WL-TR-92- 5048
AD-A255 547
IR

INTEGRATION TOOLKIT AND METHODS (ITKM)
CORPORATE DATA INTEGRATION TOOLS (CDIT)

Review of the State-of-the-Art with Respect to Integration

Toolkits and Methods (ITKM)

Anthony K. Sarris
Ontek Corporation
22951 Mill Creek Drive
Laguna Hills, CA 92653

June 1992
Final Report for Period June 1991 May 1992

Approved for public release; Distribution is unlimited.

92 9 15 Vg2

Manufacturing Technology Directorate

Wright Laboratory

Air Force Systems Command

Wright-Patterson Air Force Base, Ohio 45433-6533

é? 927%§ﬁﬁ4
R LR
R MMMMHMJI@@?K

NOTICE

When Government drawings, specifications, or other data are used for any purpose other
than in connection with a definitely related Government procurement operation, the United
States Government thereby incurs no responsibility nor any obligation whatsoever; and the
fact that the government may have formulated, furnished, or in any way supplied the said
drawings, specifications, or other data, is not to be regarded by implication or otherwise as
in any manner licensing the holder or any other person or corporation, or conveying any
rights or permission to manufacture, use, or sell any patented invention that may in any
way be related thereto.

This report has been reviewed by the Office of Public Affairs (ASD/PA) and is releasable
to the National Technical Information Service (NTIS). At NTIS, it will be available to the
general public, including foreign nations.

This technical report has been reviewed and is approved for publication.

gp' &M

BRIANSTUCKE 7
Project Manager

ssee G (¥

BRUCE A. RASMUSSEN, Chief
Integration Technology Division
Manufacturing Technology Directorate

“If your address has changed, if you wish to be removed from our mailing list, or if the
addressce is no longer employed by your organization please notify WL/MTIA, W-PAFB,
OH 45433-6533 to help us maintain a current mailing list.”

Copies of this report should not be returned unless return is required by security
considerations, contractual obligations, or notice on a specific document.

REPORT DOCUMENTATION PAGE FORM APPROVED

OMB NO. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, inciuding the time for reviewing
instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection
of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including sugges-
tions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Adington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project
(0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
June 1992 Final Report
June 1991 - May 1992

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
Integration Toolkit and Methods (ITKM) PE: 78011F
Corporate Data Integration Tools (CDIT); . R
Review of the State-of-the-Art with Respect to Integration Toolkits and Methods (ITKM) C: F33615-91-C-5722
6. AUTHOR(S) PR: 3095

Anthony K. Sarris TA: 06

WU: 33
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

Ontek Corporation

22951 Mil" Creek Drive ONTEK/SR-92/003

Laguna Hills, CA 92653
9. SPONSORING MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING

Brian Stucke (513-255-7371) AGENCY REP NUMBER

Manufacturing Technology Directorate (WL/MTIA)
Wright Laboratory
Wright-Patterson AFB, OH 45433-6533

WL-TR-92-8048

11. SUPPLEMENTARY NOTES
This is a Small Business Innovative Research Program, Phase I report.

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for Public Release; Distribution is unlimited.

13. ABSTRACT

Documented are the results of a study performed of the state-of-the-art with respect to systems analysis and modeling methods and

tools which aid in the integration of distributed corporate resources. One major source of data regarding the state-of-the-art was a survey
conducted of industry, tool developer/vendors and academia. The survey and other data sources are described in this documeat. The scope of
state-of-the-art assessment activities under this ITKM project was focused on tools and methods to support enterprise analysis and modeling,
particularly in the context of enterprise information integration. Given that breadth of context, as well as the tendency towards increasingly
blurred boundanes among the various information technologies utilized for enterprise integration, some of the data in this document relales to areas
outside the traditional realm of enterprise analysis and modeling methods and tools. For example, broader methods and tools such as: information
frameworks and architectures; repository/data dictionary technologies; Computer-Aided Software Engineering (CASE) tools; "re-engincering”
methods and tools, including those for integration, access and migration of legacy databases; and systems development life-cycle methodologies
were also included in the study, at least to some degree.

14. SUBJECT TERMS 15. NUMBER OF PAGES
Integration, Database, Representation Language, Methodology, State-of-the-Art, Simulation, Enterprise 132
Analysis and Enterprise Modeling, Framework, Enterprise, Toolkit, Modeling, IDEF. 16. PRICE CODE
17. SECURITY CLASSIFICATION |18. SECURITY CLASS 19. SECURITY CLASS 20. LIMITATION ABSTRACT
OF REPORT OF THIS PAGE. OF ABSTRACT
SAR
Unclassified Unclassified Unclassified
Standard Form 298 (Rev 2-89)
Prescribed by ANSI Std 2239-18

298-102

Table Of Contents

Page

L INtroduction it stesssee st nesaesansssessas s ee s s sasesassansnases 1
1.1. Description Of ITKM State-of-the-Art Review Document ... 1
1.2. Scope and Objectives Of ITKMc.coiiiiiiiiiiiiii e 1
1.3. Background To ITKM ... 2
1.4. Ontek Approach To ITKM ... 2
2. Summary Of Industry Survey Results.......ccovrueievenveneninininnninrinnienenssnsssssinne s 4
2.1 ReSPONAENTS .ottt s 4
2.2. Observations On the State-of-the-Art and Critical Requirements..............cocooeiiin 5
2.3. Summary Of Responses and Observations By Survey Arez ..o 7
2.3.1. Nature Of Existing Modeling......co.ooimiioiiiiiie 7
2.3.2. Current Enterprise Modeling Environmentcooiiiiiiiiiiin 8
2.3.3. Frameworks and ArchiteCtures.........ccoveeoiiiniiiiiiiinieiiiiiiiiee e 9
2.3.4. Enterprise Business-Level Modeling ... 9
2.3.5. Requirements For Enterprise Modeling ... 10
2.3.6. Model INTEZrationccooiiiiiiiiiiii e 10
2.3.7. Model Configuration Management and Formalism............... 11
2.3.8. Reference Models or Model Librariescococoiimiiiininiiis 12
2.3.9. Existing Methodologies, Techniques, Languages, Approaches and Tools............. 12
2.3.10. Re-Engineering and Repositories/Data Dictionariesoooooooveniiinn, 13
2.3.11. Software Development and Configuration Management Methodologies........... 14
2.3.12. Prioritized Criteria or Requirements For Enterprise Modeling........................... 14
2.3.13. Pioblems With Enterprise Modeling ... 17

3. Description Of Major SOTA Toolkits and Methods........ccconenininininennciiiicciienne 19
3.1. Architectures and Frameworks.o 19
Company-Specific Frameworks and Architectures (e.g. NADSARD, AIA).......... 19
CAM-i Computer-Integrated Enterprise (CIE) ... 21
ESPRIT AMICE CIM-OSA ..o e 21
ICAM Factory of the Future (FOF)oiiiiii i 22
James Martin Information Engineering Framework..................... 23
Zachman “Framework For an Information Architecture” ... 24
3.2. Modeling Methods and Tools.........c.ocooiii 25
Binary and Elementary N-ary Relationship (B[EN]R) Modeling ... 25
Business Entity-Relationship Model (BERM)...............n 26
Computer-Aided Software Engineering (CASE) and Re-Engineering..........c..o.ooo 27
CONCEPE MAPS. ...ttt 30
Concept Propositional Analysis (CPA) ... 33
Conceptual Graphs (CG) ..ot 33
Data Modeling Versus Information Modelingoooiii00.30
Entity-Attribute-Relationship (E-A-R) Modeling ... 37
EXPRESS and EXPRESS-G.ooooii e 38
Extended Entity Relationship (EER) Modeling (Ross, Bachman Object-Role et al)..... 41
FIVPEITEXT i 43
ICAM Definition (IDEF) Modeling Methodology ... 43
IDEFO Functional Modeling..........ooo 45
IDEF1/1X Information Modeling...........o.oooiiii e 48

