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Theoretical Development for Depth Profiling
of Stratified Layers using Variable Angle ATR
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The theory allowing depth profile information to be recovered from variable angle
attenuated total reflection spectroscopy is shown for both perpendicular and parallel
polarizations. The errors invoked by the necessary approximations are evaluated by comparison

with exact optical simulations using dispersion theory.

Introduction:

It is often desirable to have molecular information as a function of thickness within a
sample. Such information can disclose the details of concentration gradients which would be of
interest in a broad number of systems including polymer blends, polymer composites, and
coatings. However, the recovery of the profile distribution is not straightforward. One method
which will yield this information with proper treatment is variable angle attenuated total
reflection Fourier transform infrared spectroscopy (VA-ATR FTIR). In fact, any system which
contains gradients as a function of depth could potentially benefit. This method allows the
determination of concentration profiles as a function of depth within a sample without disrupting
the sample. Currently, it is quite difficult to determine molecular gradient information in the

micron size range, and an invasive technique is often used. However, even with proper treatment
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this optical method must be applied judiciously with proper regard to the restraints imposed by
the optical constants of the materials involved. It is the intent of this paper to detail the necessary
theory to recover the extinction coefficient as a function of depth for stratified layers. There are
certain approximations which must be made, specifically that of the extinction coefficient being
not too large, and this rather loose criterion is explored more rigorously. The beam intensity is
reduced both by the exponential decay of the evanescent wave and absorption. These two effects
can be decoupled when absorption is not the dominant effect.

The governing principles of ATR have long been established. Harrick! was one of the
pioneers in this field and he demonstrated that, above the critical angle required for internal
reflection in a layered system, the field intensity in the second medium decays exponentially
from the surface of the optically dense material. Generally, it can be said that as the angle of
incidence approaches the critical angle, the field strength in the second medium is increased,
thereby probing to an increasing depth. In addition, this depth depends on the wavelength of
incident radiation. A precise description of the field decay is known which includes the angle of
incidence as an operable variable, as well as the refractive indices of the layers and the
wavelength of the incident light. As the angle of incidence is changed, the field intensity is also
changed, but any profile information at an individual depth is obscured by previous layers in an
additive fashion. This difficulty may be overcome by applying inverse Laplace transform
mathematics. Since infrared radiation is being employed, it is then possible to obtain vibrational

spectroscopic information as a function of depth within the sample.

Theory:
By definition, the sum of the transmittance (T), reflectance (R), and absorptance (A) is

equal to unity.
T+R+A=1 0]




The intensity decrease due to reflection occurs when the light impinges on the optically dense
material. Radiation impinging on the interface between the incident media and the substrate is
either reflected or transmitted. Here the initial transmitted component, T9, isequalto 1 - R. Itis
commonly known that the field decay within the substrate is exponential above the critical
angle.2 The configuration under consideration is shown in Figure 1, where the incident media is
of higher refractive index than the substrate, and is transparent throughout the frequency range
under consideration. Snell's law is applicable for determining the angle of refraction.3
n,sin6, =n, sin(?)2 )

Here, the "A" indicates a complex quantity, where n,=n,+ik,, k being the extinction coefficient,
and i =v/—-1. The critical angle, in terms of the incident beam 81, is determined when 07
becomes 90°. Therefore, total internal reflection is observed for transparent media when the

incident angle is above 0.

