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Preface

The four parts of this collection of technical articles, reports
and memoranda deal with beamforming studies (12 papers),
frequency line detector/trackers (9 papers), artificial neural
networks (3 papers), and mathematical studies (10 papers).
The content of these 34 papers is discussed in the foreword
provided for each part of this collection.

Dr. William I. Roderick
Associate Technical Director for Technology
NAVAL UNDERWATER SYSTEMS CENTER
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BEAMFORMING STUDIES

Foreword

Sidelobe suppression in acoustic arrays is an important problem that gives rise to
challenging mathematical problems that often cannot be solved analytically. Moreover, the
mathematical problems encountered are sometimes new and, although interesting in
themselves, not studied in the literature. The novelty and size of these problems make the
development of numerical algorithms for their solution very difficult. Papers [1] - [3]* of
this compilation make the point clearly for the case of linear arrays with missing elements.
Supporting mathematical background is found in papers [26] - [28] of this compilation.
Sidelobe optimality is stressed in these papers. A different definition of optimality is
presented in paper [4]. The methods of these four papers are applicable to acoustic arrays
of arbitrary geometry.

Interchannel crosstalk between acoustic channels can occur if array telemetry
systems are imperfect. The potentiaily debilitating effects of crosstalk on beamforming
performance are analyzed in paper [S]. This paper presents the first theoretical study of the
effect of crosstalk on beamformer performance. It is shown that crosstalk can be corrected
before the channels enter the beamformer, provided the crosstalk levels do not exceed an
upper bound derived from the crosstalk transfer function.

Families of weights (shading coefficients) are often used for linear arrays for
sidelobe reduction. A two-parameter family of weights is given in paper [6] for discrete
and continuous linear arrays. Of particular interest in this paper is the discrete version of
the Kaiser-Bessel window for continuous apertures. More general weight families are
discussed in [7]. Taylor weights are unrelated to these families and are discussed in (8].

A method for optimal and suboptimal weight design suitable only for linear arrays
is presented in papers [9] and [10]. Mathematical results related to this work are found in
papers [31] and [32] of this compilation. Paper [11] shows that phased weights are
unnecessary for optimal sidelobe suppression in steerable linear arrays. Paper [12]
discusses the element location problem for unequally spaced linear arrays.

* Papers are referred (o in the order that they appear in the compilation.
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In Situ Optimal Reshading Of Arrays
With Failed Elements

M. S. Sherrill and R. L. Streit
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In Situ Optimal Reshading of Arrays with Failed
Elements

MICHAEL S. SHERRILL anp ROY L. STREIT, SENIOR MEMBER, IEEE

(Invited Paper)

Abstract—An algorithm is presented which computes optimal weights
for srbitrary linear arrays. The application of this algorithm to in situ
optimsl reshading of arrays with failed elements is discussed. It is shown
that optimal reshading can often regsin the original sidelobe level by
slightly increasing the msinlobe beamwidth. Three examples are pre-
sented to iliustrate (he algorithm’s effectiveness. Hardware and software
issues are discussed. Execution time for a 25-element array is typically
between 1 and 2 min on an HP9836C microcomputer.

1. INTRODUCTION

linear array of discrete elements (sensors) often experi-

ences element failures in situ. These failures can
significantly increase the sidelobe levels of the array
wavenumber response, depending on how many elements fail
and where the elements are located within the array. We
discuss here an optimal reshading (reweighting) algorithm
which can be applied in situ to reduce the sidelobe levels to the
original design level. In many common element-failure situa-
tions, optimal reshading can regain the original sidelobe level
by slightly increasing the mainlobe beamwidth. In arrays
which experience significant element failures, optimal reshad-
ing is still possible, but may be of limited use. Three examples
given below demonstrate a few of the possibilities.

An algorithm for optimal reshading was first proposed in [1)
by Streit and Nuttall. Their algorithm utilized the general-
purpose subroutine [2] to solve a specially structured *‘linear
programming’’ problem. Unfortunately, their algorithm re-
quired hours of computation time and large amounts of
computer storage on a minicomputer (the VAX 11/780) to
optimally reshade a 50-element array with five failed ele-
ments. Consequently, their algorithm is not useful for in situ
optimal reshading.

The shading algorithm proposed here differs from Streit and
Nuttall’s primarily in that we solve their linear programming
problem using a new general-purpose subroutine [3], [4],
herein referred 10 as Algorithm 635. Algorithm 635 uses the
special structure of the linear programming problem to reduce
time and storage requirements by orders of magnitude.
Algorithm 635 can be incorporated easily in Streit and
Nuttall's original approach. A significant algorithmic im-
provement was discovered in the course of this study and is
described below. The resulting shading algorithm is fast
enough and small enough to execute successfully on micro-

Manuscript received March 11, 1986; revised August 11, 1986.

The authors are with the Naval Underwater Systems Center, New London,
CT 06320.

IEEE Log Number 8714258.

computers (such as the HP9836C used here) in only a few
minutes. Typical execution time for a 25-clement array is
under 2 min; for a 50-element array, execution time is
typically under 10 min. The current algorithm, and the
HP9836C with its inherent transportability, comprise an
effective system for optimal reshading in situ.

I1. OPTIMAL ARRAY SHADING

The wavenumber response of a linear array composed of N
discrete omnidirectional elements located at arbitrary fixed
positions x, is given by

N
T(k)= E w, exp [ - ikx,]

A=\

1))

where w, are the element weights and the independent variable
k denotes wavenumber in radians per unit length. The element
weights are required to be real, but this entails no loss of
generality (see below in Section III). Also, from (1), T(~ k)
= T*(k) for real weights (asterisk denotes conjugation), so it
is unnecessary to consider negative values for k and we
confine our attention to nonnegative X.

The array response as a function of k can be considered to
be composed of a mainlobe beamwidth and a sidelobe region.
The objective of the optimization process is to make | T'(k)| as
small as possible on the user-specified sidelobe interval. Array
weights which achieve this objective are said to be optimal.
The optimization process usually produces equivalued side-
lobes in the sidelobe region.

Weights that are optimal for a full array do not remain
optimal after the array experiences clement failures. To
partially compensate for failed elements, the array is optimally
reshaded by undertaking the optimization process again and
incorporating knowledge of which elements have failed. As
the examples below will show, the effectiveness of this
strategy depends upon how many elements have failed and the
location of these elements in the array.

The sidelobe interval is defined differently depending on the
interclement spacing of the array. For an array with periodi-
cally spaced elements and no failures, the sidelobe interval is
defined to be [ K;, (2%/D) ~ Ko}, where K, is calculated from
the desired sidelobe level and the number N of array
elements.' D is the physical distance from sensor to sensor.

! For an N-clement array and - 1-dB peak sidelobes, we have K, =(2/D)
arccos (1/2,) where 2Zo = [r = (r* — )VV™ 4 [r + (P = 1)'\2)VM,
r=10"% and M = N ~ 1. The interelement spacing D is assumed to be
half of the socalled design wavenumber, and N is the number of array
clements before failures.
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Furthermore, the minimization interval can be reduced to [ Ky,
x/ D], sitice the response of this array is symmetric about k =
x/D. K, is typically the point on the mainlobe response which
is equal in magnitude to the peak of the sidelobes, but this is
not always true for seriously degraded and/or aperiodic arrays
(see Example 3 below). For arrays with aperiodically spaced
elements, the sidelobe-interval, denoted by [ Ky, K], must be
chosen by inspection of a nonoptimal beam pattern or some
other means. | T (k)| must be minimized over the full [ K, K]
range since, in general, an aperiodic array response is not
symmetric about any wavenumber other than k = 0. The
ability 1o specify arbitrary K, and K|, is particularly useful for
those applications involving aperiodically spaced elements
because lower sidelobe levels may be obtained by looking at
different minimization regions.

The optimization process deals with element failures in an
array in the following way.

Step |. Maintain mainlobe beamwidth and permit the
sidelobe levels to rise.
Step 2. Regain, if possible, the original sidelobe level by

broadening the mainlobe.

Broadening the mainlobe by increasing K, (step 2) is per-
formed only if the sidelobe level, even after optimal reshad-
ing, has risen to an unacceptable value because of element
failures. Thus step | is normal algorithmic procedure, and step
2 requircs some iteration in specifying Ko and/or K, because a
compromise has to be made between the mainlobe beamwidth
and the level of the sidelobes.

The solution of the array problem in the original formula-
tion {1] is mathematically equivalent to solving an overdeter-
mined system of complex linear equations. Unacceptably high
sidelobes result if this system is solved in the usual least
squares sense, s it is necessary to solve the system so that the
magnitude of the maximum residual error is minimized. There
now exists {3] an efficient algorithm and corresponding
FORTRAN code [4] for solving problems of this sort to high
accuracy.

To obtain the beamformer equation in an appropriate format
to utilize this algorithm, we normalize the peak response of
T(k) so that T(0) = 1. This gives

n
E wy=1.

n=t

(2)

We solve (2) for the Nth weight wy and substitute in (1) to
obtain

AN-
T(k)=exp [ —ikxn) + 2 w,lexp (- ikx,) - exp ( — ikxn)).

A3
By sampling T (k) at the M equispaced points
K, - K
km=K0+!H(m—l)- m=1, M (4)

we can write the problem of minimizing the peak sidelobe
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level of the array response as

' A-d ;
min max ifm— 2. pn Wi (&)
where the complex numbers f,, and a,,, are defined by
Su=exp [ = ik,xy]
A =€XP [ = iKmxy] —exp [ = ik,nX,]. ©)

The problem (5) is precisely the form necessary for application
of Algorithm 635. For theoretical details of this algorithm, the
interested reader is referred to [3].

Sometimes a few of the optimum weights for arrays with
failed elements are observed to be negative, particularly those
on the end elements. If the weights are applied in hardware,
providing a 180° phase factor on the element output may not
be desirable or possible. However, Algorithm 635 allows the
selection of all nonnegative weights: this is implemented by
the addition of constraints to (5). Usually. but not always. an
element is zeroed if it would have had a negative weight. From
(2) it follows that, if ali the element weight values are required
to be positive, they must be between 0 and 1. The requirement
that weights w, - - -, wx .| be between 0 and 1 can be written
mathematically as

! |
w,——i<—,
"2 2

)

Algorithm 635 requires these N ~ [ constraints. Algorithm
635 can also incorporate any number of general constraints of
the form

1

]
Eb,,,,,W,,—C,,,ISd,,,, m=1,2, -, L (8)

where c,, and d,, are constants. The requirement that wy also
be nonnegative gives

(-57)-3l

N 1

) 1
i iy — = <~
|§, *"731%2

or

+))]

which is clearly a special case of the general constraints (8).

1I1. ALGORITHM IMPROVEMENTS

Several changes to the algorithm presented in [1] enable
significant reduction in the need for computational intensity.
Lewis and Streit [S] have proved that, for a general line array
shaded so that it has optimal sidelobe levels when steered
through the same number of degrees either side of broadside,
there exists a set of optimal weights that are real. Thus
complex weights do not need to be considered. This fact
allows an approximate eight-fold reduction in computation
time and a two-fold reduction in storage requirements.

—6—




SHERRILL AND STREIT ARRAYS WITH FAILED ELEMENTS

It is clear that the 50-element example run in Streit and
Nuttall [1] was significantly oversampled in wavenumber.
Their beam pattern can be reproduced with a four-fold
reduction in the sampling of T (k) (see Example 2 below), and
this in no way detracts from the practical application of the
algorithm. A significant reduction in computation time is
realized by decreasing the r*mber M of beam pattern samples
in (4).

A significant algorithmic modification made to Algorithm
635 further decreases computation time. We have labeled this
modification ‘‘fast costing’’ and it is an important step in
making the algorithm feasible on microcomputers such as the
HP9836C. In order to describe this modification properly,
some familiarity with the simplex method of linear program-
ming and reference {3] is assumed.

Algorithm 635 can be broken into two fundamental compu-
tational operations called ‘‘costing™’ and **pivoting.”” *'Cost-
ing"* determines the so-called minimum reduced cost coeffi-
cient and requires 2/NM multiplications, where N is the
number of discrete array elements and M is the number of
samples taken of the beam pattern. *‘Pivoting™ is a basis
update and requires N? real multiplications. It is clear that the
speed of the algorithm is intimately related to the number M of
samples taken of the beam pattern. as well as the number N of
discrete array elements. Since M is larger than N, *‘costing”’
requires more multiplications than **pivoting. ™

*Costing™" in the lincar array application means that, in each
simplex iteration, the ‘discretized absolute value™ of every
sidelobe sample of the wavenumber response function 7(kn),
m = 1, ---, M, is computed to determine the *‘minimum
reduced cost coefficient”™ of the current *‘basic feasible
solution.”” By proceeding through a finite sequence of such
“*basic feasible solutions,”” we arrive at the solution of the
**discretized problem.”” As shown in [3]. this implies that the
computed optimal wavenumber response function can have
sidelobe levels that are theoretically at most 0.04 dB higher
than the true optimum sidelobe level.? **Fast costing’” refers
simply to the fact that we first determine which of the sidelobe
samples T(kn,), m = 1, - -, M, has the largest true absolute
value, and then compute the *‘discretized absolute value'" of
this one complex number. Therefore, only one *‘discretized
absolute value'' calculation is performed in each simplex
iteration instead of M such calculations. The resuiting
reduction in computational effort is significant in microcom-
puting environments. The drawback is that the use of *‘fast
costing’" prevents the simplex algorithm from converging to a
solution of the *‘discretized problem.”’ Fortunately, however,
it can be proved that we must approximate the solution in a
well-defined sense. In the linear array appiication, ‘‘fast
costing”” results in the computed optimum beam pattern
having sidelobe levels that are theoretically at most 0.08 dB
higher than the true optimum level.? This is a small price to
pay for major execution time improvements.

T The theoretical error of at most 0.04 dB is derived by taking 20 logyo (sec
(x/p)), where p = 32. The term sec (x/p) is the error bound discussed in
{3.

3 Fast costing squares the error bound, giving sec’ (x/p), or 0.08 dB when
p =32
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1V. ALGORITHM IMPLEMENTATION FOR IN SiTv UsE

An algorithm must be reliable, easy to use, and fast when
executing on portable microcomputers, to be useful for in situ
application. The following section details the most important
hardware and software issues addressed to enable in situ
optimal reshading of arrays with failed elements.

The algorithm has been coded in BASIC and is comprised of
Algorithm 635 and an array processing driver program.
Algorithm 635 solves the linear program for a set of optimal
weights, given data supplied by the driver program. The
driver performs the initial setup based on several user inputs
and provides all program output.

The driver program may be used with linear arrays having
either periodic or aperiodically spaced elements. Program
output consists of a graph of the optimal beam pattern, a graph
of the optimal normalized element weights, and several
parameters pertinent to the specific problem. Provision is
made for storing the weights in a separate data file for possible
use with digital beamformers.

A Hewlett-Packard (HP) specific software modification was
made by setting up the input data arrays (equation (6)) in
buffers so that they are accessible for a one-dimensional
muitiply. For large-array dimensions, indexing a doubly
subscripted data array and performing a dot product takes
more time on the HP9836C than reading in a data array from a
buffer. doing a MAT multiply, and performing a summation.
(A MAT multiply is simply an element-by-element multiply of
two equally dimensioned data arrays.) However. this proce-
dure is more time consuming when the input data arrays are
very small (i.e., the number of elements in the line array is
small). The break-even point occurs at around 12 or 13
elements, so it was decided to incorporate this speed enhance-
ment for the longer-running larger line arrays and trade off
some speed reduction on the smaller line arrays.

To obtain fast execution times for in situ applications, we
use one hardware speed enhancement, a 12.5-MHz fast CPU
card with 16 kbytes of cache memory. This hardware
supplement is available from HP for use on the HP9836C.
Cache memory is fast memory resident on the CPU card for
quick instruction acquisition. The use of the fast CPU board
rather than the 8-MHz clock present in the standard computer
configuration results in an approximate factor-of-two increase
in observed speed.

The complete program is precompiled by use of software
and a floating point math card available from the INFOTEK
company. Precompilation reduces most computational por-
tions of the BASIC code to machine language, giving an
additional three-fold reduction in computation time. It is also
desirable to upgrade the operating system for the HP to its
latest revision. All work on these problems was run using the
BASIC 3.0 operating system and the hardware supplements
noted above.

Computation time is defined as time spent in Algorithm 635
and does not include the small amount of set-up time required
by the driver program. Computation times are for the
compiled BASIC program run on the HP9836C with the
special hardware additions mentioned above.

The program described here needs just over 303 kbytes of
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internal memory in addition to the memory required by the
operating system to execute on the HPY836C. This is the
amount of space required by fixing the maximum array size at
N = 50, and allowing at most M = 256 beam pattern
samples. Users can change dimensions to suit their specific
needs, but storage requirements presently are directly propor-
tional to the product NM. Even for a much larger number of
line array elements, it is unlikely that memory restrictions
would prove to be a problem on the HP9836C since extra
memory boards of 1 Mbyte each are readily available.

Ongoing modifications should further enhance the capabil-
ity and speed of the BASIC algorithm and driver. The addition
of the ability to handle directional sensors is both useful and
straightforward to implement. Execution of identical code on
the new HP 300 series computers, which have a 16.6-MHz
clock rate, should further reduce the computation time.
Computation times on the order of S min for a 50-element
array and I min for a 25-element array are anticipated.

It is possibie to run the BASIC program in its uncompiled
state. The execution of the program with cache memory and
the fast CPU board as the only enhancements results in
computation times of approximately 25 min for a 50-clement
array and 4.5 min for a 25-element array.

A copy of the entire program is available from the authors.
Our specific implementation in HP BASIC utilizes several
hardware and software devices to achieve computational
efficiency. some of which may not be pertinent to other
BASIC operating systems running on comparable machincs.
Users will undoubtedly find it necessary to make modifications
to the code to allow it to run on other HP equipment or in
BASIC on the VAX.

V. ExamMpLES

The following examples demonstrate the utility of the
current algorithm for application in situ and provide insight
into different situations that might arise when reshading
equispaced arrays with failed elements. If optimal reshading
can restore the array's original design sidelobe level by
slightly increasing the mainlobe beamwidth, then we say that
the optimal reshading has been effective. Optimal reshading is
effective in many common element-failure situations. When
the array is severely degraded, optimal reshading is less
effective but is still useful in reducing the negative impact of
element failures. These examples demonstrate that the effec-
tiveness of reshading depends upon the number of element
failures, as well as the location of the failed elements within
the array.

Missing elements are modeled by zeroing the appropriate
weights. In these examples, N refers to the number of intact
array elements, M is the number of beam pattern samples, and
K, is calculated by using the equation in an earlier footnote.
We define the mainlobe width to be twice K, in all three
examples.

A. Example I: Effective Reshading

This example demonstrates that reshading can restore the
original sidelobe level of an array response by slightly
increasing the mainlobe beamwidth. In a 25-element equi-
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spaced array. originally designed for - 30-dB sidelobes,
elements 2 and 4 have failed. Therefore. N = 23, M = 128,
and A, = 0.6877. We first keep the mainlobe width fixed and
allow the sidelobe level to rise. See Fig. 1. The peak sidelobe
level has risen to - 26.86 dB below the mainlobe. and the
mainlobe width is unchanged. If the sidelobe level after
reshading is t0o high. an alternative to discarding or repairing
the array is to broaden the mainiobe beamwidth. In Fig. 2, K,
is increased to 0.775 and the peak sidelobe level diminishes to
- 30.04 dB below the maintobe. A trade-off must always be
made between an enlarged mainlobe beamwidth and an
acceptable peak sidelobe level. In this case the mainlobe was
increased 12.7 percent in order to recover the original sidelobe
level. Execution times on the HP9836C are between 1| and 2
min for Fig.. ' and 2.

B. Example 2: Moderatelv Effective Reshading

This example is taken from Streit and Nuttall [1]). Because
of the improvements detailed in Section 111, above, the current
algorithm runs faster on the HP9836C than on the VAX 11/
780. although the floating point multiply time on the HP in its
basic configuration is roughly 200 times slower than on the
VAX.

Consider a lincar array with 50 equispaced elements.
initially designed for peak sidelobes of ~ 30 dB refative to the
mainlobe. Fig. 3 shows the classical Dolph-Chebyshev beam
pattern with —~ 30-dB sidelobes throughout the minimization
range {Ko, (27/D) — Ko This was computed using the
current algorithm in 6.11 min. (This ideal case could have
been computed analytically.)

Now we suppose that five elements, 7. 22, 40. 43, 50, of the
array have failed. The optimal response after reshading the
array is shown in Fig. 4. The peak sidelobe level has risen to
~25.51 dB. but we have maintained mainlobe beamwidth and
retained full steering capability. In this example N = 45 and
M = 128.

This example (Fig. 4) took 7.47 minutes on the HP9836C
and required 292 simplex iterations. The algorithm of Streit
and Nuttall required 38.4 min and 402 iterations on the VAX.

Recovery of the original sidelobe level is possible (Fig. S).
The mainlobe beamwidth must be increased by the large factor
257.6 percent (K, = 0.871) and the execution of this task
takes 8.98 min and requires 351 iterations. The constraint that
all the weights lie between 0 and 1 is used. It is necessary to
use the constraint in this instance because otherwise a
dislocation of the maximum response from k = 0 results. This
dislocation is due to the presence of too many negatively
weighted elements.

C. Example 3: A Severely Degraded Array

This example shows that. for severely degraded arrays,
recovery of the original sidelobe level may not be possible by
increasing the maintobe bzamwidth, even after optimal re-
shading. Consequently. control of the level of the first sidelobe
must be relinquished in order to gain control of the levet of the
remaining sidelobes.

Consider a 25-element array with elements 11 and 14 failed.
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The original sidelobe level is —30 dB. Here N = 23, M =
128, and K, = 0.6877. Fig. 6 shows the algorithm's optimal
response to this configuration. It is a significant observation
that, in this case, small perturbations of K, will not affect the
level of the sidelobes. Only when the first sidelobe is
incorporated into the mainlobe beamwidth (Ko = 1.27) does
the level of the remaining sidelobes return to the original
desired value (see Fig. 7). It is apparent that decreasing the

Array response and normalized weights for Example 1 with X, =
0.775.

minimization interval by moving K, far enough to the right
will improve the approximation, but one must give up control
of the first sidelobe to reduce the others to acceptable levels.
The net effect of losing two elements so close to the center is
that negligible emphasis is placed on the remaining center
elements (12 and 13) and the rest of the aperture is reshaded as
if it were two separate arrays.

This situation cannot be overcome by using different
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Fig. 4. Optimized array response and normalized weights for S0 elements
with elements 7, 22, 40. 43, and 50 failed.

weights. The optimal property of the array problem formula-  gain control of the level of the remaining sidelobes. We pick

tion and solution tells us that no weights exist which can the first sidelobe merely for ease of implementation; modifica-

suppress all the sidelobes below a certain level. Thus this array  tion of the algorithm to forfeit control of a different sidelobe

has lost t00 many elements and performance cannot be could also have been done. The need to relinquish control of

restored to its original design levels merely by reshading. the first sidelobe level has only appeared in cases of severe
We have chosen to relinquish control of the first sidelobe to  array degradation duc to element losses.
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V1. CoNCLUSIONS

Arrays that have failed elements can be reshaded to obtain
optimal array response functions. Optimal reshading is effec-
tive in many common element-failure situations. When the
array is severely degraded, reshading is less effective, but still
can be used to reduce the negative impact of element failures.

161

Optimal reshading can be accomplished in situ, quickly and
reliably, on portable microcomputers using the algorithm
described here. Arrays with 25 elements routinely run in less
than 2 min and computation time for a 50-clement array is less
than 10 min. The algorithm can be applied to arrays of evenly

or unevenly spaced linear geometry.

The above examples (and others) support the generally
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Fig. 7. Recovery of original sidelobe level, Example 3 with K, = 1.27.

accepted notion that failure of near-center elements is more
detrimental to the array response than failure of near-edge
elements.

Another application of Algorithm 635 is to arrays of planar
and arbitrary three-dimensional geometry. Computation times
for these more general arrays probably will depend upon N
(number of sensors) and M ( number of beam pattern samples)
in the same manner as for linear arrays.
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In Situ Optimal Reshading Of Arrays
With Failed Elements:
Algorithm Documentation Package

M. S. Sherrill and R. L. Streit




Abstract

This algorithm documentation package contains three
appendices: Appendix A* is a reprint of an article in the IEEE
Journal of Oceanic Engineering, volume OE-12, number 1, January
1987, In Situ Optimal Reshading of Arrays with Failed Elements;
Appendix B is a listing for the driver routine in program "Reshade,”
and Appendix C,** a 3-1/2-inch floppy disk containing the program
"Reshade" that runs on any HP Series 200/300 microcomput=r.

* Appendix A is the lead document of this compilation.
** Appendix C is not included here.
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IN Srmu OPTIMAL RESHADING OF ARRAYS WITH FAILED ELEMENTS

ALGORITHM DOCUMENTATION PACKAGE

This document assembles under one cover information on a NUSC-developed algorithm which
computes optimal shading weights for discrete elements (sensors) in linear acoustic arrays. The
algorithm has been found especially useful when elements fail and array reshading is required in
situ. The main attractions of the algorithm are that it loads easily on Hewlett-Packard microcom-
puters, and that it runs fast enough and is accurate enough to suit most sea trial and engineering
development applications. Continuing requests for this information since an invited paper first
appeared in the IEEE Journal of Oceanic Engineering in January 1987 motivated the publication of
this documentation package.

The information included here is in hard copy and floppy disk form: the IEEE paper, In Situ Optimal
Reshading of Arrays with Failed Elements, is reprinted in Appendix A; a program listing of the
application-specific driver routine is given in Appendix B; and a 3v% inch floppy disk, containing the
program “Reshade” which runs on any Hewlett-Packard Series 200 or 300 microcomputer, is pocketed
in Appendix C.

GENERAL APPLICATION

When a linear array of discrete acoustic elements is subjected to the rigors of the ocean environment,
individual elements can fail. Element failures are usually characterized by noisy channels, or
intermittent responses, or no response at all. Depending on the number of failed elements and their
specific locations within the array, sidelobe levels of the array wavenumber (k) response can rise
significantly to degrade array performance. Because element weighting values determine array
wavenumber response, weights that are optimal for a fully populated array have to be recalculated
when elements fail. The optimal reshading (reweighting) algorithm described here can be applied
in situ to compute weighting values that can reduce sidelobe levels to approximately the original
design specification. In fact, in the more common situations where “a few” elements fail, optimal
reshading does regain original sidelobe levels. Where large numbers of elements fail, optimal
reshading is still possible but may be of limited use.

The original approach for optimal reshading of a linear array was proposed by Streit and Nuttall in
1982 (see reference 1, Appendix A). At that time, the algorithm was run on a VAX 11/780 and
required hours of computation time and large amounts of mass storage for rudimentary element
failure problems.

The 1987 reshading algorithm incorporates several algorithmic improvements that exploit the special
structure of the underlying linear programming problem to reduce time and storage requirements
by orders of magnitude. The cusrent algorithm is still based on the original theory, but is now fast
enough and small enough to execute successfully in minutes instead of hours in the application
environment. Execution time for a 50-element array is typically about 10 minutes. Derivation of the
optimal reshading algorithm and its implementation are given in the references of the paper reprinted
in Appendix A; examples of array reshading are given in the paper itself.
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TO RUN “RESHADE"...
e Insert the program disk from Appendix B into device/drive.
o Type the command string LOAD “RESHADE:(device specifier)”
o Press Enter
o When the program is loaded, press Run.
o Follow the prompts.

PROGRAM NOTES

“Reshade” comprises a driver routine in HP BASIC which sets up the necessary variables to be
optimized and a generic optimization routine. The driver is listed in lines 1 through 481 of the
program—the printout is contained in Appendix B.

The driver included in “Reshade” applies to a linear array of acoustic elements, some of which may
have failed during the course of a sea trial or similar event. Even with the array intact, “Reshade”
allows the user to minimize the sidelobe levels of the array beamformer output, given a certain
mainlobe width. If the minimum sidelobe levels remain too high, it is possible to alter the mainlobe
beamwidth to reduce sidelobe levels. Note that the weights on each element can be set up as
non-negative, if desired.

The program prompts require user inputs, not all of which are self-explanatory. For each user input,
values in (parentheses) are those allowed, and values in [brackets] are the defaults. The maximum
allowable total number of array elements is 50; the minimum is three. The computation time for a
50-element array is approximately 10 minutes, while a 10-element array runs in less than one minute.

The algorithm is applicable to both equispaced or aperiodically spaced linear arrays. In the
equispaced arrangement, the wavenumbers k0 and k1—which delimit the region in which the
minimization is performed—are calculated automatically from the desired sidelobe level. The final
sidelobe level depends upon the number of failed elements in the array and their location. In this
case, only the inter-element spacing must be specified

In the aperiodically spaced arrangement, every element’s position referenced to the forward end of
the array must be specified. If elements have failed (or are missing), they are treated as if they do
not exist. The wavenumbers k0 and k1 are not calculated automatically for an aperiodic array, and
must be entered manually in units of radians/meter.
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If unsatisfactory sidelobe levels are still present after running “Reshade” for an equispaced arrange-
ment, kO can be increased to provide a larger beamwidth, thus reducing sidelobe levels. For an
aperiodic array, k0 and k1 can be altered manually to reduce the sidelobe level in the region of
interest.

Resultant weights can be stored in a data file in the following format:
o Equispaced element arrangement—total number of elements, followed by the inter-element
spacing, followed by array weights.
o Aperiodic element arrangement—total number of elements, followed by each element’s
position, followed by array weights.

PROGRAM EXTENSIONS AND IMPROVEMENTS

“Reshade” and its associated algorithm have established the validity of in situ computation of linear
acoustic array optimal shading weights. Virtually no sea trial is conducted today without reshading
to compensate for failed elements. Extensions to larger linear array problems are potentially useful.
Improvements and modifications to the original source code are possible in the light of recent
advances in signal processing hardware, and are needed to obtain reasonable computation times for
these larger arrays. With the advent of single-board array processors, the beam pattern computations
done (implicitly) in each iteration in the generic optimization model (KAPROX) may be performed
more quickly and accurately using a floating point FFL This is but one example of software
modifications which will enhance the performance of “Reshade.”

The generic nature of the optimization routine lends itself to the solution of more general array
problems. These arrays may be multiline, planar, or three-dimensional with arbitrary geometry. Each
geometry, however, will require a specific driver routine to set up the problem to be optimized. In
general, the drivers would need the capability to address complex weights, allocate enough memory
for computations, and to take into account any application-specific constraints imposed on the
optimization problem. Additional constraints can be useful; for instance, constraints can sometimes
be used in active arrays to control adverse effects of acoustic coupling between the array elements.
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APPENDIX B

DRIVER PROGRAM LISTING: “Reshade”
Lines 1 through 481

~20-

B-1




OPTION BRSE 1

OUTPUT 2 USING "“#,B"; 255,75 ! CLEAR SCREEN

PRINTER IS CRT

RAD

REAL Estorei50),Uc256),Thean(256),Grres(256),Hsens(256)

INTEGER loexit(10),It10g(10),Icount(S0)>,Ijswt(3,51)>

INTEGER Ldim,1,J,K,N,C5,Symflag,Cachflag,Floatflag,H

COM /Arrsss 2radii(50),Bradii(4),Cheb(10),2¢(50),2centr(50>

COM /Arrssl/ Ref(236),Inf(256),Reb(4,50> BUFFER, Imb(4,50) BUFFER,Rebcentr(
4), Imbcentr(4)

16 COM /Projs Basinu(51,54),Cossin(2,1025),Rea(256,50> BUFFER, Imac256,506)> BUF
FER,Cos435,Space

11 COM /Params INTEGER Ndim,M,L,Logp,Ndimpl,Ndimp4,S11,Tme,Misel (10>

12 COM /Buffmult/ Colrea(S8>,Colimal(S0)>,Colreb(50),Colimb(58)

13 COM /Groupss INTEGER Nogroup,REAL Senslen, Xgroup<25),Dgroup,D(508)

14 COM /Groupsl’/ Hydsens$[3],Hydros(3]

15 DIM S)18$(3),EQuisI3],Height$[3],Neguets[3),Newkos(3]),Data _msuss$[10]),Filena
me$(10],Ngtstores(3],Group_spaces(3]

16 !

17 Data_msus$=": INTERNAL"

18 Cachflag=0

19 ON ERROR GOTO 24 ! POSSIBLE ERRORS IF INTERFACE NOT PRESENT

20 CONTROL 32,1;1 ! IF CACHE MEMORY IS PRESENT IT WILL BE UTILIZED
21 OFF ERROR

22 STATUS 32,1;Stats

23 IF Stats THEN Cachflag=}

24 Floatflag=0

25 ON ERROR GOTO Redo

26 CONTROL 32,231 ! IF FLOATING POINT CARD PRESENT IT WILL BE UTILIZED
27 OFF ERROR

28 STRTUS 32,23Stats

VONAN L WN -

29 IF Stats THEN Floatflag=1

30 !

31 Redo: ! OBTAIN INPUT DATR
32 LOOP

33 IF Ndim=@8 THEN

34 Ndim=16

35 ELSE

36 Ndim=sNdim+Tme

37 END IF

38 REPERT

39 PRINT "ENTER TOTAL NUMBER OF ELEMENTS-/GROUPS IN ARRAY: (3-50)> [(“&VALS$(C
Ndimd>&*]1"

40 INPUT Ndim

41 UNTIL Ndim>2 AND Ndim<S51

42 !

43 OUTPUT 2 USING “#,B";255,?5 ! CLEAR SCREEN
44 REPEAT

45 PRINT "ENTER NUMBER OF SENSORS IN ERCH GROUP: ["&VAL$(Nogroup &"1"
46 INPUT Nogroup

47 UNTIL Nogroup<26

48 IF Nogroup=8 THEN Nogroup=l

49 !

50 IF Nogroup<>1 THEN

St REDIM Xgroup(Nogroup>

S2 OUTPUT 2 USING "“#,B"3255,?5 ! CLEAR SCREEN
53 REPERT

54 Group_spaces$s*""

SS INPUT 1S ELEMENT SPACING WITHIN THE GROUP CONSTANT? (Y/N> [Y1*,Grou
p_spaces

56 IF LENCGroup_space$)>=0 THEN

57 Group_space$="Y"

58 ELSE

59 Group_spacessUPC$(Group_spaces(1])

60 END IF

61 UNTIL Group_spaces="Y" OR Group_spaces$="N"

B-3
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62

63 IF Group_spaces="N" THEN
64 REPERT
[-$.] H=0
66 PRINT “ENTER POSITIONS OF SENSORS IN GROUP:*
67 FOR I=1 TO Nogroup
68 PRINT “SENSOR #"&VALSCI>&": "
69 INPUT Xgroup(I>
70 IF I>1 AND Xgroup(l)><Xgroup¢(l-1) THEN H=H+1
71 NEXT 1
72 UNTIL H=0
73 ELSE
74 REPERT
?S PRINT “ENTER SPACING BETWEEN SENSORS IN GROUP: ([("&VAL$(Dgroup>&"l*
?6 - INPUT Dgroup
77 UNTIL Dgroup>®
78 FOR I=1 TO Nogroup
79 Xgroup(li=CI-1)>#Dgroup
80 NEXT 1
81 END IF
82 ELSE
83 MAT Grress (1,)
84 END IF
8s !
-1 OUTPUT 2 USING "#%,B";255,75 ! CLERR SCREEN
87 REPERT
86 Hydsens$=""
89 PRINT "“DO YOU WISH TO INCORPORATE A HYDROPHONE SENSITIVITY? (Ys/N> (N]"
90 INPUT Hydsens
91 IF LENC(Hydsen$)>=8 THEN
92 Hydsen$="N"
93 ELSE
94 Hydsens$=UPC$(Hydsens$[11)
95 END IF
96 UNTIL Hydsens$="Y" OR Hydsen$s“N"“
97? ]
98 IF Hydsens$="N“" THEN
99 MAT Hsens= (1.)
100 ELSE
101 OUTPUT 2 USING "4,B"3;255,7?5 I CLEAR SCREEN
102 REPERAT
103 PRINT “ENTER THE PHYSICAL SENSOR LENGTH: (METERS) ["&VAlL$(Senslen>&"
JII
104 INPUT Sensien
185 UNTIL Sensiend8.
16 !
107 REPERT
188 Hydrog=""
109 PRINT "IS HYDROPHONE TO BE MODELED RS A DIPOLE OR CONTINUOUS SENSOR?
<bsC> [CI™
110 INPUT Hydros$
111 IF LENC(Hydros$>=0 THEN
112 Hydro$="C"
113 ELSE
114 Hydro$=UPC$(Hydrosl(11)
1195 END IF
116 UNTIL Hydros$s=“C" OR Hydros$="D*
117 END IF
118 |
119 OUTPUT 2 USING "#,B";255,75 t CLERR SCREEN
120 REPEAT
121 PRINT "ENTER TOTAL NUMBER OF MISSING ELEMENTS/GROUPS [ “&VAL$(Tmed&" ]
l-
122 INPUT Tme
123 UNTIL Tme>=06 AND Ndim-Tme>2
124 |
B-4
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125
126
127
128
129

jMisetCed” 11"
130

131
132
133
134
135
136
137

138

139
140
141
142
143
144
145
146
14?7
148
149
150
151
152
153
154

183
184
183
186
187

IF Tme>® THEN
REDIM Misel(Tme)
REPERT
OUTPUT 2 USING “#,B";255,75 ! CLEAR SCREEN
PRINT "ENTER MISSING ELEMENT-/GROUP NUMBERS (SEPARATED BY COMMAS)> (

INPUT Misel(#)

MAT SORT Misel(®)

H=0

FOR I=1 TO Tme
IF Misel(1><1 OR Misel(l1)>Ndim THEN H=H+1
IF I>1 THEN

IF MiselC(Id>=Mise1<I-1) THEN H=H+!

END 1IF

NEXT 1

UNTIL H=0
END 1F

QUTPUT 2 USING “#,B";255,75 ! CLERAR SCREEN
REPERT
INPUT "ARE ALL ELEMENTS/GROUPS EQUISPRCED? (YsN> [Yl",Equi$
IF LENCEQui$)>=8 THEN
Equis="y"
ELSE
Equi$=UPC$CEquisl1])
END IF
UNTIL Equi$="Y" OR Equis="N"

REDIM D(Ndim-Tme>

New_ko: !
Symflag=0 ! FLAG FOR ARRAY SYMMETRY
IF Equi$="Y" THEN ! EQUISPACED ARRAY
OUTPUT 2 USING “#,B*;2S55,75 ! CLEAR SCREEN
IF $11=8 THEN S11=38
REPEAT

PRINT "ENTER ORIGINAL SIDELOBE LEVEL (DB>: <8 TO 50>) [-"&VAL$(S11)&

INPUT S118
IF LENCS11$><>8 THEN S11=ABSC(VALC(S11$))
UNTIL S11>-1 RAND S11<S1

OUTPUT 2 USING “#,B";255,7?5 ! CLEAR SCREEN
REPERAT
PRINT "ENTER ELEMENT/GROUP SPACING (METERS)> (©8-15) [ "&VAL$(Space)&"

INPUT Space
UNTIL Space>® AND Space<=15

NeNdim-1

R=10+(S11,20) ! CALCULATE Ko
R2=R#R

R3=SQR(R2-1.)

RS=(R+R3>)~(1./N)

R6=C(R-R3)~(1.7N)

20=(RS5+R6)>/2.

Ko=(2./Space)*RCS(1.720)
Ki=2.#PIl/Space-Ko

IF Newkos$="Y" THEN
OQUTPUT 2 USING "#,B"3;255,7?S ! CLEAR SCREEN
REPERAT
PRINT "ENTER K@: [ "&VAL$Clod&" 1"
PRINT “SUGGESTED VALUE IS :“;PROUND(Ko,-4)>
INPUT Ko
Ki=2,.#PI/Space-Ko
IF Hydsens="Y"* OR Nogroup>! THEN

B-5
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188
189
150
191
192
193
194
1935
196
197
198
199
280
201

202

203
204
2085
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
236
239
240
241
242
243
244
243
246
247
248
249
250
251
252
2353

PRINT “ENTER i..: [ “&VALSC(KI)&" 1"
INPUT KI
END IF
UNTIL Ko>0 AND Ko<Pl/Space AND Ko<Kl
Ndim=Ndim+Tme
END IF

CS5=9
FOR 1=1 TO Ndim
IF Tme>® THEN
FOR J=1 TO Tme
IF I=sMisel(J) THEN 204
NEXT J
END IF
CS=CS5+1
D(CS>=Space#*(I-1)
NEXT I
CALL Symd(Ndim-Tme,Symflag,D(#))
ELSE
PRINT “ENTER ELEMENT/GROUP POSITIONS (METERS FROM END) :*
PRINT “SKIP MISSING ELEMENT/GROUP POSITIONS."
IF Newko$="Y" THEN Ndim=Ndim+Tme
FOR I=1 TO Ndim-Tme
REPEAT
H=0
PRINT *ELEMENT/GROUP "&VALSCI>&" [ "&VAL$C(DCId>L" ] :%;
INPUT DC(I)
IF I>1 THEW
IF DCI><DCI~-1)> THEN H=H+1
END IF
UNTIL H=0
PRINT DC(ID
NEXT I
OUTPUT 2 USING “#,B*3255,75 | CLFAR SCREEN
REPEAT
INPUT “ENTER KO: (RARD/METER)>' ,Ko
INPUT “ENTER Ki: (RAD/METER)>",K1i
UNTIL Ki>Ko AND Ko >=0
CALL Symd{Ndim~Tme,Symflag,DC(*>>

END IF

Ndim=Ndim-Tme
Ndimpl=Ndim+}
Ndimpd4=Ndim+4

IF Equis="Y" THEN
M=64
C3=(K1-Ko)/(2,#M~1.)

ELSE

M=1286
C3s(Ki~-Kol/7(M-1.>

END IF
Logp=3
Pis(2~Logpl+1

OUTPUT 2 USING “#,B"; 235,75 ! CLEAR SCREEN
REPEAT

Neguwet $=*"
INPUT "MWILL YOU ALLOW NEGATIVE WEIGHTS ? C(Y/N> [Yl",Negwetrs
IF LENCNeguwet$)=@ THEN
Neguet$s"Y”
ELSE
Neguet $=UPCS$(Neguwets$(11)
END IF

UNTIL Negwet$="Y" OR Negwet$="N"

1IF Neguet$="Y" THEN I NO CONSTRAINTS: (Wj)<=1
L=0
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254 ELSE ! 1 CONSTRAINT: (SUMCKjI-.5}<¢=.5,{Nj-.5¥<=.5

255 L=1 ! CHANGE L AND REDIM APPROPRIATE ARRAYS
256 END IF ! FOR MORE CONSTRRINTS

257 Ldim=MAXC(1,L)

258 !

259 ! REDIMENSION INPUT RRRAYS

260 !

261 REDIM Ioexit(Logp),ljswt(3,Ndimpl),Itlogllogp),lcount(Ndim),2radii(Ndim)
262 REDIM Bradii(Ldim),Cheb(Logp),Estore(Ndim),2¢(Ndim),2centr(Ndim)
263 REDIM Basinu(Ndimpl,Ndimp4)>,Cossin(2,P1),Rea(M,Ndim), Ima(M,Ndim>
264 REDIM Ref (M), Imf(M>,Reb(Ldim,Ndim), Imb(Ldim,Ndim),Rebcentr(Ldim)
265 REDIM Imbcentr<Ldim>,D(Ndim),U(M),Tbeam(2%M),Grres(M),Hsens(M)>
266 REDIM Colrea(Ndim),Colima(Ndim),Colreb(Ndim),Colimb(Ndim)
267

268 MAT Basinu= (8.) ! INITIALIZE COMMONS

269 MAT Cossin= (B.)

270 MAT 2= <8.)

271 MAT Cheb= (0.)

272 MAT Colrea= ¢0.)

273 MAT Colima= (@.)

274 MAT Colreb= (0.)

2?5 MAT Colimb= (0.

276 !

2?7 IF Negwet$="Y" THEN

278 MAT Reb= (0.)

279 MAT Imb= <8.)

280 MAT Rebcentr= (0.)

281 MAT Imbcentr= (0.)

282 MAT Bradii= (0.)

283 MAT 2centr= (0.)

284 MAT Z2radii= (1.)

285 ELSE

286 MRT Reb= (i1.)

287 MAT Imb= <@,)

288 MAT Rebcentr= (.5

289 MAT Imbcentr= (0.)

290 MAT Bradii= (.5

291 MAT Z2centr= (.95)

292 MRT 2radii= (.5)

293 END IF

294 !

295 FOR I=1 TO M

296 UCI>=Ko+C3#(I-1)> ! GENERATE U ARRAY

297 NEXT 1

298 !

299 IF Hydsens$="Y" THEN { CALCULATE SENSITIVITY TERM
300 MAT Hsens= (8.)

301 IF Hydro$="D" THEN ! DIPOLE SENSITIVITY

302 FOR J=f TO M

303 Const=,5+,5#C0SCUCI)*Sensien)

304 Hsens(J)=Const#Const

305 Const=-,S5#SINCUCJ)#Senslen)

306 Hsens(J)=SQR(Hsens(J)+Const #Const)

387 NEXT J

368 ELSE t CONTINUOUS SENSITIVITY
309 FOR J=1 TO M

310 Hsens<(J)=ABS(SINCU(JI)*Senslen’/2.)/C(U(J)2Senslen’2.))
311 NEXT J

312 END IF

313 END IF

314 !

319 IF Nogroup<>1 THEN ! CALCULATE GROUP RESPONSE
316 MAT Grres= (B.)

317 FOR J=1 TO M

318 Grim=0,

319 FOR I=1 TO Nogroup

B-7




320
321
322
323
324
325
326
327
328
329
330
331
332
333

334

335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
378
371
372
373
374
375
376
377
378
379
380
381
382
383
384
38%
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Grres(I)=Grres(J)+COSCUCI)#Xgroup(ld)
Grim=Grim=-SINCUCI>*#Xgroup(l>)
NEXT 1
Grres<J>=SQR(Grres(J)*Grres(J>+Grim*Grim)/Nogroup
NEXT J
END IF

FOR J=1 TO M
Ref (J>=COS(D(Ndim>#UCJI)) ! GENERATE F ARRAY
ImfCJ>==SINCD(Ndim>#UCI))
FOR I=1 TO Ndim
Rea(J, 1>=Ref(J>-COSCDCI)*UCI)> | GENERATE Hk ARRAY
ImaJd, I>=Imf¢I>+SINCDCIY*UCTD?
Rea(J,1>=Reat¢J, I>#Grres(J)sHsens(J)
InaCJ, DD=lnacd, I>#Grres(J)#Hsens(J>
NEXT 1
NEXT J

FOR 1=1 TO M
Ref(I)=Ref(I>aGrres(Id>#Hsens(I)
InfFCId=ImfCId#Grres(l)Hsens (1)

NEXT 1

N=Ndim-1

ItlogC1)>=20#%N IMAX ITERATION COUNT
loexit(1)>=0@ IPRINT OPTION
Ts=TIMEDATE PINITIALIZE TIME
CALL Kaprox(N,Itlog(#),loexit(#),1jsut (%))
Te=TIMEDATE-Ts 1EXECUTION TIME
Estore(N>=Cheb(Logp>

Icount (N>=It10gCLogp?

2sum=0, ! CALCULATE FINAL WEIGHMT=1-SUM OF ALL OTHERS
2sum=SUNC2)

2¢(Ndim)=1,-2sum

IF Symflag THEN ! SYMMETRI2E WEIGHTS
FOR I=1 TO INT({(Ndim)>/2)
P=(2C1)+2(Ndim=-1+1)>>-2
2¢1)=P
Z<(Ndim=1+1)=pP
NEXT 1
END IF

IF Tme>0 THEN
REDIM Z(Ndim+Tme>
FOR I=1 TO Tme
FOR J=Ndim+l TO Misel1(l> STEP -1
IF J>Misel (1) THEN 2¢(J)=2(J-1)
NEXT J
2(Misel (1)>)>=g,
NEXT 1
END IF

IF Equis="Y*" THEN

CALL Calcbean(Ndim,H,Tme,Niso!(i),Space.Z(r),Tbeam(i>)
ELSE

CALL Unsynb'am(Ndim,n,Tme,Hiscl(*),KO.KI,Z(!),Tbcam<G>>
END IF

Zmax=MAX(Z2(#))
IF 2max<>@ THEN
FOR 1=1 TO Ndim+Tme | NORMRLIZE WEIGHTS TO 1
2¢1)=2¢1>/2max
NEXT I
END IF
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386 !

387 CALL Weight_plot(Ndim+Tme,M/2,2, Tme,Mise) (*),Space,Ko,K1,C3,2¢(%),Theam(*
)yEquis)
388 OUTPUT 2 USING "#,B";255,?75
389 PRINTER 1S PRT
390 PRINT USING “e*
391 DUMP GRAPHICS
392 !
393 CONTROL CRT,12;2
394 FOR I=0 TO 9
395 ON KEY I LABEL “"" GOSUB Dummy
396 NEXT 1
397 ON KEY § LABEL " CONTINUE * GOTO Comp
398 ON KEY 2 LABEL " KEYS OFF/ON “ GOSUB Flip_key
a9y LOOP
400 END LOOP
401 Dummys |
402 RETURN
403 Flip_key: !
404 Keflip=(Kefiip+1> MOD 2
405 IF Keflip THEN
406 CONTROL CRT,1231
407 ELSE
408 CONTROL CRT,12;2
409 END IF
410 RETURN
411 Compsy !
412 GRAPHICS OFF
413 OFF KEY
414 Weightg=""
415 REPERT
416 INPUT “WOULD YOU LIKE A LIST OF THE WEIGHTS? (Y/N)> [Y¥1",Weight$
417 IF LEN(Weight$)>=B THEN
418 Weights="Y"
419 ELSE
429 Weight$=UPC$Cleightsl11)
421 END IF
422 UNTIL Height$="Y" OR Weight$="N"
423 ¢
424 CALL PrintinputscCachflag,Floatflag,Ndim,Tme,S11,It109¢(*>,Logp,Misel (%),
Space,Xo,K1,Te,Cheb(#),2(#) ,Equis,Neights,Neguet$)
425 |
426 OUTPUT 2 USING "#,B";255,75 ! CLEAR SCREEN
427 Newko$=""
428 REPEAT
429 INPUT "WOULD YOU LIKE TO CALCULATE R NEW Ko or K1 TO GIVE A DIFF. BEAM
RIDTH C(Y/N)> [N)", Newko$
430 IF LENC(Newko$)=0 THEN
431 Newko$="N"
432 ELSE
433 Newkos$=UPC$(Newkos$(11)
434 END IF
43S UNTIL Newko$="Y" OR Newko$="N"
436 IF Newkos$="Y" THEN GOTO New_ko
437 |
438 Wgtstores=""
439 REPEAT
440 INPUT "WOULD YOU LIKE TO STORE THE WEIGHTS IN R DATA FILE? (Y/N) (NI",
Hgtstores
441 IF LENCWgtstore$)>=0 THEN
442 Hotstores="N"
443 ELSE
444 Hgtstore$=UPCs(lgtstoresl1])
445 END IF
446 UNTIL Hgtstore$="Y" OR Mgtstore$s="N*
447 IF Hgtstores$="Y" THEN
B-9
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448
449
430
451
432
433
454
455
456
457
458
439
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
47€
477
478
479
480
481
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OUTPUT 2 USING "#,B";255,75 ! CLEAR SCREEN

INPUT “ENTER FILENAME FOR WEIGHT FILE: (10 CHRRACTERS)>",Filename$

OUTPUT 2 USING “#,B*3;235,75 ! CLERR SCREEN
INPUT “ENTER MASS STORAGE DEVICE: [ :INTERNAL 1" ,Data_msus$
IF Equis="Y" THEN
IF Ndim>30 THEN
CREATE BDAT FilenamestData_msuss$, 2,256
ELSE
CREATE BDAT FilenamestData_msuss,,236
END IF
RSSIGN @Stordat TO Filename$tData_msus$
OUTPUT @StordatjNdim+Tme,Space,2¢(#)
ELSE
SELECT Ndim
CASE >47
CREATE BDAT Filenames$tData msus$, 4,256
CASE >31
CREATE BDAT FilenamestData msuss$, 3,256
CASE >1S5
CREATE BDAT FilenameStData_nmsus$, 2,256
CARSE ELSE
CREATE BDAT Filename$tData_msuss$, 1,256
END SELECT
ASSIGN @Stordat TO Filenames$tData_msuss
OUTPUT €StordatjNdim+Tme,D(#),2(%)
END IF
ASSIGN @Stordat TO +#

END IF

GRAPHICS ON

PRUSE

GRAPHICS OFF
END LOOP ! RETURNS TO Redo AT PROGRRAM BEGINNING
END
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A general Chebyshev complex function approximation procedure
and an application to beamforming

R. L. Streit and A. H. Nuttall
Naval Underwater Systems Center, New London Laboratory, New London, Connecticut 06320

(Received 22 December 1981; accepted for publication 24 March 1982)

A new computational technique is described for the Chebyshev, or minimax, approximation of a
given complex valued function by means of linear combinations of given complex valued basis
functions. The domain of definition of ail functions can be any finite set whatever. Neither the
basis functions nor the function approximated need satisfy any special hypotheses beyond the
requirement that they be defined on a common domain. Theoretical upper and lower bounds on
the accuracy of the computed Chebyshev error are derived. These bounds permit both a priori and
a posteriori error assessments. Efforts to extend the method to functions whose domain of
definition is a continuum are discussed. An application is presented involving “re-shading™ a 50-
element antenna array to minimize the effects of a 10% clement failure rate, while maintaining
full steering capability and mainlobe beamwidth.

PACS numbers: 43.60.Gk, 43.30.Vh

LIST OF SYMBOLS

s

h,,...h,

QM

Z)yeesZm
(@,...a,)=a

e,(z,0)

E.(f)

6,...0,

R,(z;a)
1,(z:a)

the given complex valued function to be
approximated

the given basis functions; linear combi-
nations of these functions are used to ap-
proximate /

the given finite point set; approxima-
tions to f are constructed on the m ele-
ments of this set. (Ordinarily, Q,, is aset
of complex numbers; however, Q,, can
be any finite set on which fand A, are
defined.)

the elements of Q,,,

any vector of complex numbers used as
coefficients of the basis functions
hy,...h,

the complex error “‘curve” of the ap-
proximation to / afforded by the coeffi-
cient vector a; defined by Eq. (A1)

the actual maximum magnitude error
committed by the “best” (i.e., Cheby-
shev, or minimax) approximation to f
by linear combinations of A,,...,h, ; de-
fined by Eq. (A2)

any coefficient vector for which E, ( f) is
actually attained; & is itself approximat-
ed by a (see below)

the usual vector space of all # tuples of
complex numbers

a given integer greater than or equal to
2; the larger p, the better will be the ap-
proximation of @ by @ (see Theorems Al
and A2)

angles defined in Lemma A2 and depen-
dent only on p

the real part of the error curve e, (z;a)
the imaginary part of the error curve
e.{z.a)
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G,l(za)

M, (]

g’np(f’

u(z),v(z)
re(2)8,(2)
RS

bk W

Bx=g

>

>
I
]

other

the projection of the error curve e, {z;a)
onto the real axis of the complex plane
after a rotation through the angle 6, ; de-
fined by Eq. (A3)

essentially an approximation to the
number E, ( f); defined by Eq. (A4)

any coefficient vector for which M ( f)
is actually attained; & is essentially an
approximation to the vector a (see
above)

the maximum magnitude error commit-
ted using the coefficient vector a; de-
fined in Theorem A2

the real and imaginary parts, respective-
ly, of flz)

the real and imaginary parts, respective-
ly, of the basis function A, (2)

real m X n matrices whose entries in the
Jjth row and kth column are 7, (z,) and
Sx(z ), respectively. Used to construct
matrix B (sec below)

the real and imaginary parts, respective-
ly, of the coefficient a, of basis function
h

the real overdetermined system on mp
equations in 22 unknowns, whose Che-
byshev solution yields a solution a to the
problem M, ( f); see the paragraph con-
taining Eq. (A6) for details of construc-
tion

analogous to Bx = g when the solution
vector & is forced to be a vector of real
numbers; see Eq. (A7) for details

all notations not in this glossary are un-
derstood to be “local”; that is, they are
used only in the context of the particular
paragraphs which contain them




INTRODUCTION

The approximation of desired or given functional be-
havior by finite sets of simpler or specified basis functions is a
recurrent problem in many fields. For example, in the math-
ematical field, we might wish to approximate a (desired)
complex integral by a set of (simpler) sinusoidal components.
Or in an antenna array processing application, we often want
to realize a (given) low side-lobe behavior by means of an
array with (specified) element locations which are not under
our control.

