reference
[14] known to the author which explicitly studies the constrained complex problem
(1)-(3) uses a feasible directions method. At each step, a linear program is solved to
determine the steepest feasible descent direction, a line search determines the step
length, and special precautions are taken to prevent zigzagging, or jamming. A conver-
gence proof is supplied.

The problem (1)-(3) can be viewed as a semiinfinite program (SIP). The SIP
formulation of the unconstrained problem, that is, the problem consisting of only the
objective function (1), has been studied elsewhere [12], [131, [4] in the context of
complex function approximation and it is not difficult to extend that formulation to
the constrained problem (0)-(3). None of these references, however, show that the
special structure of the discretized problem can be used to significantly reduce the
computational effort in its solution. Theorems 3, 4 and 5 of the next section are also
new and are unique to the complex valued problem. The relationship between SIP
and real valued approximation is presented in [3].

2. Solution of the discretized problem. An algorithm for solving the discretized
problem for fixed p is discussed in this section. Attention is directed to special structures
of the discretized problem which permit order of magnitude reductions in both storage
requirements and multiplications per simplex iteration. Several useful theoretical results
are interspersed.

It is first established that the discretized problem (8)-( 11) is a linear program.
Denote the real and imaginary parts of any quantity u by uR and u', respectively,
whether u be a number, a row or column vector, or a matrix. By definition (5),

(15) 1zAj -fjD = max [(zAjfj)R cos 0+ (zAj -f1)' sin 0],
Ge D

so the m inequalities (9) are equivalent to the system of mp inequalities

Since
=Z~ _ Rl -_ZIAIj-, (zA,-_f,)I =z R"+ z 'AR _ f','

it is convenient to write (16) in the form
[R cos 0+ A' sin 01

(17) [ZRZe] AR sin 0-A' cos0 [fR cos 0+f sin 0], OE D,

where 1,. E R' is a row vector whose components all equal one. The inequalities (10)
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and (11) are treated similarly, so the discretized problem is a linear program in 2n + I
variables and (m + n + r)p inequalities. The linear program can be written explicitly
as follows.

Primal problem.
(18) min [zR z' e][0, 0,, 1]'

subject to: e _- 0 and, for each 0 E/D,

[A R cos O+AIsininB R :o:O z I cosO]
[z R z I L-] A~sinO-AcosO B RsinO-B'cosO Isin0 /

(19) -l 0, 0.

_<[fRcos0+fsinO c+gRcosO+g'sin o d+aRcosO+a'sin O],

where I denotes the n x n identity matrix and Ok denotes a zero row (or column,
depending on context) of length k => 1.

The primal problem is solved by solving its dual using the revised simplex method.
The simplex (Lagrange) multipliers for an optimal basic solution of the dual solve the
primal, assuming the primal to be feasible. The dual can be written in one of the
standard linear programming formats by explicitly adding a slack variable, denoted
Q, which arises naturally in this problem.

Dual problem.
Dual~ ~ prbe. ff ok +f' sin Ok)Sk

(20) min +sinOk)Tk
ScR"'P.Tc R .,k= IfI(fRco siS R ~ S
Wc R" P.Q R 1+d + aR cos Ok+a' sin Gk)WJ

subject to: S>0, T-0, W -0, Q>=0, and

(21)

r R C SO + A 'sin O k B R cos e k+ B ' sin O , I cos k] '~ 0,," Q 0 1
[AR sinOk - A'cos k BRsin0k-B cos 0# lsin T +0] [0 .

k- ,[ 1,, 0, 0. Wk I I

An alternative statement of the dual is given at the end of this section.
The slack variable Q plays a special role, as seen in the next result.
THEOREM 2. Let the matrices S**-O, W**-O, T**-0, and the real number

Q** >0 denote an optimal basic feasible solution of the dual problem (20)-(2 1). If
Q** > 0, then the optimal value of the objective function in the primal problem (18)-(19)

is zero.
Proof Let [z**R z**IE**] R2 "+' denote the simplex multipliers of the optimal

basic solution S**, W**, T**, Q**. Applying the complementary slackness theorem
[8, p. 77], Q**> 0 implies ** = 0 as claimed.

Except for the slack variable Q, every basic variable of the dual is uniquely
identified by specifying the matrix to which it belongs together with its location (row
and column number) in this matrix. The matrix names S, T, and W correspond to the
inequality systems (9), (10), and (11), respectively. The row number of a basic variable
identifies the particular constraint which gives rise to it. For example, all the dual
variables in row q of matrix T are eliminated from the dual problem if the qth inequality
in (10) is deleted from the discretized problem. Similarly, the column number of a
basic variable identifies the angle in the set D to which it corresponds.
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The revised simplex algorithm, as applied to the dual, is defined in general terms
as follows:

Step 1. Determine an initial basic feasible solution of the dual problem.
Step 2. Compute the simplex multipliers corresponding to the current basic feas-

ible solution.
Step 3. Determine the incoming variable by selecting the variable having the most

negative reduced cost coefficient; terminate if all reduced cost coefficients
are nonnegative-the primal problem is solved by the current simplex
multipliers.

Step 4. Compute the column of the incoming variable in terms of the current basis.
Step 5. Determine the outgoing basic variable by a ratio test; terminate if the dual

objective function is unbounded below-the primal problem is infeasible.
Step 6. Update the basis inverse and current basic feasible solution by pivoting,

and return to Step 2.

The special structure of the dual problem has its strongest influence on Steps 1, 3, and
4. These effects are outlined next. More detailed aspects of the algorithm are postponed
to § 4.

The dual problem is already in canonical form for initiating the second phase of
the simplex algorithm. In other words, Step I is trivial because an identity matrix of
order 2n + 1 can be assembled from the columns of the coefficient matrix of (21). One
readily available column is the column corresponding to the slack variable Q. The
remaining 2n columns correspond to dual variables which are the components of two
particular W columns. From (6), 01 = 0 so that cos 0, = 1 and sin 01 = 0. Hence one of
the W columns can be taken to be W,. Similarly, the other is W+,+/4 since 01,p/4 = ir/ 2 .
The initial basic feasible solution is therefore

(22) W1 = W1 1/ 4 = 0., Q=1.

The simplex multipliers corresponding to (22) are derived in a special way later in
this section.

The initial basic feasible solution (22) is highly degenerate. As discussed in [2],
it is in problems of this general kind that cycling in the simplex algorithm is occasionally
observed in practice. Such cycling was observed in an example given in this paper.
However, a modification of the tie-breaking rule in the ratio test for the outgoing basic
variable, together with "preferential treatment" of certain incoming variables, seems
to avoid the difficulty. Further discussion of cycling in the dual problem is postponed
to § 4.

The cost coefficients and the columns of any dual variable can be found by
inspecting (20)-(21). They are given in a complex arithmetic format in Table 1.
Explicitly computing and storing all (m + n + r)p columns of the dual problem is
unnecessary (and impractical) since the column of any dual variable can be constructed
directly from the matrices A and B. Not counting the necessary sine and cosine, this
requires only n complex multiplications and reduces the storage from (2n + 1)
(m + n + r)p words to only 2n(m + n + r) words. The columns of the dual variables
W,, are merely columns of the identity matrix I, which need not be explicitly stored.
Therefore the total storage necessary for constructing the column of any dual variable
is only 2n(m + r) words. In practice, it is convenient to compute the cosines and sines
once and for all to reduce the computational overhead. If this is done, as it is in [II],
the storage requirements are 2n(m + r) + 2p.
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TABLE I
Dual variable cost coefficients and columns in complex formal.

dual variable cost coefficient column, in R 2" '

Sjoi (fe-'@,)#t [(,A,e-.'O)t -(Ate-".,)'  I]T

T, (c, + g' e-",')R [(BI,e- ) -(B e-",)) 0 ]T

WA (d, + a, e~"*.)t [(I e-"@,)
n 

(' e-t) 0] 
T

An efficient method of computing the smallest reduced cost coefficient in Step 3
of the revised simplex algorithm is now discussed. This method is particularly interesting
because the columns of the dual variables are not explicitly needed. The only data
required are the original complex matrices A and B and the sines and cosines of the
angles in D. Let A be any real row vector of simplex multipliers for the dual problem;
thus, A is of length 2n + 1. The vector A defines a complex row vector z E C" and a
real number e by the identification

(23) A=[zRzl -]EWR2 " + '.

The reduced cost of the dual variable Sj, is the cost coefficient of Sk minus the product
of A with the column of Sik. Using (23) and Table 1 gives

(4 = (fte')R [zR z' - -][(A e-L)R -(A, e-',)' !]T
(24) C Ae A

= E -[(zA -f,) e-O'LR,

so the minimum reduced cost coefficient of the p variables in row j of S is

(25) CS= min C=E-IzAj-fj, j=l,2,,m.

The smallest reduced cost coefficient of all the dual variables of S is then

(26) Cs= min C==e- max IzAj-fJlnI~j~m I~j~m

Similarly, the minimum reduced cost coefficients over all the dual variables of T and
W are

(27) CT = min (cj -IzBj,-gID)

and

(28) CW= min (d-Izs-aID),

respectively. The smallest reduced cost of all the variables of the dual problem is
min {Cs, Cw, Cr).

The smallest of the three quantities Cs, Cw, and CT and the index j for which
the minimum value is attained determine the row number and the correct matrix name
of the incoming dual variable. The column number is determined by the angle ek E D
giving the largest projection (i.e., the discretized absolute value) at the minimal index
j. The angle ek may not be unique because of possible ties in (5), so a tie-breaking
rule called the minimal clockwise index (MCI) rule is used to determine unambiguously
the incoming dual variable.

The MCI rule is defined for all uE C. Let UD be the set of those angles 0eE D for
which the maximum in (5) is attained. There are three cases. First, if uD has precisely
one element, the MCI of u is defined to be the index of that element. Second, if uD,
has precisely two elements, say 0k and 0j, and neither k or j equals p, then the MCI
of u is defined to be min {k,j}; on the other hand, if either k = p or j = p, then the
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MCI of u is taken to be p. Third, if ul, has more than two elements, then it must be
that u = 0 and uo = D, so the MCI of u is defined to be 1.

The computation of the discretized absolute value and corresponding MCI must
be undertaken for m + n + r comp ex numbers to compute (26)-(28) during each
iteration of the simplex algorithm in Step 3. A brute force approach using the definition
(5) requires 2p real multiplications for each complex number. Such an approach is
inefficient and does not exploit the special form of the set D. For p = 4, it is clear that
comparison tests alone suffice to solve this subproblem. For p 8, comparison tests
and at most 2 log 2 p -5 real multiplications are sufficient. To see this, first determine
the quadrant of the complex plane in which the given number lies, and determine
whether it lies above or below the 45' line bisecting the quadrant. This can be done
using comparison tests only. Now that the "half-quadrant" in which the number lies
is known, its projections onto the bounding rays of this half-quadrant can be computed
in this special case using only one multiplication. If p = 8, a final comparison test ends
the problem. If p a 16, then the larger of the two projections reveals the "quarter-
quadrant" in which the number must lie. The projection onto one of the bounding
rays of this quarter-quadrant is already known; so it is only necessary to compute the
projection onto the other bounding ray. This requires 2 real multiplications. If p = 16,
a final comparison test ends the problem. If p a 32, we continue as before. Counting
the total possible number ,f steps proves the claim. This bisection method works
because of the special form of the set D.

In principle the discretized absolute value and corresponding MCI can be found
with computational effort independent of p. The argument (phase) of the given complex
number can be computed, essentially as an inverse tangent, and from it the MCI can
be found using comparison tests. Whenever the inverse tangent computation requires
fewer than 2 log 2 p -5 multiplications, it is more efficient than the bisection method
described above. For p _ 1024 the bisection method is more efficient, and it is used in
[11].

The number of real multiplications required to complete Step 3 using these methods
is significantly less than that required in the usual approach. The straightforward
method requires the computation of (m + n + r)p - (2n + 1) real inner products of length
2n. Taking account of the simple form of the W columns gives a total of approximately

(29) (2p -4)[n(m + r)+ 1] +4n(m + r- n -1/2)

real multiplications. The special methods discussed above require m + n + r complex
inner products of length n followed by the computation of the discretized absolute
value and corresponding MCI for each inner product. Counting one complex multipli-
cation as four real multiplications and considering the special form of the W columns
gives a total of

(30) 4n(m + r)+ (m + n + r)N,

real multiplications, where N[) is the number of multiplications needed to compute
one discretized absolute value and corresponding MCI. If the inverse tangent method
is used, N0 is a constant independent of p. If the bisection method is used Nt, =
2 log 2 p - 5 for p 8, N1 = 0 for p = 4. The special methods are clearly better when
p - 4 and m > n. In the derivation of both (29) and (30) it was assumed that the last
row of (21) in the dual problem was specially treated to avoid multiplications by I
and 0.

The simplex multipliers A(0°E R2"  corresponding to the initial basic feasible
solution (22) are now derived. Multiplying the initial basis inverse on the left by the
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row vector containing the cost coefficients of the initial basic variables gives the row
vector A"'. The initial basis inverse is the identity matrix, the cost coefficients of the
basic W variables (22) are given in Table 1, and the cost coefficient of the slack variable
Q is 0. Consequently,

A()=[d+(a)R d+(-ia) R 0]=[d+aR d+a' O]iR 2ER .

The definition (23) thus gives

(31) z10) a+de'4., e ( )=0.

From the proof of Theorem 2 it can be seen that E = 0 for as long as the slack variable
remains in the basis and is positive.

The matrices S, W, and T are sparse because basic feasible solutions of the dual
consist of only 2n + 1 nonnegative variables. Furthermore, no row of S, W, and T can
contain more than two basic variables as the next theorem shows.

THEOREM 3. No basic feasible solution of the dual problem (20)-(21) can have
more than two basic variables in any one row of W or T. If a basic feasible solution of
the dual problem has corresponding simplex multipliers with E > 0, then S cannot have
more than two basic variables in any one row.

Proof. The first statement is proved for the matrix T. the proof for W is a special
case. Consider the jth row of T. Suppose a basic feasible solution has three basic
variables Ti,, Tp, and T, with a, 3, and y being distinct. Then the reduced costs for
all three variables must be zero. A result analogous to (24) was used to prove (27);
using it here gives

(32) CT =O=c,-[(zB-gi)e-'°,]R ,  q=a,3, Y.

Thus the single complex number zB - g, has the same projection, namely c,, in three
distinct directions. This is impossible unless zB -gj = c = 0, in contradiction to the
assumption that c, > 0. This establishes the first statement. The second statement is
proved in the same way, by using (24) itself.

The following theorem relates knowledge of an optimal basis of the dual to
"observable" quantities in the primal problem. The results of the theorem depend on
the names, but not the actual numerical values, of the optimal dual basis. In addition
it seems to indicate that the upper bound (12) in Theorem I will often be attained in
practice.

THEOREM 4. Let e** e R and z** E C" denote the simplex multipliers in the form
(23) of an optimal basis for the dual problem (20)-(21), and suppose that E**> 0. If the
jth row of one of the matrices S, W, or T contains two optimal basic variables in columns
a ando8 with p cr>,2-1, then eithera-p= I ora-p=p-1. Ifa-3=1, then

(33) z**A -f = e** sec (r/p) exp [i(219 - l)r/p],

or

(34) z**B, - g = c sec (v/p) exp [i(2,6 - l)r/p],

or

(35) z**a = d, sec (t/p) exp [i(20 - 1)r/p],

according to whether the jth row is a row of S, T, or W, respectively. Replacing / with p
in (33)-(35) gives the equations corresponding to the alternative case a - = p - I.

Proof. Only the S matrix case is treated since the other two cases are similar. The
two basic variables involved are S),, and Sp. Assume that p - a > jS -> I. The reduced
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costs CIS and CI4j must be 0, so (24) gives the two equations

(36) E** = [(z**A, -f,) e-'".], E** = [(z**A, -f,) e- 'I1.

Any complex number having identical projections in two directions is uniquely defined
in both magnitude and phase. If 9o differs from Op by 7r radians, the system (36)
implies that E** = 0, contrary to assumption. Thus (36) implies that z**A, -f =
e** sec(0/2)>0, where 0 =min{6o-aO,2r- 0+ O}. By Theorem 1, = ir/p, so
that either 0. - Op = fr/p or 0° - Op = 7r(2p - 1)/p. From (6), either a - 3 = I or a - 13 =
p - i. For a -1# = I, solving the system (36) for the phase of z**A -f, gives (33). The
case a - 13 = p - 1 is handled in the same way. This completes the proof.

Theorem 4 is useful in practice. Computed optimal dual solutions can be inspected
to verify that optimal basic variables occurring in the same row are in fact "paired"
in the manner described. If they are not, then numerical round-off errors have adversely
affected the computed solution.

THEOREM 5. Let e** and z** be as in Theorem 4. If the jth row of one of the
matrices S, W, or T contains an optimal basic variable in column a, 1 S a s= p, then

E **<-z**A,-f, -_**secvr/p, 0-7r/p arg (z**A, -f,):_o+ 7/p.

or

c,z**B, -g,15c, sec v/ p, 0,7r/p-arg(z**B,- g,)!-,0 +r/p,

or

d,: Sz** -aj t_ d, sec v/p, 0 -+/p:-arg(z**-a,)<w5.+ /p,

according to whether the jth row is a row of S, T, or W, respectively.
Proof. The proof is closely related to the method of proof of Theorem 4 and is

not presented.
This section is concluded with a concise statement of the dual problem using

complex arithmetic notation.
Dual problem: complex format.

min [(JS+gT+ aW) e- D] + X (CT + DW,)
S.T
W.Q

subject to: S-0, T-O, W>0, Q2-,0 and
P

(AS+BT+W) e - D =OE C", Q+ I S jk=I
j-1 k-1

We have used e - 'D to denote a complex column vector of length n whose kth component
is exp(-iO,): other notation is unchanged from (20)-(21).