0, =sin™! (ﬂ-) 3)
n,

For this condition, the transmittance is actually a function of z and decays exponentially as
shown in the following equations:3.4
T(z) = T% 2" 4)
AR =T -T@)=T°(1-¢™") (5)
where z is in the depth direction away from the interface between the optically dense material

and into the substrate, and v, the decay coefficient, is shown in the following equation.3
27n, Im[ﬁ2 coséZ]

A

The total absorptance, A, is mathematically equal to the sum of A(z) and T(z), and it has the

(6)

‘Y:

proper limiting condition for non-absorbing substrates, as z approaches infinity the transmitted
component approaches zero, and since TO is zero, the reflectance goes to 1, which is the case for
total internal reflection. Similarly, for absorbing substrates, the absorptance is appropriate

because the absorption is zero when the depth is zero, but there is still a field component in the




second medium. For the case of internal reflection, the transmitted component is always zero,
except for the case of optical tunnelling, therefore the only loss of reflection is due to
absorptance so R = 1- [A(z) + T(2)], i.e. R =1 - A, The wavelength of the radiation under

consideration is given by A, and "Im" indicates "imaginary part of." The term TO is the

transmittance at z=0, and is dependent on the state of polarization.’
Rc:[n2 cos® ]

Tg n, cos9, l l )
To = Re[nzcose ]lt I ®
n, cos9,

The "*" indicates the complex conjugate and "Re" indicates "real part of." Here, the polarization
convention follows that s-polarization is for electric field vectors perpendicular to the plane
defined by the incident and reflecting beam, and p-polarization is for electric field vectors within

that plane. The quantity fp is the complex Fresnel transmission coefficient for p polarization,

with an analogous term for s polarization.$

Ep - 2n, cos9, ©)

n, cosO, +n, cosO,

2n, cosB, (10)

ladd
-

n, cosO, + 1, cosH,

The following integral relation is valid:

-2 - -2
[[eraz= 27(1 e2r) (11)

Using a simple algebraic rearrangement, the term (1~ €7™™) in equation (5) can be substituted to

give an integral form because x is the distance in the z direction:
A = T%2" + 2yT° j iz (12)

This may be re-written explicitly for each polarization by substituting equations (7) and (8) to

yield the following:




2y Re[ﬁ; cos ézjlf |2 x
Ap = n, cos0, : Lc Tz (13
_ 2y Rc:[ﬁ2 cos éz]lf,lz x

An intrinsic assumption in this approach is that back reflection does not occur after the substrate,
which neglects the term T% ™" in equation (12), and is valid when there is no abrupt change in
the real part of the refractive index. Equations (13) and (14) allow the exact calculation of
absorptance (A) knowing an extinction coefficient profile for attenuated internal reflection.
However, it is the aim of this paper to recover the concentration profile of absorbers as a function
of depth from the internal reflection element within the substrate material. It is virtually
impossible to do this using the exact solutions presented in equations (13) and (14). To make
this solution tractable, it is necessary to introduce the assumption that k is small, which allows
the simplification of equations (13) and (14) in the following manner. It is only necessary to
make the following approximations if depth profile information is desired. Assuming k is small,

and applying Snell's law, equation (2), the following simplifications can be made:
k(2n}sin?6, —n})

Re[ﬁ2 c0592]§ Y (15)
nlnz Sin291 —L:_A‘j

n,
Re[ﬁzcoséz] = nok - (16)

n, \/;nzel _(12‘)

n,
2

IEPIZ = (an 00591) (17)

2
(n,cos8,)’ + nf[(%‘—) sin? 9, —l:|
2




~ 12 (2n,cosH,)’
fuf = Grcost) a8)
nl _nz
2
21m,\/sin291 —(32—)
= o (19)
7= Y

Notice that the extinction coefficient, k, is shown with first order dependency because higher
order terms have been neglected. For the situation where k is a function of z, this profile will fall
under the integral shown in equations (13) and (14). The working equations for depth profile
calculations are found by substituting the approximations shown in equations (15)-(19) into

equations (13) and (14), as shown in equations (20) and (21).