iii

Page
IDEF2 Dynamics Modeling.........c.ocoovomviiiiiieiniiiii e 54
IDEF3 Process Flow and Object State Modeling...........ooooiviiininniiciees 55
IDEF4 Object-Oriented Design.......cccccoeevmmieneniiiiinn, e 57
Interpreted Predicate Logic (IPL) .c.c.covviriiiiiiiiicii e 58
NIAM (Incl. RIDL-C and NORM)oiiiotiiiceeeeees et 58
Object-Oriented Modeling Paradigm (Ontic, Prech and DaDaMo)coeeeennee, 60
Process Dynamics/Simulation Modeling (Petri Nets, Finite State Machines etal)......... 64
Quality Function Deployment (QFD), House of Quality (HoQ) & Other TQM 67
Rule-Based Systems/Expert Systemscocimiioiciiiiiiie e 71
Semantic Network or Semantic Netcoccoviiiiiiiiiiiiiic e 73
Systems Engineering Methodology (SEM) (Functional Flow Block Diagrams et al)74
The Vee Method (or Heuristic) For Knowledge Acquisitionccoooineiiicciiinnn, 77
Yourdon Methodology (Structured Analysis, Data Flow Diagrams et al)....................... 78
3.3. Model Extension and Integration Projects and Approachesccooininiinnnn. 81
GUIDE Data Modeling Extensions Project...........ccooovoiiiiiiiiiiiii, 81
Information Resources Dictionary System (IRDS) (IRDS I and 11, ATIS)......... 83
Neutral Information Representation Scheme (NIRS) (Incl. IDSE) ... 86
Portable Common Tool Environment (PCTE) ... 87
Semantic Unification Meta-Model (SUMM) .o 89
Shared Reusable Knowledgebase (SRKB) (KIF, KRSS etal).........oooooiii 920
Various Other Model Integration Projects (CDIF, STARS eval) ..., 94
3.4. Repository/Data Dictionary Technologies ... 7
3.4.1 Categories Of Data Dictionaries.coovoueciiinimuiimiiiecieiiiee e 97
3.4.2 Capabilities Of Data Dictionaries.......cocovoevoiiiiieiiic 98
3.4.3 Commercially Available Darta DictionaryTechnologies ..o 100
4. Supporting Data ...t s s s 103
4.1. Overview Of Data Gathering Approachcocoooioiiiiiiiii e 103
4.2, SUIVEY et e e e 103
4.3. Coordination With Other Related Organizations and Projects...........c.cocoeiii 103
4.4. Reference Materialsoocooiiiiiiiiiiecee et 105
4.4.1. Bibliography.........ccocoiiiiiiiiii i 105
4.4.2. Other Source DOCUMENTS.........iieoiiiiiiiiicic i 111

Attachment A — Populated Survey Form

‘ Accession For
NTIS fARA&I @

DTIC TAB 0
Unetncenced O
Juinification_

By_ .-,_h-m-.._...-...-——é

Dis.rituttor/ !

- - m—

p Avallentlity Judan '

Avali dadjor

18t | spesial DTIC QUALITY INSPLCTED 3

AN

e

1. Introduction

1.1. Description Of ITKM State-of-the-Art Review Document

This State-of-the-Art Review Document entitled “Review Of the Stare-of-the-Art With
Respect To Integration Toolkits and Methods” is a scientific and technical report submitted as a
contract deliverable in accordance with contract data requirements list (CDRL) data item #A007
under Ontek Corporation’s Integration Toolkit and Methods (ITKM) contract (#F33615-91-C-
$722). Documented herein are the results of a study performed of the state-of-the-art with respect
to systems analysis and modeling methods and tools which aid in the integration of distributed
corporate resources. One major source of data regarding the state-of-the-art was a survey
conducted of industry, tool developers/vendors and academia. The survey and other data sources
are described in the main body of this document, and in an attachment thereto. The scope of state-
of-the-art assessment activities under this ITKM project was focused on tools and methods to
support enterprise analysis and modeling, particularly in the context of enterprise information
integration. Given that breadth of context, as well as the tendency towards increasingly blurred
boundaries among the various information technologies utilized for enterprise integration, some of
the data in this document relates to areas outside the traditional realm of enterprise analysis and
modeling methods and tools. For example, broader methods and tools such as: information
frameworks and architectures; repository/data dictionary technologies; Computer-Aided
Software Engineering (CASE) tools; “re-engineering” methods and tools, including those for
integration, access and migration of legacy databases; and systems development life-cycle
methodologies were also included in the study, at least to some degree. These other methods and
technologies are closely related to the more traditional enterprise analysis and modeling methods
and woly and, therefore, influence them in numerous ways. Also, in many cases, capabilities
previously only associated with those other methods and tools are now being seen in the context of
enterprise analysis and modeling, as the ITKM notion of an integrated suite of methods and tools
applicable across the enterprise analysis and systems development life-cycle is evolving and
becoming more widely-accepted.

1.2. Scope and Objectives Of ITKM

The Integration Toolkit and Methods (ITKM) program is intended to provide tools and
methods to assist in the tasks of enterprise analysis and enterprise systems integration. The specific
ITKM project being performed by Ontek Corporation is developing a matched set of techniques
and tools to create enterprise models using an ANSI/SPARC three-schema common semantic
maodel or repository built on a rich, subsumptive representation system. This representation system
provides an aggregation which allows the individual tools comprising the ITKM toolkit to share
data and information derived from each model. The representation also extends the breadth and
depth of semantics which can be captured abourt the enterprise. Lower-level system capabilities
such as memory management and network communications are provided by a virtual machine-type
operating environment. Various human user interface mechanisms are being urilized, including
Macintosh® personal computers and other window-based data acquisition and presentation
devices. The 'TKM methods and tools are intended to meet the objectives of: (1) enabling
management of corporate data access and minimization of data access cost: (2) capturing data
meaning and mantaming data integrity: and (3) assisting in enterprise-wide integration.

KN -of-the- view

The initial focus of the ITKM program is to define requirements for the analysis methods
and toolkit, including outlining enhancements which could be made to existing, state-of-the-art
methods and toolkits. The program is addressing the need to integrate existing conceptual
modeling and system design methods and tools. The program is also tasked with designing and
developing new methods and tools to meet more advanced needs and requirements.

1.3. Background To ITKM

The dream of the integrated enterprise has been a goal of government and industry for a
long time. The application of computer technology to the task under the Air Force Manufacturing
Technology (ManTech) Directorate’s Integrated Computer Aided Manufacturing (ICAM)
program focused industry on the issues of integration and resulted in a vision and initial
framework for the Factory of the Future (FoF) — the first substantial concept of an integrated
enterprise. Truly integrated, enterprise-wide information architectures, enterprise models, and
standards for communications, graphics and systems software are components of that vision. That
vision necessitated a major shift in the thinking of industry concerning the uses and manipulation of
information. The concepts of commonality, standardization, distribution, accessibility, and
automation formed the substrate of this new kind of thinking. The DoD’s current Computer-
Aided Acquisition and Logistics Support (CALS)/Concurrent Engineering (CE) initiative,
particularly CALS/CE Phase I1, shares this vision. The truth of this mind shift becomes evident in
comparing the ideas of people who have been through the ICAM and/or CALS/CE experience
with those who have not.

If the vision resulting from the ICAM and CALS/CE work is an automated, integrated
enterprise, then the realization of this vision requires another layer of substrate to help deliver or
enable the concepts envisioned. This necessitates another shift in thinking. The elements of this
substrate include representational formality, genericity, a method of formal analysis, and
augmentation of human analytical skills through automation of certain cognitive activities. The
ITKM program is intended to provide exactly the kind of mechanism needed to accomplish this.

With its emphasis on analysis methodology and tools, ITKM fills an often neglected void
in technology development; that is, a means to exploit the results of valuable research by making it
possible for those in industry to apply it to their own problems. The ITKM technology Ontek is
developing — based on the Platform for the Automated Construction of Intelligent Systems
(PACIS) — encompasses enterprise analysis and modeling, legacy database integration,
associated user interfaces and analytical methods and is, in theory, capable of providing both
enterprise integration and enterprise automation. Neither integration nor automation of the
enterprise will happen, though, without a methodology and a suite of analysis tools usable by
people in industry.

1.4. Ontek Approach To ITKM

Ontek’s ITKM project is built around five fundamental requirements based on five
problem statements developed during pre-contract preliminary research efforts. These
requirements served as the underlying basis and drivers for a more detailed requirements analysis,
the results of which are the subject of a separate but closely related Needs Analysis Document,
entitled “Needs Analysis and Requirements Specification For an Integration Toolkit and
Methods (ITKM)". The first two fundamental problems deal with the most basic issues of
information sharing, namelyv: (1) what information needs to be shared or “integrated’? and (2) where

2

is the information, when is it needed, who needs it and for whas? The requirements based on these
problems involve cross-domain identification of information usage and the ability to represent
organizational and functional relationships for efficient delivery of shared information. The third
problem concerns data redundancy, necessitating a requirement for a “no logical replication of
data” rule. This can be further described as requirements for data singularity, consistency and
integrity. The fourth problem involves capturing the “meaning” of stored data. “Meaning” is
essentially contextual information about the data which allows for efficient and effective use of
that data for certain purposes or applications in specific domains. This kind of information is
generally not available in a computer in a usable form. Solving this problem requires a way of
representing data, as well as information about that data, at a deeper analytical level. The fifth
and final fundamental problem focuses on the limitations of current, state-of-the-art enterprise
modeling methods and tools. This problem actually sets a key requirement for the various tools
comprising the toolkit, and the associated methods: that they are themselves integrated. An ITKM
must encompass existing tools and methods, while at the same time allowing new methods and
tools necessary to meet the requirements of enterprise analysis and integration.