3. Solution of the discretized problem for large p. One reason to solve large p
discretized problems is that applications requiring 5 or more significant digits of relative
accuracy in the optimal value of the objective function and/or in constraint satisfaction
need to take p - 1024: see Theorem 1. Another reason to solve large p problems is
that their solutions furnish starting points for other methods which potentially provide
greater accuracy. For instance, the problem (I)-(3) can be rewritten as a semiinfinite
program, or SIP, and an interesting algorithm [5], [6] for solving a class of SIP's can
be utilized. This method sets up an appropriate nonlinear system of algebraic equations
which are solved using the Newton-Raphson method (or other iterative method): a

-408-



142 ROY L. STREIT

feasible solution of the nonlinear system is a solution of the SIP. The starting point
of the Newton-Raphson iteration is taken to be dhe solution of a discretized problem.
Large p discretized problems will have to be solved whenever very good starting points
are needed to ensure convergence of the Newton-Raphson iteration.

There is, however, a practical limit to how large p may be taken in many problems.
A discretized problem is numerically unstable for sufficiently large p if its optimal
solution has, for every p, two basic dual variables in at least one row or S, W, or T.
The columns of two such basic dual variables are less distinguishable numerically as
p increases (see Table 1). Consequently, the basis matrix is more ill-conditioned for
large p. Only those problems which never, for any p, have more than one optimal basic
variable per row of S, W, or T can escape numerical ill-conditioning from this cause.
Such problems seem to be uncommon.

The algorithm we suggest for solving the discretized problem for large p begins
by solving the smallest dual problem, that is, the dual problem with p = 4. Next, the
p = 8 dual problem is solved using the optimal basis for the p = 4 dual to start the
simplex algorithm. The p = 16 dual is then solved starting at the optimal basis for the
p = 8 dual, and so forth. The algorithm is always well-defined because basic feasible
dual solutions for a given p are also basic feasible dual solutions for all larger values
of p because the sets D are nested for p = 4, 8, 16, 32, - • •. By doubling p at each stage
beginning with p = 4, this algorithm avoids bases associated with numerical instability
from the discretization process until p becomes very large. Difficulties caused by
ill-conditioning in the complex equations themselves cannot, of course, be avoided.

One advantage of this algorithm is that the optimal basis for each intermediate
value of p can be easily inspected using Theorems 4 and 5 to determine if numerical
round-off errors are significant. If sufficient error is present, the algorithm can be
terminated early, or alternatively, the basis can be reinverted before continuing to the
next value of p.

The primary drawback of the algorithm is that more simplex iterations are usually
required to reach the final optimal dual basis by proceeding via smaller values of p
than by solving the full dual problem all at once. This difficulty does not seem to be
significant in practice and, in any event, can be partially overcome by skipping more
rapidly through the available values of p. It is also possible to begin the algorithm
with a larger initial value of p; that is, p > 4.

Optimal solutions of the primal discretized problem converge only linearly with
increasing p, while the optimal values r** converge quadratically. It would be useful
to be able to extrapolate the primal solutions to obtain a better solution of the original
problem (1)-(3). Richardson extrapolation (see, e.g., [7], [10]) worked very well for
Examples 1-3 in § 5 for sufficiently large p, but failed in other problems. It is apparently
successful only when (a) the row numbers of the optimal dual basic variables of the
discretized problems identify the optimal active constraints of the original problem,
and (b) the optimal values of the discretized problems equal the optimum value of
the original problem. The first requirement can be met by taking p sufficiently large.
The second requirement imposes more severe limitations on the practical utility of
Richardson extrapolation.

4. Details of the revised simplex algorithm. Computer codes which treat complex
matrices and vectors by separating them into their real and imaginary parts cause
thrashing on virtual memory systems. Therefore the solution vector z of the primal
problem is best stored as a complex vector and the simplex multipliers reordered to
reflect the storage of z. The rows of the dual problem should also be reordered. The
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computer code therefore visualizes the dual problem rows in the following order: {1,
n + 1, 2, n + 2, • • •, n - 1, 2n - 1, n, 2n, 2n + l1. These numbers denote the row numbers
in the original system (21). The reordered system is much easier to work with in
FORTRAN than the original system. With the rows of the dual problem in this order
the reduced cost calculations can be coded in FORTRAN just as they are written in
(26)-(28), provided the initial data of the problem are typed COMPLEX.

The name of a dual variable is a triplet i/j/k of positive integers, where:

i = 1, 2, or 3 according to whether it is an S, W, or T variable,
j =constraint number, from (9)-(11),
k = projection number of the angle in the set D, 1 : k 5 p.

The middle name j has different ranges depending on the value of the first name i.
These triplets are ordered lexicographically.

The most negative reduced cost determines the entering basic variable in the
simplex algorithm. Ties for the most negative reduced cost are broken by choosing the
variable with the least lexicographicdlly ordered name. Because the highly degenerate
initial starting point (22) can cause cycling in the simplex algorithm, there is one
exception to the least name rule in case of ties for the entering variable. As long as
the slack variable Q remains in the basis, the only entering variables permitted are S
variables with negative reduced costs. If S variables with negative reduced costs do
not exist, then the entering variable is permitted to be a W or a T variable and ties
are resolved by the least name rule. Thus, S variables are given priority for entering
the basis only for as long as the slack Q is in the basis. Once Q is removed from the
basis it never enters again, and exceptions to the tie breaking rule cease.

The outgoing basic variable is determined by the usual ratio test. If the least ratio
is attained by more than one variable, the variable having the largest magnitude pivot
leaves the basis. If more than one variable has the same magnitude pivot, then the
variable with least index is selected. Because of degeneracy and cycling, there is one
exception to this tie-breaking rule for the exiting variable. So long as the slack Q
remains in the basis, only W variables are permitted to exit. This rule makes sense
only when a W variable is involved in the tie; if no such W variable exists, the
exception is not invoked. If more than one W variable is involved in the tie, then the
one having the largest magnitude pivot with the least index is selected to exit. Just as
for the entering variable, this exception ceases once the slack Q leaves the basis.

Cycling in the simplex algorithm has not been observed with these modifications
to the usual tie breaking rules for entering and exiting variables. However, if these
modifications are not used, cycling may well occur. Example 3 of § 5 below cycled
(with a cycle of length 19) without these modifications. It is possible that cycling in
this particular example is an artifact of finite precision arithmetic.

A nonzero tolerance is necessary when testing for the most negative reduced cost
and for possible divisors in the ratio test. This number must not be too small and it
must somehow be dependent on the scale of the problem data. The number used in
[11] is the product of the unit round-off error of the host computer with the sum of
the absolute values of the incoming column (i.e., its 1, norm). This number is used for
both reduced cost and pivot tolerance tests.

Besides the usual termination criteria in the simplex algorithm, the pricing method
implicit in (26)-(28) yields a novel way to terminate the algorithm. The pricing method
computes the most negative reduced cost by indirectly examining all reduced costs,
not just the reduced costs of the nonbasic variables. Hence it can happen that the
entering and the exiting variables are identical because of numerical round-off errors.
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This event seems to signal that no further improvement in the solution is numerically
possible. Solutions returned by terminating the algorithm whenever this "self-cycling"
occurs appear to be satisfactory.

The Fortran code [I ] was developed to test the methods described for solving
the dual problem. It holds an explicit basis inverse and performs pivoting to update
the inverse in each simplex iteration. Pivoting is known to be numerically unstable,
but easily programmed. To forestall numerical difficulties the inverse is held in double
precision, although a double precision inverse is not a satisfactory substitute for a
numerically stable technique. Updating the QR factorization of the basis is preferable.
Nonetheless the explicit inverse code gives good performance in many problems.

5. Examples. Example I is taken directly from [14, p. 249]. Let n = 2, m = 5, r = 2,
and define the matrices

- 12 1 1 .5 2] B 2 2]'(37) A = I_ 2 0 3 -1 1 B-2 _

-,=g=[0,0],c 2,2, d=[10, 10],

f=[-l+i,-l+i, .5i, 0, -!l+i].

Only the vectorf is complex. The exact solution is z, = (-1 + i)/2, z, = 0, and E =N/2/2.
The constraints of type (2) are not part of the original problem given in [14]. They
have been added because their discretizations provide the initial dual basis.

Table 2 gives the solutions of the discretized primal problem for selected values
of p. The optimal value of - for p = 8 is the optimal value of E for all p _ 8. For p -8,
the accuracy of the primal solutions depends solely upon the discretization errors since
the optimal e does not change. Table 3 gives the optimal basic solutions of the dual
problems for the same values of p. The active constraints do not change for p > 8,
except for their 0 names. Hence the active constraints at the optimum of the original
nonlinear problem (1)-(3) have been identified. The fourth and fifth basic variables
are "paired" in an obvious way; this behavior is explained by Theorem 4.

All optimal dual solutions are degenerate, or very nearly so. It turns out that the
"degenerate parts" of the optimal dual solutions approximately doubled as p is doubled,
especially when p =2 64. Assuming the trend continues indefinitely, the optimal dual
solution will eventually look nondegenerate. This trend is probably an artifact of the
numerical ill-conditioning inherent in the discretization process.

The conditions mentioned at the end of § 3 for success using Richardson extrapola-
tion seem to be met for p -_ 8. Since convergence of the z vectors is linear, multiply
the p = 32 vector by two and subtract the p = 16 vector to get

[z, z,, z2, z2] = [-.500964, .499036, .40 x 10-'°, .36 x 10-' 0].

One step of this extrapolation gives values nearly as accurate as the values correspond-
ing to p = 2048.

Numerical computations for this and the next two examples were performed on
a DEC 10. It has a double precision unit round-off error of approximately 2 x 10-'9.

Example I can be made infeasible by adjoining one constraint of type (3). Replace
B, g, and c in (37) with

/ [2 _2 1] ' =[0, 0, 7- 4i], j =[f, ,%/2, 29/4].

The discretized primal problem is feasible for p = 4 and 8; for p - 16, it is infeasible.
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TABLE 2

Solutions of the primal problem, Example 1.

p 4 8 16 32 2048

4 -. 588760 -. 292893 -. 400544 -. 450754 -. 499233

z 1 .588760 .707107 .599456 .549246 .500767

z" .59xt' -. 82x10
- ' -. 28x10- 9  

-. 12x10
- 9  -. 15 x10

- 11
2 -. 59 x 10 -  -. 82x10- 9 -. 12x10

- 9  -. 7 8 xl0 - 'o -. 15x10
- "

E .4112399 .7071068 .7071068 .7071068 .7071068

total iterations 10 14 17 20 38

TABLE 3
Solutions of the dual problem, Example 1.

p 4 8 16 32 2048

1/2/1 1/1/8 I//15 i/1/29 I/I/1793

1/2/4 1/2/I 1/2/16 1/2/30 1/2/1794

basis names 1/3/3 3/l/4 3/l/6 3/1/12 3/1/768

3/2/2 3/2/3 3/2/6 3/2/12 3/2/768

3/2/3 3/2/4 3/2/7 3/2/13 3/2/769

.714286 1.000000 1.000000 1.000000 1.000000

.000000 .50 x 10-' 9  .66 x 10
-
'
9  11 xlo - , .58 x 10 - 7

basis values .285714 -. 50 x 10- 11 .91 x 10- 9  
.24 x 10

-
'
9  .19 x 0 - "

.000000 .11 x10
-
1 .22x I0

- ' a  .43 x10
- ' s .27x10

- 1'

.214286 .500000 .500000 .500000 .500000

This illustrates the remark made in § 1 that some discretized problems have feasible
solutions when the original problem is actually infeasible.

Example 2 is the same as Example 1, except that constraints of type (2) are
tightened so that they are active at the solution. Replace the vector d in (37) with
d = [.4, .4]. The exact solution of this problem is e =2 -. 4, z, = (-1 + i)l2/5, and

317(,Ii- 1)- (431902- 190320)l/2 2
300 = ! 00 .-208846903,
300 -12001i

Z2 ----- '- (Z 2 -- .

10 8 -1 -.093336568.

Tables 4 and 5 give, respectively, the solutions of the primal and dual discretized
problem for selected values of p. The obvious "pair" of basic variables in Table 5 is
explained by Theorem 4. The conditions for success using Richardson extrapolation
seem to be met for p -- 32. Extrapolation of the p = 32 and p = 64 vectors in Table 4
performed as in Example I gives

[z,, z, z2, z2] = [-.282776, .282911, -. 092665, -. 209334],

which is comparable to the values corresponding to p = 2048.
Example 3 is taken from [ 12] and is an unconstrained complex function approxima-

tion problem: that is, constraints of type (2)-(3) are absent. The 101 columns of the
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TABLE 4
Solutions of the primal problem. Example 2.

p 4 8 16 32 64 2048

4 -. 400000 -. 345442 -. 293794 -. 310700 -. 296738 -. 283277
z.400000 .220244 .271891 .254985 .268948 .282409

4" .153553 -.026274 -. 076571 -.061857 -. 077261 -. 092805
Z2-.153553 -. 243431 -. 217608 -. 214390 -. 211862 -.208960

E.600000 1.014214 1.014214 1.014214 1.014214 1.014214
total iterations 7 11 13 16 18 33

I -,BLE 5
Solutions of the dual problem, Example 2.

p 4 8 16 32 64 ?J48

1/2/1 1/2/8 1/2/15 1/2/29 1/2/57 1/2/1793
1/2/4 1/3/6 1/3/12 1/3/22 1/3/43 1/3/1346

basis names 2/1/3 2/1/4 2/1/7 2/1/13 2/1/25 2/1/769
3/2/2 3/2/3 3/2/5 2/1/14 2/1/26 2/1/770
3/2/3 3/2/4 3/2/6 3/2/10 3/2/19 3/2/558

0. 0. 0. 0. 0. 0.
basis values 1. 1. 1. 1. 1. 1.

0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0.

matrix A E C3"'0' are

while the components of fsC'0 ' are f= exp (i3(j- lfr/400), j =1,2,- -,101. In
other words, the complex valued function ez is approximated by complex linear
combinations of the three functions 1, e' , and ex over 101 equispaced points on the
x-interval [0, ff14]. Bounds of type (2) must be specified, so we take a = [0, 0, 0],
d = [ 10, 10, 10]. These constraints are not active at the optimal solution.

It can be verified that the exact solution of Example 3 is z, a, exp (i3 fr/8),
Z= a 2 exp (67ir/4), Z3 = a 3 exp (iff/ 8 ), where

a, = a =.96157056080646,

a 2 -= b -2(b - a2 )/(1 - a2 ) -=2.8122548927058,

a 3 =a( - 2b + a 2 )/(1 - a') 2.8477590650226,

a =A cos (ff/16)+ (I -A) cos (r/8),

b =A cos (lr/8)+ (I - A)cos (ff/4),

c =A cos (3rr/ 16) +(I- A )cos (3 f/ 8),

A = sin (ff/8)/(sin (ff/ 16) + sin (ff18)),

E = (I - cal + ba 2 - act,)" .014706309694449.
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Tables 6 and 7 give, respectively, the solutions of the primal and dual discretized
problems for selected values of p. The obvious "pairing" of the basic variables in Table
7 is explained by Theorem 4. Note also that the row numbers of the optimal dual basic
variables are different for p = 1024 and p = 64 (probably because the dual does not
have a unique solution). Nonetheless, Richardson extrapolation works when applied
to the cases p = 32 and p = 64. As in the previous two examples, one extrapolation
step gives

[ , z, R, 1 R ' = [.367954, .888319, -1.988481, -1.988481, 2.630930, 1.089767]

which, in turn, gives the values a, = .96151, a2 = 2.81214, a3 = 2.84770. The case p = 1024
used directly gives the values a, = .96236, a2 = 2.81376, a3 = 2.84855, which are clearly
inferior to the extrapolated values.

TABLE 6

Solutions of the primal problem, Example 3.

p 8 16 32 64 1024

-I .378265 .377950 .377718 .372836 .368281
z .913212 .91245k .911891 .900105 .889108

-2.026895 -2.024346 -2.022845 -2.005663 -1.989632

z. -2.026895 -2.024346 -2.022845 -2.005663 -1.989632
2.654494 2.654624 2.654502 2.642716 2.631719

1.099528 1.099581 1.099531 1.094649 1.090094

e .0141560 .0145244 .0147063 .0147063 .0147063

total iterations 20 25 33 36 48

TABLE 7

Solutions of the dual problem, Example 3.

p 8 16 32 64 1024

I/1/8 I/1/14 i/1/28 1/1/56 1/1/896
1/25/4 //15 I/1/29 I/1/57 I/1/897

1/28/5 1/26/7 1/26/13 1/26/26 1/26/41,7

basis names 1/74/8 1/27/8 1/26/14 1/26/27 1/76/993
1/77/1 1/75/16 1/76/32 1/76/63 1/76/994

i/101/5 1/76/1 1/101/17 1/101/33 1/101/513

1/101/6 1/101/9 1/101/18 1/101/34 1/101/514

.163234 .004365 .000000 .000000 .000000
.244029 .160548 .168829 .168829 .168829

.091325 .170912 .000000 .000000 .331171

basis values .070677 .164573 .33117) .331271 .331170
.263126 .173184 .331171 .331171 .000000

.157491 .162060 .168829 .168829 .168829

.010118 .164358 .000000 .000000 .000000

Another unconstrained complex function approximation problem in [12] is moder-
ately large and completely dense. The motivating background and engineering applica-
tion of this problem are fully discussed in [12]. The 501 columns of the matrix
A E C " "° ' are

A, = [exp (ikjx) exp (ik 2x,) • exp (ik~x, )]T

-exp(ik 5 xj)[l 1 ... , j=1, 2 , ,.,501
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where 1 = k, < k, < -< k" < k41 = 49 are the distinct integers between I and 49,
excluding the integers 7, 17,21, and 29, and where x,= uo+(j-1)(1-uo)/250, j=
1, 2,.-,501 with uo =.0538117. The components of fE C50 ' are f= exp (ik45x,),
j = 1,- ,501. This example lacks constraints of type (2)-(3). The discretized problem
for p= 16 was solved on a DEC VAX 11/780 in 1350 simplex iterations. Total CPU
time was 25 rainutes and .7 million page faults were incurred. Only 80,000 words of
storage were ,needed. In contrast, the algorithm proposed in [12] (which utilizes the
algorithm (1) as a subroutine) solved this problem on the same VAX in 1270 simplex
iterations, requiring 179 minutes of CPU time and incurring I I million page faults.
Over 360,000 words of storage were needed. The difference in the number of simplex
iterations is explained as follows. The algorithm [12] solves the full problem for p = 16,
while the algorithm developed in this paper solves the p = 4 problem and the p = 8
problem before solving the p = 16 problem. This indirect route to the full problem
solution is less efficient in this example than solving the p = 16 problem immediately.