4 2n?sin?@, —n} 2n, cos, )’ -

AP:(?\.COT:&I( l nnzl ! = 1)2 rLk(z)c dz (20)

1
(nycos8,)” + n,’[(g—l-) sin” 6, —1:|
n,
4n n, Y (2n,c0s0,)* ¢~ . _,
A, =| A% B2 f1EMCOST) [} (5)e2mds 21
(kcos@,](n,)( n? ~n? o(z)e @D

The integral in equations (20) and (21) is recognized as the Laplace transform of k(z), the
concentration profile, where the Laplace variable s=2y. This Laplace transform relationship was
first noted by Hirschfeld.” Therefore, to determine the concentration profile it is necessary to
calculate the inverse Laplace transform of A(s), in other words to measure the absorptance, A, at

different angles and then to take the inverse Laplace transform, £V with the appropriate scaling

relations as shown in equations (22) and (23).

( 2
(n,cos8,)” +n? (21-) sin?0, —1
k(z)zL_,‘(kcosel )( n,n, n;

4n 2n?sin? @, — n2 (2n,cos8,)’

N

A (22
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Acos8, Y n n? - n?
k — -1 __._l- —.1 ____1__2__ 2
@)=L {( 4r )(nz )((2n100591)2 )A.(S)} @)

It is encouraging that equation (23) is identical to the result obtained by Tompkins?8 after making
the proper substitutions to calculate k, and adding the term for the initial field from the Fresnel
transmission coefficient, equation (18), which was not shown explicitly in his work. Previous
attempts to determine concentration profiles by Reichert et al9. and Fina et al.!0 were done using
perpendicularly polarized light or by neglecting polarization as in Popov et al.1!

The theory assuming small k will be checked by comparison with the exact solution of
the absorptance from the complex refractive index based on Fresnel's relations. The numerical
solution compares perfectly with the matrix formalism presented by Hansen3 as well as the
somewhat different approach used by Ohta et al.5 The complex refractive index for a model
material was calculated from classical dispersion theory.!2 The complex dielectric constant,

which is representative of any vibrational modes including electronic transitions, is expressed as:

v +ilv— v}

g(v)=¢e.-
where €, and €. are the dielectric constants at v=0 and e~ respectiveiy. The damping coeffient
for the oscillator is {, and v, is the frequency of the proper vibration. The complex refractive
index is the square root of the complex dielectric constant for dielectric materials, where the
magnetic permeability is unity.

A(v) = E(vV) (25)

The use of classical dispersion theory to obtain model optical constants free from error is used to
determine the errors involved with the approximations given in equations (15) - (19). This
procedure has been shown to have great utility in previous studies.!? Using the approximations
outlined in the theory section, it is evident that the real part of the refractive index must be

constant. Of course, this is not strictly valid during an absorption, since the real and imaginary

components are bound by a Kramer's-Kronig relation, i.e. causality. Therefore, the primary use




of the classic damped oscillators is to determine the effect of neglecting the optical dispersion.
The effects of optical dispersion will be minimized with smaller extinction coefficients, therefore

this approximation is commensurate with the previous assumptions.

Experimental:

The programs used to simulate spectra based on classical dispersion theory were written
in Fortran77 on a MicroVAX II with a VMS operating system. The statistical fitting of the
inverse Laplace transform was performed on a Macintosh using Systat® software which is
commercially available.

This method requires a premeditated choice of concentration profile. Upon choosing a
candidate profile, the specific parameters of the model are determined and the overall model is
evaluated statistically. For this paper, step profiles are simulated using the exact Fresnel
solution, then the profile information is recovered using the approximate relations shown in
equations (22) and (23). Both the film thickness and the estimate of the extinction coefficient

will be compared to the original starting values.

Results;

The extinction coefficient was assumed to be small to make the depth profile problem
tractable, and to that end the approximate relations, equations (15) - (19), were employed. The
consequence of using the approximate forms may be seen in the following figures. The decay
coefficient, v, indicates the distance over which the field decays to 1/e of its initial value. Of
course, this distance will be shorter in the case of absorption. The error involved with neglecting
absorption, i.e. the percent difference between equations (6) and (19), is shown in Figure 2. For
this calculation, a frequency of 1000 cm-! and an angle of 26° was used. The angle being

considered is close to the critical angle and represents close to the largest error, just as the error




would be less further from the critical angle. Here, the error is about 7% for k = 0.2, a relatively
strong organic absorption, and falls to zero as k tends toward zero.