The Ontek ITKM project approach consists of three threads: a framework thread, a
development thread and a commercialization thread. The framework, exemplified by this State-
of-the-Art Review Document and the companion Needs Analysis Document, provides two major
benefits. The first is a general assessment and description of existing, state-of-the-art analysis and
modeling methods and tools, as well as requirements for new or improved methods and rtools.
The second is to use of this data as a framework or basis for defining. designing and developing
new methods and tools. The framework consists of a number of components such as: basic
modeling elements, rules of use, presentation forms, storage forms, user categories, etc. The
development thread produces the actual tools and methods based on the framework. The
components of this thread are the tools which make up the toolkit, and include some tools already
developed to varying degrees based on the PACIS representation system.

Ontek's intent all along has been, and will continue to be, making tools developed based
on PACIS commercially available to industry. The commercialization thread therefore runs
through the " ole project in order to take into account user acceptance issues and ensure the
appropriatenc.. of the tools. One of Ontek’s constant efforts during several years of research and
development has been to find ways to transfer our new thinking regarding analysis of complex
enterprise situations to users who face those situations on a day-to-day basis. We have found this
task to be very difficult, but nevertheless absolutely necessary. ITKM is an opportunity to attack
the problem of making the power of rich representation systems available to end-users,
mmformation systems analysts and modelers in industry.

Ontek’s ITKM work builds on previous enterprise analysis and modeling efforts
conducted in conjunction with Northrop Aircraft Division under the Air Force ManTech
Directorate’s Automated Airframe Assembly Program (AAAP), and under the Air Force
ManTech Data Automation Processor (DAPro) program (specifically Ontek Corporation’s
project entitled “Inter-Organizational Computer-Integrated Manufacturing” or IOCIM). The
DAPro work involved identifying strategic analysis and planning issues related to the concept of
TOCIN. The AAAP work involved a proof-of-principle of the ability to incorporate existing
enterprise models of several different forms into a singie unified model in PACIS. The resulting
model mantained all of the meaning contained in the legacy models, represented additional
relationships among information in the legacy models, and added new information with deeper
sermanties Product definition utilizing a Concurrent Engineering approach served a« the primary
domam tor the AAAD modeling work.

L

2. Summary Of Industry Survey Results

As part of the review and assessment of the State-of-the-Art (SOTA) with respect to
existing enterprise analysis and modeling methods and tools, a survey was conducted of: users of
modeling methodologies and tools in the aerospace/defense and commercial manufacturing
industry; consulting and systems integration companies; developers and/or vendors of methods
and tools; academicians in universities or related research facilities; and enterprises that are
combinations of any of the other categories. The results of the survey were used as input to and
drivers for many of the requirements expressed in the complementary Needs Analysis Document,
CDRL #A006 (entitled “Needs Analysis and Requirements Specification For an Integration
Toolkit and Methods”). The following is a summary or the results of that survey. Actual survey
results are also contained in Attachment A of this document, entitled “Populated Survey Form”.
It should be noted that in any case where vendor-proprietary commercial products may have been
mentioned by survey respondents, those responses are noted as survey results only. These are not to
be regarded as direct references to products, and no attempt was made in this section or
Attachment A to specifically note copyright or trademark registrations. Survey responses by no
means represent endorsements of particular products or services.

2.1. Respondents

Surveys were mailed to a representative mix of enterprises including: users of modeling
methodologies and tools in the aerospace/defense and commercial manufacturing industry and
other industries heavily dependent on information processing; consulting and systems integration
companies who provide enterprise analysis and modeling and/or systems development services to
industry: developers and/or vendors of methods and tools utilized for enterprise analysis and
modeling and/or systems development; academicians in universities or related research facilities
who are conducting research and development in these areas; and enterprises that are combinations
of any of the other categories.

Responses were received from twenty-five (25) respondents. Respondents had the option of
identifying themselves or submitting their responses anonymously (i.e. “blind”). All but two
respondents identified themselves. Based on this, we were able to verify that the mix of the
responses was indicative of the mix of the overall mailing. It was our goal in that mailing to
solicit input primarily from users of modeling methodologies and tools within industry, burt to
also incorporate the views of consultants, tool developers/vendors, and the academic community.
The respondents are noted below by category:

25 Respondents (complete or nearly complete)
14 Industry User
3 Consulting (including views representative of their customers)
Academia
Developer/Vendor
Both Vendor and Industry User
Blind

ty to BN

2.2. Observations On the State-of-the-Art and Critical Requirements

Basic forms of enterprise modeling currently receive wide-spread use in industry.
Functional modeling is used to support “As Is” and “To Be” analysis both on and above the shop
floor. However, the higher you go above the shop floor, the less suited existing methods and tools
are to fully support functional modeling — let alone analysis of the modeled functions. IDEFO is
the most commonly used functional modeling method. Data modeling is also frequently used in
industry. Its primary use is to develop logical data models during the initial stages of database
design. Additionally, many enterprises are performing other kinds of modeling that focus on the
nature of the data itself, rather than just the structure of the data as it appears in a database. This
may be referred to as information modeling, versus data modeling [International Organization
for Standardization (I1SO), 1987b], and frequently draws upon the American National Standards
[nstitute (ANSI/SPARC) and International Organization for Standardization (1SO) three-
schema database concepts [Tsichritzis and Klug, 1978; International Organization for
Standardization (ISO), 1987a] for organization and representation of this information. Whiie
data modeling and some limited information modeling are supported by methods — Entity-
Attribute-Relationship (E-A-R) modeling, including IDEF1X, chief among them — as well as
several tools, most information modeling is far more ad hoc. Most enterprises performing
information modeling have developed their own methods and are using either home-grown tools
or tools created by customizing and piecing together software such as data directories or emerging
repository/data dictionary technologies. This is an area where many requirements still go unmet.
Process modeling is also an area where exiting methods and tools are only scratching the surface.
Some enterprises perform control flow, state and limited dynamic modeling, usually in
conjunction with process simulation. However, many respondents noted weaknesses in this area,
particularly regarding the complexity of the methods and tools, as well as their inability to
support “what if" simulation at the enterprise business process or decision-support level. In fact,
respondents almost unanimously noted a lack of methods and, even more so, tuols to support
anialvsis at the enterprise business level. While Quality Function Deployment (QFD), Supplier-
Input-Process-Output-Customer (SIPOC) and other Total Quality Management (TQM)
techniques are being practiced, they are not yet an integral, integrated part of enterprise analysis
and modeling and there are few specialized tools to support their efficient application. Many
respondents also noted a need for methods and tools to allow them to further qualify or quantify
basic enterprise modeling data with such criteria as time, user views and probability. This again
brought out the general need to penetrate deeper into the semantics of the enterprise as a way to
unlock the true value of management information and to provide productivity enhancing tools for
decision-makers.

Most enterprise modeling is performed based on traditional structured analysis techniques;
however a combination of both top-down and bottom-up approaches is typically used. Several
companies are using object-oriented techniques either in addition to, or as a replacement for,
traditional structured analysis and design techniques. Fortunately, there does not appear to be a
wholesale rush to object-oriented techniques as the next, great “panacea”. Where both techniques are
being used, they are rarely used in a combined manner. In other words, object-oriented techniques
are being used by some groups for some projects, whereas traditional structured analysis and
devign rechniques are being used for others. This may be due to a perception on the part of industry
that the two techniques are incompatible. However, the analysis of SOTA methods and tools
presented in Section 3. of this document indicates some cases where academia or
developervvendors of methods and tools are combining the two techniques.

Computer-Aided Software Engineering (CASE) tools are also beginning to be utilized to
provide a broader, more cohesive approach to enterprise modeling, systems design and software
development. This may be attributable to the fact that performing enterprise modeling within the
context of an enterprise information framework or architecture and a systems development life-
cycle methodology is one of the most important issues identified by the survey. This ties closely
to another major interest expressed by the survey respor.dents: the integration of enterprise models
— in essence a logically unified modeling environment. This applies not only to a framework or
architecture and systems development life-cycle for methednlogical context, but also to a tooling-
related requirement for a common, logical enterprise modeling data’knowledgebase and a means
of effectively navigating within that data’knowledgebase. CASE 1s viewed by many asan initial
attempt at such an integrated tooling environment.