For the case where the given functional behavior and
the specified basis functions are al) real valued and defined
on a finite discrete data set, and where the approximation is
afforded by a real-weighted linear combination of these basis
functions, the optimum solution for minimizing the maxi-
mum magnitude error, i.e., the Chebyshev norm is in very
good shape due to a fine algorithm given in Barrodale and
Phillips."? Specifically, this algorithm solves the following
mathematical problem: given real constants { f;}, {4},
where 1<i<m, 1<k<n, m>n, the real quantities {a, |} are
determined that minimize the maximum absotute value of
the error residuals

e=f — i ach,, for 1<i<m. (1}
Aot

This algorithm has recently been used to good advantage in
an array processing application to design some real symmet-
ric weighting functions with very good side-lobe behavior,
subject to constraints on the rate of decay of the distant side
lobes.?

Here we wish to employ the algorithm, as described
above for real variables in Eq. (1), for the minimization of the
Chebyshev norm of

o= - 3 aihia) @)

when f(z) and | h,(z)}} are complex, and z can take values in
an arbitrary finite discrete point set. The weighting coeffi-
cients ja, }7 may be complex, or alternatively, they may be
restricted to be real. Applications are afforded by an antenna
array with arbitrarily specified element locations, but em-
ploying weights that are restricted to be real, or alternatively
by array weights that are also allowed to be phased (com-
plex). Numerical examples and applications of the tech-
nique, some efforts attempted for extending the method toa
continuum of values of z, and a discussion constitute the rest
of the main body of the paper. In the Appendix the basic
mathematical theory and algorithm for the minimization of
Eq. {2) is developed. Streit and Nuttall* present 8 FORTRAN
program in a form which should be useful to readers interest-
ed in applying the technique to their own particular applica-
tions; unfortunately the listing is too long to include here. (A
brief study of the appendix, especially with regard to Eq.
{A6), should enable interested readers to write their own pro-

Although the above algorithm' is limited to a discrete
set of points, it has been used fruitfully to minimize the con-
tinuous error [Eq. (2)] over a real variable z in the interval
[z, .2,). when fand {h, | are real, in the following manner.
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First, an initial set of m>n real points |2!|T was specified
and the Chebyshev norm minimized in the usual fashion,
resulting in the coefficient set {a} };. For this set of optimum
coefficients, the locations {22}} of the largest peaks of
le,(z;a)} were located, by setting the derivative e, (2;a) to zero
and solving numerically for {22}}; the number / of such
peaks will generally be less than m, but larger than n. [This
approach presumes the availability of computable expres-
sions for f'(z) and { A ;(z)}} ] Then the modified set of points
{22]} were used for another Chebyshev minimization, re-
sulting in coefficient set {a; };. Repetition of this procedure
stabilized after a few trials with a unique set of {z; }| at which
the maximum errors were equal and irreducible. In the ex-
amples tried in Nuttall,? the number of peaks / at which the
magnitude error Je,, (z;a)} was largest and equal turned out to
be n + 1. Further discussion of this recursive approach is
given in Sec. IL.

Our method, as presented in the Appendix, is not inher-
ently restricted to arrays of any particular geometry, but
does assume that interelement effects (mutual coupling) can
be ignored. In the most general case of a spatial or volume-
tric array, the method proposed here can still be applied. All
the functions in Eq. (1) are then fanctions of spherical coordi-
nates {6,¢), so the finite domuain of approximation becomes
an appropriately chosen finite set {(6, ., )] instead of a set
of complex numbers. This difference does not in any way
affect the mathematical properties of our method; rather it
affects the size of the numerical problem to be solved and
consequently, the computer effort required for its solution.
For large enough arrays, such effort ultimately becomes pro-
hibitive; where that point lies depends upon the designer and
the application.

Although our method is applied only to single-frequen-
cy design problems for arrays, it can also be applied to broad-
band frequency design by sampling in frequency space as
well. This again adds to the computer effort of solution, but
does not affect the basic mathematical method.

We use no weighting function in Eq. (2), and so the
resulting farfield beam patterns have a level side-lobe struc-
ture. For example, the classical Dolph—Chebyshev array de-
sign can be reproduced by our method. If such a level side-
lobe structure is not desired, then use of an appropriate
weighting function in Eq. (2) is easily incorporated into our
method without altering the algorithm in any essential way.

1. APPLICATION TO ARRAY DESIGN WITH A
CONSTRAINT

Consider a linear antenna array with N elements, locat-
ed at arbitrary fixed positions |x, } ], receiving a plane-wave
arrival of wavelength A from direction 8,, — 7/2<8,<n/2,
relative to a normal to the array. If the array is steered to
look in direction 8,, — 7/2<0,<m/2, then the complex
transfer function of the beamformer is given by

N
Tiw= Y w, expl—id,u), 3
<

where {w, |} are the element weights, and
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d, = 2mx, /A, for 1<k<N,
=sin§, —sin6,.

Observe that the total range of u depends on the look direc-
tion §,; for example, if §, = 0, then the range of u is the
closed interval [ — 1,1). The peak response of T (u} should
occur at u = 0, so we normalize (without loss of generality)
according to

N
TO=1= Y w,.
k=1
To realize small side lobes, we must minimize | T (u)| for
all u values in some subset U of the total range of u. For
example, if 6, = 0, the total range of u is [— 1,1], and U
could be the union of intervals [ — 1, — &,] and [u,, 1), where
u, > 0is chosen small relative to 1. For the special case of real
weights, since from Eq. (3), T{ — u) = T *(u), we could con-
fine attention to U = [u,,1]. The normalization constraint is
most easily accounted for by solving for wy and eliminating
it; we obtain then
T(u) = expl — id,u)
N-—1
— 3 w,[expl — idyu) - exp{ — id, u)}. 4)
k=1
This problem now fits the framework of Eq. (A1) in the ap-
pendix if we identify

z=u, n=N-1,
fiz) = exp| — idyu),
h,(2) = exp| — idyu) — exp| — id, u),

Q.. = finite subset of U. (5)

There has been no statement thus far as to the real or
complex nature of the weights {w, }. This distinction de-
pends upon the application and the capability of the beam-
former. Both cases fit the above framework; the only differ-
ence is that the number of unknowns to be solved for will be
twice as large for the complex weights as for the real weights.

If the array is half-wavelength equispaced, then the
computed element weights will be identical to the classical
Dolph—Chebyshev weights and can, in this instance, be com-
puted analytically. The general case of arbitrary spacings,
however, cannot be computed analytically; yet the algo-
rithm presented in this paper can always be applied.

In the remainder of this section, we presume that the
elements are equispaced at half-wavelength. Thenx, = k4 /
2 and Eq. (3) becomes

e,(z:a) = T (u),

a, =W,

T(u)= i w, exp{ — irku). (6)

Observe now that T (u) in Eq. (6) has period 2 in u, regardless
of whether the weights {w, } are real or complex, or whether
some elements have failed, i.e., zero weight values. This
means that we can study and control T () in Eq. (6) over any
convenient u interval of length 2, and need not confine our
investigation to[ — 1,1). In particular, we concentrate on the
u interval [0,2] in the following.

As an illustration of the capability of the minimization
technique of this paper, a 50-element, half-wavelength, equi-
spaced linear array was initially designed for peak side lobes
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FIG. 1. Relative pattern for five clements failed.

of — 30 dB relative to the main peak. This is of course »
standard Dolph-Chebyshev case, and gives — 30-dB side
lobes throughout the u range [uo2 — o), where
uo = 0.0538117.3 Then 10% of the elements were randomly
climinated from the array, but the remaining weights were
unchanged; this corresponds to five elements failing in the
array. The relative response of this particular array, with
elements 7, 22, 40, 43, 50 failed, is illustrated in Fig. 1. The
peak side lobe has increased from — 30to — 21.58 dB, a
degradation of 8.4 dB, and there is a large variety of different
size peaks.

When our method with p = 2 and m = 251 equispaced
points in [u,,2 — u,) is applied to this defective array and the
remaining 45 elements are weighted with real coefficients,
subject to the constraints that the mainlobe width be the
same as the ideal 50-element array and that the steering
range in u be the same, the resultant array pattern is as dis-
played in Fig. 2. The peak side lobe is now — 23.62 dB, an
improvement of 2.04 dB over Fig. }; however, thereis still a
significant variation in the values of the side lobes due to an
insufficient number of phase controls, namely only p = 2.

The best real weights resulting from an increase in the
parameter valuestop = 8, m = 501 are displayed graphical-
ly in Fig. 3, and the corresponding array pattern is given in
Fig. 4. The gaps in Fig. 3 at locations 7, 22, 40, 43, and 50
correspond to zero weighting at the failed elements. The gen-
eral character of the weights is a bell-shaped one of all posi-

)

P DY T
FIG. 2. Relative pattern for p = 2, m = 251, real weights.
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tive numbers, but there is significant fluctuation in the actual
weight values, of the order of 10%. The pattern in Fig. 4 has
a peak side lobe of — 25.20 dB, an improvement of 3.62 dB
over Fig. 1 but still 4.80 dB poorer than the ideal 50-efement
array.

‘When the weights were allowed to be complex and the
maximum side lobe minimized in the same steering range
(402 — ug] for p=2 and m = 501 equispaced points in
[#6:2 — ug), the best complex weights turned out to be virtu-
ally pure real, and the corresponding pattern was almost
identical to Fig. 2. A much improved pattern for complex
weights was achieved when we took p = 8, m = 501; in fact,
the best complex weights were real (within 10~ relative er-
ror) and the pattern was the same as Fig. 4. Although we had
anticipated a better pattern for the complex weight case than
for the real weights, that did not materialize; the best com-
plex weights for this equispaced linear array with five miss-
ing elements were real. The reason for this behavior is un-
known, but it is an encouraging result from the array design
viewpoint, for it indicates that there is no need to allow phas-
ing at the individual elements; gain alone will achieve all the
side-lobe reduction that can be achieved. This conclusion is
drawn only for the half-wavelength equispaced line array
with omnidirectional element response. (Recently, Lewis
and Streit® proved, for a general line array steered through
the same number of degrees either side of broadside, that
within the collection of all sets of best complex weights there

hlllllm

FIG. 3. Best real weights fot p = 8, m = 501

Eoment Locaton (1 10 30§
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FIG. 4 Relative pattern for p = 8, m = S01.
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always exists a set of real weights. Thus it is not necessary to
use complex weights in the case of line arrays to achieve best
possible side-lobe levels.)

The use of linear programming to design antenna arrays
is not entirely new. In McMahon er a/.” and Wilson,” linear
programming was used to synthesize desired complex trans-
fer functions to within 3 dB of the best possible side-lobe
level. Their method corresponds identically to taking p = 2
in the method presented in this paper, i.c., treating only the
real and imaginary parts of Eq. (2).

The computation of the real weights of Fig. 2 (where
p=2, m=251, and n = 44} and of Fig. 4 (where p =8,
m = 501, and # = 44) required 1.2 min/205 simplex itera-
tions and 38.4 min/402 simplex iterations, respectively. On
the other hand, when the weights were allowed to be com-
plex (replacing n = 44 by n = 88, but leaving p and m un-
changed in both cases), the computations required 7.0 min/
657 simplex iterations and 179 min/1262 simplex iterations,
respectively. The two of these four cases requiring the small-
est CPU times encountered almost no system overhead due
to program size. However, the two cases requiring the lar-
gest CPU times encountered very significant system over-
head because their large memory requirements caused sig-
nificant usage of the virtual memory feature of the DEC
VAX 11/780. The 38.4-min case required over 3.6 million
page faults, while the 179-min case required over 11 million
page faults. It is important to bear in mind that the DEC
VAX 11/780is essentially a minicomputer, and that without
virtual memory, only the largest mainframe computers
could have solved either of these two problems.

1. EFFORTS TO EXTEND THE METHOD

Our basic problem is to minimize the maximum magni-
tude of complex error

e.(za)= fl2) - .2 a,hil2) Y]
-]

over a continuum of values of z, when £, {4, |, and {a, | are
complex. We immediately approximate this desired problem
by discretizing the z variable to a finite number of values, in
order to make the problem computable. Furthermore, at any
z value of interest, we additionally discretize the number of
phase errors we are willing to consider. To be specific, since
the algorithm in Barrodale and Phillips'? applies only to real
quantities, we consider the “projection” of a rotated version
of the complex error:

P(z.¥) = Re{explivie, z0}]. (8)
Then, since the argument of complex error [Eq. (7)] is un-
known a priori, we let i take on a finite set of values spread
over any n radian interval, and minimize the magnitude of
projection [Eq. (8] over all these selected ¢ values. This is
equivalent to the method of the Appendix.

In an cffort to eliminate this second discretization pro-
cess in ¢, a perturbation method was put forth® that claimed
guaranteed convergence to the optimum weights for any giv-
en finite discrete set of z values. When applied to the exam-
ples in Barrodale e al..’ the proposed perturbation tech-
nique did indeed converge. However, when applied to the
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following example, of approximation of exp(i3x) by the three
basis functions 1, explix), exp(i2x), over 100 equispaced
points in the domain [0,7/4] in x, it sometimes failed to con-
verge, depending on the initial weights employed. The rea-
son for this failure is that the “direction of the minimum™
furnished by the perturbation is often totally irrelevant, and
the best scale factor to apply to this perturbation is very
small. Thus there occurs a small random meander in the
coefficient space, and occasional convergence to a nonopti-
mum point. A modification of this technique was attempted
wherein the magnitude of the perturbation was bounded.
Although this improved the situation somewhat, conver-
gence to the optimum was not always obtained.

It was thought that this meander in coefficient space
might be eliminated by tracking the exact z values at which
Eq. (7)is amaximum. Recall that in the real case discussed in
the Introduction, convergence to the absolute optimum over
a continuum of real z values was achieved in a practical ex-
ample by re-evaluating the 2 points of maximum error and
using these in a recursive approach. When this idea was ex-
tended to the two continuous variables z, ¥ in Eq. (8}, and
only the 2n + 1 largest error points were retained, conver-
gence was not obtained. When, however, the single *“point™
of amaximum, i.e., a pair of values (2, ,¥, ), was replaced by a
“patch”, i.c., a set of values {(2,,,¥,,)] covering the maxi-
mum point (z,.¥, ), the convergence to the absolute opti-
mum for the examples considered was apparently achieved.
The patch width in ¢ was of the order of a degree in most
cases. The problem with this latter modification is that a
large number of computations of the error function and its
derivative must be evaluated, and the improvement over the
method of the appendix 1s insignificant when p there is large.

Ifthe finaler- -i: 3q.(7), after application of the meth-
od of the Appendix.is inadequate due to inadequate sampling
inzand/or ¢, i* is possible, for a given coefficient set {a, },to
locate the point (z,,,,¥,, ) at which Eq. (8) is largest, and then
use a eradient approach to decrease this maximum error at
{z.. W ). Of course, the particular point of maximum will
jump around as the set {a, | is perturbed; nevertheless, the
technique does converge (although slowly) and does lead to
smaller errors at the maximum of Eq. (8) in a continuum for 2
and ¢¥.

1I. DISCUSSION AND SUMMARY

It has been observed that two of the locations of maxi-
mum magnitude error often occur at the endpoints, if the
specified domain in Eq. (2) is a real interval. (For example,
see Figs. Al and A2. The example of real coefficients in Fig.
Al had one of the maximum error points at one endpoint,
but not the other. However, if we had specified domain
[ — w/4,7/4) in that example, we would have observed four
peak-error points, two of which would have been at end-
points, due to the conjugate property of the desired function
and the basis functions.) Since the endpoints may be the only
ones we can anticipate a priori and specify as locations of
maximum error, an obviously useful procedure is to use
more values of phase shift ¥ in Eqg. (8) [alternatively, the
angles {6, ] in Lemma A2] at the endpoints than in the inte-
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rior, so as to better control these very likely locations of
maximum error. For example, we might use p = 6 in the
interior of a specified real interval domain of z and use
p = 12 or 20 at the two endpoints. This does not add greatly
to the total computation, since there are generally far more
interior points than {two) endpoints. The program in Streit
and Nuttall* may be readily used with different values of p at
different data points.

The p different phase shifts ¢ selected in Eq. (8) have
been chosen here to be equally spaced over a 180" span (along
with their 180° mates). This is the most reasonable selection
in the absence of a priori knowledge of the complex error
magnitude and phase because it gives the best upper bound
in Lemma A2 of any set of phases. However, one could select
any value of ¢ to investigate the error; for example, different
sets of values of ¥ could be used at various values of abscissa
z. The program in Streit and Nuttall* may be used with any
desired set of phases at any, or all, of the data points.

The potential for significant round-off error accumula-
tion is always present in linear Chebyshev complex function
approximation. For example, in approximating
fix) = cos{12x) + i sin{3x) by a complex linear combination
of the 12 basis functions 1, exp{ix),...,exp{i1 1.x) on the interval
[0,7/4), the complex coefficients of best approximation were
observed to be large in magnitude and to lie in all quadrants
of the complex plane; therefore significant numerical round-
off error occurred during computation of the residuals with-
in algorithm ACM495. Even if the coefficients of best ap-
proximation had happened to be better behaved, serious
cancellation error may still occur in some problems because
of the very nature of complex arithmetic. It might, therefore,
be wise to use a double precision version of algorithm
ACM495 routinely in complex Chebyshev approximation
problems to alleviate such cancellation errors.

A sensitivity analysis on the optimum coefficients may
be in order in some applications to determine their utility.
This consideration is completely independent of their nu-
merical accuracy. For example, in an antenna array design
problem where some elements are spaced significantly less
than a half-wavelength apart, it might well turn out that the
optimum coefficients need to be specified with a relative er-
ror of better than 10~°. Then, although the mathematical
results may be correct and accurate, practical usage is pre-
cluded. This sensitivity can be determined by perturbing the
optimum weights a few percent and observing if a drastic
change occurs on the desired side-lobe behavior. {Such ar-
rays are referred to as super-directive arrays.)

APPENDIX: MATHEMATICAL THEORY AND
ALGORITHM

Let fand h,,...,h, be complex valued functions defined
on the finite discrete point set Q,,, = {z,,....2,, }. For a com-
plex vector a = (a,,...,a, )C”, define the complex error

"

fla)— ¥ ah(2)=e,(za), zeQ,. {Al)

k=1
The discrete linear Chebyshev approximation problem is to
find a complex vector a = (a,,....d, }C” so that
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E, (/)= min max|e, (z;a)| = max|e,(z;3)|. (A2)
«uc*® "0, Q.

Thequantity E, { f)iscalled the discrete Chebyshev, or mini-
mazx, error of the approximation on the point set Q,, . (The
restriction of & to real values is discussed below.)

We do not solve this problem exactly. An algorithm
presented in Bacrrodale ez al.® for its solution is erroneous; we
have discovered examples (see Sec. I1) such that the recursive
procedure described there need not converge to a solution of
Eq. (A2). We will show that problem (A2} can be replaced by
a related approximate problem solvable by available linear
programming techniques. The exact solution of this related
problem yields approximate solutions of Eq. {A2). The error
in these approximate solutions to Eq. (A2} can be determined
and, in fact, made arbitrarily small, using the results we
prove below; see Theorems Al and A2.

It can be shown by standard mathematical methods'®
that a vector a satisfying Eq. (A2) exists, although it may not
be unique. Sufficient conditions are known that result in
unique 3, but we do not need these conditions here. There-
fore no further assumptionson f, &,,...,.k, or the point set 0.,
are made. In order to proceed, we need the following results.
Proofs of all these results are given in Streit and Nuttall.*

Lemma A1.1fz = x + i y, where x and y are real, then

max (xcosé + ysinf)

- wcbiw

Lemma A2. Let 6, = m(j— 1)/ p.j=12,..,2 p, where
the integer p>2. Letz =x + iy, and let

Iz =

M= max (xcos8, +ysind,)

J=tendp
Then

MK |z| <M sec[7/(2 p)).

We are now in a position to describe a problem that we
can solve exactly and that is related to the given discrete
linear Chebyshev approximation problem (A2). Let the real
and imaginary parts of the complex error e, (z:a) be denoted
by R, (z;a) and I, (z;a), respectively. For notational conve-
nience, we define, for any complex vector aeC™,

G,(za) =R, (z;a)kc08 0, + I (z:asin B,, j=1,.,2p, (AJ)

where8,,...,6,, are the angles given explicitly in Lemma A2.
We seek a complex vector @ = (d,,...,.3, JeC" satisfying

M\ )E:i:r‘l. max max G,lzal,

=max max G,(za) (A4)
20, j=1..2p
With standard mathematical methods, it is easy to see that at
least one such vector GeC" exists. The connection between
the problem (A4) and the problem (A2) is explored in the
next few results.
Theorem Al. Let p>2 be an integer, and let
6, =mj—1p j=12,.2p Then

M, ANIKE,(f)<M, | fisec7/(2 p)].

Theorem A2. Let p>2 be an integer, and let
0, =mj—1/p, j=12..2p Let
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?nl(f) = Lna.‘xku(zﬁ)l-

where the complex vector 3eC” is any vector satisfying (A4).
Then

E (fISE . ASI<E,(fisecln/(2 p)).

Corollary A2.1. Under the conditions of Theorem A2,

M NENKE ., f).

The preceding corollary evidently gives excellent upper
and lower bounds on the discrete linear Chebyshev approxi-
mation error E, ( /), and these bounds are readily available
after the numerical computation of 3¢C" and M, (/) has
been completed. We point out that the above two theorems
substantially generalize results in Barrodale et al.,” p. 854.

Using the Maclaurin series for sec x in Theorem A2

gives the relative discrepancy
gu)(fl - En(f)
0 ———ET— (W[ﬂ/ﬂp” -1
r 1
= -E-p—z +0(’7), as p—co.

Note that this upper bound on the relative error is indepen-
dent of , the point set Q,.,, the basis functions {4, }, and n.
We will now explicitly formulate an overdetermined
system of real linear equations to be solved in the Chebyshev
norm (to be defined) which is equivalent to solving the prob-
lem {A4). Referring to the choice of 6 ;’s in Lemma A2, we
observethat6,, =7 +46,, j=1..,p, and so, from Eq.
{A3), we have
G,, lza)= —G,za), j=1,.p
Therefore, we may rewrite Eq. (A4) as

M, (/)= min max |G,(z;a)|. (AS)
oeC® I<i<m
Isja p
Now, breaking the following quantities into their real and
imaginary components
Siz) = ulz) + ivfz),
hel2) = rl2) + is, 12),
k=1\,..n,

k=1,.,n,
a, =b, +ic,,
we may write

R za)=ulz) ~ ¥ bnll+ 3 asia)h
k=) kol
Liza)=vz)— ¥ bsils)— 3 anla2),
kow ) LR}
G,lz;ia) = u(z,) cos 6, + viz,)sin 8,
= 3 b [rlzcos 8, + s5,(z,)5in 6, ]
k)
— Z o [rlz)sing, —s,(z,)c0s 6, ]
k=1
Note that G, (z,;a) is a real linear equation in the 2n variables
{bs | and [c, |, and that all the coefficients of this equation
are computable directly from known data.
Define the m px 2n real matrix B in the partitioned

form
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FIG. Al. Error curves for real coefficients; m = 11.

B, D,
s=|2 )
B D

P 14
with the m X n submatrices

B, =Rcos 6, +Ssiné,,
D, =Rsinf, —Scos b,
where R and S are real m X n matrices defined by
R=[rz,})], S=[siz,)]
Also, define the real vector
8=[81 1 1mB21r--sB2mr-Bpr v € pm | |
of length m p, where

t=1...p

8, =ulz)cos B, +viz,)sinf,, t=1,.m j=1,.p.
Finally, define the real vector
x= (b, it ]

of length 2n. With this notation in hand, it is easily seen that
the overdetermined system of m p equations in 272 unknowns

Bx=g (A6)
has a residual error vector, defined by

8 — Bx,
whose m p components are precisely the m p real numbers

o
4 muitpe?
~N s

mepuis —or N
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e LI 1%

FIG A2. Error curves for complex coefficients; m = 11.
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G,(2,;0) arranged in a special order. Therefore the problem
{AS) can be solved by computing a solution to the overdeter-
mined linear system {A6) in the Chebyshev norm; i.e, the
largest magnitude component of the residual vector g — Bx
is minimized over all choices of the vector x.

This equivalent problem in linear algebra can, in princi-
ple, be solved exactly and in a finite number of steps using
linear programming methods.’-? Solutions of Eq. (A6) are
not required to be unique; every solution of Eq. (A6) is a
solution of Eq. (AS).

An excellent algorithm, which we will refer to as ACM
495, is available in the literature'-* for solving the overdeter-
mined system of equations Ax = b. A linear program is set
up and solved by the algorithm, so that knowledge of linear
programming techniques is not necessary to use the algo-
rithm in practice. The computational procedure, internal to
the algorithm, actually solves the dual of the primal linear
program using a modification of the simplex method. The
dual formulation of this problem is available.'’ We will not
discuss the details of the linear programming technique in
this paper.

A very simple modification® of ACM 495 yields an al-
gorithm for solving any real overdetermined system of linear
equations in the Chebyshev norm subject to the additional
constraints that all the residuals be non-negative. For a gen-
eral system Ax = b, this problem takes the form

minimize max (b, -3 al,,x,(),

X, T yar Km0

subject to the 7 constraints

b,— ¥ aux30, j=1L..r
k=1
The solution x,,....x, returned by this modified algorithm is
correct, even though the residuals returned may be in error.
The correct residuals, if desired, must be calculated directly
from the solution. Alternatively, if the residuals are required
to be non-positive, then the same modified algorithm will
work with 4 and b replaced by — A4 and — b, respectively.

Requiring non-negative residuals in the overdeter-
mined system (A6) has interesting geometrical interpreta-
tions. For example, if we take p =2 in Lemma A2, then
8, = 0and 8, = #/2. Thus G ,(z;a) and G,(z;a) are merely the
real and imaginary parts of the complex error e, (2;a), and the
2m components of the residual vector g = Bx are precisely
the real and imaginary parts of e, (z;a) evaluated in all m data
points. Therefore, if the system (A6) is required to have non-
negative residuals, we have forced the error curve to lie en-
tirely in the first quadrant of the complex plane. More gener-
ally, we may always constrain e, (z;a) to lic in a given convex
wedge-shaped sector of the complex plane with vertex at the
origin, by making different, but appropriate, choices of the
angles 6, and 6,.

Suppose, finally, that the complex solution vector aeC"
of problem (A4) is required to be strictly real, while f and
{h, ] are complex. Then, in the vector x of Eq. (A6),
¢, =..=c¢, =0. Thus the overdetermined system Bx =g
of mp equations in 2n unknowns can be replaced by a
smaller system B = g of m p equations in only #n unknowns,
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TABLE Al. Coefficients for the real weight case."*

m P a, a, a,
i 2 0.936738 — 2441144 2.518388
6 0.828404 — 2.280319 2.396455
18 0.858547 — 2321885 2.425096
34 0.844146 — 2.301461 2.410611
101 2 0.936781 — 2443223 2.518458
6 0.831314 — 2.284548 2.399525
18 0.865131 - 2331446 2.432033
s4 0.853823 — 2.315301 2.420506
1001 2 0.936785 —2.443232 2.518466
6 0.831237 — 2.284448 2.399461
18 0.865213 —23315N 2432127
54 0.853443 —-2314172 2.420138

where the m p X n real matrix B is defined in partitioned
form by

(A7)

where the m X n submatrices B,,...,B,, are unchanged from
(A6}, and the real vector % = (b,,....,]”. A solution of
Bix = gin the Chebyshev norm can be computed using linear
programming and algorithm ACM 495 as before.

We illustrate the procedure by approximating the com-
plex function f{x) = exp{i3x) by a weighted sum of the basis
functions 1, exp(ix).exp(i2x). That is, we seck to minimize the
magnitude of the complex error curve

3
e\lx)=explilx) — 2 a, explitk — 1ix] (A8)
k=1

over interval [0,7/4], by choice of a,,a,.a,, by solving the
problem M, ,{ ) of Eq. (A4). Two cases are of interest; in the
first, the coefficients {a, |} are restricted to be real, whereas
in the second, these coefficients can be complex. The number
m, of equispaced x values at which Eq. (A8) is sampled, is
taken to be either 11, 101, or 1001, thereby ensuring that the
smaller sample sizes are subsets of the larger sizes. The value
of p, which is half the number of phase-shifted values of Eq.
{A8) employed in the error minimization, is taken to be 2, 6,
18, 54, again ensuring the subset behavior of the smaller size

TABLE Al Coefficients for the complex weight case.

cases. Note that p and the phase shifts {8} are as given in
Theorem Al.

The optimum real coefficients in Eq. (A8) for the prob-
lem M, ,( f) are given in Table Al for these choices of m and
p, and a plot of the magnitude of the error for several repre-
sentative cases is given in Fig. Al. The "-sst approximation of
all cases considered is afforded by m = 1001, p = 54, and its
error curve is plotted as a solid line; its maximum error is
0.1078, which is realized at two pointsin thei terval {0,7/4].
The cases for smaller m (less sampling of the abscissa) and
smaller p (less sampling of the phase of the complex error) are
poorer; for example, the maximum errorform = 11,p = 215
0.1184, realized at only one point, namely x = 7/4.

We have not plotted the other error curves with real
coefficients for m = 101 and 1001, because they are indistin-
guishable from Fig. A1, as a perusal of Table Al shows. For
example, the coefficients for m = 11, p = 2 are very close to
those for m = 101, p =2 and m = 1001, p = 2. Thus our
sampling in x is already *“fine enough” at m = 11. However,
there is a significant change in the coeflicients as p is varied,
for a fixed value of m; that is, p = 2 yields very coarse phase
sampling of the error curve and should definitely be made
larger.

The Chebyshev error curve (m = 1001, p = 54} in Fig.
Al realizes its maximum value at only n — 1 points, rather
than at n + 1 points, where n = 3 is the number of coeffi-
cients for this example. This is probably related to the fact
that we have minimized both the real and imaginary parts of
the complex error, but have allowed ourselves 1o use only
real coefficients.

The solution of the problem M, ,(f) for complex
weights is given in Table All for the same choices of m and p
as above. Again, the change in coefficient values is more
marked with p than with m. Magnitude-error curves for
m = 11 and 101 are given in Figs. A2 and A3, respectively;
the curves for m = 1001 are indistinguishable from those for
m = 101 and are not presented.

The Chebyshev error curve (m = 1001, p = 54) is now
symmetric about the midpoint of the interval of interest and
has four equal error peaks of value 0.0147. This error is 7.3
times smaller than that for the real coefficient case. Also, the
number of equal error peaks now equals 1 plus the number of
coefficients; whether this property holds generally is not
known.

m 14 Reja,) Imla) Re{a;) Im{a,) Reja;) Imla,)
i 2 0.364737 0.954343 -~ 2021670 — 2119639 2.669023 1.153207
6 0.378045 0.907888 — 2016657 —~2.018598 2.648834 1.100488
18 0.373079 0.898715 - 2.003032 — 2.003208 2.639992 1.094451
54 0.371586 0.896504 — 1.999352 — 1.999473 2.637788 1.092947
101 2 0.362962 0.953469 —2.018255 —2.119960 2.667544 1.154238
6 0.376532 0.904026 — 2.012095 — 2.014055 2.646131 1.099461
I8 0.370549 0.893500 — 1995913 ~ 1.997062 2.635782 1.093144
54 0.368950 0.890017 - 1.91172 —~1.991196 2632622 1.090777
1001 2 0.362947 0.953499 —2.018253 —2.120028 2.667560 1.154275
6 0.376502 0.903926 — 2011979 — 2012914 2.646047 1.099417
18 0370711 0.893848 — 1.996440 — 1.997545 2636145 1.093278
54 0.369179 0.890566 ~ 1.991954 — 1991974 2.633175 1.091006
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Upper and lower bounds on the discrete Chebyshev er-
ror E, ( f) for the real and complex coefficient cases are given
in Table AIIIL These bounds are precisely those presented in
Corollary A2.1. They correspond to sampling the complex
error (A8) both in the abscissa x and in the phase of e4(x). The
lower bounds monotonically increase with increasing m or p.
The upper bounds decrease with increasing p, but increase
with increasing m. All these trends follow from the fact that
smaller sample sizes are subsets of the larger sizes.

However, the maximum magnitude error, evaluated
over the continuum of x values in the interval [0,7/4] (actu-
ally computed on a dense discrete sampling space), obeys
none of the these monotonic relations, as Table AIV demon-
strates. For example, the maximum error in the real case for
m =11, p = 18 is less than that for m = 11, p = 54. Also,
the maximum error in the complex case form = 11,p = bis
greater than that for m = 101, p = 6. The reason for this
behavior is that we have minimized a discrete approximation
to our problem of interest, sampling both in the abscissa x
and in the phase values of the complex error. However, the
numerical discrepancies are small, as they must be for rea-
sonably fine sampling in both variables. (A recursive gradi-
ent procedure could be used with any of these coefficient sets
to improve the final maximum magnitude error if desired.)

TABLE Alll. Bounds on the di Chebyshev error E, (/).

TABLE AIV. Maxi gnitude error, puted over 2001 equispaced
points in {0.7/4).

Real coefficients Complex

m P coefficients
1t 2 0.118396 0.017097
6 0.108780 0.015142
18 0.107890 0.015004
54 0.107983 0.015003
101 2 0.118415 0.017329
6 0.108893 0.014946
18 0.107967 0.014733
54 0.107813 0.014711
1001 2 0.118417 0.017331
6 0.108902 0.014950
18 0.107976 0.014735
S4 0.107821 0.014712

Efficiency and timing estimates for actual calculation of
complex Chebyshev approximations by the method of this
paper is an important consideration in some applications. If
we define an operation as consisting of a multiplication fol-
lowed by an addition, then it is known'? that the number of
operations per simplex iteration required by algorithm
ACM 495 is exactly the number of equations times the num-
ber of unknowns. In our case, the number of equations is
m p, and the number of unknowns is 2» if the coefficients are
complex, or n if the coefficients are required to be real. Thus
the operation count per iteration is either 2nmp or nmp. The
numbser of iterations required is difficult to estimate, since it
depends on the particular problem. However, in randomly
generated problems, it has been observed'® that the number
of iterations, /, is approximately the number of unknowns
times some small constant ¢, where usually 1<c<3. (Similar
estimates have been observed'*-'* in more general linear pro-
grams as well.) Thus, in our case, ] = 2cn if the coefficients
are complex and I = cn if they are real.

The CPU time should be proportional to the total oper-
ation count, which equals the product of the number of itera-
tions and the number of operations per iteration. That is, we
expect the CPU time to be proportional to n’m p. For the
particular example here, however, we obtain an excellent fit
to the limited data in Table AV with the equation

m P Real coefficients Complex coefficients
Lower bound Upper bound Lower bound Upper bound
11 2 0.083718 0.118396 0.012089 0.017097
. 6 0.10%074 0.108780 0.013963 0.014456
18 0.107307 0.1077117 0.014143 0.014197
54 0.107612 0.107658 0.014168 0.014174
101 2 0.083731 0.118414 0.012252 0.017328
6 0.105192 0.108893 0.014436 0.014946
18 0.107556 0.107967 0.014677 0.014733
54 0.107767 0.107813 0.014703 0.014709
1001 2 0.083734 0.113418 0.012255 0.017331
6 0.105191 0.108901 0.014440 0.014950
18 0.107565 0.107976 0.014679 0.014738
54 0.107775 0.107821 0.014704 0.014712
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TABLE AV. Number of simplex iterations snd CPU time.

Real coefficients Complex coefficients
m P Simplex  CPU(s) Simplex  CPUl(s)
It 2 6 0.02 10 0.0
6 ] 0.08 3] 0.16
18 1 0.23 21 0.58
54 13 0.81 27 228
101 2 ? 0.25 10 0.40
6 9 073 17 1.60
18 13 2.65 21 S.78
54 15 11.39 28 24.27
1001 2 9 3.08 13 5.00
6 10 10.34 17 19.38
18 [ &) 48.16 24 105.47
54 16 170.52 28 359.20

CPU time(ms) = 0.128 n'***m'"'*p' ¥,

where n = 6 if the coefficients are complex, and n = 3if they
are real. This fit was obtained by letting the exponents of n,
m, and p vary separately. Other examples, however, lead us
to anticipate that, more generally,

CPU time « n’(m p)'?,

with a proportionality factor of the order of 0.01-0.03 ms,
where n is either twice the number of approximation coeffi-
cients if the coefficients are complex, or exactly the number
of coefficients if they are required to be real.

The CPU time estimates apply, of course, only to the
DEC VAX 11/780 computer on which the calculations were
performed. The virtual memory feature of this system allows
very large problems to be solved; however, for sufficiently
large problems, the system overhead incurred (page faulting,
and so on) may significantly and adversely affect these esti-
mates.

One method of detecting the presence of significant
round-off errors is supplied by the nature of the approxima-
tion problem itself. That is, it can be proven that

M, B, )M, (S secin/(2p)).

Once M, ,(f) and the coefficients have been computed in
algorithm ACM 495, these bounds may be checked to see if

190 J. Acoust. Soc. Am., Vol. 72, No. 1, July 1962

significant numerical round-off error has occurred. In exam-
ple (A8) above ( p = 6, m = 101, complex coefficients), these
inequalities were observed numerically to hold to five (but
not six) significant digits. We conclude that the effects of
round-off errors, although visible in the results, are not sig-
nificant in this example. (Single precision numbers on the
DEC VAX 11/780 have approximately seven significant de-
cimal digits.)
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The concept of Directivity Index with Beamwidth Control (DIBC) leads to a practical method for the
optimization of element excitations to control the tradeoff between beamwidth and sidelobe level in a discrete
array of arbitrary configuration. This optimization procedure depends on the design frequency, specified
clement positions, individual element field patterns, and ambient noise field. Each of these factors can be
specified in a completely general manner. In addition, the optimization procedure can be adapted to

computers of modest memory size by using subarrays of the full array. Examples are included to show the
versatility of this approach to the optimization problem, as well as its limitations. One of these examples is a

105-element cylindrical array.

PACS numbers: 43.60.Gk, 43.30.Vh, 43.28.Tc

1. THE CONCEPT
A. Introduction

Optimization of the element excitations of discrete
antenna arrays is a matter of definition for three rea-
sons. First, the definition of optimality will dictate
the appropriate mathematical approach. Seemingly
subtle changes in the definition of optimality can alter
radically the applicable mathematical methods. Second,
element excitations that are optimal in one sense are
unlikely to be optimal in another sense. Two sets of
excitations, each set optimal in its own sense, can be
completely different. Third, the definition of optimal-
ity must reflect directly on the primary design goals
for the array. It is pointless to optimize the Directi~
vity Index (DI) and then complain that the sidelobes are
too high, because the design goal of low sidelobes and
the definition of optimality (maximum DI) are not di-
rectly related.

This article defines and uses exclusively the con-
cept of Directivity Index with Beamwidth Control
(DIBC). Several advantages, as well as difficulties,
inherent in this definition are discussed. The primary
difficulty in this definition is the requirement of large
computer memories for large arrays. A technique
employing subarrays of the full array in a systematic
manner is shown to overcome this problem. The same
technique can be used to solve the following problem as
well: Given an array with known element positions and
excitations, and given that new elements are to be in-
troduced at known locations, how does one excite {(or
drive) these new elements to improve performance of
the total array without changing the excitations of any
of the elements of the original array?

The optimization procedure in this article is appli-
cable when the following premises obtain:

(1) The wavelength, A, of the design frequency is
given and fixed.

(2) The number of elements, n, in the array is fixed
and all the element positions (x,,y,,2,), k=1,...,n are
known and fixed.

(3) Individual element field patterns at the design fre-
quency are completely known.
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(4) The ambient noise field at the design frequency is
completely known.

(5) Element interactions can be ignored.
(6) Element excitations can be phased (i.e., complex).

The premise that the element excitations must be ai-
lowed to be phased is not necessary. As is pointed out
later, we can just as easily require them to be strictly
real, i.e., either positive or negative. However, ex-
cept where noted, we assume that the excitations are
phased because this is the more general situation and
allows for better performance.

The concept of DIBC has been defined and used earlier
by Butler and Unz.""? In these papers, DIBC is called
beam efficiency and is defined by them only for line
arrays. This article is new in three regards. First,
we apply the concept of DIBC to arbitrary spatial ar-
rays and, thereby demonstrate its usefulness in very
general situations. Second, we exhibit viable numerical
procedures and techniques for overcoming a variety of
mathematical difficulties inherent in the concept of
maximizing DIBC. Third, the above-mentioned method
of optimizing DIBC for general spatial arrays of any
number of elements, while using only small amounts
of core storage (and no peripheral storage devices),
appears to be completely novel to this article.

All the examples in this article were computed on
the Univac 1108 under EXEC 8. A listing of the com-
puter program is available in Streit.* It is written in
FORTRANYV for the general three-dimensional array
of arbitrary configuration.

B. Field patterns and coordinate system

The spherical coordinate system of Fig. 1 is used
throughout this article; however, a particular direction
(8, ¢) will be specified by the direction cosines

cosa =sing cos®, cosp=singdsing, cosy=cosd. (1)

The most general field pattern treated here is
i
vie.9=3 a0, 9)e( 224,00, 9)), (@)
al

where R,(9,¢) is the phased (complex) response of the
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FIG. 1. The coordinate system.

kth element, and
d,(8, ¢)=x,cosx +v,C085 + 2, COSY . (3)

Because of assumptions (1) to (6), the field pattern
V(8,®) depends solely on the phased (complex) excita-
tions a,,...,a,. The ambient noise field N(§, ®) will
enter in the definition of optimal excitations. [Alter-
nately, one may think of N(6, ¢) as a given non-negative
weighting function of the two angles.|

C. Directivity index with beamwidth control (DIBC)
The antenna designer is required to divide the set of
all directions, denoted £2, into three disjoint regions:
M= mainlobe region,
§ = sidelobe region,
8 = ignored region=§ - (MU 8).
This division of directional space is completeiy ar-
bitrary, except that neither I nor 8 can be empty sets
whereas g can be empty if desired. Once a particular

choice of M, 8§, and § has been made, the following def-
inition of optimality is used.

Definition T The element excitations a,,...,aq, are
optimal excitations for a given choice of regions M, §,
and § if and only if the ratio

S N6.9)v¥6,0)1sin0 do de
DIBC - @
[ [N, o)vie,0)isinedodo
muUs

is maximized. Any ratio of this form will be referred
to as a directivity index with beamwidth control.

We point out that any excitations a,,...,a, that max-
imize the DIBC ratio (4) also maximize the ratio

SLre, 006, onsine dods a)

S n6,00v6,0)sin0 a0 do

s Sea, S
Sl A

80 that any excitations minimizing the reciprocal of
DIBC are also excitations that minimize the reciprocal

To see this, note that

Lo
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of the ratio (4a), and this proves our assertion. Thisis
not to say, of course, that the maximum value of (4)
and the maximum value of (4a) are equal, only that ex-
citations that maximize the one also maximize the
other.

Maximizing DI is a limiting case of maximizing DIBC.
To see this, recall that for a specified direction
(85, ®5), DI is a maximum if the ratio

N8, 901 V28, @)
ff N(g,0)1V*(8,9)Isinodd do
a

Di= (5)

is maximized. Now let the ignored region § be empty,
let the mainlobe region, M, contain (6, ¢,), and let
8= ~IM. Then, excitations maximizing DIBC con-
verge to excitations that maximize DI as the mainlobe
region, M, shrinks down on the point (8,, ®,).

We have defined optimal excitations as those for
which DIBC is maximized for some choice of regions
M, 8, and 8. This allows a measure of control over
the beamwidth and sidelobe level. By varying systema-
tically the choice of IR and § and maximizing the DIBC
for each choice, we can examine directly the tradeoff
between beamwidth and sidelobe level for the particular
array at hand. The engineer can, then, selectthose excita-
tions that best suit his needs. Generally, the larger
the mainlobe region, 91, and the smaller the sidelobe
region, § (for fixed ignored region, 8), the lower the
overall sidelobe level and the greater the beamwidth.
However, this may not always be the case, since side-
lobe level does not enter directly into the DIBC ratio
of (4). Nothing prevents the field pattern from having
narrow high amplitude sidelobes, since such sidelobes
contribute little to the integral in the denominator of
the DIBC.

Another reason for maximizing DIBC is simply that
it is conceptually easy to do so. All that is required is
the solution of an eigenvalue /eigenvector problem (see
Theorem 1), and problems of this type have been studied
extensively in the literature.®* Numerically, such
problems require considerable care. Fortunately,
well-designed computer programs are available for the
solution of eigenproblems.>*® With the use of these rou-
tines, the solutions of the eigenproblems encountered
in the antenna problem seem to be numerically stable.
This is not to say that there may not be arrays that
yield numerically unstable eigenproblems.

A fina) reason for maximizing DIBC is more esoteric.
In the process of solving the required eigenproblem,
all the eigenvalue ‘eigenvector pairs are computed, not
merely the largest one. It happens that the field pat-
terns corresponding to the lower order eigenvalues
have some interesting features [see the figures in ex-
ample (2)]. In addition, it often happens that some of
the larger eigenvalues are close together; i.e., sev-
eral linearly independent sets of excitations exist
which give DIBC values that lie close together. (For
an analogous situation, see Slepian and Pollak.’) What
this means in the antennna problem is that, without
sacrificing antenna performance (as measured solely
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by the DIBC), it becomes a simple matter to examine
numerous different sets of excitations with the aim of
improving some completely different design goal of

the array. [See (19) below.] This will not be discussed
further in this article.

It must he mentioned that this approach to the array
optimization problem does not attempt to address sev-
eral issues that are of practical interest. First, this
approach does not guarantee that the array performance
is insensitive to perturbations in the optimum excita-
tions. The question of sensitivity to excitation pertur-
bation can be examined only after the optimum excita-
tions are found. Second, this approach does not attempt
to control the efficiency of the array. In other words,
it can happen that the optimal excitations for a parti-
cular array may drive certain elements at their max-
imum allowed levels while the remaining elements are
hardly driven at all, so that the total output power of
the array is too low for the application. This problem
is common to all amplitude shaded arrays and can be
examined after the optimum excitations are found.
Finally. this approach to array optimization ignores
element interactions, so that it is possible for optimum
excitations derived by this method (or by any other
method for that matter) to have undesirable character-
istics in this regard. This possibility, as well as the
other two possibilities mentioned above, should be in-
vestigated after optimal excitations are found.

D. Computer storage problem

The primary drawback to maximizing DIBC is that
the number of computer storage locations required
(using the program in Streit?) is approximately

N;=6n?+ 16n+ 12000 words , (8)

for the case of constant ambient noise field and omni-
directional elements. Since the total requirement will
grow as the ambient noise field and/or element field
patterns require more storage to compute, it appears
that the direct computation of optimal excitations for
any array of 100 or more elements requires either
large main-frame computers or computers with virtual
memory. However, the storage requirements for
maximizing DIBC can be avoided. A technique known
as group coordinate relaxation® gives a method that can
be tailored to the computer memory available. The
technique is an excellent example of how to trade off
computer memory for computational speed. The more
memory available, the faster the DIBC can be maxi-
mized.

Group coordinate relaxation, in the context of maxi-

mizing DIBC, is simply stated. Suppose there are 300
J

elements in the array. Make any initial guess at the
optimal excitations. Define distinct subarrays of, say,
50 elements each. By working with the first of these
subarrays, new element excitations are computed for
these 50 elements, so that the DIBC of the entire 300
element array is increased. Next, new excitations are
computed for the second subarray. Cycling through all
six subarrays in turn, until DIBC for the entire 300 ele-
ment array cannot be increased further by changing the
excitations in any of the subarrays, is the essence of
group coordinate relaxation. The method can be proved
to be convergent. It yields the globally best excita-
tions, not merely locally best. A careful statement of
the algorithm and further remarks are given in the sub-
section on numerical solution of the eigenproblem by
the indirect method.

The rate of convergence of the group coordinate re-
laxation method depends heavily on the size of the sub-
arrays used. The larger the subarrays, the faster the
convergence, and the more core storage required.
Thus, core storage is traded off in a direct manner for
the convergence rate and, hence, for computation time.
In addition, each step of the group coordinate relaxation
method produces new excitations that increase the
DIBC, so that if the computations are interrupted for
any reason: (1) The last computed excitations are
better than any of the excitations previously computed
and (2) by saving the last computed excitations, the
computations can be resumed without significant loss.

If n, is the number of elements in a subarray used
by the group coordinate relaxation process, the total
storage required (using the program in Streit®) is ap-
proximately

Ngp=6nl+ B(n+n,)+ 12000 words , (X))

for the case of constant ambient noise field and omni-
directional elements. Thus, memory requirements
grow as the square of the subarray size no matter how
large the full array may be. By choosing the subarray
gize sufficiently small, the designer can maximize
DIBC for large arrays on computers of modest size.
The cost, however, is computer time. On the other
hand, if the designer has a dedicated minicomputer of
reasonable size, the cost of computer time is nil.

1l. ELABORATION OF THE CONCEPT
A. DIBC and the sigenproblem

Let the vector a= (a,,...,a,)T be the vector of element
excitations for the field pattern V (9, ¢) given by (2).
Then

,Um N8, )| V0, 0)] mmzmdnienf/;'I N(8,9)|V(9,0)|*sind dé d9

-Jf. ne.o [Z;a,n.(e.ca)exp(g’;—‘d.(o,c») ][;a,n,(e,¢)exp(2i;d,(e,¢))]sm¢a¢ae

) Z";a.a, f N(e,wc.(a.mn,(o.¢)exp(2—1‘[d,(a,¢)-d.(o,b)l)sin¢d¢da=afzm, ®
»1 ]
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where U is an n x n complex matrix. If U =u,,], with
k denoting the row number and j denoting the column
number, then

un= [ M6, IR (6,0)R 8, &)

x exp(-z"T" [d,8,0) ~d,(e,¢)])sin¢ dedg . 9

Clearly, U is a Hermitian matrix (i.e., U=UT), since
it is obvious that u,,=w,,. Also, U is positive definite,
since

atvaz [ N8.0)|V¥(9,0)|sin0dode>0,  (10)
whenever the excitation vector a# 0 (and provided the
mainlobe region, M, is not a set of measure zero, a
pathological condition that is not encountered in this
application). Therefore, for every mainlobe region,
M, the matrix U defined in (9) is an n x n positive def-
inite Hermitian matrix. Similarly,

ff N(8,0)|V*8,0¢)|sinddode=a wa, (11)

mus

where W=, ] is an n x n positive definite Hermitian
matrix whose general entry is

o | L ey

x exp(z—i' [d,(6.¢)-d.(6.¢)l)sinodd>do. 12)
Thus, for a given choice of M, 8, and 4, we have
DIBC=aTva/aTWa, (13)

which is a ratio of positive definite Hermitian forms.
Therefore, optimal excitations are those that maximize
this ratio of Hermitian forms.

The mathematical tools for handling ratios of the
iyrm (13) have been known for at least a century.
*.e have the following general mathematical resuit.

Theorem 1: If U and W are n X n Hermitian matrices
and W is positive definite, then the eigenvalues of the
generalized eigenproblem

Uz=puWz (14)

are all real. Let k,> p,2 --+2 u_ denote these eigen-
values. Then, linearly independent vectors z,,...,z,
can be found that satisfy

Uzy= uWz,, k=1,...,n, (15)
and
i.fw;,={l' ik=j (16)
0, if k»j

The vectors z,,...,2, are called the eigenvectors of
the eigenproblem (14), Also, we have

3
U2
in| —=—)= 18

",‘:f,‘(z‘fwz.) B e (18)
and this minimum is attained for every eigenvector
corresponding to u,. Finally, if 1+ /&= n, then, for
any constants a,,...,qa, not all zero, we have

6w, 28TV ETWz > sy, (19)

where z=a,2 +---+0,.2,.

The proofs of the various parts of this theorem can
be found in numerous sources, e.g., Gantmacher.*

For the immediate purposes, the most important
part of this theorem is (17). It states that optimal ex-
citations are precisely the components of any eigen-
vector corresponding to the largest eigenvalue of the
generalized eigenproblem Uz = uWz, where U and W
are defined by (9) and (12).

Theoretically, Theorem 1 solves the problem of max-
imizing DIBC in the case where all element excitations
can be phased. But what is the solution if all the exci-
tations are required to be real (positive or negative)?
In this case, the ratio (13) still holds, but the excita-
tion vector, a, is real, i.e., a=4a. Since I/ and W are
Hermitian, we have the algebraic identity

a'Ua_ a"(Rel)a

DIBC = =g

a'wa aT(ReW)a -~ (20

Now, RelU and ReW are both real symmetric matrices,
and all the properties of Theorem 1 hold for the real
generalized eigenproblem (Rel )z = u(ReW)z. The only
difference is that now the eigenvectors have all real
components. Therefore, if the excitations are required
to be real, the optimal real excitations are precisely
the components of any eigenvector corresponding to the
largest eigenvalue of the generalized real eigenproblem

(ReU)z = u(ReW)z , (21)
where U and W are the matrices defined by (9) and (12).

In the remainder of this article, we concern our-
selves only with phased excitations. Everything that
we do, however, can be recast for real excitations
simply by using the real parts of the matrices involved.

A discrete reformulation of DIBC is discussed in the
next section. By way of analogy only, this discrete
versgion of the DIBC ratio is to DIBC as the discrete
Fourier transform is to the Fourier transform. Fol-
lowing this is a discussion of the numerical methods
for the solution of the kind of eigenproblems encounter-
ed in this article.

B. A discrete version of DIBC

Maximizing the DIBC ratio (4) is mathematically
tractable, but it is not practical. It requires the solu~
tion of an eigenproblem, which in turn requires the
evaluation of approximately n* double integrals (9) and
(12) over subsets of the unit sphere. Since it is essen-

5T
max(z:fl-‘i,i)= By 17) tial that the mainlobe region, M, and the sidelobe re-
se0 \& W2 gion, 8, be quite general in nature (i.e., be defined to
and this maximum is attained for every eigenvector suit the particular application, these double integrals
corresponding to u,, and are in general impossible to evaluate explicitly and are
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FIG. 2. The icosahedron,

also difficult and time consuming to evaluate accurately
by numerical methods. For these reasons, DIBC itself
is not optimized. What is optimized is a discrete ver-
sion (DIBCF) of DIBC that is not only numerically prac-
tical to use, but is also conceptually simple.

The discrete DIBC definition replaces the surface
integrals in ratio (4) by discrete sums over points
chosen in M and §. Since M and 8§ are not known
a priort, these points are distributed uniformly over
the surface of the sphere, with each point contributing
one term to the discrete sum and all terms entering
with equal weight. Ideally, then, these points must
show no directional bias and must be easy to compute.
Furthermore, it must be possible to choose these
points with any desired density on the sphere.

A natural choice for points fulfilling these conditions
is easy to describe, but difficult to compute. Choose
as points the equilibrium positions of a finite number
of positive charges constrained to lie on the surface of
the unit sphere. When the number of positive charges
is 4, 6, 8, 12, or 20, it is intuitively clear that stable
points for these charges are at the vertices of the five
regular Platonic bodies: the tetrahedron, the octa-
hedron, the cube, the icosahedron, and the dodeca-
hedron, respectively. Unfortunately, these are the
only easy cases (see Melnyk et al.®).

The discrete points chosen to define discrete DIBC
are the vertices of a geodesic dome. Consider the ico-
sahedron shown in Fig. 2. Note that in this figure the
y axis is in the plane of the paper and the z axis is
tilted slightly to show off the configuration. (The x axis
is not shown, but is, of course, orthogonal to the vz
plane.) This regular figure has 12 vertices, 20 faces,
and 30 edges. Geodesic domes with (almost) any num-
ber of faces are constructed from the icosahedron by
subdividing its equilateral triangular faces in a sys-
tematic manner.!* First, subdivide each face into con-
gruent equilateral subtriangles, as shown in Fig. 3;
i.e., for each positive integer p> 1, find p+ 1 equi-
spaced points along each edge and pass lines through
each of these points parallel to the other two edges.
Next, take all the vertices of the equilateral subtri-

angles so generated and project them on the unit sphere.

By doing this for each face of the icosahedron for a
fixed integer p - 1, we construct the vertices of a geo-
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FIG. 3. One face of icosahedron subdivided into p parts.

desic dome of order p. We define the Fuller points,
F,. to be the totality of these points.