The Fresnel transmission coefficient, |tl, represents the initial field in medium 2 at zero
depth. The error caused by neglecting the extinction coefficient, i.e. the percent difference
between equations (9) and (17) for p-polarization, and (10) and (18) for s-polarization, is shown
in Figure 3. Here the angle of incidence is 26°, close to the critical angle which is the condition
for the largest error. The error is about 8% for k=0.2 using s-polarization, but is almost 3 times
higher for p-polarization. Again, the error drops to zero as the extinctions coefficient tends

toward zero.

The final set of approximations comes from the terms Re[n; cosé], for p-polarization
and Re[n, cosé] for s-polarization. These terms are assumed to behave first order with respect
to k, and it is from these terms that the extinction coefficient profile is determined. The error in
this assumption is obtained by comparing the directly calulated values with equations (15) and
(16) for p-polarization and s-polarization, respectively. The results for an incident angle of 26°,
one of the highest error conditions, are shown in Figure 4. Here the error for the parallel
component is lower, about half that of the perpendicular component. The error for p-polarization
is about 4% for a k=0.2.

To a first approximation, best results would be obtained by considering s-polarization, in
particular because the error in the Fresnel transmission coefficient is very high for p-polarization.
However, p-polarization is attractive because it has a lower error for the term Rc[ﬁ;cosé].
Therefore, it may be possible to make better use of p-polarization by iterating. Indeed, this
procedure will reduce the error for both polarizations, but the effect will be more profound for p-
polarization. The iterations would invoive taking the estimate of k from the first approximation,
and returning this value to calculae a refined estimate for the Fresnel transmission coefficient
and decay constant. While this is possible, it will simply extend the usefulness of these

developments, and both s and p polarizations may be used to determine depth profiles without




iterating, but p-polarization will be more sensitive to the extinction coefficient. The following
section will illustrate the degree to which one can determine step profiles for both polarizations
without iterating, and some examples of the benefits of iterating will be shown in the final
section.

The preceding figures illustrate the degree of error imposed by the small extinction
coefficient approximations. One major effect has not yet been explored, and that is the effect of
optical dispersion, that the real and imaginary parts of the refractive index are coupled through a
Kramer's-Kronig relation. To evaluate all of the effects simultaneously, model spectra were
simulated using classical damped oscillators, equations (24) and (25), which follow Kramers-
Kronig relations. Exact spectra were simulated for internal reflection at angles between 26 and
64° at half degree increments. The approximate relations were applied to these exact spectra,
equations (22) and (23), and the extracted results were compared with the known input. For step
profiles, the main variables are thickness and extinction coefficient, but these are also determined
for different absorption frequencies.

By proper choice of the damping coefficients, it is possible to obtain spectra like that
shown in Figure 5. A peak is placed at every 500 cm-! between 2000 and 500 cm-!. Here the
extinction coefficient intensity is maintained at 0.05, but by changing (, it is possible to obtain
other values. Consideration will also be given to k=0.005 and k=0.5. This allows the
differentiation between weak, moderate, and strong organic absorptions.

Step profiles have a particularly simple Laplace transform. When k(z) is a unit step of

thickness t, directly from the optically dense material, then:

j;l.((z)c‘mdz = k(l—:—“ ) (26)

Here, the Laplace variable s=2y, and this relation can be directly substituted into equations (20)
and (21) for non-linear fitting in Laplace space. While the extinction coefficient is allowed to
vary, the real part of the refractive index is not. Even after the step profile, the real part of the

refractive index must be maintained. For a complex refractive index such as that shown in

10




Figure 5, this means that a transparent backing layer with n = 1.5 must be applied behind the
stepped layer. A typical result of this non-iinear fitting is shown in Figure 6. In this figure, a
simulated rcsult of a 0.5 pm thick film for different angles is shown with k=0.05 on germanium
(n=4.0) at 1000 cm"! using s-polarization. The solid line shows the best fit line using equations
(21) and (26), returning an estimate for the thickness of 0.485 pm with an estimate for the
extinction coefficient of 0.050, which corresponds to a 3% error in thickness and a negligible
error for k.