While existing methods and tools may meet the “letter” of particular modeling
requirements fat least in basic, narrow areas of enterprise modeling), they seem to miss the
underlying “spirit”. Respondents feel that modeling methods and tools should be analytically
powerful and should serve as productivity enhancing tools for modelers and analysts. They should
be intuitive and easy t¢ use — allowing rich, expressive models to be easily created, accessed and
maintained. They should kide unnecessary complexity from their users. Since the objective is to
capture the true nature of the enterprise, including its processes, information, rules, etc., the results
of this effort — namely, the enterprise model — should be better utilized once created. Models
should not simply be spiral-bound and put on a shelf to gather dust. At a minimum, there should
be closer linkage between models and the information systems developed to automate enterprise
processes and provide management information. In the best case, the models should ¢ executable.
In other words, the models and the systems should be one and the same thing. The model/system
should be easily adaptable to reflect on-geing changes in the enterprise cnvironment across the
business life-cycle.

As a start, respondents feel that modeling methods and tools should help the enterprise
make better use of its existing data and processes. These are reflected in existing, legacy databases
and application programs. Current methods and tools provide little in the way of analvtical
support for understanding the existing environment. They often completely ignore it. Existing
methods and tools also don’t take advantage of previous models or general indusrry knowledge
that must serve as the starting point or basis for specialized knowledge in any particular
application domain. They aic inefficient, in that modelers are often required to “re-invent the
wheel”, gathering and modeling data that may have been gathered and modeled many times
before either within the same enterprise, by similar enterprises, or by professional societies and
industry consortia. This data should be available through automated reference models or “model
libraries™. This would allow modelers to rapidly copy and customize basic information (i.e. the
“80% we often here about), and then devote the bulk of the time to the critical information unique
to their enterprise (i.e. the “20%).

Based on the survey, it appears that most enterprises are doing an admirable job of
enterprise modeling using good basic methods and tools. This is especially notable given the lack
of top-management support and limited commitment to funding that many survey respondents
stated were major obstacles to their efforts. On the basis of the positive responses and ideas
provided by respondents, it is hoped that improved methods and tools resulting from ITKM will
not only support the modelers directly, but will provide them the successes they need to gain top-
management s attention and be given the resources thev deserve — and require — to do the job
that really needs to be done to support enterprise integration.

G

23. Summary Of Responses and Observations By Survey Area
2.3.1. Narture Of Existing Modeling

As expected, almost all respondents are performing some form of functional and data
modeling. Most also perform some [limited] degree of information modeling. Approximately
half perform process modeling. Over a third use some form of modeling to further qualify,
quantify or otherwise associate more data to the data or information in other existing models.

Functionai modeling concentrates not just on developing node trees or hierarchical models
of functions, bt also involves relating other enterprise models to those functions. Data entities are
trequently related to functions in the role of inputs and outputs in functional models such as
IDEFO. In addition, many enterprises also model the organizations, automated syster-s and other
mechanisms which perform, or are used to perform, the functions. Approximately half of the
respondents noted that they also mndel cost data, schedule data (such as milesiones), and in some
cases policies and procedures, in relatlon to or as part of functional models.

As noted above, data modelizg is performed by basically all the respondents. Two thirds
ot those respondents are performing data flow diagraming. About the same number are
performing some degree of deeper data modeling, referred te as information modeling. Over
half the respondents categorize data entities based on classification schemes such as “kind of”,
“part of ', ete. About the same number partition data entities using the ANS./SPARC and 1SO
three-schema database architeciure of External Schema, Conceprtual Schema and Internal Schema.
This typically takes the form of identifying: the data entity itself; its aliases (including how the
dati s presented to programs or human users in the form of copy libraries. as weli as screen and
report layouts): and the format and means in which the data is stored in various file management
or database managzement systems. This last category represents the kind of data typically stored
i a data directery, and inciudes the physical storage location of data, its format and its domain
ind range of values.

Process mode'ing is considerably less widely performed than either functional modeling
or data modeling. Approximately half the respondents indicated that they perform some form of
process modeling. This usually takes the form of control flow modeling. This is often done using
basic Howcharting techniques, and in some cases also includes descriptions of branching conditions
and state or decsion tables. Simulation mode'ing is frequently performed based on this control
Jow data. Particular scenarios imay also be modeled as part of this effort. A limited number of
respondents specifically model temporal process flow apart from control flow. Even fewer model
~uch things as causality (ie. pre-requisite conditions), effect/ramification (i.e. post conditions)
and 1ssociated event propagation rules. A small number execute rtheir process m.odels, but only
four respondents claim to ex-cute these models directly. Some people refer to models that
compile down into cede as “directly-executabie”, particularly if they do not require human: to
write any additional ode or specify other parameters for the execution proc-ss. Others refer to
“directly-executable” as meaning that the primitive constructs of the process model are
mterpreted by rhe modeling tool directly as they are, without the need to compile the model into
code ot anv other kind (with, of course, the exception of machine-code inutructions executed under
the host operatung system). Unfortunately, the survey left this small but significant difference
ambiguous Theretore. we cannot be sure in which marn=r the process models described in the
wrvey are Cdirectdv-executable”. Inany case. ver: few enterprises currently have this cdpabllm It
wao however, noted several times later in the survey as an important capability requirement for
turare modeimg methods and tools

Regarding the concept of “modalizing” model data, it was clear that the respondents often
have a need to further qualify and/or quantify the data in an existing model by directly referring to
that data and stating something more about it. For example, many respondents noted that they are
at least trying to add time, probability and other scheduling factors to simulation models. One
respondent stated that he is adding “user views” to basic modeling data. Establishing a broader
context is also something that is frequently mentioned. These “modalizations” are noted as
applying to both data and process models.

2.3.2. Current Enterprise Modeling Environment

There is an almost even split between environments where one or two groups serve as the
lead technical organizations for enterprise modeling (with end-users performing a substantial
amount of the modeling themselves) versus those in which end-users are directly responsible for
and perform their own enterprise modeling. Others noted cases where only one or two
organizations perform and are responsible for enterprise modeling.

In most cases (slightly over two thirds), enterprise modeling is performed based on
traditional structured analysis techniques. This is largely done using some combination of both
top-down and bottom-up analysis. In a few cases, only a top-down approach is used. Slightly over
one third stated that object-oriented approaches are the primary approach used for enterprise
modeling. Six respondents noted that both object-oriented and traditional structured methods are
being used. Two of those stated that they are phasing out traditional structured methods in favor
of object-oriented methods, but are currently operating in a mixed, transitional environment. One
said her organization is trying to integrate the two methods, and noted that it is a difficult
challenge. One noted that there are two modeling organizations working in different areas and
with differing objectives — one using the traditional structured methods and the other using an
object-oriented approach. Two had no additional comments.

More respondents (two thirds versus one third) stated that they develop different models
of a domain concurrently, rather than in some serial sequence. This includes one respondent who
stated thar the process is really done iteratively (using a spiral approach). In this case, while there
may be some rough sequence generally followed during each pass through the models, that
sequence is repeated several times before completed models are produced — often with several
kinds of modeling activities being performed in parallel. For those cases where a certain sequence
is followed, several different sequences were noted (refer to the actual populated survey for a
complete listing). This includes variations among enterprises, as well as within an enterprise
(presumably based on the nature and purpose of the modeling project).

Regarding modeling form: almost half the respondents stated that a mixture of graphics
and text is used for most modeling. One third noted a preference for graphics-based models.
Graphics were noted as being most useful for modeling processes, detailed functions and simple
entity relationships. Text was noted as being used more for modeling high-level business
functions, business rules and other semantics, and for non-traditional modeling data such as critical
success factors and three-schema database mappings.

Almost fifty-percent of the respondents use automated modeling tools (including database
technologies) for creating, storing and retrieving model data. Others use a mixture of media or
digital models produced using word-processing and/or CAD technologies.

2.3.3. Frameworks and Architectures

Slightly less than two thirds of the respondents perform modeling within the context or
guidelines of an information framework or architecture. Of those who do not, some are actively
working to define a framework or architecture. Home-grown frameworks and architectures are the
most common, although in several cases it was noted that leading frameworks or architectures were
studied and those portions applicable to the particular enterprise were incorporated. This results in
customized or “composite” frameworks and architectures that more closely fit the target
enterprise. Zachman’s framework was the most frequently mentioned “standard” framework, with
James Martin a close second.