6. Concluding remarks. A solution of the discretized problem for sufficiently large
p identifies the constraints active at a solution of the original problem (1)-(3). Deleting
inactive constraints from the original problem yields an equality constrained nonlinear
optimization problem. Lagrange's method gives rise to a nonlinear system of algebraic
equations in the optimum value E, the solution vector z, and the multipliers A. Iterative
methods for the solution of this system can be started from an initial point (r, z, A)
provided by a discretized problem solution. Safeguarded Newton-Raphson iteration
may be highly effective for solving this system, especially if advantage is taken of the
system's special form (i.e., for A given, the vector z can be found by solving a system
of linear equations). A possible limitation of this approach is that very large values of
p might be necessary in order to identify the right active set. The examples of the
previous section, however, indicate that the optimal active set is found for relatively
small values of p. Specifically, in Examples 1,2, and 3, the correct active sets (determined
from the optimal dual basis names in Tables 3, 5, and 7) first appear when p is 8, 8,
and 32, respectively.

Certain kinds of domain and range constraints can be adjoined to the discretized
problem (8)-(1 1) with only minor extension of the algorithm proposed here. Let the
matrix He C"x9, and the row vectors eE C , 4ER , and he R q be given. Then the
constraints

(38) ((zH - ej) exp (- icj))R -h, j=l, q

are linear in zR and z', and so can be added to the discretized problem. The constraints
(10) and (11) are instances of (38); however, (38) can impose constraints not possible
with (10) and (11). For instance, if q= 1, the constraint that the complex number
zH, - e, must lie in the right half complex plane is equivalent to ((zH, - e,)
exp (-ir))R -0. Furthermore, if q- 1 and the columns H and e are identical to their
first columns, then the number zH1 - e, can be confined to any closed convex polygonal
region (bounded or unbounded) in the complex plane by appropriate choices of 04, h,
and q.

When complex function approximation on an arc or domain boundary in the
complex plane gives rise to the problem (1)-(3), then an implicit natural ordering of
the columns of the matrix A exists. The ordering is inherited from the ordering of the
discrete points along the arc, and it makes possible clever strategies of both multiple
and partial pricing which may significantly reduce overall computation time when m
and n are large. Effective partial pricing schemes require far fewer evaluations of the
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vector-matrix products zA in (26) without significantly increasing the total number of
iterations. Effective multiple pricing schemes decrease the number of iterations by
increasing the change in E in each iteration. Both multiple and partial pricing can be
implemented simultaneously.

One particularly interesting problem is complex function approximation on the
mth roots of unity. When m > n and when m is a power of 2, the fast Fourier transform
(FFT) algorithm can be used to compute the m products zAj in 2m log 2 m operations.
The straightforward products zA require mn operations. Therefore, the FFT method
is more efficient whenever 2 log 2 m :_ n <5 m

It has been assumed throughout this paper that the unknown vector z must lie in
C". In some applications it is necessary to restrict z to R", while still retaining complex
matrices A and B in original problem (1)-(3). Setting z' = 0 in the discretized problem
is equivalent to eliminating n of the 2n + I rows of the dual problem constraints (21).
The techniques developed for the dual problem simplify when applied to this modified
problem. Consequently the modified dual problem is smaller and easier to solve.
Examples and a Fortran program for this problem are given in [II].
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Additional Key Words and Phrases: complex linear equations, Chebyshev solution, complex approx-
imation, constraints, semi-infinite programming

1. DESCRIPTION
The set of FORTRAN subroutines given here is an implementation of the
algorithm [11 for computing /., or Chebyshev, solutions to complex systems of
equations with constraints on the unknowns.

Problem

min e (1)06R, zec

subject to the approximation constraints

IzAi-fl sE, jnl,...,m, (2)

general bound constraints

I zBi - gI <Scj, i=t../ (3)

and the simple bound constraints

I zj - hj I : d, j =1..,n. (4)

It is assumed that the matrices A e C" ' , B r C" , and the row vectors f e C',
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g E C", h E C, d E R", and c E R" are all given. It is also assumed that c, > 0 and
d, > 0 for all indices j. The vector of unknowns, z, is taken to be a row vector for
reasons of notational convenience. Also, the jth columns of matrices A and B are
denoted A, and B, respectively. Note that m is allowed to be either greater than,
less than, or equal to n. The simple bounds (4) are always assumed to be in the
problem statement; however, the more general bounds (3) are allowed to be
nonexistent. A different set of subroutines is given to solve this problem when
the solution vector z is required to be real valued.

The algorithm is a very efficient implementation of the simplex method of
linear programming applied to a discretized version of this problem.

Discretized Problem min 1 (5)
.4ER.$eC"

subject to:
IZAj - ti I D 1, . j -1 ... M, (6)

IzBj - 9iIo D- :SC, 1,l ... ,/, (7)

Iz, - hJiD- di, j=1, ... , n. (8)
where, for any complex number u E C, we defined the "discretized absolute value"

[uID = maxI(Re u) cos ek + (Im u) sin 8h1, (9)
usksp

where D = ,.. 1 } with

0, - (k - 1) 2r/p, k = 1, 2,...,p (10)

and p is a positive integer controlling the degree of discretization. In this
implementation of the algorithm, we have required that p = 2**LOGP, where
LOGP is greater than or equal to one. From [1, Eq. (12)] we have

Thus, to attain a relative accuracy of five significant decimal digits (i.e., a relative
error less than 0.5 x 10- 5) in the discretized absolute value requires that
p z 1024. Other properties of the discretized absolute value are given in [11
and [21. Also in (2] is a discussion of problem 1)-(2), without the constraints
(3)-(4), as a semi-infinite program (SIP).

The error incurred by solving the Discretized Problem (5)-(8) instead of the
original Problem (1)-(4) is given in [1, Theorem 2), which is repeated here for
the sake of completeness.

THEOREM 2. Let * 6 R and z" e C" solve Problem (1)-(4), and let ,°" 6 R
and z** 6 C' solve the Discretized Problem (5)-(8). Then

40* ' 4 * s !** , (12)

ACM Tranactions on Madmatical Software. Vol. 11. No. 3. Septembr 1965.
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and

Ilz**Aj -fj ,: e**"e~ j - ...... n,

zj*-h Sd ,..., .

It is clear from this result that the optimal e in the Discretized Problem converges
to the optimal e in the original Problem quadratically as p - =o; however, the
optimal z vectors need converge only linearly as p --+ Go. For a simple example,
see [3].

The Discretized Problem is a dense linear program in 2n + 1 real variables
and (m + n + /)p inequalities. It is solved numerically by solving its dual using
the revised simplex method with explicitly held inverse. Even for modest values
of m, n, /, and p the dual is a very large linear program. Fortunately, it also has
special structure which can be used very effectively to greatly reduce total
computational effort. Instead of requiring the (2n + 1)(m + n + /)p storage
locations that would be necessary in a straightforward analysis, this imple-
mentation requires only 2n(m + /) + 2p locations. Moreover, a straight-
forward approach would require O((m + /)np) real multiplications to determine
the most negative reduced cost (and hence the entering basic variable) in
each simplex iteration. This implementation requires only O((m + /)n) +
O((m + n + /)log 2 p) real multiplications for the same purpose. In other words
the discretization parameter p does not significantly affect the computational
effort of a single simplex iteration. The size of p impacts primarily only the
total number of iterations necessary to .each the optimal solution. The details are
given in [1].

The revised simplex method with pivoting to update the basis inverse is known
to be numerically unstable. Should a stable version become necessary, one can
update the QR factors of the basis instead. The cost is a bit more computational
effort in each simplex iteration. In practice, however, fewer iterations may be
necessary with QR updating because of its stability. Consequently, total CPU
time may not be significantly affected.

As was just described, the growth of computer storage as a function of p is
precisely 2p. This is quite satisfactory for all but the most demanding of
applications. It is possible, however, to make the algorithm's storage requirements
independent of p with slightly more computational effort per simplex iteration.
Similarly, as a function of p, the multiplication count per simplex iteration grows
as log2p, but it is possible to alter the algorithm so that this growth is independent
of p. Reprogramming the code given here to effect this modification should not
be too difficult, if it ever becomes desirable to do so. Theoretically, then, the
Discretized Problem can be solved by an algorithm whose storage requirements
ACM ThmmUm an hinatkW Softwen, VoL II, No. 3. Sepembn IM
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and multiplication count per iteration is independent of the discretization param-
eter p; only the total number of iterations need remain dependent on p.

There are four subroutines in the package.

CAPROX This is the main routine that implements the revised simplex
method to solve the dual of the Discretized Problem.

CPAIRS This subroutine prints the optimal basis names (if requested) of
the Discretized Problem so that natural pairings (see (1]) in the
optimal basis are immediately apparent.

CEND This subroutine stores the best computed solution in the proper
location prior to exit from CAPROX.

PABS This is a subroutine that solves the optimization subproblem (9)
for a given complex number u; that is, it computes the maximum
in (9) and also the' minimal clockwise angle 8j for which this
maximum occurs.

These four routines must be used together, but only CAPROX need be called by
users of the algorithm. They have been tested on the VAX 11/780, and they have
all been verified by the PFORT verifier [41 for portability.

In general, p cannot be taken equal to 2 without losing the desirable approxi-
mation properties of the Discretized Problem. In some special cases letting
p = 2 will work, for example, when the problem is entirely real valued. From
(10), forp = 2 we have 01 = 0 and 82 = ir, so that I U I = I u I when u is real-as
it always will be in real valued problems. For this reason the implementation
allows LOGP = 1 as a legal input. Most problems, however, will require that
LOGP _> 2 for successful convergence to a desirable solution.

For those applications in which the solution vector z must be real valued even
though the matrices A and B and the vectors h, g, and f are all complex, a
different but highly similar set of FORTRAN subroutines has been provided.
The four subroutines in this package are KAPROX, KPAIRS, KEND, and
PABS. The routine PABS is the same one referred to above. All four routines
must be used together, all have been tested on the VAX 11/780, and all have
been verified by the PFORT verifier. These routines require less storage and are
significantly faster than the more general problem allowing complex solution
vectors.

2. EXAMPLE
The following numerical example (not included in (11) is a constrained complex
function approximation problem on a disconnected domain. We approximate the
constant function 1 by polynomials of degree n, n Z 1, which have zero constant
terms. The domain is the union of a circle with center at 2i and radius 1 and a
square with center at -2i and sides of length 2. In addition, bounds are placed
on the magnitudes of the coefficients of the approximating polynomial as well as
on the magnitude of its first two derivatives evaluated at the point 1.

To pose this problem in the form (1)-(4), we must first discretize the domain
boundary. Rather arbitrarily, we take 125 data points equispaced around the

ACM Tranations on Mahomatkal Softwam. Vol 11. No 3. Sepsebw IM.
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circle and 160 data points equispaced around the square. This gives about the
same spacing (as measured by arc length) on both the circle and the square.
Explicitly, for precision's sake, the data points on the circle are

and the data points on the square are

- [ .- 1). 1
u125+j- (j -) '  i, j ... 1, 40,

u+.a -- 1+-3 . j/,1, j40

Note that both the continuous domain and the discrete domain are symmetric
about the imaginary axis.

The components of the solution vector z of (1)-(4) represent the coefficients
of the approximating polynomial in this problem. Hence, the inequalities (2) are
written simply

L-,1,j- 1, ... ,285,

U,
, - j- 1,...,28M.

L UL7 J
The general bounds (3) express the derivative constraints by defining[I - 0]

B, 3 , B36 6

Lnj ~ n(n - 1)J

g, -= 0, c, -c2 - I.

ACM Tnnsm on. Mauimatiu Soatw , VoL II. No, 3. Sa pemur ISIL
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The coefficient bounds are expressed by the inequalities (4); for illustrative
purposes, we take

di -= s..... n.

Ma'inally, we set p = 1024 and solve the Discretized Problems for e** and z*.
See Table I. For 1 : n _ 4, the problems might as well lack constraints of type
(3) and (4) since these constraints are inactive at the optimal solution. For
5 :s n _ 8, exactly one constraint of type (3) and one of type (4) are active at the
solution. Optimal vectors z** for n = 4 and n = 8 are given in Table II.

The discretized complex u-domain is symmetric about the imaginary axis.
Hence, from [5, pp. 26-27], if general bounds (3) and simple bounds (4) are made
so loose that they are never active at optimal solutions, this problem must have
solution vectors z with alternately pure real and pure imaginary components. As
Table II clearly shows, this effect need not occur when constraints of type (3)
and (4) are active at optimality.

Under the additional requirement that the solution vector z be real valued, the
same problem was solved using subroutine KAPROX. The results are summarized
in Tables III and IV. We note that simple bounds (4) are not active for
1 s n s 8 and the general bounds (3) are not active for 1 : n _ 7. In this problem,
when the bounds (3) and (4) are not active at optimality, every real solution
vector must have odd numbered components which are zero. (This follows easily
from symmetry properties in the underlying u-domain.) Clearly, from Table IV,
when a general bound (3) is active, the odd numbered components need not be
zero.

The coefficients for n = 2 in Table IV deserves explanation. From Table III it
is apparent that the error in the best (real) approximation is 1, so it must be the
case that both coefficients are zero. So why is the second coefficient, z2, equal to
-0.001534? This is an effect of the discretization process and the fact that
coefficients need to converge only linearly as p goes to infinity. Closer inspection
of the problem solution shows that the active constraint of type (1) for j = 126
is a point where the upper bound (12) is attained. Since u, 26 1 -/flu = 1,
z, = 0, e* = 1, andp = 1024, we have

IzA2 - fl 2 u1 iE** sec (13)P

or

I - 2(1 - i)21 = sec 1--

Solving for z2 gives

tan - -0.00153398.2 1024

It would appear that z2 satisfies (13) for all p; if so, it will never equal zero
precisely and converge to zero only linearly.

ACM Transactions on Mathematical Softwere, VoL 11, No. 3. September 1965.
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Table 1. Optimal Complex Solutions Using Subroutine CAPROX

Time in seconds
Order e = optimal Iterations (VAX 11/780)

1 1.000000 3 1
2 0.973568 41 4
3 0.951666 84 8
4 0.905695 169 18
5 0.848662 219 22
6 0.848541 312 33
7 0.827420 708 87
8 0.825552 753 108

Table II. Optimal Complex Solution Vectors z Using Subroutine
CAPROX

Z*8
component n = 4 n-8

1 .000000 + .087000 i .040618 + .055840
2 -. 195483 + .000000 i -. 199848- .007808 i
3 .000000 + .026738 i .020761 + .073041 i
4 -. 014866 + .000000 i -. 020794 -. 006209 i
5 .003313 + .014802 i
6 .001217 - .001490 i
7 .000184+ .000917 i
8 .000186 - .000105 i

Table III. Optimal Real Solutions Using Subroutine KAPROX

Time in seconds
Order 4e = optimal f Iterations (VAX 11/780)

1 1.000000 2 1
2 1.000000 12 2
3 1.000000 5 1
4 0.977278 49 6
5 0.977278 44 5
6 0.948679 74 9
7 0.948679 71 9
8 0.877424 157 18

Table IV. Optimal Real Solution Vectors z Using Subroutine
KAPROX

2**

component n-n2 n - 4 n - 6 n-8

1 0.000000 0.000000 0.000000 0.073535
2 -0.001534 -0.105599 -0.155179 -0.193224
3 0.000000 0.000000 0.051395
4 -0.011453 -0.025029 -0.051975
5 0.000000 0.008079
6 -0.001251 -0.006946
7 0.000462
8 -0.000372

ACM Transactions on Mathematical Softwaer, Vol. It. No. 3. September IM68.
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Abdtract
We examine iterative methods for solving sparse nonsymmetric indefinite systemis of linear

equations. Methods considered include a new adaptive method based on polynomials that
satify an optimality condition in the Chebyshev norta, the conjugate gradient-like method
G)ARES, and the conjugate gradient method applied to the normal equations. Numeical

exeients on several non-seif-adjoint indefinite elliptic boundary value problems suggest that
none of these methods a dramatically superior to the others. Thewr performance in solving
moderately diffcult problemis satisfactory, but for harder problems their convergence is slow.

L Intredmetla.

In irecent a years there has been significant progress in the development of iterative methods
for solving sparse real linear system of the form

Au = b.,(.1

where A isa isnsyminetric matrix of order N. One key to this progress has been the derivation
of polynomial based methods, Le- methods whose in-tn approximat solution iterate has the
form

Us. = so + q,,,-1.(A)ro. (L2)

where u is an initial guiess for the solution, ro = b - Au0 , and 9, 1 as a real polynomial of
degree mn - 1. The residual rm, =1b.- An,. satisfies

r.. = II- Aqap,(A)1r0 = p.(A)ro, (1.3)

where p~m isa real polynomial of degree mn such that pm,(O) =1. Applying any norm to (1-3)

IrmA pni(A)I~r.