For similar conditions, s-polarization at 1000 cm'! on germanium, except here the
thickness and the extinction coefficient are changed, the results are shown in Figure 7 and 8
respectively. For small absorptions, k=0.005, the estimated thickness remains less than 1% of
the actual thickness to 2.0 um. For a moderate absorption, k=0.05, the error of the estimated
thickness increases to 6.5 % for an actual thickness of 1.5 um. For a strong absorption, k=0.5,
the errors are 20% or larger throughout the range of investigated thicknesses. The limit to the
small k assumption depends on the level of tolerable error, but absorptions which are considered
strong on the organic level are probably not desirable. The error in the estimated extinction
coefficients are much lower. For weak and moderate absorptions, the error in k is practicably
negligible, although it is definitely not negligible for a strong absorption. The error for a strong
absorption is seen to decrease as the actual thickness is increased. Doing this increases the error
in the estimated thickness, however the error for the estimated extinction coefficient drops
because the exponential term in equation (26) is tending toward zero, making k the only
parameter to be estimated.

For higher frequencies the trends are similar, however the overall error is higher for the
estimated thickness, and lower for the extinction coefficients, as shown in Figures 9 and 10
respectively. The error for a small absorption, k=0.005, is up to 5% for 2 pm actual thicness, and
for a moderate absorption, k=0.05, the error is at 10% for 1 um actual thickness. The error in the

estimated extinction coefficient is dramatically lower for the case of strong absorption, k=0.5.
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If an incident media is used with a lower refractive index, for instance KRS-5 (n=2.37),
then there is an even greater dependence on the extinction coefficient, as shown in Figures 11
and 12. The level of error in the estimated thickness and extinction coefficient 1s higher than the
equivalent condition for germanium in all cases. In Figure 12, there is a curvature in the error for
the estimated extinction coefficient for the actual exctinction coefficient of 0.05. This is evident
in all of the graphs showing k=0.05, however it is even more pronounced in Figure 12.
Presumably this is because the effects of k and distance are well matched at the lowest error,
while extinction dominates for thinner and distance dominates for thicker layers. For smaller k,
the thickness dominates, and for larger k, the extinction dominates. Therefore, at large k it is
difficult to determine layer thickness but easier to determine k. At small k, it is easy to determine
layer thickness, and harder to determine k, even though the ~stimate of k is very good since our
assumptions are most valid here. For moderate k, there is more evident a trade-off between these
considerations.

The importance of maintaining a backing layer with the same refractive index is
illustrated in Figures 13 and 14. Here, k = 0.005, s-polarization is used with 1000 cm"1 on KRS-
5. The estimated thickness is shown in Figure 13. By abruptly changing the real part of iie
refractive index, from 1.5 for the layer to 1.0 for the backing material, there is a linear offset in
the estimated thickness which is quite appreciable. Therefore, these abrupt changes in the real
part of the refractive index are tc be avoided. Fortunately, from an experimental consideration,
most organic materials have their real part of the refractive index cicse to 1.5. The estimate of k
also suffers a great deal until the sample thickness becomes thick enough that the backing layer
becomes obscured.