2.3.4. Enterprise Business-Level Modeling

This area, on the whole, was one of the areas most noted as needing support from modeling
methods and tools. This was indicated in the preliminary ITKM analysis, as well, and was in
large part the motivation for asking several questions regarding modeling in this area. In each case,
the most predominant single answer to the questions (representing approximately one third of the
respondents) was that this kind of modeling is currently not being done, and there are currently
few, if any, standard methods and tools with which to do it. It is also interesting to note that —
given the lack of methods and tools directed particularly at this area — many respondents
(approximately two thirds) are using whatever methods and tools they do have to their best
possible advantage. Many of the lesson-learned from using these existing methods and tools may
be useful as a starting basis for defining, designing and developing methods and tools specialized
to the needs of this important area.

Because of this lack of methods and tools, one third of the respondents indicated that they
have no way of capturing the value or importance of a process in a model. Others use methods they
have developed themselves such as: mapping processes to enterprise Critical Success Factors
(CSF's), goals or objectives; relating costs to processes; and assigning weighted values or ranking
to processes. When it comes to modeling the information used in the enterprise for decision-
making, between one third and one half of the respondents state that they simply don’t do it.
Those that do perform this kind of modeling use custom methods such as: modifying the
modeling form of functions and ICOM’s in IDEFO models to highlight decision-making
functions and the information input and output from those functions; modified Entity-Attribute-
Relationship (E-A-R) models such as IDEF1X; identifying and modeling information needs or
“gaps”; and assigning weighted values or ranking to information. Half of the respondents do not
model organizations. Those that do, extend the concepts of IDEFO mechanisms and E-A-
R/IDEF1X entities to better accommodate organizational modeling, or utilize the TQMi-based
Supplier-Input-Process-Output-Customer (SIPOC) modeling form.

As stated, there are few methods and practically no automated tools to support these kinds
of modeling. One third of the respondents indicated they had no methodologies and tools for
enterprise business-level modeling. Both the QFD and SIPOC methods, as well as IDEF0, were
noted as being used by many of the other respondents; however, there are only a few companies
offering QFD-based automated tools, and no tools were identified that were directed explicitly
at SIPOC modeling (although many of the respondents are utilizing extended or modified
[DEFO diagrams for this purpose).

2.3.5. Requirements For Enterprise Modeling

The respondents noted several requirements that are not being met or met well by existing
enterprise modeling methodologies and/or tools. These were taken into account during the needs
and requirements specification task of ITKM and are reflected in the complementary Needs
Analysis Document. The requirements include:

O Improved model integration, particularly between function/process models and
data/information models. This also includes technical standards for model interchange
between different modeling methodologies and vendor-proprietary tools.

O Tighter coupling between models and their implementation or execution. This coupling
may range from automaric change/update propagation for maintaining concurrency
berween models and the systems which realize or impiement them, to developing directly
executable models that are, in fact, one and the same as the systems that implement them.

3 More “active” models for simulation at the enterprise business process level. These models
would provide better representation of relationships such as those between temporal flow
and decision points, and would allow “what if” simulation for decision processes.

D) Expanded analytical capabilities for modeling tools, so that they become “intelligent co-
workers” rather than just electronic file cabinets. The analytical capabilities should aid in
such areas as: assessing the value-added or detracted of functions/processes or
data/information; identifying and describing interactions or relationships among
functions/processes and other enterprise data; and constraint modeling,

d

Changing the perspective of modeling to focus more on business performance
improvement, rather than immediately putting so much focus on software engineering or
the systems perspective.

3 Providing standard reference models at the “coarse-grain” enterprise business level.

2.3.6. Model Integration

Almost two thirds of the respondents stated that they currently integrate one or more
modeling forms. The most common integration was between function/process models and
data/information models, especially between IDEFO and IDEFI1X. This was followed by
integration of data/information models with data flow, system dynamics and/or state transition
models for simulation purposes (interestingly, the implication here is that state modeling,
dynamics modeling and simulation are based on the perspective of dara or information rather than
primarily on processes). Other model integration efforts include: cost models to function/process
models and/or data/information models; data models to information models or models of
deeper enterprise semantics: and an attempt to integrate all models throughout the enterprise.

When asked how model integration is currently accomplished, the responses varied greatly.
They can, however, be categorized into three broad groups:

73 manual, ad hoc integration consistently described as being a very difficult, tedious task;

10

O limired automated integration between selected model types, such as functional models
and data models. This is aided by the fact that several IDEF ool developers/vendors are
artempting to integrate their IDEFO and IDEF1X tools through such means as linking the
ICOM'’s from an IDEFO model to the data entities and attributes in an IDEF1X glossary
or dictionary;

O more general integration through the use of repository/data dictionary technology. This
seems to be the direction in which many respondents are headed, although current
implementations are still in their infancy. These implementations often involve
customization or combinations of several software technologies and still involve
substantial manual efforts on the part of a human modeler.

Of those respondents who are developing various kinds of enterprise models, but who are
not currently performing model integration, all of them stated that they have a need for model
integration. Many noted that they currently duplicate data among related models, and that
duplicated data is often not consistent from model to model. Ensuring consistency requires
manual model interpretation and consistency checking. Function/process to data/information was
cited as the area in which integration was most needed. Integration among tools of the same kind
(e.g. IDEFO0) supplied by multiple developers/vendors (e.g. Meta Software Corporation,
Wizdom Systems, DACOM, etc.) was also cited as an area in which integration is needed. This
area is sometimes also referred to as “model interchange”. It is apparently important to
respondents since more than one modeling tool may be used for the same kind of modeling either
within the same enterprise or in related enterprises where model sharing is important (for example
for contractors, subcontractors, customers and/or industry consortia). The IDEF Users” Group
already has a task group working on model interchange standards for IDEF. Two respondents
noted that they believe object-oriented techniques might help mitigate the need for model
integration.

2.37. Model Configuration Management and Formalism

Responses were evenly divided as to whether configuration management during model
development was handled as an inherent part of the modeling methodology or external to the
methodology. Several of the respondents using CASE tools for model configuration management
noted problems if they used multiple CASE tools for modeling. Each of the CASE tools has its
own configuration management methods and capabilities. Either one specific CASE tool must be
chosen as the baseline and used for all configuration management of all models, or humans must
perform integration and configuration management among the various CASE tools. One
respondent explicitly mentioned the usefulness of the IDEF methodology’s author/library cycle
and “kits” for configuration management.

Two thirds of the respondents noted that models, once created, get used for purposes other
than the purpose for which the models were originally intended. This indicates a more general
usefulness for models that is often not recognized, particularly at the start of a modeling project.
ft also indicates the need to ensure that models can be easilv accessed and maintained over time.
There was an almost even split between those who regularly or sometimes maintained models to
reflect changes in the real-world domains (including implemented systems) represented by the
models. and those who did not. Of those who did, manual procedures were most often used. These

1)

ITKM State-of-the-Art Review

included periodic reviews, re-evaluations, comparisons, audits or other validation procedures.
Others followed software Corrective Action Procedures which specify that whenever software is
formally changed, associated models or specifications are also changed. Some respondents are
using automated repository/data dictionary technology to assist with this kind of configuration
management.

Respondents from industry were universal in noting their application of modeling
methodologies as being somewhat or very flexible. Many view formal modeling rules and
procedures as “getting in the way” of what they want to model, or being too difficult or time-
consuming to apply during model development. Vendors were the most adamant about rigidity,
followed by consultants and academicians. Automation of models, particularly in tools supported
by model databases, requires considerable formalism and standardization of modeling
methodologies. Many vendors and consultants also believe consistent application of formal rules
and procedures is simply good modeling practice and ensures rigorous, clear models. Perhaps the
point that can be made from these responses is that, to be widely and consistently applied,
modeling rules and procedures must not be viewed by industry as arbitrary or established o suit
the needs or limitations of automated tools. The rules and procedures must make sound, practical
sense. They must also be rich enough to represent the majority of modeling requirements, while
also being extensible or flexible enough that exceptional requirements can be captured as well —
but without usurping the validity and rigor of the basic rules and procedures applied to the
majority of darta.

2.3.8. Reference Models or Model Libraries

A surprisingly large number of respondents (four out of five) stated that they frequently or
occasionally use existing models as the basis for new models. Many of the respondents stating
“occasionally” or “rarely” indicated that this was due to the lack of availability, not because of
lack of interest. All the respondents expressed an interest in a library of subject area reference
models which could be easily copied and customized during new model development. Two-
thirds of the respondents stated that they would “definitely” use such model libraries.