Moreover , if A is diagonalizable as A = UAU- 1 , then

Lpn,(A)I = IUPn,(A)U11 S: 3uIlU-'l max IN01
Aewr(A)

Theffak - i Pes lin aspal wasppated by the U. S. 0Gm of Navl Ramearh anaercoua NO14-
M-K011, by &be U. & Amy Reanhl Officed mbdk oarc DAAG-8".177 amd by the Naval Uadawater
Syala mw b~adeps&Md Rawn Proead AiOrS
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so that

Itrml <-IU[[llU-1l max)IPp',(X) Ilroll. (1.4)
AEv,(A)

Thus any polynomial prn that is sufficiently small on the eigenvalues of A is a good candidate
for generating an iterative method.

The conjugate gradient and Chebyshev methods are well-known polynomial-based meth-
ods for solving symmetric positive-definite systems for which the residual polynomials {Pm}
have desirable optimality properties 18). Generalizations of these techniques have been devel-
oped for solving both symmetric indefinite systems (see e.g. [3, 4, 17, 18)), and nonsymmetric
systems with definite symmetric part (A + AT)/2 (see e.g. [5, 8, 14] and references therein).
In the latter case, all of the eigenvalues of A lie in either the right half or the left half of the
complex plane. Sparse linear systems that both are nonsymmetric and have indefinite sym-
metric part arise in numerous settings. Examples include the discretization of the Helmholtz
equations for modelling acoustic phenomena [1] and the discretization of the coupled par-
tial differential equations arising in numerical semiconductor device simulation 1121. Gradient
methods that have been proposed as solvers for such problems include the conjugate gradient
method applied to the normal equations (CGN) 191, the biconjugate gradient method [7], the
restarted generalized minimum residual method (GMRES) 1201, and new methods presented in
[11, 26]. Smolarski and Saylor (221 and Saad (19] have proposed adaptive polynomial iteration
methods of the form (1.2) using polynomials that are optimal with respect a weighted least
squares norm. In this paper, we introduce a polynomial-based method, PSUP, that computes
a polynomial that is nearly optimal with respect to the Chebyshev norm on a region containing
the eigenvalue estimates and then uses this polynomial in (1.2). We compare its performance
with the two gradient methods CGN and GMRES.

In Section 2, we give a brief description of the gradient methods CGN and GMRES. In
Section 3, we describe the new PSUP method and several heuristics developed to improve its
performance. In Section 4, we describe numerical experiments in which these three methods
are used to solve some non-self-adjoint indefinite elliptic problems, and in Section 5 we draw
conclusions based on the numerical tests.

2. Gradient Methods

In this section we briefly review two conjugate gradient-like methods for solving nonsym-
metric indefinite systems. The conjugate gradient method [9] is applicable only to symmetric
positive definite linear systems. For nonsymmetric systems, it can be used to solve the normal
equations ATAx = ATb. The scaled residuals {ATrm) satisfy

ATrm = pm(ATA)ATro,

where p, is the unique polynomial of degree m such that pm(O) = I and 1rMI1r 2 is minimum. As
is well known, the condition number of ATA is the square of that of A. Moreover, the standard
implementation of CGN requires two matrix-vector products at each iteration, one by A and
one by AT, plus SN additional operations. The storage requirement is 4N words. The depen-
dence of CGN on ATA has led to efforts to find alternatives that are more rapidly convergent
and less expensive per step. For nonsymmetric systems with positive definite symmetric part,
several methods have been shown to be superior to CGN (5].

GMRES is a method proposed for solving nonsymmetric indefinite systems that avoids
the use of the normal equations [20). Given an initial guess, uo, for the solution, with residual
ro, this method generates an orthogonal basis {vl,..., vm} for the Krylov space

Km= span{rO,Aro,..., Am-lro}
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using Arnoldi's method. Let v, = ro/IrOII2 . The Arnoldi process computes for j = 1,...., m

hij = (Av,,v ), i = 1...

i

i=1

hj~lj = IIj+11l2,
vj+l = fj+I/hi+I,i.

GMRES then computes an approximate solution

m

Um = Uo + E cjv,, (2.1)
j=1

where the scalars _aj = l are chosen so that I rmII2 is minimum. These scalars can be computed
by solving the upper Hessenberg least squares problem

mi jliro 112e1-m12

where el = (1,0 .... O)T E Rm+l and Am is the Hessenberg matrix of size (m + 1) x m whose
(i,j)-entry is hii [20]. By the choice of basis and the minimization property, rm = pm(A)ro
where ptn is the real polynomial of degree m such that pm(O) = 1 and Pm is optimal with
respect to the residual norm Irm [2 (c.f. [81 for other formulations of this optimal iteration).

In a practical implementation, the dimension m of the Krylov space is fixed, and the
GMRES iteration is restarted with Um in place of u0 . This is the GMRES(m) method. Defining
one "step" to be the average of the m-fold iteration divided by m, the cost per step is (m +

13 + 1/m)N operations plus one matrix-vector product. It requires (m + 2)N words of storage.
We remark that the Arnoldi process was originally developed as a technique for computing

eigenvalues [271. Let Vm denote the matrix whose columns are the m vectors generated by the
Arnoldi step in GMRES(m), and let Hm denote the square upper Hessenberg matrix consisting
of the first m rows of Hm. Then Vm is an orthonormal matrix of order N x m that satisfies

VZ AV, = H,,. (2.2)

Relation (2.2) resembles a similarity transformation, and Arnoldi's method consists of using
the eigenvalues of Hm as estimates for (some of) the eigenvalues of A. Suppose A = UAU -

for diagonal A and ro is dominated by m eigenvectors {u 3 } =, with corresponding eigenvalues
{_i }P . Then the residual after m GMRES steps satisfies [6]

lrII2:5lll -< 11Ulr-'ll2 C. 11C112
where

m
C. = max [I I /Aj-l/ll

k>m,=
1

and e is orthogonal to {u,}7= 1. Loosely speaking, GMRES(m) damps out from the residual

the eigenvectors whose eigenvalues are computed by Arnoldi's method.

3. The PSUP Method

The gradient methods just described compute iterates and residuals that satisfy (1.2)
and (1.3) (for CGN, with respect to ATA) in which the polynomials are built up recursively
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witbout explicit computation of their coefficients. In this section, we describe an alternatim'
iteration that computes explicitly the coefficients of a polynomial q,,_-(z) for which PM,(z) =
I - a1 L-(z) issmall a the spectrum o(A). In the following, we will refer to the polynomial

_1 (z) of (1.2) as the 'teration polynomiar and to the polynomial p.(z) = I - ta,- (z)
of (1.3) as the "residua polynomial'

Suppose a compact region D C C contains aJA). Let pm be a polynomial of degree m
that satisfies ^'(0) =[.I = ()P =,- < L.

As is evident from (1.4), an iteration having p., as its residual polynomial will result in a
decrease of the residual norm if e is small enough- The best possible iteration polynomial with
respect to this norm (the Chebyshev norm) is the solution to the minimax problem

e = min ma-il - z,.-(z)I. (3.1)
9in-i zCD

Let q,_(z) = Ni-1 e -z. The solution to (3.1) is also the Chebysber solution to the infnite

system of equations
r-I

i=0

Only the boundary 0D need be considered because of the maximum modulus principle.
The PSUP method uses an iteration polynomial obtained from an approximate solution

to (3.1). We briely summarize the technique used, details can be found in [24). First, (3-2) is
replaced by a finite dimensional problem

Z i& = =1, z E aDM. (3.3)
i=0

where aDM i a finite subset of D ontaining M points, M > m. Equation (3.3) is an
aordetermmned system of M equations in the m unknowns {a - The Chebyshev problem

for (3.3) i gives by
n-I

m max 'ila (3.4)
f6 3 ) Ze9DM ,

Second, equation (3.4) is solved apoiateFly usoing a semi-infinite linear programming
proach to complex approxmation, which is based on the identity IwI = maxo <2, e(we),
w E C. Le e ={D,... , Op} C 10,2,r), and defi the &isrctizad Ugte VUe

Pje = max Re(we-).

Consider the discretixed problem

{s, s--a , j=8

where the absolute value in (3.4) is replaced by the disnetized ahboute value. This gives rime

to a linear program for (-)". Let e denote the minimax value of nI -'1 ai+'. -i1 at

the solution to (3.4), and let 4 denote the minimax value for (3.5). It can be shown that

I,,le _ w 5 I,, I I,,,1- 3/)
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for all W E C, and couasequentl that

4: ts 5C s4 w(a/2),

where a isthe smallest difference (mod 2iu) betwen two neighboring angles in 0. The upper
bounu are sharpest for given p when e consists of the p-th roots of unity, go that a = 2iz/p.
We use thi choice of 0 in the following, with p = 256 go that sec(a/2) = 1.000075.

The dual of the LP (3.5) can be written in the form

min Re~eTScel
SEaM XP EL

subject to- S O>, Q ?!O0 ZTSCeo 0E C-

and Q+E2:Sk=1,
ij=1k=1

where e~f E CVMi the vector whose components are all 1, Z E CMx~ is the coefficient matrix
of (3.4), and e" IE C' denotes; the vector whose i-th component is Cei- Q is a slack
variable which mu1st be 0 if t;> 0. A straightforward application of the simplez method to the
dual requires O(Musp) multiplications per simplex iteration and 0(Mvnp) storage locations.
In 1241, it is show that the factor p can be eliminated from, these estimates by exploiting the
special structure of the dual. These economies leave unaltered the sequence of basic feasble
solions that the simplex: method generates en route to the solutin. Moreover, they simplify
further if the coefficients (a.) are required to be real- In practice the number of simplex
iterations has been observed to be 0(m) so that the computational effort to compute (oil
using the algorithm in 1231 is 0(Mu 2 ). In the experiments discussed below, both M and ns
are significantly smaller than the order N of the inear system so that construction of the
coefficients of the iteration polynomial is a low order cost of the solution proces.

Given uO and ro, the basic PSUP iteration consists of repeated application of the iteration
polynomial qM,1 as folows:

Altoithm 1: The.PSUP iteration-
For k -1.2,.. Do

U = akI + q-(~(-)
rkn= b - Ay-IM

The actual computation ur +- q,.(A)r is performed using Hlomer's rule-
4,,- -r

For j = I to us -1I Do
9 4 As'
W -I-r+W

The rn-fild PSUP iteration requires us matrix-vector products and m scalar vector prod-
ucts, so that the t age cost is one matrix-vector product and one scalar-vector product.
PSUP requires 4N storage, for u, r, v and w.

In practice, the PSUP Ateration needs estimiates of the eigenvalues of A in order to obtain
the set D. Several adaptive techniques have been developed for combining an eiveirvalue
estimation procedure with polynomial iteration 16, 13, 191. We will use the hybrid technique
developed in K 6 19J, which uses Arnoldi's method for eigenvalue estimates.

First, the Arnoldi pros is used to compute some number kj of eigeaualue estimates
prior to execution of the PSUP iteration. Given these estimates, a set D is constructed that
contains them, from which the PSUP iteration polynomial qI. is computed. (We discsi
our choice for D below.) One possible strategy is to perform the PSUP iteration with q6-
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until the iteration converges. However, there is no guarantee that all the extreme eigenvalues
of A are computed by the Arnoldi procedure. The set D is contained in the lemniscate region
[101 Lm = (z E C I JPm(z)t < c, where and p= 1 - zqm.i(z) solve (3.1). Moreover, the
modulus of Pm is greater than c outside Lm and tends to grow rapidly outside Lm, at least
in some directions. If an eigenvalue A lies outside Lm and Ipm(A)i is large enough, then the
PSUP method will diverge.

One way to avoid this behavior is to invoke the adaptive procedure: if PSUP diverges
then ka additional Arnoldi steps are performed to compute ka new eigenvalue estimates. These
estimates are then used to construct a new enclosing set D and a new iteration polynomial
qm-I, with which the PSUP iteration is resumed. A good choice for a starting vector v1 is the
last residual from the previous PSUP iteration (normalized to have unit norm). For if PSUP
diverges, then the residual will tend to be dominated by the eigenvectors whose eigenvalues are
not being damped out by the PSUP polynomial. Moreover, this technique can be improved
using GMRES. Once the ka Arnoldi vectors are available, the GMRES(ka) iteration (2.1) can
be performed at relatively little extra expense. This has the effect of damping out from the
residual the eigenvector components that were being enhanced by the previous PSUP iteration.

Rather than use the PSUP iteration alone, we consider a hybrid PSUP-GMRES method
that makes use of these observations. This method consists of repeated iteration of some
number a of PSUP steps, followed by a smaller number ka of Arnoldi-GMRES steps. The
initial eigenvalue estimates are provided by ki Arnoldi-GMRES steps, where ki may differ
from ka. In addition, the adaptive procedure is invoked immediately if the residual norm of
the PSUP iteration increases by some tolerance r relative to the smallest residual previously
encountered. The following is a modification of the hybrid method developed in (6 that uses
the PSUP iteration:

Algorithm 2. The hybrid GMRES-PSUP method.
Choose u0 . Compute r0 = b - Auo.
Until Convergence Do
Adaptive (Initialization) Steps: Set vj = the current normalized residual,

perform ka (or ki) Arnoldi/GMRES steps, and use the new eigenvalue
estimates to update (or initialize) the PSUP coefficients.

PSUP Steps: While (jJrjII/Jr .. i, < r))
Perform a steps of the PSUP iteration (Algorithm 1) to
update the approximate solution uj and residual ri.

For the enclosing set D we take the union of the four sets D, where DJ is the convex hull
of the set of eigenvalue estimates in the j-th quadrant of the complex plane. With this choice,
if the extreme eigenvalues of each quadrant have been computed, then all the eigenvalues are
contained in D. If all the eigenvalue estimates in either half plane are real, then the part of D
containing these estimates is taken to be the line segment between the leftmost and rightmost
estimates in the half plane.

There is no guarantee that the eigenvalue estimates computed by Arnoldi's method are
accurate. Moreover, since the PSUP residual polynomial has the value 1 at the origin, if D
contains points with both positive and negative real parts that are near the origin, then the
Chebyshev norm of the residual polynomial will be very close to 1. (See Section 4 for an
example.) We consider one heuristic designed to improve the performance of the hybrid PSUP
method on problems with eigenvalues very near the origin: we successively remove the points
closest to the origin from the set of eigenvalue estimates (and generate a smaller D) until
the norm of the PSUP polynomial is smaller than some predetermined value q, and use that
polynomial for the PSUP iteration.

There are two possible effects of this heuristic. If the deleted points are not accurate as
eigenvalue estimates, then the resulting PSUP iteration will be just as robust and more rapidly
convergent than if the deleted points had been included. On the other hand, if the deleted
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points are good estimates, then the PSUP polynomial will probably be large on the deleted
points, and the iteration will not damp out the residual in the direction of the corresponding
eigenvectors. However, if the dimension of this eigenspace is small (say, 2 or 3), then the
iteration should damp out the residual in all other components, so that the residual should be
dominated by a small number of components. In this situation, a small number of GMRES
steps should damp out these dominant components. We will refer to the hybrid PSUP method
with this heuristic added as the GMRES/Reduced-PSUP scheme.

We note that with the methods of 1241, (3.5) can be also solved with the constraint
M-1

maxI zI +laj- J_ <1,E E j =

where E is some finite set. In particular, if E is the set of deleted eigenvalue estimates in
the GMRES/Reduced-PSUP scheme, then the PSUP polynomial on the reduced set D can
be forced to be bounded in modulus by one on the deleted points. In experiments with this
version of the GMRES/Reduced-PSUP iteration, we found its performance to be essentially
the same as that of the unconstrained version described above.

4. Numerical Experiments

In this section, we compare the performance of CGN, GMRES(m), GMRES/PSUP and
GMRES/Reduced-PSUP in solving several linear systems arising from a finite difference dis-
cretization of the differential equation

-Au + 2PIux + 2P2 uy - Psu = I, u E fn, (4.1)

u = g, u E all,

where 0 is the unit square {0 _ z, y !5 1}, and P1 , P 2 and P3 are positive parameters. We use
f = g - 0, so that the solution to (4.1) is u = 0.

We discretize (4.1) by finite differences on a uniform n x n grid, using centered differences
for the Laplacian and the first derivatives. Let h = 1/(n + 1). After scaling by h2, the matrix
equation has the form (1.1) in which the typical equation for the unknown uij Ft u(ih,jh) is

(4 - o)u,, - (1 + $)ui-,, + (-I + O)u,,,- (1 + j)uij-1 + (-1 + -Y),+= h2j ,

where P = Plh, -y = P2h, a = P3 h2 and fij = f(ih,jh). The eigenvalues of A are given by [21]

2V1 - 2 cos--- + 2 _ ,2 coan-l, 1< t<n.

t+1 1 _,t<n

The eigenvalues of the symmetric part are

aa" tir
4-a + 2coe-- + 2cos-, < ,t _n.

n + n +

The leftmost eigenvalue of the symmetric part, corresponding to a = t = n, is given by

(27 2 - P3)h2 + o(h 4 ),

so that for small enough h the symmetric part is indefinite when P3 > 27r 2 .
Six test problems corresponding to six choices of the parameter set {P, P 2, Ps are

considered. We use the three values P3 = 30, 80, and 250 together with each of the pairs of
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values (P1 = 1, P2 = 2) and (P1 = 25, P2 = 50). For all tests, n = 31, so that the orcler
N = n2 is 969. For all six test problems, the coefficient matrix A is indefinite, and the number
of negative eigenvalues of (A + AT)/2 i increasing as P3 grows For the first choice of the
(PI, PI) pair, A is mildly nonsymmetric and its eigenvalues are real, and for the second choice,
A is more highly nonsymmetric and has complex eigenualues.