The Fuller points, ¥,, are uniquely oriented in Car-
tesian space once the vertices of the icosahedron are
defined. With some simple trigonometry, it can be
seen that the 12 vertices of an icosahedron inscribed
in a sphere of unit radius can be taken to be the 2 points
(0,0,11), together with the 10 points

[26(1 = 87)"/2cos2nk '5, 2b(1 = b*)/ ?sin2nkS , 2b% = 1]
|26(1 = 6%/ 2cos2n(k+3)/5,
2b(1 = b2)2sin2a(k+35)°5, 1 - 2b%], (22)

where #=0,1,...,4 and b=1 (2cos3r10)=2 'SQRT[10
—2SQRT(5)]. The edge length of this icosahedron is
25QRT(1 -~ b?)=1.0515.

How many points are there in ,? By inspecting an
unfolded paper model of the icosahedron on which the
Fuller points have been marked, it is easy to see that
3, contains exactly 10p®+ 2 points. Thus, the number
of steradians per point is approximately 47./10p?
=1.25/p%.

Notice that the Fuller points, J,, are not quite ideal.
Those points chosen near the center of a face of the or-
iginal icosahedron will be less finely spaced when pro-
jected on the sphere than will those points that were
chosen nearer an edge. This defect in §, does not seem
to be significant in this application. With the Fuller
points defined, we state the following.

Definition 2: For a given integer p > 1, and regions
M, 8, and §, the element excitations a,,...,a, are op-
timal if and only if the ratio

( T )e!!'nmN(o' PNVHE, ¢>)|)
DIBCF= .

, (23)

( N(O,MW’(G.&DH)
©,0)€ 5, UMY

is maximized. Any ratio of the form of (23) will be

referred to as a directivity index with beamwidth con-

trol over the Fuller points, JF,.

Note that, as p -~ =, we do not have DIBCF - DIBC be-
cause the distribution at the Fuller points does not ap-
proach the uniform distribution as p gets large. In
addition, we point out that for every p > 1, we have the
inequalities

0 DIBCF -1,

provided only that the denominator sum in (23) is non-
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zero. The proof of the lower bound is trivial, and the
proof of the upper bound follows from the observation
that every summand in the numerator of (23) appears
also in the denominator.

The formulation of DIBCF as an eigenproblem para-
llels that for DIBC. Specifically, we have

Mz=uSz , (24)

where M =[m,,] and S=[s,,] are n x n positive definite
Hermitian matrices with

my,= Z

N(6,9)R,(8,0)R(6,0)

,0)1€5NM
xexp{(mri/x)[d,(e,cp)_ d,(6,¢)]} , (25)
= 2 N(8,6)R 8,0V Ru(d, B)
[’ 4 )E;‘l' NORUS
x exp{(Zni/x)ld,(e,dh) —d.(9.¢)l} . (26)

By Theorem 1, maximizing DIBCF requires the compu-
tation of any eigenvector corresponding to the largest
eigenvalue for the eigenproblem (24). The numerical
solution of (24) is discussed fully in the next section.

There are two considerations that should enter into
the particular choice of p for the Fuller points ,.
First, the Fuller points should be numerous enough
to sample adequately the worst behavior of any real-
izable field pattern. In other words, p should be large
enough that even the narrowest sidelobe achievable in
the field pattern will contain points in §,. Second,
Theorem 1 requires that the denominator matrix § of
the DIBCF ratio be positive definite. Normally, the
sampling criterion will effect this automatically.

C. Numerical solution of the eigenproblem:
Direct method
The eigenproblem (24) is equivalent to the eigenprob-
“lem

(SM)e = pz . (27)

In other words, the eigenvalues and eigenvectors of
(27) are precisely the same as those of (24). There are
two difficulties in using (27) for numerical computation.
First, it requires the inverse of the matrix S, whose
only special structure is that it is positive definite

and Hermitian. In general, numerical computation of
the inverse of matrices should be avoided if possible.
Second, (27) is not a Hermitian eigenproblem; i.e.,
S$7'M is not necessarily Hermitian even though S and M
are both Hermitian. This means that the eigenvalues
and eigenvectors of (27) must be computed by a routine
designed for a general complex matrix, and this means
that the eigenvalues can (and do) turn out to be complex
numbers because of numerical roundoff, Since Theorem

1 requires that all the eigenvalues be strictly real
numbers, there i8 numerical error in using (27) caused
by destruction of the natural Hermitian symmetry in
(24). For these reasons, it is desirable to solve the
eigenproblem (24) directly.
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Martin and Wilkinson give a method and a routine
for solving this eigenproblem when M and S are real
symmetric. Both the technique and the routine can be
adapted to the Hermitian case. Every Hermitian posi-
tive definite matrix S has the Cholesky decomposition

S=LLT, (28)
where L is a lower triangular matrix. Thus,
Mz=pulLlT2, L M2yl T2 LML TLT)2=ul %z,

(LML )= px, (29)
where
x=ILT%z, (30)

Therefore, the eigenvalues of L*MLT are precisely
the eigenvalues of (24), and the eigenvectors x of
LML™ and the eigenvectors z of S'M are related by
(30). Note, also, that (29} is a Hermitian eigenprob~
lem, since LML is a Hermitian matrix. It is,
therefore, possible to solve (29) by numerical methods
designed for Hermitian eigenproblems that explicitly
use the fact that the eigenvalues are real.® Therefore,
the eigenvalues computed by using (29) will always be
real, as required.

This computational procedure seems to require a
prohibitively large number of arithmetic operations;
however, the computations may be done very efficiently
because of the special structure of the matrices involved.
For example,the matrix L™*WL-T canbe computed (with-
out inverting the matrix L)by using only 3»° complex mul-
tiplications, This comparesto {n® complex multiplications
inthe computation of S~' alone in (27). Interms of storage
required, computationtime, and numerical accuracy, the
use of (29) and (30) is preferable to the use of (27).

The routine in Martin and Wilkinson® was adapted to
the Hermitian case, using routinesin Ref. 5 to solve the or-
dinary eigenproblem. This routineis called PENCLH,
and its listing is available in Streit.> (The listings of
the routines used from Ref. 5 are not available; they are
proprietary information under terms of the lease ar-
rangements made with International Mathematical and
Statistical Libraries, Incorporated.) Finally, it is
pointed out that the routine PENCLH computes all the
eigenvalues and eigenvectors of (24), and not merely
the largest eigenvalue and corresponding eigenvector(s).

D. Numerical solution of the eigenproblem:
Indirect method

As discussed in the section on the computer storage
problem, the drawback to the direct method is exces-~
sive computer storage for large arrays. The group
coordinate relaxation (or indirect) method overcomes
this drawback, but at the cost of computer time and the
loss of ability to compute the lower order eigenvalues
eigenvectors. The group coordinate relaxation method
is detailed by Faddeev and Faddeeva® for the real sym-
metric eigenproblem Ax = ux. This method can be ex-
tended easily to the Hermitian eigenproblem

Mz= uSz . (31)
Although the method can be extended to arbitrary Her-
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mitian matrices M and S, with S positive definite, it

is important here to retain the structure of .\l and S

as given by (25) and (26). The reason is that the Her-
mitian forms of M and S can be evaluated directly with-
out knowledge of any of the entries of either matrix.
This is the fact that allows the computer storage prob-
lem to be overcome.

The following notation will be very useful. Define the
basis vectors

e,=(100... 007,
e,=(010... 00),
: (328)
e,={(000...01)T,

Note that each of these vectors is of dimension n. To
define vectors e, for m > n+ 1, we first set

I(ru)={"'

m = [ uln, if not

if w is an integral multiple of » (32b)

where | | denotes the greatest integer function. Since
(32b) requires that 1= f(»)s n. we can now define

Cm=Coimye Mz nt 1, (32¢)
In other words, we have defined
O =€ 1 Z €= eh
2= Cp2=Cppe2™ -0 s
. (33)

€"= (’zn= e3n=

Before the group coordinate relaxation algorithm can
begin, two items must be specified. First, an initial
guess

= ({0 0! (0T
A=, 0", ..., a0,

(34)

for the optimal element excitation vector is required.
The vector a ,, should not contain all zero entries, but it
is completely arbitrary otherwise. Second, it must be
decided in some manner to work with subarrays of the
full array of size r > 1. It will be shown that choosing
to work with subarrays of size r will mean that general-
ized eigenproblems of size r+ 1 will have to be solved,
80 computer storage plays an important role in the
choice of r. Another important consideration is com-
putation time. In general, the larger » is taken to be,
the faster optimum excitations of the full array can be
computed.

The group coordinate relaxation algorithm is most
easily described by exhibiting the first two steps of the
algorithm. From these steps it is easy to see the gen-
eral procedure. In the first step, we seek to

£TMx

maximize —y—

onze TSy (35)

where @, is the vector space of dimension r+ 1 whose
general element, x, can be written in the form
(36)

It is shown

X=Coll+C 8,4+ ... 4Cp8,,

for some complex constants c,,c,,...,c,.
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that (35) is a ratio of idermitian forms in the para-
meters ¢,.¢,,...,c,. Therefore, by Theorem 1, the
solution of (35) requires solving an eigenproblem of
size r+ 1. Let

=8+ &0+ ... +Ce, (37)

be a vector for which the maximum (35) is attained.
This completes the first step. In the second step, we
seek to

£ TMx

maximize —¢—,

— 38)
req, X Sx (

where ¢, is the vector space of dimension r + 1 whose
general element, x, can be written in the form

(39)

for some complex constants c,,c,,...,c,. Since (38)
is, again, a ratio of Hermitian forms in the parameters
€arCyy. .. 4C,p, We Solve an eigenproblem of size r+ 1 to
compute a vector

X204 C 18, + ... +Cply

(40)

A, =00, +E 0, 4 ... +C 8y, ,

for which the maximum (38) is attained. This completes
the second step. Continuing in this fashion defines the
group coordinate relaxation algorithm.

We see that this algorithm cycles through the entire
array using subarrays of size ». This is because the
basis vectors {e,} are defined to cycle regularly through
the vectors {e,.e,,....e,}. Also, if » does not divide
»n evenly, each individual element belongs to a number
of different subarrays as the computation proceeds.

In other words, if r does not divide n, the entire array
is not subdivided into disjoint subarrays.

The group coordinate relaxation algorithm generates
a sequence of vectors a.,,,a,,,,4,,,,... that converges
to an eigenvector corresponding to the largest eigen-
value of (24). Convergence is assured regardless of
the starting vector, with some highly unlikely excep-
tions. These exceptions are easy to state. If any of
the computed vectors {a,,,4,,,,4,,- - -} is precisely
an eigenvector of (24) that corresponds to an eigen-
value which is not the largest eigenvalue of the equa-
tion, the group coordinate relaxation method will not
move from this eigenvector. Numerical roundoff error
probably will prevent this in practice. For further dis-
cussion and for a convergence theorem whose proof
can be extended to the present situation, see Faddeev
and Faddeeva.? For possible applications of these
mathematical methods to other problems, see Lee.!!

An important feature is that the last computed vector,
a.,,, gives a larger DIBCF than the previous vector,
a,.1)- This is easy to see by observing the ratios (35)
and (38).

Another very useful observation is that the algorithm
requires knowledge only of a,,, to compute a,,,,. This
means that if computation must be interrupted for any
reason, it is necessary to store only the last computed
vector in order to restart computations.

It is now easy to see how to solve the problem men-
tioned in the introduction, namely, how to excite
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(drive) new elements being added to an existing array
without changing the excitations of any of the original
array elements. Let N be the number of elements in
the existing array, and let A , be the number of ele-
ments to be added to this array. Now, number the »
=Ng+ N, elements in the full array so that the new ele-
ments are numbered 1,2,...,N,, and the elements of
the original array are numbered N (+1,N,+2,... ,N,
+ N ;. The solution of this problem is to perform pre-
cisely one iteration of the group coordinate relaxation
algorithm with the number of elements relaxed equal to
N,. In other words, set r=N, in (36) and compute that
X in @, for which the maximum in (35) is attained. The
required excitations for the additional elements are
given explicitly by a,=¢,/¢,,k=1,... ,N,, where we
have used the notation of (37).

We conclude this section by an examination of the
maximum (35). Everything that is said of (35) is easily
translated to the maximum (38), as well as all the
other maxima required in the group coordinate relaxa-
tion algorithm. Note, first, that putting (36) into (35)
gives the identity

max-—r—irmx = max Gz (41)
1eqg X SX L. 278z

where z = (¢,,¢,,...,c,)T, and G=[y,,] and B=s,,] are
{r+1)x (r+1) Hermitian matrices whose general en-
tries are given by

_aT
Boo= T ippMay,,

Son=dro= i, Mey, k=1,...,7r, (42)
gy=EiMe;, kj=1,...,7,

and
boo=8 [0Sty s
ba=by=a%,Se,, k=1,...,r, (43)
by, =&1Se,, k,j=1,...,7.

Thus, the entries of G and 8 are computable from the
Hermitian forms of M and S, respectively. Let V. (6,9)
be the field pattern of the entire array for the excita-
tions a,,,. Then, we have, explicitly,

> N9, )| Vi6,8)| ,

RINGS OF
ELEMENTS

FIG. 4. Arrangement of elements in example 1,

x

where s,, is given by (26). Because V(4,¢) can be
computed easily for each (9,¢), we see that (44) through
(49) can be computed efficiently in terms of time and
core~-storage requirements. Now, by using Theorem 1,
we see that the maximum of

TGz /7782 , (50)
is achieved by any vector '

E=,,8,,...,8)7 (51)
which is an eigenvector of the largest eigenvalue of
Gz =uBz. Thus, from (41), we see that

@, =8, + &8+ ... +C0e,, (52)

is a vector for which the maximum (35) is attained.

1l. EXAMPLES
A. Example 1: A 105 element cylindrical array

This example illustrates the use of subarrays (i.e.,
the group coordinate relaxation method) for computing
optimum DIBCF with limited computer storage. We
select an array with 105 elements arranged around a
cylinder. Specifically, we first construct 7 rings of 15
elements each and then place the axis of each of these
rings along the x axis (see Fig. 4). The exact positions
(and element numbers) are given in Table I, where the
units of length are such that the wavelength A=1.

Each element of this array has a hemispherical field
pattern defined in the following manner. We conceive

bo®  exsnm (44) " f the array as being supported by a (transparent)
. . — cylinder. Through each element, we pass a tangent
£10" 80" (,,,,;.nmme' $Wo(6,9)R,(6,9) plane parallel to the cylinder axis. The field pattern
of an element has unit response on the side of the plane
; that does not contain the cylinder and has zero response
x expl- (2ni/A)4, (9, , k=1, .. ,r, 45 N
xP[ (2ni/0)4,(6 ) 4 (45) on the side that does contain the cylinder. We assume
By=Mmyy, kj=l,.00,7, (46)  that the ambient noise field is flat. Also, we choose
where m,, is given by (25), and similarly, p =32 in the definition of the Fuller points J,.
The mainiobe region, M, is defined as a half cone
boo= N(s,0)|Vie,¢)| , (47)  lying above the positive x axis. Specifically, consider
@06 3N RUS) the solid cone with axis lying along the positive x axis,
bo=h.= Z N{8, o) with its vertex at the origin, and with a vertex angle
RTTT eee %, NMys) ’ of 40°. The xy plane slices this cone into two equal
parts, and the mainlobe region, M, is defined to be
X V,(8,9)R,(8,0) exp(-(27i/A)d,(6,4) , (48)  that part of the cone that lies above the xy plane (i.e.,
k=1 " points having positive 2 coordinates). The sidelobe
et region, 8, is defined to be the set of all directions
byy=5ay, kyi=1,...,7 (49) that are not in the mainlobe region, M. There i8 no
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TABLE I. Coordinates of elements in example 1. ignored region, 8, in this example.
Element Coordinates With the above choices, the DIBCF array problem is
no. N v z completely specified. In this case, we use subarrays
to optimize the full array because the direct method of
1 ©0.0000 0.7642 0.0000 optimization requires more core storage on the Univac
2 0.3337 0.7642 0.0000 1108 than is available. (If the Univac 1108 had virtual
3 ?:gg:’: gi;ﬁ:i g:gggg memory, the use of subarrays \?muld not be required.
5 1.3348 0.7642 0.0000 On the other hand, one might still use subarrays on a
6 1.6685 0.7642 0.0000 machine with virtual memory for a variety of other
7 2.0022 0.7642 0.0000 reasons.) It seems best to use as many array elements
8-14 As above 0.6982 0.3108 as can be handled easily in the available computer
15-21 0.5114 0.5679 storage, so in this case we choose 69 elements, i.e.,
22-28 0.2362 0.7268

roughly two-thirds of the full array. By using the

iz:ig :g:ggg;’ g:zz‘l’g program in Streit,® we require only 45 000 words of
43-49 ~0.6183 0.4492 maln memory.

50-56 —0.7475 0.1589 The group coordinate relaxation scheme required
zz:gg :8'2':;2 :g'ﬁgg roughly 1650 s per iteration, and 5 iterations in all.
1-77 _0:3821 _0:6618 Thus, total computation time was roughly 2.25 h. Table
78-84 —0.0799 ~0.7600 11 gives the final (optimal) set of element excitations.
85-91 0.2362 —~0.7268 The vertical field pattern is given in Fig. 5, and Fig. 6
92-98 0.5114 —-0.5679 gives the horizontal field pattern for these excitations.
99-105 0.6982 -0.3108 We point out that the field patterns in these two figures

have abrupt jumps because the individual element field

TABLE II. Optimum excitations for example 1.

Element Element Element
no. Magnitude Phase no. Magnitude Phase no. Magnitude Phase
1 0.01497 -=2,04150 36 0.001 97 1.820 93 71 0.036 56 2.70718
2 0.044 56 1.55478 37 0.00307 -1.47902 72 0.08537 -0.05512
3 0.076 01 -1.27318 38 0.008 57 1.58849 73 0.12945 -2.85812
4 0.09175 2.152 64 39 0.01455 -1.39023 14 0.142 65 0.61788
5 0.08206 -0.72447 40 0.016 16 1.955 39 75 0.11732 -2.17831
6 0.052 16 2.686 48 41 0.01282 -0.94279 76 0.069 27 1.34010
7 0.02126 -0.15355 42 0.006 53 2.490 85 77 0.02574 -1.30699
8 0.01160 -0.72850 43 0.00811 0.104 99 78 0.070 23 2.82735
9 0.03588 2.552 05 44 0.02391 -2.95328 79 0.18862 0.01720
10 0.06133 -0.39698 45 0.041 58 0.42416 80 0.30892 -2.83428
1 0.07342 2.93476 46 0.05011 -2.47388 81 0.35755 0.59043
12 0.064 03 0.00079 47 0.044 22 0.926 78 82 0.30468 -2.26194
13 0.03893 -2.92334 48 0.02716 -1.92583 83 0.184 37 1.18512
14 0.01398 0.46931 49 0.01048 1.501 98 84 0.06783 -1.59534
15 0.00348 -0.01323 50 0.01266 -1.16074 85 0.056 00 2.520 14
16 0.01278 3.13121 51 0.03973 2,244 29 86 0.13959 ~0.31104
17 0.022 96 0.298 55 52 0.06734 -0.65477 87 0.21923 3.11525
18 0.02717 =2.50653 53 0.07980 2.707 91 88 0.24587 0.254 34
19 0.02319 0.987 64 54 0.06917 -0.20862 89 0.20337 -2.59581
20 0.01409 -1.73254 55 0.04197 -3.12157 90 0.11910 0.86311
21 0.00570 1.78955 56 0.01513 0.260 34 91 0.04179 -1.86568
22 0.01032 1.68325 57 0.01676 -2.08531 92 0.026 26 2.88925
23 0.02624 -1.20492 58 0.052 36 1.52329 93 0.064 38 0.22940
24 0.04616 2.09737 59 0.09072 -1.29956 M4 0.10232 -2.51417
25 0.05783 -0.90429 60 0.109 97 2.134 97 95 0.11889 1.006 83
26 0.053 88 2.376 97 61 0.09776 -0.74037 96 0.10393 -1.75955
27 0.03679 -0.61724 62 0.061 42 2.67618 97 0.066 23 1.767 56
28 0.016 19 2.703 56 63 0.02515 -0.16489 98 0.02674 -0.95527
29 0.032 97 1.326 46 64 0.01874 -2.67888 99 0.01431 -2.54878
30 0.08731 -1.59998 65 0.058 33 0.974 72 100 0.045 66 1.152 51
31 0.146 26 1.741 47 66 0.10512 -1.80774 101 0.08178 -1.63309
32 0.17553 -1.20741 67 0.13227 1.655 09 102 0.103 00 1.82950
33 0.15743 2.124 65 68 0.12180 -1.18257 103 0.09445 -1.01612
34 0.10196 -0.81950 69 0.07979 2.25832 104 0.061 24 2.42174
35 0.040 99 2.524 82 70 0.03212 -0.58940 105 0.02521 -0.41890
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FIG. 5. Vertical field pattern for example 1 with excitations
given in Table 1.

patterns have sharp jumps, due to their assumed hemi-
spherical shape. (These field patterns were computed
by the program described by Lee and Leibiger."?) Also,
we point out that the geometry of the array and of the
mainlobe region, M, implies that the optimum field
pattern be symmetric about endfire in the horizontal
plane. That is, in Fig. 6, the field pattern should be
symmetric about 0°. The fact that it is not is due en-
tirely to ending the computations after the fifth itera-
tion. Further iterations, presumably, would yield in-
creasingly symmetric horizontal field patterns.

This method creates a steadily increasing sequence
of estimates for the largest eigenvalue. Since there
were five iterations, there were five estimates and
these are given in Table Ill. Based on this table and
on the field patterns of Figs. 5 and 6, it would seem
that additional iterations of the algorithm would be only
marginally worthwhile. In other words, to all intents
and purposes, the array excitations have been opti-
mized successfully.

dB DOWN FROM MRA

60] A . N ,
180 -%0 0 ¥90  +180
ANGLE MEASURED FROM x-AXIS (deg)

FIG. 6. Horizonfal field pattern for example 1 with excita-
tions given in Table N,
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TABLE IIl. Group coordinate relaxation estimates of largest
eigenvalue for example 1.

Iteration no. Estimate of largest eigenvalue

1 0.914 27
2 0.96100
3 0.96374
4 0.965 32
5 0.965 59

B. Example 2: A comparison with Dolph-Chebyshev
design

This example serves two purposes. First, it pro-
vides a comparison with the Dolph-Chebyshev line
array design. Second, it gives some insight into the
nature of the lower order eigenvalues/eigenvectors.

Suppose we have a line array of 15 elements that lies
along the v axis (see Fig. 1) with equal spacings of 0.5
wavelength, where the wavelength A=1. The units of
length are irrelevant. Thus, if the first element lies
at the origin with coordinates (0.,0.,0.), the 15th ele-
ment has the coordinates (0.,7.,0.). It is well known
that any line array has a field pattern with cylindrical
symmetry about the array axis. Therefore, we define
Ik to be the set of all directions that lie within 8° of a
normal to the v axis, and we define § to be the collec-
tion of all other directions. Hence, M is a 16° wide
annulus and both W and § are cylindrically symmetric.
The ambient noise field is assumed to be flat, and the
individual elements are assumed to be omnidirectional.
Finally, considering the construction of the Fuller
points, J,, we choose p = 24.

The above data completely define the DIBCF array
problem. In Streit,’ a listing of the entire computer
program required for exactly this example is given.
The results of the execution are given in Table IV.
Computation time on the Univac 1108 (under EXEC 8)
was about 41 s. The field patterninthe xy planeisgiven
in Fig. 7.

TABLE 1V. Excitations for 15-element equispaced line array:
Dolph—~Chebyshev versus DIBCF.

DIBCF
Element no. Dolph— Chebyshev (»=24)

1 0.34371 0.256 87

2 0.35775 0.39520

3 0.504 03 0.54024

4 0.653 38 0.682 90

5 0.79108 0.81242

6 0.90242 0.91188

7 0.974 87 0.97920

8 1.00000 1.00000

9 0.974 87 0,97920

10 0.90242 0.911 88

11 0.79108 0.81242

12 0.653 38 0.682 90

13 0.504 03 0.540 24

14 0.357175 0.39520

15 0.34371 0.256 87
Roy L. Streit: Discrete arrays of arbitrary geometry 208
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FIG. 7. Field patterns for excitations in Table [V.

The Dolph-Chebyshev excitations are designed ex-
clusively for half-wavelength equispaced line arrays
with omnidirectional elements. For a given number of
elements, the Dolph-Chebyshev excitations depend only
on the steered direction and on the specified sidelobe
level. For a broadside (i.e.. steered normal to the line
of the array) 15 element array, the Dolph-Chebyshev
excitations for a 28 dB sidelobe level field pattern are
given in Table IV. The corresponding field pattern is
shown in Fig. 7.

We note that the mainlobe shape of the Dolph-Cheby-
shev array and the DIBCF array are indistinguishable.
The only difference lies.in sidelobe structure. We see
that by sacrificing approximately 3 dB in the sidelobe
nearest the mainlobe, all the remaining sidetlobes can
be made smaller than the overall 28 dB sidelobe level
of the Dolph-Chebyshev array.

What about the lower order eigenvalues? The first
four eigenvalues ‘eigenvectors are listed in Table V.
(Note that the eigenvector of u, in Table V is the same
as DIBCF in Table IV, but is normalized differently.)
Also, the corresponding field patterns are given in
Figs. 8-11. We remark only that the field pattern for
the largest eigenvalue 4, has no nulls in the mainlobe

TABLE V. The four largest eigenvalues/eigenvectors of ex-
ample 2.

Element no. uy- 0.9894 u,=0.8206 uy- 0.3231 p,=0.0383

1 0.0916 0.2755 0.4486 0.5106
2 0.1409 0.3158 0.3666 0.2141
3 0.1927 0.3289 0.2442 -0.0356
9 0.2436 0.3112 0.1066 -0.2042
5 0.2898 0.2675 -0.0242 ~0.2664
6 0.3252 0.1929 -0.1413 -0.2454
7 0.3492 0.1030 -0.2097 -0.1391
» 0.3567 0.0000 -0.2403 0.0000
9 0.3492 =0.1030 -0.2097 0.1391
10 0.3252 -0.1929 -0.1413 0.2454
11 0.2898 -0.2675 -0.0242 0.2664
12 0.2436 -0.3112 0.1066 0.2042
13 0.1927 -0.3289 0.2442 0.0356
14 0.1409 -0.3153 0.3666 -0.2141
15 0.0816 ~0.2755 0.4486 -0.5106
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FIG. 8. Field pattern for cigenvector 1 of example 2.

region, M, whereas the field pattern for ., has one
null in M, two nulls for w,, and three nulls for u,.

C. Example 3: Effects of sampling

The first two examples did not mention the effects
of sampling on the field patterns. Specifically, the pa-
rameter p in the definition of the Fuller points, F,,
determines how finely we have sampled all spatial di-
rections. Hence, the parameter p influences the re-
sulting field patterns. In particular, if p is not suf-
ficiently large it is possible for the optimal DIBCF field
pattern to have a split beam.

We illustrate this effect by systematically varying p
in the array of example 2, but for a different choice of
M and 8. Here, we define M to be the collection of all
directions whose projection on the xz plane lies within
+8° of the z axis. Specifically, the direction corres-
ponding to direction cosines («,3,7) lies in M only if
|@/(@?+7?)'?| < sin8°. In other words, 3 consists of
all directions contained between the two planes inter-
secting the vz plane at the angles of + 8° and -8°, The
sidelobe region, 8, consists of all remaining directions,
so there is no ignored region, 4. Optimal excitations
for several choices of p are given in Table VI. The
field patterns for p=24 and p=16 are given in Fig. 12.

r
-10F
[val
=
2
v
¥ .30}
-40
-501 | 1 . ’ Y
-90 60  -30 30 60 90
RELATIVE BEARING (deg)
FIG. 9. Field pattern for eigenvector 2 of example 2.
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FIG. 10, Field pattern for eigenvector 3 of example 2.

We do not present the field patterns for p =32 and p =40,
because they are so similar to p = 24.

Table VI also shows the effects of oversampling.
Note that the optimal excitations for p = 24 are all sim-
ilar, but they do not seem to be converging to an opti-
mal set. This is probably due to the buildup of numeri-
cal roundoff error in the required sums [i.e., (25) and
{26)), but it could also be that p must be chosen even
larger than 40 before the optimal excitations give the
appearance of convergence. In any event, the impor-
tance of sampling sufficiently finely is clear, but evi-
dently oversampling wastes time and increases the
numerical roundoff error in the computed optimal ex-
citations.

D. Example 4: Time and accuracy in the indirect
method

It is clear from the definition of the indirect, or
group coordinate relaxation method, that the size of
the subarrays used and the stopping criteria for the
iteration procedure both have significant effects on nu-
merical accuracy of the computed excitations and on
the time required to compute them. The following ex-
ample illustrates how numerical accuracy and compu-
tation time depend on both these parameters.

]
o~
(=]
T

[l
s
(=1

RESPONSE (dB)

.
o

-5 1 1
-90 -60

30 0 30 60 90
RELATIVE BEARING {deg)

FIG. 11. Field pattern for eigenvector 4 of example 2.
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TABLE V1. Effects of sampling on excitations for example 3.

Eiement P
no. 16 24 32 40
1 0.2953 0.1275 0.1322 0.1177
2 -0.0064 0.1676 0.1792 0.1662
3 0.3846 0.2207 0.2406 0.2232
4 -0.1045 0.2497 0.2613 0.2581
5 0.2990 0.2884 0.2946 0.2934
6 ~0.2830 0.3067 0.2991 0.3099
ki 0.1753 0.3337 0.3154 0.3259
8 -0.3280 0.3346 0.3117 0.3279
9 0.1753 0.3337 0.3154 0.3259
10 -0.2830 0.3067 0.2991 0.3099
11 0.2990 0.2884 0.2946 0.2934
12 -0.1045 0.2497 0.2613 0.2581
13 0.3846 0.2207 0.2406 0.2232
14 —0.0064 0.1676 0.1792 0.1662
15 0.2953 0.1275 0.1322 0.1177
Largest
eigenvalue, pu; 0.1149 0.1243 0.1165 0.1225
No. of Fuller 2562 5762 10242 16 002

points 3,

We consider a line array of 25 elements that lies
along the v axis with equal spacings of 0.5 wavelength,
where the wavelength A=1. Thus, the coordinates of
the first and last elements are (0.,0.,0.) and (0.,12,,0.),
respectively. We select the mainlobe region, M, to be
the set of all directions that lie within 5° of a normal to
the v axis, and we define $ to be the set of all other
directions. There is no ignored region, 8. The am-
bient noise field is flat and the individual elements are
assumed omnidirectional. Finally, we select the Fuller
points, F,,. This completely defines our problem.

Table VII shows the number of iterations required for
various choices of subarray size, n,, and stopping cri-
terion, EPSI, defined by

1 old eigenvalue estimate |
new eigenvalue estimate |

< EPSI.

° ——p =6
[}
;1 1==-p =28
'
-10}F
]
1
~ IR
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" 1R
) I\ 4
O o
S-30p N ol
= v e '
vipuhbd !
vt
-a0l v l,' 1!' I
TRENNE {
w {0l TRE
|y ! \ !
.50 ndatait N
~90 -60 -30 0

RELATIVE BEARING (deg)

FIG. 12. Field pattern for example 3,
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TABLE VII. Number of iterations required in example 4.

EPS1 Time per
ns 1073 107¢ 10°° iteration (s)
] 9 13 24 83
10 5 10 13 95
15 R] 4 6 115
20 3 3 3 140
25 1 1 1 172

As can be expected, the number of iterations required
increases with decreasing ESPI and decreases with
increasing n,. Also the computation time per iteration
increases with n,.

An important concern is the numerical accuracy of
the computed excitations. This is particularly impor-
tant in light of the fact that numerical computation of
eigenvectors by any method is less stable than the nu-
merical computation of eigenvalues. Table VIII shows
the results obtained for n,=5 by stopping after the
first four complete passes through the array, i.e., for
iterations 5, 10, 15, and 20, respectively. The exact
results are included, also. The field patterns corres-
ponding to excitations of iteration 5 and the exact exci-
tations are shown in Fig. 13. Note that, at the end of
iteration 5, the field pattern already possesses side-
lobes in the correct positions although they are about
3 dB higher than in the field pattern of the exact exci-
tations. Thus, the effect of later iterations is to beat
down the sidelobes while maintaining the mainlobe
beamwidth.

TABLE VIII. Example 4 with subarrays of five elements.

-10} ——~— ITERATION 5
——— EXACT

20

had SN

RESPONSE (dB)

-50

=90 -60 -30 0 30 60 90

RELATIVE BEARING (deg)

FIG. 13. Comparison in example 4, exact versus iteration 5.

V. SUMMARY

The concept of Directivity Index with Beamwidth Con-
trol (DIBC) has been defined as the ratio of power in ~
the mainlobe region to the total power in both the main-
lobe and the sidelobe regions. A mathematically and
numerically tractable method for the computation of
optimum element excitations (i.e., excitations that
maximize DIBC)} is presented. A technique known as
group coordinate relaxation is shown to be an effective

Element Iteration Iteration Iteration Iteration
no. 5 10 15 20 Exact
1 0.632 0.410 0.623 0.793 1.000
2 0.813 0.622 0.887 1.090 1.339
3 0.993 0.860 1.173 1.406 1.692
4 1.183 1.117 1.428 1.736 2.057
5 1.3%4 1.398 1.800 2,082 2.436
[ 1.446 1.788 2.218 2.461 2.792
7 1.648 2.079 2,539 2.795 3.145
8 1.840 2.355 2.832 3.095 3.456
9 2.023 2.611 3.100 3.366 3.732
10 2.188 2,842 3.328 3.592 3.955
11 2.541 3.143 3.522 3.783 4,120
12 2.664 3.298 3.654 3.904 4,223
13 2.749 3.392 3.722 3.956 4.254
14 2.806 3.439 3.737 3.951 4,223
15 2.809 3.421 3.677 3.877 4.120
16 3.021 3.271 3.559 3.729 3.955
17 2.951 3.145 3.396 3.541 3.732
18 2.834 2.967 3.174 3.298 3.456
19 2.696 2.756 2,929 3.022 3.145
20 2.489 2.49%4 2.631 2.700 2.792
21 2.012 2.190 2,290 2,353 2.436
22 1.762 1.887 1.957 2.000 2.057
23 1.511 1.567 1.832 1.658 1.692
24 1.260 1.294 1.313 1.324 1.339
25 1.000 1.000 1.000 1.000 1.000
Homar 0.9798313 0.9857357 0.988 0019 0.9886998 0.988 9830
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means of computing optimum element excitations for
arrays of arbitrary numbers of elements, yet it re-
quires only nominal core storage. Conceptually, the
group coordinate relaxation technique employs subar-
rays of the full array in a systematic manner to opti-
mize excitations of the full array. Four examples have
been included, one of which demonstrates the effec-
tiveness of group coordinate relaxation for a cylindrical
array of 105 elements.
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The effect of interchannel crosstalk on array performance
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It is shown that interchannel crosstalk can always be eliminated before the channel signals
enter the beamformer, provided crosstalk levels do not exceed a maximum permissible upper
bound and are known exactly. The crosstalk upper bound (in decibels) is shown to be - 20
log N, where N is the number of channels in the array. The beam pattern of a general array
with arbitrary crosstalk levels, steered in any direction, is derived. Sample beam patterns are
presented for arrays of 50 and 100 elements. Expected, or average, beam patterns are derived
for interchannel crosstalk coefficients modeled as statistically independent random variables. It
is shown that pointing error can occur when crosstalk has nonzero mean. It is also shown how
to correct for nonzero mean crosstalk before the signals enter the beamformer, provided these

means are known.

PACS numbers: 43.60.Gk, 43.30.Yj, 43.88.Hz

INTRODUCTION

Interchannel crosstalk is modeled throughout this pa-
per as a multiple-input-multiple-output linear system. The
inputs to this linear system are the array’s sensor outputs,
while the system outputs are the inputs to the array beam-
former. In Secs. I and I1 it is assumed that the transfer func-
tion matrix H of the linear crosstalk system is known exact-
ly. The discussion in these two sections is simplified by
presenting explicitly only the idealized case when crosstalk
is both instantaneous and frequency independent; however,
this simplified presentation in no way is a restriction on the
methods and results presented in these sections. A very dif-
ferent crosstalk model is assumed for Sec. I11. In this section
the components of the crosstalk transfer function matrix H
are treated as random variables. Such a model is employed
not to suggest that crosstalk is truly a random system, but
rather to gain some rudimentary insight into the conse-
quences of the lack of exact knowledge of the crosstalk trans-
fer function matrix /. Whether or not such a model is satis-
factory for the intended purpose depends on the particular
application.

Section I of this paper shows that if the interchannel
crosstalk levels do not exceed XB = — 20 log N (in deci-
bels), then crosstalk can always be eliminated before the
channel signals enter the beamformer. The crosstalk bound
XB should be interpreted as a theoretical worst case upper
bound on crosstalk levels. This bound is especially important
if adaptive beamforming is undertaken; that is, given statisti-
cally independent array sensor outputs, statistical indepen-
dence of the beamformer input signals can be guaranteed if
the crosstalk bound XB is satisfied.

Section II of this paper shows that, for a general array,
crosstalk is theoretically equivalent to a channel shading
perturbation. An explicit expression for the beam pattern of
a general array, arbitrarily steered, with crosstalk is given.
As will be seen, satisfying the crosstalk bound XB does not
necessarily mean that sidelobe levels are not degraded. In
addition, crosstalk almost always causes pointing error; that
is, the maximum response of the beam pattern need not oc-
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cur in the steered direction. Pointing error thus contributes
to target bearing estimation error. Examples indicate, how-
ever, that pointing error is probably not significant if the
bound XB is satisfied.

Section 111 of this paper derives the expected, or aver-
age, beam pattern of an array with the individual crosstalk
coefficients (i.e., the components of the transfer function
matrix H) modeled as statistically independent random
variables. It is shown that pointing error cannot occur in the
expected beam pattern, provided the crosstalk between dis-
tinct pairs of channels is zero mean. Pointing error can occur
only when crosstalk is nonzero mean. It is shown how to
correct for nonzero mean crosstalk before the signals enter
the beamformer.

Section IV gives several example beam patterns, and
Sec. V briefly recapitulates the paper’s conclusions. Appen-
dix A states Gershgorin’s theorem that is used to derive the
crosstalk bound XB. Finally, using the crosstalk model of
Sec. III, Appendix B derives the maximum crosstalk vari-
ance allowed for a specified increase in the beam pattern
sidelobe level.

I. CROSSTALK BOUND

Let V, (1) denote the output voltage signal of the nth
sensor of an N channel array. Let U, (1) denote this signal,
contaminated by crosstalk, at the input to the beamformer.
Ideally, U, (t) = V, (1) when the effect of crosstalk between
channels is negligible. If crosstalk cannot be ignored, then
{U, (1)} is related to the voltage signals ¥, (1),...,Vx (1) by
the linear relationships

N

U.(n="v,) + z H, V. (1), for I<ngKN, (1)
A=l
k#n

where {H,, } are real constants, independent of both time ¢
and the signals {V,(7)}. For convenience, we define
H,, =1 for all k. Then, for all n and k, H, V, (1) is the
contribution to the nth beamformer input from the & th sen-
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sor output. The units of the beamformer inputs are not stated
in (1). It is convenient to suppose that U, (1) is a voltage, in
which case the coefficients {#,, } are dimensionless.

Model (1) assumes that no time delay exists between
the sensor outputs and their communication to the beam-
former. This assumption is very reasonable in practice, and it
has the important consequence that the crosstalk coeffi-
cients {H,, } are all real. If some application requires non-
zero time delays, then it is more appropriate to develop a
model in the frequency domain. In that case, the coefficients
{H,.} are complex and, possibly. frequency dependent.
None of the results developed in this section depend on
{H,, } being real constants; hence, they apply on a frequen-
cy-by-frequency basis in the frequency domain when cross-
talk is modeled as a multiple-input-multiple-output linear
system.

Model (1) does not require that the system which com-
municates the sensor outputs to the beamformer conserve
power. It also does not require reciprocity; that is, /,, need
not equal H,,. However, the model does assume that the
sensors are properly calibrated and have the same gain.

Complete crosstalk is defined to be the special case
where the output voltage of each sensor makes equal contri-
butions to every beamformer input channel. Thus, when
complete crosstalk occurs, all the coefficients H, are equal
1o 1. From (1) it follows that

A Y
v.(n= 2 Vo), all a
1y ]

fn other words, regardless of the nature of the sensor out-
puts, all beamformer input channels are identical. Complete
crosstalk is highly undesirable.

In matrix form, system (1) can be written

Uiy = HV Q). 2)
where
U.(n Vi
U.(n) Vit
U = ( . V()= ( ) .
Us(n Vi(n
1 Hl: - Hyy
H= ”.N ! ”'2\
H,, H.\‘: 1
If the matrix H is invertible, then we have
V() =H Ui, (3

Therefore, crosstalk can be eliminated before the signals en-
ter the beamformer by using (3) to recover the sensor output
voltages if H is known and the sensors are properly calibra-
ted. The requirement that /' exists is a critical assump-
tion. In the case of complete crosstalk, for example, the en-
tries of H are identically 1, and so H ' does not exist. It is
important to emphasize that eliminating crosstalk using (3)
requires a thorough understanding of the crosstalk mecha-
nism because every entry of the matrix // must be known
with considerable accuracy to evaluate the inverse of H accu-
rately.
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In practice, efforts are usually made to minimize cross-
talk by appropriate engineering means. We therefore assume
that the level of crosstalk between any pair of channels is
bounded: that is,

|H, lce, all k #n, (4)

for some constant €. As the complete crosstalk example
shows, linear independence of the beamformer inputs, given
linearly independent sensor outputs, is a very important con-
sideration to keep in mind (especially in adaptive beamform-
ing) when specifying the size of €. We now derive a theoreti-
cal upper bound, denoted XB, which guarantees linear
independence of the beamformer inputs whenever crosstalk
levels fall below XB. Equivalently. we derive a crosstalk level
XB. which guarantees that the inverse of H exists no matter
what the actual crosstalk coefficients H,, are, so long as they
are not larger in magnitude than XB.

Gershgorin’s theorem applied to H (see Appendix A)
together with the inequalities (4) imply that all the eigenval-
ues A of H satisfy the inequality

A~ H<(N = De (5)

Since H is invertible if and only if H has no zero eigenvalues,
it follows that H is certainly invertible if

(V- De<l,
or
=1/(N-1). (6)

This is a sufficient, but not necessary, condition for the exis-
tence of H ‘. Inequality (6) is the crosstalk upper bound
mentioned above. The beamformer inputs {U, (1)} are lin-
early independent if and only if the matrix H is invertible
(and, of course. the sensor outputs {V,(n)} are linearly in-
dependent). Taking 20 log(e,,,.) gives — 20 log(N —~ 1)
= — 201log N = XB as the maximum allowed crosstalk lev-
el (in decibels) between any two channels.

In some applications, the crosstalk matrix # may have
special structure, e.g., /f may be banded, or block diagonal,
or sparse, etc. If such structure is present, it may well mean
that a less restrictive crosstalk bound than the bound XB
derived above is appropriate for the given array. Incorpora-
tion of any such special structure for H into the above deriva-
tion of XB is straightforward because of the generality uf
Gershgorin’s theorem; however, we do not pursue this issue
further here because of the many different possible struc-
tures for H.

Define E = H — I, where I is the identify matrix. Thus
E has a zerodiagonal, but is otherwise identical to H. Gersh-
gorin’s theorem and assumptions (4) and (6) guarantee that
all the eigenvalues of E lie inside the unit circle in the com-
plex plane. Since H = I + E and the eigenvalues of E are less
than ] in magnitude, we can write

€ <€

nea

H'=U+E '= S (- E"

=]-E+E ~E'+ - (7
=1 E. (8)
Substituting (8) into (3) gives the potentially very useful

approximation
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Vin = (1 - EYUu). 9

Eliminating crosstalk using (9) is much more computation-
ally efficient than using (3). The drawback is that (9) is only
an approximation, whereas (3) holds exactly.

Using standard results concerning matrices, (9) gives
the following estimate for the total squared difference be-
tween the true sensor output vector ¥(r) and the crosstalk
contaminated beamformer input vector U(¢):

A A >

S UMO-V.OFC Y IHL Y UL,

LR nk 1 LI
LERY

This estimate is useful only when most of the crosstalk coef-
ficients are zero.

When is the calculationof H ' numerically accurate? If
the computer uses T > 1 significant digits. then a sufficient
condition for numerical stability is that the “condition num-
ber" of H not exceed 10’ . The condition number of H is
defined to be the ratio of its largest to its smallest singular
value. Assuming that H is diagonalizable (a not very restric-
tive assumption in this application ), then the singular values
of H are precisely the cigenvalues of H in absolute value
(Ref. 1, 4.12.3). Since the eigenvalues of H satisfy the in-
equality (5). the singular values lie in the closed interval
[1 = (N = 1Del + (N = 1)e]. Toensure numerical stabil-
ity of H ', we require

1+ (N— l)e<10,.

1-(N-1e
Solving for € gives

1 ( 10’ — I) o
€< = = €ppun -
N—-11\10"+1 N—1
This is the same condition (6) which guaranteed the exis-
tence of # '. Thus numerical inversion of H is reliable if
€ < €., that is, if the crosstalk bound XB is satisfied.

It is still necessary, however, to estimate the effect of
crosstalk on the beam patterns. It is possible for the crosstatk
bound XB to be satisfied and still have poor beam patterns.
Satisfying the bound XB does not guarantee satisfactory
beam patterns, as will be seen; it only guarantees that H ~'
exists.

Il. BEAM PATTERNS

The beamformer output is the weighted delayed sum of
the channel outputs
bl

Bin=3% a,U,(t-1,),
a1

where {a,} are the channel weights, and {7, } are time de-
lays corresponding to a particular steered beam direction.
Substituting the crosstalk effects (1) gives

N

A Y
Bn=YYa Y H.Vu-1,)
" ] A 1

3

A AY
=3 S aH V. u-1) (10)
A I n 1}

For a line array steered broadside, r, = 0 for ali n. For this
particular case, the summation on 7 can be done separately,

giving
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B =3 bV, (n
where o

b, 1 Hy, - Hu[a

ol I 0 | N IS,
s d Lwy w1l

Thus the broadside beam pattern of a line array with cross-
talk is an ordinary beam pattern with weights {5, } which
are perturbations of the original weights {a, }.

In general, however, the time delays {7, } are not zero.
Nonetheless, a similar result can be shown to hold. The time
delay used for a channel located at position
P. = (X,,¥.,2,). when steered to form a beam in the direc-
tion of the unit vector u, is

T, = (p,ou)/c. a3

where ¢ is the wave propagation velocity. To find the beam
pattern of this steered beam, we proceed as follows. Suppose
a unit amplitude plane wave of radian frequency w is propa-
gating from direction v. Note that v is unrelated to the
steered direction u. Then,

Vo) = expliott+pu,)]. all k. (14)
where the time delay 1, is given by
H, = (pv)/c. s)

The time required for a plane wave to propagate from sensor
k tosensorjis therefore ju, — u, . Because of (14), we have

(16)
Substituting (16) into (10) and taking the magnitude

squared of both sides gives the squared amplitude of the
steered beamformed output:

Vitt—7,) =expliw(t +u, —1,)].

N b 2
|B(O| = 2 z a,H, explio(u, —7,)]| -
A-tn- 1

The right-hand side of this equation is independent of time,
but it does depend on the plane-wave direction v via (15).
Because of the assumption of a unit amplitude plane wave,
this function is the directional beam pattern, denoted here
F(v). Consequently,

N N 2
Fliv)y= | ¥ exptiwp,) ¥ a,H, exp( —iwt,)
A= L
N 2
= Z ¢, explicops )] on
A=
where
c. 1 Hy, - Hy|[ e expl —iwr))
el H,, 1 <o« Hy, a,exp( — iwt,)
C~ H,. Hy, - | a, exp( — ivTy)

(18)

In general, then, crosstalk in a steered asray is equivalent toa
perturbation of the original weights {a,} after they have
been phase shifted to steer a beam. Note that the matrix in
(18) is the transpose of H.

The perturbation (18) involves both magnitude and
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phase effects, so that pointing error can occur when the time
delays r, are not all zero. Thus considering the special cases
of line and planar arrays, pointing error can arise in any of
the nonbroadside steered beams. In general nonplanar ar-
rays, however, pointing error probably occurs in every
steered beam. Examples indicate that pointing error is not
significant when the crosstalk bound XB is satisfied; none-
theless, the only way to be certain in any particular array is to
calculate the pointing error directly using (17) and (18).

Note that (18) reduces to (12) if all the 7, °s are zero.
Note also that (18) reduces to the usual steered beam pat-
tern if crosstalk is negligible.

In the previous section it was pointed out that crosstalk
can be eliminated before the signals enter the beamformer,
provided the coefficients {H,, } are precisely known. How-
ever, if the corrupted signals have already entered the beam
former, then crosstalk can still be eliminated by using (18)
to properly adjust the beamformer weights. The use of beam-
former weights w = D ~'H ~'Da will result in the desired
weighting Da, where D is the diagonal matrix implicit in
(18). Obviously, this is much less efficient than correcting
for crosstatk before beamforming because w depends on the
steered direction u.

Nl EXPECTED BEAM PATTERNS

The crosstalk coefficients in ( 1) are all real; however, as
was pointed out previously, they are complex in the frequen-
cy domain if time delays exist in the crosstalk mechanism.
Because of this possibility, and because greater generality
causes no extra difficulty, in this section we model each
crosstalk coeflicient i_l,,k as a complex random variable with
mean H,, . Clearly, H,, = 1 for all k. The time delays {r, }
and the designed channel weights {a, } are known and fixed;
so taking the mean in (18) gives

¢ 1 H, Hy, ) [ g, exp( —iwr))
& _|H: 1 Hy, ayexp( — iwry)
Ty Hy Hy - 1 ay exp( — iwty)

(19)

for the mean values {¢, } of the perturbed weights. It is im-
mediately evident from (19) that if the crosstalk is zero
mean, thatis, /,, = Ofor k #n, then the perturbed weights
have mean values equal to the origina) weights phase shifted
to steer a beam in the direction u.

Equation ( 18) can be used to compute the mean value of
the beam pattern given a probabilistic model of the crosstalk.
The simplest model is to suppose that the random variables
{H,. }. .. are statistically independent, that is,

E[H, HY,]=0, (20)

whenever (n.k)# (m, j) and k £ n andj#m. In (20), * de-
notes complex conjugates. It is not assumed that the cross-
talk coefficients are identically distributed; so we define the
notation

E[H, H%]=0%. foralik.n. Qn

In particular, 0,, = 1 because H,, = 1 identically. For con-
vertience, let w = (w,,....w, ), where
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u, =g, exp( — iwr, ), allk. 22)
Then, (18) can be rewritten
N
o =uw, + 2 H,w,. 23)
a0

nad

Using (23), (20). and (21), we can write
Efecer]

=E [(wA + :% H_‘w,,)(w,‘ + :%H:.,w:)]

N N _
=ww' +w, ZIH:,w:, +w? Zlﬂ,,,w,,
mey LAY

N N
+ ,2:‘ ,,,2, E[H, H? Jw,w?,
nnh mwy

= Wt +w, (F — w)* + WHE —w,)

N
+ 3 E[H.HYwwe
m=1

nwe{hy}

N
= w, e+ W —wtw, + 8, T Aawul, (24)

n=1
LE XY

where in the last equation §,, is Kronecker's delta. For con-
venience we define for any weighting vector s = (s,,....5x ),

A
G (v)= z 5, expliop, ) .

A=
The directional beam pattern with crosstalk is therefore,
from (23), |G, (v)|*, while the directional beam pattern
without crosstalk is, from (22), |G..(v)]>. The expected
beam pattern is, from (17),

(25)

A

E(Fv)] = z i E[cicjexplio(n, —u,)] .

Substituting (24) and using the notation (25) gives

N N
E[F) )= T T uC +wE, —wrw,)

Amly=1

N N
xexpliw(u, —p)]+ ¥ 3 ohawuw?
&

ERR N
ngd

=G, (MG + G (MG(Y) ~ |G, (V]

+ ﬁj (é. aik)lw.l’-

(26)
n=1 e

Using the definition (23), note that

N
G, (v) = EEA expliop, )
A=1

N N
= Y w expliop,) + Y (T, — w;)expliop, )
T =

=G, (V) + G, _ . (v).
Substituting this identity into (26) gives the result
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E[F(M] =[G, (VI +2Re[G,(MIG?* (V)]

AY hY
+ Y (E:ai)mzf- 27
R W

Itisimportant to notice that the only way the middle term on
the right-hand side of (27) can be identically zerois if ¢ = w.
As was pointed out above, € = wifand only if the crosstalk is
zero mean, that is, H,, = 0 for k #n. Since crosstalk is not
zero mean in general, (27) cannot be further simplified.

The other two terms in (27) also have important inter-
pretations. The first term on the right-hand side of (27) is
the directional beam pattern free of crosstalk. The third term
in (27) is a positive constant independent of u and the
steered direction v, as can be seen from the definition (22) of
w. Thus, with zero mean crosstalk, the middle term of (27)
is zero; so the expected beam pattern cannot have nulls. With
nonzero mean crosstalk, it is possible, though unlikely, that
the middle term may be sufficiently negative so that
E[F(v)} has nulls. In no case, however, can E[F(v)] be
negative.

Equation (27) can be used to derive an upper bound on
the maximum crosstalk variance to guarantee that the side-
lobe level of the expected beam pattern does not increase
more than a specified amount. See Appendix B for the case of
zero mean identically distributed H,,, .

Itis also clear from (27) that the expected beam pattern
cannot have pointing error when the crosstalk is zero mean.
In other words, the expected maximum response occurs
when v equals the steered direction u, or

max E [F(v)]) = E[F(uw)], 28)

with zero mean crosstalk. Pointing errors can only arise in
the expected beam pattern when the crosstalk is not zero
mean.

It is desirable to correct for nonzero mean crosstaik lev-
cls before the signals enter the beamformer. Taking the mean
in (4) gives

|H..l<€.

Requiring the crosstalk upper bound (6) to hold implies
that H ' exists. Thus we can write

o =H"'Uwn. (29)

Using the vector Q(1) as the beamformer input vector re-
sults in beamformer input channels with zero mean cross-
talk. The reason is that the correction (29) modifies the
original model (2), which becomes instead

QU =H""HV(1) = H V(1) . (30)

Clearly, the effective crosstalk matrix H_, is such that
H., = I.1n other words, H._, has entries that are zero mean
on the off-diagonal and unit mean on the main diagonal. The
remarks immediately following (3) concerning the use of
the inverse of H are directly applicable here for the use of the
inverse of H.

When the crosstalk coefficients are modeled as a joint
Gaussian distribution, so that they are not statistically inde-
pendent, expected beam patterns can still be derived. The
interested reader is referred to Refs. 2 and 3 for a general
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discussion which is relevant here, even though neither dis-
cuss crosstalk.

IV. EXAMPLES

As an example of the effect of crosstalk on beam pat-
terns, consider an equispaced line array with N = 50 omni-
directional sensors spaced notionally 1 m apart. The design
weights {a,, } are Taylor weights fora — 30-dB sidelobe level
(with the number 7 of controlled nulls set equal to 5). Cross-
talk between any pair of channels is assumed to be such that
the coefficients {#,, } are all real and positive. These con-
stants are selected from a uniform pscudorandom distribu-
tion on the interval [0,€], where € is chosen to correspond to
a specified maximum crosstalk level. Thus H,, = ¢/2and s
not zero mean. The crosstalk bound, XB, is — 34 dB in this
case. Figure 1(a)—(d) shows the broadside beam patterns
for a maximum crosstalk level of — 74, — 54, — 34, and

— 24 dB, respectively. By inspection, crosstalk of — 74 dB
has virtually no impact on the beam pattern [see Fig. 1(a)],
while a crosstalk level of — 54 dB, a full 20 dB below the
crosstatk bound XB = — 34 dB, raises the peak sidelobes by
about 1 dB [see Fig. 1(b)]. When the crosstalk is equal to
the upper bound of — 34 dB, the beam pattern is significant-
ly perturbed and has a peak sidelobe about 8 dB above the
design sidelobe level of — 30 dB [see Fig. 1(c)]. When
crosstalk reaches — 24 dB, the peak sidelobe is 13 dB above
the design level [see Fig. 1(d)].

We point out that the largest individual perturbation of
the original Taylor weights is 0.9%, 8.6%, 60%, and 111%
in the cases corresponding to Fig. 1(a)-(d), respectively.
The percentage perturbation was calculated after normaliz-
ing the Taylor weights and the perturbed weights to sum to
one.