2.3.9. Existing Methodologies, Techniques, Languages, Approaches and Tools

The most widely used modeling methodologies are IDEF (both IDEFO and IDEF1X)
and Entity-Atribute-Relationship (E-A-R) modeling (other than IDEF1X). These are used by
approximately two thirds of the respondents. Computer-Aided Software Engineering (CASE) is
also widely used. Additionally, flowcharting, Yourdon (primarily for its Data Flow Diagrams),
Critical Path Method (CPM) and Petri Nets/Colored Petri Nets (CPN), Binary and
Elementary N-ary Relationship Modeling (primarily NIAM), EXPRESS/-G and Hierarchical
Input-Process-Output (HIPO) are fairly commonly used (all are used by approximately one third
of the respondents). While many respondents have seen an IDEF3 specification, and slightly fewer
an IDEF4 specification, almost no one is currently using the two methods and few noted that they
would consider using them. This may be due to the fact that, of the one third of the respondents
using object-oriented techniques, there are other methods and tools already being used. This is
somewhat less the case for IDEF3 than IDEF4 — which explains the slightly higher interest in
IDEF3. These results should by no means discourage work in these areas, as other aspects of the
survey indicate that there is considerable interest in process modeling in general and in fully-
declarative, objectified models that are directly implementable and executable.

12

~

Only three respondents noted that the use of one or more modeling methodologies had
been discontinued at their site in the last two years. This seems to indicate that a shake-out has
already occurred in the basic modeling methodologies, and that those methodologies currently in
use are at least sufficient for modeling one or more aspects of the enterprise. This is supported by
requirements for model integration, reference models and new modeling methods which expand
existing modeling capabilities and penetrate deeper into key areas of the enterprise such as process
causal relationships and the meaning of information (enterprise semantics).

Roughly two out of three respondents are using automated tools of some kind to support
enterprise modeling. Among the most popular are various automated CASE tools, as well as
IDEFO and IDEF1X tools. Tools based on object-orientation and other aspects of artificial
intelligence (other than CASE tools) are also fairly widely used. More respondents indicated
discontinuing the use of a particular modeling tool within the last two years than a modeling
methodology (as noted above). This seems to indicate that users are still trying out various rools
to meet their needs, and that some shaking out is still taking place among tools. General reasons
for discontinuing the use of tools included: poor integration capability: complexity or difficulty
of use; size limitations on models; lack of compliance to industry standards; or simply
insufficient modeling capabilities in one or more area(s).

Each of the methodologies noted above is described in more detail in Section 3.,
Description of Major SOTA Toolkits and Methods, of this document.

2.3.10. Re-Engineering and Repositories/Data Dictionaries

Nearly two thirds of the respondents stated that analysis or “re-engineering” of existing,
“legacy” databases and/or application programs is currently part of their enterprise modeling
process. This is overwhelmingly a manual process in today’s environment. Many use the ICAM
“As 1s"/“To Be” Systems Development Methodology (SDM) as the basis for their manual efforts.
Of the few respondents using automation, tools based on the ANSI/SPARC three-schema
architecture were noted as the underlying basis. These tools still require substantial human
intervention. Of the one third of respondents who are not currently performing re-engineering, half
said that it is an important part of future architectures and/or systems development life-cycle
methodologies in their enterprises.

Half of the respondents stated that they had logical models and/or formal schemas for
their legacy databases, but several of them noted that this was a only a recent occurrence — the
results to-date of applying their re-engineering techniques and technologies. Others stipulated that
they had mostly schemas with few logical models, and that both existing logical models and
schemas are inadequate to reflect the semantics of their existing database contents. The most
common database management systems (in sheer numbers of respondent sites having one or more
database implemented in them, not in terms of the quantity of data stored in them) are DB2 and
Oracle, followed closely by IMS, then Ingres, Rdb, DMS, RAMIS and others.

Almost two thirds stated that they currently have a data dictionary or other repository
technology. In most cases, these are home-grown or customized systems that are more like passive
“directories”, rather than active “dictionaries”™. A few respondents are using CASE tool-based
dictionaries.

CASE. re-engineering and data dictionary technologies are described in mors detail in
Secuion 3., Description of Major SOTA Toolkits and Methods, of this document.

[TKM Srate-of-the-Art Review
2.3.11. Software Development and Configuration Management Methodologies

Almost two thirds of respondents follow a formal systems development life-cycle
(SDLC) methodology during software design, development and support. In the majority of cases,
this home-grown methodology is based on traditional SDLC methodologies such as the ICAM
Systems Development Methodology (SDM), MilStd 2167, etc. The “spiral model” is becoming
more widely used than the “waterfall model”. Using the “spiral model”, an iterative, semi-
parallelized approach to systems analysis, specification and design is followed, wherein results
produced in early stages or phases of the process continue to be refined as the process progresses
toward actual development. In the alternative “waterfall model”, the results of each stage or phase
of the process are frozen and are rarely modified once the effort has progressed to a subsequent
phase. This limits flexibility and may lock-in errors generated early in the process. When it
comes to SDLC methodologies, most respondents appear to like to pick and choose from among
the best aspects of well-established, industry-common SDLC methodologies and then create a
home-grown synthesized or composite version that is particularly suited to their environment.

When asked how configuration management is actually performed across the sofrware life-
cycle, the responses varied considerably. Many enterprises said they either don't do it or do it
poorly. At the other extreme, many enterprises have home-grown or customized automared
systems to support the configuration management process. In the middle are several enterprises
that use formal procedures, check-in/check-out library systems, version control systems, or
combinations of these.

Regarding configuration management specifically among logical data models, physical
database designs and actual database schemas, many respondents (almost half) stated that they
don’t do it. Others referred back to their repository/data dictionary technologies or to other
automated systems. Still others again noted formal, manual procedures such as software
Corrective Action Procedures (wherein formal changes to the actual database schema are also
reflected in logical data models and/or physical database models). When a similar question
focused on configuration management or correspondence among process models, programming
specifications and actual program code, even more respondents (over half) stared that they don't
do it. Others again mentioned repository/data dictionary technologies and/or CASE tools, or
formal manual procedures. One respondent described the approach used in his enterprise as
“wishful thinking, plus debugging”.

2.3.12. Prioritized Criteria or Requirements For Enterprise Modeling

Respondents were asked to rank from highest to lowest importance ten criteria relating to
requirements for enterprise modeling methods and tools. All ten should be considered to be quite
important, as they were identified by a number of sources as a result of previous studies in this area
(including preliminary ITKM analysis efforts). The purpose of this aspect of the survey was to
determine the relarive importance of these ten criteria and to establish priorities among them.

One criterion was clearly identified as being of ihe highest importance. Thar criterion
states that methods and tools should support enterprise modeling in the context of an information
framework or architecture, andlor as part of a systems development life-cycle methodology. Many
respondents also noted through their answers and comments to other, related survey questions that
frameworks, architectures and systems development life-cycle methodologies are an increasingly
important part of their enterprise modeling efforts. These frameworks, architectures and systems
development methodologies. in fact, act as underlying mechanisms to provide scope, context.

14

control and coordination for enterprise analysis and modeling activities, as well as systems
development activities throughout the enterprise information life-cycle. They have a major impact
on model integration and configuration management capabilities. More importantly perhaps,
treating various forms of enterprise modeling as components of some larger, coordinated
framework, architecture and systems development life-cycle methodology helps ensure that the
pieces of the puzzle, once created, fit together. When they fit together, they form a complete,
rigorous model or representation of the enterprise suitable for use for various enterprise integration
and improvement efforts. In the current environment of increasing complexity and diminishing
dollars, frameworks, architectures and system development methodologies ensure the most
integrated and efficient use of resources.

The next highest criterion states that models should capture lots of information or semansics.
In other words, models should be broad, deep and rich in expressive power and capability, and we
should be able to fully model any enterprise information we choose. This indicates that industry
has recognized that current models only scratch the surface of the information necessary to describe
the enterprise at a level sufficient to support enterprise integration and decision-support
capabilities. This criterion is followed closely by one stating that models should be easy to create
and maintain. If they are aren’t, they probably won't be used, or used to their fullest extent. That
doesn’t sound too unreasonable or difficult on face value and when considered by itself. Bur
consider this criterion in conjunction with the previous criterion — the difference in ranking points
between the two being only a small fraction. On the one hand, model makers and users want
models to be deep and rich, capturing as much information as possible. But at the same time, they
want the models to be easy to use and maintain. This poses a difficult challenge for the developers
and vendors of methods and tools: how do you capture the complexity of an enterprise in a model
--- while doing the simplest modeling possible? The answer may depend on having extremely rich
and powerful methods and tools at the core of ITKM technologies, but hiding those from end-user
modelers through successive layers of abstraction. Such an approach could enable end-user
modelers to indirectly make use of sophisticated methods and tools through easier-to-use and
more flexible human user interfaces at the outermost layer of abstraction. These underlving
methods and tools might also be used to create and store libraries of model data which could be
easily and rapidly extracted from and customized to create new models. No approach may offer
a single, complete solution to the problem. However, even partial or incremental solutions may
make using advanced modeling tools less tedious and confusing for end-users.