Although it is not our intention here to examine precanditioners for indefinite systems,
preconditioning has been shown to be a critical factor in the performance of iteratie methods
13, 5, 151. In our tests, we precondition (1.1) by the finite difference discretiaion of the
Laplacian- That is, the iterative methods being considered are applied to the prewaditiomd
proklem

AQ- 6, z = Q-4,

where Q is the discrete Laplacian- (See 121 for an asymptotic analysis of this preconditiomer
for finite element discretisations.) The preconditioned matrix-vector product then consists of
a precnditionig solve of the form Q-1v and a matrix multiply of the form As. Since (I is
a square domain, the preconditioning is implemented using the block cyclic reduction method
at a cost of 3nlog2 n operations 125]. We have confirmed numerically that the preconditioned
matrix AQ - 1 in all six problems has indefinite symmetric part.

We use the following parameters for the hybrid GMRES-PSUP iteration. In an effort
to obtain the dominant and subdominat eigeuvalnes of each quadrant at the outset, the
initialization step consists of eight GMES steps (4 = 8) giving eight eigenvalue estimates.
All subsequent calls to the adaptive procedure consist of four GMRES steps (k* = 4). For
all tests with PSUP, we use a residual polynomial of degree four (m = 4), and allow at most
a 32 PSUP steps (or eight successive applications of the PSUP polynomial). The adaptive
procedure is invoked if the residual norm increases during a PSUP step (r = 1), or after s
steps are performed. We use M = 100 points for the discretized encksing set 8DM, and
allocate them so that the number of points in each quadrant is approximately proportional
to the circumference of the convex hull in that quadrant For subsets of D that overlap on
quadrant boundaries (e.g. if a line segment on the real line is shared by regiom in the first and
fourth quadrants), the shared boundary is discretized twice. For the GdlW/Reduced-PSUP
scheme, in which eigenvalue estimates closest to the origin are deleted until the mnimanom
is less than some tolerance q, we examine q = .5 and .3. For this scheme, we take k. to be
two plus the number of eigenvalue estimates deleted. We use the notation GMRES-PSUP(m)
(with m = 4) for the nunreduced" scheme, and GMRES-PSUP(m, q) for the reduced version.

We examine GMRES(m) for m = 5 and m = 20. Recall that the latter version generates
a higher degree optimal polynomial at the expense of a larger average cost per step.

All numerical tests were run on a VAX 11-780 in double precision (55 bit mantima). The
initial gums in all runs was a vector so of random numbers between -1 and 1. Figures 1 - 6
show the performance of the methods measured in terms of multiplication counts, for the six
problems (also numbered 1 - 6). Note that the horizontal scale of Figure I is wider than the
others, and the scales in Figures 5 and 6 are slightly narrower. Table 1 shows the iteration
coants needed to satisfy the stopping criterion of

Bih~g < 10_6.

F01 2

A maximum of 100, 150, and 200 iterations were permitted for the CGN, GMRES and PSUP
methods, respectively. (For these iteration counts, CGN, GMRES(20) and GMIESPSUP(4)
performed roughly the same number of operations.) Our main observations on this data aw :

1. Problems I and 3 are solved efficiently by nearly all the methods, but for the other four
problems convergence is slow.
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2. In gemeral, the hybrid GMRE-PSUP(m) scheme is weaket. The plateausi Fires 3,
5 and 6 for th- method cornespond to the PSUP step, for which comn v e i very slow.
The "reduction" heuristic impoe the performance, bat the imprormnent a due largely
to increased eectivene of the GNMES pat of the iteratio (e-g. in the steep drops of
Figures 2 -4), and the improved performance is not better than that of GM alam.

3. On the whole, GMRES(20) and CGN are the most effectie methods for these problfm,
but they ae not dramatically superior to the othes GMRS(20) conves more rapidly
than GMRS(5).

Encluding storage for the matrix and right hand side, the storaw rquirment for the methods
€ouidered m~

CGN: 4N

GMRES(5): 7N
GMNES(20): 22N
AD PSUP variants: ION

The high ost of the PSUP methods is due to the eight imtialng GMRES steps.
Although the GM S/ReducedPSUP (PSUP(m., q)) scheme not as fa as pure GM-

RES, the reduction heuristic does have its intended effect of iproving upon the hybrid scheme
We brielly emine the effect of the heuristic on Problem 3. focusing on two cur m segmnts
of Figure 3: the plateau of cumve D (GMRES-PSUP(4)) between multiplication counts 200000
and 300000, and the last plateau in curve E (GMRES-PSUP(4,.5)). For curve Do return
from the adaptive step at about multiplication count 300000, the real parts of the eigeovalue
estimates lie in the intervals [-3j-.33J and 10.4,11, the Chehyshev norm of the reidual polyno-
mial is .98, and convergence is slow. For curve E, on retur from the adaptive step prior to the
last plateauof the curve, the real prub of the eigenvalue estimates lie in the intervals [-3,-.56
and 1.05,.971, and the Chebyshev norm is .9& The effect of deletion of points is shown in Table
2. The Cbebyshev norm is very large when there are points near the origin, and it dedines as
theme points are deleted. The deletion of points does not significantly hurt the PSUP part of
the iteration and it strongly enhances the effect of the GRES steps.

Problem # 1 2 3 4 5 6

CGN 13 >100 28 >I00 >100 >100
GMRES(5) 13 >150 46 >150 >150 >150

GMRES(20) 10 111 17 119 >150 >150
GMRES-PSUP 16 >200 199 >200 >200 >200

PSUP(4,.5) 16 >200 62 >200 >200 >200
PSUP(4,.3) 16 >200 70 >200 >200 >200

Tabl I- Iteration counts.

Deleted Intervals Containing Chebyshev
Points Real Parts Norm

- 1-3, -. 1, l.0,.97l .96
.05 1-3, -.561, 1.34,.97 .76
.34 1-3, -.561, 1.61,97 .5

-.56 1-,-446, 161,971 .33

able 2. Effect of point deletion on GMRES/Reduced-
PSUP(4,.5) for Problem 3.
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2 io-loaio

A -CGN D- mmREs-p(t4I
a - QRES(53 E- NEPaR4O5
C -GNES (20) F - GUES-1PIC..31)

Figure 1: P1  1, P2 =2, P8 30

1w~

at'olotin
A -G NuHtzE1oo4 lon
8 GHM(S) E - GHRES-PS4W(4.0. S)
C - fHWME20) F - W~rIEB-Pstlp(4.0.S)

Figure 2: P1 = 25, P2 = 50, Ps = 30
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tcPII

In.

A - CGN GRSMP
a - CIRES(5) E - ORES-MPU(4.0.5)
C - GNRES(2O) F -GMRS~(4PC.O.3)

Figure 3: P1  1, P2 =2, P3 80

C2 o

0 - GMRESI5D e - GMHRES-PS1PH4.0.5j
C - GMRES120) F - GWIES-PSUP14.O.3)

Figure 4: P1  25, P2 = 50, P3 = 80
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rvg. P, 2.P 5

a - am n-m eam vWn

£ -UIm F - ON314.S.3)

Figur &: P 1 = 25, A~ 2A Ps = 250
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VWe remark that we also considered other variants of the PSUP iteration. In experiments
with degreesm = =6 and 10 the performance of PSUP was essentially the same.* Moreover, =s
we noted in Section 3, a variant ofithe GMRESIReduceAd-PSUP in which the PSUP polynomnial
is constrained to be bounded in modulus by one on the set of deleted eigenvalue estimates
displayed about the same behavio as the unconstrained version. Similarly, we tested ISQR

[6,a stabilized version of CGN, and found that its performance was nearly identical to CGN.

5. Cmllhnis
The GMRES and PSUP methods are iterative methods that are optimal in the clas

of polynomial-based methods with respect to the Euclidean or 6 norrma respecty for
arbitrary nonsigular linear systm For inear systems in which the coefficient matrix is
either symmetric or definite (or both), these types of methods are effective solution techniques
13, 5). In particular, they are superior to solving the normal equations by the conjugate gradient
method. In the result of Section 4, the methods based on polynomials in the coefficient matrix
are not dramatically superior to CGN, especially for systm that; are both highly nonsymmetric
and highly inidefinite. GMRM appears to be am effective method than PSUP

We note that the best results for other classe of problem depend strongly on preconcfi-
tioming. We sed the discrete laplacian as a preconditiomer in our experiments, and the large
iteration/work counts in the result show that this is not a&good choice for the given mesh size
when the coefficients in the differential operator are large. We believe that improveet in

rn n itioneas are needed to handle this class of problen.

ei sen tof wMt depm ee wer e umale to geerate he palyuauial coefiieta We hefir e w iio of
the pnes of n bek Iactios. faao (3-5)11M couffiiose for hawg nq zmj4 111. otion, the behm-9ti
bau~d on Uoorel rule nieaw 8- ivn inoLAhlty for large na.
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Extremals and Zeros in Markov Systems are Monotone
Functions of One Endpoint

ROY L. STREIT

Abstract. The synthesis of optimum field patterns for

discrete linear antenna arrays leads naturally to the study

of the behavior of generalized Qiebyshev polynomials as a

function of one endpoint of the interval of definition. Of

particular importance in this application is the variation of

the zeros and the extreme points of the generalized Chebyshev

polynomials as the left-hand endpoint of the interval is

shifted to the right. All the zeros and all the extreme

points of the classical Chebyshev polynomials defined on the

intervals [t, b] are strictly increasing functions of t. In

Haar Systems, this property does not hold, but in Markov

Systems with unit element it does. An apparently new extremal

property in Haar Systems is proved and then used to show that

In every Haar System the first zero must be an increasing

function of t. If, in addition, the Haar System has a unit

element, then the first zero must be strictly increasing.

INTRODUCTION AND MOTIVATION

Visualize any number M of fixed points in the plane,all

collinear and spaced symmetrically about the center of the

shortest line segment containing all the points. Take the

origin to be the center of this smallest line segment. If

each of these points is taken as the position of a sensor of

an antenna array, then the directional response of this array

is directly proportional to the absolute value of

387
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THEORY OF APPROXIMATION

N
P(u) Z akcos u ,O<u<r (1)

k-i

where N - + 1 . C is a constant multiple of the
[A 2-j k

distance of the k-th point to the right of the origin, the

variable u can be regarded as an angle measured from a

normal to the line of points, and the coefficients ak  are

any real constants. The coefficients ak are the design

parameters and are chosen to enhance the directionality of

the array.

Usually, the direction perpendicular to the line of

points is the desirable direction and all other directions

are of less interest. Thus, coefficients a k are chosen

so that P(u) has its largest magnitude near or at the

point u - 0 , while keeping P(u) as small as possible

in magnitude elsewhere. With this objective in mind, the

u domain is split into two parts: the "mainlobe" region

(0, u0 1 and the sidelobe" region [u0 , il . The coef-

ficients a k are defined to be optimal if and only if the

ratio of L norms

ff P(u) 11to "0 P(u) 7 (2)

is the largest possible for any coefficient set. Theorem 2

of this paper gives conditions under which this ratio is

maximized by minimizing the denominator independently of

the numerator. That is, if the set of cosines in (1) forms

a Haar System, then the optimal coefficients are propor-

tional to the coefficients of the generalized Chebyshev

388
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polynomial for the interval (u0, 7r] .With these optimal

coefficients, the peak point of a sidelobe is just an extreme

point of a uniform function approximation.

The ratio (2) is therefore maximized as a function of

the parameter u0 dividing the mainlobe and the sidelobe

regions. In engineering applications, it is important to

know how this ratio changes with u0  and how this change

shows up in the actual field pattern (1). Theorem 3 gives

necessary and sufficient conditions for the maximum value of

the ratio (2) to be a strictly increasing function of u0

while Theorem 1 gives conditions under which all the zeros

and all the sidelobes of the optimal field pattern shift

strictly to the right with increasing u0 . Finally, since

the first zero of P(u) is sometimes used as a measure of

the mainlobe region [0, u0 ] , Theorem 4 gives weaker con-

ditions under which this measure is also strictly increasing

with increasing u0 ,

Pokrovskii [1] studied this problem in detail, but for

equispaced sensors only. In the equispaced case, a transfor-

mation of variables reduces the problem to a study of ordinary

polynomials. An explicit solution to the maximization of the

ratio (2) for equispaced sensors was given by Dolph (2]. A

generalization of Dolph's method to symmetrically spaced sen-

sors can be found in Streit [31, (4].

THE MATHEMATICS
-l

Let Tn (u) - cos [n cos ul be the Chebyshev poly-
nomial of degree n on the closed interval [-1, 1] . Then

the Chebyshev polynomial on the closed interval [t, b] is

just

389
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T (2 b tt<x bb- / , t<x<b 

which has the n zeros (counting from left to right)

k-i,...,• n,

and the (n + 1) extrinal points

(t)- L - cos (n - k + 1)

+ b +cos (n-k+)2

k - 1 . . . , n+

Dy inspection, except for Xn~1 (t) , all the zeros and all
the extremals are strictly increasing continuous functions of

the left-hand endpoint t .Theorem 1 extends this property

to more general spaces.

Let C[a, b] be the linear space of all real valued and
continuous functions on the closed finite interval a, b].

Byeinardus (5] defines the finite or infinite sequence of

linear subapaceb V , n 0 , 1, 2, . . aof Cva, b] to

n

390
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be a Haar System provided it has the three properties:
i. v Cvl

i.Vn CVn+1
ii. The diension of V is n + 1n
iii. V satisfies the Haar condition, i.e., f CVn n

and f $ 0 implies that f has at most n zeros

in (a, b].

Define V n(t) to be that linear subspace of C[t, b] obtained

by restricting every function in Vn  to the interval

[t, b] C [a, b]. Thus, V n(t) forms a Haar System for each

tC[a, b). For fC C(a, b], define

ftI -ma I f(x) I ,.S-CCa, bi
XgXC

and

pn (f; t) - min I1f - s II [t, b]
gCV(t)

A Haar System with unit element is a Haar System for which

V contains the constant functions. Zielke (6] proves theo

following lemma in a more general form.

Lamma 1. If V is a iaar System with unit element on then

closed interval (a, b), and if f C Vt\Vn-1 , then there

exist at most (n + 1) points xk C (a, b] such that f is

strictly monotone on each interval [xk, xk+] , k - 1

2,..., n + 1 .

Define S(t) (x) 1 1 for all x and t . The following
0

lema, due to Meinardus (7], (5], is an Immediate consequence

of de la VaUe Poussin's Theorem and Lema 1.

391
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Lamia 2. For a Haar System V nwith unit element, the

functions sWt satisfying the conditionsn

a. S(t) C V Wt

n n

(SWt)

d. SW(b)- 1n

have the following properties:

1. S(t) is uniquely defined for each n > 0 and

t C (a, b).

2. SWt possesses precisely n+1 extremal paints

%()(k - 1,2,..., n + 1) in the interval It, b].
The points t and b are extremal points, and

arranging the points in increasing order

we have the alternating property

n~t (xk t)) + 5 t) (xk+et)) - o(

3. S~is strictly monotone (increasing or decreasing)
U

in xk(t) I x < xk+1(t) (k = 1, 2....,n).

Lame 1 does not Imply that V 'f is a Haar System if

V ncontains only continuously differentiable functions. Let

V0  {1} and V 1 Wfl, h) where h is any continuously

differentiable strictly Increasing function on [a, b] that

has, say, 15 inflection points in (a. b). Then VO, V1 is a

continuously differentiable Haar System, but every function

in V1'has 15 zeros in (a, b).

392
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The system V is defined here to be a Markov Systemn

with unit element on the closed interval [a, b] if V isn

a Haar System of functions continuous on [a, b], having con-

tinuous derivative on the open interval (a, b), and with the

property that the spaces VI spanned by the derivatives of
n

functions in V form a Haar System on (a, b). There-n

fore, f.C V ' and f t 0 implies that f has at mostn

n - I zeros in (a, b). Let V '(t) be the restriction of

V n to (t, b). We now prove an extension of Lemma 2 ton

Markov Systems with unit element.

Theorem 1. Let V be a Markov System with unit element on

the closed interval [a, bi. Then the functions S(t) satisfy-
n

ing conditions a. through d. of Lemn 2 also have the follow-

ing additional properties:

4. Each function xk(t) (k - 1, ... , n)is a continuous

and strictly monotonically increasing function of t.

5. The zeros zk(t) (k - 1, ... , n) of S(t)
k n

arranged in the increasing order

t z 1 (t) z z2(t) < n-1 W znlt U n(t) b

are all continuous and strictly monotonically

increasing functions of t.

6. S(t)(x)is strictly monotone(increasing or decreasing)
n

in the interval a < x < x 2 (t)

Proof. To prove property 6, note that Rolle's Theorem implies

that [s(t)(x)]' has exactly n-1 zeros in the interval

[x2 (t), Zn(t)), and so must have none in the interval

[a, x2 (t)), because any function in Vn has at most n-1

zeros in (a, b], Thus, Snt) must be monotone in the

interval [a, x2 (t)]. The continuity of xk(t) and zk(t)

(k - 1, 2, ... , n) follows from a remark in Meinardus
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(5, p. 85]. N~ow, fix t C (a, b). By continuity, there

exists 6 >0 such that for each 0 < C <6 theaset*

V,,C) defined by

[xk.(t) - xk(t +c) if kt<xk +)

Ik( - x~~ *if kt-xk +C

[x c +I)' xk(t)] ,if xk(t) > xk(t + )

(k-i1, 2,.. ,n+1)

are pairwise disjoint. Put

S(x;C) - S (t)(xW - S (t+£) Wx

Because of property 6, S(x;c) has no zero in I I(c) and

precisely one zero in each of the remaining intervals. Thus

the intervals 1 2 (c), ... , I + e contain all the zeros

of SWxO) Because of property 2,

x1(t) -t < t + C - x1(t + C)

Let j < n + 1 be the smallest integer, such that there

exists C < 6 , e >,0 , and x J(t + E) I x J(t) . If strict
inequality holds, then the intervai(x, 1(t + e)1Xj(t + )
is disjoint from the intervals 12(e)"" 1.0... 9

but must contain a zero of S(x;e) . On the other

hand, if x J(t + 0) - x J(t) ,then S'(x;e) has a zero at

x J(t) . But Rolle's Theorem already gives S'(x;C) at

least n-i zeros, one between each consecutive pair of zeros

394
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of S(x;g) . Therefore, S'(x;e) contradicts the hypothesis

on V'(t) . Hence, J - n + 1 and property 4 follows.
n

Finally, property 5 is an immediate consequence of property 4,

for otherwise the function S(x;e) will have too many zeros.