Other realizations of the crosstalk matrix H have been
computed, but are not presented here. They reinforce the
fundamental point that, for this 50-element array, crosstalk
levels should be kept below — 54 dB, or 20 dB below
XB = — 34 dB. The question of whether or not this obser-
vation remains true for larger values of N naturally arises.
Consider, then, a 100-sensor equispaced array with 1-m
spacing between sensors and Taylor shaded for — 30-dB
sidelobes (with # = 10 controlled nulls). For crosstalk lev-
elsof — 70, — 60, — 50, and — 40 dB, the beam patterns
are shown in Fig. 2(a)-(d), respectively. The largest indi-
vidual weight perturbation was 2.1%, 6.4%, 18%, and 45%,
respectively. The crosstalk bound XBis — 40 dB. Examina-
tion of these figures shows that crosstalk levels should be
kept below — 60 dB, or again 20 dB below the upper bound
XB. Evidently, therefore, the crosstalk should always be
kept 20 dB below the bound XB to prevent significant beam
pattern degradation.

Expected beam patterns for these examples are not pre-
sented for two reasons. First, as was pointed out previously,
it is desirable to correct nonzero mean crosstalk to zero mean
[using (30) ] before the signals enter the beamformer to pre-
vent pointing error. The examples here are not zero mean.
Second, assuming zero mean crosstalk, then (27) clearly
shows that the expected beam pattern is the crosstalk-free
beam pattern plus a constant term. The expected beam pat-
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FIG. 1. Broadside beam patterns for 50-sensor array crosstalk levels: (3) =

terns for these examples, after correcting the crosstalk to
zero mean, are merely the appropriate Taylor beam patterns
with an appropriate constant term (independent of angle)
added; hence, no nulls appear in the expected beam patterns.
Examples of this kind are given in Ref. 2.

The pointing error was determined for the above 100
sensor line array when the maximum crosstalk level was set
equal to the bound XB = — 40 dB. Beams were steered
from broadside to endfire in one degree increments, and the
pointing error determined by direct numerical calculation
using (17) and (18). The pointing error in all but one beam
was found to be within + 0.005 deg of the steered direction.
The exceptional beam had pointing error of ~ 0.14 deg. If
the crosstalk coefficients are fixed once and for all, then
pointing error is a smoothly varying function of steering an-
gle. In these calculations, however, different crosstalk coeffi-
cients were calculated for different beams; this explains the
one exceptional beam. One tentative conclusion in this ex-
ample is that, as long as the crosstalk bound XB is satisfied,
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— 744dB, (b) = — 54dB, (c) = — }4dB.and (d) = —24dB.

pointing error is not significant. The one exceptional beam
suggests, however, that certain realizations of the crosstalk
coeflicients might possibly result in surprisingly large point-
ing error even when the bound XB is satisifed.

V. CONCLUSION

A maximum permissible level of crosstalk in an array of
arbitrary geometric configuration has been presented. Also,
the beam pattern of an arbitrary array with arbitrary cross-
talk, steered in any direction, has been derived.

Crosstalk can result in pointing error when steering the
array, an effect of considerable importance. When a random
variable model of crosstalk is appropriate, it is worthwhile in
practice to correct for nonzero mean crosstalk before the
signals enter the beamformer. If this is done, particular real-
izations of the crosstalk coefficients may still result in array
pointing error, but the expected pointing error is zero be-
cause the expected beam patterns do not have pointing error.
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FIG. 2. Broadside beam patterns for 100-sensor array crosstalk levels: (a) = — 70dB, (b) = — 60dB, (¢) = — 50dB.and (d) = - 40dB.
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APPENDIX A: GERSHGORIN'S THEOREM

Gershgorin's theorem defines a closed set in the com-
plex z plane within which all the eigenvalues of a general
complex valued matrix must lie. Let 4 = [a, ] denote a giv-
en n X n matrix. Define

N
=73 ja,i i=1l..n
]

!
=X

Then, the eigenvalues of 4 lie in the region of the complex z
plane consisting of the union of all the closed disks:

(A1)
A proof can be found in many places, for example, Ref. 1, p.
146. If the main diagonal of 4 is constant, that is, a,, = a for
all /, then the disks are concentric. It follows that the eigen-
values of A4 lie in the closed disk:

lz—a,lcr,, i=1,..n.
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|z — a| < maxr, . (A2)
L e

The result (A2) together with (4) proves (5) in the main

text.

APPENDIX B: MAXIMUM CROSSTALK VARIANCE FOR
SPECIFIED SIDELOBE LEVEL

Attention in this Appendix is restricted to the case
where the crosstalk coefficients H,,, n#k, are identically
distributed with zero mean and common variance o°. It is
required to find the largest possible value of o for a specified
maximum increase in the sidelobe level of the expected beam
pattern (27). Let the sidelobe leve! of the crosstalk-free
beam pattern G(v) be denoted

L,=B%/4",

where B is the level of the response of |G(v)| when v lies in
the sidelobe regime, and 4 is the response of |G(v)| when v
equals the steered direction u. Thus

A
A= z w, |- (B1)
LI
From (27), we have in this case
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E{FwW)] =GP + (N = Da,o, (B2)
where
N
a,=3Y ). (B3)
n- 1

Therefore, the sidelobe level of the expected beam pattern
may be written

_ B+ (N~ 1a,0?

=—, B4
¥ A4 (N~ Da, o (B4)

We seek the largest value of o for which
10log L, — 10log L;<10log(A?) , (BS)

where 10 log(A?) is the specified level (in decibels) that the
expected beam pattern sidelobes are allowed to increase.
Equivalently,

Ly 1+(N-Va,0/B’

= <AL, B6
L 14 (N-Da,d/4? el
Solving for o gives
2 § 2
Y Le 127, wil (BT)

N—1 1—LcA* 2%, |w, )’

which is the desired relationship. It holds only for zero mean
and identical variance crosstalk coefficients.

If 10log A* = 1dB, 10log L; = — 25 dB, and identi-
cal weights w, = constant#0, then (B7) gives approxi-
mately
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o <0.000 822,
or, taking 10 log of both sides,
20 log(o)< — 31 dB. (B8)

On the other hand, if 10 log A* = 2 dB, then (B7) gives in-
stead

20 log(a)}< — 27.3dB. (B9)

Interestingly, (B8) and (B9) are independent of N in this
case because of the assumption of constant weights.

The bound (B7) on the maximum crosstalk vanance is
more strict when the array is shaded (that is, w, #const)
than when it is unshaded (w, = constant). The proofof this
fact follows from the conditions for equality in the Cauchy-
Schwartz inequality.
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A Two-Parameter Family of Weights for
Nonrecursive Digital Filters and Antennas

ROY L. STREIT

Abstract—We derive amlytically a two-parameter family of weights
for use in finite duration nonrecursive digital filters and in finite aper-
ture antennas. This family of weights is based on the Gegenbauer or-
thogonal polynomials, which are a generalization of both Legendre and
Chebyshev polynomials. 1t is shown that one parameter controls the
main lobewidth and the other parameter controls the sidelobe taper. For
a fixed main lobewidth, it is observed that the Gegenbauer weights can

achieve a d ic d in sidelobes “‘far 4™ from the main
lobe in exchange for a “small” i in the first sidelobe adjacent to
the main lobe,

The Gegenbauer weights are derived first for discretely sampled aper-
tures and filters, An appropriate limit is then taken to produce the
Gegenbauer weighting function for continuously sampled apertures
and filters. The continuous Gegend ighting functi i
the Kaiser-Bessel function as a special case. 1t is thus established that
the Kaiser-Bessel function is implicitly based on Chebyshev polynomials

of the d kind. Furth the Dolph-Chebyshev/van der Maas
weights are a limiting casc of the di /conti Gegenb
weights,

l. INTRODUCTION

HE choice of weights in the design of nonrecursive digital

fitters and antenna apertures is an important problem for
which there is a large literature. In this paper we present the
Gegenbauer weighting function, so named because it is based
on the Gegenbauer orthogonal polynomials {1]. The Gegen-
bauer weights may be applied equally well to nonrecursive
digital filters and both discrete and continuous antenna aper-
tures. The resulting FIR filter coefficients can be used as a
shading function for the spectrum analysis of sampled data to
reduce sidelobe leakage. Our discussion in this paper will be
restricted to the antenna form of the problem merely to avoid
unnecessary complication in the presentation.

The Gegenbauer design is a two-parameter family of weight-
ing functions. One parameter, z,, is used to control the beam-
width. The other parameter, y, is used to achieve sidelobe
taper. Both zy and u may be varied continuously and indepen-
dently of each other. The Gegenbauer design is especially use-
ful in achieving dramatic decreases in distant sidelobes in ex-
change for “small” increases in the first sidelobe adjacent to
the main lobe, Conversely, dramatic increases in distant side-
lobes can be exchanged for “small” decreases in the first side-
lobe. This will be clarified by the examples.
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The Gegenbauer weights are derived first for a finite dis-
crete aperture. An appropriate limit then gives the Gegenbauer
weighting function for a bounded continuous aperture. Many
similarities between the Gegenbauer weights and the Dolph-
Chebyshev/van-der Maas weights [2], [3] will be evident from
the derivation. In fact. these latter weights are limiting forms,
as =0, of Gegenbauer weights. Also, the Kaiser-Bessel
weighting function (4, pp. 232-233] for the continuous aper-
ture is the special case u =1 of the Gegenbauer design. This
shows that the Kaiser-Bessel function is implicitly based upon
Chebyshev polynomials of the second kind, a fact which seems
to have escaped notice until now. This is interesting since, as
is well known, the Dolph-Chebyshev/van der Maas weights are
based on Chebyshev polynomials of the first kind.

One drawback to the van der Maas weighting function for the
continuous aperture is that it has §-function spikes at the aper-
ture endpoints. The Gegenbauer function dozs not have this
feature: that is, the Gegenbauer weighting function for the
continuous aperture is a bounded continuous real-valued func-
tion across the whole aperture. However. since the van der
Maas function is a limiting case of the Gegenbauer function as
p =0, the Gegenbauer function must approximate this be-
havior in the neighborhood of u=0. The Taylor design (5] is
an alternative way to overcome this §-function behavior of the
van der Maas function, but it is unrelated to any of the Gegen-
bauer designs. The proof of this statement is self-evident from
the examples presented later.

The Gegenbauer polynomials C4(x) are defined here pre-
cisely as in Szegd {1} which is used as our standard both in
function definition and notation, with only two exceptions.
Szegd uses the notation P{*)(x) instead of C¥(x) and refers to
them as the ultraspherical polynomials. This paper will not at-
tempt to recapitulate any of the known facts about the poly-
nomials that can be referenced in Szego. It suffices to say here
only that Ch(x) is a real valued polynomial of degree precisely
n, and that the system {C§ (x), C¥ (x), C¥(x), - - '} is orthog-
onal on the real interval [-1, +1) with respect to the weight
function (1 - x2*"¥? provided u > - 4. u#0. Moreover, by
taking appropriate limits and wusing their hypergeometric
functional form, C;(x) can be defined for all real u. See |1,
€q. (4.7.7)]. In particular, if T,(x) and U,(x) denote the
Chebyshev polynomials of the first and second kinds, respec-
tively, then [1, eq. (4.7.8), (4.7.17))]

im  <2&)

2
= =Tu(x)., nz>i
u—=o H n

Cg(x) = To(x),

1)
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and [1,eq.(4.7.2)]

Chlx)=Uplx). n=0.

)
The derivation of formulas more general than are perhaps
necessary in the antenna application is relegated to the Appen-
dix. Special casesof these formulas will be extracted as needed
and used without comment in the main body of this paper:
however, every effort will be made to motivate the discussion.

II. GEGENBAUER WEIGHTS FOR A
DISCRETE APERTURE

The Gegenbauer design for a finite discrete aperture is de-
rived for a single frequency half-wavelength equispaced linear
array of ommdirectional elements. Other than the steering
factor, we will always assume the aperture (discrete or con-
tinuous) is symmetrically weighted about the geometric center
of the array. The array axis is taken 1o be the x-axis and all
angles are measured from a line normal to the array axis.

Let A be the number of elements in the array (hence N 2 2),
and let the pusitions of these elements be x;, = kAf2, k=1, 2,

"+ N, where X is the wavelength of the design frequency. (In
the Appendix. A denotes an arbitrary real variable. not fre-
quency.) If the array is steered 1o look in the direction 6.
-m2<0,<n2, and if the array receives a plane wave of
wavelength A from the arrival direction 8,. -n/2 <0, < a/2,
then the complex transter function of a linear beamformer is
given by

N
Fung Y wiexpt inku)
k=1

(3)

where

ulsing, - sind,

4)

and {w}Y are the individual element weights. Symmetrical
weighting is assumed. so wy_x., =w; for all k. Positive
weighting is desirable, but not necessary.

The Dolph-Chebyshev design proceeds as follows for a design
specification of - § dB peak sidelobe level. Let

20 4 %{[’+\/'_2:—T]l/"+ [r-\/’-_f__l]l/n},

r 4 10570 5)

and n & N - 1. Notice that z4 > 1 if and only if the peak side-
lobe level is lower than the level of the maximum response
axis, o1 MRA. From (A20) of the Appendix, the expansion

1nj2}
T, (2o cosu)= S "¢k n(2o) cos {(n - 2k)u}

k=0

(6)

clearly exists, where the prime on the summation means that
;— the last term in the sum is taken if n is even, and all of it is
taken if n is odd. From (A21) we have explicitly

(M)y-m(2d - 1)"25727
mitk-m)(n-k-my’

k
cxonlzo)=nn-k- 1) 3"

meo

N

The coefficients ¢ ,(z, ) were first given in this form by van
der Maas [3]. who derived them using a method different from

that in the Appendix. By inspection, notice that ¢y ,(z9) > 0
for all k whenever zo > 1. The coefficients ¢,_n(2o) yield the

109
element weights {w, }{ when we define
Jor N even:
Waoker =Wk 2 3 Crpn-1(Zo)
=3 AN k=l.2."',l—; (8)
k)& Y-k
Jor N vdd:
w =w, 8 ! c (20)
‘n-ke1 T~ Wi = 3 k) N-
n-kei B t(k) 1140 N+l
Mol k=1,2,---, 5
+ .
"k & —— - k
)

Thus, the complex transfer function (3) is given explicitly for
these weights by

Fu)=efmWeui2y, (2, cos (§ mu)); (10)
the maximum response occurs foru =0,
F(0) = Tn_y(20) (11)

and the smallest positive value of u such that F(u) = 0 is given
by

o 2 arens (2 cos (7)) )
o = arceos o < S(I(N— ”)).

The half beamwidth as measured to the first null from the
MRA is precisely ug.

The Gegenbauer design proceeds in an analogous fashion.
We replace the old constant zy by a new variable z, which will
be defined later (30); however, for u =0, 2, is still defined by
(5). Now, in the expansion

(12)

[nf2l
Ch(z, cosu) = Z by.n(z,) cos [(n~ 2k)u)
k=0

13)
the coefficients by ,(z,) depend on z,, and are given explicitly
by

O+ M) (2] - DR
m!(k-m)(n-k-m)

Kk
bk.n(zy) = 2(ﬂ)n—k Z (]4)
meQ

Both of these identities are special cases of (A18) and (A19) of
the Appendix. Note that by (o) > 0 for all k, provided that
z, > 1 and u>0. Note also that, by (1), (14) reduces to (7)
in the limit as u = 0. For numerical computation, the following
form is preferred to (14). Let A =1 - 2;’,50 that 0 <4 <1
when z, > 1, and then compute the right-hand side of

by, n(2,) __ 1 (/.Mn- k- 1)

2uzy n-& n-k-1
x y+k—1) (n—k) m
. 15
MZ;O( k-m m 4 (13

The binomial coefficients are defined here for any real number
a and any nonnegative integer p by

(Q)AI a Aoz(oz—l)-~(c«-p+l)
0/” '(p)= p! '

although they are best computed recursively using

pal

(16)

-70-




110

(:) =£:;l (p‘-xl)' p=l

to avoid floating point overflow at some intermediate point in
the computation.

1t should be pointed out that (15) can be evaluated numeri-
cally for all g since, for fixed n and &, (15) is a polynomial in
u. However, (15)is correctonly if u#-1,-2,-3,---. If co-
efficients are required for, say, u = - 5, both sides of (13) must
first be divided by u + 5 and the limit taken as u + 5 = 0. Con-
sequently, in (15), the factor u + S must be divided out alge-
braically before numerical computation begins.

The coefficients by ,(z,) yield element weights {wy})' when
we define

a17)

for N even:
A 1
WN-ket SWk S T bery.n-1(2y) N
k=|.2,“'_—' (18)
MY 2
tk) 2 2
for N odd:
1
Wa-ko1 = Wi & 5 by N-112,) el
Nl k=1,2 -
+, 2
1) —— -k 19)

With these weights, the complex transfer function (3) is given
explicitly by

Fuy=emW* D92 Cf | (2, cos(§ mu)). (20)
The maximum response of F{u) should occur for u =0, and is
F(0)=CK. (z,) (1)

(For a discussion of unusual situations when the MRA might
not occur at u = 0, see below in this section.)

The smallest positive value of u satisfying F(u) = 0 is given
by

Iy 2 1 H)
u, & — arccos (—— xx_ ,) (22)
L§ z,

where x{) , is the largest zero of the Gegenbauer polynomial
Ck -, (x). Thus, for p>-1/2,x§?, must lie in the open inter-
val (-1, +1). In fact, it must be very near +] for values of u
of interest in this application. An explicit analytic expression
for x#‘f y is not known except in certain special cases (e.g., the
Chebyshev polynomials) and so must be solved for numerically.
Thisminor difficulty isreadily overcomeusing Newton-Raphson
iteration. Recall n =N - 1. Since (1, eq. (4.7.14)]

d .
;C‘.‘(XPMCA‘—I (x) (23)
the Newton-Raphson iteration is
CH
Yioy Vi~ x Uy) k=1,2,--- (24)

uCh ()’

n
i 2 x{ = cos (Zr)
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The ratio in (24) is perhaps best evaluated by computing two
different sequences
{Ch (r)lp=y and {CH*' (k)=
numerically from the fundamental recursion 1. eq. (4.7.17)}
pCp(x)=2p+a- )xCp_, (x)- (p+2a- 2)C5_ 5 (x).

(23)

p=234,---.n (26)
Cd(x)=1, C?(x)=2ax.
The recursion (26) is valid for a#0, -1, -2,-3,---. This

method may have weaknesses whenever u is very close to 0
(say, |l < 107*) because of the division by u in (24); however,
4 would normally be taken either equal to 0 (to give the Dolph-
Chebyshev design) or else sufficiently different from 0 to affect
sidelobe levels appreciably. This latter stipulation seems to re-
quire jul > 107", In the antenna application, then, computa-
tion of the Newton-Raphson iteration step from the recursion
(26) seems perfectly safe whenever a special precaution is taken
for u=0. In practice this author has never seen the iteration
require more than four steps, and he has never seen it converge
to the wrong point. If, however, it should ever happen to con-
verge to the wrong point, the Newton-Raphson iteration can
be restarted with the new initial point y, = 1. Also. the in-
equality [1,eq.(6.21.3)]

3
—xM <0 forallpy 27
o
implies that
n
x) < x0) = cos (—_'—;)<xﬁ,‘“), u>0, (28)

which can serve as a check. Incidentally, inequality (27) holds
for all the positive zeros C} (x), not merely the largest one.

The reason for all this concern over calculation of the half-
beam width (22) is simply to be able to make fair comparisons
between sidelobe levels of different Gegenbauer designs, that is,
different values of u. It is well known that the sidelobe levels
in Dolph-Chebyshev beam patterns are sensitive functions of
the beamwidth, and there is every reason to expect similar be-
havior in the Gegenbauer designs. Therefore, as u is varied it is
helpful to maintain a fixed beamwidth; specifically, we always
require u, = ug for all u. This in turn, from (22) and (12),
gives

1 u) 1 ( n )
— XNI, =— _— 29
Z, 23 zo C\2ZWV-1) (29)
or, converting convenience into a definition,
2,8 2o X9 (; . 30
m o Xn-; SeC AN- 1) (30)

From (30) it is now clear that computing the largest zero, x,’\; i
of Cy ., (x) is of considerable importance.

With the definition (30), all Gegenbauer designs with different
values of u and fixed zo have the same beamwidth as measured

. to the first null off the MRA. Thus, the beamwidth is varied

simply by changing the value of z, in exactly the same way as
in Dolph-Chebyshev, i.e., (5).
An interesting consequence of (30) is that z, might not always
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be greater than 1 for all w2 0. This observation follows imme-
diately from the denvative (27). Hence. for some critical posi-

tive value of u. say u*, we have 2o = 1. n(15) the number A4 -

is negative for u > u*, so the positivity of the weights cannot
be guaranteed without direct calculation because (15) is an al-
ternating series for u > u®. At the critical point u*. 4 = 0 and
the sum in (15) collapses to a single term. Simplifying gives

S ktut - Nkt
Py = -( n-k )( k )

which can be found also in Szego |1, eq.(4.9.19)]. The weights
for the critical case 4 = u* can now be varied merely by chang-
ing u*. In particular, for u* =1, (31) gives the uniformly
weighted array: that is, wy = | for all k. The beamwidth ob-
tained from the weights (31) depends on (and only on) the
critical value y* because u* implicitly depends on z4.

Since Gegenbauer designs have the two parameters 2, and u,
with z, controlling main lobewidth. the parameter 4 must con-
trol sidelobe behavior. From (20) and (30) we see that side-
lobes occur for u satisfying

(31)

[z, cos (3 ma)! < cos (§ mug) < 1. (32)
In the sidelobe region. then, we can define
cosP=z,co5(fm), 0<o<m

For the moment let us suppose 0 <p< 1. Then. from Szego
[1.eq.47.33.5)}

(sin @ }C‘,‘,‘(wsmf <2 HE R LT (33)
so the transter function Fa) must satisfy
[Ftuy! <41 - 2} cos® (3mu)) ™82 208 ko iby)  (34)

throughout the sidelobe region defined by (32). For u outside
the (0. 1) interval, but excluding g =0.-1,-2. - - - , the sharp-
ness of the inequality (34)islost. A special case of a result given
in Szego {1, eq. (3.21.14) with p = 1] implies that

JFu| (1 - 22 cos? (4 muy)™#i2 21 -m (" Tus l)
n

S +0(n*"%) (35)

throughout the sidelobe region defined by (32). For u outside
{35) is asymptotic to #*~ ' /T'(u) as n ~ o_so the leading term
of the right-hand side of (35) is asymptotic 10 the right-hand
side of (34). For fixed u. the right-hand side of (35) appears
to be an excellent envelope for the sidelobes of the Gegenbauer
designs.

For u>0, it is clear from (35) that the sidelobe envelope
must steadily decay as u approaches endfire,ie., w = 1. Since
[use (26))

0, if n odd

Ch(0)=-
-1
((-l)"’(‘“m ) ifrn=2m

m

we have
[F(D] = |CROYM =272 n*~ ) i1 ) (36)
approximately, forn even. Contrasting this approximation with

the inequality (35) leads to the conclusion that (36)is anexcel-
lent approximation to the sidelobe envelope for both even and
odd n. Thus. we utilize (36) tor all n. Applying results proved
below in another context [specifically. set v=0 in (34) and
(35)) gives an approximation for the maximum response

. oM pE-l T 1y 2 (T)
o)) = 1 /5 5 )
with r defined by (5) and
72 [(arccosh r)? + w2 /4 - j3_ ) M2 (38)

where j,, . |, is the smallest positive zero of the Bessel function
Jy- 12 (x) of the first kind and order p- 1/2. and 1, _ |/, (x)
is the modified Bessel function of the first kind and order
u- 1/2. Therefore, we have the relative level

‘_FM ~pH ‘/i—{.’uz_ﬂ}"

1F(0)) n ) e ’
This resuit happens to be exact for 4 = 0, the Dolph-Chebyshev
case, as can be easily verified. Evidently this result also implies
thart the sidelobe height at endfire is 2 function of n, even when
¢ and the beamwidth parameter z, are fixed. in other words,
the sidelobe tapering effect of a given value of y depends on
n. unless 4= 0. Numerical examples bear out the n™ depen-
dence in (39).

An important observation based on (35) and (39) is that
for <O the sidelobes may well steadily increase as u ap-
proaches endfire. That this is in fact the case is borne out by
the examples given later.

{t should be emphasized that although the Gegenbauer weights
must be positive if 0 € u < pu®. they might not necessarily be
positive if u <D orif u>p*. For u<0 it can happen that
all are positive, or that some are negative. Only numerical com-
putation can show which is the case. 1f some of the weights are
negative, it becomes a possibility that the maximum response
might not occur foru = 0.

For the Gegenbauer weights it is readily shown that a suffi-
cient condition for the MRA to be at u = 0 is that C4 (x) attain
its maximum over the interval [-1, 1] at x=1. By a weli
known result [1, eq. (7.33.1)] the maximum of C¥(x) occurs
at x =1 if and only if p> 0. Thus, a sufficient condtion for
u=0 to be the MRA is that u2 0. For u <0 the MRA de-
pends on the size of z,, and must be verified numerically. From
[1, eq. (7.33.1)] the maximum of C¥ (x) occurs at or near x =
0 when u <0 therefore, if the MRA is not at u = 0, then the
MRA must be at or near endfire. This observation is rendered
quite reasonable when considered in the light of the examples
presented later. This author has never experienced a case where
the MRA was not u =0 for u>-1/2 and reasonable values of
2,.

It would be interesting to know how much energy is contained
in the main lobe of a Gegenbauer design. From (20) and (30),
this requires a tractable form for the integral

39

uo
J. {Ch (2, cos (4 mu})]? du (40)
o

which we do not have. On the other hand, the total “weighted”
energy contained in all of the sidelobes is the smallest possible
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for u>-1'2. Specifically. if m,_, denotes a polynomial of  where
degree at most 22 - 1, then [1,eq.(4.7.15)] foru>-172

n=N-1 (406)
- |
"I"l‘i"l J (1~ X3V " -, ()] 2 dx x= _:'_2’_ A : - (47
2y I'(n + 2u) N N
= A . (u%0). 41 LIRS N PTRA .Y
[T e+ @)+ 1) u=0) “h ms) = 3L kl_l ) [i’ (k 1 2) " (48)
Furthermore. if #,_, (x) is the minimizing polynomial. then
nu

[1.eq.(4.7.9)] ve— (49)
et (

Substituting x = z, cos (me,2) thus establishes our claim. How-  From (20). for the Gegenbauer weights,
ever. a problem with this formulation is that part of the main

n+u-1

n )(X"‘ 7?"-1 (‘)) G(v)=eﬁ'(n0 2)uj2 F(u) (50,

lobe energy is included in the 1otal weighted sidelobe energy. eineawing,) = ¥ (z‘, cos (—li)) . (51)
The reason is that the x-interval [x{*), + 1] is transformed [use n
(12)and (30)] to the u-interval In order to take the limit in (51) as n = o, we need to establish

2 } .4 the asymptotic behavior

= arccos |-~ Jcos (;—).uo] 42)

n o Xy, =N LT’

> _ - N

which is a subset of the main lobe region. Four the Dolph- Zu =sec ( n ) nee (2

Chebyshev case u =0, this w-interval goes from the first null

up to the point on the main lobe equal to the overall sidelobe Fe
level and. so. is not considerable. For larger values of u. this L
u-interval grows larger because of (27) and thus contributes hare 1 is defined by (38). The proof uses the asymplotic
progressively more significant portions to the weighted sidelobe  ;oq 114

encrgy estimate.

(33)

e

ll. GEGENBAUER WEIGHTS FOR A 29 = cosh (;l; arccosh r) (54)
CONTINUOUS APERTURE
The Gegenbauer weights derived for the discrete finite aper- =1+ tarccosh r)? o
ture have a limiting form as n —~ o with total aperture length - nt
2L held constant. This is essentially the high-frequency limit |
of the weights as functions of design frequency. The limiting > sec (; arccosh r), n— oo (55)

form is a continuous real-valued function defined on the whole
aperture and must be nonnegative if 0 <u <u®. Thecasepu=0 and
develops 8-function spikes at the aperture endpoints: i.e., the .
.case.u =0 g'ives the van der Maas function. Foru? u* lhe limit -\'5.“) = cos (Iu- 1/2 )  pew, (56)
is still continuous, but we cannot guarantee by simple inspec- n
tion that it is nonnegative across the entire aperture. Foru<0,
the integral (60) below diverges.

Let the continuous aperture be taken to be the closed inter-
val [-L, L] on the x-axis. Rewriting (3) gives

Apparently (54) was first given in [6] ; it follows directly from
the definition of the Chebyshev polynomials and the fact that
7> 1. On the other hand, (56) follows from the Mehler-Heine
result, (A2) of the Appendix, by specializing it to the Gegen-

N bauer polynomials using {1, eq. (4.7.1)]. Now, from (30),
F(u)=f Wo (x) exp (-inxu) dx (43) [l eq.(4.7.0)] 0

! ! Ju- 1/2 n

where 7, =sec (n arccosh r) cos(—z—) sec (—27) n-—oo
N

Wo(x)2 3" wy 8(x- k). (44) L'

kel Euc(——), n -+ oo

n

(The integral in (43) includes all of the impulses at 1 and V)
Scaling the interval [1, N} to the given aperture [-L, L] and withr’ defined by (53). We point out that if 7 is pure imaginary.

using the fact that the weights {wj }? are symmetric gives then the hyperbolic secant can replace the secant in (52). The
L possibility of imaginary 1’ does not affect the validity of the

G(v)=2 f W(2) cos ({v) dt (45) following argument.
o Finally, from (51), normalizing by the factor n' ~ 2%/(2u) to
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keep GLv) bounded gives

1-24

Hivy 2 lim ci:L(noz)UI" G(v)

"n—ou -

Ly
cos —
n
(o4 ;

T
Cos —
n

nl'ZH

lim
n—ow 2H

57)

VT2 L NV ST

BT 1) (LVei-ryin

(58)

where (58) is merely (A6) of the Appendix. Thus. (58) gives
the beam pattern of the continuous Gegenbauer weighting func-
tion on the interval [-L,L]. The first null of H(v) is

Ve = -ll? [(arccosh r)? + n* /4] /2 (59)
which is derived from (58) by using (53). Note that v, is inde-
pendent of u because of (30).

The beam pattern (58) is easier to denve than the continuous
Gegenbauer weighting function. Although one can find the
Fourier transform of (38) as a special case of Sonine’s second
finite ntegral, (A1), the assertion that this transform is indeed
the limit of the Gegenbauer weights for a1 discrete aperture re-
quires a separate proof. Conceivably the Gegenbauer weights
might diverge even though the himit (58) exists. This in fact
happens only for u <0. The proof constututes about half the
attention of the Appendix. see especially (A8), (A22), (A26),
(A27). and (A29). The final snswer can be found by specializing
{A29), using (A25), to yield

1
H(v) = ‘ j.(VI-iﬂ“”
]

2EP(u 1) (LT

Iyoy (L' V)V - £) cos Lok dE. (60)
The continuous Gegenbauer weighting function on the aperture
is obvious on setting { = Lt. The continuous Gegenbauer func-
tion depends on the parameter u, which we must restrict to
u 2 0 for the integral to converge [see (A23)]. It also depends
on the beamwidth parameter z, through the variable ' defined
by (53).

The Kaiser-Bessel window is a special case of (60), as is easily
seen by setting u = 1. Since the Gegenbauer polynomials Ch(x)
foru = 1 are. from(2), the Chebyshev polynomials of the second
kind, it is clear that Kaiser-Besse) must be their continuous ana-
log. Also, our claim that the van der Maas weighting function
is 3 limiting case of (60) as u —= 0 can be seen from

I, (x)

N + 25(x). (61)

im x*°'1, (x)=
u—oe

Substituting L+'v/T - £ for x in (61) and then substituting in
(60) yields the van der Maas function. The result (61) was
pointed out to the author by A. H. Nuttall in a private com-
munication [7] while the present paper was being drafied.

13

Note that the beam pattern funcnon (58) is a well-defined
tunction of v for all real and complex values of g (in fact. it is
an entire function of v for all ) so that it can be computed and
inspected in the absence of any corresponding weighting func-
tion. In particular, for negative p the beam pattern function
(58) grows with increasing v just as might be expected from the
discrete aperture case. However. the beam patiern (58) for
u <0 is not realizable as the cosine transform of a continuous
function on the closed interval. or aperture, {-L. L].

V. ExampLEs

The five examples presented here are for the discrete aperture
with 100 elements at a half wavelength spacing and steered
broadside. The half beamwidth, measured from the MRA to
the first null, is 2.565588° and is the same for all five examples.
This is accomplished by defining z,, as in (30) and computing
it in the manner described in detail in Section 11.(23)~(28). The
remaining frec parameter, p, we take equal 100.4,0.2.0.0,-0.2,
-0.4, successively. The Gegenbauer weights are computed in
the suggested form (15), and the resulting beam patterns for
these five values of u are given in Figs. 1-5, respectively. The
independent variable in thesc patterns is the angle 0,. not u:
the vertical axis is 20 log, o 1F(sin 0, ).

Perhaps the most prominent feature of these five beam pat-
terns is that the sidelobe structure for a fixed positive value of
s “reciprocal” to that for - u. Consider u = +0.4. for instance.
If the reader takes & Xerox of both beam patterns and turns one
of them upside down on top of the other (literally) and holds
the pair up to the hgh:. then it will be abundantly clear what
“reciprocal™ means in this context. The cause of this attrac-
tive matching of sidelobe envelopes is that the bound (35) is,
in fact, very reflective of true sidelobe taper. Thus, for positive
u the sidelobes decay. while for negative u the sidelobes grow.
For =0 the sidclobes neither grow nor decay: they remain
constant. The case u = 0 is, of course, the Dolph-Chebyshev
design. The author has not undertaken any further studies to
determine the accuracy of the sidelobe envelope factor.

Another important feature is that the first sidelobe alore
seems to be extremely important in determining the possible
size of the remaining sidelobes. Although this is not a rigorous
statement, it does seem to be borne out by these examples. For
u=0.2 the first sidelobe is increased by about 1 dB 10 -29 dB,
the second sidelobe seems unchanged at - 30 dB, and all the re-
maining sidelobes are uniformly (and progressively) lower than
the -30 dB Dolph-Chebyshev case (u = 0) with the last sidelobe
depressed about 34 dB. Similar but “reciprocal™ remarks hold
for the u=-0.2 case. For p=0.4 (u=-0.4) the second side-
lobe is slightly higher (lower) than - 30 dB, but the point made
here is still substantially true.

The weights for the cases u = 0.4,0.2,and 0.0 are all positive.
For the cases - 0.2 and - 0.4, the only negative weights corre-
sponded to the elements adjacent to the end elements.

All five examples have 49 sidelobes on either side of the MRA.
This can be attributed to the fact that the Gegenbauer poly-
nomial C¥(x) has all its n zeros in the open interval (-1, +1)
when u >-1/2. Thus, from (20}, F{u) must have N~ 1 =99
zeros in the open u interval (0, 2). By Rolle’s theoren of ele-
mentary calculus. Flu) must have 98 points{i.e., sidelobe peaks)
interior 1o (0, 2) where |F'(1)) = 0. Since |F(u)|is an even func-
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FIELD PATTERN OF ARRAY (DB)

=70 -850 -3

0 30 3 s T8 ee
ANGLE FROM LOOK DIRECTION (DEG)

I1g. 1. Gegenbauer 100 element array, u = 0.4; first null = 2.565588 .

e <78 -40 -3 9 18 38 8 18 e
ANGLE FROM LOOK DIRECTION (DEG)

FIELD PATTERN OF ARRAY (DB)

Fig. 2. Gugenbauer 100 clement array:u = 0.2, first null = 2.565588 .

th

FIELD PATTERN OF ARRAY (DB)

| [ Il

. e -6 -B0 16 10 30 &0 70 0
ANGLE FROM LOOK DIRECTION (DEG)

Fig. 3. Gegenbauer 100 element array; u = 0; first null = 2.565588°.

(This is classic Dolph-Chebyshev.)

tion of u, half of these sidelobes must be on each side of the
MRA.

All five examples exhibit a plateau in the decay, or growth,
of sidelobes at sufficiently great distances from the MRA. This
feature is also an artifact of the sidelobe envelope factor (35).

Taken together, these examples indicate that the ratio (39)
is, on a log plot, roughly linear in u for fixed n and beamwidth
parameter z,. Whether this linearity is true only for reasonably

-75-

FIELD PATTERN OF ARRAY (DB)

.
ANGLE FROM

Fig. 4. Gegenbauer 100 clement array: u = -0.2: first null = 2.565588° .

t
-
.

FIELD PATTERN OF ARRAY (DB)

¢ -7 -89 36 -10 18 130 80 e e
ANGLE FROM LOOK DIRECTION (DEG)
Fig. 5. Gegenbaucr 100 clement array; u = -0.4: first null = 2.565588°.

small values of u has not been determined. A careful mathe-
matical proof of approximate u linearity of the logarithm of
{39) would be nice to have.

V. DISCUSSION AND SUMMARY
The Gegenbauer weighting functions for the discrete and con-
tinuous aperture, as well as for nonrecursive digital filters, per-
mits the designer to maintain a fixed specified beamwidth as
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defined via (30) while scanning continuously in g to discnini-
nate against spatially distributed noise sources and-or extra-
neous signals by tapering the sidelobes. The required weights
can be calculated quickly and accurately by the analytic for-
mulas provided here: hence. it might be possible to choose p
adaptively to achieve some objective such as maximizing signal-
to-noise ratio. The beam patterns for negative u are particularly
interesting in that it may be possibie to discriminate against
noise sources that lie nearby (in bearing) the desired signal
source. and thereby enhance tracking capability.

One advantage of the Gegenbauer weights is that they are
derived for a discrete aperture exactly, and the continuous aper-
ture weighting function is then discovered as their limit. If only
a continuous aperture function is defined, then it must be sam-
pled at a finite set of points in any application to a discrete
aperture. How this sampling is best done is not commonly dis-
cussed, and it leaves a certain ambiguity in the discrete aperture
weights. The discrete Gegenbauer weights given by (18) and
(19) above do not have this problem.

When steering a Gegenbauer array design, no different prob-
lems should arise than what is normally expected in the usual
Duiph-Chebyshev design. Gegenbauer designs can be steered
nearly to endfire before encountering the firsi grating lobe.

A difference beam pattern can be constructed from the Gegen-
bauer weights in the usual way of changing the signs of the
weights on one-half of the array. If this is done, the difference
beam pattern is proportional to [Ch(z, sin (nu/2))|. This is
easy to show from the constructions (18)-(20). The result is
a beam pattern with anull at w = 0.

All the nulls of the Gegenbauer beam pattern seem to shift
strictly away from the MRA as u increases. This effect is evi-
dent in the examples. [t is quite possible to use this effect to
deliberately control null placement to cancel localized noise
srurces. A mathematical proof that the nulls must shift in this
manner requires knowledge of the relative size of the derivatives
(with respect to u) of all of the zeros of C4%(x). Although this
information is not known to the author, it is not really necessary
tu have it in order to utilize the null shifting effect in practice.

The Gegenbauer weights for discrete and continuous apertures
was derived by the author between March and May 1981. The
mathematical results contained in the Appendix first appeared
in [11].

APPENDIX
MATHEMATICAL DERIVATIONS AND RESULTS
Sonine’s second finite integral [8, p. 376] may be written

nj2
f Ju\x sin ) Jy (¥ cos 6) sin** ! @ cos™* ! 6.6
[}

_ xhyh Jusrsy (Vx? +y?)

T At
fur all complex x and p, and is valid when both Re(u) > -1 and
Re(X) > -1. At least three proofs of this result are known. One
involves expanding the integral in powers of x and y; another
involves integration over subsets of the surface of the unit sphere
in R®. Both are given in [8]. The third proof using the gener-
alized Laguerre polynomials L®)(x) is mentioned in {12].

(AD)
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For the case of real g and X, a fourth proof is given here that
depends in an essential way on the identity (A7), In this con-
nection, the particular form of the coefficientsay ,(y)1s smpor-
tant; that is, the easily derived identity (A10) does not seem to
be alf useful. but the identity (AB) i1s exactly what is needed. It
facilitates the investigation of the limiting form (A27)of g 4(¥)
as n tends to infinity. The identity (A8)is apparently new: how-
ever, the special case of y = 1 was known 1o Gegenbauer.

Equation (A8) is interesting in another regard as well. A sim-
ple inspection suffices to prove that g, ,(v) >0 for all n and k
whenever y > 1 and i 2 X > 0. The coefficients remain positive
in the two limiting cases u >0, A=0 and p= A =0, as can be
seen from (A18)-(A21). In fact, it was only this positivity re-
sult that the author originally sought.

The result (A3) of the Mehler-Heine type is apparently new.
1t is needed to prove (Al) by our methods. It has additional
interest in that it duplicates the result givenby Szego (A2) simply
by setting y = 0. Mathematically, however, (A2) and (A3) are
equivalent. The special cases (Ada)and (A4b)involving Cheby-
shev polynomials are particularly striking.

Let a and B be arbitrary real numbers. For any complex num-
ber x. the Mehler-Heine theorem states that

lim n® PSH (cos§)= (x;2)% Jatx) (A2)

n-— o

where J,(x) is the Bessel function of the first kind of order a
[1.eq. (L.71.1)]. {2, sect. 3.1(8)] . A straightforward proof of
(A2) can be found in Szego [1. Theorem 8.1.1). Szego's proof
can be readily modified to show that

x
cos —
. - n T
lim »n GPS’G.B) =(% ‘/x- -y?)-ﬂ -’a (* /xi _ yl)
" COS_Z’

(A3)

for all complex x and y. Like the Mehler-Heine result, this for-
mula holds uniformly for x and y in every bounded region of
the complex plane. The special case a = = - 1/2 gives the in-
teresting result

X
Cos —

lim T,

N e

=cosvVxt -y (Ada)

Cos —
n

where T,(x) is the Chebyshev polynomial of the first kind (1,
eq. (4.1.7)] . while the special case a = § = 1/2 gives

x
cos —
lim nt U n)_ sinVxt - y2 Adb
m n n y = J—:~y2 ( )
nev e
s 2
cos

where U,(x) is the Chebyshev polynomial of the second kind
[1, eq. (4.1.7)]. These follow from (A3) by using Stirling's
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formula and the well-known results [1, eq. (1.71.2)}

2\ M2 V\I/2
J..,,(z)=(—-) cos z, J,,,(:)=(;) sin z. (AS)

n n2

We will need another special case of the general result: specifi-

cally, foru >-1,

X

1-2p cos =

lim ——— C¥ -
pee S cos &
n

Jyo iy (VAT = 7
= Va7 e Y Ty (A6)

WP+ 1) (V- y eI

where C};(x) are the ultraspherical, or Gegenbauer, polynomials
(1, eq. (4.7.1)). (Szegd uses the notation P¥)(x) instead of
Chx).)

We derive Sonine’s second finite integral by finding an alter-
nate form for the left-hand side of (A6). This requires the fol-

lowing result. For g2 x>0, the coefficients g ,(»') in the
expansion
[n/2] A
Chixy) = Z G n(P)Cp-gx(x), n=0.1.2-- (A7)
k=0

are given explicitly by

agn(v)=(n- 2k + X)) ()i

S (At MY (P - 1) A
m! (k- m)! Mp-kemes

ms=0

(A8)

where we take 0° = 1 and (0), = | whenever they occur. Setting
y=1in(8) gives

(n-2k+ X)) (Wn-k (B~ )
k' Wn-ket

an(l)= (A9)

which is due to Gegenbauer |1, eq. (4.10.27)]. Furthermore,
for real y > 1 and u >\ >0. the coefficients a, ,(y) are all
positive as can be seen by inspection in (A8).

The formula (A.8) is derived as follows. Let u2»A>0. In
the expression {1, eq. (4.7.31)]

(Wn-m

m! (n - 2m)! @y

fn/2}
C:(X) = Z -1
m=0

we replace x with xy, substitute

@x)y"" 3 lm-2m2l (n- 2m4N-25)
= — O s (),
(n - 2m)! ,,Zo ' Mo am-sey 727" 25 (%)

and collect terms to get

=17~
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k (n-2k+ A)(“)u-m }’"— am
)= - m
(¥} ,,f\-—:o( n m!(k-m) N pm_ke (410
=B - 2k N G20 - 1) (Al1)

where Q, is a polynomial defined for general complex argu-

ment 4 by
o D™ (W-m A("* ‘)"'m
Qk(u)-mz-:o mi(k-m) (Mp-m-ker 2 .

(A12)
For arbitrary a and f, the Jacobi polynomial of degree k 20

can be written

ktatB+ 1) m(k-me+f+1)y,
m! (k - m)!

&
PEOw= 3 1yt

m=0
u+l k-m
' :)

which follows from (1,eq.(4.21.2)] using the identity {1, eq.

(A13)

(4.1.3)]. Setting @a=p-X-1 and B=A+n- 2k in (A13)
shows that
Qk(u)=——(;;"""‘ L S U (A14)
n-ke1

Expanding the Jacobi polynomial in (Al4) using [1. eq.
(4.3.2)]

(1 +a) (1+8),
m!(k-m) (1 +a)y, (1 +8)%-m

k
PEAwy= ¥

me 9

_ m k-m
(597 (5) 1)
and substituting u = 2y? - 1 gives
X
Q(2¥’ - )=(Wa-x 3
mso
oAt O YT

m! (k - m)! Mn-k-mer

Thus, (A16) and (A11) establish (A8).
Two limiting cases of (A7) are easily derived from [, eq.
(4.7.8))

Jim 2—'; Crx)=T,(x), n>1 (A17)
A=0
and are worth recording. Thus, for u >0,
" Inf2)
Chxy)= Z bk.n(}') T,,.."(X), n=0,1,2--
k=0
(A18)
where
Lot - )Y
b = -
kn(3) = Aidn- sz-o m! (k- m)! (n- k- m)!
(A19)
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and
inia}
Ta(xy)= Z W) T lx), n=1.2, 3.
k=0
(A20)
where

(MmO - 1YY
m! (k- m)! (n-k-m)

(A21)

The notation £ means that 1/2 of the last term in the sum is
taken if n is even, and all of it is taken if n is odd. Note that
inspection shows that ¥ > 1 implies that b, ,(v) and ci ,(¥)
are positive.

Sonine’s second finite integral is now derived from (A6).
Fixx andy. Let N=[n/2). From (A7)

Cn(¥)=nn=-k- 1) i

meo

CO! i
n'- u S a _ 1 i
y =
+
u cos L T+N &%
n
MmTH (1 +N) 1 n-2k) -
_ ( (¢
PrEE R U 2
Cus —
n

1
“Ch- 2k (COSE)}=J; fall-$)g, (1- H)dt (A22)

= lim >

A -2(8-A-1) ! N A+ intm
k §+; B Dyog-y n PR (u= A+ m)y gy sin® =

17

will be finite. If /' =lim f,, and g = lim g,,, the bounded conver-
gence theorem {9, p. 110] implies

X
Cos —

]
. =f fi-Het- Hat.
ra (]

n' M

lim

N el -

(0
COS
(A24)

Let ¢ in (0, 1) be rational. Then 1 - § = 2k/n for sufficiently
large k and n, so that

g(1-$)= lim g,(1-$)

"

-2k 1-2A
= lim (Lz_,—;——-C,’.‘_,g (cOsi:l—)
o 2
V== 2k/n
=3 Ja-ys §%)

2"[‘()\ + l)({x)A' 1/2 (A2S)

with the last step following immediate from (A6). Thus, (A25)
holds for all §{ in [0, 1] by continuity. Similasrly, from (A8)
and for all ¢ rational in (0, 1),

fa-80=lim f,(1-%)

n-—-on

Anl " (14 N) !
uin - 2k - Ok

= lim
novw Y
t-¢=2k/n €os n

Y

n-—> - m=0
1-3=2k/n

where we have defined for0<¢ < 1

M (1 +N) 1

uin - 2k) 2 e"‘"( y)XE*(‘ X
cos —

No(n-2k)'2
g(l-8)= 3 ——
k“.—-o 22

N
M-9=%

k=

Ch- (cos%) xg, (1-8)

and xg, is the characteristic (indicator) function of the interval
) k k+1
N+l N+

il‘k =

k k+1
. k=N
[N*l N*l]

It can be verified that xg, (Qk/n)=1fork=0,1,--",N.

Assume for the moment that both |f,($)| and |g,({) are
bounded above by integrabie functions of {. To do this, it
will be seen that we must restrict attention to A>-1/2, u >
-1/2, u > A, so that the integral (1, eq. (1.7.4)]

), k=0,1,--- ,N-1

[} 1 -
f IR o d{:MM (A23)
(4]

M+ §)

$ A cos”

. (A26)
?;m-. k-my QA+ Doekom
Interchange the limit and the summation, and evaluate the limit
of the mth term (convert Pochhammer symbols to gamma func-
tions, apply Stirling's formula, and use k(n ~ k) = (1 - {*)n?/4)
to obtain

FR- )R T
23~ 2A-1 Nu+ l)

fa-0= %
meo
(V-
m! T(g-A+m)
SSRa-gEh ras
22-2xe Nu+1)

Lia-y OVI-8Y)

where /,(z) denotes the modified Bessel function of the first
order v (see [8, sect. 3.7(2)] ). We must require u > X in (A27)
to have convergence. Continuity again assures that (A27) holds
for all { in (0, 1). Now,interchanging the limit and the sum was
valid because an upper bound for the total sum can be found.
Since the absolute value of the mth term in (A26) is bounded
by

PRALSRY GInvi- g3y

Nutl) mDu-A+m)

(A27)
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where
A
t*; "-I(u-k-l) l_;l -m
B=—n )
. 4
{ n’"‘lcos"“—l
n
(Rk+p-d _ MNn-k+p

Nk-m+1) D(n-k+r+1-m)

A=
= §A (i)“ ' n—oo
= p . X

the total sum in (A26) is bounded by
F(A+1)
Nu+t)

(l l,"l' /l - {2)2"!
. _I_________<°°
me=o m!(u- \+m)

FO=182 (- gt

(A28)

for some constant /. independent of . The series in (A28) is
a continuous function of { on [0. 1] if u> A, Hence, from
(A23). F(}) is an integrable function that bounds |f,({)} for
alin.

From (A24). (A25). and (A27) we have

x
- 2 cos —

lim —; (44
nee oM ¥
cos =

vn/2

u ﬂi‘* ')XA- 1/2 ‘,u-k-l

.J‘l (X*llz (\/l,_‘-z)u—k-x

0

'-’A-n/z (fx)lu-x-l vi- fl)df
Va2 Ju-usa (VxT - y%)

TTTurn (T

with the last equation from (A6). Substituting {=sin 8 and
» =iy in the last two formulas, and setting

W=X-4>-1 and XN=p-A-1>-1I

(A29)

(A30)

yields Sonine’s second finite integral (Al). The only thing left
to prove is that |g,($)) is bounded by an integrable function on
[0, 1]. Szegd’s argument [1, p. 192] in the proof of (A2) can
be modified easily to show |g,({)i is bounded by a constant.
The proof of (A1) presented here was intentionally restricted
to real u and X. However, it is not hard to see from (A23) and
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(A30) that the proof can be carried out for complex u and A,
provided appropriate remarks are made in appropriate places
about the complex case. 1f such remarks are made. our deri-
vation proves (A1) for Re(p) > -1 and Re(A) > - 1. Divergence
of (A23) is seen to be the cause of the restrictions on g and A.

The material contained in this Appendix was first documented
in {11].
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Abstract

Array weighting designs of the Dolph-Chebyshev and
Kaiser-Bessel type are based mathematically on orthogonal
polynomials. The theoretical properties of these polynomials give
rise to the desirable properties of the resulting arrays. This paper
presents results for array weights based on a very general set of
orthogonal polynomials called the Jacobi polynomials. Many
interesting array far-field beampatterns are exhibited. A practical
means of computing all the array weights exactly by means of one
fast Fourier transform (FFT) is given. This method is quick and
accurate and can compute the weights for arrays having large
numbers of elements. It can efficiently compute both
Dolph-Chebyshev and discrete Kaiser-Bessel weights as special
cases.

-83-




™ 851015
I.  INTRODUCTION

Array weights of the Dolph-Chebyshev and Kai ser-Bessel type are based on
orthogcnal polynamials. The desirable properties of these arrays are due
entirely to the properties of the underlying orthoganal polynamials. In this
paper the mathematical desi gn methodol ogy developed in [1], which parallels
the techniques of the Dolph-Chebyshev designs, is further explored for Jacabi
polynam als.

Analytical expressi ons for the underlying weights are not sought here, as
they are in [1], because such expressi ons are probably not competitive with
the exact FFT based method presented in this paper. The primary purpose of
this paper is to present a unified FFT based method for computing array
weights based on any of the Jaccbi polynomials. This method is quick and
accurate and can campute the wei ghts for arrays having large numbers of
elements. The Appendix gives a short Fortran program for camputing the
weights (given a subroutine for the FFT). This program can efficiently
campute both Dolph-Chebyshev and di screte Kai ser-Bessel weights as special
cases.

This paper represents, in a sense, a campleti on of certain ideas about
array design using orthogonal polynamials. Dolph was apparently the first to
use an arthogonal polynomi al for designing an array weighting function. The
polynomi al he used was the Chebyshev polynamial of the first kind, Tp(x),
and he was able to prove an optimality conditi on. Unfortunately his proof of
this optimality conditi on relies on the unique behavi or of the graph of
Tn(x), and so generalizati ons of the optimality conditi on seem unlikely.
Nonetheless, the use of di fferent orthoganal polynamials can leadfseful
weighting functi ons. For example, if the Chebyshev polynam al of the second
kind, Uy(x), is used in place of Tp(x) a weighting function of
Kai ser-Bessel type results (see [llj). It is also possible to use a general
fami 1y of orthogonal polynamials that contains bath Tp(x) and Un(x) as
special cases. The Gegenbauer polynaomials, C:(x), are one such family;

that is, To(x) and Un(x) are the special cases y = 0 and u = 1,

respectively. This family is used in [1] and gives useful and interesting
designs. The most general of the so-called classical orthoganal polynaminals
that contains all these examples as special cases is the family of Jacobi
polynarials, P, @ PJ(x). For a =8 = u - 1/2 they reduce to C"“(x).

Do Jacobi polynamials turn aut to be useful? The examples presented in this
paper indicate that, although many interesting new array designs are possible
using the Jaccbi polynaminals, the most useful designs in this general family
are probably those that have already been discussed. Consequently the new
Jaccbi designs might be said to be, at present, "a soluti on locking for a
prablem. "

85—




T™ 851015
II. WEIGHT GENERATION BY FFT

The far-field beampattern of a general linear beamformer for a linear
equispaced array having 2N + 1 elements (N > 1) with element positions xy =
k a/(vD), k =0,*1, ...,* N, is given by:

Flu) = ¥ W exp(-i2« ku/(+vD)) (1)
k=-N

where the integer D > 1 is given and v > 0 is a fixed real constant (vD is the
number of elements per wavelength), : is the wavelength of the design
frequency, and u is defined by

u = sin &3 - sin e, (2)

where og, -x/2 < 05 < v/2, is the steering (look) angle and e, - %/2 <

®a < v/2, is the arrival angle of a plane wave. Both angles are measured
from a line normal to the array axis. The weights {wki can be, in general,
any set of complex constants.

Define the functions

D k

tD(Z) = K Z D ak Z (3)
n’ K

Pof2) = ZZ b 2z »n >0, (4)

where {ak}and{bk}are specified constants. By simple algebra

nD K
Pa(tp(z)) = k}-:-nn 2 (5)

where {cy| depend on both {ak} andibk}. Substituting z = exp(-iwu/(vD))
gives

Hu) = P (ty(exp(-inu/(vD)))) (6)
® i2wku/(2v0 (7)
- k‘-\:-no ¢y exp(- u/(2vD)).
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By comparing (7) with (1), it is seen that H(u) is the far-field beampattern
of a linear array with 2nD + 1 elements, equispaced A/(2vD) apart, and with
the weight ¢, applied to the k-th element. It will be shown that the array

weights ¢ can be computed from function values of tp and P, by means of an
FFT.

When some of the weights cg = 0, the corresponding elements may be
eliminated from the physical array without altering the array's far-field
beampatiern. Elimination of zero weighted elements (whenever possible)
minimizes the total number of elements required. This consideration is

especially important when tp and Pp are chosen so that Pp(tp(z)) is
either even or odd in z, for then about half the elements need not be

physically present. This is discussed further in section III.

We now show that the weights {cﬁ} in (7) can be computed exactly from
(3) and (4) by the fast Fourier transform (FFT). It is stressed that this
procedure is theoretically exact, not approximate, for the {ck} .