The fourth-ranked criterion states that models of one element or aspect of the enterprise
should integrate with models of other elements or aspects. Modelers want to be able to create data in
one model and, to the degree it relates to some other model, carry that same model data forward
into the new model. This entails ensuring consistent meaning and use of model data — or at least
knowing the differences — perhaps through a common, logical model data’knowledgebase. This
also means having navigational capability provided between or among various modeling methods
and tools used for capturing and presenting different enterprise model data.

The fifth or middle-ranked criterion indicates that modelers want automated tools to assist
with modeling. Given the previous criteria for ease of use and maintenance, expressive power, and
model integration, it is obvious that at least some degree of automation must be brought to bear
to take the burden off of human modelers applying manual methods and using manual tools. The
axth criteria states that models should translate easily into program code and/or database
schemas. In other words, modelers don’t want to create a rich, complex model of the enterprise

onlv to manually interpret and translate that model into database and program specification
and. ulumately. into databases and code. If there is not a close coupling between the enterprise

IS

models and the information systems created based on them, then chances are the information
systems will be maintained, but the models will not. That means that once the model has been
created it will quickly become outdated. Once a change is made to the information system, the
model will no longer be in synchronization with the information system. It only makes good sense
to somehow automatically use the enterprise model to generate the databases and code — or
better yet, to directly execute the model itself as an information system. To do so, the model
must be in machine-interpretable form. This provides all the more support for the previous
criterion relating to the need for automated tools to assist with modeling.

There is already a considerable amount of enterprise data, including some important
semantics, described in two particular forms of enterprise models referred to as “databases” and
“application programs”. The criterion ranked seventh states that the methods and tools should assisz
with re-engineering of legacy databases and application programs. Re-engineering is just now emerging
as an important part of an overall enterprise integration strategy. While re-engineering has been the
subject of considerable discussion over the last two to three years, most of the practical focus has
been limited to restructuring old application programs written in unstructured or poorly
structured COBOL. Few enterprises considered re-engineering an integral part of their enterprise
analysis and modeling activities. Progress in other areas of enterprise analysis has led to a rise in
interest in re-engineering. For example, the lack of logical database models did not take on much
importance in many enterprises until efforts were undertaken to implement and populate data
dictionaries. Also, other survey questions indicated that most re-engineering activities are
currently supported by largely informal methods and there are few automated tools directed
particularly to this need. Therefore, there is a requirement for highly-specialized enterprise
modeling methods and tools to support re-engineering, but these methods and tools must (per
other requirements) be part of an overall enterprise integration framework, architecture and
systems development life-cycle methodology. They must also be easy to use and maintain,
represent lots of informartion abour legacy databases and application programs, and be integrated
with other enterprise modeling tools.

The next criterion states that both methods and tools should be based on standards and/or
commonly used in industry. Since model integration (including interchangeability) is also a
requirement, and a high desire was expressed elsewhere in the survey for common reference models
or model libraries, standards are certainly also important. It should be noted, however, that the
respondents do not appear to be interested in standards purely in principle. They want the benefits
that standards provide (for example. easier model integration and the need for less specialized
training), but they appear willing to by-pass standards if non-standard methods and tools are
better able to meet the requirements they view as most important.

Finally, other human user interface issues (besides overall notions of ease of use and
maintenance) are also important. The last two criteria, which received exactly the same number of
points and were therefore ranked equally, deal with these issues. One criterion states that the
methods and tools should support modeling of one aspect or a few aspects at a time, allowing for
segregation of model elements. For example, a separate modeling form or user interface might be
used to capture a hierarchy of processes versus process flow. The other criterion states that methods
and teols should support multiple forms of modeling for the same aspect or element. For example,
information entities might be modeled graphically with E-A-R models or in text for using a
Problem Statement Language or constraint language. This criterion was ranked tenth (last) by the
largest number of respondents.

Since these two criteria were ranked the lowest, this would seem to indicate that most
modelers are not concerned that models try to capture too much data at once (in one modeling

16

form), and they are apparently satisfied to have one good modeling method and form for
capturing a particular type of enterprise data (for example, E-A-R models for data modeling).
However, some additional, somewhat different observations may be made regarding these last
two criteria and their rankings. First, the finding that modelers are not particularly concerned
about methods and forms which clearly segregate and limit the number of different types of dara
captured in a single method and form might arise from existing practice. Other survey results
indicare that existing methods and forms are if anything 109 segregated, as there was a major need
expressed for model integration. Also, more complex forms of enterprise modeling are only
being performed in selected cases within selected enterprises. As these more advanced, deeper
kinds of modeling methods and forms become more widely used, modelers may find them to be
too bundled and may force the developers/vendors of these new methods and tools to segregate
the information captured or presented into more workable “chunks”, similar to the existing
segregation berween functional models, process models, data models and information models.
Also, modelers might be satisfied with one method and form for capturing a particular type of
data, but probably only if that method and form is the one they use in their enterprise. Since other
survey results indicate that the choice of methods and forms for particular types of modeling
varies greatly from one enterprise to another, tool developers/vendors will still be required to
ofter modelers a choice of several methods and forms for the same type of information. However,
this is apparently a developer/vendor issue, not a modeler (as user) issue.

2.3.13. Problems With Enterprise Modeling

Respondents were asked to identify the single biggest problem with enterprise modeling
in their current environment. Some couldn’t resist and listed two or three problems. The most
frequent response was that enterprise modeling lacks the support of top-management. Management
wants to know how enterprise modeling relates [explicitly] to productivity improvement and cost
reduction. Management may view enterprise modeling as merely an academic exercise with little
practical result —- or in some cases as simply a waste of time. The notion may be that spending
six. months developing a model of a system before developing it just puts the project six [more|
months behind schedule. While modeling might result in a “better” system in the end, there are
tew it anv metrics to determine what “better” really means. How do you prove that the system
will better reflect user requirements or that fewer software bugs will be arise over the life of the
system? In any case, enterprise modeling needs to be more oriented to the needs and language of
the business world.

Several other respondents cited a lack of consistency, uniformity or standardization in the
apphcation of modeling across their enterprise. It is. therefore, hard to interpret. verify and
integrate such models. Others said the biggest problem is that they aren’t doing enough enterprise
modeling. This probably relates back to the lack of management commitment. If it is not viewed
as being important, particularly given the current economic climate and competitive marketplace,
it will not get the resources assigned to it that it deserves - and requires, to produce a
meaningful. useful product Another respondent noted that current models don't support
vimulation and “what it analysis for decision-support. This kind of capability might provide
romething to catch management’s attention and prove to them the value of enterprise modeling.
Fhe problem s that such capabilities depend upon powerful modeling methods and tools and
cxtensive models of enterprise processes and information. Developing these methods, tools and
modely will require a significant up-front investment.

‘KM State-of-the- view

Others noted that a more direct link is needed between models and their implementation.
This would mitigate or eliminate the problem of maintaining correspondence between models
and systems developed based on them. Models that generate code and/or dartabases, or which are
directly execurable, would also greatly improve the efficiency of the systems development
process. Several respondents noted that there is a lack of expert modelers and that many modelers
are poorly trained. Better methods and automated tools may help, but there is no substitute for
qualified, well-educated and well-trained modelers. Still others mentioned the high cost of
modeling and the long lead times to develop models for any domain of significance. Finally, one
respondent noted a fundamental, but often overlooked problem — it is difficult to decide where
to start. It is hard to scope a project that is big enough to make an impact, but small enough to get
funded, remain manageable, and be completed within a reasonable time period. Many people use
this as a reason not to do anything at all. The respondents to the ITKM survey, however, are at
least trying to do something, ITKM methods and tools are intended to both help them do a
better job and encourage the others to join in the effort.

3. Description Of Major SOTA Toolkits and Methods

3.1. Architectures and Frameworks

Editor’s Note: Some of the material in Section 3.1. also appears in a companion Needs Analysis
Document, entitled Needs Analysis and Requirements Specificarion For an Integration Toolkit and
Methods (ITKM), which establishes requirements for an ITKM, including requirements for an
ITKM to support information frameworks and architectures. The material included here, however, i
somewhat more extensive than the previously published material.