This completes the proof.

The next object is to weaken the hypotheses of Theorem 1,

specifically, by dropping the unit element and the differen-

tiability conditions. One method of achieving this end leads

to Theorem 2. First, define ho ,hi I ... , h n to be a

basis for the Haar System V if Jh0 , hl . ... , hkJ

is a basis for Vk , k - 0, 1, ... , n . Also, the functions

S(t)are defined above only for Haar Systems with unit element.

For the general Haar System, define S(t) _ c(t).(hn + g*)

where g* C V nl(t) and the constants c(t) are uniquely

defined by

[c(t)] -1 E hn + g* II [t,b] min 11 hn + g Itb]gCV nl(t)

Theorem 2. Let V be a Haar System on the closed intervaln

[a, b] . Let Ih o , h1 , ... , hn Ibe a basis for Vn . For

fixed r and s satisfying a < r < s < t < b , define

M(t) - max 1 n(x) +

gCVn_ II hn(x) + gl [t,b]

Then

a. the ratio of norms is maximized by the best

approximation to h on It, b], namely g*CVn1

n -
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b. M(t) - IIst II [r s]

c. H n(t) is a continuous increasing function of t

If, in addition, V has a unit element, then also
n

b$. Hn(t) - j s(t)(r)

.(t) adnnProof. Suppose h CV n , h 9 S n an

11 h 11 jrs] > 1 nt 11 rL (3)
IIh II t,b] II S n')n' j

There exists a constant k > 0 such that

Ilkh I [r~s] " II 1 [r~s] , (4)

so that,because of (3) ,

11 kh 11 [1,b] < 11 S(t) 11 [t,b]"

The alternating properties of S(t) (de la Vallie Poussin's
n

Theorem) imply that both of the functions

s t)(x) ± kh(x) C Vn(t) (5)
nn

have n zeros in the open interval (t,b). But because of

(4), one of these functions also has a zero in the interval

[r, s]. Thus, one of the functions (5) violates the Haar

condition on V . This contradiction establishes that either

h S (t) or that (3) is an equality. Either way, S(t) maxi-n n

mizes the ratio of norms and part (a) is established. Part(b)
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follows easily from part (a). The continuity of M n(t) follows

from part (b). To prove that M n(t) is increasing, suppose

there exist 8 > a > s such that M (B) < Hn(a) . Then for

some constant k 4 0,

IIkS (') 1! [r,s] - Is(")ll [rs]

and

IkS( ) 1I [ ,b] > 11 S(X) II[a, b]

Hence, both of the functions

kS ( p ) (x) + SW W
n - n

have n zeros on the interval [. b]. But one of them also has

a zero in the interval [r,s], contrary to the assumption that

V is a Haar System. Thus, part (c) is established. If Vn n

has a unit element, then Lemma 1 guarantees

that S(t) is monotone in [r,s], so that (b') must be true.
n

This completes the proof.

Theorem 3. Under the assumptions of Theorem 2, for all
8>at>s,

H (a) - H (8) (6)

if and only if

s (a) (x) - s (a) Wx (7)
n n

for each xc [a,b]
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Proof. If (7) holds, then (6) follows from Theorem 2. SUDDOSe

then that (6) holds, but that (7) does not. Let x1(t) denote

the (n + l)st extremal point of S(t) counted from the
n

right-hand endpoint to the left. If h - x1 (a) > a , then
S(a) S(t) for all t e[a, h] , so that (7) holds if
n n
8 < h . Hence without loss of generality, we may take

x1 (a) - a < S - x1 (B) . Also, because x1 (t) is continuous

and Mn (t) is monotone, it may be assumed without loss of

generality that x1 (8) is strictly less than the first zero

of S(a ) and that S(a)(S)is of the same sign as S(a)(B)
n n 't (t)

Define the functions T'n)(x) = S (x).c(t) . (Thus, then n

coefficient of h is always unity.) Because T(S) I T (a)

n F(a) -Tn() lie n n
the function T(x) ---n (x) lies in Vn_I and

n n nI
cannot be identically zero. Because [8, b] is a subset of

[a, b] and T(x) 0 ,

IT~8  I IIT (0) I11 C8, b] < n [a,b] ' (8)

and because of (6)

ISn II[~] < I n II [r~s]•

Now if IT 0 )($) 1 IT( )I , then T(x) has n zeros

in [B. b] because of de la Vallee Poussin's Theorem and

(8), contradicting T(x) CVn_1  and T(x) 1 0 . Therefore,

IT(s)(O)I > I -()(B)I and T(x) has only n-l zeros inn £n

[0, b]. However, T(x) has another zero in [r, 8) because

of the Intermediate Value Theorem, (9), and the fact that

T(a)($) and T(a)(B) are of the same sign. Thus, T(x)CV l

and T(x) A 0 is a contradiction. This completes the proof.

398

-458-



EXTREMALS AND ZEROS IN MARKOV SYSTEMS

Corollary. Under the assumptions of Theorem 2, if Vn  has

a unit element, then also

co. M (t) is strictly increasing in t .

Proof. S(C ) = S ( )  cannot occur for c 8 because a and
- n 11(a
must be extremal points of S a and S ,n respectively.

The next theorem is the weakened form of Theorem 1 that

was sought earlier.

Theorem 4. Let Vn be any Haar System, and let {ho, hl,..., hn '

be a basis for the system. Let z (t) be the smallest zero

in the interval It, b] of S(t) Then zl(t) is a mono-I n I oo

tonically increasing function of t . Furthermore, if V

has a unit element, then zI(t) is strictly monotone.

Proof. Consider first the case for V without a unit
n

element. Suppose there exists B > a > a such that

z(8) < z (a) . Therefore, S(:) S S (0) and by Theorem 3,

I1 sBn I a s n IIna

I s(B)_II I1s) S1(,bs
na a > 1a

Thus, there is a constant k 0 such that

II kS-n )  (a) " I a) II {a (10)

and

Isn [O,b] n 1 joixb]
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Because z1(0) < z(t(a) , de la Valle Poussin's Theorem

guarantees that both the functions

SW + kS ( 1 ) CV (11)n - n n

have n zeros on [0, b], while (10) guarantees that one of

them has a zero at x - a . Therefore, one of the functions

(ll)violates the Haar condition of V . In the case whereU
% has a unit element, 8 > t guarantees by Lena 2 that

s (00 As (0) . The supposition that z1 (8) < z1 (a) leads

to a contradiction in the same manner as before. This com-

pletes the proof.

Finally, we note that Theorem 2 fails if V does notn
satisfy the Haar condition.

Example. The linear space spanned by the fumctions 1, sin x)

on the interval [0, 7r] is not Haar. For (r, s] - (0, ir/2],

II x + a llo, /2]

Is sin x + a I [ff/2, 7rl

for all constants a, including the constant of best approx-

imation to sin x on the internal [ir/2, 7]r , namely,

a - 1/2 . When the interval [r, s] is replaced by the

point x - n/6 , then

sin N 41n x - 1 N /6 )
sII x [0- /2, II sin x - II [,r/6,,]

Thus, the results of Theorem 2 do not hold and Mn (t) is

not achieved by minimizing the denominator.
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INTRODUCTION

Meinardus 1i, p. 291 defined functions S(x) having certain oscillatory and
best approximation properties on an interval (a, b I. The most notable
example is the Chebyshev polynomial of the first kind, T(x). In 121, Streit
studied the dependence of S(x) on the left endpoint, a, of the interval and
discussed an application to the design of linear antenna arrays. The depen-
dence on the endpoint was further investigated by Zielke 131 who obtained
stronger results. We will summarize briefly some of the theory and then
present an example to settle a certain question.

PROPER7IES OF S,(x)

Let la, b] be a finite real interval, n a positive integer and h, = 1, h2,..., h,,
f real continuous functions on la, bI such that 1, h2,..., h.) is a Chebyshev
system of degree n on [a, b] (i.e., E,"., alh, has at most n - I zeros in la, b]
unless a, = 0,..., a. = 0). Assume also that f1. hz ..., hnf is a Chebyshev
system of degree n + I on Ia, bj. Let a < t < b and let p,(x) denote the best

* The work of this author was performed while he was a summer employee of the Naval

Underwater Systems Center. New London, Connecticut, U.S.A.
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CONCERTINA-LIKE MOVEMENT 365

uniform approximation to f(x) on It, bJ by a linear combination of I.
h,..... h.. Then I1, p. 291, f-p, has exactly n + I extremals of alternating
sign and equal magnitude which include the endpoints a and b, and f-p, is
a strictly monotone function of x between these extremals. Define

S,(x)= ± f(x) -p,(x)I/ max Jf(x) -p,(x)

where the sign is chosen so that S,(b) = + 1.
If 11,h I ...., h,,f is 11 x,..., x" and la, bI = I-1, IJ, then

SA(x) = T. l t - "

Motivated by results obtained from the application of the shifted Chebyshev
polynomials to linear antenna arrays. Streit 121 studied for the general case
the movement of the zeros and extremals of S, as a function of t. In 141
Zielke showed the entire graph of S, moves to the right as t increases
(concertina-like movement) except possibly the extremal points. They. too.
must move to the right if the derivatives II. h',.f'} form a Chebyshev
system of degree n on (a, b). Of course. the right-hand endpoint of the graph
stays fixed at (b. S(b)) = (b. 1). We summarize the known properties of S,:
For each t such that a < t < b.

(a) S, is a linear combination of 1. h. ..... h.f.

(b) max,,X,, S,(x)l = 1.

(c) The best uniform approximation to S, on It, b] by a linear
combination of 11, h2,.... h. I is 0.

(d) S,(x) has n + I extremals of alternating sign and equal magnitude,
which include the endpoints t and b, and S,(x) is a strictly monotone
function of x between the extremals.

(e) S,(b)= 1.
(f) S, satisfying (a)-(e) is unique.

(g) The graph of S, moves to the right as t increases (except for the
fixed right-hand endpoint); i.e., a <1, < t2 <b, a in (-1, 1], and I <k < n
implies that the smallest z such that S,(x) = a for k distinct points in It,, z]
is strictly less than the smallest z such that S,2(x) = a for k distinct points in
112, z].

THE EXAMPLE

Proof of the existence of S, with the nice properties (a)-(g) relies heavily
on the fact that j1, h2 ,..., h., f) is a Chebyshev system. We were curious as
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to whether a system could give rise to an S, satisfying (a)-(g) without being

a Chebyshev system. Clearly this is impossible for {I, f since cf- cz is

strictly monotone between the extremals a and b only if f is (and hence

1, f forms a Chebyshev system). However, we did construct an example

11, h2,fJ which we now present.

EXAMPLE. Let h2(x)=x. f(x)=x' and la, bI = I-A, I. Then 1l,x,x3 1

is not a Chebyshev system on I- Ij since, for example, p(x) = x(x2 - f)

has zeros at -. , 0, .. We will now show S, exists such that properties

(a)-(g) are satisfied. Letting - < t < i, E,(x) = x-' - (a, + bx) and using t,

xt, I as a reference set gives the equations

E,(t) = t' - (a, + bt) = d,,
Et(xr) = x3- (a, + brx,) = -d,,( )

E(l) = I - (a, + b,) = d,.

Subtracting the third equation from the first equation gives P - I -

b,(t- 1)= 0, i.e. b,= t2 + t + I. Now

d E(x) = 3x2 - b, = 3x - ( 2 + + )=0. when x = x,.
di-

Hence. x, = [(t2 + I + 1)/311/2. Substituting x, and b, into Eqs. (I), one could

solve uniquely for a, and d, in terms of t and observe that d, > 0; we omit

the details. Considering dE,/dx and using t >- j we see E,(x) is strictly

decreasing in It, x, I and strictly increasing in Ix,, 11. Hence, the charac-

terization theorem guarantees that a, + bx obtained from solving (1) is the

unique best uniform approximation to x' on It, I1.
Then, for -4 < t < 1, S,(x) = (lfd,&)[x - (a, + bx)I satisfies (a)-(f).

Now, let -2 4t, < 12 < 1. Since x, is strictly increasing as a function of t,
x, 1 < x12. Clearly S,,(x) - S,,(x) has a zero in (x,,, x, ) and a zero at x = 1. If

St, - S, has no other zeros in It2, 11, then (g) will be satisfied. Assume the

opposite; then by Rolle's theorem dIS,(x)-S,(x)I/dx has at least two

zeros, say z, < z2, in (t2, 1) with z2 > x,, 0>x-,/ 2 = 1. Hence, z2 * -z, which
is impossible since dIS,(x) - S,2(x)]/dx has the form cx 2 + C2 . This

completes the verification of (a)--(g) for the example.
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Two new limits involving Chebyshev polynomials of the first and second kinds
are given. These limits are useful in certain engineering applications. The proofs are
based on the Mehler-Heine theorem for Jacobi polynomials.

Let P'*.B'(x) denote the Jacobi polynomials. It is evident from the
representation 11, (4.21.2)]

P~~() - j.(f )(n+a+p+ )(a+v+)._( x-.... IP' C)=n! -0 v2

that P.*°5'(x) is a polynomial of degree n in x and in the parameters a and P.
Hence, P?. 5 (x) can be extended to all complex values of a, 6, and x. In this
note, a and P are restricted to be real numbers.

For any complex number x, the Mehler-Heine theorem 1I, Theorem 8. 1. 1
states that

,i -," Cos x -(x12) -- Jo(x), (2)

where J.(x) is the Bessel function of the first kind of order a 11, (1.71.1)].
Szego's proof of (2) actually establishes that

lim n-aP(O.' ) - ! + o(n-2)) = (x/2)--J.(x).
\ n

393
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Consequently, for all complex x and y,

/ira n-*P.*"'' .cos(x/n) .i -( I4., I- X2_y2+o(n- 2)

rn P. cos(y/n) . -li n-0

('-J s(Vx _). (3)

Like the Mehler-Heine theorem, this result holds uniformly for x and y in
every bounded region of the complex plane.

The limit (3) has interesting special forms for the Chebyshev polynomials
T,(z) and U.(z) of the first and second kinds, respectively. Substituting the
identities

p-1/2.- /2 ( _ (2n)! T,(z), n> 1,2.( 2"(n! )2 T z , n, 1

and

J- 1/2(z) C 1/ Cos z

in (3) and applying Stirling's formula gives

(cos(x/n)) VX
lim T x. =COS y2. (4)

Similarly, substituting

P1/2.1/2 (Z) (2n + 2)! U,(z), n 0OP. (,/=27"+'((n + 1)!) 2

and

Jj=2(z) ( 2 sin z

in (3) and applying Stirling's formula gives

/ cos(x/n) ) sin y2  (5)
imin -'U, cos(y/n) X- 2

These limiting forms do not seem to be mentioned elsewhere in the literature.
A result similar to (4) is used implicitly in an antenna design application

121. The result (5) is shown in 131 to be intimately related to the so-called
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Kaiser-Bessel window in digital filter design. These applications require
knowledge of the cosine transform of the right-hand side of (3), which is
provided by a special case of Sonine's second finite integral 14, p. 3761 for
a > - 1. In particular,

lim n ('U cos(x/n) )c0yn V I-C)cos x(d, (6)4 -00 . = co0(yln - co

where 1.(z) is the modified Bessel function of order v. Sonine's second
finite integral diverges for a=- ; however, the cosine transform of
cos ((x -y 2 )") is known 15, (871.2)1, so that

lim T. (cos(x/n) / + lI(y 0- cos x d" (7)

It is evident from (6) and (7) that the limiting forms have finite support (i.e.,
are bandlimited) and, thus, are of exponential type.

An extremal property of cos((x 2 -y,2) I 2 ) in the space of functions of
exponential type is given in 161. The proof is based on a theorem in 171.
Whether or not the limit function (3) has extremal properties in this space is
not known to the author.
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Abstract

A routine is presented for numerical solution of Fredholm
integral equations of the first and second kind and for solution of
characteristic values and functions. An approximate method for
solving integral equations of the first kind by means of integral
equations of the second kind is presented and illustrated with
several examples. Application to simultaneous determination of
several characteristic values and functions of a kernel is also
considered and documented by several examples.
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INTRODUCTION

The interest here lies in obtaining approximations to the solution g(x) of the
Fredholm integral equation

(t 3 (x,~j) 3() - X3(X) +4;() -4Cb (1)

where the kernel K(,9) and function f(W are known. If ) and f40 are non-zero,
(1) is an integral equation of the second kind. If ) is zero, (1) is an integral
equation of the first kind. If f(i) is zero, (1) is a characteristic value proble,
possessing solutions only for certain values of X ; in this case, we express (1) as

I d K Nis) On () = Xhf+ 4q0I -c X bh (2)

where b) IA3 are the characteristic values of the kernel and 10.!4 are the

characteristic functions (assumed to be of unit energy: f I b 4 ).