When p-polarization is used, with 1000 cm-! on germanium, the results are shown in
Figures 15 and 16. The errors are consistently higher than that for the identical case with s-
polarization. Of course, this increase in error was somewhat expected because the error in the

Fresnel transmission coefficient, Itl, is significantly higher for p-polarization than for s-
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polarization, as shown previously in Figure 3. It is possible to compensate for this error
somewhat by using the estimate for k, and calculating a refined value of yand I, using
equations (6) and (9) respectively. The results of this 20d approximation are shown in Figures 17
and 18. The errors are drastically reduced at larger thicknesses. Interestingly, the errors are
higher for thin layers. The approach which has been outlined inherently neglects optical
dispersion. However, one of the effects of optical dispersion is to allow appreciable back
reflection from the far side of the film when the film is sufficiently thin. Therefore, it is this
effect which has become apparent and is causing the increased error for thin films in Figures 17
and 18. A back reflection allows additional absorption by increasing the actual field strength.
This in turn causes the calculated thickness to be over-estimated because only the forward field is
considered which then causes the field to be under-calculated. The extinction coefficient is
estimated well in either case. For the first approximation, the field is set too high since
absorption is neglected, which causes the thickness to be underestimated. For thin films, this
effect is opposite in direction to the tendency to overestimate the thickness when the 2nd
approximation is considered. Since these two effects are fortuitiously opposing, the thin film

errors are not evident in the preceding figures when the field and decay constant are not refined.

Conclusions;

Approximations are made of the the exact equations describing generalized internal
reflection spectroscopy. These approximate relations allow the determination of depth profile
information for either s-polarization or p-polarization. The errors invoked by the approximation
of a small extinction coefficient have been evalulated for different conditions. It was found that
the least error was obtained using s-polarization with as high an optical density for the incident
medium as possible, germanium for infrared studies. The results for p-polarization have
inherently higher error than the corresponding results for s-polarization, primarily due to greater

sensitivity of the Fresnel transmission coefficient to the extinction coefficient for p-polarization

13




than for s-polarization. These errors may be reduced for larger thicknesses by employing an

iteration technique made possible by the exact optical equations.
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Figure 1:

Figure 2:

Figure 3:

Figure 4:

Figure §:

Figure 6:

Figure 7:

Figure 8:

Figure 9:

Figure 10:

Figure 11:

Figure 12:

Figure 13:

Figure 14:

Schematic illustration the internal reflection arrangement.

% Error in the decay coefficient, vy, caused by neglecting the extinction
coefficient. The conditions used for the calculation were 26° incidence and 1000

cm-l,
% Error in the magnitude of the Fresnel transmission coefficient, 1!, for s-
polarization (solid line) and p-polarization (dashed line) caused by neglecting the

extinction coefficient calculated at 26°.

% Error in Re[n, coséﬂ for s-polarization (solid line) and in Re[f} cos8 .} for p-
polarization (dashed line) calculated at 26°.

Results of classic damped oscillators, k & n for substrate.
Simulated Absorptance (o) for k=0.05 spectra 0.5 pm thick on germanium at 1000

cm-1 with s-polarization. Solid line is best fit for step profile using approximate

relations.

% Error in the estimated thickness for s-polarization at 1000 cm-! on germanium.
% Error in the estimated k for s-polarization at 1000 cm-1 on germanium.

% Error in the estimated thickness for s-polarization at 2000 cm-! on germanium.
% Error in the estimated k for s-polarization at 2000 cm-1 on germanium.

% Error in the estimated thickness for s-polarization at 1000 cm"! on KRS-5.

% Error in the estimated k for s-polarization at 1000 cm-1 on KRS-5.

Estimated thickness for npacking=1.5 and npacking=1.0 for k=0.005, s-polarization
at 1000 cm-1 on KRS-5.

Estimated k for npacking=1.5 and npacking=1.0 for k=0.005, s-polarization at 1000
cm-1 on KRS-5.




Figure 15:

Figure 16:

Figure 17:

Figure 18:

% Error in the estimated thickness for p-polarization at 1000 cm-! on germanium.
% Error in the estimated k for p-polarization at 1000 cm-! on germanium.

% Error in the estimated thickness for p-polarization at 1000 cm-1 on germanium

to a 2™ approximation.

% Error in the estimated k for p-polarization at 1000 cm™! on germanium to a 2nd

approximation.
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