Let f(u) be any complex valued function of a real variable u which can be
written exactly in the form

p
flu)= T 4 e-Tku (8)
k =

for some complex constants {dk; . Llet

2p -1
- ' i2ekj/(2p) | _ )
'k =% jzzo Fie » k=01, ..., 2p -1, (9)
where
Fj = (<113 f((p-i)a/p) , 3i=0,1, ..., 2p - 1. (10)

Thus {fk} is the inverse FFT of order 2p of the sequence {Fj}. Substitute
(8) into (10), and then into (9) to get

2p -1
P
f ’El D 1 X g e-iralp-d)/el  i=ki/p
P j=0 g=-p

1 P q Pl i Jin(a * k)isel,
=5 p> (-1) dq ZO (-1)Y e

k=0,1,...,2p-1.
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The inner sum equals 2p when ¢ + k = * p, + 3p, ... and equals zero
otherwise. Since dq =0 for |q] > p,

fo = (-1 (d, +a), ifk=0 (11.a)

(-l)p-k dp-k Py k = 1’ se ey Zp-l. (llob)

Now let f(u) = H{vwDu/x), where H(u) is given by (7), and p = nD. Then
Fj = (-l)j Pn(to(e-i'(nu - j),no)), j = 0| 1’ ceoy 2"0-1’
and the coefficients cx in (7) are just

n

ap b, , if k = -nD, (12.a)
¢, = { (-1)kMD ¢ if K = -nD*l n0-1 (12.b)
K nDk °* RS .

a'[') b, , if kK =nD, (12.c)

where f 2701 i< the inverse FFT of F€M0-1, The coefficients
0 J

C_nd and Cnp Cannot be computed directly by FFT because of aliasing, as

indicated in (11.a); however, by direct appeal to the defining equations (3) -
(6), it follows that c_pp and cpp are as given by (12.a) and (12.c),
respectively. In fact, ?ll.a) can be used as a check on numerical accuracy in
the computations.

It should be obvious that some special forms of tp and Pp can be used
advantageously to reduce the size of the FFT required to compute (12). In
general, however, no special structure exists and the smallest FFT size that
can be used has order 2nD.

In cases where 2nD is not an integer power of two, the FFT is still
applicable by zero filling in tp and P;. That is, D is replaced by the
smallest power of two which exceeds or equals D, say D'. The function tj is
then merely considered to be a special case of tps. Similarly, Pp is a
special case of P,+ for some smallest power of two, n', which is greater
than or equal to n. The required size of the FFT is thus 2n'D'. The

coefficients {ck} are still given by (12); however, from (7), it must be
the cas» that ¢x = 0 forjk {> nD.

The Appendix gives a Fortran subroutine for computing the array weights
by an FFT, given subroutines for evaluating Pn(z) and tp(z). The program
is specialized to the case D = 1, but it can be easily altered to accommodate
larger values of D. The program is also written on the assumption that 2nD is
a power of two. As discussed in the preceding paragraph, zero filling allows
the most general situation to go through.
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II1. THE TEN PARAMETER JACOBI WEIGHT FAMILY

The most important special case of H(u) seems to be D = 1. Although
there may be interesting possibilities when D > 1 (consider, for example, the
identity Tn(Tp(cos ®)) = Tp+p(cos e), where Ty is the Chebyshev
polynomial of the first kind?. these cases are not explored in this paper.

Before proceeding, it is instructive to see first how the usual
Dolph-Chebyshev case for half wavelength equispaced arrays is derived as a
special case of H(u). Let

N = number of array elements
D=1

M B

t1(z) = Zn(z-1 + 2)/2
Pr(z) = Tx(z),

where Tgp(z) is the Chebyshev polynomial of the first kind and the real
constant Zg is given by

z, - %,{(Q + (@) V2R o (g - (2 _1)1/2)1/5} (15)

where

Q = 10]S}/20
S = specified sidelobe level (in dB).

For these values it follows that tj(exp(-iwu/2))= Zg cos(wxu/2) and, from
(6) and (7),

H(u) = T5( Zq cos(wu/c)) (16)

7
- kz:-?i ¢, exp(~inku/2). (17)

By comparing (17) to (1), it would appear at first glance that this array is
uarter wavelength equispaced with 2f + 1 = 2§ - 1 elements. However, every
Jfﬁer coefficient in (17) is identically zero because Tg(z) is always either
an even or an odd function in z. Deleting the zero weighted elements reduces
(17) to two slightly different cases, depending only on whether N is eyen or
odd. These cases are not given explicitly here. Note, however, that N even

implies that fi is odd and that Tg(z) contains no even powers of z, which
means that Tg(z) has (F + 1)/2 nop-zero coefficients and, consequently, that
Tﬁ(t*(z)) has precisely A + 1 = N non-zero terms in the expansion (17).
Similar reasoning holds for N odd.
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To summarize: The Dolph-Chebyshev array design is thought of, in the
context of this paper, as a quarter wavelength equispaced array in which half
the elements (every other one) has been zero weighted. Dolph-Chebyshev arrays
of both even and odd numbers of elements are thought of in this way.

From (3), the most general form for D = 1 is
t1(z) =a_y z-1 + ag + a z.

For reasons that will become clear, the slightly more restrictive form

t,(2) = zo(ral L ag *ro 22, r 40, (18)

is adopted, where zg, rg, and ag are arbitrary complex constants. The

only useful form excluded by (18) is obtained by changing the sign of the
highest order term; this latter form corresponds to "difference" patterns and,
for ease of exposition, is not discussed further. For the remainder of the
paper, (18) is taken as the definition of t1(z). Note that ty(e-19) =

2gcos @ if rg=1 and ag = 0.

The most general class of polynomials P,(z) considered in this paper are
the Jacobi polynomials, denoted Pﬂa,ﬁ)(z). They are defined explicitly by

n

k
Pn(dss)(z) - ;Fl'_ k; 0(2)(n+a+s+l)k (a+k+1)n_k(z—-2-i) (19)
for all complex values of a, B, and z. For a > -1 and 8 > -1, the Jacobi
polynomials are orthogonal on the real interval -1 < z < + 1, but they are not
necessarily orthogonal for other values of a and 8. The best available method
for computing Pn(as8)(z) relies not on (19) but on the three term
recursion which they satisfy. The published algorithm [2], [3] based on this
recursion is easily modified to compute the Jacobi polynomials for complex a,
8, and z for all values of the degree n that are likely to be of practical
interest, say n < 150. A thorough mathematical ireatment of Pn(c.ﬂ (2)
is available in [4].

The generalized Laguerre and Hermite polynomials, together with the
Jacobi polynomials, constitute a complete list of the so-called classical
orthogonal polynomials. Array designs can also be based on the Laguerre and
Hermite polynomials and will, of course, be different from those based on
Jacobi's. Although these designs are probably interesting, in this paper
attention is restricted to the Jacobi polynomials.

The use of (18) and (19) givesrise to a five parameter family of weights
which includes nearly all the well known analytic families of weights as
special cases. (The most prominent exception is Taylor weighting). The five
parameters are zg, rg, ag, o, and g. Each parameter can be complex, so
there are actual?y 18 real parameters if the real and imaginary parts of each
are counted separately. The Fortran program listed in the Appendix is written
for this general case.

10
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The simplest way to expiore the properties of these ten parameters is to
perturb each parameter separately while holding the others fixed at some nominal
value. The nominal parameter values chosen here for the examples are those that
give rise to the Dolph-Chebyshev design for an array of 33 elements with a
sidelobe level of -30 dB. Specifically,

60 = ‘050 + 000 i

80 = -.50 + 0.0 i

ag = 0.0 + 0.0 i

ro = 1.0 + 0.0 i (20)
20 = Zg = 1.008408 + 0.0 i,

where Zg is computed from (15) with S = -30 dB and fi = 32. Recalling earlier
remarks in this section concerning the interpretation of half wavelength
equispaced arrays as quarterwavelength equispaced arrays with zero weights, set
n =32 in (6) and (7). Thus, in principle, the example is a 2n + 1 = 65 element

uarterwavelength equispaced array. The coefficients {ciJ are computed from
?12). In {(12.a) and (12.c), note that the identity [4, %q. (4.21.6)]

-n 2n + o+
bn =2 ( n ) s N D 0, (21)
holds and so, from (18),

1

1 1. -
3 =7 Zgrge 3p = 7 Z¢7g (22)

Each of the ten parameters is both increased as well as decreased from
its nominal value 2iven in (20). Thus there are 21 cases, including the
nominal case itself in (20). Table 1 displays these cases and gives each an
identifying case name. To each case in Table 1 there corresponds a graph of
the far-field beampattern H(u) on the u-interval [0,4] and two bar charts, one
for the real part and one for the imaginary part of the weights corresponding
to that case.

Figure
Number Case Names Value of Perturbed Parameter
1 NOM no deviations from (20)
2 .1 2.2 7.3 1.4 z0+.008 zp-.003 2¢0*+.0031 2zQ-.003i
3 1 A.2 A.3 A4 ag+.003 ag-.003 ap+.003i ag-.003i
4 R.1 R.2 R.3 R.4 ro+.03 rg-.03 ro+.083i rg-.03i
5 001 002 °¢3 0-4 ﬂo+o3 00‘03 C0+o31 Go-o3i
6 Bol 8.2 303 804 30*03 30-03 Bo+-3i 80‘-31

Table 1 Perturbed parameter values; deviation from the nominal values (20}

In general, H(u) is periodic with a period of length 2vD. Since D =1
and v = 2 in these examples, any interval of length 4 suffices to exhibit all
the structure of H(u).

11
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In all the bar charts presented, upward lines indicate positive weights
and length is proportional to magnitude. Similarly, downward lines indicate
negative weights. These upward and downward lines are ordered from left to
right and correspond to elements numbered from -32 to +32. Any element
receiving a zero weight is indicated by a simple "x" marking its position. In
particular, notice that the nominal case, NOM, of Figure 1 has only 33
non-zero weights. The nominal case, as has been said, is a half wavelength
equispaced array being treated as a quarter wavelength equispaced array. The
weights in each case are normalized by the largest magnitude of any real or
imaginary part; thus, the normalization between cases is not exactly the same.

Figure 1 is the reference case (20) and needs no further comment.

Figure 2 perturbs only zg. The cases Z.1 and Z.2 are expected since
zg is merely increased or decreased in its real part alone. When zq is
perturbed by adding an imaginary component, the array still has 33 non-zero
weights and so is, in effect, half wavelength equispaced. It is surprising
how much can be added to the imaginary parts of the weights without seriously
degrading the beampattern. The beampatterns in Z.3 and Z.4 are identical.

Figure 3 perturbs ag from its nominal zero value. Any perturbation
produces a quarter wavelength equispaced array which is symmetrically
weighted. One way to discuss the results is to visualize the 65 element array
as being composed of two half wavelength equispaced arrays---one having 33
elements and the other 32 elements with the elements of the two arrays
interlaced. Thus, perturbing the real part of ag is equivalent to adding or
subtracting the outputs of these two arrays. Perturbing the imaginary part of
ap is equivalent to adding or subtracting the outputs after first putting
them in phase quadrature with respect to each other. The beampatterns A.3 and
A.4 are identical to each other, but they are NOT the same as Z.3 and Z.4.

Figure 4 perturbs rg from its nominal value of +1. Any small
perturbation produces asymmetrically weighted half wavelength equispaced
arrays. Real perturbations of r( produce only real weights and have
beampatterns without any true nulls. Pure imaginary perturbations do not
alter the beampattern from its nominal case, even though the weights develop
an interesting sinusoidal character in their imaginary parts.

Figure 5 perturbs a from its nominal value of ag = -1/2. Any
perturbation produces a quarter wavelength equispaced array which is
symetrically weighted. Real perturbations yield real weights while pure
imaginary perturbations yield complex weights. The first grating lobe in case
a.l is at about -8 dB instead of 0 dB; the same is true of the MRA in case a.2.

Figure 6 perturbs g from its nominal value of gg = -1/2. Any
perturbation produces quarter wavelength equispaced arrays which are
symmetrically weighted. Real perturbations yield real weights, while pure
imaginary perturbations yield complex weights. The first grating lobe in case
8.2 is suppressed to about -8 dB, while in case g.1 the MRA is depressed to
-8 dB. Figure 6 and Figure 5 should be compared.

12
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The following observations seem to hold:

1. The real part of a controls the “upper" envelope of H(u) near the
center peak.

2. The absolute value of the imaginary part of a controls the “"lower"
envelope of H(u) near the center peak.

3. The real part of g controls the “upper" envelope of H(u) near the
first grating lobe.

4. The absolute value of the imaginary part of g controls the "lower*
envelope of H(u) near the first grating lobe.

Other parameters (the imaginary parts of a and zg) also affect the *lower*
envelope of H(u), but the dominant effects seem to be due to the imaginary
part?]of a and 8. The imaginary part of r does not affect the lower envelope
at all.

By changing the parameters simultaneously in different ways, the
different effects may be combined, at least for small perturbations. Examples
of this are not included here.

13
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IV. SUMMARY AND CONCLUDING REMARKS

It has been shown that array weights based on the Jacobi orthogonal
polynomials can be computed exactly by means of FFT. As a special case,
weights based on the Gegenbauer poiynomia]s can also be computed exactly by
FFT, instead of analytically as in [1]. Examples have been presented to show
the effects of varying the ten parameters in the Jacobi family.

Further work in this area is possible. In addition to the Jacobi
polynomials, one may also use the generalized Laguerre and the Hermite
polynomials. In fact, any orthogonal polynomial family that has interesting
structural features can be the basis of a weighting family which inherits this
structure. In a different direction, certain cases for D > 1 may yield
interesting designs and have not been explored. The weights corresponding to
all these cases can computed exactly by the FFT method presented in this paper.

20
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APPENDIX

The Fortran program JACWTS listed below assumes that D = 1 and that 2nD
is a power of 2. The function tp(z) is defined exactly as in (18), and the
polynomial Pp(z) is taken to be the Jacobi polynomial Pn(ctﬁ)(z).

This program is an implementation of the (exact) FFT method described by
Eq. (12), where aip and b, are given by (22) and (21), respectively. The
user of JACWTS need only specify values for a, 8, ag, rg, and zg. In
JACWTS these variables are referred to by the labels ALPHA, BETA, AQ, RO,
20, respectively. The arrays X and Y contain, on output, the real and
imaginary parts of the array weights fck} . These two arrays must be
dimensioned at least 2nD+l in the routine which calls JACWTS. The integers n
and D are referred to by the labels N and D, respectively, in the subroutine
argument list. Also, LOGN and LOGD are defined so that N = 2**LOGN and D =
2%*L0GD.

This program assumes that a subroutine named JACOBI evaluates the Jacobi
polynomial (19) for arbitrary complex values of a, 8, and z. This subroutine
can be based on the published codes in [2] and [3]. This program also assumes
that subroutines are available for computing a complex FFT of size 2nD; the
particular ones used here are based on Markel's method and are not listed.
Their names are DPMCOS and DPMFFT. These routines require a work array, C,
dimensioned at least 2nD in the routine which calls JACWTS.

JACWTS is written in double precision complex mode to forestall any
numerical round-off error problems that might arise. The test suggested in
Section II (that follows from the resolution of the aliasing effects as in
(12)) is incorporated. It is the only test used to ascertain whether
numerical round-off of significant proportions occurred. No numerical
difficulties have been detected by this test to date, which indicates that the
computation is usually numerically reliable.

21
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3JBRAUTINE JACHTS(X,Y,C,N,LOGHN,D,LOGD,ALPHA,BETA,A0,R0,20)
covPLEX*16 Z,T,H,S,R,TSURD,ALPHA,BETA,Z0,A0,R0,JACOBL
THTEGZR {,LOGN,D,LOGD, TWOND
DNUBLE PRECISION ZPST,ARG,PI,X(1),Y(1),C(1)
DATA PT,€231/3.141592653589793238p0,0,50-7/
M=21L,0G+LOGN+1
NO=N%D
TAQND=2%1iD
C eee ALL WEZIGHTS EXCEPT THE FIRST AND THE LAST
I=+1
N 10 J=1,TA0KD
ARG==PI#(iD=J+1t)/ND
Z2NCHPLX(CNS (ARG ,SINCARG))
H=JACQSI(4,ALPHA,3ETA,T)
X(J)=I*¥DRTAL(H)
Y(J)=I1+DT1AG(H)
==]
10 CONTINYE
CALL DPMC]OS(C,T#OND)
CALL DOMFFT(X,Y,C,4,+1)
1=+l
nNg 1S J=1,T+23D
KCJ)=L*X(J)/ TN
TCII=I*Y(J)/TWAAD
Tzl
LS CONTTIIYZ
eee THE FIRST ANDO LAST WFRIGHTS
Y=,25D0¢%Z0%RD
8§2,2507%20/R0
R=1,9D9
T=1.900
N3 18 t=1,4
Z2C( (e I=T¢1)+ALOPHASSETA) /T
TSTYs?
R=RESE?2
18 COMTINUE
X(1)=DREAL(R)
Y(1)=0T4AG(R)
XCT40ND+1)23DREAL(T)
Y(TAOND+L)SDIUWAG(T)
eee MYMERICAL ACCHRACY TEST
ARG3(AIS(X(1)<DIEAL(R+*T) ) +ABS(Y(1)=DIMAG(R+T)))
+ 7(1.,0D07+43S(C(1))+ABS(Y(1)))
IF(ARG,GT,EO9SL)PRINT 50
50 FORUAT(® AU4SRICAL ROUND-OFF ERROR IS SIGNIFICANT.’)
RETUQY
£ND
FUNCTION [SuBD(D,A0,R0,29,2)
COMPLEX#*156 Z,29,10,R0,TS4BD
INTESEQ O

(of TREAT THF CASE 0=l IGHUORE NTHER VALUES,
TSUBN=,500¥20+( (1.0DQ/(R0%Z)) + AD + (RN%Z) )
RETURY
Eun

22
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Abstract

It is shown that Taylor's beampattern for a continuous
aperture can be computed analytically without Fourier
transforming the weighting function itself, thereby achieving
economies in computational effort in some modeling situations. A
short Fortran program is given. An approximate formula for the
half-power beamwidth is derived. It is pointed out that the Taylor
weighting function can be negative for large n, a fact that does not
seem to be well known. In addition, modification of Taylor's design
to force the weighting function to go to zero as a power a of
distance from the aperture endpoints is discussed. Fora =1 and a
= 2, this results in an increase of 5 and 10 percent, respectively, in
the beamwidth.
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I. INTRODUCTION

This Memorandum is a review of Taylor's original weighting function for
continuous apertures. It is presented in some detail in Sections II and III.
It is shown that Taylor's beampattern and weighting function can be computed
easily by analytically exact formulas. Taylor's beampattern turns out to be
the product of a rational function and the beampattern of a uniformly weighted
aperture.

Also reviewed is a modification due to Rhodes of Taylor's pattern for the
purpose of forcing the weighting function to go zero as a power a of distance
from the aperture endpoints. This results in a 5% increase in beamwidth over
the beamwidth of Taylor's original pattern if a = 1, and a 10% increase if
T = 2 (for W = 10; see below). These modifications are discussed in Section

v.

Taylor's original paper [1] derives a symmetric weighting function for a
continuous aperture. He does not discuss or even mention its use for arrays
of point sensors. His method is essentially an ad hoc, but intuitively
sensible, procedure which blends together the desirable characteristics of
uniform weighting and the van der Maas weighting into one weighting design.
The blending is accomplished by careful specification of the beampattern
nulls. The various sidelobe levels do not enter the method's derivation. In
other words, the sidelobes are whatever they turn out to be after
specification of the nulls.

It is often said that Taylor weighting makes the first few sidelobes near
the mainlobe nearly flat; that is, all "near-in" sidelobes have essentially
the same amplitude. This statement is erroneous. See Figure 1, for examle,
where the 9 sidelobes (n = 10) nearest the mainlobe would all be at -20 dB if
the statement were true. Instead, the first sidelobe is at -20 dB and the
ninth sidelobe is at (roughly) -25 dB.

It is a useful fact that the beampattern corresponding to Taylor
weighting can be computed analytically, without Fourier transforming the
weighting function. This can be seen from Taylor's original discussion [1],
which is reviewed in this Memorandum. Taylor's original notation is retained
here. Appendix A gives a FORTRAN program which computes the beampattern
and/or the weighting function using the analytical formulas developed below.
In addition, it computes the exact half-power beamwidth.

The aperture is assumed to lie on the p-interval from -« to *x. The
weighting function g(p) is related to the far-field beampattern F(z) by

F(2) -j g(p) ' ap. (1
-

Taylor assumes throughout that g(p) is a real even function. Consequently,
F(z) is also an even function of z.

It is well known that
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F(z) = 2'2 ¢, F(m) (-_(Jj_lsi"zjmz-m + __(_L_)_)_ﬁn'-zfmﬂn ) (2)
M=

where ¢ = 1 and ¢ = 2 for m > 1. In other words, knowledge of the
integer samples of F(z) implies knowledge of F(z) everywhere. A very
different representation of F(z) is the infinite product

F(z)-ﬁ’ (1-272-) (3)
nsl Zy

where {21, 22, ...} is a complete list of all the positive zeros of F(z).
It is an interesting mathematical fact that these zeros must all lie on the
real z-axis. For example, uniform weighting g(p) = 1/(2x) gives

F(Z) - si:zrz s

whose positive nulls are {1,2,3, ....} From (3), then,

i 4
é_%ill - i ; (- ﬁz)’ (4)

n=1
a well known identity dating back at least to Euler's time (circa 1750).

By means of his choice of nulls {z,} in the representation (3) of F(z),
Taylor sought a beampattern which had a flat envelope near the mainbeam and,
for large z, an asymptotic 6 dB/octave decay rate. He also sought by this
same means a physically realizable aperture to approximate the physically
unrealizable ideal van der Maas function. (It is unrealizable because of the
presence of delta function spikes at the aperture end-points,p = = x.) Taylor
found a set of nulls which came close to attaining his first objective and
which did attain his second objective. The next section is a description of
Taylor's nulis.

I1. TAYLOR'S NULL SPECIFICATION

Taylor specifies the nulls z, of his beampattern, starting with n = n,
to be exactly the same as those o? the uniform weighting function; that is,

2, =n fornsn,n+*1, ... (5)
The positive integer T is a free parameter which can be ‘chosen as desired.
Note that n = 1 gives exactly uniform shading. Note also that the null list
(5) guarantees a 6 dB/octave asymptotic decay rate as 2= = . {This follows
from (8) below.)
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To complete the list of positive nulls for his beampattern, Taylor
selects (whenn > 1) the “near-in® nulls to be

V2 1,2 -
zZ =g YA +(n-z) forn= 1,2, ..., n -1, (6)

where N
‘/ 2
. A2+(F-%)

1
®

R=10

iR+ V-1
151720

A=

S = maximum sidelobe level (in dB).

This choice for the first n-1 nulls may seem mysterious at first glance, but
it is a choice based on the ideal van der Maas function [2], defined by

Folz, A) = cos :sz - Az, A>0.

It is an interesting mathematical fact that among all beampattern functions
F(z) such that

(a) F(z) nhas a Fourier transform vanishing outside the aperture -s to *x
(b) [F(z)|< 1 for [z]2 A,

the one with the maximum possible value at z=0 is the van der Maas function
F(z) = Fo(z,A). The positive nulls of Fg(z,A) are

2
2 = VAZ'*(n-%),n-l.Z. 3 ...

Comparison of these nulls with Taylor's ad hoc null specification (&) shows
that Taylor's nulls are related to the van der Maas nulls by a dilation factor
o. The factor o is chosen to be slightly larger than unity to compensate for
the 6 dB/octave decay of the beampattern for z > n. Note that n = « gives
exactly the van der Maas beampattern.

I11. TAYLOR'S BEAMPATTERN AND WEIGHTING FUNCTION.
Taylor's beampattern can now be expressed, using (3), as

-n-"l o
2 2
F(z) = 1- z ” 1 -4 1. 7
@) ” N Ffs D)W )
n=1 n=n
8
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The last expression in (7) can be rewritten, using (4), to give

n-1 ) 22
S 2P SR RERTIEY Iy : (8)
F(z) = ’ ] o én;'r) ) S'lr'IziZ
z
n=1 1- e

In this expression, limits must be taken whenever z =0, 1, 2, 3, ..., n-1 to
avoid the indeterminate form 0/0. See Appendix B. Note that Taylor's
beampattern is identically the product of a rational function (of degree T-1
in 2¢) and the beampattern of the uniformly weighted aperture, sin{sz)/=z.

It is clear that Taylor's beampattern can be computed analytically from

(?)Fv(n;,hout computing the weighting function at all. The representation (2)
0 Z) is

n-1
m=0

since F(n) = 0 for n > . This is not as efficient as using (8). However, it
does yield an efficient way to compute the weighting function g(p). By
Fogrier transforming it term by term and using the fact that F(m) = F(-m), we
ge

n-1
a(p) =5 {F(0) + zzr(m) cos m i< = (10)
n=1

This is the (spatial) Fourier series of Taylor's weighting function. By
computing once and for all the constants F(0), F(1), ..., F(n-1) using (8),
the series (9) can be an efficient formula for computation.

The beamwidth measured between the first nulls is (from (6) with nsl)

‘/z 1
By = 20YA" * 7

where ¢ and A are given as above. An exact formula for the half-power
beamwidth {s not available. Table 2 gives half-power beamwidths that were
computed numerically (using a general purpose subroutine in [3, Chapter 7] ).
More tixsefu\ perhaps is the following approximate formula for the half-power
beamwidth
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n-1
2 -1/2
. 1 1 1
BN3gg = |12 * 2 Z Pa— T2 (11)
n=l \o (A% (n- 5) ) n

To prove (11), note that the asymptotic expansion

F(z) = 1 - Z 2(A2+(n 1 Z—z 2, 20

n=1 n-n

follows immediately from (7). Since

n-1 n-1
Z D DI BRI
7 "2 "Z '6' ;2 ’
n=l " n=l " n=1
we have
2 &L 1 1\ .2
F(z) a1- 3+ - z“, 0.
3 :E:: 2 (a2 4 (ne}) ;?) =
n=l V n~3)

Setting F(z) = 1/2 and solving for z gives (11).
_ The accuracy of (11) is good in two 1imiting cases. As Ador, o-» 1

and (11) becomes

-1/2

- 1 1

Bu3dB & z _2___Tz.._. R (12)
ml A (n - '2)

The exact answer for the van der Maas function is

1/2
BWy4p = 2 ’Az - (—11; arc cosh (% cosh wA))2

and a comparison with (12) is given in the last row in Table 3. Similarly,
for K = 1, the sum in {11) vanishes and

. 2V3

8"3d8 el 1.103 radians

10
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which is within 10 percent of the correct answer of BW34g = 1.207 radians
for the uniformly weighted aperture.

Table 3 gives the relative error between the approximation (11) and the
exact half-power beamwidth for the same entries as in Table 2. It may be
concluded from Table 3 that

(a) the approximation (11) is always on the low side of the exact
half-power beamwidth, and

(b) the correction required to make (11) exact is a constant factor
which depends strongly on the specified sidelobe level and very
weakly on M.

Consequently, a suitable correction factor depending only on specified
sidelobe level would make (11) very accurate.

The Taylor weighting function need not always be a positive function.
The best way to show this is by example. Consider the case i = 100 and a
sidelobe level of S = -20 d8. The weighting function is slightly negative
Just inside the aperture endpoints (for p =23.078761, for example, Taylor's
weight is -.005519929). See Figure 2. The Taylor function in practice is
nearly always positive for smaller values of .

n_ -10dB (A = .578) -20d8 (A= .953) -30d8 (A= 1.32) -40dB (A=1.69)
5 1.0475 1.3264 1.5526 1.7323
10 1.0009 1.2818 1.5220 1.7262
15 .9851 1.2641 1.5051 1.7126
20 L9771 1.2548 1.4954 1.7036
25 .9724 1.2491 1.4892 1.6975
30 .9692 1.2452 1.4849 1.6932
100 .9581 1.2313 1.4691 1.6761
™ .9533 1.2252 1.4619 1.6680
Table 2. Exact Taylor half-power beamwidths
K -10d8 (A=.578 =20dB (A5953) -30dB (A=1.32) -40dB (A=1.69)
5 7.67% 9.98 % 11.4¢% 12.2%
10 7.57% 9.91 ¢ 11.3% 12.2%
15 7.55% 9,90 % 11.3% 12.2%
2 7.54% 9.89 g 11.3% 12,2%
25 7.55% 9.89 % 11.3% 12.2%
30 7.54% 9.89 % 11.3% 12.2%
100 7.55% 9.88 % 11.3% 12.1%
® 7.54% 9.88 % 11.3% 12.1%

Table 3. Relative error of approximation (11) to
Taylor half-power beamwidths.

11
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IV. MODIFICATIONS OF TAYLOR WEIGHTING

Rhodes [4,5] shows that the Taylor weighting function g(p) can be made to
go to zero as any power a > -1 of distance from the aperture endpoints by
altering the position of the nulls in Taylor's function F(z). The general
design technique can be viewed as an extension of certain ideas in Taylor's
originai paper [1], using mathematical methods developed by Rhodes. The most
important cases are

1. a = 0, which is exactly Taylor's original case; F(z) decays
asymptotically at 6 dB per octave.

2. a = 1, for which the weighting function goes to zero linearly at the
aperture endpoints; F(z) decays asymptotically at 12 dB per octave.

3. a = 2, for which the weighting function goes to zero quadratically at
the aperture endpoints; F(z) decays asymptotically at 18 dB per octave.

The cases a = 1 and a = 2 are given explicitly below, after giving the method
for any a > -1.

A theoretically significant criticism of Rhodes' work is that he does not
prove that his technique is mathematically correct. The available theory (due
to Paley and Wiener, and to Levinson) provides a proof only for -1/2 < a < 1/2
and a=1. As Rhodes states [5], "it is not unreasonable to expect that the
general theory" is valid for all a > -1. In any event, we can proceed to
develop the method for all a > -1 in a purely formal way, ignoring a
theoretical question which may in the end not be of any practical importance.
Taylor's original method is, after all, an ad hoc technique and so is Rhodes'
generalization of it.

Rhodes' development retains the integer n as the breakpoint between the
near-in nulls, which are dilated versions of van der Maas' nulls, and the
outer nulls, which force the asymptotic decay rate for F(z) to be 6(1* a) dB
per octave. Consequently, in the 1imit as fi-» =, the van der Maas function is
again obtained for all a > <1, just as in Taylor's original design a = 0.

This means that the desired behavior of the weighting function at the aperture
endpoints is confined to small neighborhoods of the aperture endpoints for
larger f. In other words, the weighting function changes rapidly just inside
the aperture endpoints for large n.

The development in [4] is brief and only the case « = 1 is given in any
detail. His later paper [5] gives enough detail to carry out the general
development for a > -1. This requires the identity, valid for ¢ > -1,

2
o =[] (=g ) o i S Mt o
n=1 n*z

It is proved as follows. A special case (2] = 22 = a/2 and 23 = 2) of a
result in [6, Equ. 1.3(4)] gives

13
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FZ a/2 - i’ 1 - 22
r(z*dz;r!—z*an) az ¢
n=0 (n +3)
Dividing by the first term in the infinite product, and then using the

recurrence formula [6, Equ. 6.1.15] and the reflection formula [6, Equ.
6.1.17] whenever necessary, gives

(a/2)2 I%(a/2)
To(2) = T3
¢ [(a/2)€ - 2°) T(a/2 *+ 2) T (a/2 - 2)

- Yzél*'u/Z[
Ml*t2z2+ta r -2*%ta

rg+ 1 iz -3$) 1
P(L*+$+2) Mz-$) ML= (z-3)

r§+ Dz -$) sinslz - §)

(14)
Mz+5+1) )

Multiplying and dividing by 2 - (a/2) on the right hand sidé of the last
equation yields (13). (We note that above is given without proof by Taylor
(1, Equ. (29)].)

Rhodes defines the general Taylor pattern, Fu(z), for a > -1 to be

n-1
2

- 2
F (2) .‘”' 1- z - TI' 1-—2 (15)
UE(AZ + (n - %) ) (n + BIZ)

n=1

ne=n

where

2
o= @*9 /\42 +(@-3 (16)

and A is the same as given above (just after (6)). Note that for a = 0 the

function Fo(z) is exactly Taylor's original function F(z). The analog of
(8) for general a is

14
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2
1l £ 3
2,02 4 (o _ 1
’}']' OG(A (n '2') )
Fa(z) a : ) zz Ta(z) (17)
" (n+ 97

as is clear from (15) and (13). As z—«, the rational function of degree
n-1 in 22 in (17) approaches a constant and T.(z) is asymptotic to a
constant (depending only on a) times 1/|z|1*s. The asymptotic decay rate of
Fa(z) is therefore 6(1 + a) dB per octave. In addition, the asymptotic
decay rate means that Fy(z) has a_Fourier transform vanishing outside the
aperture [-v, x] for every a > -1 and n > 1.

For a > -1 define the "sampling functions*

r(z-3+1) sinx(z-3)
riz+$  «z° - (n+$)%)

6i*)(2) = ¢, (o) (18)

where

(-1)"(2n * a)(n * a)/nl , if a 40
Cn(a)-l , ifa=0,ns=0
(-1)"2 , ifa=0, na=123,...

Each G'(“')(z) is an even function of z. These functions are essentially the

Lagrange interpolating functions for &r,'e points &(n * a/2); n = 0,1,2,...}.
More precisely, the only nulls of (."(z) are of the form #(n * a/2) and,

furthermore,

(a) a 1, if man
Gy (4(m*3) '{0: if m#n, (19)
The functions G'('“)(z) are derived using methods due originally to Paley
and Wiener.

-The open theoretical question mentioned earlier in this section concerns

the completeness of the sampling functions (18) with respect to all eyen
aperture-limited functions. As stated already, it is known that Gr("' are

complete for ~1/2 < a < 1/2 and for a = 1. For other values of a > -1, nothing
is known. Proceeding on the assumption that Gn" are complete for all

a > -1, it follows Fy(z) can be expanded in the form

F (2) -Ean G'(‘“) (2)

n=0

15
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for some constants ap. From (19) it follows that ap = Fa(n *+ (a/2)) for
all n. From (15) it follows that a, = O for n > fi. Therefore,

n-1

F(2) = D, Fine$) 6, (20)

n=0
which generalizes (9).

Denote by g,(p) the weighting function corresponding to Fq(z). As
Just stated, 9«(9? vanishes outside the aperture [-», z]. Question: Ooes
9a(P) go to zero as the power a > -1 of distance from the aperture
endpoints ? Taylor [1] proves that any even function with this endpoint
behavior has a Fourier transform whose nulls are asymptotic to #(n + (a/2)),
but he does NOT prove the converse. Consequently, although g.(p) is even
and has a Fourier transform with the proper null locations, this is not
necessarily sufficient to answer the question in the affirmative. However,
taking the term by term Fourier transform of (20) gives the expansion

n-1
9y (P = Z:o F (0 +$) K (p) (1)
=

where forn =0, 1,2, ...

n
a (a)
K (p) «|(2 cos B) Z ()" L ot cos(rm) Pl < 7 (22)
r=0

0 NLER
where ¢ = 1 and ¢p = 2 for r > 0, and

1 for all o, if k = 0

(a), =
K {(@a*1) ... (a*k=~1) for all a , if k > 0.

Since each of the functions H£°)(p) has the correct endpoint behavior,
ga(p) must also have this same behavior.

Just as in Taylor's original case, both the aperture function g4(p)
and the beampattern function Fg(z) can be computed independently of each
other using the analytically exact formulas (21) and (17), respectively, for
any ¢ > -1. Appropriate approximations near the points #(n + a/2) analogous
to those developed in Appendix B for a = 0, are necessary for computing F,(z)
using (17). Developing these approximations should not present any
mathematical difficulties.

The three cases a = 0, 1, 2 are now given explicitly. Fortran programs
implementing these three cases should be easy to write. The sampling
functions are

16
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G'('O)(z) - (-1)" 0 2z sinwz

z v (22 - n%) (23)
(1 y) o (1)1 my_c_os_zh_
Gn (z) = (-1) . (22 - (v 2) ) (24)

2
Gr('Z)(z) - (_1)n+1 2(ntl) sinwz _ (25)
v 2 (2° - (n*1)%)
and the corresponding aperture basis functions are

H'(‘O)(p) - ;ﬂ cos np (26)
Hf.l)(p) = COS (n*-%)p (27)
H'(\z)(p) = (=1)" + cos (n*l)p . (28)

It should be noted that (23) and (26) are, within a scale factor, identical to
(9) and (10), respectively. In all cases, the aperture function g4(p) is
computed from (21). Consequently, the only potential difficulty is computing
the constants Fu(n *+ o/2) for isn=0, 1, ..., © ~1. Fortunately, for

a=0, 1, and 2, these constants are easy to compute using (17) since the
following identities hold:

To(z) = -‘l:‘-zl’- (29)

71(1) - CosS =2 (30)

Tz(l) - sin w2 (31)

The price paid for the desired end effects is an increase in the
beamwidth over the beamwidth of Taylor's original weighting function. The
beamwidth measured to the first null is, for all a > -1,

VZ 1
B“NULI. =% A *.‘

where o, is given by (16) above. This gives exactly, for fixed 1,
BWNULL (for any a) )

n2al+s

This means that for 7 = 10, the beamwidth measured between nulls is 5% larger
for a = 1 and 10% larger for a = 2 than for Taylor's original a = 0
beampattern. It is anticipated that approximately the same percentage
increases occur in the half-power beamwidths.

17
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A different modification to Taylor's nulls can be utilized to produce
asymmetric beampatterns using complex valued aperture functions g(p). This is
described in {8] for an application in radar to minimize ground clutter. The
magnitude of the aperture function turns out to be an even function, while the
phase of the aperture function turns out to be odd.

V.  CONCLUSIONS

Taylor weighting can be modified to force the weighting function to go
zero as any power a > -1 of distance from the aperture endpoints. Taylor's
original weighting (a = 0) results in a pedestal, while for a = 1 the
weighting function goes to zero linearly as in a cosine window, and for a = 2
the weighting function behaves like a cosine-squared window at the aperture
endpoints. The endpoint effect is achieved for a modest increase in the
mainlobe beamwidth.

18
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COMPUTE TAYLOR®S CORTLHUOLS SaARING FUMCTICH AMD TPAM3IFER FUNCTION

TLPUT REQUIREHET: 1 ,LE. MAdr

¢ ITHE 3PATILL APEPTURFE 1 IEsS FRJM =pI TC +Pl

BRGLMEMT DEFINITTIONS:

x = abscissas for saurlina tne snadiint function
s = shading tunctior values

rs = nuriner of s sauwcles! none conputed if ns =

k = abscissas tor samolina tne rranster tunction
¢t = transfer function values

nk = nuanber of £ sampl®s: none Comhuted {f nk =

npar=s the first nbar=] zeros of ¢ are tnose ot van der MHaas
Ap = sidelobe level In ab nf limitino folph=Crienyshev array

¢tr. = coefticierts of the snading function cosine series
hy3db = =3 dh teamwidth; not comouted {f owidp is set to

DIMEMSTON LIYITSS
¥ and § Mmust obe dirensioned at least rnax(ns,+1)
k and € must pe dirensfoned at least max(nk,+l)
fr tust be dimensionec at least npar
TEChvIFfAL MUTESS
MEAREL GIVES (HE JNIFORE SHANING FUNCTIun
NPARSIAFINITY GIVES DCOLFPH=CHEQYSHEV SnaclnG
FIFST PEAMPATTERM “MULL = S5TGMA & SNFT(B$32+,.7%)
ThE CUSLINE SFERIES FOR S YAS DEGRFE £XACTL; i{IBAR-1
PKNGRAMNFERS 2, &, STPEIT, “USC, DeCEMAFR 21, 1984,
1LAST REVI3ION: JAnNUARY 11, 198S

subroutine taylor(x,s,ns,k,t,nk,npar,db,sn,ow3dp)

dcukble precision x(1),s(1),k(1),€(1),ab,¢m(1),xpt,a,si3qme,q,ni,q,

zeroin,ao,bp,tol,owidp
dara pi/3,1415926535R897%5d0/
aziu,0h022a308(4b/720,040)
asdlog{a+sart(asa=] 0dah))/ri
siama=nbar/sart(asas+(nbar=-,54d0)*(nbar=,540))
nbart=noar=-1
tm(l)=1,Nag"
it(nbhar.eg.1)s0 to 15
Ao 10 {=2,ncar
xer=lel
fn{id=a(xpt,3,nbari,sigma)
continue
if(ns.le.0)gn to 25
do ¢0 {=1,ns
s(i)=u,0A90
ffCabs(x(i)).3t.(pi+l,.d=7))g0o to 20
s{t)=3(x(1),ftm,nbar)
continue
{rink.le,v)go to 35
40 30 i=1,nk
f(1)=q(k(i),a,nparl,siama)
continue
lt(DWSHD.lt.O.OGO)QO to 40
ap=0,.040
tpssigrassairt(a*aes, 2540)
tol=1,0qg=12
re3dh=2,.0d04%zeroin(ao,bo,q,to0l.a,nbarl,sizma)l
continue
return
onA
douple precision function n(z,a,nbari,siyna)
double crecision pi,0i2,2n,z,a,sigma
data pi1/3,141592A533R979dG/

-123-

-1,




nanaoaon

10

2n
21

30

10
20

10

TMNo. 851004

20

10 {0 k=0,npari
fz(ans(z=k),1t,.1.0d~4)170 tno U
co~tinue

ag=1,Nan

it(nbari,en,0)30 to 21

40 20 n=t,npart
2ns(z2/siama)*22/(a*a+(n=_,540)%%2)
1538 (1,040=2n)/(1,.040=(2/n)**2)
cortinue

pl7z=oi*2

as(sin(p1z)/2iz) %3

retursn

it(r.3t.N)a0 to 50

az1,0an

jt(nbrarl.eq,N)go to 41

40 40 n={,npart
zn=(2Z/siama)*+#?2/(a*a+(n=,54G)*%*2)
za*(1.,U34%=2zZn)/(1,0Q0=(2/n)**2)
continye

rizspisz
as(1.0d0=piz*p{z*(1,0d"=r{z%ci2/20,40)76,vd0)*7
return

as1,0a0

40 o0 n=i,npar!

if(n,ea.k)ao0 to 60
Znz(zZ/siama)*+2/(a%a+(n=,54G)%%2)
o2q*(]1,040=zn)/(1,0a0=(Z/n)*%2)
continye
zZn=(z/siana)s*+2/(atas(k=,5d4C)*%2)
2=0¥(1l.,0d0=2n)

cizzpis(z=k)
a=().040=pizepize(1,0dN=1ri22p12/20,00)76,040)%0
a=qa¥(=~1)8s(K+1)*(K/(2+2%2/K))
retuyrn

end

double precision function g(p,fm,nbar)
double precisinn p,twonli,tm(3)
data twopi/6.,29314%5307179508647740/
nz=n,0dn

{f(nnar.eqg,1)Gg0o to 20

do {0 {=2,npar
asc+fm(idrscos((i=-1)=xp)

cortinue

ns(Em(1)+qgeg)/twopd

return

end

Compute a zero ot a real function £ in the interval [(zx, bxj},
Double precision version of program on po, 164-166 ¢ "Comouter
wetnods for vatnematical Computations," wy G.E. Torsvthe,

YA, Malecolm, and C.B, Moler, Prenticee~rdall, 1977, out sligntlv
aitered ¢for use in comnuting Taylor‘’s halfepower peamwwidthn,
dnuble precision ftunction zeroin(ax,bx,f,tnl,adum,nparl,sigmns)
dounle precision ax,ox,f,tol,adum,siama

Aouyvle precision a,pn,c,d,e,enrs,fa,fo,fc,roll,x™,p,a,r,s
e;gsl , 0dn

epsseps/2,0d0

toll=l,2d49+eDs

{1f(toll.at,1.9du)go to 10

azax

Bsox
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tazf(a,adum,nbartl,siama)=,S540
fe=g(o,adum,npart,siama)=,5a0
C=a

fc=ta

4z=p~3
az4

{tCaecs(fc).ge,a0s(€o))uo to 40
ash

hze
c=a

fa=tbd

foste

£Cc=£a
toli=Z.Ndusepssans(n)+,5d0x¢0l
¥z, 5408 (C=p)
if(abs(xm).le,toll)gn to 90
1ttth,23,0,040)30 to 9N
ff(abs(e).1t.toli)ao to 70
1f(abs(ta),le,abs(fp))qo to Tu
it(a.ne,c)ao to SO

s=fb/fa

0=2,0dC*xm*s

a=1,0a0=s
aoc to 60

a=ta/te

r=fb/fe

s=tb/fa
P=S¥(2.,0d04xm*a¥(q=r)=(p=3)4(r=1,040))
3=2(9=1.040)%(r=1,0d0)%(s=1,0d0)
1£(p.gt.0,0a0)q==q

p=aps(v)
1£((2,0d0%p),.ge.(3,.0d0%xmsqeat;s(t0l1%q))rgn to 70
{f(c.ge.ans(N,5d0%e2g))go to 70
e=d

=n/q

70 to R0

dsym

=d

as=t

faztp

if(aos(d).qt.toll)ozben
{f(abs(d).le,toll)h=besignCtoll,xm)
fnp=t(b,adum,nbari,sioma)=_5q0
tz((fb*(fc/absifc))),.3t.0,0d0)a0 to 20
go to 30

zeroin=p

return

end
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Appendix B. Calculation of F(z)

For some small number ¢ > 0, say ¢ = 10-4, define

sin sz | 2k | ¢>0

S(Z. k) = 2 4
-k [1 -F (z-k)? * I (z-k)? - ] » |2k <e.

Now, if |z-k| > ¢ for k= 0,1,2,..., n-1, compute F(z) exactly as in (8). If
lz=ki< ¢ for k=0, then compute

_ 22 \
-1 [1-
o? (A% (n-3) )
f(z) = sz.0) ] -
n=1 1- 'n—Z'

If |2k |< ¢ for kel, ..., Nn-1, then compute

o° A%+ (k- 3)9) f/ AR+ (n-3))
F(z) = s(z,k) 3 -y .
2(1 + ) n=l 1-2
nék :Z

Use of these formulae eliminates all indeterminate 0/0 forms that arise during
actual computation using (8).

22
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Sufficient Conditions for the Existence of Optimum Beam
Patterns for Unequally Spaced Linear Arrays with an
Example

ROY STREIT

Abstract—Dolph’s method for determining the optimum element
currents for half-wavelength equispaced discrete linear arrays is
generalized to symmetric discrete linear arrays. The theorem proved
gives sufficient conditions for the existence of optimum beam pat-
terus for arrays with elements symmetrically positioned about the
array center, but with fixed unequal spacings between the elements.
The conditions are such that the Remes exchange algorithm for
minimax approximation of functions can be employed to compute
the optimum element currents corresponding to an optimum beam
pattern directly from the given spacings of the elemeats. Half-wave-
lenyth spaced linear arrays satisfy the conditions of the theorem;
thercfore, it provides a new method of calculating the well-known
Dolph-Chebyshev element currents. An example with unequal
spaciugs is included to show the utility of the method even when the
hypotheses of the theorem may not be met.

1. INTRODUCTION

Optiowin beam patterns and element currents for single frequency
linear arrays with a finite number of omnidirectional half-wavelength
spaued elenients were determined by Dolph [1] through a technique
involving the Chebyshev polynomials. All these beam patterns have
equal aniplitnde sidelobes. Sufficient conditions are given here for
symuuetric linear arrays 1o possess optimum beam patterns with
equal amplitude sidelobes. This feature is precisely the fact needed
in the colenlation of the element currents.

The definition of an optimum beam pattern used in Dolph’s
puper will be used: a beam pattern is optimum if, for a given main
lobe heamwidth, the overall sidelobe amplitude is minimized. Beam-
width is measured from the maximum response axis to the first null.
‘T'he linear wrrays considered in this paper are those whose elements
are symmetrically spaced and have symmetrically tapered element
eurrents about the center of the array.

Mannseript 's""""i"i‘ .|;,.||un\|;y Hl\, ‘1‘024: revised August 17, 1974
The: awrhor i with vhe Naval Underwater Systems €. ‘N
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II. PRELIMINARIES

Let f(z) be a resl valued continuous function defined on the
closed interval [a,b]. Thenorm of f(z), denoted || f|](s.+;, is defined to be

1S Hes = max [ f(z) [.
aSeSh

Now let ki (z),+-+,hn(z) be a given finite collection of real valued
continuous functions defined on the closed interval [a,b]. The linear
span of these basis functions is a proper closed subspace of the space
of all continuous functions on the interval [a,b] equipped with this
max norm. It is known that there exist real constants ay,+++,ax
such that

N
Nf(@) = 3 ahi(z) llen

=]
is & minimum. The function h(z) = Y_¥; ahi(z) is defined to be
a minimiax approximation to the function f(z) from the basis
hi(z),-++,hx{(z). The crucial property that these basis functions
must satisfy to guarantee the uniqueness of a minimax approxima-
tion is embodied in the definition: the functions hi(z),-«-ky(z)
form a Chebyshev basis of degree N on the closed interval [a,b], if
and only if every nontrivial linear combination of these functions
possesses at most N — 1 real roots in the interval [a,b]. A particularly
well-known Chebyshev basis is the collection 1,z,---,2¥~! on any
finite or infinite interval. It is possible that a given collection of
functions may be a Chebyshev basis on one interval but not on
another. I* can be shown that the functions A, (z),+++,hx(z) form
a Chebyshev basis on the interval [a,b], if and only if the deter-
minants

hiz) h(za) oo hzy)
h!(zl) ha(z2) soe ha(zy)
Ulzyeevzw) =| - =0

hv(z) hy(zs) -+ hylzy)
for all points z;, such that
e <z3< oo <2y, <zv < b

The reader is referred to Karlin and Studden [2] for & proof of this
and other equivalent formulations of a Chebyshev basis, as well as
for a proof of the following fundamental theorem.

Theorem

Let hi(z),+,hn(z) be 8 Chebyshev basis on the interval [a,b].
Then k(z) = 3. X, a:h;(z), for some real constants ay, is & wmini-
max approximation to f(z) on [a,b), if and only if there exist at
least N +1 points a Sz0 <3y < ++» <zy<h, M >N, such
that

J(z) = h(zd) = £ f = hlltean

and the sign of the error alternates from point to point. Further-
more, the approximating function k(z) is unique.

ix= 000, M

In other words there exists exactly one linear combination of the N’
Chebyshev basis functions v-hich has at least N 4+ 1 points of
equiripple (but alternately signed) error for a given function f(z),
and it is this linear combination that forius the unique minimax
approximation to f(z). If the basis functions do not form a
Chebyshev basis, however, the minimax error curve need not be
equiripple.

The 1Remes exchange algorithm [3] empluys the equal oscillation
error of the minimax approximation to compute the constants
a,*» - ay. The algorithm is iterative and has been shown to converge
under very general conditions.
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III. THE SUFFICIENCY THEOREM

As stated in the introduction, every linear array considered is
assumed to be symmetric and to have symmetrically tapered element
currents about the array’s center. If the center of an M element
linear array is chosen as the origin of the coordinate system, then the
field pattern, as a function of the angle measured from a normal to
the array, is proportional to the absolute value of

N 2 .
Eaim(—?smo). 0<o<2r

where

N - [M + 1]
2
A wavelength of design frequency

z; distance of ith element (counted from the ce  r of the array)
a; current of the elements at r; (if M is odd, e, is half the current).

Putting u = »sin 8 and restricting & to 0 <8 < »/2 to utilize
symmetry, the field pattern is proportional to the absolute value of

N
Plu) = 2 a, cos (ku),

i=

DSu<l~ (1)

wheref, = z,/(\/2),i = },+«. N. Wesalwayshave() < § < §<--- <
&n. For the field pattern P(u) defined in (1), we define the sidelobe
level on the interval [u,») to be the norm || P(u) || p1.r), Where
u; > 0 is the first null of P(u). We define the sidelobe ratio on the
same interval to be the ratio | P(0) | + || P(u) {| ya.»- Note that
both these terms are in linear units. Also, the symbol for the half-
open interval [a,b) is interpreted to mean the closed interval
[a,b — ¢}, where ¢ is some preselected small positive number. We
now state and prove the main result.

Sufliciency Theorem
Suppose that the functions

cos (£u),« - c08 (Evu) (2)
form a Chebyshev basis on the interval [0,r), and that the functions
€08 (Elu)v' ++,C08 (EN-\“) (3)

form a Chebyshev basis on the interval [uo, ) for some real number
s, 0 < vy < ». Then there is an angle 8, 0 < 8 < =/2, such that
for any specified beamwidth 8, 6, < 8 < »/2, there exists a unique
optimum field pattern. This optimum field pattern will have equal
amplitude sidelobes.

Prosf: since the functions (3) form a Chebyshev basis on the
interval [uo,7), there must exist a unique minimax approximation
to the function —cos (¢vu) from this basis; that is, there exist
constants my,- - +,av-; such that

—~Cos Entt % o)y cOS Eiu + <o ¢ + av_; €08 Evgu.

Thus if ¢, is the magnitude of the maximum error committed by this
uniform approximation, then the function

f(u) maycos au + <-+ + an_; €08 Evgu + €oS Exn

must oscillate about the zero function in the interval {1o,x) with the
magnitude of the oscillation no greater than e, and with at least
(N = 1) + 1 = N points where the oscillation is exactly ¢. Let u;
be the first zero of f(u) greater than o and let 8, = sin~? (2 /7).
We claimm that f(1) constitutes the optimum field pattern for a
beamwidth to the first null of 8. For if this pattern is not optimum,
there exists another field pattern function

glu) = Bycos u + <+« + Brv_; cos Ex_yu + B cos kvt

such that g(0) = f(0), u, is the smallest positive root of g(u), and ¢

(B B

has a strictly smaller sidelobe level on the interval [u,,»). Since f(u)
has at least N points of maximum error on [us,x), f(#) has at Jeast
N — 1 points of maximum error on [u,x). It i clenr that any
function which is constrained to agree with f at w = u;, which is
everywhere strictly less than f on {u;,»), must intersect f in at least
N — 1 points in the interval [u,r). Additionally, /(D) = g(0), =0
that f and g must agree with at least N points in [0,2). However,
f(u) — g(u) is then a linear combination of the functions (2),
which has at least N zeros on [0,x), contradicting the definition nf
a Chebyshev basis unless f = g. Thus f i the unique optimum field
pattern for  “Yeamwidth of 8.

To complete the proof of the theorem, we need to demonstrate
that for each angle # > 6,, there exists 8 number 0., va < fhs < =,
such that the function

Ju) = nuecos g + -+ + yyacos gy b eos Eve

has 4, = »sin @ as its first real root greater than or equal to g,
where E’;V:,’ ¥: €08 &u is the uniform approximation to --cos gyu
on [,x). Since [f,x) C [1o,x), the collection of funetinns 31
must form a Chebyshev basis on all intervais [da,x), so that the
function f(u) is well-defined for each %. Also @, > 1o implies that
& > u (2 as defined earlier) since otherwise the beam pattern for
a beamwidth of & is not optimum. Finally, as #, is varied con-
tinuously, the constants i, «+,y~.; vary continuously, so that the
first real zero greater than @ varies continuously. Since g 1nay he
taken as close to = as desired, it must be the case that for some i,
the first real zero of f(u) greater than 1, is equal to » sin 8.