PROBLEM SOLUTION

The integral an the left side of (1) is approximated by any of numerous integra-
tion rules available, such as the Trapezoidal rule, Simpson's rule, Gauss quadrature,
etc. That is,

~N

49 KWj (X)Ac -c(3)

where IV,. are the weights and are the abscissas (points) of the particular
integration rule adopted. The approximation to the true solution q of (1) is
denoted by 9(1") at the point . . This approximation is obtained by utilizing
(3) in (1) and requiring that

_w4 K (7i, IT. ) -x + f (y), ); I -is . (4)

3

-479-



TM No.
TC-108-72

This method is known as the method of collocation. Equation (4) constitutes N
otions in the N unknowns 3 1 .

We define four matrices F, G, B, and D as

P = (NXN). (5)

Equation (4) then takes the form

5 = \ G + F, (6)

with solution

where I is the identity matrix. (It should be noted that BD is not necessarily
symmetric, even if B is symmetric.) If {&. are the characteristic numbers of matrix
BD, then

I W %(8)

Therefore (7) possesses a solution if N ft )s N f.

The general approximate solution to the integral equation of the second kind
is afforded by (7) and is considered in the next section. Solution to the integral
equation of the first kind (Na 0 in (1)) is considered in the succeeding section.
The characteristic value problem (#4e in (1)) is considered last.

4
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INTEGRAL EQUATIONS OF THE SECOND KIND

The Fredholm Alternative guarantees that if the kernel K(xy) of (1) is
square-integrable, then there exists a unique solution to (1) if >. is not a charac-
teristic value. Since ) is assumed not to be a characteristic value in this section,
the existence and uniqueness of solutions to (1) are established and are of no
concern here. This is not the case for Fredholm integral equations of the first
kind.

The numerical solution (7) of Fredholm integral equations of the second kind
is an excellent approximation to the exact solution, if the kernel K(xS) is smooth
enough to permit a good approximation to the integral, as in (3), by some
quadrature formula. However, even if the kernel is discontinuous, the approxima-
tion to the exact solution 94i can still be quite good. These rather vague remarks
are best explained by examples.

Example 1

f' wi 3(!i) = 3(X) + - - 1  OX(.(h

The exact solution is SW = X . When a four-point Gaussian quadrature formula
is employed, the computed solution 3) at the points Ti is correct to four
significant places, as shown in Table 1; when a 20-point Gaussian quadrature
formula is used, the computed solution agrees to 15 significant places with the
exact solution.

Table 1

EXACT AND COMPUTED SOLUTIONS OF (9A); N =4

1 .0694318 .0694366
2 .3300095 .3300128
3 .6699905 .6699952
4 .9305682 .9305794

5
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Example 2

where

0 )

(This example can also be interpreted as a Volterra integral equation.) The exact
solution is g0 a '. Using a 10-point Gaussian quadrature formula, despite the
discontinuous kernel, yields the reasonably good solution W) of Table 2.

Table 2

EXACT AND COMPUTED SOLUTIONS OF (9B- N = 10

.01305 1.034 1.013

.06747 1.118 1.070

.1603 1.256 1.174

.2833 1.451 1.328

.4256 1.702 1.530

.5744 1.998 1.776

.7167 2.308 2.048

.8397 2.592 2.316
.9325 2.802 2.541
.9869 2.898 2.683

In most cases, however, the exact solution is unknown and it might be thought
that one way to determine whether or not the numerical solutions are accurate is
to increase the order of the quadrature formula and solve the system (7) again. For
Fredholm integral equations of the second kind, this process is feasible since the
system (7) is well-conditioned, even for high-order quadrature formulae. The
explanation for this phenomenon is that if ) is not close to a characteristic value
of matrix BD, then matrix BD - X:I is well-conditioned. Matrix BD itself can
be ill-conditioned (as seen in the next section).

6
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Once the approximate solution Yri) is known at a sufficient number of points,
any form of interpolating function may be used to connect these points. It is
worthwhile to note, however, that a ready-made interpolation procedure is already
at hand once (7) has been solved. Namely, solve for g60 on the right hand side
of (1 I and approximate the integral by (3) to obtain the interpolated approximation

N

which automatically goes through the points at X-'.

INTEGRAL EQUATIONS OF THE FIRST KIND

The Fredholm integral equation of the first kind may be obtained from (1) by
putting ) 0 :

s4 ~ ac b.(11)

When this equation is viewed as an operator on g , it is readily noticed that
discontinuous functions g are token into continuous functions f. More
specifically, define V [a, i0) to be the space of all functions 3 such that

Ix 13k) I exists and is finite, and Ca i, to be the space of all functions
possessing at least n derivatives. Then equation (11) may be said to define an
operator taking functions in C"[.,b2 into functions in C712,13, where n is an
integer such that K(x,5) possesses the nth partial derivative with respect of x,
since we have by a well-known theorem

In other words, the more partial derivatives the kernel Kfxt,) has with respect to x,
the "smoother" the function 44) in (11) must be. Stated a third way, since C14,6l]
is a subspace of C 4blA]any attempted inversion, numerical or otherwise, of
equation (11) can pose considerable problems. In each particular integral equation
of the first kind, such fundamental questions as existence and uniqueness of solu-
tions ore open to question.

7
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If one attempts a straightforward application of the method of collocation
by putting )sO in equation (7), then one discovers that the matrix BD is often
badly ill-conditioned, even for low-order quadrature formulae. Consider the
following example.

Example 3

4 Cos= 5i S SN)) 1 0 (12)

Here, a solution is given by 04- 1 for 0'x'c i. Gaussian quadrature of orders 5,
6, and 7 all give 6 or 7 correct signfificant digits for the approximate solution
to (12), but for orders 8, 9, 10 and higher, the accuracy rapidly deteriorates, as
shown in Table 3. For Nkt1,the results get progressively worse, because the matrix
BD becomes more ill-conditioned.

Table 3

COMPUTED SOLUTIONS OF (12); N 8, 9, 10.

N=8 N=9 N =10

.01986 .99917 .01592 1.25796 .01305 5.70302

.10167 1.00053 .08198 .84076 .06747 -1.84768

.23723 .99987 .19331 1.03748 .16029 1.62953

.40828 T.00003 .33787 .99216 .28330 .88319

.59172 .99999 .50000 1.00185 .42556 1.02308
.76277 1.00000 .66213 .99946 .57444 .99467
.89833 1.00000 .80669 1.00020 .71669 1.00148
.98014 1.00000 .91802 .99991 .83970 .99950

.98408 1.00004 .93253 1.00021
.98695 .99991

This example and several others give convincing evidence that the method of
collocation is not a particularly good method to use directly on integral equations
of the first kind, because of the difficulty of establishing the correctness

8

-484-



TM No.
TC- 108-72

of the results, even if a unique solution is known to exist. No recourse is possible
to high.4. der quadrature formulae here, as in the case of integral equations of
the second kind, since the matrix BD becomes progressively more ill-conditioned.

Instead of putting )X. 0 in equation (1) to obtain the integral equation of the
first kind immediately, why not let ) approach 0 in steps, thus successively
approximating integral equations of the first kind with integral equations of the
second kind? It might then be expected that the solutions to the integral equations
of the second kind approach some solution of the integral equation of the first kind,
provided of course that the integral equation of the first kind possesses solutions
at all.

More specifically, suppose the sequence I, I ), .... converges to 0,

and that none of the % are characteristic values )i of the matrix BD. (It has
been found computationally that little care is needed in choosing this sequence;
however, if there is anX cause for concern, it is certainly possible to compute the
characteristic values Xi of the matrix BD and choose the S to be midway
between adjacent characteristic values.) Let 3XW be the solution of

b *
Sd K(;)~~a 9, 5 J + f 0); A < X'b (13)

It is believed that 9.&) converges uniformly to some bounded solution SIX) of (11)
if any such solutions of (11) exist. Unfortunately, the only proof of this statement
presented herein is computational in nature.

The next five examples are intended to be a good sample of situations that
actually arise in the application of this method.

Example 4

0 ( ..- +-L)- ( ) ""'x 2 -~D -0 X< L (14)

Since the integral on the left side of (14) must always yield an expression of the
form e1 +P for any function 1(1), there does not exist a solution to this equation.
However, the equation

9
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(X- +(15)

certainly has a unique solution NN() for each non-characteristic value of >,

and this solution must obviously be a quadratic function of its argument x. Table 4
shows the results of solving 05) for , - 164, %a -10-4, and -0, using a
6-point Gaussian quadrature formula. On the basis of the information in Table 4,
one is lei to the Correct) conclusion that there do not exist any bounded solutions of
04).

Table 4

COMPUTED SOLUTIONS OF (14); N = 6

.033765 .169443E4* .169037E8 - .190339E19

.169395 .165699E3 .162407E7 .396491E18

.380690 -.111633E4 -.111843E8 .858363E18

.619309 -.953767E3 -.954527E7 .162675E19

.830605 .616148E3 .616577E7 - .511557E19

.966235 .232968E4 .233087E8 .505322E19

Example 5

X -J., o< x. (16)

Here, we must obviously have .IS 031land 442§1. An example is geIlS)- l+.
Since any function orthogonal to both I and r."-"may be added to the particular
solution 9,%), i#g, the solution to (16) is not unique. Choosing u-IO',S w-I6 e

and 0 , gives the results of Table 5, when Gaussian quadrature with only 5
points is used. The results for and S. are excellent. If higher-order Gaussian

E4 denotes a muHiplicative factor of 104.

10
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Table 5

COMPUTED SOLUTIONS OF (16); N = 5

.04691008 1.0469103 1.0469101 -41.338

.23076534 1.2307654 1.2307653 33.503

.50000000 1.4999999 1.5000000 1.000

.76923466 1.7691345 1.7692347 - 4.000

.95308992 1.9530897 1.9530899 - 8.000

formulae are used, even better results may be obtained. It is easily seen that the
solutions are converging to the particular solution 9pl5) = |- (kn %= K o).

Example 6

j4 C*(x3) 3() "i~ ' r I (17)

Here there exists a solution with a simple discontinutity:
0* - x-<

Using an 11-paint Gaussian quadrature formula and putting -0 10 and
-- , we get the solutions of Table 6. These solutions are not better because

the integrand is, in fact, not continuous so that the quadrature is not particularly
good.
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Table 6

COMPUTED SOLUTIONS OF (17); N = 11

.01089 .91588 1.0159 1.0091

.05647 .92752 1.0095 1.0087

.13492 .97852 .9866 1.0028

.24045 1.06966 .9786 .9784

.36523 1.10212 1.0427 1.0045

.50000 .91608 1.0075 1.0526

.63477 .49963 .5399 .5352

.75955 .08230 -.0399 -.0997

.86508 -. 09775 -. 0649 .0519

.94353 -. 03132 .1090 -. 0315

.98911 .10835 -. 0955 .0182

Example 7

So'43s cos (1r %J) 9(3) =0 cs)) < X~ i (18)
Here there exists at least one solution with a very bad kind of discontinuity
namely, the Dirac delta function, gfr) - (X- t/ir) • With to . and
%Wh -16", and with 12-point Gaussian quadrature, a solution resembling a
continuous approximation of SbO does indeed show up; see Table 7. Considering
the numerical difficulty of this problem, the solutions shown in Table 7 should
be considered as good results. Better solutions may be had with higher-order
quadrature formulae.

12
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Table 7

COMPUTED SOLUTIONS OF (18); N = 12
A

.911 E-2 .737 -1.376 -1.399

.479E-1 .805 -1.069 -1.149

.115 1.120 .297 .059

.206 1.795 2.871 2.853

.316 2.509 4.553 5.213

.437 2.475 2.737 2.404

.563 1.274 - .568 -1.267

.684 - .258 - .748 .582

.794 - .779 .798 - .224

.885 - .178 - .004 .057

.952 .408 - .829 .014

.991 .397 .995 - .024

Example 8

SI IV) 0'< (19)

This equation was treated in Example 3 in a straightforward manner, with poor
results. Here we put X,= -10 %A,,-IO and -l, with a 10-point Gaussian
quadrature formula. Whereas the solution before with N = 10 was very poor,
we now have the good results of Table 8. These solutions clearly converge to the
solution Ix) .

13
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Table 8

COMPUTED SOLUTIONS OF (19); N = 10

.01304 67357 .99739 04370 .99999 40301 1.00000 00067

.06746 83167 .99736 45162 .99999 44020 .99999 99954

.16029 52159 .99727 35342 .99999 60232 .99999 99962

.28330 23029 .99727 36762 .99999 90304 1.00000 00072

.42556 28305 .99795 80272 1 .00000 12796 .99999 99941

.57443 71695 .99981 58041 1 .00000 05868 1.00000 00028

.71669 76971 1.00192 20787 .99999 90874 .99999 99998

.83970 47841 1.00204 72316 .99999 99732 .99999 99987

.93253 16833 .99923 61422 1.00000 08581 1.00000 00019
.98695 32643 .99565 76614 .99999 90819 .99999 99985

Thus, it is seen that the proposed method is a very good one. It can be indicative
of the nonexistence of exact solutions, or of the existence of "spikes" within an
exact solution. If the exact solution contains simple discontinuities, the computed
solution can give an acceptable indication of this fact. The method is best, of
course, when the solutions are all continuous. Its most interesting feature is its
ability to yield a particular solution even when the solution to the integral equation
is not unique.

CHARACTERISTIC VALUE PROBLEMS

When ;W is zero in (1), the integral equation takes the form of (2). The
general approximate solution* 6 in (7) then will be identically zero unless

A A A

or ^A. or. -- 'A" (20)

where 1S2 are the characteristic values of matrix BD. Each characteristic value
X,, (i s N of matrix BD is an approximation to the first N characteristic
values 1\' of kernel KtxS), (the lower-order ones being better approximations).
For X 'i. (6) becomes (since F = 0 here)

A A sA4 (21)

*This method is also suggested in Ref. 1, p. 447.

14
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Thus & is proportional to the normalized characteristic vector oaf matrix BD,
corresponding to characteristic value N. . Scaled versions of a ore approxi-
mations to the characteristic functions ,V) of kernel Mx(b) . That is,

oi Cfl '44()) :i isN) (22)

for I I vAS N. Thus matrix BD contains oll the information necessary for
simultaneous approximate determination of N characteristic values and functions
of kernel K(x)-j).

The method above yields samples of the approximate solution ,(x) only at
the points X -- I 1ii ! N . Evaluation of 4) could be accomplished by polynomial
interpolation, for example, or by employing (3) in (1) to obtain

N

?"~~~ .1J~)~j() (23)
The approximation N,,() obtained from the right side of (23) automatically goes
through the values A(jj)),sism;see (4).

In order to obtain an approximation to the characteristic function +in (2),
we let the approximation be

C. (24)
and choose C such that 44) has unit energy. That is,

Solving for C, and substituting in (24) and (23), there follows

The right side of (26) is an interpolated approximation to the nth characteristic
function 0.(4 of kernel J'(xj).

15
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Even and Odd Solutions

Before embarking on examples, it should be pointed out that advantage should
be taken of any symmetry properties of the kernel K(xA). Suppose the integral
equation is of the form

Now suppose that the kernel satisfies

K ( ,: =K (X :) . (28)

Then

Ls~d K(-X;z) 3(j) VJA4KX34.(29)

Therefore 3(0 must be even. Then letting t -y, and using the evenness ofs , ~~ 4% , K (xiv), ~ = d+ K (,-4) ( (3o)
s (30)

Therefore (27) becomes

t'J ) + X(X,-X= ,,X, <4, (31)

and the interval has been cut in half. This is very advantageous for numerical
computation, since either fewer computations need be carried out, or increased
accuracy for the same number of computations can be realized.

For example, for the kernel

K Y t)= I + (2

ABcos(x-) A SCos( s (32)

(28) is satisfied, leading to even (x) . However, for the kernel

A+Bco6Iz-Kj) m (33)

(28) is not satisfied, and 10) need not be even.

16
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Conversely if

= (34)

then S(x) must be odd; again, the interval can be cut in half in a manner similar
to (31).

Example 9

K(A,3) = 4h-2, .osfr(x- )] )+, 22,w,-(,4 )J , . (35)

Since

K .=* ' : )t) (36)

we have

- 3

((x') = I v iax) = V(o37)X),

The first integration rule adopted in (3) is the Trapezoidal rule. For h-o5, the
approximations to the characteristic values for 14,q and 20 are listed in Table 9.

Table 9

CHARACTERISTIC VALUES VIA TRAPEZOIDAL RULE; h = 0.5

N=4 NU=20 Exsc*
2.666675 2.666666 2.666667
1.333435 1.333333 1.333333
0.666839 0.666666 0.666667
0.333664 0.333333 0.333333
0.167320 0.166667 0.166667
0.084637 0.083333 0.083333
0.044271 0.041667 0.041667
0.026042 0.020833 0.020833
0.020834 0.010417 0.010417
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The approximations up through )> for N-20 are seen to be identical to the
exact values. Those for Na q are less accurate.

All the approximations to the characteristic functions for N-1, were found
to be accurate to at least six decimal places at the points Xr 9i , even for 4).
Thus, far better accuracy was obtained in estimating the characteristic functions
than in estimating the characteristic values, for the kernel of (35).

When the interpolated approximation (26) was compared with the exact
characteristic function (37), the worst ratio of answers was 0.9982. Thus, the
interpolated function is not as accurate as the sample values at 11A.

When 4 was increased to 0.9, the approximate characteristic numbers were
less accurate for N = 10, as depicted in Table 10. This is due to the fact that the
kernel of (35) now has a large maximum-to-minimum ratio, and the approximation

Table 10

CHARACTERISTIC VALUES VIA TRAPEZOIDAL RULE; h = 0.9

N = 20 Exact

9.867 9.474
8.926 8.526
8.085 7.674

of (3) is not adequate. A larger value of N is needed in this case. (In practice,
two different values of N would be tried, and increased until substantially the
same results obtained.) However, it was again found that good approximations to
the characteristic functions were obtained. In fact, at least four decimals were
retained up through 41,("), at the points IfM However, the interpolated
approximation was far less accurate, being about 10% in error.