IV. DOLPH-CHERYSHEV SHADINGS AS A SPECTAL CASE

As mentioned in the introduction, the Dolph-Chebyshev shadings
are designed specifically for a half-wavelength equispaced line array.
We consider here only the case of 2N, N > 1, elements in the array.
For an odd number of elements, the arguments nre essentially un-
changed. Counting from the center of the array, the position r, of
the 7th element is

z_(2r'—l))_\
T\ 2 J2°

where ) is the wavelength of the design frequency. Then
2 (2i-1)
A 2

1= ]’.-.'A"

so that from (1), the field pattern is proportional to be absolnte
value of

N ' -
P(u) = X a.cos (21—2—1 u)
=

where a; is the element current of the ith element from the center
of the array. The Dolph-"hebyshev coefficients are determined for
each specified beamwidth greater than zera. Ta apply the thearein
of Section II1, it i necessary to show that the N funetions

cos {2 ros(§1) co 2"\'—1) 4)
Y AR VY ANl WS '

and the vV — 1 functions

cos(u) 0%(3’ con (N3 (5
- ()8 - s R H M)
2 N 2 ey, ' 2 1 )

form Chebyshev bases on the intervals [0,x) and [un,x), where
o = 0 here. Consider, then, any linear combination of the fune.
tions (4)

¥ i _
ft) = 358, cos (il?-!u) ' 0<u<x

- f: BiTsiu (cos ;—:)

i=-1
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TABLE 1

Oprivusm ELEMENT CURRENTS
F16. 1 wit A COMPARISON TO

roR FIELD ParTErNs Gives 1N
OpPTIMIZED EQUISPACED ARRAYS

Yo .40138 .50138 .66138 . 78138 . 88138
Elemen:(:urtenu . 88524 1, 40005 2,609%4 4,238%7 $.99728
ay . 56748 1. 14597 2, 03999 3.16892 4,32041
oy . 41913 79211 1,30817 1, 88695 2.41420
ay . 23500 . 39087 . 54719 . 66452 .T3742
ag } 00000 1, 00000 1, 00000 1, 00000 1, 00000
Side-Lobe Level (dB) -9.92 -14,91 -20.11 -25.12 -29,50
Beamwidth (deg) 9.72 11.68 13,73 15.74 17,50
Beamwidth (deg) 9.69 11,57 13.62 15.65 17.49
for 10-element,
half-wavelength,

equispaced array with
Dolph-Chebyshev for
the same side-lobe
levels.

where Ty, i8 the Chebyshev polynomial of degree 2 — 1. Put
u = 2cos™! (z). Then 0 <z <! and

N
f(u) mg(z) = 3 8:Tsi(z)
-l

80 that g(z) is a polynomial of degree at most 2V — 1. Thus g(z)
can have at most 2V — 1 zeros in any interval. Furthermore, g(z)
is an odd function and 80 can have at most N — 1 zeros in the interval
(0,17, so that f(u) can have at most N — 1 zeros in [0,x). Hence
the functions (4) form a Chebyshev basis on the interval {0,x).
Replacing N by N — 1 in this argument shows that the functions (5)
also form the required basis.

By the theorem of Section III, for each specified beamwidth,
8 > 0, there exists a unique optimum field pattern and a unique set
of element currents. These currents are the Dolph-Chebyshev
coefficients for the beamwidth 6. It should be pointed out that,
if 0 <0 < v/(4N — 2), the sidelobes have larger amplitude than
the main lobe. The next section shows how the Remes exchange
algorithm may he used as an alternative means of calculating the
Dolph~Chebyshev coefficients, although the usual methods of cal-
culation of these coefficients are preferable to this method.

V. EXAMPLE

The example chosen is a ten-element linear array with the elements
located at positions proportional to the abecissas of a ten-point
Gaussian quadrature formuls:

& = 0.68788
& = 2,00253
& = 3.13926
£ = 3.99708
& = 4.50000.

The length of this array is the same as that of a ten-element half-
wavelength equispaced array, but the element positions are sub-
stantially displaced from equal spacing. An effort to verify that the
functions (2) and (3) form Chebyshev bases in this case was un-
successful, and direct numerical verification was not attempted.
Instead, the Remes exchange algorithm was employed immediately .
to find the element currents, and the observed behavior of the
algorithm itself was used to make inferences about the functions (2)
and (3). In this case, it will be seen that the functions (2) are not,
in fact, & Chebyshev basis, and that it is likely that the functions (3)

-1

are not either. The example presented here shows the utility of the
approach even when the hypotheses of the theorem of Section III
do not apply.

Ma [4] describes what is essentially the Remes exchange algorithm
and applies it to the synthesis of nonuniformly spaced arrays. How-
ever, Ma seeks approximations to the function f(u) = exp (—A4u?),
where A is a positive real number, so that the element currents
obtained sre only approximately optimum. To find the optimum
element currents, proceed as in the proof of the theorem in Section I11
to find & minimax approximation to —cos (&u) in the form

4
—co8 (E) * 2 au cos (£au)
=1
on some interval (us,x), ue > 0. The error curve of this approxima-
tion over the full interval [0,») is identically the optimum beam
pattern for the beamwidth determined by the first null. The param-
eter u, alone controls the tradeoff between the sidelobe level and the
beamwidth. Therefore, u, is varied systematically here.
To begin, the Dolph-Chebyshev coefficients corresponding to
a sidelobe level of R = —10 dB were used as the initial guess for
an, oy, ay, and ay, 80 that the choice

(6)

U = 2 cos™ (‘-:) * 0.40138

was made, where

1 73 L
2= 5{[r + (- l)"']‘ +[r - (- 1)m]‘ }

with L =« M — 1 = 9 and 7 = 10%®, With this initial guess on this
interval, the Remes exchange algorithm computed the minimax
approximation (8) in two iterations and produced a result shown
in Table I. To continue the procedure, us was incremented by 0.01,
and the Remes algorithm employed again using these newly com-
puted coefficients as the initial guess on this smaller interval. Con-
vergence occurred in two iterations, the beamwidth increased
slightly, and the sidelobe level reduced to —10.3 dB. Continuing in
this fashion, uy was systematically increased from 0.40138 to 1.02138.
Representative beam patterns appear in Fig 1 and the corresponding
element currents in Table I. Notice that the beamwidths attainable
by the Dolph-Chebyshev current amplitudes for an equispsced
array are remarkably close to those obtained in this example.

By inspecting the beam patterns with the three lowest sidelobe
levels, it is seen that each of these beam patterns possesses § serce.
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THETA (deg)

Fig. 1. Optimum fleld patterns for ten-element symmetrically positioned
and unequally spaced linear array.

Since each of these beam patterns is also identically the error curve
of a minimax approximation (6) on an interval [u,,r), it must be
concluded that the functions (2) do not form a Chebyshev basis on
the interval [0,r). Consequently, the element currents may not be
unique.

For each iteration of the Remes exchange algorithm, the solution
of a system of linear equations is required. If there are N — 1
Chebyshev basis elements, then one equation in N unknowns is
established for each point where equiripple error should occur. By
the theorem in Section II, there must be at least (N - 1) + 1 = N
points of equiripple error. In the five results given for the present
example, there are exactly N = 5 points of equiripple error, counting
one point on the main lobe down at the sidelobe level (at u = u,),
8o that unexpected numerical difficulties do not occur. To proceed
further than these results requires the solution of six equations in
five unknowns, because of the growth of the extra lobe at 8 = 90°.
The straightforward procedure of solving any five of these six
equations proved unsatisfactory because erratic behavior developed
in the sidelobe corresponding to the squation deleted. An attempt
to solve all six equations in both the least squares sense and the
least maximum error sense by employing the generalized inverse of
the coefficient matrix also proved unsatisfactory. It would seem,
then, that either numerical difficulties are the cause of the problem
or that the functions (3) do not form a Chebyshev basis. The author
favors the latter poesibility.

It should be noted that the Dolph—Chebyshev element currents
for both a 10-element and a 50-element half-wavelength equispaced
array have been computed in the aforementioned manner without dif-
ficulty from —10 dB to over —70 dB. (In these cases, an extra side
lobe at 90° never develops.) Unequally spaced arrays with as many
a8 50 elements have also been successfully treated by this method.

All calculations were performed in double precision on the Univac
1108. Total CPU time, including plot generation for the example
given was 67 s, although a more carefully written program could
have reduced this time by at least a factor of two. A total of 83 sets
of current amplitudes were computed.

V1. SUMMARY

Sufficient conditions for the existence of optimum field patterns
for symmetrically spaced and amplitude tapered linear arrays have
been proved. The theorem proved is a generalisation of the work of
Dolph on ‘half-wavelength spaced linear arrays. A well-known
algorithm from approximation theory has been employed in an
example to compute the element currents corresponding to the
optimum beam patterns using only the given element spacings
themselves.
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Optimized Symmetric Discrete Line Arrays
ROY L. STREIT

Abstract—A generalization of Dolph’s method for the synthesis of
discrete antenna arrays is applied to six different symmetric line arrays.
Based on these ples, it is fuded that 1) the ficld patterns of
optimized symmetric line arrays with the same number of elements and
with the same aperture sre virtually indistinguishable and 2) optimized
arrays with an odd number of elements are substantially better, in general,
than arrays with an even number of elements.

1. INTRODUCTION

If all the clements in a linear array are equally spaced at a haif
wavelength, then Dolph's method [1] may be used to compute
the element currents of optimum ficld patterns for any specified
beamwidth and for any number of array elements. Optimized
equispaced arrays have two striking characteristics: 1) as the
specified beamwidth is increased, the corresponding sidelobe
level diminishes and 2) all the sidelobes are of equal amplitude.
In the generalization of Dolph's method, both 1) the tradeofl
between the beamwidth and the sidelobe level and 2) the equal
amplitude sidelobe structure are extended to a larger class of
symmetric arrays.

By application of the generalized Dolph method to six specific
arrays, it was noticed that the method was more successful for
arrays with an odd number of elements than arrays with an even
number of elements. All symmetric arrays with the same odd
number of elements and the same aperture as a half-wave
equispaced array scem 1o possess optimum field patterns with
equal amplitude sidelobes for any specified beamwidth. Only
very special even numbered symmetric arrays appear to share
this feature; that is, for nearly all even arrays, element currents
which suppress uniformly all sidelobes do not appear 10 exist
for every desired beamwidth. Equispaced even numbered arrays
seem to be the primary exception 1o this statemem.

A second observation based on these examples is this: for
fixed aperture, odd number of elements, and desired beamwidth,
any symmetric set of positions is nearly as good as any other
symmetric set provided the element currents are optimized for
the given positions. To find unequally spaced arrays with field
patterns substantially better than optimized equispaced arrays
thus requires either a larger aperture or more elements. If an
even number of elements is specified, these observations are
false: equal spacing is definitely better, in general, because of
the remarks in the preceding paragraph. ‘

The directional response of a symmetric line array of M
elements is directly proportional to the absolute value of a
linear combination of cosines:

Pu) = .‘i‘ ay cos (& u), 0O<u<n
where
N = [M + l]
2
“ = @
u=nsing

Manuscript received March 2, 1975; revised June 12, 1975.
The author is with the Naval Underwater Systems Center, New London
Laboratory, New London, Conn. 06320.
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RESPONSE (8}

B

THETA Weg)

Fig. 1. Field patterns for clement currents in Tables ! and 11

and 0 is measured from a normal to the line of the array, 4 is the
wavelength of the design frequency. {x,! arc element positions
measured from the array center, and {aq,} are clement currents.
Thus, if M is odd. the center element must lie at the origin and
the center element current is half of a,. In Fig. 1 the field patterns
shown are 20 log,, | P(x), normalized by its maximum absolute
value on [0,n), but plotted versus the angle 0 and not u.

The theorem in (2] is valid for both even and odd numbers of
clements. For the odd case, however, the result can be
strengthened. In the following theorem, the beamwidth is
measured from # = 0 down to the sidelobe level. Also, by
definition, a collection of continuous functions form a Chebyshev
basis on a finite interval if the zeros of any nontrivial linear
combination of these functions number at most one less than the
number of functions in the basis.

Theorem (Odd Case): If M is 0dd, then the function
N-2
P(u) = cos ({yu) + Z a, cos (§,w). O<wu<n
ey}
is the unique optimum field pattern for a beamwidth of
arcsin (vo/n) provided

i)
LER]
max |[P(u)l = min max [cos (&vu) + Y. @, cos (&u)
MoSWLR iax) MgSw<w A=
i)
fcos (£qu),- - -, €08 (En. #)} is @ Chebyshev basis on {ng.m).

g > 0
iti)

fcos (&), - -, cos (Eytn)} is a Chebyshev basis on [0.7).




COMMUNICATIONS

This result is stronger than that given in [2] because the beam-
width is given as an explicit function of w,. This is possible
because Meinardus has shown ({3, theorem 30)) that assumptions
it} and iii) together imply that uy must be an extreme point of the
approximation i). Therefore, u, is precisely that point on the
main lobe which is down at the sidelobe level. (It can also be
shown that the first zero of the minimax approximation i) is a
strictly increasing function of ug, so that the theorem is essentially
unchanged if beamwidth is measured to the first null as in [1)
instead of down to the sidelobe level. The only difference is that
the beamwidth cannot be given as an explicit function of wy. Sce
(1)

Optimum field patterns (in the odd case) do not necessarily
possessexactly N — | equal amplitude sidelobes nor are optimum
field patterns necessarily unique unless the assumptions ii) and
iii) are made. The assumption ii) is well known ([3, theorems
19 and 20]) to be both a necessary and sufficient condition for
the existence and uniqueness of the minimax approximation i),
so that without this assumption an optimum field pattern will
not be unique if it satisfies i). Furthermore, Meinardus ([3,
theorem 30)) has shown that the assumptions ii) and iii) together
imply the existence of exactly N extreme points of the minimax
approximation i). Since one of these extreme points must be on
the main lobe itself, and every other extreme point corresponds
to a sidelobe, without both these assumptions an optimum field
pattern satisfying i) need not possess precisely N — 1 sidelobes.

A nearly identical result holds for an even number of elements,
but an explicit relation between beamwidth and the parameter ug
is not available. Meinardus’ result applies only to Chebyshev
systems containing the constant 1 as a basis function, a circum-
stance which occurs for symmetric line arrays for odd M only.
Thus, the strongest statement possible is that the beamwidth is
perhaps (slightly) smaller than arcsin (ug/n).

These results can be extended in two directions. First, the
synthesis of steered arrays can be performed by computing the
approximation i) on intervals extending as far beyond =z as
desired. Secondly, the fact that ii) and iii) are cosine bases is
never used in the proof of the results. Ma {4, p. 215] gives an
example of concentric continuous rings whose field pattern is a
linear combination of basis functions of the form Jo(&w).
Therefore, the theorem above also yields an optimality result for
this case.

II. APPLICATION TO ARRAYS WITH ODD NuMBER OF ELEMENTS

Three 25-element arrays called herein (for convenience)
Random, Dolph, and Gauss are considered. The Dolph array is
cquispaced. In the Random array, all the element positions
except the first and the last are displaced strictly toward the
origin from equal spacings by no more than 0.5, but otherwise in
a random fashion. The Gauss array has elements located at
positions proportional to a 25-point Gaussian quadrature
formula. Thus the Gauss array is substantially more perturbed
from equal spacing than is the Random array. Al! three arrays
have the same aperture. .

The Dolph positions satisfy the theorem statement (see [2]).
However, for reasons that will be stated later, the Random array
does not satisfy condition iii), whereas the Gauss array does not
satisfy condition ii). Therefore, computationa! difficulties can be
expected for the Gauss array. Also, the field patterns presented
for the Gauss array may not be optimum.

The application of the method to the Random and Gauss
arrays is detailed in Tables [ and 11, respectively, and follows
the development in [2]. Since in each case the proper choice of
the subintervais [wo,7)could not be made beforehand, an arbitrary
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TABLE 1
OPrMUM LLtMENT CURRINTS FOR 25-L1tMENT RANDOM ARRAY

Elememt

Position u, - 151 uo B2 1 uo .31 “0 A4
. 000 .03 L1386 427 1. 165
i . 256 Lot 3.140 ».313

1.930 122 . 500 1.503 3.964
2.590 .193 L1715 2.217 5.895
3.867 .22 L) 2.555 6. 440
1. K49 B L] 1.223 2.966
5. 695 L1895 .721 1.939 4.567
647 . 150 549 1.3%0 3.035
7.531 .116 .393 .963 2.051
8.675 . 206 . 644 1.437 2.785
9.941 146 .420 Y 1.457

10. 780 125 .329 .594 .

12. 000 1.000 1.000 1.000 1.000

Sdelobe g g9y 20,062  -29.906 -29.950

level(dB)

Beamwidth .
pr 2.759 4.541 6.236 7.936

TABLE 1l
OrTiMUM ELEMENT CURRENTS FOR 25-ELEMENT GAUSS ARRAY

Element -

Pposition u0 - . 151 no .251 "0 341 uo .41
. 000 . 263 1.153 5. 858
1.481 . 259 1423 5. 693
2.939 249 1.337 5.231
4.353 .234 1.20~ 4.550
5.701 .213 1.049 3.755
6.963 L1n LW 2,950
u. 119 L1 .70 2.213
9.152 L1337 . 554 1.506

10. 046 .13 415 1.092

10. 788 .07 306 769

11.366 . 099 193 .364

11.772 -.106 132 A

12. 000 1.000 1. 000 1. 006

Sidelobe . _s9.

level(dB) 9.994 20,188 29.507 39.371

Beamwidth . 587 3 5.074
prio 2.758 4.58 6.236

starting point of up = 0.1 was picked and the Remes exchange
algorithm employed to compute the minimax approximation i)
on the subinterva) [0.1,). Then 4, was incremented by 0.01 and
the Remes exchange algorithm was used again on the slightly
smaller interval [{0.11,x). Continuing in this fashion gave a
family of optimum eclement currents. Four sets of element
currents for both arrays are given in Tables I and 11. Notice
that the beamwidth-sidelobe level tradeof is as expected in both
cases. Also, the clement currents appear to be continuous
functions of the sidelobe parameter #, except in the Gauss array.
For the Gauss array, nonuniqueness is the consequence of
violating the second condition of the theorem.

The accuracy of the resuits can be estimated by comparing
similar results for the Dolph array with those that can be obtained
explicitly. 1t was found that the currents were correct to 4 or §
significant decimals. More accuracy was not attained because
a discrete version, and not a continuous version, of the Remes
exchange algorithm was implemented in the computer program.

The field patterns for the element currents in Tables | and 11
are shown in Fig. 1. Even though the element currents and
positions are quite dissimiliar, all three sets of field patterns are
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nearly identical and there is very litile difference in the beam-
widths to be had for the same sidelobe level. However, it can be
secn that the Random array is slightly superior to the Dolph
array. To the author's knowledge, this is the first explicit example
of an optimum unequally spaced array which can be shown to
be superior to an optimum equispaced array of exactly the same
length and the same number of elements. Practically speaking.
however, the ficld patterns are virtually identical in all three
cases.

The Random array does not satisfy condition iii) because the
field pattern for —40 dB has 13 zeros. Since the field pattern is a
linear combination of the 13 functions in iii), the Chebyshev
condition fails. That the Gauss array fails to satisfy cordition
i) is not as straightforward. It can be shown that the smaller the
interval of approximation, the less the error of the minimax
approximation on that interval. The four given approximations
(Table 1I) satisfy the requirements of Chebyshev's theorem
({3. theorem 23]) and therefore should be minimax approxima-
tions; however, the error of these approximations does not
decrease with increasing w,. Hence, the Gauss array cannot
satisfy condition ii).

II1. APPLICATION TO ARRAYS WiTH EVEN NUMBER OF ELEMENTS

The chief difference, numerically, between even numbered
arrays and odd numbered arrays is that the field pattern function
P(u) does not contain the constant | as a basis function becausc
no element lics at the array center. Mcinardus® result does not
apply. and the problem that develops in the even case is that onc
too many sidclobes develops so that not all of them can be
suppressed.

The Remes exchange algorithm establishes one linear algebraic
equation for each sidelobe and onc equation corresponding to a
point on the mainlobe down at the sidelobe level. Because of
Chebyshev's theorem, there must be ar least N equations in
exactly N unknowns when the minimax approximation i) has
been found. For arrays with an odd number of elements, there
is never any difficulty because there are always exactly N equa-
tions in N unknowns ({3, theorem 30]). The difficulty with even
arrays, then, is that eventually it develops that N + 1 equations
in N unknowns must be solved exactly, and these equations prove
to be inconsistent.

Three arrays which are the 24-eclement analogs of the same
named 25-clement arrays were considered. The Dolph array
satisfied the theorem statement, the Random array did not
satisfy condition iii), and the Gauss array did not satisfy either
condition ii) or iii). The application of the Remes exchange
algorithm to these three arrays proceeded exactly as in Section
111, and field patterns with sidelobe levels of — 10 dB, - 15 dB,
and - 20 dB were obtained. Too many sidelobes never develop
for the Dolph array because of the fact that P(#) must be identic-
ally zero at w = n (i.e., 0 = 90°). The other two arrays did
not have this feature, so that inevitably a sidelobe appeared at
u = n. For small uy, this sidelobe either did not exist or it was
small, but for larger w,. the sidelobe at v = n appeared and
increased in size until it equaled in magnitude the other sidelobes.
At this point, the difficulty of the overdetermined system of
equations developed. In consequence, the minimax approxima-
tion i) does not change until u, has increased to the point that
the first sidelobe is included as part of the main lobe. The extra
equation can then be dropped and further reduction of the
remaining sidelobes is then possible. Dropping the first equation
is equivalent to losing control of the first sidelobe. The remaining
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sidelobes may well be reduced in amplitude. but only at the
expense of a bad first lobe. Field patterns with «/f the sidetobes
at, say, —30 dB werc not computed because no such ficld
patterns cxisted for the Random and Gauss arrass Simce this
procedure 1s unavoidable. the conclusion must be that the
equispaced Dolph array 1s much superior to either of the other
two arrays. For as long as the extra sidelobe was not a problem.
the threc arrays were andistinguishable from the beamwidth
sidelobe fevel tradeofT standpoint.

The development of the extra sidelobe scems inevitable in the
general even case. Since the extra sidelobe prevents a uniform
suppression of all sidelobes, it follows that opumized arruays
with an odd number of clements have u substantially better
character than optimized arrays with an even number of elements.

IV. SUMMARY

A generalizanon of Dolph’s method s applied to sia Jifferent
arrays. Based on thesc examples, it is concluded that optimized
equispaced arrays are as good as any other optimized symmelric
line array with the same number of elements and aperture.
Another conclusion is that arrays with an odd number of
elements have better behavior than arrays with an even number of
elements.
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Real Excitation Coefficients Suffice for Sidelobe
Control in a Linear Array

JAMES T. LEWIS AND ROY L. STREIT

Abstrace—Minimax design of a linear antenna array with arbitrary
fixed elements leads to the following mathematicat problem.
minimize max
wycomplex ug<€iul€u;

1 TG

subject to 7(0) = | where Tiw) = Zﬁ. wi exp (—idiu) and d; are real
numbers. It is proven that this problem has a solution with real
excitation coefficients w,. In the antenns application this shows that
there is no need to allow phasing at the individual elements of the
array; amplitude control alone will achieve all the sidelobe reduction
possible. An anslogous result can be proved for a more genera)
complex approximation probiem.

We consider a linear antenna array with N omnidirectional
elements located at arbitrary fixed positions {xk} receiving
a plane wave of wavelength A from the direction 8,, —7/2 <
0, < =n/2, relative to a normal to the array. If the array
is steered to look in the direction 8;, -n/2 € 8, < n/2, then
the complex transfer function of the beamformer is given by

N
T(u) = z wy exp (—idyu)
k=1

where {'w,‘} are the element excitation coefficients, dy =
2nx, /A, and u = sin 8, — sin 8, The coefficients w; may
be complex in general. The peak response should occur at u =
0, we make the usual normalization

N
TO)= 3, we=1.
k=1

To effect small sidelobes we wish to minimize |7(u) | for
u 13 ug where ug > 0 is chosen small.

The total range of u depends on the look direction 8,.
First, let us consider only the case of the array steered broad-
side. Thus 8§; = 0 and the range of u becomes -1 S u < |
corresponding to — 1 < sin fa &1 for -7/2K €, < 7/2. Hence
the problem of selecting excitation coefficients to effect mini-
mum overall sidelobe level becomes a minimax problem.

minimize

Wi complex max

ugSIul<1

| T(u)|
subject to

* N
)= we=1. ()
k=1

The case where the array is steered through the same number

of degrees either side of broadside is very similar mathemati-
cally to the case 8; = 0 and is discussed below.
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A standard argument shows that a solution to problem (1)
exists; however. it may not be unique. In general the excita-
tion coefficients wy are allowed to be complex; we now prove
that a solution of (1) exists with wy all real. First, denoting
complex conjugates by an overbar,

- -id
wye kv

. G
;ke-id.u
k=1
N
2 wye
k=1
N
Wk
k=1

max
uo<luli<l

k=1

max
ugSiui<l

idyu

max
ug<iui<t

e~ id.ll

max
ugSlul<i

The last equality follows from the fact that up < I-u I< 1 if
and only if up < lul < 1;ie., the range of u is symmetric
about u = 0. Now

N
max z (Re wy e~ 19k¥
ugSiui€l 4=y
Mo
- —idyu
= max z = (wx + wy)e
ug<lui<i lxgzy 2
max N "
<%uo<lul<l Ew,‘e' kU
k=1
N .
+1 max E Wye I
ugSiwis) =y
N
= max wye” "9k | from above.
ug Slui€ | x=

This guarantees the existence of a real solution of problem
(1) as asserted, since

N N N
Y wi = 1implies 2, (Rewp)=Re 25 wy = 1.

k=) k=1 k=1
We now note that, since IT(-w)| = ITu)l = M)
when wy, =, wp are real, we can further simplify problem
(1)to
minimize
wy real max | T(u)l (1a)
i3]
subyect to
N
TO)= 2 wy=1.
k=1

Hence, we can find a solution to problem (1) by solving
the easier problem (1a). This has important practical implica-
tions for the design of an antenna array. It indicates that
there is no need to allow phasing at the individual elements;
amplitude of excitation alone will achieve all the sidelobe
reduction that is possible.

The above analysis was for the look angle §; = 0. Now
let us regard 8, as not being fixed; then the range of u becomes
-2 < u < 2. The problem corresponding to (1) with 8, bounded
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away from endfire is
minimize
Wy max { T(u)l
ll°< wI€2 —u 1
subject to

N
)=, wi=1. )
k=)
As above, we can show the existence of a solution of (2) with
real excitation coefficients wy.

Now, let us consider a more general complex approxima-
tion problem. Let f, h,, =, hy be continuous complex valued
functions defined on a closed and bounded set Q in the com-
plex plane. (Q can be finite or infinite.) The minimax approxi-
mation problem is

minimize

. 3)

N
f2)— 2 axhy(z)
k=1
Here the o, are allowed to be complex. If forallz € Q, f(2) =
J(2), he(2) = hp(2), k = 1, -, N and Q is symmetric with re-
spect to the real axis, i.c., ¢ in Q if and only if ¢ in Q, then a
solution of (3) with real coefficients exists. We omit the de-
tails of the verification.

Finally, we note that real excitation coefficients are not
adequate for every use of a linear array or for every pattern
desired. For example, if a null is required in the pattern at a
point & # 0, the equation T(i) = 0 would be added to prob-
lem (1). However, now a solution with real coefficients would
not necessarily exist.

ay max
z€Q
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Abstract

Two different constructive techniques for approximating
positive definite functions by means of finite exponential sums are
explored. One technique constructs the coefficients and the
exponents. The other technique constructs the exponents when the
coefficients are all required to be equal. Both approximation
techniques appear to be suitable for numerical computation. The
techniques extend to completely monotonic functions as well.
Error bounds are proved using elementary methods.

In an application, these error bounds can be used to
eliminate some of the effort and guesswork previously necessary
in two procedures for the design and synthesis of sparse broadband
linear arrays.
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Two Exponential Approximation Methods

I. Introduction

Two design procedures for aperiodic, or space tapered, linear arrays are in-
vestigated in this report in a setting much more general than the usual setting. One
procedure, due to Bruce and Unz [1], gives both element excitations (‘‘shadings’’)
and positions. The other procedure, due to Maffett [2], gives element positions
under the condition that all excitations are unity. Both seek desirable radiation
patterns minimizing grating lobes. These methods synthesize sparse broadband
arrays that are less sensitive to frequency changes than periodic (equispaced) arrays.

Using either of these procedures, the designer must guess the number of
elements required, perform the appropriate numerical computations, examine the
resulting radiation pattern, and then decide if more elements are required or if fewer
elements will suffice. In this report, error bounds are derived that provide estimates
on the number of elements necessary for a given degree of approximation of the
desired radiation pattern. Thus, some of the effort and guesswork inherent in these
procedures can be eliminated.

Neither of these two methods is intrinsically limited to aperiodic array design.
Generalizations turn out to be worthwhile and of independent interest. Therefore,
this report addresses only the general setting from this point on.

A complex valued function f of a real variable is defined to be positive
definite if and only if, for each integer n21, the inequality

n
2 f(x-x)a,a; 20 (1.1
Lj=1
holds for all x,, . . ., X, ¢R (the real numbers) and a,, . . ., a, €C (the complex
numbers). Bochner’s Theorem states the following: If f is a continuous function on
R, then f is positive definite if, and only if, there exists a bounded non-decreasing
function V on R such that f is the Fourier-Stieltjes transform of V; that is,

fx) = [ eixdV(a), xeR . (1.2)
The recent paper of Stewart [3) gives references to various proofs of Bochner’s
Theorem and its generalizations. We point out, for future use, that (1.2) im-
mediately implies that the total variation of V equals f(0), and for all real x, f(-x)
equals the complex conjugate of f(x). Goldberg [4] proves that any positive definite
function f is such that |f(x)|<f(0) for all real x.

In this report, we restrict our attention, for the most part, to continuous
positive definite functions f on R that can be written

Fy
f(x) =f eiax dV(a), xeR, (1.3)

Bt
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for some real number A such that 0 < A< %, In other words, we have assumed that
V(a) is constant for || > A, For functions satisfying (1.3), we develop in an
elementary manner an approximation to f(x) of the form

n
S,(x) = f(0) 2 a, el (1.4)
k=1
where |a,| < A, k=1, ... ,n. We give an error bound for this approximation in

Theorem 1. This approximation always gives positive coefficients and exponents
a,eR that are located at the roots of an appropriate orthogonal polynomial. We
suspect that these approximations are near-optimal in some well-defined sense. (See
Schabach [5, p. 1018] for a relevant conjecture about a particular function f.)

Under various additional assumptions concerning V, we develop an ap-
proximation to f(x) of the Jorm

o)<
Q,,(x)=—(n—)z eiokx | (1.5)

h=1

where |a,| < A, k=1, ...n, and we give an error bound in Theorem 2. The ap-
proximation Q_(x) cannot be as efficient in general as the approximation S (x);
however, Q_(x) has the advantage of being much more easily constructed in practice
for almost any reasonable n (say, n <109).

Note that both the approximations S (x) and Q,(x) are readily written in the
form (1.3) and, therefore, are positive definite. Hence, we must have

I60)-S,00 € If(0)] + [S,(x)| <26(0), xR,  (1.6)

since S,(0) = f(0). Similarly, it is always the case that |f(x) - Q,(x)| € 2 f(0).

It will be shown that Prony’s method can be used to compute S (x). Aithough
Prony’s method in this problem must become numerically ill-conditioned for n
sufficiently large, it may nonetheless be useful for small n (say, n £10).
Numerically stable methods for computing S (x) suitable for all n would require an
algorithm other than Prony’s method. This is discussed at the end of Section II.

The computation of approximations Q,(x) is shown to depend upon the ability
to compute the numerical value of the inverse function of V (guaranteed to exist by
additional assumptions) at specific points. The level of difficulty involved depends
on V, of course, but the interval is finite, so the problem seems to encounter no
inherent numerical difficulties.

An excellent bibliography of references to the literature on exponential ap-
proximation is contained in [6].

Note that if Vin (1.3) is continuously differentiable on the interval (-4, 1), then
V'(a) 20, and

A
fx) = [ e V'(a)da . (1.7)
-
From the Paley-Wiener Theorem (see, e.g., [7, p. 134]), this equation uniquely
extends the domain of f to all C and that this extension of { is an entire function
of exponential type at most A.
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We close this section with a small collection of positive definite functions.
According to [3], Schoenberg proved that f(x) = exp[-|x|*] is positive definite if
and only if 0 € r € 2, and Polya proved that any real, even, continuous function f
that is convex on the interval (0, o), that is, f((x +y)/2) € (f(x)+f(y))/2, and
satisfies lim, . f(x) = 0, is positive definite. Goldberg [4, p. 61] proves that if f(x)
is positive definite and a > 0, then the function h(x) = f(x) exp (-ax?) is also positive
definite. Finally, if the function f has a Fourier transform that is nonnegative and
integrable, then the function f is positive definite. Specific examples of functions
satisfying this latter property are

sin Ax 1
Tx = 2__“""'““"' (1.8)

2(1-cos Ax) = fle"“(l - V%) da
-4

Ax2 (1.9)

l o« eic\
NG = = da
e = f,,, 1 +a (1.10)

1 ® s
-ax? — iax @-e%/4a 4 >0
¢ Van f_..e ¢ a @9 (1.11)

J(x) 2A)v
X a2 (v+

1 .
) -[A (12-02)"—/231 da (v > -12) (1.12)

where J (x) is the usual Bessel function of order v. A final example, one that finds
application in antenna design ([8], {9}, and [10}), is

A
cos (V(x)2-a2 ) = j eioxdV(a) , a20, (1.13)
-A

where V(<) = -1/2A,
o 1(2A VD
Ve = & [ DG VAR

Y S -A<a<i,
-1 (A2-12)

V{#}) = 172X + lim_,,- V(a), and where I,(x) is the modified Bessel function of
order one. This function is interesting because, for |x| 2 a/A, it has magnitude not
exceeding 1, while for |x| < a/A, it exhibits very rapid growth achieving a maximum
magnitude of cosh(a) at x = 0. Other examples can be discerned in various tables of
integral transforms, such as [11].

TR 6357
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II. Exponential Approximation With
Arbitrary Coefficients

The idea developed in this section for constructing approximations of the form

S, (x) is simply Gaussian quadrature. A glance at equation (1.3) reveals that we are

particularly interested in Gaussian quadrature with respect to the measure dV(a).

From Szegd [12, p. 25], a system of orthogonal polynomials exists for the measure

dV(a) if V(a) has infinitely many points of increase in the interval [-A, -] and if the

moments

+A

c,,,:_[A a™dV(a) ,m = 0,1,2, . . . @.1)

exist. Since V is bounded above, the moments c,, certainly exist. If V has finitely

many points of increase, then f can be written explicitly as a finite sum of ex-

ponentials. Although this special case is not uninteresting (in the context of

economizing large finite exponential sums), we will avoid it by assuming that V has
infinitely many points of increase.

Leta, ..., a, betheabscissasandletb, . .., b, bethe corresponding Cotes
numbers of the n-th order Gaussian quadrature formula with respect to the measurc
dV(a). Since

n

A
b, = 1dV(a) = {(0),
kz=l k f—x (
we rewrite the Cotes numbers in the form b, = a, f(0), k = 1, . . ., n. Using this
notation, and applying the quadrature formula blindly to (1.3) gives the ap-
proximation

"S,(x) = f(O)ki=l a, elax | (2.2)
where
0<a,<Lk=1,...,n 2.3)
a,+...+a,=1 2.4)
loy| <A k=1,...,n. (2.5)

These three properties are immediate consequences of well known results on
Gaussian quadrature. (See Szeg6 [12, pp. 47-49].) Ir. addition, these properties
imply that S, (x) possesses good numerical round-off error behavior when the sum is
evaluated numerically.

We seek an error bound such that
[f(x) - S,(x)| <R, (x), xeR . (2.6)
It is clear from (1.3) and the Riemann-Lebesgue Lemma that f(x)—0 as x—+%. On
the other hand, it is not hard to see from (2.2) that S,(x) cannot tend to zero as

x=>2, The most that can be expected is that R (x) becomes ‘‘small’’ for any fixed x.
We will show that as n—=°, S_ converges to f uniformly on any finite real interval.
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Let n 2 1. For each xR, let
£,(x) = min  max |elex-n, (a) » Q.7
-A€a€i
where the minimum is taken over all polynomials n,,_,(a) of degree at most 2n-1
with complex coefficients. We always have ¢,(x) € 1 for all x, as can be seen by
considering the case n,,_,(a) =0in (2.7).
Lemmal. Forn21,
<V M7 R,
220-1 2n)! (2.8)
Proof. From a theorem given in [13, p.78], for any real valued function p(a)
defined on the interval [-1, +1] and possessing n+ 1 continuous derivatives on
(-1, +1), wehave
. [ptn* 1)
E.(p)=min max|p(a)-n (a)| = ————
" -1<e<] " 2%+ 1)!
for some ¢, -1 < {< + 1, where the minimum is taken over all real polynomials n_ of
degree at most n. For p(a) = cos aAx defined for a in the interval [-1, 1] and for
fixed real numbers A and x, we have
Eya @) = _ |cos gAx|
-t 22n-1(2n)!
< P
23n-1(2n)!
For q(e) = sin aAx on [-1, 1], we have similarly
(Ax)Zn .
Fa @€ 0 o
From the definition of ¢ (x), we have
£,(x) = min  max|eiedx -, (Aa)|
~1€a<1
3 {Ei,,_,(p) + E%,,_,(Q)}'/‘ .
Substituting the estimates for E,,_;(p) and Ej,_,(q) completes the proof.
We remark, but do not prove, that an example in Meinardus {13, p. 96] can be
extended and used to show that for fixed x,
g0 € M (14 o)) nees
220-1(2n)!
6
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It seems reasonable to conjecture that this asymptotic inequality is actually an
asymptotic equality. In any event, we use only (2.8) in this report.

Theorem 1. Let f(x) be a continuous complex valued positive definite function of a
real variable such that

i
f(x) = f eioxdV(a) , xeR, 2.9)
-A

where V is a bounded non-decreasing function having infinitely many points of
increase in the finite closed interval {-A, A). Then, for each integer n 2 1, there exists

distinct real numbers a,, . . ., o, and real numbers a,, . . ., a, satisfying (2.3),
(2.4), and (2.5) and the additional condition
2
If(x) - S,)| < VZ f) - xR, (2.10)

202 (2n)!

where S (x) is given by (2.2). Furthermore, the left-hand side of (2.10) is never
larger than 2f(0) for all xeR and every integern 2 1.

Proof. Let a|, . . ., a, be the distinct abscissas of an n point Gaussian quadrature
formula with respect to the measure dV(a), and let b,, . . . , b, be the correspond-
ing Cotes numbers. Let the numbers a, . . ., a, be defined by the relationship
b, = f(0)a,,k =1, ..., n. Equations (2.3), (2.4), and (2.5) are then satisfied. Fix
xeR. Let p*(a) be any polynomial of degree at most 2n-1 such that

max |eie*-p*(a)| = ,(x) ,
-i&a%d
where £,(x) is defined by (2.7). Then, defining S (x) as in (2.2), we have
|£(x) - S,(x)| <[f(x) - £(0) kZ_l a, p*(ay)|
+ |£(0) :z'. | 2 P*(@) - S|
A .
< e - pr@ldVia)

+ £(0) :Z A |p*(ay) - eiokx|

A n
<e [ 4V + 0 &,(x) kz_l a,

= 2f(0) £,(x) .
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Since g,(x) € 1 is always true, recalling Lemma 1 completes the proof.

Corollary 1.1. Any sequence of approximations S (x), n=1,2, . .., satisfying
Theorem 1 converges uniformly to f(x) on every finite interval.

Proof. Immediate.
Corollary 1.2. If, in addition to the requirements of Theorem 1, f(x) is real valued,

then for each integer n 2 1, there exists distinct real numbers f8,, . . . , f, and real
numbersd,, . . ., d, that satisfy

0<d, <1, k=1,...,n @2.11)
d+d+...+d, =1 (2.12)
0<p,<A,k=1,...,n (2.13)
and are such that
n
N _(x)tn
| £(x) f(O)kZ=l d, cos fi,x| < f(0) Jn-2 (! (2.14)

for all xeR. Furthermore, the left-hand side of (2.14) is bounded from above by
2f(0) for all xeR and every integern 2 1.

Proof. Since f(x) is real valued, by conjugating (1.1) we see that it must be even.
From f(x) = (f(x) + f(-x))/2 and (2.9), we get

A
f(x) = f cosax dV(a) . 2.15)

Furthermore, the measure dV(a) can be taken to be symmetric about 0. For each
n 2 1, and for each fixed x¢R, define

£,(x) = min max |cos ax - my,_(@)] ,
-A€akA

where the minimum is taken over all polynomials n,,_,(e) of degree at most 2n-1
with real coefficients. Hence, we always have £ (x) € 1 by considering the case
n,,_,(a) =0. From the proof of Lemma 1,

™ xR

2201 2n)!

&,(x) €
Duplicating the proof of Theorem 1 with 2n replacing n gives
n
If(x) - (0) 2. a, cos a,x]| € 2f(0) &,(x)
k=1
for the distinct real numbers a,, . . ., a,, and real numbers a,, . . ., a,, that are

the abscissas and Cotes numbers, respectively, of the Gaussian quadrature of order
2n with respect to the measure dV(a). These abscissas and Cotes numbers satisfy
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(2.3), (2.4), and (2.5). Since the measure dV(a) is symmetric about zero, it must be
that a) = —a,, @, = —a,,,, €tc., and that a; = a,, a, = a,,_,, elc. Inequality
(2.14) follows immediately by taking d, = 2a,,,andf, = a,,, fork = 1,2, ...,
n. The properties (2.11), (2.12), and (2.13) follow from (2.3), (2.4), and (2.5). This
completes the proof.

Example 1. The real valued function

H 1
f0) =2 3= [ eondV(a) 2.16)

with V(a) = e, -1 € a € 1, is a positive definite function on R. In this case,
Gaussian quadrature with respect to the measure dV(e) is Gauss-Legendre
quadrature. Thus, from the proof of Corollary 1.2, for eachn 2 1, we have

x4n

n
—z docosfxj € ———
k=1

l sin X
24n-2(4n)! 2.17)

X

where f, ..., B, are the positive abscissas of a 2n point Gauss-Legendre
quadrature and d,, . . ., d, are the corresponding Cotes numbers. This example
and some computation provides one test of the quality of the error term. Let R (x)
be the smaller of the two numbers 2f(0) = 2 and

x4n xe Y [ 2
241-24n)!  \Bn m (2.18)

From Table 1, it appears that R (x) is an excellent error bound provided
|x|] << 8n/e. (Table I was computed on a DEC VAX 11/780 on which the double
precision unit round-off error is only 4 x 10-17,)

Table 1. Comparison of (2.17) forn=10 (8n/e = 29.43)

X R o(x) f(x) - S,o(x)  max|f(y)-S,,(V,
O<y<x

5 407 x 10-3! underflow underflow
10 447 x 1019 underflow underflow
Is .494 x 10-12 491 x 10-13 491 x 10-13
20 491 x 107 .164 x10-8 .164 x10-8
25 .370x 103 290 % 10-5 .290 x 10-3
30 .543 .664 x 10-3 .664 x 10-3
35 .200 x 10! .302x10-! .302 x 10!
40 .200 x 10! .309 .309
45 .200 x 10! .501 .569
50 .200 x 10! -.364 .569

This section is concluded by showing that Prony’s method (see, e.g., [14, p.
378] or [15, p. 340] ) can be used to compute numerically the approximations of
Theorem 1. We need only find the Gaussian quadrature formula of order 2n with
respect to the measure dV(a), which is equivalent to solving the equations
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A n
¢n=f amdV(@ =3 baf,m=0,1,...,2n-1 (2.19)

-1 k=1
forb,,...,b,anday, ..., a, Since a, must be real, writes, = Ina,, if a, #0,

ands, = 0if e, = 0. The required equations can now be written as

Cm = 2 b,e™ ,m=0,1,...,2n-1.
k=1

This form is precisely the form required for Prony’s method. (The use of Prony’s
method to compute Gaussian quadrature formulas was pointed out to the author by
Marvin J. Goldstein.) In principle, we require 2n quadratures, the solutions of two
systems of linear equations each of rank n, and the roots of a polynomial of degree
n (in this case, all its roots are known to be real, distinct, and have multiplicity one)
to compute one approximation for which Theorem 1 holds. Unfortunately, it is
known [16] that any procedure that relies upon the moments must become in-
creasingly numerically ill-conditioned as n increases. Fortunately, the use of
modified moments (i.e., replacing the a™ in (2.19) with some classical system of
orthogonal polynomials) together with an algorithm other than Prony’s method
often results in a numerically well-conditioned problem for finite intervals. See [17]
and 18] for details.
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I11. Exponential Approximation With
Uniform Coefficients

The idea developed in this sectic~ “or constructing approximations of the form
Q,(x) in which each exponential term cucers the approximation with equal weight is
basically probabilistic in nature. The integral representation (1.3) of f(x) is ap-
proximated by a Riemann sum whose subintervals are equally probable according
to the ‘‘probability’’ measure dV(a). In this interpretation, V(e) is a cumulative
probability integral that is used to transform n uniformly distributed points in the
range of V(e) into n abscissas on the real line distributed according to the measure
dV(a). (See [19, p. 314] or [15, p. 389].)

Theorem 2. Let f(x) be a continuous complex valued positive definite function of a
real variable such that

A
fx) = [ endV(a), xeR, 6.1
-1

where V is a continuous and strictly monotone increasing function throughout the
finite closed interval [—A, A]. Then, for each integer n 2 1, there exists distinct real

numbers a, . . . , a, in the open interval (=4, ) such that
If(x) - Q%) € 2V2 f(O)A|x|/n, xR, (3.2)
where
Q (x) —ﬂ)_).i eiak;(
n " n o1 : (33)

Furthermore, from the remark following (1.6), the left-hand side of (3.2) is
bounded from above by 2f(0) for all xeR.

Proof. Let the real number x be fixed throughout this proof. Define, for k =
0,1,2,...,2n,

V(-A) + (V) - V(-2)) k/2n

Uy
3.9
v = V-i(u).
Under the hypotheses on V(a), it is clear that V-! exists and is continuous and
strictly monotone on the closed interval [V(=4), V(A)]. Hence, the numbers v, in
(3.4) are well defined and are distinct. It will be shown that inequality (3.2) holds for
a, =vy,,. k=12,...,n. 3.5)
Since

Vv, ) -V(v) = (VA)-V(=1))/2n = f(0)/2n ,k =0,1,...,2n-1, (3.6)

it follows from the definition (3.3) of Q(x) that
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n Vs

Quw=3 [ * explivy, x)dV(a) . 3.7)

b=l Zvna

By the Mean Value Theorem, there exists , in the interval between e and v,, _, such
that

COS @X = COS Vy, (X = =X(a-vy )sin {Xx . (3.8)
Thus, a<v,,_,impliesa <{, <v, _,andv, <aimpliesv, ,<¢{ <a.From(3.1)

and (3.7),

n v

Re(f(x) - Q (x)) = 2 f ™ (cos ax - cos Vo X) dV(e)
k=1 Zvyo2
< Vak
=x2 [ 7 (@vy singx dvie) 3.9)
k=1 “vy.s

and so, taking absolute values,

IRe(t) - QN € I 2 [ Ja=vyyl dV(@)

Vak-2

< [x] kz : (Var-Va-2) (V(V) - V(v 9))

= 24 |x| f(0)/n . (3.10)
where (3.6) was used in the last step. Similarly,
[Im (f(x) - Q,(x))| € 2A |x| f(0)/n . (3.11)
Clearly, (3.10) and (3.11) together complete the proof.

Corollary 2.1. Any sequence of approximations Q,(x), n = 1,2, ..., satisfying
Theorem 2 converges uniformly to f(x) on every finite interval.

Proof. Immediate.

Coroliary 2.2. If, in addition to the requirements of Theorem 2, f(x) is real valued,
then for each integer n 2 1, there exist distinct real numbers §,, . . . , B, in the open
interval (0,A) such that

|f(x) - 10 i cos B,.x| € f(0) A|x|/n
n &, P : (3.12)

Furthermore, the left hand side of (3.12) is never larger than 2f(0) for all x¢R and
integern 2 1.

Proof. Recalling (2.15), follow the proof of Theorem 2 with 2n replacing n

throughout. Half of the resulting 2n a,’s are positive. Set the f,’s equal to the
positive a,’s. The details are immediate. This concludes the proof.
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The proof of Theorem 2 requires that V be continuous and strictly monotone
increasing. It is not clear whether the hypotheses on V can be weakened. On the
other hand, the convergence rate of the approximations Q, can apparently be
improved by making further assumptions concerning V. In general, however, better
than n-2 convergence rates cannot be expected. Consider Example 1, where V(a)=a
and f(x) = x-! sin x. From the construction indicated in Corollary 2.2, f(x) is ap-
proximated by

Q. (x) = 1 i cos (2k-1)x/2n = —_sinx __,
n n {7, 2nsinx/2n 3.13)

It can be shown directly that

|x sin x | sin x x2
- <
24n? | X Q%) | 2 ¥R G.14)
and -x sin x
im n2[x-! sin x - = =
L@wn [x-"sin x - Q,(x)) 24 3.19)

Hence, in this example, the correct convergence rate is precisely n-2 for each fixed x.
We point out that the upper bound in (3.14) and the limit (3.15) follow by a trivial
application of a suggestive result in Pélya-Szego [20, Pt. 2, Ch. 1, Pr. 11].
Regrettably, their method seems applicable in this application only to the special
measure V{a) = a.

A further example seems to indicate that the convergence rate of the ap-
proximations Q, can lie between n-! and n-2.

Example 2. [4, p. 22] Let A be a finite positive real number. Define V for non-
negative arguments a0 by

a(l-a/21) ,0€ a<A,
V(a) = 1A/2 JA<a,

and for negative arguments by the relation V(-a) = -V(a), 2 > 0. Thus, V is an odd
function whose derivative V'(a) = 1 - Ja|/A. Obviously, for all x # 0,

A -—
f(X) = I cosax dV(a) = z(l—fiz}_i ’
-i

and f(0) = A. Now V-! exists on the interval [-A, A] and, for non-negative .
arguments, is given by

Vi) =A1-V1-2t/d), 0<Ki1<A/2.

From the construction indicated in Corollary 2.2,

Q=23 cos [AI-VITE=Tamn )4, (3.16)
1

n

and
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If(x) - Q. (x)| €A% |x]/n, xeR.
This estimate is not even close to the truth. In fact, an examination of Table 2 in-
dicates that for sufficiently large n the best error bound may take the form
Kx?
f(x)- Q. (%) €
| Q.| @) 3.17)
for some constant K. In general, we speculate that if V-! satisfies a Lipschitz
condition of order r, 0 <r € 1, then the convergence rate is of order 1/n! +T,
Table 2. Inequality (3.17) forx = 10,1 = 1,K = 10-2
n Kx2/(2n)3/2 f(x) - Q,(x)
5 316 x 10! -.618x10-1
10 112 %107 -.117x10"!
20 .395 x 102 -.153x 102
40 140 x 102 .649 x 104
80 .494 x 10-3 .163 x 104
160 175 %1073 907 x 104
320 618 x 104 .400x 104
640 218 %104 .160 x 10-4
1280 772 % 10-5 614 x10-5
2560 273 x 10-3 .229%x 103
5120 965 x 10-6 .837x10-¢
10240 .341 x10-6 303 x10-6
20480 121 x10-6 .109 x 10-6
40960 .426 x 10-7 .389 x 10-7
14
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1V. Concluding Remarks

The proofs in this report depend heavily on the finite support of the measure
dV(a) even though the construction of the approximations S (x) and Q,_(x) can be
carried out without modification on infinite intervals as well, provided V(a) is
bounded. Since these proofs cannot be adapted for infinite intervals, the ef-
fectiveness of the resulting approximations theoretically remains an open question.
Intuitively, however, it would seem that only our proofs are limited and that the
underlying approximation process is generally valid.

In computational practice the function V is usually unknown. In many cases,
however, the given function f does possess a nicely behaved Fourier transform from
which V can be readily constructed. The Fourier transform of f can, of course, be
computed accurately and efficiently in many situations using fast Fourier transform
(FFT) methods.

If in the above, V was not monotonic, but of bounded variation on R, ex-
ponential approximations can be constructed as follows. In this case, there exist
monotone increasing functions V+ and V- such that V=v+-v-. For each A > 0,
define the ‘‘bandlimiting’’ operator B, by

A .
B, f(x) = f elexdV(a), xeR .
-A
Let I be any finite interval. Given £ > 0, choose A > 0 so that ||f-B,f||<e, where the
norm is the uniform norm over the interval I. Now, let the two functions

A .
B f(x)EfAe'ﬂ dVz(a), xeR,
be approximated using either of the methods of this paper by the two finite ex-
ponential sums, say, E *(x), so that

[IBFf-E=*|| <e.
Let E(x) = E*(x) - E-(x) . Since B,f = Bf - B f , we have
If-Ell = |I(f-B, ) + (B} f-E*)- (B; f-E)|
< |If-By fl| + || Bff-E*{| + || B; f-E-||<3¢.
Thus, exponential sums of degree not greater than deg(E*) + deg(E-) may be

constructed to approximate f(x) with specified accuracy on the interval I.

It is well known [4, p. 60] that if f(x) is measurable, then Bochner’s Theorem
still holds for almost all x, but not necessarily all x as in (1.2). Results similar to the
results of this report can also be proven for measurable f with careful attention to
certain details; however, this generalization is not pursued here. Similarly,
Bochner’s Theorem has been generalized to locally compact abelian groups [4, p.
72], and perhaps the basic approaches to approximation used here can be extended
to this much more general setting.
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We conclude by commenting that Bernstein’s Theorem {21, p. 160] states that a
necessary and sufficient condition for f(x) to be completely monotonic on the in-
terval (0,%) is that

f(x)=fe'°‘dV(a), 0<x< ™,
0

where V(a) is bounded and nondecreasing. It is evident that the methods employed
in this report can be used in a manner entirely analogous to the proof of Theorem 1
to develop exponential approximations. That is to say, whenever f(x) can be ex-
pressed as

A
fx) = [ e-oxdV(a)
0

for some finite A > 0, there exist approximations of the form

T,(x) = f(0) 2 a, e-ox
k=1

where
a,>0,k=1,...,n 4.1)
a+ ...+a =1 4.2)
A>a,>0,k=1,...,n 4.3)
and
(x)x
If(x) - To(x)| < 2f(0) S € W2, 0€x<®, (4.4)

An alternate approach for approximation of completely monotonic functions can
be found in [22].
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FREQUENCY LINE DETECTOR/TRACKERS

Foreword

Hidden Markov models (HMMs) are well known for their application to automatic
speech recognition problems, where they are used to characterize the time variation of short
term Fourier spectra of the broad band speech signal. HMMs are useful outside the speech
application as well. The application of HMMs to the problem of detecting and tracking time
varying frequency lines is presented in detail in paper [13]. One unique aspect of this
approach is that tracks are automatically initiated and terminated as an intrinsic function of
the underlying HMM algorithm For this reason, the tracker is referred to as an HMM
detector/tracker. Another interesting aspect is that the finite state HMM enables the non-
Gaussian nature of the measurement process to be modeled exactly. Papers [14] and [15]
are the first to present the application of HMMs to frequency line detection and tracking.

Papers [16] and [17] describe extensions of the HMM detector/tracker presented in
[13] to include the exploitation of the phase and amplitude information in the received
signal. The inclusion of this information affects the state conditional measurement
likelihood functions, but it does not alter the fundamental character of the HMM
detector/tracker algorithm.

The ability of HMM detector/trackers to estimate signal-to-noise ratio (SNR) is
documented in [18]. The SNR estimation algorithm is a maximum likelihood algorithm,
and it is derived from a variation of the Baum-Welch training algorithm for general HMMs,

Detection performance can be studied by using an HMM as a signal source model,
either maiched or mismatched to the HMM of the detector/tracker. The detection capability
of HMM detector/trackers was first studied in this way in [19]. Paper [20] also discusses
the use of HMMs as signal sources.

Various advanced and special purpose computer architectures have been proposed

for implementation of HMMs for the speech application. Paper [21] studies HMM
detector/tracker implementations on the Connection Machine supercomputer.
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Frequency Line Tracking Using Hidden Markov
Models

ROY L. STREIT, SENIOR MEMBER, 1EEE, AND ROSS F. BARRETT

Abstract—This paper demonstrates how the problem of frequency
line tracking can be formulated in terms of hidden Markov models
(HMM’s). Frequency cells comprising a subset, or gate, of the spectral
bins from FFT processing are identified with the states of the hidden
Markov chain. An additional zero state is included to allow for the
possibility of track initiation and termination. Analytic expressions are
obtained for the basic parameters of the HMM in terms of physically
meaningful quantities, and optimization of the HMM tracker is care-
fully discussed. A measurement sequence based on a simple threshold
detector forms the input to the tracker. The outputs of the HMM
tracker are a discrete Viterbi track, a gate occupancy probability func-
tion, and a continuous mean cell occupancy track. The latter provides
an estimate of the mean signal frequency as a function of time. The

performance of the HMM tracker is evaluated for two sets of simulated:

data and is found to be remarkably good, comparing favorably to re-
sults from inspection of the signal spectrograms. A comparison of the
HMM tracker to earlier, related trackers is presented, and possible

2 &

ex are disc

I. INTRODUCTION

HE estimation of the frequency of isolated tones
embedded in a noise background is a problem that is

of interest in diverse fields (e.g., seismology, radar,
sonar, radioastronomy, etc.), and is -currently receiving
considerable attention in the signal processing literature
(e.g., see [1]-[4]). In the case where the frequency of the
tone is changing as a function of time, a related problem
is that of accurately tracking these changes in frequency.
One obvious approach is to divide the time series into
finite-sized blocks, and to apply one of the many new fre-
quency estimation techniques to the data in each block.
The result is a sequence of independent frequency esti-
mates which, if the signal-to-noise ratio (SNR) is reason-
ably high, provides an accurate estimate of the underlying
frequency variations. However, as the SNR is reduced,
the scatter in the frequency estimates becomes large, and
‘‘outliers,’” or estimates far from the true frequency track,
become common. A priori knowledge of the extent and
rapidity of the likely frequency changes can be incorpo-
rated into an algorithm that rejects the highly improbable
outliers and produces smoothed frequency estimates as a
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function of time. Such an algorithm is designated here a
‘‘frequency tracker.”

The purpose of this paper is to show that the problem
of frequency tracking lends itself readily to formulation
in terms of a hidden Markov model (HMM). These
models are used in speech applications to characterize the
time variation of the short-term spectra of spoken words.
The basic principles of HMM’s are reviewed in Section
11. For more detailed discussions of HMM's, the reader
is referred to [5], [6] and to the references cited therein.

The HMM s utilized in this paper are comprised of two
basic parts: a Markov chain, and a set of discrete finite-
outcome random variables. The Markov chain has a finite
number of states and is characterized by its transition
probability matrix A. The elements of the A matrix are the
probabilities of transitioning between the states of the
Markov chain. The set of random variables is character-
ized by a measurement probability matrix B. The ele-
ments of the B matrix are the probabilities defining the
probability density functions (pdf 's) of the finite-outcome
random variables. Each state of the Markov chain is
uniquely associated with one of the random variables.

The relevance of the HMM to frequency tracking is easy
to see. The range of frequencies over which the track is
allowed to wander is divided into a finite number of fre-
quency cells, and each cell is associated with a state of
the Markov chain. In addition, a zero state is included to
allow for the possibility of the track wandering outside
the allowed frequency range or terminating altogether.
The A matrix represents our knowledge, based on past
experience, of the likely extent of the frequency fluctua-
tions, or of the track terminating, or of it restarting after
a previous termination. The inclusion of the zero state is
an important feature, and its presence precludes a simple
characterization of track variation as a Gaussian statistic.

The B matrix characterizes the connection between the
underlying state at time ¢ and the measurement at time 1.
For the HMM frequency tracker presented in this paper,
the measurement takes the form of a detection. A detec-
tion is said to have occurred in a particular frequency cell
at time ¢ if the spectral power in that cell at that time ex-
ceeds a certain threshold D and is larger than the power
in all other cells within the allowed frequency range. If

-the power in each cell is less than D, a detection in the

zero state is said to have occurred. Since the B matrix
connects the underlying states with the noisy measure-
ments, it depends on the SNR and the nature of the back-
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ground noise. For the HMM tracker presented here, the
B matrix is computed analytically. The threshold detector
applied in this way results in a measurement sequence that
is highly non-Gaussian in character.

Once the connection between the HMM and the fre-
quency tracking problem is correctly formulated, the wide
body of existing knowledge on HMM’s is exploited to
yield both discrete and continuous tracker outputs. The
highly efficient Viterbi algorithm is used to obtain the
maximum likelihood frequency track, conditioned on a
given set of measurements. We refer to this track as the
Viterbi track; it is the discrete output of the HMM tracker.
The forward-backward algorithm is used to compute the
mean cell occupancy track and the probability that no fre-
quency track is present; both are conditioned on the mea-
surement sequence. These are the continuous outputs of
the HMM tracker.

The HMM tracker presented in this paper minimizes
the effect of noise by looking at the overall track time
history for global structure. In practice, only a fixed length
T of the measured track is utilized; thus, T measurements
are stored before the output HMM track is calculated. It
does not follow, however, that the HMM tracker is a fixed
lag tracker with lag T — 1. It is shown in Section III-C
that the HMM tracker can be used as a fixed lag tracker
with any lag fromOto T — 1.

Section III describes the HMM frequency tracking al-
gorithm in detail, and discusses how the HMM tracker
can be optimized for a particular application. The perfor-
mance of the HMM tracker on simulated data is discussed
in Section IV. Section V compares the HMM tracker and
related work by Kopec [7] for formant tracking using
HMM’s in the field of speech processing. Two earlier fre-
quency trackers described by Scharf et al. {8] and Jaffer
et al. [9] are also based on HMM'’s, although it was not
recognized at the time, and they are also discussed in Sec-
tion V. Possible extensions of the HMM tracker are dis-
cussed in Section VI. The conclusions of the paper are
presented in Section VII.

II. ELEMENTS OF HIDDEN MARKOV MODELS

A finite Markov chain has a finite number n + 1 of
states where n = 0, and is characterized by its transition
probability matrix, denoted 4 = [q,] where i, j = 0, 1,

* +, n. Let = be the initial state probability vector of the
Markov chain. Thus, at the start time ¢ = 1, the proba-
bility that the Markov chain is in state i is ;. The prob-
ability that the chain transitions from state i at time ¢ to
state j at time ¢ + 1 is a; wheret = 1,2, 3, - - - . Note
that the transition probabilities a;; are independent of time
t. Markov chains with an infinite number of states are not
considered.

The tracking application presented in this paper re-
quires only HMM's with a finite number of different pos-
sible outcomes or measurements. However, we also con-
sider HMM’s with measurements that are arbitrary
complex-valued vectors because this kind of HMM is use-
ful in some applications (see below in Section V). The
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pdf of the random variable uniquely associated with state
i of the Markov chain is denoted by b;(z) where z is a
measurement. Let B denote the vector [ b;(z)]. For finite-
outcome HMM's, we also use B to denote the measure-
ment probability matrix B = [b;] where b; = b;(z;) and
z; runs through the finite measurement set. This abuse of
notation should not cause confusion. (What we call a
measurement is referred to as a ‘*symbol’’ in the speech
literature [5), [6]).)

Simulation of an HMM measurement sequence of
length T, given =, A, and B, is straightforward. The initial
state of the Markov chain is chosen according to the initial
state probability vector x. The initial state uniquely de-
termines the first pdf. The first measurement, say z(1),
is chosen according to this first pdf. Next, the Markov
chain transitions to another (or the same) state according
to its transition probability matrix 4. This state deter-
mines the:second pdf, and the second measurement, say
2(2), is chosen according to this second pdf. Continuing
in this fashion up to time ¢ = T generates the measurement
sequence

Zr = {z(1), 2(2), - - - . 2(T)}. (2.1)

It is important to note that the only output from such an
HMM simulator is the measurement sequence Z;. The
state sequence of the Markov chain is not an output.

From the HMM simulation procedure, it is clear that
the total probability of a given measurement sequence is
the sum

P(Z7] = % PIZr|1] (22)
where I = {I(1),1(2), - - -, I(T)} denotes an arbitrary
Markov chain state sequence of length T, and P{Z;|/]
denotes the probability of Z;, conditioned on knowledge
of the state sequence. Explicitly, we have (consider the
simulation procedure)

P(z;|1]) = {TI(l)bI(I)[Z(l)]}{al(l)‘l(Z)bl(I)[Z(z)]}
) {al(T-l).I(T)bI(T)[Z(T)]}' (2.3)

As is intuitively clear from the HMM simulation proce-
dure, some state sequences / are, in general, more likely
than other state sequences to correspond to the given Z;.
In other words, some terms in the summation (2.2) are
larger than others. Since the ‘‘true’’ state sequence cor-
responding to Z7 is not observable, we define an optimal-
ity criterion and use it to select an ‘‘optimal’’ state se-
quence. We define an optimal state sequence to be any
state sequence for which the probability P[Z;{/] is a
maximum. Optimal state sequences are not necessarily
unique because the maximum P{Z;|/] may not be
uniquely attained; however, the HMM's developed in this
paper appear to give unique optimal state sequences, ex-
cept in situations which are of little or no importance in
the application. Other definitions of optimality are possi-
ble and potentially useful (see {5]), but only the definition
above is used in this paper.
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We refer to an optimal state sequence corresponding to
a given Zr as the Viterbi track, denoted /[ Z;], and to the
probability

Py[Z;] = max P[Z;|1] (2.4)
as the Viterbi score of Z;. Both the Viterbi track and the
Viterbi score are easily computed using the so-called Vi-
terbi dynamic programming algorithm. The Viterbi algo-
rithm gives the globally optimal state sequence as re-
quired by (2.4). Furthermore, the computational
complexity of the Viterbi algorithm is linear in T, the
length of the measurement sequence. This makes it a very
efficient algorithm in many applications.

For a given observation sequence (2.1), the Viterbi al-
gorithm is defined as follows. For s = 1, define

8](}) = In ‘l'j + In b}(z(l)),
¥i(j) = arbitrary
and, fort = 2,3, - - -, T, define

0<j=<n
(2.5)

5(j) = lnb(z(r)) + nax {6,-|(i) + In a,-,-}
(2.6a)
¥i(j) = argmax {8 (i) + In a;} (2.60)

where the argmax function gives the smallest index i for
which the maximum is attained. The Viterbi score is

Pv{Zr) = max {5r(j)} (2.7)

and the Viterbi track is given by
L{Zy) = {1(1), 1(2), - -, I(T)}

where

IAT) = argmax {8,(j)} (2.82)

0sjsn

andfort=T-1,T-2,---,1,

I(t) = Y(Bv(t + 1)). (2.8b)

For greater computational efficiency, the natural loga-
rithms of the components of x, A, and B are usually pre-
computed and stored for finite-outcome HMM’s.

The so-cailled forwvard-backward algorithm is used to
provide state occupancy information on the hidden Mar-
kov chain state sequence. We define the forward proba-
bilities o, ( j) by

a(j) = Plz(1), - -+, z(1) and /(1) = j],
lstsT (2.9a)
and the backward probabilities 8,( j ) by

B(j)= P[Z(l +1), z(t +2), - ’Z(T)ll(t) =j]-

lstsT-1. (2.9b)

The probabilities o, ( j ) are calculated with the recursion
ar(j) = mbi(2(1))

al(j) = bj(z(t)) i%} al—l(i)aijr t=2,--+,T
(2.10a)

and the probabilities 8,( j ) are calculated with the recur-
sion

Br(j) =1

8,(j) = E:o ajibi(z(‘ + 1)) Bii(i).  (2.10b)

We define the state occupancy probabilities at time ¢ by

v (i) = o, (i) Bl(‘)/P[ZI'] (2'“)

so that
i§0 'Yl(i) =1

The state occupancy probability v, (i ) is interpreted as the
probability that the Markov chain occupies state i at time
t, conditioned on the measurement sequence. We shall see
in Section III how the state occupancy probabilities are
used to define the continuous output of the HMM fre-
quency tracker.

The computational complexity of the Viterbi algorithm
is (n + 1)?T additions if the natural logarithm of the com-
ponents of the B matrix can be stored. If the measurement
pdf vector B must be computed for each symbol in Z;,
then the complexity is [(» + 1)* + ¢;) T additions where
¢, is the complexity (measured in units equivalent to ad-
ditjon) of computing the natural logarithm of the compo-
nents of the vector B for an arbitrary measurement.

The computational complexity of the forward-back-
ward algorithm is (n + 1)°7 multiplications if the B ma-
trix is stored and [(n + 1)? + ¢,] T multiplications if the
measurement pdf vector B is computed for each measure-
ment in Z; where ¢, is the complexity (measured in units
equivalent to multiplication) of computing the compo-
nents of the vector B for an arbitrary measurement. The
imperative need to rescale to prevent underflow (dis-
cussed in [6]) requires an additional (n + 1) 7T divisions.

An important concept in the application of HMM’s is
‘‘training.’’ In the case when many different measurement
sequences are known for the same HMM, maximum like-
lihood estimates of the model parameters «x, A, and B can
be computed using the so-called Baum-Welch reestima-
tion algorithm. Training is not used for the frequency
tracker presented in this paper. Further background infor-
mation on HMM’s, including a discussion of training, is
found in 5], [6], [10] and in the references cited therein.

IIl. FREQUENCY TRACKING WiTH HIDDEN MARKOV
MODELS

A permissible frequency track is defined to be any state
sequence that is a realization of the Markov chain char-
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acterized by = and the 4 matrix. The states representing
frequency cells are numbered from 1 to n and are referred
to as the nonzero states. The collection of nonzero states
is called the gate, and the gate size is said to be n. The
unique state representing the absence of the frequency
track is numbered O and is referred to as the zero state.
Track initiation and track termination are defined to occur
whenever the state sequence transitions out of and into the
zero state, respectively. The SNR does not affect the tran-
sition probabilities between the nonzero states because
these transitions are related only to possible frequency
track variations inside the gate; however, the SNR does
influence track initiation and termination. An important
issue in optimizing the performance of the HMM tracker
is the definition of the row and column of the 4 matrix
corresponding to transitions out of and into the zero state.
This issue is discussed in Section III-D,

The frequency track is not directly observable, except
at infinite SNR, and is inferred from measured data. The
measurements are random functions of the frequency
state, and the pdf’s of these random functions constitute
the B matrix of the HMM tracker. As discussed in Section
I, a simple threshold detector is used to estimate which
frequency cell, if any, in the gate is occupied by the fre-
quency track. The measurements are, therefore, estimates
of the state of the Markov chain. By setting a detection
threshold D to control false alarms, it is possible to ob-
serve the zero state. The size of D depends on the SNR,
but it also affects track initiation and termination. For ex-
ample, if D is 100 large, no detections are made and only
the zero state track (i.e., no track) is measured. Conse-
quently, setting the detection threshold is an important
issue in optimizing the performance of the HMM tracker.
This issue is discussed in Section III-D.

The threshold detector is not the only detector possible,
but it is one that is commonly used in practice when fre-
quency cells (usually FFT bins) constitute the tracker in-
put. Besides its simplicity, our main purpose in using the
threshold detector is to show that the HMM tracker is ap-
propriate whenever it is possible to estimate (analytically
or otherwise) the B matrix from some underlying model
of the physical process. The performance of the frequency
tracker is obviously tied closely to the particular detector
selected.

The HMM tracker accepts as input a measured track
(i.c., a sequence of measured states) and produces both
discrete and continuous output tracks. The discrete output
is the Viterbi track or maximum likelihood estimate of the
state sequence. The Viterbi track is necessarily a valid
track, i.e., the Viterbi track is a realization of the Markov
chain characterized by = and A. However, the Viterbi
track is not a typical random walk because it is condi-
tioned on the measurements. For example, the Viterbi
track, the true track, and the measured track all coincide
for infinite SNR. In this paper, the HMM tracker is set up
so that ‘‘smooth’’ tracks have a higher likelihood than
*‘rough’” tracks at all finite SNR’s.

The continuous outputs of the HMM tracker are com-
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prised of the mean cell occupancy (MCO) track, denoted
Iy(1), and the gate occupancy probability (GOP) func-
tion, denoted Gy (1). They are defined by

Go(1) = 1 = 7,(0) = Z (i)

i=]

(3.1)

and

ha(r) = 2 v(i)f/ Gol1) (32)
where the v, (i) are the state occupancy probabilities given
by (2.11) and the f; are the center frequencies of the cells.
Note that the sums in (3.1) and (3.2) do not include the
term i = 0; hence, the MCO track is conditioned on the
track at no time occupying the zero state. The MCO track
is continuously variable in the frequency range spanned
by the gate. The standard deviation oy, (t) associated with
the MCO track is defined by

ou(0) = B 7D - W]/Go(r).  (33)

The MCO track is undefined whenever the GOP function
is identically zero because, in this case, the track occupies
the zero state with unit probability, i.e., the track has ter-
minated. In practice, the MCO track should be terminated
whenever the GOP function is near zero. This can be done

" by setting a threshold for G,(#) or by setting a threshold

for the MCO track standard deviation o,4(7). Alterna-
tively, the decision can be based on the state of the Viterbi
track at time ¢. Examples of the Viterbi track, the MCO
track, and the GOP function are given in Section IV.

Once a transition into the zero state occurs, the track is
terminated. If the track is reinitiated in the gate at some
later time, the question arises as to whether or not these
two tracks correspond to the same frequency track. The
resolution of this question depends on the particular ap-
plication and on how much additional information is
available. It is outside the scope of the present paper.

In the remainder of this section, we discuss in turn the
detailed mathematical structure of each of the components
of the HMM tracker. The important topic of optimization
of the tracker is fully discussed in Section III-D.

A. Definition of the Transition Probability Matrix

In terms of the A matrix, the probability of track initi-
ation into frequency cell j is given by the transition prob-
ability ag;, and the probability of track termination out of
frequency cell j is given by a,,. For the HMM tracker
presented here, it is assumed that the track initiation and
termination probabilities, denoted u and v, respectively,
are independent of the state j within the gate, i.e., for j

=1,2,:++,n, we have
ay = u/n (3.42)
ag = v. (3.4b)

If the A matrix is to be a valid transition probability ma-
trix, each of its rows must sum to unity. Thus, from
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(3.4a), we have
(3.4¢)

This completes the definition of row and column 0 of the
A matrix. The best choice of u and v depends on the par-
ticular application and, in principle, these parameters can
be determined by training the HMM. Altematively, in
Section 11I-D, it is shown how to choose u and v to op-
timize the performance of the HMM tracker without train-
ing. In this section, however, u and v are treated as free
parameters.

Let the ith cell in the frequency domain be denoted by

[ﬁvﬁ#lly

where —» < fi < f < *+ - < f,,; < +. The center
frequency f of the ith cell is then given by f, = (f +
fi+1)/2. If the frequency track lies in the ith cell at the
current time step, the location of the track at the next time
step is assumed to be characterized by a Gaussian distri-
bution with mean £ and standard deviation d where d is a
measure of the *‘‘process’’ noise. Hence, the probability
that the frequency shifts from the ith cell to the jth cell at
the next time step is g; where

ap =1~ u.

i=1,2,-",n

i (B :
&= xa) ™ [ e (— (/0 - DY} o

(3.5)

Note that g; is not a function of the SNR.
The natural definition of the transition probabilities be-
tween the nonzero states of the Markov chain is

n
dij = (l - v)gij/kg‘ 8ik> iL,j= 1,2, -+ ,n

(3.6)

However, this definition results in an *‘unbalanced’’ gate,
i.e., the diagonal elements &, are not independent of i for
i > 0. If the gate is sufficiently unbalanced, then in cer-
tain instances, the Viterbi track can be skewed toward the
outer cells in the gate. A moment’s reflection shows that
the problem is caused by the finite gate size and that fre-
quency cells at the edge of the gate have the largest self-
transition probabilities. The problem is not significant
when the standard deviation d of the process noise is fairly
small compared to a cell width, but it grows progressively
more severe as d gets larger.

To overcome the unbalanced gate problem, the transi-
tion probabilities between the nonzero states of the HMM
tracker are derived from the natural probabilities 2;; and
the termination probability v in the following manner.
Define

amm = min d,’,‘.
I<isn
Now, fori > 0, elements {a,,, - - - , @;n } Of the ith row
of the A matrix are obtained from the row vector & = (d;y,
-, &,} as follows. Replace the ‘‘inner’’ element g,

with a,,, and normalize the ‘‘outer’” n — I elements so
that & sums to 1 — v; denote this vector by ¢,. If no ele-
ment of ¢, exceeds ap,, then stop. Otherwise, replace the
‘“‘inner"’ elements &; ;- ,, d;;, and 4, ;, , of & with a,,,, and
normalize the ‘‘outer’” n — 3 elements so that ¢ sums to
1 — v; denote this vector by c,. If no component of ¢,
exceeds a,,, then stop. Otherwise, continue the algo-
rithm until a vector, say c,, is found whose components
do not exceed a,,,- The ith row of the A matrix is then
defined in partitioned form by (v, c,). In this algorithm,
ifindexes i < 1 ori > nare encountered, the correspond-
ing element is ignored. Note that the A matrix defined in
this fashion is balanced and the transition probabilities a,
are as nearly equal to the natural probabilities 4;; as pos-
sible without unbalancing the gate.

B. Derivation of the Measurement Probability Matrix

The fact that at a given time the signal frequency lies
in a prescribed frequency cell does not necessarily mean
that a detection occurs in that cell. The presence of ran-
dom noise can result in some other cell within the gate
fortuitously recording greater spectral power than the
power in the correct cell. Alternatively, if no cell within
the gate records a power greater than the preset threshold
D, then a detection is registered in the zero state. The B
matrix, therefore, depends on the background noise char-
acteristics, the SNR, and the threshold D. In this section,
the SNR and the threshold D are treated as free parame-
ters. How they are chosen to optimize tracker perfor-
mance is discussed in Section III-D.

It is assumed that the data time series is of the form

2(to + kT,) = Asin [p(1o + kT,) + £] + n,  (3.7)

where 1, is the initial time and T, is the sampling period.
It is also assumed that the signal amplitude A, phase £,
and angular frequency p remain constant over the period
NT,, which is the data acquisition time for a Fourier trans-
form of size N. The noise is taken to be zero-mean and
Gaussian in nature so that

(3.8)

where the angular brackets denote an ensemble average,
5 denotes the Kronecker delta function, and ¢? is the var-
iance of the noise.

The discrete Fourier transform, denoted x(q). at an-
gular frequency g of the time series in (3.7), is given by

(nk") ) = 6k;02

N-1t
x(g) = (1/N) Z 2(to + KT,) exp (—jakT,). (3.9)
Transforming the complex variable x (q) into polar co-
ordinates gives
(3.10a)
(3.10b)

where (R, 7) denotes the amplitude and phase of x(q).
The amplitudes and phases of the signal and noise com-
ponents of x are denoted by (C, ¢) and (D, 8), respec-

x(q) = Re”
= Ce’ + De”
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tively. From (3.7), (3.9), and (3.10), it follows that
C = (A/2N)sin [N(p - ¢)T,/2]/sin [(p - q)T./2]

(3.11a)
and
1=(N-1)(p-@)T/2 + ptg + § — x/2.
(3.11b)
The pdf of the amplitude R is given by
P(R) = (2RN/a*)1,(2RCN/o?)
~exp [-N(R? + €?)/a?] (3.12)

where I, is the modified Bessel function. Note that P(R)
is a noncentral Rayleigh density function.

The Fourier transform in (3.9) is normally calculated
only at the discrete values g;,, i = 1,2, -+ , n where n
is the gate size. For a detection to be registered for a par-
ticular observation frequency g,,, two requirements must
be met. First, the amplitude R,, of the Fourier transform
at frequency g, must be larger than the amplitudes R, . ,,
at all other frequencies g; , ,, within the gate, and second,
the amplitude R,, must exceed the prescribed threshold D.
If R; < D for all i within the gate, a detection is registered
in the zero state (i.e., m = 0).

To simplify the problem, we assume the case where the
discrete angular frequencies g; are given by

¢ = 2xi/(NT)) (3.13)

and where the true signal angular frequency p lies close
to one of the g; (say, g,), i.e.,

p = 2xm/(NT)). (3.14)

Substituting (3.13) and (3.14) into (3.11a), we have in
this case

C = (4/2)s,, (3.15)

Substitution of (3.15) into (3.12) leads to two separate
expressions for the pdf:

i = m; P(R) = (2NR,/0®)I(ARN/c?)
- exp [~N(4R? + A%)/(407)]
(3.16a)
i £ m; P)(R) = (2NR,/a?) exp [ -NR?/4?].
(3.16b)

Equation (3.16a) describes the pdf of R, in the case when
the true signal lies in the ith frequency cell, and (3.16b)
represents the situation when no frequency is present in
that cell.

We are now in a position to calculate the various ele-
ments B, of the B matrix. We consider first the case where
there is no signal present in the frequency cells within the
gate (i.e., m = 0). If the amplitudes measured in all cells
lie below the threshold (i.e., R, < D for all i), then no
detection is registered. The probability of this event de-
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fines the B-matrix element By,. From (3.16), we have

n D
By = '_IJI So Py(r) dr

=[1 - exp (-DN/a?)]'". (3.17)
It is possible, however, that the random noise contribu-
tion to the time series results in the amplitude in one or
more of the cells being larger than the threshold D. This
situation corresponds to a false alarm. The probability of
a false alarm in the ith cell is given by

By = (1 — By)/n, (3.18)

In the case where a signal is present in one of the cells
within the gate (i.e., m = 1, 2, - - - | n), we have three
disjoint cases:

1) adetection is registered in the correct cell (i.e., i =
m);

2) a detection is registered in an incorrect cell (i.e., i
#m,i # 0);

3) no detection is registered in any cell (i.e., i = 0).

The probabilities B,,,, B, ;+... and B, corresponding
to these three cases are given by the expressions

i=1.2,+,n

B,, = S: P(r)[1 - exp (~rN/a*]" " ar
(3.19a)
B =[1 — exp (-D?N/a?)] &] P(r)dr
(3.19b)
Bniam=[1 = Bu = Buy)/(n — 1). (3.19¢)

This completes the definition of the B matrix.

C. The Initial State Probability Vector

The final component of the HMM tracker is the initial
state probability vector . The best choice for x depends
on the application. For instance, when the entire mea-
surement set Z; is utilized, as in the examples in Section
IV, it is appropriate to choose = to be independent of the
measurements. In this case, a good strategy is to force
automatic track initiation by starting in the zero state;
thus, x, = Ag, fori = 0, * -+ , n. Altenatively, x can be
taken equal to the long-term state occupancy probability
vector u for the A matrix where u is defined by the matrix
equation uA = u. (The vector u exists uniquely and is
nonnegative because the A matrix is positive.) In this pa-
per, however, we utilize the former choice because of its
simplicity and because it makes the HMM tracker per-
form like a kind of detector.

In applications where measurements are taken of an on-
going track, it is reasonable to suppose that the measure-
ment set Z; is comprised of the most recent T measure-
ments where T is fixed. As indicated in the previous
paragraph, for the first data set, the HMM tracker should
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use an initial probability vector that is independent of the
data. For subsequent data sets, however, 7 should be up-
dated so that it is dependent on earlier measurements. In
effect, the updated 7 characterizes the impact of track his-
tory of the HMM track estimates for the current measure-
ment set. We describe two updating methods that depend
on the fact that time ¢+ + 1 for the previous measurement
set is identical to time ¢ for the current set. The simplest
update assumes that the Viterbi track for the previous
measurement set is correct at time ¢ = 1. If I,(1) denotes
the state of the Viterbi track at time ¢t = 1, then the «
update for use with the current measurement set is taken
to be row I, (1) of the 4 matrix. Alternatively, the state
occupancy probability vector v,(i) from the previous
measurement set at time ¢ = 2 can be used as the x update
for the current measurement set. This method is compu-
tationally less efficient than the former method; however,
based on simulated data, it seems to give slightly more
accurate estimated MCO tracks.

The HMM tracker is a fixed interval tracker, i.c., for
each input measurement sequence Zr, the output se-
quence is an estimated track at each time t = 1,2, « - -,
T. When overlapped measurement sets are utilized, as in
the preceding paragraph, any time 7 in the output HMM
track sequence can be chosen to correspond to the track
estimate for the current measurement set. For example,
we define the GOP function with lag T, = T — T¢ by

Go(t; Tg) = 1 = v7,(0).

Similar definitions can be made for the MCO track and
the Viterbi track. If we choose T = 1, the HMM tracker
functions as a fixed lag tracker withalag T, = T — 1. If
Tg = T, the HMM tracker has no lag, i.e., T, = 0. Based
on simulated data, it would appear that the variance in the
MCO track increases as Ty increases from 1 to T, how-
ever, this subject is outside the scope of the present paper
and is not discussed further.

D. Optimization of the HMM Tracker

The performance of the HMM tracker is completely de-
termined by the parameters «, v, and d characterizing the
A matrix and the parameters D and SNR characterizing
the B matrix. However, it is not intuitively obvious how
to go about setting reasonable numerical values for all
these parameters. We propose the following approach.
The process noise parameter d and the SNR parameter are
each selected independently of the other parameters in the
straightforward manner discussed below. The remaining
three parameters, however, are interdependent and are se-
lected by solving three nonlinear equations in three un-
knowns. One equation is derived from an optimal detec-
tion criterion, and the other two equations are derived
from optimal tracking criteria. All three optimality crite-
ria are discussed below.

The process noise standard deviation d is similar to the
process noise term in a standard Kalman filter. The smaller
the value d, the straighter the frequency track is assumed
to be; the larger d becomes, the more the frequency track

looks like uniformly distributed noise in the gate (even at
infinite SNR). For frequency line tracking, an estimate of
d can be derived from an estimate of the stability of the
line. If such estimates are not available, the best value to
use for d can be assessed by trial and error. Examples in
Section IV show the effect of different values of d on the
output of the HMM tracker.

The HMM tracker is a time-invariant optimal tracker of
an intermittent signal that has a specified SNR whenever
it is present. We refer to the specified SNR as the tracker
SNR. If the true SNR is greater than the tracker SNR, the
HMM tracker may interpret genuine frequency changes
in the measurement sequence as random noise so that the
estimated tracks may be too smooth and may persist after
the true signal has terminated. On the other hand, if the
true SNR is smaller than the tracker SNR, the HMM
tracker may interprct random noise in the measurement
sequence as being incompatible with the assumed process
noise, and the net result may be premature track termi-
nation. Both effects may occur if the true SNR is fluc-
tuating above and below the tracker SNR over the mea-
surement sequence Zr. For robust HMM tracking, the
tracker SNR should be set somewhat smaller than the es-
timated mean of the true SNR when avoidance of pre-
mature termination is critical in the application, and
greater than this estimate when belated termination is more
important. Alternatively, the tracker SNR can be set by
trial and error just as the process noise standard deviation
d is often selected. Examples in Section IV show the ef-
fects of different tracker SNR's on the HMM tracker out-
puts. It is seen that the HMM tracker is reasonably insen-
sitive to SNR mismatch.

To define an optimal detection criterion for the HMM
tracker and to set the detection threshold, we use the long-
term state occupancy probability vector, denoted g = ( uo,
4y, **° , u,) of the A matrix. We then show that, for
optimal detection, the threshold D is a function of the
other parameters defining the HMM tracker. The value of
D influences the frequency of occurrence of false alarms
and false dismissals in the detection process. We define a
false alarm as a measurement (i.e., a detection) in a non-
zero state when the zero state is the true state. Thus, the
probability of a single false alarm in state i > 0 is By;.
Since we have assumed that the A matrix characterizes the
frequency track, the long-term total false alarm probabil-
ity Pg, is given by

n

Pra = o 2 Bo = wo(l = B)  (3.20)
where the last expression in (3.20) follows because the B-
matrix rows sum to unity. Similarly, a false dismissal is
defined as a measurement in the zero state when a nonzero
state is the true state. Thus, if the true state is i > 0, the
probability of a single false dismissatl is B;o, and the long-
term total false dismissal probability Pgp is given by

Pm=¥m%=U-MMw (3.21)

-177-




STREIT AND BARRETT: FREQUENCY LINE TRACKING USING HMM'S

The last expression follows from the fact that B, is in-
dependent of the index i for i > 0.

Let a and 8 be nonnegative numbers that add to unity
and that represent the relative importance (in the specific
application) of false alarms and false dismissals. The er-
ror detection criterion is defined by

CED = GPFA + 3PFD' (322)

The optimal threshold is therefore that value of D which
minimizes Cgp; thus, since uq is independent of D, we
require D to satisfy

3Cep By B,
—— = —apg . + - )= =0. (3.

3D apo 5" + B(1 — po) 70 = 0. (3.23)
For the A matrices used in this paper, it is easy to show,
using (3.4), that

o = v/(u + v). (3.24)

Substituting (3.24) into (3.23) and then differentiating
(3.17) and (3.19b), it follows that the optimal threshold
satisfies the nonlinear equation

ponzl @B_m]

2ND av
n avy B,','

P(D) = — Bu

- exp (~DN/a?) (3.25)

where P,(D) is given by (3.16a). Equation (3.25) can be
solved by a variety of simple iteration procedures, e.g.,
the bisection method. Obvious modifications are required
in (3.25) if either av = Q or Bu = 0.

An interesting special case of (3.25) occurs for a =
u/(u + v)yand 8 = v/(u + v). The optimal threshold
is then independent of u and v and dependent only on the
tracker SNR. For these values of a and 8, the criterion
Cep is physically meaningful because it emphasizes false
alarms when the frequency track is unlikely to be in the
zero state (i.e., po is small) and emphasizes false dis-
missals when the track is unlikely to be in the gate (i.e.,
o is large). This choice of « and 8 is not necessarily the
best choice for the specific application, however, and we
do not pursue the matter further here.

As the tracker SNR goes to infinity, the ratio B,y/B;
goes to zero. Neglecting this ratio in (3.25) gives the sim-
pler approximate expression

P(D) = (2nND/0*)(av/Bu) exp [ -D’N/ ¢*].
(3.26)

This expression must be solved iteratively for D, but it
does not require the evaluation of integrals as does (3.25).
The threshold satisfying (3.26) is independent of the
tracker SNR, and dependent on « and v.

To obtain a threshold from (3.25), we must first specify
u and v. We use the GOP function to define optimal
tracker initiation and termination criteria. We then show
that, for optimal tracking, the parameters u and v are
functions of the other parameters defining the HMM
tracker. An exemplar tracker initiation measurement se-
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quence is defined by
z = [(rn +1)/2],
fort = [T/2] — [Lg/2] + 1,
o [T/2) = [Le/2] + Ly
z =0, otherwise (3.27)

where [x] denotes the greatest integer less than or equal
to x. This exemplar sequence is comprised of midgate
measurements of duration Ly in the center of a string of
zero state measurements. Let Gog(?) denote the GOP
function corresponding to (3.27), with the HMM tracker
started in the zero state. Intuitively, Gog(1) = 0 at time
t = 1, rises monotonically to some maximum value at
time ¢t = 7/2, and thereafter decreases monotonically to
time ¢ = T. The tracker initiation criterion is defined by

Cop = max GOB(') (328)
IsisT
and its optimal value is defined by Cpg = 1/2. With this
optimality criterion, the HMM tracker gives a 50% prob-
ability that the exemplar sequence (3.27) is identified as
a track by the GOP. In other words, sequences of mea-
surements in the gate of duration less than L are treated
by the tracker as likely false alarms, and sequences of
duration greater than Lj are treated as likely new tracks.
Similarly, an exemplar tracker termination measure-
ment sequence is defined by

=0,
fort = [T/2]) — [Lg/2) + 1,
<o, [T/2) - [Le/2) + Le
7z =[(n +1)/2], (3.29)

This exemplar sequence experiences a ‘*drop out’’ of du-
ration Lg in the center of a midgate measurement se-
quence. Let Gz (1) denote the GOP function correspond-
ing to (3.29), with the HMM tracker started in state {(n
+ 1)/2]. Intuitively, Gog(1) = 1 at time ¢t = 0, falls
monotonically to some minimum value at time r = T/2,
and thereafter increases monotonically to time ¢ = T. The
tracker termination criterion is defined by

otherwise.

COE = min GOE(’) (330)
I<isT

and its optimal value is defined by Cpr = 1 /2. HMM
trackers satisfying this optimality criterion give a 50%
probability that the exemplar sequence (3.29) is not con-
sidered to be a track by the GOP. Thus, sequences of zero
state measurements of duration less than L are treated by
the tracker as likely false dismissals, and sequences of
duration greater than L are treated as likely terminated
tracks.

Optimal values of u and v are determined by first se-
lecting durations Lg and L that are suitable for the spe-
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cific application, and then solving the three nonlinear
equations (3.25), Cop = 1/2, and Cpe = 1/2 simulta-
neously for D, u, and v. This set is equivalent to a system
in only u and v because D is given as a function of ¥ and
v by (3.25) and because d and the tracker SNR are already
specified. Cog and Cof are readily computed for any given
pair of (u, v) values using the HMM tracker. Conse-
quently, straightforward iteration procedures can be used
to find optimal values for « and v. In practice, we proceed
by using the HMM tracker to compute the right-hand sides
of (3.28) and (3.30) for a small grid of (u, v) pairs after
first computing D using (3.25) at each gridpoint. The grid
is adjusted by inspection until near optimal values of Cyp
and Cyg are found.

IV. AppLicATION OF HMM FREQUENCY TRACKER TO
SIMULATED Data

The performance of the HMM frequency tracker is
evaluated by application to simulated data. The advantage
of simulated data over real data is that the underlying,
“*hidden’’ state sequence in this case is precisely known,
thus enabling the objective assessment of the tracker per-
formance.

For the purposes of evaluation, two sets of simulated
data are generated. Each set consists of a frequency-mod-
ulated sine wave added to white Gaussian noise. The fre-
quency excursions of the modulation spans five of the fre-
quency cells employed in the Markov model. In the
examples considered here, the gate size is set to nine, and
the gate is centered about the mean signal frequency. The
total number of states in the Markov chain is thus ten,
counting the zero state.

The frequency modulation characteristics for the two
data sets are displayed in Fig. 1. The y axis is divided
into the nine discrete frequency cells employed in the
HMM, and the x axis is divided into 100 time steps. The
true signal frequency as a function ot time is indicated by
the cell occupancy track. For Fig. 1(a), the signal is pre-
sent throughout the total time period, while in Fig. 1(b),
it is present only intermittently.

Intensity-modulated *‘spectrograms’’ for the two data
sets are presented in Fig. 2. The signals of Fig. 1 are
added to white noise and the power spectra of the resultant
sums are then calculated. The power spectra are shown as
a function of time in the spect:ograms of Fig. 2. The SNR
values in Fig. 2(a) and (b) are —23 and —20 dB, respec-
tively. The underlying, hidden state sequence is difficult
to discem in Fig. 2.

The various outputs of the HMM tracker for the contin-
uous signal frequency are displayed, together with the
measurement sequence, in Fig. 3. The measurement se-
quence, which indicates the cell containing the maximum
spectral power if the power exceeds a prescribed thresh-
old or the zero state if the power in no cell exceeds the
threshold, is shown in Fig. 3(c). The zero state is shown
slightly displaced from the other frequency cells, and in
this example remains unoccupied at all times. The mea-
surement sequence forms the only data input to the HMM
tracker.

(a)

(b)

Fig. 1. The continuous (a) and intermittent (b) true signals used for the
investigation of the HMM tracker. The frequency cells are marked along
the y axis and the time divisions along the x axis.
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Fig. 2. Intensity-modulated **spectrograms’’ for the signals of Fig. 1. The
signals are embedded in white Gaussian noise. SNR values of —23.0
and —20.0 dB are used for (a) and (b), respectively.
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Fig. 3. Results of applying the HMM tracker to the data of Fig. 2(a). Pa-
rameters employed are: tracker SNR = —23dB, d = 0.333, 4 = 0.24,
v = 0.016, D = 0.0278. (a) The output of the MCO tracker; the shaded
area contains all the tracks within one standard deviation of the mean
track. (b) The probability of zero state occupancy [i.c., v,(0) = 1 —
Go(1)) as a function of time. (c) The measurement sequence; the cells
corresponding to the zero state are shown undemeath the celis of the
gate. (d) The Viterbi track; the cells corresponding to the zero state are
shown undemeath the cells of the gate.

The MCO track is shown in Fig. 3(a). The shaded area
marks the bounds lying one standard deviation estimate
oy (1) on either side of the optimal track. The MCO track
does not directly estimate the possibilities of track initia-
tion and termination. However, track initiation and ter-
mination can be included by defining a threshold on the
MCO track standard deviation or by calculating the GOP
function and setting an appropriate threshold there. The
probability of zero state occupancy, i.e., 1 — Go(2), is
shown in Fig. 3(b). This probability starts high because
the HMM tracker is initialized in the zero state.

The Viterbi track for this data set is displayed in Fig.
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3(d), and is seen to provide an excellent reconstruction of
the true state sequence of Fig. 1(a). The Viterbi track does
not initiate until three time steps after the start of the data
sequence. The delay is explained by the initiation of the
HMM tracker in the zero state and by the large fluctua-
tions in the measurement sequence at the start of the se-
quence. This delay is consistent with the high probability
of zero state occupancy in Fig. 3(b) and the large variance
in the MCO track over the corresponding period. The pa-
rameters used in the HMM tracker for the continuous sig-
nal frequency are listed in the caption of Fig. 3.

The results from the application of the HMM tracker
for the intermittent signal frequency [Fig. 1(b)] are dis-
played in Fig. 4, and Fig. 4(a)-(d) correspond 1o the anal-
ogous results shown in Fig. 3(a)-(d) for the continuous
signal. For the intermittent signal, the Viterbi track is seen
once again to provide an excellent reconstruction of the
true state sequence of Fig. 1(b). In this case, the capabil-
ity of the Viterbi track to terminate and initiate as the sig-
nal drops out and reappears is clearly demonstrated. From
Fig. 4(a), it is seen that the MCO track follows the true
state sequence closely during the periods when the signal
is present, and exhibits a large variance when the signal
is absent. Similarly, the probability of zero state occu-
pancy is also large when the signal is absent. The setting
of a threshold on the MCO track standard deviation or on
the probability of zero state occupancy could be used to
implement track termination and initiation for the MCO
track. The results would then agree closely with those ob-
tained from the Viterbi track. The HMM parameters used
for these examples are listed in the caption to Fig. 4.

As we have indicated earlier, for optimal performance
of the HMM tracker, the parameters of the HMM should
represent as closely as possible the characteristics of the
line being tracked. The process noise parameter d is a
measure of the likelihood of the track changing fre-
quency. In Fig. 5, the Viterbi track for the continuous
signal is presented as the value of the process noise pa-
rameter d is decreased from 0.667 to 0.167. For the high-
est value of d, the track tends to follow the measurement
sequence too closely, with the result that the Viterbi track
exhibits a fine structure that is not present in the true state
sequence. On the other hand, when d is small, the tracker
fits the measurement sequence by a series of straight line
segments, separated by track terminations and reinitia-
tions. In this case, the tracker finds it less ‘‘costly’’ to
terminate and reinitiate the track than to allow the track
to step to an adjacent frequency cell. We refer to this phe-
nomenon of termination and reinitiation as ‘‘punctua-
tion.”’ The value of 0.333 for d seems to provide the op-
timal track for this data set.

In Fig. 6, the effect of varying the tracker SNR is in-
vestigated for the intermittent signal of Fig. 1(b). In this
case, the SNR of the true signal is —20 dB, and the Vi-
terbi track exhibits optimal results when the tracker SNR
is equal to the true SNR. If the tracker SNR is less than
the true SNR [e.g., Fig. 6(a)], the tracker is less likely to
terminate, even when the true signal is absent. If the
tracker SNR is considerably larger than the true SNR, the
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Fig. 4. As for Fig. 3, but for the data of Fig. 2(b). Parameters employed
are: tracker SNR = ~20dB, d = 0.333, « = 0.3, v = 0.0092, D =
0.0386.
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Fig. 5. The Viterbi track for the data of Fig. 2(a), showing the effects of
varying the process noise d. Values of d are: (a) 0.667, (b) 0.333. (c)
0.222, (d) 0.167. Other parameters are the same as in Fig. 3.

tracker is likely to terminate, even when the signal is still
present (as the HMM was designed for a stronger signal),
and is more likely to follow the measurement sequence
too closely (as the HMM attaches an overimportance to
each measurement). These two modes of behavior can be
seen in Fig. 6(d).

The dependence of the probability of zero state occu-
pancy on the tracker SNR exhibits a similar range of be-
havior to that of the Viterbi track. In Fig. 7(a)-(d), the
probabilities of zero state occupancy are shown for the
same range of HMM parameters as was used in Fig. 6(a)-
(d). For a tracker SNR of —25.2 dB. the probability of
zero state occupancy is always less than 0.5 (except near
the start of the data sequence) and thc Viterbi track ter-
minates only once. This termination is a punctuation
caused by the necessity of reducing the cost of making a
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(a)

b

(c)

(d)

Fig. 6. The Viterbi tracks for the data of Fig. 2(b). showing the effects of
varying the tracker SNR. Values of the tracker SNR are: (a) —25.2 dB,
{b) =23.0dB. (c) —20.0dB. (d) —17.0dB.

(a) \

(b) J/ \ /A \
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Fig. 7. The probability of zero state occupancy for the data of Fig. 2(b),
showing the effects of varying the tracker SNR. The parameter values
are the same as in Fig. 6. The zero state occupancies associated with the
Viterbi tracker are also shown for comparison.

spurious five-cell frequency change. As the tracker SNR
increases, so does the probability of zero state occupancy,
until in the region where the tracker SNR is considerably
larger than the true SNR, this probability becomes exces-
sively high, and spurious terminations occur in the Viterbi
track.

From the data shown in Figs. 1-7, it is apparent that
both the Viterbi and MCO tracks provide very good re-
constructions of the hidden, true signal behavior. The two
tracks are mutually consistent. Track termination and ini-

tiation capabilities are intrinsic to the Viterbi track and-

can be built into the MCO track Figs. 6-7 indicate that

optimal performance of the trackers is dependent on the
tracker parameters being suitably matched to the signals
under investigation. However, it has been our experience
that even in a case where some mismatch of parameters
is unavoidable (e.g., the tracking of real signals), the two
tracks still provide remarkably good reconstructions of the
underlying signal, and agree consistently with what would
be obtained from careful inspection of the original spec-
trograms.

V. CoMPARISONS TO RELATED TRACKERS

A. Formant Tracking

Kopec [7] studies the problem of tracking formants in
speech using HMM's. Formant tracking is similar to fre-
quency line tracking, and Kopec’s paper and this paper
have much in common. Both papers use finite-state, fi-
nite-outcome HMM’s, and both use the same kinds of
states. Moreover, Kopec uses a *‘distinguished nonnu-
merical state’’ to represent the absence of a formant, just
as we have used the zero state to indicate the absence of
a track in the gate. The different applications, however,
require different definitions of the measurement sequence.
Kopec uses the codebook vectors that result from vector
quantization, whereas we use the frequency state esti-
mates of a threshold detector.

A significant difference between Kopec’s paper and our
paper is that he uses the MCO track, but not the Viterbi
track. One reason he rejects the Viterbi track is that his
frequency ceils are from 50 to 100 Hz wide, and so any
discrete track estimate is inherently unacceptable. In our
application, however, the frequency cells can be made as
small as desired by increasing the FFT resolution. An-
other reason he does not use the Viterbi track is that it
does not provide a way to define or set a formant detection
threshold. In our application, we are able to define the
HMM tracker so that there is excellent correlation be-
tween zero state occupancy for the Viterbi track and low
values of the GOP function; therefore, there is no neces-
sity to set a threshold on the GOP to determine the pres-
ence or absence of the track. Nonetheless, in practice, we
would still set such a threshold for the GOP.

B. Relationship with a Dynamic Programming Tracking
Method

In a set of earlier papers (e.g., see [8]), Scharf et al.
present a dynamic programming method for tracking fre-
quency and phase. Although they do not identify it as
such, their algorithm is equivalent to an HMM using real-
valued continuous measurement vectors. They assume the
frequency is constant for the duration of each block of
time series data, and then allow a transition to another of
a set of discrete frequencies. These discrete frequencies
correspond to the states of the underlying HMM. They do
not, however, include a zero state to indicate the absence
of a signal. They use the Viterbi track exlcusively and do
not discuss the MCO track.

The fundamental equation of Scharf er al. is the loga-
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rithmic likelihood function, denoted LLF, which is given
by

T T
LLF = = X (1/20})]z, - st + Z I p(x|x-).
(5.1)

Here, {x,, - - - , x; } denotes a sequence of discrete fre-
quency states, the vector z, is a block of time series data
commencing at time ¢, the vector s, is the complex expo-
nential signal vector corresponding to a frequency x,, and
o, is the standard deviation of the random background
noise at time ¢. The measurements in the HMM of Scharf
et al. are the observed time series data blocks: thus, the
first term in the LLF is equivalent to the B matrix in the
HMM, and the second term in the LLF is equivalent to
the 4 matrix of the HMM. The dynamic programming
algorithm that Scharf er al. present for maximizing (5.1)
is equivalent to the Viterbi algorithm (2.5)-(2.6).

C. Bayes-Markov Tracking

Jaffer et al. [9) present a recursive Bayesian technique
for tracking dynamic signals in noise. Although they do
not present it as an HMM, their technique is equivalent
to a finite-state HMM using real-valued continuous mea-
surement vectors. It uses a one time-step recursion to up-
date the posterior pdf of the state conditioned on the mea-
sured data, but it does not treat sequences of
measurements collectively. The MCO track, if used with
zero lag, is similar to the tracker of Jaffer er al.

Jaffer er al. define the states of their model to be FFT
resolution cells just as we have done, but they do not de-
fine a zero state to denote the absence of a signal. A mea-
surement is a (real) vector whose components are the
magnitudes of the output FFT’s in the resolution cells.
Let P[X, = j|Z] denote the posterior pdf of the signal
location in cell j conditioned on the entire measurement
sequence Z,. The fundamental equation of their method
(neglecting scale factors) is

P[X, =jIZI] = b(ZIIXI =J) é aijP[Xl—l = i|Z:—l]
(5.2)

where b(z,| X, = j) is the pdf of the current measurement
vector z, conditioned on state j. Using Bayes’ theorem,
they show that

b(zllxl = .1) = f:§+N(Zl(j))/fN(Zl(j))

where fs.n(2,(j)) and fy(z,(j)) are the signal-plus-
noise and noise ouly pdf’s, respectively, of the data in
cell j. They define the initial state probability vector to be
uniform. Bayes’ theorem can be used to show that (5.2)
is identical to one step of the HMM forward algorithm
(see (2.10a)).

Jaffer et al. do not explicitly define the A matrix, but
the kind of matrix they have in mind is clear from the
context and from the two interesting examples they pre-
sent. (One example is pulsed radar tracking of range and
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Doppler, and the other is passive sonar tracking of Dopp-
ler and delay.) They also give a detection statistic that
they claim enhances signal detection despite target mo-
tion, but do not present examples of its use or discuss the
false alarm rates that might be anticipated.

VI. PossiBLE ExXTENSIONS OF THE HMM TRACKER

It is seen in Section IV that the HMM tracker is an
excellent algorithm for frequency line tracking, provided
that the underlying HMM is optimized for the line under
study. A number of extensions to the present work that
could enhance the performance of the HMM tracker even
further are now discussed.

In the application of HMM's to speech processing, the
training of HMM’s is a well-established concept. Train-
ing is mentioned briefly in Section II, but it is unnecessary
for the analyses carried out here for simulated data. With
real data, however, training the HMM will enable the de-
termination of the optimal values of the A matrix, B ma-
trix, and 7 for the line being considered. These parame-
ters are likely to depend on the SNR, and on the nature
and amplitude of the frequency modulation of the line.
Suitable training of the HMM should result in better fre-
quency tracking for real data.

Extending the present tracker to include the possibility
of more than one line being present in the frequency gate
would enable the tracking of lines whose frequencies are
close together, and would include the possibility of fre-
quency tracks crossing. One implementation of such an
extension is to allow multiple detections when the spectral
power in more than one frequency cell lies above the de-
tection threshold D. Each state is then no longer uniquely
associated with a frequency cell or the zero state, but de-
scribes one of the following possibilities: 1) no detection
in any frequency cell, 2) a detection in only one frequency
cell, or 3) detections in two (or more) frequency cells.
The A and B matrices would have to be reformulated in a
manner consistent with this interpretation.

The concept of an HMM state can also be extended to
incorporate both the frequency and its time derivative. The
advantage of such an extension is that the dynamic char-
acteristics of the line tracks can be more completely rep-
resented by the A matrix, with a consequent improvement
in the tracker performance; the disadvantage is that the
number of states is increased by a factor equal to the num-
ber of time derivative resolution cells, with a consequent
increase in the required computing time. The proposed
extension would enable a more meaningful comparison of
the HMM tracker to existing alpha-beta and Kalman
trackers (see, e.g., [11]-[13]) which typically use a track
derivative model.

The examples presented in Section IV are investigated
using a finite-time window of length T = 100. The pos-
sibility of sliding windows is discussed in Section III-C.
For frequency tracks that change substantially in fre-
quency over a long time, it would clearly be computa-
tionally advantageous to employ smaller windows and an
‘‘adaptive’’ gate whose center frequency and width
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change as the window slides over the data sequence. The
use of an adaptive gate, combined with the treatment of
multiple tracks within a gate, would significantly extend
the range of applicability of the HMM tracker.

Finally, it is emphasized that the data input to the cur-
rent HMM tracker is in the form of a measurement se-
quence obtained from a simple threshold detector. The
tracker is therefore denied access to important frequency
estimation information, e.g., the amplitude and phase of
the complex FFT’s associated with each frequency cell.
Extensions that allow for measurement sequences of a
more sophisticated nature than the output of a simple
threshold detector clearly warrant further investigation. A
possible alternative measurement sequence for input to the
tracker could be the instantaneous frequencies obtained
from a Wigner-Ville time-frequency analysis of the data.

VII. CoNCLUSIONS

In this paper, the application of HMM's to the problem
of frequency tracking is presented and discussed, and the
interpretation of several earlier tracking algorithms in
terms of HMM's is pointed out for the first time. It is
demonstrated in Section III how to formulate the fre-
quency tracking problem in terms of HMM’s and how to
optimize the HMM parameters for this problem. In Sec-
tion IV, the HMM tracker is tested by application to sim-
ulated data. The resultant tracks are comparable to those
obtained by inspection of the spectrograms, and are found
to be robust with respect to variations in the HMM param-
eters.

Tracker optimization is important and is responsible for
the observed consistency between the Viterbi and the
MCO tracks, and for the reliable initiation and termina-
tion of the tracks. We propose three different track initi-
ation and termination criteria based on the Viterbi track,
the standard deviation of the MCO track, and the GOP
function. The mutual consistency of the results obtained
by using these criteria is a testimony to the successful op-
timization of the HMM parameters.

The present work is capable of extension in several di-
rections. A number of possible extensions are outlined in
Section VI. These issues are the subject of current inves-
tigation, and will be addressed in subsequent publica-
tions.
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1 INTRODUCTION

The problem of producing accurate target tracks

from noisy measurements is of great current
interest for the automation of signal processing
systems. Trackers are classified as either linear

or nonlinear systems. Examples of linear trackers
are the alpha-beta and Kalman trackers. Examples
of nonlinear trackers are the probabllistic data
association (PDA) and hidden Markov model (HMM)
trackers. This paper deals exclusively with these
two nonlinear trackers.

Linear trackers estimate the track using simple
deterministic or statistical dynamic target motion
models to develop fllters for the target position
estimates. The problem with linear trackers is that
they are sensitive to outliers and false
measurements. The nonlinear PDA methodology can be
applied to (single input) linear trackers to
overcome the problems caused by outliers and
multiple input measurements. Application of the PDA
methodology to the Kalman tracker results in the
PDA-Kalman tracker studied in this paper.

The HMM tracker, which is a recent development,
models the target measurement sequence as a
probabilistic function of a Markov chain. The
states of the Markov chain define the target
states, and the transition probability matrix of
the Markov chain defines possible target motion.
The probabilistic function describes exactly the
non-Gaussian nature of the measurement process. The
HMM tracker provides a unified mathematical
framework for describing important tracking problem
issues. In particular, the HMM tracker initiates
and terminates tracks automatically as sn intrinsic
feature of the tracking algorithm. 1t does this by
incorporating a special state into the Markov chain
to designate the absence of a target. The HMM
tracking algorithm is equivalent to a sequence of
matrix-vector products.

A nev development 1s the HMM/A tracker which is a
HMM tracker that also uses the amplitude of the
input measurements as additional information. The
inclusion of emplitude information does not
significantly increase the complexity of the HMM/A
tracker over that of the HMM tracker. The HMM/A
tracker is the only tracker in this paper that uses
amplitude information. (For a discussion of the
performance of the HMM/A tracker as a signal
detector see Barrett & Streit, 1989.)

This pasper compares the PDA, HMM, and HMM/A
tracking algorithms when used for frequency line
tracking on two different simulated data sets.
These examples (and others not given here) show
that quantitative comparisons of the frequency line
tracking algorithms (FLTA) require careful

statistical analysis. At high SNRs adequate
comparisons can be made using simple error measures
(e.g. rms tracking error) on a few data sets, but
at low SNRs, such measures can be misleading and
one must resort to ensemble statistical measures of
tracker performance. Such statistical performance
comparisons are especially important when
discussing track initiation and track termination.

2 DEFINITIONS

In this paper, we treat the problem of tracking the
time varifation of the instantaneous frequency of an
isolated tone embedded in additive white noise as a
post-detection process applied to the evolving
short term Fourler spectra of the sampled time
series. Separating the tracking problem from the
detection problem can lead to suboptimal tracking
performance, but it is an approach commonly used in
practice.