18
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When the integration rule was that of Gauss quadrature, the results of

Table 11 were obtained, for h = 0.5. These results are not as good as those

Table 11

CHARACTERISTIC VALUES VIA GAUSS QUADRATURE; h = 0.5

N = 9 Exact
2.667186 2.666667
1.333653 1.333333
0.667836 0.666667
0.335439 0.333333
0.172508 0.166667

obtained via the Trapezoidal rule. It is believed that the reason for this behavior
is due to the fact that kernel K(cjj) is even about y =0 and y = 1, for any x.
And since 4,,,(j) is also even about y = 0 and y = 1, the Trapezoidal rule with
end correction (Ref. 2) reduces to the simple case adopted here. Then since we
are integrating over a period of a periodic function, very accurate results are
possible via the Trapezoidal rule (see Ref. 2, sect. 2.9). For more general kernels,
this behavior need not be expected. (However, another reason for choosing the
Trapezoidal rule will be presented later in Example 11 .) The accuracy in the
characteristic functions obtained via Gauss quadrature was of comparable accuracy
to that obtained for the characteristic values.

Example 10

I (38)

I+ -2h c -w-)] x ()38)
Since

: sl kvrw) CO(TW~) +(39)

19
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we have

it C S;w Vivrxr) CO42W4, £inow),.. (40)

Thus, double roots occur for the characteristic values for this kernel.

For the Trapezoidal rule of integration, and for h = 0.5, the results of the
approximate technique are given in Table 12. There is no problem in evaluating
the double roots, nor in obtaining two linearly independent characteristic vectors
of the matrix BD. Again, very good accuracy in characteristic function approxi-
mation at the points 111 was obtained.

Table 12

CHARACTERISTIC VALUES VIA TRAPEZOIDAL RULE; h = 0.5

N = 20 Exact2.66667" 2.666-667
1.333346 1.333333
1.333335 1.333333
0.666688 0.666667
0.666688 0.666667
0.333375 0.333333
0.333374 0.333333

Example 11

K ,5) = 0< ' (41)

The exact characteristic values and functions are given in Ref. 3, p. 116. The
results of applying the Trapezoidal rule are given in Table 13 for N = 9, 20,
and 50. The relatively poorer accuracy obtained in this example is due to the
cusp in the kernel (41) at x = y.

Attempts to apply either Simpson's rule or Gauss quadrature to this example
lead to poorer results than use of the Trapezoidal rule. The reason for this
is that, for maximum accuracy, the integral in (2) should be broken
into the ranges (0, x) and (x, I), and the integrand approximated in each
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Table 13

CHARACTERISTIC VALUES VIA TRAPEZOIDAL RULE

4q ,,q NK- 0 N - b Exact:

0.738619 0.738777 0.738806 0.738811
0.139433 0.138257 0.138042 0.138004
0.047308 0.045474 0.045146 0.045088
0.023878 0.021757 0.021393 0.6 213"
0.015071 0.o12121 0.01234S 0.02Z13

re ion. However, for Gauss quadratwe, since x must be selected as the points
{i ) the integrals over tof) and (?y,) do not themselves yield to Gauss quadrature
without additional different sampling plans within these intervals. For equi-spaced
choices of x (as for the Simpson and Trapezoidal rules), the parabolic approxi-
mation of Simpson's rule cannot be applied at certain points. For example, when
X at = i_., there is only one panel in the interval (0,x). Also as x is changed
from jj to ri., , the number of panels changes from even to odd (or vice versa) in the
intervals (0, x) and (x, 1). Thus a composite Simpson-Trapezoidal rule would
have to be adopted. However, the simple Trapezoidal rule suffers no such problem;
givilng a linear approximation to the integrand for all X.ar' . Furthermore, the
two weight factors j applied to the point x in the two intervals (O,x) and (x, 1)
combine to give the standard Trapezoidal rule applied to the entire interval (0, 1).
Thus the method described earlier for forming matrix D of Trapezoidal weights Jw3
applies directly, for this kernel where the cusp lies at y = x. A similar conclusion
would hold for a discontinuous kernel along the line y = x, provided the average
value of the kernel were used in matrix B for x = y.

It is possible to apply Simpson's rule or Gauss quadrature to this particular
kernel, and ignore the cusp. However, since the integrand of (2) is not being
well approximated, poorer results can be anticipated. The results of Table 14
corroborate this. Slightly poorer characteristic values were obtained via
Simpson's rule than Gauss integration; however, the reverse was true for the
characteristic function approximations. The Trapezoidal rule outperformed both
in all aspects, however.
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Table 14

CHARACTERISTIC VALUES FOR N = 9

Sbzpso, _,,_ _ T_to___ E___
0.742329 0.742030 0.738619 0.738811
0.141696 0.140302 0.139433 0.138004
0.049161 0.048005 0.047308 0.045088
0.026400 0.024658 0.023878 0.021329
0.010096 0.016482 0.015078 0.012279

SUMMARY

The method of collocation for numerical solution of Fredholm integral
equations has been investigated extensively via examples, and found to be

workable and accurate when appropriate care is taken. For example, the selection
of the integration rule is important, and the way non-existent solutions or
discontinuous solutions manifest themselves in the numerical approaches considered
must be known and anticipated.

The method of solution of integral equations of the first kind, as limits of
integral equations of the second kind, is found to be a very worthwhile method
in the case where continuous solutions exist. When a discontinuous solution
exists, and the discontinuous portion S(O) can be estimated, the integral
equation (11) can be put in the form (by letting S(O 9.0 + &O)

The t-jh-he, siae oF (42) is known (when lWi) is known or estimated); thus
(42) is an integral equation for *0u), to which the numerical approach can be
applied with more numerical accuracy. A recursive procedure, whereby 5(x)
is estimated more and more accurately, is especial ly worthy of consideration.

The FORTRAN program used for the above computations is listed in the
Appendix. The six possible input variables are read in via NAMELIST and are
defined within the comment section of the main program. Three external
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subroutines, D Q U A D, F, and T K, are used to give the quadrature formula
weights and abscissas, to define the function 01), and to define the kernel KNA)
respectively. All computations are double-precision, except the calculation of
characteristic values and vectors which is single-precision (because the only
routine now available for non-symmetric matrices, EIGENP, is single precision).
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APPENDIX

PARAMETER NR=JOONC=NR+
PARAMETLR M=50
DOU3LE PRECISION A(NRPNC)pV(2)PY(NR)PW(NR)tFPTK
OOUULE PRECISION ALPHA.BETAtDALAMB
DIMENSION JC(NC)pB(MM)pEVR(M),EVI(M)PVECR(MPM),VECI(MDM),INDICM)
LOICAL EIGEN
NAMLLIST/UATA/EIGENPUALAMbPALPHAtiETAPLIMITIPLIMIT2tLIMIT3
LIMITi = 3
LIMIT2 = 20
LIMIT3 = 1
EIGEN = oFALSLe

IF EIGEi : .TRUE. t THEN THE HAeACTERISTIC VALUE PROBLEM
I TKEATEOoo..o

UALAMD * 6W(X = INFEGRAL ( TK(XPY)*G(1)sDY )
BOfH CHAMACTERISTIc VALUES ANU CHAHACTERIC VECTORS ARE FOUND.
PRANi STATEMENTS MUST BE INSERTED FOR THIS CASE.

IF LLGNi = *FALSE. p THE THE PROGRAM COMPUTES THE SOLUTION OF
FREDHOLM INTEGRAL EQUATIONS OF EITHER THE FIRST OR SECOND KINDS*
ANT INTERVAL OF INTEHkST IS ASSUMED TO BE FROM ALPHA TU BETA.
FCX) IS THE FUNCTION WHOSL INVERSE IS SOUGHT.
TK(tXY) 15 THL KERNAL. DALAMS IS THE SCALE FACTOR.
IF DALA = 00.DOp THL EQUATIO14 IS OF THE FIRST KIND...

F(X) = INTEGRAL ( TK(XPY),GIY)*DY )
IF UALAMH NE U.UOe THL EQUATIUN IS OF THE SECOND KINo..

F(X) + UALAMU * G(X) = INTEGRAL ( TK(X#Y)*G(Y)*DY )

D4i ALL CASES, ANY SYMMETRY WHICH WOULO RESULT IN REUUNDANT
EWUATIONa IS ASSUMLD TO BE REmOVED.IF THIS IS NOT DONE# AN
EHOR RruRN FROM DGJ SHOULD OCCUR.
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THALL EX1EKNAL FU14CTIUN SUBjHUUTI14ES ARE NECESSARY@**
D(QJAU(yoWpNtALPHApbETAFS) 0*HwtERE...,

Y IS fliE AuSCISSA ARRAY FUOi SOME QUADRATURE FORMULA
W 15 THE WLXGHT ARRAV FOK SOME (QUADRATURE FORMULA
N 15 rtiE URLER OF THiE WADATURE FORMULA

TK(X#Y) v wHERE.,,
Y IS TtIL VARIAL3LE OiF ItTEGNATION
X IS lelL RLMAI'IING ARGUMENI
F(A) p WHERE... X 4S AS IN TK(XvY)

SLVEN VIAk5LLS MAY bi READ IN' NAMELIST. AT THE END OF EACH
CA.-E, THLt PROoiRAM ATILMPTS TO REA) NLW DATA.

j, REAU (3#jATA)
WN.&TE(4tw~A1A)

DU) 10 H:=LlfITlvLIMIT2oLIM1T3
CALL UQJA(Ye#4 NpALPHAv8ETApSd50)
MC =N +
00. 101 I~lvN
DO 101 J=IPN
A~lpJ) =rK(Ycj)pYI))4'I(J)

101 CoiiTINUE
IFM(Ei N 60 TO 125
00 99 I=L#N

99 A(LI) = A(Ipi) - L)ALAMB
DO 100 11IPN

LOG A(ipMC)= F(Y(l))
V(1) = '4.
CALL Utijx(ApN(.NRpiivt4LS2b0vJLpV)
PRIIrA 43,i~DALAMB
PRINT 41 v C YC!)oA(lp14C)#,#N)
Gt) TO 10

z.0) PRINT '42
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PRINT 41#(Y(I)pWCI)vI=1,N)
PRINT 4.1, V(1)PVC2)
PRINT 447 t C(A(IPJ)pj:1,MC)#I=1,N)

10 COi471NuE
PRINT 44
IF(NRsNEs0) Go TO 1

145 C01ITINUE
DO 30 I:IPM
LX) 30 J=IM

30 B(IrJ) =AIJ
CALL E1I4rAPCMPMPtBe27,EVREVIVECRPVECIpINDIC)

EIliENP FINDS CHAR* VALUES AND VECTORS FOR A REAL NON-SYMMETRIC Mi
EV#K AND EVI CONTAIN THE REAL AND IMAOiINARY PARTS OF CHAR, VALUES,
VL~k AND VECI CONTAIN THE REAL AND IMAG, PARTS OF THE CHAR, VECT(
HLFEREINCEese uSL TLCII MEMO 2070-163 p 12 MAY 1969.

AT THIS POINT, APPROPRIATE PRINT STATLMENTS SHOULD BE INSERTED,

IFINR.NL*O) Go TO I
'41 FOI(MATC/ZD28*18)
42 FOAMA7tc ERROK RETURiq ')
43 Fu#KMATCxH1,//,13 XPeAbsCxSsA9,oX,9ORUINATE,.20Xuz5I POINTSIP1OX&

I. 'OALAMb = f#018sl2p//)
444 FOtRMATC1I1l)
47 FOAMAT(/bU21,14)
III STVP

ENU
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TECHNICAL NOTES

Solution of Large Hermitian Eigenproblems

on Virtual and Cache Memory Computers

Roy L. Streit
Naval Underwater Systems Center

New London Laboratory
New London, CT 06320

The impact of cache and virtual memories on the increasing both CPU and wall clock time on a

performance of state-of-the-art software has not computer such as the VAX. These concerns were
yet been fully explored. This letter documents discussed with Thomas Aird of IMSL, who responded
the truth of this statement by presenting the by suggesting [31 several easily effected
results of a computational experiment performed on modifications to the appropriate IMSL routines
the VAX 11/780 (a computer possessing both these (namely, EIGCH, EHOUSH, and EHBCKH), which force

features) with well established and documented the real and imaginary parts of every entry aij of
FORTRAN subroutines designed for high accuracy the matrix A to be stored in adjacent memory

numerical solution of the ordinary Hermitian locations throughout the computations. These were
eigenproblem Az - X z. Easily implemented changes implemented and found to work as anticipated.*
in the storage allocation of the complex matrix A
resulted in roughly half an order of magnitude The solution of an order n = 210 eigenproblem was
improvement in both elapsed CPU and wall clock computed in an applications program I1 using both
time, as well as in significantly improved overall the standard IMSL code and the modified IMSL code.
system throughput. These changes do not affect Other than in the IMSL routines, the actual code
the numerical algorithm in any way. executed was identical. Both executions were

performed in a dedicated environment; i.e., no
The particular programs discussed here were other users were permitted during program
written by International Mathematical and execution. Thus the program overhead (setting of
Statistical Libraries, Inc., Ill hereinafter the matrices, I/O operations, etc.) and the system
referred to as IMSL. The storage allocation overhead was identical in both cases. Table 1
scheme for the complex matrix A used in the IMSL shows that the modified routines significantly
routines is similar to that used earlier in the outperformed the standard routines.
EISPACK routines developed by Argonne National
Laboratories [2]. The EISPACK routines were not IMSL MODIFIED
resident on the available computer, so only the IMSL
IMSL routines were used here. However, it is
highly probable that the observations recorded Elapsed CPU time 5

6
m 34s 25m 39a

below would be substantially unchanged had the

EISPACK routines been used instead of the IMSL Elapsed wall clock time 61P4 573 27, 17S
routines.

Page fault count 15, 274 11. 260

The most natural way to store the complex
Hermitian matrix A is simply to declare A to be Direct I/O count 1, 112 1, 111
COMPLEX. Thus, if alj is a particular entry in
the matrix A, then the address of the real part of Buffered I/O count 157 157
ai and the address of the imaginary part of aia
dflfer numerically by precisely 1; that is, the Peak virtual size (pages) 2 165 2, 465

real and imaginary parts of 
aij are adjacent to

each other in computer memory. Working set size (pages) 1, 024 11 024

The approach taken by both EISPACK and IMSL is to Mounted volumes 0 0
separate the matrix A into two real matrices, AR

and AI, which contain all the real and imaginary Table 1: Eigenproblem Order nw210
parts, respectively, of A. Thus, we have the
matrix equation A - AR + i AI with AR and AI It is also clear from Table 1 that the page fault
typed REAL. The primary drawback to this method count is not significant in this particular

is that the address of the real part of aij and problem. Improved performance is due primarily to
the address of the imaginary part of aI differ improved use of cache memory. The VAX transfers
numerically by at least n

2
, where n is he order two contiguous words (64 bits) on a cache miss.

of the *igenproblem; that is the real and Thus, if a complex number, say z, is needed for an
imaginary parts of aij are widely separated from arithmetic operation and if z is not in cache,
each other in the computer memory for large order then z will be found with only one cache miss if

eigenproblems.

For large order eigenproblems, this storage method Ed. Note: fhave been informed by IMSL that the

can cause one cache miss for each arithmetic next version of their library in which the arrays
operation performed, as well as a very significant are stored in COMPLEX mode, will eliminate this
number of page faults to disc, thus considerably problem.

6
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the real and imaginary parts are stored in In a multiuser environment, page faults to disk

adjacent memory locations. In any other storage tie up a disk controller for several tens of

mode, moving z into cache memory would cost two milliseconds and the large eigenproblems described
cache misses. Thus, it is fair to say that every in this letter significantly reduced overall

arithmetic Operation resulted in a cache miss. If system throughput. In the broad view this is

there were 50 n
3 

arithmetic operations and a probably a more serious problem than individual

cache miss costs 1.8 us, then this assumption program CPU times.

accounts for 17 minutes of CPU time savings. The
remainder of the observed improvement has not been The contents of this letter were first documented
accounted for. in 151.

The applications program was executed again, but
this time the solution of an eigenproblem of order
n = 420 was required. This eigenproblem was
solved using both the standard and modified IMSL References

routines as before. A significant difference is
that other users were freely permitted on the 1. IMSL Library, International Mathematical and

system throughout both of the program executions Statistical Libraries, Inc., 7500 Bellaire
whose results are presented in Table 2. In this Boulevard, Houston, Texas.

case, page faults may well have had the more
significant impact on program performance. 2. B. T. Smith, et al, Matrix Eigensystem

Routines - EISPACK Guide, Lecture notes in
IMSL MODIFIED Computer Scence, Vol. 6, Second Edition,

IMSL Springer-Verlag, 1976.

Elapsed CPU time 12h 15m 48s 3h 51m 52s 3. Thomas Aird, private communication, l4
November 1979.

Elapsed wall clock time 2011 53y. 09s 13h 14m 555
4. R. L. Streit, "Array Optimization Using

Page fault count 9, 453, 587 2, 997, 395 Subarrays," NUSC Technical Report 5889, Naval
Underwater Systems Center, New London

Direct I/O count 3. 760 3, 860 Laboratory, New London, Connecticut, 23 March
1979.

Buffered I/0 count 264 264
5. R. L. Streit and B. G. Buehler, "The Efficient

Peak virtual size (pages) 8) 707 8, 707 Solution of Large Hermitian Eigenproblems on
Virtual and Cache Memory Computers," NUSC

Working set size (pages) 1, 024 1, 024 Technical Memorandum No. 801019, Naval
Underwater Systems Center, New London,

Mounted volumes 0 0 Connecticut, 29 January 1980.

Table 2: Eigenproblem Order n-420
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