The choice of detector is important because the
output of the detector determines the tracker input
measurements. Throughout this paper we use a simple
threshold detector because ot its widespread usage
and ease of implementation. No interpolation 1is
employed to smooth the intrinsic quantization
effects of this detector because interpolation 1s
not Justified at low SNR. Other well known
problems associsted with the threshold detector are
outliers (false detections) and missed detections.
These problems cause serious tracking errors 1in
1inear trackers; hovever, as the examples will
show, our PDA, HMM and HMM/A trackers are robust
against outliers and missed detections and are
capable of tracking down to the input quantization
level.

All the trackers considered here can, in principle,
accept multiple measurements as input; 1i.e., the
tracker input is the set (possibly empty) of centre
frequencies of all FFT cells whose amplitude
exceeds the detection threshold; hovever, 1if the
detection threshold is not exceeded, no frequency
measurement is made for the current scan, or block
of time series data. On the other hand, the tracker
input can be a single measurement, i.e. the FFT
cell having the largest amplitude if the amplitude
exceeds the threshold. o

The PDA trackers considered here use either single
or multiple measurements and ignore the amplitude

of the measurements. The only HMM tracker
considered here accepts just single measurements,
while the only HMM/A tracker uses single
measurements together with their associated
amplitudes.

3 PROBABILISTIC DATA ASSOCIATION TRACKING

We present PDA ss a method for converting a single-
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input-single-output (SISO) tracker into a multiple-
input-single-output tracker. PDA assumes that only
one of the multiple input measurements corresponds
to the target being tracked. It further assumes
that measurements in the next scan will be normally
distributed with the mean and covariance predicted
from the current scan. PDA is thus applicadble to
any SISO tracker in which measurement mean and
covariance at the next scan are predicted.

Track input measurements are gated, thus creating
the possibility of false dismigsal of the target
measurement. Using the PDA assumptions, the
probability of false dismissal is easily evaluated.
The usual gated PDA method uses a variable gate to
achieve constant probabllity of false dismissal.
For the FLTA, wve use a fixed gate so0 the false
dismissal probability varies from scan to scan.

Lot a3 be the probability that the i-th measurement
corresponds to the target, and let a, be the
probability that none of the measurements
corresponds to the target. Similarly, let f; be
the track frequency estimate generated by using the
i-th measurement in the underlying SISO tracker,
and let f, be the predicted track frequency when no

measurement is made. Then the PDA tracker output
is given by
N
fppa = 2ofo ¢ agfy (1)
i=1
where N is the total number of detections in the

gate. For the PDA Kalman tracker, the error
covariance associated with fpp, is also computed
(Bar-Shalom & Fortmann, 1888), and it is used with
fppa to make the measurement mean and covariance
predictions in the underlying SISO Kalman fllter.
The probabilities (ag) are easily computed and
require only the evaluation of a truncated Gaussian
density function. The nonlinear dependence of all
PDA trackers on the measured track input data {s
due to the nonlinear dependence of the
probabllities (ag) on the data.

4 HIDDEN MARKOV MODEL TRACKING

HMM’s are probabilistic models that are commonly
used {in speech applications. Their utility in
tracking applications seems not to he recognised in
the general literature, except for a paper by Kopec
(1988) who uses them to track formants, or
resonances, in spoken words. The HMM tracker
presented in this paper is similar to Kopec’s
formant tracker; howvever, the FLTA application
permits the analytical development of the
parameters defining the underlying HMM.

The HMM tracker is a fixed interval FLTA; 1.e., it
takes a fixed length sequence, or “window", of
measurements and outputs a track estimate for each
time in the window. By sliding the window along as
new data are collected, the track estimate evolves
in time. Alternatively, one may simply increase
the window size. Either way, the HMM tracker s
used only to compute the output track estimate for
each given tracking window. The quantised
frequency track 1is modelled as a finite state
Markov chain. A "faded" or "zero" state represents
a track whose SNR is less than the tracker SNR (see
below); the remaining "active" states represent a
track occupying an FFT cell inside a fixed gate and
having an SNR greater than the tracker SNR. Track
initiation 1is defined as a transition from the
zero state to any active state, while track
termination 1s defined as a transition from any
active state into the zero state. Initiation and
termination of tracks, as well as movement of the

track within the gate, are therefore governed by
the transition probability matrix, A, of the Markov
chain.

Measurements of the frequency track are
characterised by a detection probability matrix, B.
Thus, for each possible target state, the threshold
detector outputs are measured target states with
probabilities that are computed analytically from
the SNR and the threshold. The SNR assumed for
this B-matrix calculation is called the tracker
SNR; in effect, It 1is the lowest SNR at which
tracks are initiated and estimated.

The HMM tracker is fully specified by the A- and B-
matrices, together with the initial state
probability vector {y. Initially, Tr corresponds to
a target in the zero state. This forces automatic
track initiation. If the tracking window slides
along as new data are collected, f is updated using
current HMM tracker output.

The HMM/A tracker cannot utilize a B-matrix because
amplitude is a continuous quantity. Instead, it is

necessary to compute the 1likelihoods of the
measurements, conditioned on sach possible target
state. There are a finite number of states, so

these
matrix.

conditional likelihoods can be stored as a

The HMM and HMM/A trackers output both a discrete
{quantised) track and a continuous track. The
quantised track 1s the Viterbl track; i.e., of all
possible tracks (realisations of the Markov chain),
the Viterbi track is the one most likely to account
for the measurement sequence. The continuous track
is essentially the expected track, with the
expoctation taken over all possible realisations of
the Markov chain. Strictly speaking, the expected
track is conditioned on the track not occupying the
zero state, as well as on the measurements. The

total probability of the =zero state track
(conditioned only on the measurements) at each
point in the window is thus a ry compl t

to the continuous track estimate. The gate
occupancy probability (GOP) is defined as one minus
the probability of the zero state track, and it is
the GOP that is plotted in the examples in the next
section. ’

The discrete output of the HMM tracker is computed
using only n2T additions, while the continuous
output uses n2T multiplications, where n is the
number of Markov chain states and T is the number
of scans in the window. The discrete and continuous
algorithms are easily vectorised. Similar remarks
hold for the HMM/A tracker once the necessary
conditional likelihoods have been computed.

S. EXAMPLES

The simulated data were obtained by generating a
sine wave triangularly pt in freq y with a
period of 132 scans, a centre frequency of 5, and a
maximum deviation of 3. Uncorrelated noise is then
added to the sine wave, Fourier transformed, and
then passed to a threshold detector. One hundred
scans of the output of the threshold detector are
then used as the input for the various trackers.
The signal 1is absent until scan 15 when the SNR 1is
increased instantaneously to 3 dB (in an FFT cell).
The SNR is kept at that level until scan 79, when
the signal ceases. All the trackers use a gate
width of 9 FFT cells.

Figure 1 illustrates the cell occupancy of the true

track. This track was obtained using an HMM
tracker, with data similar to that above, except
that the SNR was increased until no false
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detections were obtalned when the signal was
present. The track initiates out of and terminates
into the zero state which is indicated by the dots
appearing in the windov below the 9 active states
in the gate. Note in this figure the last three
scans for which the signal is present. Any tracker

will have difficulty tracking these three The input measurement data used for the HMM and
weasurenents. HMM/A  trackers are different sven vhen they
originated from the same data set. This arises
$ prerrprrerreT T — f—— because of the different detection thresholds used
1+ e g, T T for HMM and HMM/A. A finite detection threshold is
3. o e essential for the proper operation of the HMM
1 3 tracker since the threshold level is an input to
d " the HMM algorithm snd indicates the significance of
SCAN NUMBER o o100 an individual detection. For these examples the
best threshold for the HMM tracker was found to be
FIGURE 1. Track output at high SNR. 1.8 times the average noise level. For the HMM/A
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FIGURE 2. Input data, discrete track output & GOP FIGURE 4. Input data, discrete track output & GOP

an optimization procedure will require the
development of ensemble statistical tracker
performance measures which could then be used to
compare the performance of different trackers. This
{s the subject of future work.

for HMM tracker:

data set 1.

for HMM tracker; data set 2.
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FIGURE 3. Input data, discrete track output & GOP
for HMM/A tracker; data set 1i.

Figures 2-5 show the input data, the discrete
(Viterbi track) output, and the gate occupancy
probability of the HMM and HMM/A trackers using the
tvo different data sets. For the first data set
both the trackers {nitiate early due to spurious
data, but the HMM initiates in the correct state
while the HMM/A does not. Both tracks terminate
three cells early. For the second dsta set, the HMM
fails to track the varistion, but this is hardly
surprising - when one looks at the input data. The
HMM/A on the other hand has additional information,
viz. the amplitude of the messurements, and this
information is critical to good tracking in this
data set. The HMM/A 1initieates correctly, but
terminates six scans early.

Figures 2-5 show very clearly the effects of

statistical varlations between the two data sets
which can result in significaently different
performances. This shows that both the HMM  and

HMM/A trackers need to be optimized for good
performance in the ensemble statistical gense. Such

[
SCAN NUMBER

FIGURE S. Input data, discrete track output & GOP
for HMM/A tracker; data set 2.

tracker, the significance of each measurement Iis
contained in the amplitude information. Ralsing the
detection threshold in this case therefore tends to
reduce the information available to ths tracker,
and the threshold is best kept small (Barrett &
Streit, 1988).

Figures 8~9 show the input data, the track output,
and the logarithm (base 10) of the estimated
covariance of the frequency estimate for PDA
trackers that wuse single and multiple gate
measursments for the same tvo data sets. Note that
even for a single data set there are slight
differences in the single gate measurement input
data used for the PDA and HMM. This is due to the
use of different detection thresholds. It was not
possible to find a common detection threshold for
use Wwith both PDA and HMM because PDA required a
higher threshold than HMM for successful tracking.

The PDA tracker {mplemented here is a causal
tracker, {.e. has no lag, and consequently one
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FIGURE 8. Input data, track output & log covariance
for PDA tracker with single gate
measurements; data set 1.
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FIGURE 7. Input data, track output & log covariance
for PDA tracker with multiple gate
measurements; data set 1.

expects some delay 1in following dynamic track
variations. The reluctance of the PDA tracker to
change state resulted in tracks that lingered 1in
the wrong state for up to five scans before
switching to the correct state. The severity of
this problem might be reduced by putting some lag
into the PDA tracker (Mahalanabis, Prasad & Garg,
1986).

The most significant problems with our PDA tracker

are the issues of track initiation and track
termination. In these examples the tracker was
initiated in cell five, but the signal did not

exist 8o the tracker followed noise until scan 15.
Similarly, the tracker followed noise aftcr the
signal terminated after =zcan 79. When the PDA
tracker 1is following noise one would expect the
covariance of the frequency estimate to be large.
However, as can be seen in these figures there is
no way to set a threshold on the estimated
covariance that would satisfactorily indicate the
presence or absence of a signal.

The multiple gate measurement PDA tracker shovs
1ittle evidence of greater stabllity over the
single gate measurement PDA for these two data
sets. However, other data sets have shown that
multiple measurements Aappear to give some
robustness to the PDA tracker, making it less
responsive to outliers, but at the cost of
rendering it somevhat less responsive to state
changes.
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FIGURE 8. Input data, track output & log covariance
for PDA tracker with single gate
measurements; data set 2.
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FIGURE 9. Input data, track output & log covarlance
for PDA tracker with multiple gate
measurements; data set 2.

CONCLUSIONS

The development of ensemble statistical tracker
performance measures wust be accomplished in order
to:

(1) optimise
tracker,
trackers;

(11) provide a basis for comparison of all
frequency line tracking algorithms; and
(111) provide a means of comparing the automatic
track initiation and termination
characteristics of different algorithms.
These issues are especially important at lov SNRs
because then only ensemble statistical tracking
behaviour is meaningful.

the tracking performance of any
especially the HMM and HMM/A

our PDA algorithm as currently configured cannot
satisfactorily initiate or terminate & track using
PDA  covariance estimates. The HMM and HMM/A
trackers appear to offer significantly improved
capabilities in this area, but ensemble performance
measures are necessary to quantify track initiation
and termination in a meaningful way.

From the discussion of the examples it 1is clear
that the incorporation of amplitude information
into our PDA tracker could offer some improvement
in performance. On the other hand the incorporation
of multiple gate measurements into both the HMM and
HMM/A trackers could also enhance their
performance. These extensions to our trackers would
make them more directly comparable.




incorporation of phase Iinformation
into FLTAs is a most promlsing way of improving
their performance. Similarly, the incorporation of
derivative information into HMM based FLTAs should
improve their performance because of better signal
modelling.

Finally, the
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1. INTRODUCTION

This paper has several purposes. The first purpose is to compare via
simulation the performance of six different frequency line tracking
algorithms (FLTA's) when used in conjunction with a simple threshold
detector. The second purpose is show that the probabilistic data
association (PDA) method for handling multiple detections is not limited
to the Kalman filter context in which it has hitherto been presented. 1In
particular, we present a PDA alpha-beta tracker that handles multiple
detections without sacrificing algorithmic simplicity. The third purpose
is to discuss a new tracker based on hidden Markov models (HMM's). An
important and intrinsic feature of the HMM tracker is that it initiates
and terminates tracks automatically.

In this paper, we treat the problem of tracking the time variation of
the (instantaneous) frequency of an isolated tone embedded in additive
white noise as a post-detection process applied to the evolving short term
Fourier spectra of the sampled time series. Separating the tracking
problem from the detection problem can lead to suboptimal tracking
performance, but it is an approach commonly used in practice.

The choice of detector is also important, but throughout this paper we
use a simple threshold detector because of its widespread usage and ease
of implementation. No interpolation is employed to smooth the intrinsic
quantization effects of this detector because interpolation is not
justified at low SNR. Other well known problems associated with the
threshold detector are outliers (false detections) and missed detections.
These problems cause serious tracking errors in the conventional trackers
studied in this paper; however, as the examples will show, PDA trackers
and the HMM tracker are robust against outliers and missed detections and
are capable of tracking down to the input quantization level.

The three conventional trackers studied in this paper are the alpha-beta
(1), Kalman [2]), and fixed lag Kalman smoothing trackers [3]. Each
requires as input a single detection. The tracker input is the centre
frequency of the FFT cell with the largest amplitude; however, if the
detection threshold is not exceeded, no frequency measurement is made for
the current scan, or block of time series data.

The two PDA trackers studied in this paper are the PDA alpha-beta and
the PDA Kalman {[4] trackers. (A PDA fixed lag Kalman smoothing tracker is
also possible [5], but we have not yet implemented it). All PDA trackers
accept multiple detections as input; i.e., the tracker input is the set
(possibly empty) of centre frequencies of all FFT cells whose amplitude
exceeds the detection threshold.
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The last tracker studied in this paper is the HMM tracker [6]. It can
accept as input either multiple detections or the strongest detection;
however, the version studied here uses the same input as the conventional
trackers mentioned above. It is unique among the trackers studied in this
paper in its ability to initiate and terminate tracks automatically.

2. BRIEF DESCRIPTION OF THE TRACKERS
2.1 The Conventional Trackers

The conventional tracking algorithms accept a single input frequency
measuremeas and generate two output ,quantities: the track frequency
estimate ¥ and the time derivative f for the current scan. The
mathematical form of the track dynamic models assumes that f is constant
over the scan update interval, a reasonable assumption if the change in f
over the scan update interval is small. The two Kalman trackers modify
this simple dynamic model for f by corrupting it with additive Gaussian
process noise; however, the alpha-beta tracker does not explicitly include
a process noise term. Process noise accounts for mismatch between the
assumed track dynamic model and true track dynamics. The fixed lag Kalman
smoothing tracker [3] differs from the other two conventional trackers in
its utilisation of track measurements from scans in advance of the (fixed
lag) estimation point to improve the output track estimate.

The problem with conventional trackers is that they are linear systems.
Consequently, their response to outliers is governed by their impulse
response function, while their response to missed detections is by
comparison much less important. Outliers and missed detections are common
at low SNR, so optimising a conventional tracker is essentially equivalent
to optimising its impulse response function. One way to avoid the impulse
response function issue is to avoid trackers that are linear functions of
the measurement sequence. The PDA trackers and the HMM tracker discussed
below are nonlinear systems, and their response to outliers is much
superior to that of the conventional trackers.

2.2 The PDA Trackers

We present PDA as a method for converting a single-input-single-output
(SISO) tracker into a multiple-input-single-output tracker. PDA assumes
that only one of the multiple input measurements corresponds to the target
being tracked. It further assumes that measurements in the next scan will
be normally distributed with the mean and covariance predicted from the
current scan. PDA is thus applicable to any SISO tracker in which
measurement mean and covariance at the next scan are predicted.

The conventional Kalman tracker predicts the target state and error
covariance, and the predicted measurement mean and covariance follow from
the general Kalman system equations. On the other hand, the alpha-beta
tracker predicts the target state, but not the error covariance. For the
FLTA, we interpret the target state as the predicted measurement mean and
supplement the constants a and B with another constant o2 denoting the
covariance of the measurements in the next scan. The PDA alpha-beta
tracker is completely specified by (a, B, o).

Track input measurements are gated, thus creating the possibility of
false dismissal of the target measurement. Using the PDA assumptions, the
probability of false dismissal is easily evaluated. The usual gated PDA
method uses a variable gate to achieve constant probability of false
dismissal. For the FLTA, we use a fixed gate so the false dismissal
probability varies from scan to scan.

Let Bi be the probability that the i-th measurement corresponds to the
target, and let Bo be the probability that none of the measurements
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corresponds to the target. Similarly, let T. be the track frequency
estimate generated by using the i-th measuremént in the underlying SISO
tracker, and let fo be the predicted track freququy when no measuremen;;
is made. Then the PDA tracker output is given by fPDA = Bo fo + L Bi fi'

For the PDA alpha-beta tracker, the necessary predicted measurement mean
and covariance are the obvious ones obtained from fP A and (a, B, o). For
the PDA Kalman tracker, the error covariance associa%ed with £ is also
computed (see [4])), and it is used with £ to make the measurement mean
and covariance predictions in the underlying SISO Kalman filter.

The probabilities {B.)} are easily computed and require only the
evaluation of a truncated Gaussian density function. The nonlinear
dependence of all PDA trackers on the measured track input data is due to
the nonlinear dependence of the probabilities {Bi} on the data.

2.3 The HMM Tracker

HMM's are probabilistic models that are commonly used in speech
applications. Their utility in tracking applications seems not to be
recognised in the general literature, except for a paper by Kopec {7] who
uses them to track formants, or resonances, in spoken words. The HMM
tracker presented in this paper is similar to Kopec's formant tracker;
however, the FLTA application permits the analytical development of the
parameters defining the underlying HMM.

The HMM tracker is a fixed interval FLTA; i.e., it takes a fixed length
sequence, or "window", of measurements and outputs a track estimate for
each time in the window. By sliding the window along as new data are
collected, the track estimate evolves in time. Alternatively, one may
simply increase the window size. Either way, the HMM tracker is used only
to compute the output track estimate for each given tracking window.

The quantised frequency track is modelled as a finite state Markov
chain. A "faded" state represents a track whose SNR is less than the
tracker SNR (see below); the remaining "active" states represent a track
occupying an FFT cell inside a fixed gate and having an SNR greater than
the tracker SNR. Track initiation is defined as a transition from the
faded state to any active state, while track termination is defined as a
transition from any active state into the "faded" state. Initiation and
termination of tracks, as well as movement of the track within the gate,
are therefore governed by the transition probability matrix, A, of the
Markov chain.

Measurements of the frequency track are characterised by a detection
probability matrix, B. Thus, for each possible target state, the
threshold detector outputs are measured target states with probabilities
that are computed analytically from the SNR and the threshold. The SNR
assumed for this B-matrix calculation is called the tracker SNR; in
effect, it is the lowest SNR at which tracks are initiated and estimated.

The HMM tracker is fully specified by the A- and B- matrices, together
with the initial state probability matrix, m. Initially, n corresponds to
a target in the faded state. This forces automatic track initiation. If
the tracking window slides along as new data are collected, n is updated
using current HMM tracker output.

The HMM tracker outputs both a discrete (quantised) track and a
continuous track. The quantised track is the Viterbi track; i.e., of all
possible tracks (realisations of the Markov chain), the Viterbi track is
the one most likely to account for the measurement sequence. The
continuous track is essentially the expected track, with the expectation
taken over all possible realisations of the Markov chain. Strictly
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speaking, the expected track is conditioned on the track not having faded,
as well as on the measurements. The total probability of a faded track
{conditioned only on the measurements) at each point in the window is thus
a necessary complement to the continuous track estimate.

The discrete output of the HMM tracker is computed using only n2T
additions, while the continuous output uses n2T multiplications, where n
is the number of Markov chain states and T is the number of scans in the
window. The discrete and continuous algorithms are easily vectorised.

3. EXAMPLES

All six trackers are compared in Figure 1, and the nonlinear trackers
are compared in Figure 2. The gated input measurement is indicated by a
dot, and the tracker output is the continuous curve. The data are
obtained by generating a sine wave triangularly swept in frequency with a
period of 400 scans, a centre frequency of 10, and a maximum deviation of
5. The added uncorrelated noise level and the detection threshold are set
to give a reasonable number of false detections and missed detections.
The conventional and HMM trackers use the largest detection in the gate;
the fixed lag Kalman smoother has a lag of 10 scans; the PDA trackers use
all detections in the gate; the HMM tracker uses a window of 250 scans.
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FIGURE 1. 1Input data and tracker outputs for: a) alpha-beta, b) Kalman,
c) fixed lag Kalman smoother, d) PDA alpha-beta, e) PDA Kalman, f) HMM.
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The PDA trackers are initiated at the correct track value and the HMM

tracker is initiated in the faded state.

In Figure 1 the SNR is constant

over all scans. It shows that the nonlinear trackers are rcbust against

outliers, whereas the conventional trackers are not.

In Figure 2 the SNR

starts low, increases linearly to scan 100, is constant to scan 150, and

decreases linearly to scan 250.

The track is the same as in Figure 1, but

the false alarm rate is increased by decreasing the detection threshold.
The PDA trackers are incorrect at low SNRs. The automatic track
initiation and termination of the HMM tracker is clearly evident.
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FIGURE 2. Input data and tracker outputs for: a) PDA alpha-beta, b) PDA
Kalman, c¢) continuous output HMM, @) discrete output HMM.
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An exiension to the Hidden Markov Model (HMM) frequency line tracker of Streit and Barrets (1990) is presenied. In
this extension, the FFT amplitudes and phases in a restricied set of states centered on the signal frequency are passed
to the tracker as an input. The result is an improved tracking performance and a new ability of the tracker 10 follow

frequency fluctuations within one FFT bin.

1. Introduction

The estimation of the frequency of isolated tones
embedded in noise, and the tracking of changes in these
estimated frequencies as a function of time are two related
topics that have recently received considerable attention in the
signal processing literature. Techniques for the solution of
these problems have found applications in many diverse fields
(e.g., radar, sonar, seismology, etc).

In a conventional frequency tracking problem, the
incoming data are divided into blocks of contiguous time
series. Fast Fourier Transforms (FFTs) are then performed on
cach of these blocks to obtain frequency spectra as a function
of time. The resolution of the frequency spectra is restricted 1o
one FFT cell (or the reciprocal of the data acquisition time for
the FFT integral). The conventional frequency tracking
problem consists of estimating the true signal frequency from
the FFT spectral data,

In an earlier paper (Streit and Barrett (1990)), we have
studied the formulation of frequency line tracking in terms of a
Hidden Markov Model (HMM). In this approach, the
frequency domain considered by the tracker is restricted to a
subset, or gate, of the available FFT cells. For each time block,
the cell containing the maximum power within the gate,
provided that power exceeds a detection threshold, is passed to
the HMM tracker. Based on a priori knowledge of some
specified parameters describing the statistical nature of the
track, the HMM tracker reconstructs the time variation of the
signal frequency within the gate. A zero state is included to
allow for the case when the signal terminates or the signal
frequency wanders outside of the prescribed gate. Full details
of the HMM frequency line tracker are contained in an earlier
publication,

An extension of this basic tracker was developed by
Barrett and Streit (1989) and Steele er al (1989). The tracker
was modified so that it received as input the FFT amplitude in
the cell with the maximum spectral power. This extra
information was found to enhance its performance by enabling
tracking and detection at lower signal-to-noise ratios (SNRs)
than without amplitude (sce Barrett and Streit (1989)).

The input to a frequency tracker is generally some form
of frequency estimator, and in this area also, a number of new
approaches have been developed. These methods offer
improvements in cither accuracy or resolution over
conventional spectral analysis techniques. For the case of a
single tone embedded in noise, the Phase Interpolation
Estimator (PIE) and Generalised Phase Interpolation Estimator
(GPIE) provide near optimal frequency estimates, even at low
SNR. For examples, see McMahon and Barrett (1986, 1987).

In these methods, the phase information from
successive FFTs is used to refine the estimate of the signal
frequency so that frequency changes of less than the width of
one FFT cell can be measured. Previous track history is not
taken into account, and the frequency estimates for different
time blocks are independent. At low SNR, the 2r ambiguity in
FFT phase can occasionally result in ‘outliers’ far removed
from the correct frequency.

The purpose of the work described in the present paper
is to include FFT amplitude and phase information into the
HMM frequency tracker described by Streit and Barrett (1990).
The added information affects the performance in two different
ways. Firstly, the intrinsic tracker quantisation error can be
reduced so that frequency variations within one FFT cell can be
readily tracked. Secondly, the added information enables the
new tracker to out-perform the earlier tracker, even if the
intrinsic tracker quantisation error is kept to one FFT resolution
cell (as in the earlier tracker). The problem of outliers that
occurred with the PIE algorithm is avoided because these
extreme frequency fluctuations are suppressed by the Markov
chain process model of the HMM tracker. The extended HMM
tracker thus combines the high accuracy frequency estimation
capability of the PIE algorithm with the accurate tracking and
track initiation and termination capabilities of the HMM
tracker.

2. Frequency Tracking Using HMMs

In the frequency tracking problem described by Streit
and Ba-ett (1990), the range of frequencies, or gate, over
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which the track is allowed to wander is divided into a finite
number m of frequency cells. A zero state is included to
allow for the possibility of the track wandering outside of the
allowed frequency range, or terminating altogether.

The transitions that occur between states as time
progresses are characterised by a transition probability matrix
A. The clements of the A-matrix are the probabilities of
transitions between the states of the Markov chain. These
probabilities depend on the initiation and termination
probabilities (u and v) of the track, and on the process noise, d.
The elements of the A-matrix are calculated from the basic
premise that the probability distribution for a frequency
change in the tracked line is a Gaussian centred on zero. The
width of this Gaussian distribution is controlled by the process
noise d. In addition to a change from one frequency cell to
another within the gate, transitions may also occur from within
the gate to the zero state (track termination), or from the zero
state to a state within the gate (track initiation).

The specification of the measurement probability
matrix B is also necessary to define the HMM. In the basic
HMM tracker of Streit and Barrett (1990), a measurement is
defined as the specification of the frequency cell in which the
maximum spectral power resides, provided that power exceeds
a prescribed threshold. An clement of the B-matrix is then the
likelihood of such a detection in one of the cells of the gate,
conditioned on the true signal residing in a particular state of
the Markov chain. The calculation of the elements of the B-
matrix is carried out under the assumption that the time series
data comprise a constant frequency sinusoidal signal embedded
in white Gaussian noise. The likelihoods depend on the SNR
of the line being tracked and on the measurement detection
threshold.

The last remaining quantity to be specified to the
tracker is the initial state probability vector x. This vector
specifies the occupation probabilities of the various Markov
states at time zero.

There are three outputs from the HMM tracker
described in Streit and Barreut (1990). The first is the Viterbi
track, which is the optimal state sequence (in a maximum
likelihood sense) conditioned on the measurement sequence.
The Viterbi track is thus a discrete output. The second output,
which is continuous, is the Mean Cell Occupancy (MCO)
track. From the A and B matrices, the likelihood of the
occupancy associated with each Markov state as a function of
time can be calculated. The mean cell occupancy (for cells
within the gate), and the associated standard deviation can then
be obtained. The third output of the HMM tracker is the Gate
Occupancy Probability (GOP). The GOP function is the
probability, as a function of time, of a frequency with the
required parameters lying within the sclected gate. The
complementary function to the GOP (i.e., 1 - GOP) is the
occupation probability of the zero state.

3. Inclusion of FFT Phase

The performance of any tracker clearly depends on the
amount of information that is available to it. In this section

we describe a HMM wracker in which the concept of a ‘mea-
surement’ is further extended beyond that of Streit and Barrent
(1990) and Barrett and Streit (1989). For each block of time
series data, the amplitude and phase of the FFT for each cell
within the gate are determined. The complete specification of
the FFT amplitudes and phases in all gate cells for two con-
tiguous blocks of time series data is deemed a ‘measurement’.
As before, the B-marrix is interpreted as the likelihood of any
panticular measurement, conditioned on each of the underly-
ing Markov states.

Following Streit and Barrett (1990), it is assumed that the
data time series is of the form:

2 (tos kT,) = Asin [@ (tos KT,) + €] + ny -

where tg is the initial time , and T, is the sampling period. The
amplitude A, phase ¢ and angular frequency & are assumed
to remain constant over the period NT,, which is the data
acquisition time for a Fourier transform of size N. The noise
ng is taken to be zero mean and Gaussian in nature, with a
variance of o2, so that

(ngn,') = Jgjdz (2)

where ¢ denotes the Kronecker delta.

The discrete Fourier Transform x(w) at angular frequency
w of the time series in Eq. 1 is defined in Streit and Barrett
(1990) and can be expressed in the form:

X (@) = Re”

= Ce’® + De'® @

where R and 1 represent the amplitude and phase of » (w). The
amplitudes and phases of the signal and noise components are
denoted by (C,#) and (D,8) respectively.

The joint Probability Density Function (PDF) of R and »
has the form

R _R"’ —24Rcos( — ¢) + A°
P(Ry) = a7 25° 4)

where 2 = 0%/2N .

The signal phase ¢ differs for the different time blocks. If ’
we define ¢; 10 be the phase corresponding to the signal for
the first of two contiguous time blocks, and ¢; 1o be the phase
corresponding to the second time block, then

¢$2~ ¢+ wNT, 5

For real signals, such as that defined in (1), the approximation
in (5) is only valid at frequencies far removed from zero.
However, if the analytic signal is used instead of the real
signal, eq. (5) becomes valid at all frequencies.

Eq. (5) implies that the angular frequency & is related not
to the phase in each cell, but to the difference in the phases
in the cell containing the signal for the two contiguous time
blocks. We are thus interested more in the phase change in
a cell as time progresses, than in the absolute value of the
phase. Our concept of a ‘measurement’ is thus extended to
include the simultaneous specification of the quantities R,;,
Ry2 and 743 — na1 where Rai, 71 are the amplitudes and
phases of the Fast Fourier Transforms in cell n at time t = tp
and Ry, ny2 are the corresponding quantities at time t = 1 +
NT,, where 1 < n < m With this definition of a measurement,

y
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overlapping causes successive measurements to be correlated,
which is contrary to the HMM model. This contradiction is
ignored here, but the overlapping can easily be removed if it
results in difficulties.

The likelihood of the measurement, conditioned on an
initial signal amplitude A and frequency & , can be shown
to have the form:

B(@) = [[ P(Ru1, Razs w2 = 1milA.3) (6

n=1
where
P (Ra1, Raz\1n2 = a1]A,0) = RLI_Z"Zx
2754
EI,’,, +R%, + 2.42] ™
[ 25° I (_A_z_)
g2

In eq.(7), Io represents the modi...d Bessel function and

2= /R2, + R2, + 2Ruy Ray cos (nmz—nm~aNT,)  (8)

The implementation of the HMM tracker with phase and
amplitude included differs from the earlier implementation
described in Streit and Barrett (1990) in a number of important
points. Firstly, because the presence of phase information
enables frequencies to be estimated to a greater accuracy than
one FFT cell, the states of the HMM need not coincide with the
FFT cells. In the present work, the frequency range spanned by
each HMM state is arbitrary. The state width and process noise
d can be adjusted to reflect the increased estimation accuracy,
particularly at high SNRs, allowed by the phase information.

The second difference lies in the fact that the likelihood
function in eq (6) can be highly peaked as a function of & if the
SNR is fairly high. The calculation of likelihoods at the centre
frequencies of the gate cells may therefore not be an accurate
enough representation of the average likelihood over the span
of the state. This effect can be countered, either by selecting
the frequency span of each state to be significantly smaller
than the spread in the likelihood function, or alternatively by
integrating B (&) over the frequency span of the state. The
particular selection will depend on the accuracy desired in the
frequency track.

4. Discussion of Results

Results of the application of the HMM frequency line
tracker to two sets of simulated data are presented in Figs. 1
and 2. In Fig. 1, the results from three different versions of the
tracker are compared. These versions are those of i) Streit and
Barrett (1950) in which no FFT amplitude or phase information
is passed to the tracker; ii) Barrett and Streit (1989) in which
the FFT amplitude from the cell containing the maximum
power is used; and iii) the tracker presented here where FFT
amplitudes and phases in all the cells are passed to the tracker.
For convenience, these three trackers are designated HMM,
HMM/A and HMM/AP respectively.

Fig. 1a shows an intensity modulated representation of
the spectral power in the cells of the gate as a function of time.
Frequency increases in the vertical direction, while time
increases horizontally. Each cell is 1 Hz wide in the frequency
direction and 1 Sec. long in the time direction. The total time
window spans 100 seconds and there are 9 cells in the
frequency gate. The parameters of the HMM are listed in the
Figure caption. The SNR is defined as A%/26%. The signal
consisted of a frequency modulated tone with the modulation
having the form of a sinusoid of amplitude 2 Hz and period 50
seconds.

The measurement sequence, which is input to the basic
wacker, is displayed in Fig. 1b. The effect of the noise is clear
in the appearance of the track. In Figs. Ic - le, the Viterbi
tracks arising from the HMM, HMM/A and HMM/AP trackers
are displayed. The zero state is shown below the other state
cells. An improvement to the quality of the output through
Figs 1c - le is apparent, as the amount of input information
presented to the tracker is increased. The improved quality
manifests itself in fewer abrupt terminations and re-initiations
of the track (i.c., entries into the zero state), and in fewer outli-
ers.

The results displayed in Fig. 1 are typical. However, a
quantitative comparison of the three trackers can only be made
by comparing their average performance for a statistically
significant set of realisations of time series data. The results of
such an investigation will be published later.

In Fig. 2, the results for a set of data where the
frequency modulation of the signal has been reduced to 0.6 Hz
amplitude are displayed. All other details are the same as for
Fig. 1. The frequency cells in the intensity modulated display
of Fig. 2a are 1 Hz wide. However, for the displays 2b and 2¢,
the frequency scale has been expanded by the factor 3.33 so
that the frequency cells are now 0.3 Hz wide.

Fig 2b displays the results of the PIE frequency estima-
tion routine. The general trend of the modulation is apparent in
the expanded display, but many outliers are observed. The
frequency estimates that were outside the range spanned by the
state cells are shown in the zero state.

Figs. 2c and 2d show the Viterbi tracks and MCO
outputs from the HMM/AP tracker. The MCO display shows
two traces that are respectively one standard deviation above
and one standard deviation below the MCO track. The GOP
function is displayed in Fig. 2¢ (ranging from values of 0 to 1)
and indicates a high probability that the signal was present at
all times.

The increased accuracy of the HMM/AP tracker (and
the PIE) arises from the exploitation of the phase information
available in successive FFTs. This information was not
available to the HMM and HMM/A trackers and so the fine
structure in the frequency modulation could not be detected by
these trackers.
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5. Conclusion

The HMM frequency line tracker presented by Streit
and Barrett (1990) has been extended by the inclusion of FFT
phase information into the tracker input measurement
sequence. As aresult, the tracker exhibits an improved
performance, and is able to accurately track smaller frequency
changes than was previously possible.
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Fig. 2 Frequency tracks for a sinusoidally modulated (0.6 Hz
amplitude) tone in noise: a) intensity modulated spectrogram;
b) PIE frequency estimates; c) Viterbi track from HMM/AP
tracker; d) MCO track from HMM/AP tracker; ¢) GOP
function from HMM/AP wracker.

(HMM parameters as for Fig. 1, except that cell width is 0.3
Hz)
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Using Hidden Markov Models
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Abstract

Four different methods for utilizing amplitude in hidden
Markov model (HMM) detector/trackers are presented. All four of
the HMM detector/trackers are algorithmically identical in their
basic structure. The only differences between the proposed
trackers are confined to the conditional probability density
functions (PDFs) of the input measurements. The fundamental
HMM algorithm structure is presented in matrix form, and the
necessary conditional PDFs for the four detector/trackers are
derived.
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Introduction

The papers [1, 2] are the first papers to discuss the inclusion of
amplitude information into detector/trackers based on hidden Markov
models (HMMs); however, these papers do not give a detailed description
of the way in which amplitude information is utilized. Of the many
ways to include amplitude information into the measurement sequence of
the HMM detector/tracker, four are described here. We denote these four
detector/trackers by HMM/AOO, HMM/AO1, HMM/A10, and HMM/ALL. The
notation HMM/A-+ Iindicates the presence or absence of decision and
quantization steps (defined below) in the obvious manner. HMM/All is
identical to the detector/tracker described in the fundamental HMM
detector/tracker paper [3], and HMM/A10 is identical to the best of the
detector/trackers discussed in papers [1] and [2]. Familiarity with

the content and notation of [3] is assumed here.

An important feature of detector/trackers based on HMMs is that
they all have fundamentally 1identical algorithmic structures.
Different input measurements change the measurement 1ikelihood
function, but do not otherwise affect the detector/tracker algorithm.
Because of this feature, we describe below only the HMM
forward-backward algorithm that is used to construct the probability
field from which the continuous outputs of the HMM detector-tracker are
derived. The discrete output is the Viterbi track, and it is computed
by a dynamic programming algorithm. The minor changes required to
compute the Viterbl track are analogous to those required for the
continuous outputs. For further background, see [3].

The detector/tracker HMM/A1l1 uses a fixed frequency gate, that lis,
a fixed contiguous subset of size n z 2 of the full set of DFT
(discrete Fourier transform) frequency cells. The DFT size is N 2 n
and the fixed gate cells are indexed, for convenience, 1, 2, ... , n.
Amplitude information is utilized only indirectly, that is, the input
measurement to HMM/A11 is the index of the DFT cell having the largest
amplitude, provided this cell exceeds a specified threshold, D, and
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lies within the gate. The measurement z is the output of a two step
megsurement process. The first step, called the decision step, chooses
the largest amplitude DFT cell. The outputs of the decision step are
the DFT cell index {1 2 1 and its amplitude ry- The second step, called

the quantization step, quantizes the amplitude r, to one bit. The

amplitude threshold determines the one bit quanzization breakpoint.
The output of the quantization step is the DFT cell index 1 if ry z D,
and the integer 0 if ry < DB. The measurement process of the HMM/All
detector/tracker therefore suppresses (compresses) available amplitude
data in the each step. The data compression steps affect

detector/tracker performance in different ways.

The distinction between HMM/A0O, HMM/AO1, HMM/A10, and HMM/All is
their different measurement processes. The HMM/AOO measurement process
eliminates both the decision and quantization steps. Since HMM/AQO
utilizes all the available amplitude information, its performance
should be the best of the four. The HMM/A10 measurement process
eliminates the quantization step, but not the decision step, of the
basic HMM measurement process. The HMM/AO1 measurement process
eliminates the decision step but not the quantization step. As
described above, the HMM/A11l measurement process uses both decision and

quantization steps.

A detector/tracker HMM must have two types of states -- those
corresponding to "signal absent" hypotheses and those corresponding to
"signal present” hypotheses. If either type of state is not used,
then the HMM cannot be described as a detector/tracker. In the
frequency line tracking application utilizing fixed gates, a signal can
be absent because it has faded or because it has exited either to the
right or to the left of the fixed gate. The signal can be present in
more than one way also, i.e., the signal can lie in any one of the DFT
cells in the gate. For this discussion, we use n "signal present®
states and one "signal absent" state. The "signal absent" state is
indexed 0 and called the zero state. The n “signal present” states
are numbered from 1 to n and correspond to signal frequency lines

centered in the n DFT cells of the gate.
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HMM Detector/Tracker Algorithm
Let 2 = (zl. e z.r) denote a measurement sequence of length T 2
1 that is Iinput to an n+1 state HMM detector/tracker. The forward

algorithm computes the vectors a, € le by means of an algorithm that

is easily stated in terms of matrix products. Let ‘ denote matrix

transposition. Then the forward algorithm is defined by

a = B(zl) n
(1)

a = B(ztﬂ) A a

t+1 t’

where n € Rnﬂ is the initial state probability vector, A = [a.i

lR(n+1)><(n+1)

] €
J
is the state transition probability matrix, and, for

arbitrary measurements z, the matrix B(z) € R(ml)X(nﬂ) is defined by

B(z) = Diag [bo(z), bl(Z)' cee bn(z)].

and where bi(Z) denotes the likelihood function of the measurement 2

conditioned on the signal state i, 1 = 0, 1, ..., n. Similarly, the

backward algorithm computes the vectors Bt € RM1 by means of an

algorithm that is equivalent to the matrix product

Bp = (1 1« 1) e g™
(2)

Bt = A B(z t=T-1, ..., 1.

t+1) Brare

Probabilistic interpretations for the vectors «, and Bt are given in

(3]. The continuous detector/tracker outputs t;me derived (see ([3))
from the probability field, denoted by F(t,i). The numerical value of
F(t,1) 1is the probability the signal occupies state i1 at time t,
conditioned on all the available measurements 2. It is defined in

terms of the components (at(l)) and (Bt“)} of « and Bt by

n -1
F(t,1) = a (1) B, (1) Z a, (k) B, (k) (3)
k=0 .
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In equation (3), t ranges from 1 to T, and { ranges from O to n. An
arbitrary nonzero scale factor K,can be applied'to the diagonal matrix
B(zt) without altering the probability field F(t,i1) because such scale
factors cancel out in the definition (3). The Jjudicious use of scale
factors can result in reduced complexity in the required likelihood
functions, and glve greater insight into the underlying theoretical

structure.

From equations (1)-(3), it 1is clear that the different measurement
characteristics affect the detector/tracker output only via the state
likelihood functions bi(Z)' The algorithms are otherwise blind to the
measurement. The 1likelihood functions bl(Z) for each of the four
amplitude measurement processes are derived below. Two probability
density functions (PDFs) of the measured amplitude r in a DFT cell are
required. The PDF of r conditioned on the simple hypothesis “signal
in state 1 # 0" is given by

P(r) = (2rN/¢?) Io(ArN/cz) expl— N(4r2+a2)/(40°)],  (4)

and the PDF of r conditioned on the simple hypothesis "signal in state
i = 0" is given by

Pa(r) = (ZrN/cz) expl—- Nralc?]. (58)

vwhere Io(~) denotes the modified Bessel function and N is the size of
the DFT. The derivation of these PDFs assumes zero mean white Gaussian
noise of varliance ,2 and a signal frequency line of amplitude A that is
centered in the DFT cell. It is necessary to integrate these functions
in certain of the HMM detector/trackers. Note that the function Pz(r)
is easily integrable in closed form, but that Pl(r) is not. Further
detalls are given in (3).
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Description of HMM/AQQ

This measurement process does not use either decision or
quantization steps. Therefore, no quantization threshold is used,
i.e., D =0. The measurement available to the detector/tracker at any

given time t takes the form z = (rl, r , rn), where r, is the

2’ i

measured amplitude of the i-th DFT cell in the tracking gate. There
are two cases. If the signal state is the zero state, no signal is
present in any of the n DFT cells of the gate. Since the measured

amplitudes r, in each cell are independent, we have

i
n

by(z) = « ] P,(r

), (6)
=1 2

where k is a nonzero state independent scale constant to be determined.
Similarly, if the signal state is i =2 1, then a frequency line lies in
the center of the 1i-th DFT cell. Because of the center cell
assumption, the amplitude measurements are independent from cell to
cell, so that

n

b(2) = «x [ng Pz(rJ)] P,(r,). (7)
J*i

We now choose k so that bo(z) = 1, that is, k is the recliprocal of the
product on the right hand side of equation (6). Therefore,

1, i=0
b,(z) = P.(r,) (8)
1 1 1 . iz 1.
Pz(ri)

It is interesting to note that the function bi(Z) is a most powerful

hypothesis test on measured amplitude r, for "signal in state i =z 0" vs

i
"signal in state 1 = 0",
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Description of HMM/AO1

This measurement process does not use a decision step, but does
use a quantization step. A threshold D > O defines the one bit
quantization breakpoint. (The case D = 0 is clearly not useful in thils
application.) The measurement input to the detector/tracker at any

given time t takes the form of a set:
z = {DFT gate cells whose amplitudes equal or exceed D }.

The measurement set z identifies indirectly those gate cells whose
amplitudes do not exceed D. No other information about cell amplitude
values 1s contained in =z. If the measurement set 2z is empty, it

contains the useful information that no cell in the gate exceeds D.

There are two cases. If the signal state is the zero state, no

signal 1is present and, because of the cell amplitude independence
assumptions,

® #(2) n - #(2)
bo(z) = K [ [ Pz(r) dr ] [ JD Pz(r) dr l
D 0 '

where #(z) is the number of measurements in the set z. If z is empty,
then #(z) = 0. The integral from D to w is the probability that the
amplitude in a cell exceeds the threshold D, while the integral from 0O
to D is the probability that the amplitude is less than D. Suppose the
signal state is 1 2 1. If 1 € z, then

® #(z) - 1 © n - #(z)
bi(z) =K [ J Pz(r) dr ] [ J Pl(r) dr ] [ JDPa(r) dr ]
D D 0 :

Alternatively, in the "missed detection” case, 1 ¢ z and

o #(z2) n-#(z)-1
bl(Z) = K [ J Pz(r) dr ] [ JDPz(r) dr ] [ JD Pl(r) dr ]
D 0 0 *

Setting k so that bo(z) = 1 gives
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[ 1, if 1=
P.(r) dr

b, (z) = J-OD‘_I—_ ' ifle
i 4 Ig Pz(r) dr

@

P (r) dr

ID , iIf i e
ID P (r) dr

The function bi(Z) is a most powerful hypothesis
measurements types, namely
(1) ambiguous detection (that is, i € z), and
(2) missed detection (that is, { ¢ z),

for "signal in state 1 =z 0" vs "signal in state i
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Description of HMM/A1O

This measurement process uses a decision step, but not a
quantization step. Because there 1s no quantization step, the
threshold D is set to 0. (N.B. The paper [1] considers the general
case D 2 0 and concludes, on the basis of simulation, that D = 0 is
optimal for detection performance.) The measurement available to the

detector/tracker at any given time t takes the form

2z = {DFT gate cell k=1 has amplitude r

K’ and all gate amplitudes = rk}.

The measurement z contains the DFT cell index k, its amplitude r, , and

k'
the information that no other cell in the gate has greater amplitude.

If the signal state is zero, then

Kk n-1
bo(z) = K [ Jr Pz(r) dr ] Pz(rk).
0

If the signal state is § 2 1, and §{ # k (the missed detection case),

then
X n-2 K
bi(Z) = K [ ]r Pz(r) dr ] [ Jr Pl(r) dr ] Pz(rk).
0 0

If 1 = k, however, then

" n-1
bl(Z) = K [ Jr Pz(r) dr ] Pl(rk)'
0

Setting the scale factor x so that bo(z) = 1 gives the result
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1, iIf 1 =0
P.(r. )
1k iIf 1=k
b(2) = Py(r,) (10)
J""k P,(r) dr
0 1 iIf 1=k
L Ek P,(r) dr

The function bi(Z) is a most powerful hypothesis test on the
measurements types, namely

(1) correct detection (that is, i = k) with amplitude re and

(2) missed detection (that is, 1 # k) with amplitude Ty
for "signal in state 1 =z 0" vs "signal in state i1 = 0".
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Description of HMM/All

This measurement process uses both a decision and a quantization
step. A quantization threshold D > O determines the one bit
quantization breakpoint. The measurement avallable to the

detector/tracker at any given time t is one of the following:

z, = {no DFT gate cell has amplitude exceeding D}
zZ, = {DFT gate cell k has maximum amplitude and its amplitude = D},
where k = 1, 2, ... , n. The measurements z. and 2z,  contain no

(o] k
information about the maximum amplitude other than the fact that it

does or does not exceed the threshold D. Note that the measurement z0
contains no information on the location of the gate cell of largest

amplitude. If the signal state is zero, then for measurement z0

n
bo(zo) = K [ Pz(r) dr ]
0

and, for measurements z k21,

k'
* n-1 x - bylz,)

bO(zk) = K I Pz(r) Pz(p) dp dr = —_— -
D 0

The identity follows from a normalization argument (i.e., the sum over
all k 2 0 of bo(zk) equals x) and the fact that bo(zk) is constant for
k 2 1. If the signal state is { # 0, then for measurement 2

o

n-1
bi(zo) = K [ Pltr) dr ] [ Pz(r) dr ]
(4] 0 :
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If the measurement is z then

1)

() n-1
bl(zi) = K J Pl(r) [ Jer(p) dp ] dr.
D 0

The function Pz(r) is easily integrated, so

o 2 2 n~-1
bi(zi) = K I Pl(r) [ 1 - exp(- r°N/¢") ] dr.
D

Thus, evaluating bi(zi) requires numerical integration of a one
dimensional integral. Finally, if the measurement is z , k ¢ {0, i},

then

k'

o n-2
bi(zk) = K J Pz(r) [ Jr Pl(p) dp ] [ Jr Pz(p) dp ] dr.
D 0 0

Normalization arguments give the equivalent expression

K - bi(zo) - bl(zi)

bx(zk) = )

The expressions above, with x = 1, were first given in [3], and are
easy to utilize in practice.

It is worthwhile rewriting the above equations in a form that
exhibits their theoretical character. To this end, for each positive
integer n, we define the random variable Dn = max (Rl' cee Rn). where
the random variables Ri are independent and identically distributed,
with common PDF given by Pz(r). Conditioned on the event nn z D, the
PDF of Dn is given by

11
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n-1 o n-1
Q(r) = Py(r) [J’Pz(p) dp ] /I P,(r) [f P,(p) do ] ar,
0 D

0

where the denominator is the conditioning term required to make Qn(r) a
valid PDF. By substituting the definition (5) of Pz(r) and performing
the required Iintegrations, an explicit formula for Qn(r) can be
obtained, if desired. We now choose the scale factor x so that bO(zk)
= 1 for all k 2 0. Utilizing the functions Qn(r) gives the result

[ 1, for i = 0 and all z
0 Pl(r) dr
’ for 1 # 0 and z = z0
0 Pz(r) dr
(-]
bi(Z) - 4 F Pl(r) (11)
Q (r) dr, for 1 # 0 and z = 2
n i
Pz(r)
D
o«
J}; P, (p) dp
—— Q(r) dr, fori =0and z = z_.
r P (p) dp i
J 0 "2
L D

The function bi(Z) is a most powerful hypothesis test on the
measurements (zk) for the "signal in state 1 =z 0" vs “"signal in state i
= 0". Note that the last two expressions in (11) are expectations of
likelihood ratios.

12
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Concluding Remarks

The four detector/trackers presented here have a common HMM
algorithmic structure that 1is easily implemented. The only
computational difference between them lies in the calculation of the
state conditional PDFs of the available measurements. In all four
detector/trackers, however, these PDFs can be precomputed either as a
list of all possible measurement outcome probabilities, or as a
likelihood function lookup table with, say, spline interpolation. With
sufficient attention to the PDF calculation details, all four

detector/trackers should run at approximately the same speeds.

HMM/A00 should be the best of the detector/trackers since it makes
use of all the available amplitude data. HMM/A10 and HMM/A11 can be
used for tracking on spectrogram displays that compress the measured
amplitude data in ways that are compatable with their measurement
processes. Of these two, HMM/A10 should give better performance than
HMM/A11 because HMM/A10 has more amplitude information avalilable than
HMM/A11. Finally, HMM/AO1 may be usefyl in applications in which the
true signal is mismatched to the signal model used here. This
possiblility deserves further study.

13
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Abstract

Frequency line detector/trackers based on hidden Markov
models (HMMs) are designed for optimum detection and tracking
performance at a specified design signal-to-noise ratio (SNR). In
practice, their performance is observed to be robust to mismatch
between the design SNR and the true SNR, especially when the
true SNR exceeds the design SNR. A natural way to improve
performance further is to estimate true SNR in an attempt to
match the design SNR of the HMM detector/tracker to the true
SNR. This memorandum derives maximum likelihood estimates of
signal and background noise power for a specific HMM
detector/tracker (known as HMM/AOO), using the Baum-Welch
reestimation, or EM, method. The estimates are derived by
exploiting the intrinsic training capabilities of general HMMs, so
the approach of this memorandum is not limited to the one HMM
detector/tracker presented here. Different HMM detector/
trackers will generally yield different estimators for signal
amplitude and noise power.
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INTRODUCTION

The papers [1, 2] are the first papers to discuss the incluslon of
amplitude information into detector/trackers based on hidden Markov
models (HMMs), but neither paper discusses the estimation of signal and
noise powers. This memorandum gives a derivation of maximum likelihood
estimates of signal amplitude and background noise power for the best
of the four HMM detector/trackers described in [3], namely, HMM/AOO.

Maximum likelihood estimates of signal amplitude and backgg‘vnd
noise power are derived from the likelihood structure imposed on the
measured data by the detector/tracker HMM/AOO. The 1likelihood
structure of HMM/AO0 is highly non-Gaussian in nature because it arises
from the “hidden" Markov chain and the specialized measurement
likelihood functions appropriate to the frequency line tracking
application. The methods used here for HMM/AOO can, in principle, be
applied to derive signal and noise power estimates for the other HMM
detector/trackers presented in {3]; however, estimators for these other

trackers are not presented here.

The detector/tracker HMM/AQO uses a fixed frequency gate, that is,
a fixed contiguous subset of size n =z 1 of the full set of DFT
(discrete Fourier transform) frequency cells. The DFT size is N 2 n
and cells of the fixed gate are indexed, for convenience, 1, 2, ... ,
n. The HMM/AOO measurement process utilizes all the available amplitude
information, that is, the output of the measurement process at time t
is the vector

z, = (r ), (1)

t 1t* T2t0 00 0 Tt

where Fi¢ is the measured DFT amplitude in gate cell i at time t.

The detector/tracker HMM/AO0 has two types of states -- one
corresponding to the “"signal absent" hypothesis and others
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corresponding to “signal present" hypotheses. (If either type of state
is not used, then the HMM cannot be described as a detector/tracker.)
The “"signal absent” hypothesis is indexed O and called the zero state.
The "signal present" hypotheses are numbered from 1 to n and correspond
to signal frequency lines centered in the n DFT cells of the gate.
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BACKGROUND ON THE DETECTOR/TRACKER HMM/AOO

Let 2 = (zl, 22. ceey zT) denote a measurement sequence of length
T 2 1 that is input to the n+1 state detector/tracker HMM/AOO, where

the measurements z, are defined by (1). The forward algorithm computes
the vectors «, € Rn+1 by means of an algorithm that is easily stated in
terms of .atrix products. Let ’ denote matrix transposition. Then the

forward algorithm is defined by

@ = B(zl) n

(2)

(3 = B(zt+1) A«

t+1 t’

where n € Rn+1 is the initial state probability vector, A = [a,.] €

(n+1)x{(n+1) 1J

R is the state transition probability matrix, and, for an
arbitrary measurement z, the matrix B(z) € R(n+1)x(n+1) is defined by
B(z) = Diag [bo(z), bl(z). v bn(z)],

and where bi(Z) denotes the likelihood function of the measurement z
., n. Similarly, the
1

backward algorithm computes the vectors 3t e R™ by means of an

conditioned on the signal state i, 1 = 0, 1,
algorithm that ls equivalent to the matrix product

BT = (1 1 +«» 1) € R
(3)

Bt A B(zt+1) Bt+1’

Probabilistic interpretations for the vectors « and ﬁt are gliven in

[4]. The continuous detector/tracker outputs arz derived (see [4] for
further details) from the probability field, denoted by 7t(1). The
numerical value of 7t(1) is the probability the signal occuples state i
at time t, conditioned on all the available measurement sequence 2. It
is defined in terms of the components {at(i)) and (Bt(i)) of the

vectors a, and Bt by
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n -1
«, (1) B, (1) z a, (k) B, (k) (4)
k=0 :

7t(i)

In equation (4), t ranges from 1 to T, and i1 ranges from O to n.
Although it is not immediately clear, it can be shown that

n
Z 7t(1) = 1
i=0

for each time t. The name “"probability fleld" for 7t(1) was first used
in [7], where its image enhancement property was first described.

A statistic closely related to the probability iield is the "gate
occupancy probability", denoted Gop' The Gop is defined by