The notion of information frameworks and/or architectures as specific templates or
guidelines describing the desired objectives, functions, information and systems relating to an
enterprise is a relatively new one. Prior to the early 1980’s enterprise information and the
infrastructure that supported it were not so much deliberately planned as they were merely
managed. The “As Is” information environments in enterprises evolved over time starting with the
introduction of the first information technologies in the 1950’s, continuing through the “data
processing revolution™ of the 1960’s and 1970’s, and culminating with the dawn of the personal
computer and the “personal computing revolution” during the 1980’s. Beginning in the late 1970’s
and early 1980's visionaries in both the commercial and defense sectors began to sense an
impending “information revolution”. The initial buzzword for this phenomenon was Computer-
Integrated Manufacturing (CIM). After several years of effort, the name “CIM” became more
closely associated with one particular aspect of the informartion revolution, namely the
implementation and integration of computer-based automation technologies on or near the
manufacturing shop floor. The remainder of the information revolution — automating and
integrating activities above-the-shop-floor and linking those technologies with the CIM
technologies — has become known as Enterprise Integration. The acronym CIM is now also being
used again by the DoD, this time to refer to a new initiative called Corporate Information
Management, which is closely related to Enterprise Integration. Some companies are currently
developing overall enterprise frameworks or architectures. Some have inidal versions of these
architectures, and are in the process of refining and expanding on particular subset frameworks or
architectures such as those tor information systems. Information systems frameworks or
architectures are viewed as critical to the success of an overall enterprise framework or architecture,
since in most cases information systems are “the glue that binds together” the other aspects of the
overall enterprise into a single, logical working unit. Some specific frameworks and architectures,
both those developed for general industry and those developed within specific companies, are
described under separate subheadings within this section.

Company-Specific_Frameworks and Architectures

Many individual companies have or are developing strategic plans for information
swstems. Those plans are statements of high-level goals or objectives, coupled with observations
about which informauon technologies may be available for implementation at what time period
in the tuture. Theyv are, however, not formal frameworks or information architectures. Many
compames have a formal systems development methodology, and some therefore claim they have
¢ “de facto informacion architecture™. This is tantamount to claiming that because vou know how
to machine aluminum and assemble component parts, that is almost the same as having the product

19

designs and process plans for the Cadillac Seville® . Admittedly, having a systems development
methodology is important, perhaps even necessary, for utilizing enterprise information integration
technologies and realizing an information architecture — but it is clearly not the same as already
having the architecture, methods and tools themselves. For many companies, in fact, having a
systems development methodology has crystallized the need for an information architecture and
for integrated methods and tools to help realize it. It has made clear the need to knovw for whar
purpose, in what context, and in what manner the systems development methodology is to be
applied.

Northrop Aircraft Division’s Srrategic Architecture Project (NADSARDP) is one example
of a state-of-the-art enterprise architecture project. The need to tie NAD's systems development
process to the critical success factors and information needs of the enterprise led NAD to
undertake this project to develop an enterprise-wide information architecture and to acquire or
develop new methods and tools for enterprise analysis and systems dc selopment. Most of the
work to-date has concentrated on integrating and improving the overall information systems
analysis and planning process using a patchwork of existing, unintegrated methods and tools to the
best degree possible. Longer-term efforts include a gradual transition to integrated tools for
enterprise modeling and dynamic data dictionary capabilities. As part of the NADSARP efforr,
several “information objects” were identified which represent clusters of critical, strategic data
that professionals use in making key enterprise decisions. Also, current and proposed information
system efforts are being evaluated and replanned based on “To Be” criteria.

Westinghouse Electric Corporation (WEC) calls :rs strategic enterprise architecture
project the Computer-Integrated Enterprise (CIE) (the same general name used for the project
being performed by the Computer-Integrated Manufacturing - International (CAM-i) consortium,
of which WEC is a member company). WEC’s CIE has as its principle goal che delivery to users
of “the right information, at the right place, at the right time and in the right form”. The Design
Engineering and Manufacturing Operations Information System (DEMOIS), currently being
implemented in WEC’s Advanced Development Operations (ADO), is representative of WEC's
CIE concept. The objective of the DEMOIS project is to .olve a real-world manufacturing
problem: reduce the cycle time required for end-users in ADO to obtain labor and material status
information from IBM mainframe databases, and to improve the way the information is presented
to those end-users. Specifically, the DEMOIS approach is to provide ADO end-users with
dynamic, integrated access to information contained in several hetcrogeneous mainframe darabases
from Apple Macintosh® persoral computers using common end-users applications such as
Microsoft® EXCEL and HyperCard®. This is being accomplished via Ontek Corporation’s
Information Access Vehicle (IAV)™, a too. for legacy database access and integration.

The Aluminum Company of America (Alcoa) has recently completed the initial stage of
a strategic information architecture project referred to as the Alcoa Information Architecture
(AIA). Alcoa expresses the objective of the AIA in the following way: Each person in Alcoa should
have the information thai they require, when they require it, to enable them to excel in performing
their work. Access to data is a critical process for Alcoa, as it is fundamental to the quality and
effectiveness of our work. The AIA consists of four major elements:

) The As-Is Condition, which identifies and analyzes the current state of the existing
information environment, including the problems and needs that have motivated the
formulation of the information architecture.

T The Vision, which establishes the overall conception of the information architecture and
describes the fundamental principles that the architectare is based on. One of those
fundamental principles is that end-users should have direct, dynamic, integrated access to
the information they need no matter where or in what form the source data resides. This
principle is referred to as the declarative paradigm f{or information access.

U

The Superstructure, which establishes the scope of the information architecture, defines the
methodology used to classify the information entities that fall within that scope, and
describes the characteristics of the entities comprising the architecture. The scheme
developed for classifying enterprise entities is based on three fundamental categories or
classes: functional ensiries, which include abstract entities such as policies, functions.
directives, etc.; information entities, which include representational entities such as labor
cost dara, geometric models, process statistics, etc.; and systers entities, which include
physical entities such as people, computers and other equipment such as production
machinery. These categories are consistent with the ANSI/SPARC and ISO three-schema
database architecture {Tsichritzis and Klug, 1978; International Organization for
Standardization (I1SO), 1987a]. The three categories may also be applied to one another
{including recursively) using a generative classification method. This produces a richer,
more explicit set of categories for classifying selected entities in more detail. The
methodology also addresses the life-cycle of information from its identification and
definiticn to its eventual retirement and archival.

I The Implementation Plan, which defines an incremental and iterative project plan for

actually realizing the architecture throughout the Alcoa enterprise. The long-term goal of

the AIA is to logicallv integrate the inforination assets of the entire Alcoa enterprise
world-wide.

Computer Aided Manufacturing - International (CAM:i) Computer-Integrated Enterprise (C1E)

Computer Aided Manutacturing - International (CAM-i), a consortium of commercial
and detense companies, launched a project called ihe Compurer Integrated Enterprise (CIE) on
the heels of the ICAM FoF and ManTech information technology efforts (which are described
under a4 separate subheading below). While some of the concepts in the original Fok architecture
have been revisited and, in some cases, extended, CAM-i has vet to produce what can be descrived

as an overall formal information architecture. Progress has been made however on a number of

individual projects. which CAM-i member companies such as Westinghouse tlectric Corporation
(WEC). have picked up and applied as part of their internal enterprise framework and architecture
projects

European Strategic Programme for Research and Development in Information Technology
’ESPRsz, F wopean Qomputcr lnteua[ed Manuyfacturing Architecture (AMICE), Computer
In anyf, : ms _Architec “IM-OSA)

The Furopean Community picked up the ICAM Factory of the Future (FoF) concepts and
minated their own project to extend the FoF work. The project was known as the European
Strateyic Programme for Research and Development in Information Technology (ESPRITY,
Furopean Computer Integrated Manutactuning Architecture (AMICE). Computer Integrated

21

Manufacturing — Open Systems Architecture (CIM-OSA) project [ESPRIT Consortium
AMICE, 1989].

The CIM-OSA architecture starts out quite well. The basic view of the architecture is as a
three-dimensional matrix. One dimension represents three categories — Generic, Partial and
Particular — for classifying enterprise analysis and planning results (“models” in CIM-OSA
terminology) by industry applicability. “Generic” means that a model applies to all or most
enterprises; “Partial” to some subset such as the automotive, aircraft or metals processing
industries; and “Particular” to a specific instance of an enterprise such as Northrop or Alcoa. A
second dimension represents four views of the models: Function; Information; Resource; and
Organization. The third CIM-OSA architecture dimension represents the evolution of the models
across the systems development life-cycle using three categories: Requirements Definition
Models; Design Specification Models; and Implementation Description Models. The CIM-
OSA approach to developing the architecture is step-wise and iterative. Several factors or criteria
must be considered in the development of the architecture: scope; environment; functions; models;
and methodology. Up to this point, the CIM-OSA architecture is quite useful to suppon
enterprise analysis and information integration. However, more depth is needed in a number of
areas; for example, the classes of the enterprise need to be taken to the second and third order to
provide context and meaning for many of the methods and tools required for enterprise analysis
and information integration; consideration needs to be given to the life-cycle of an information
entity rather than just to a systems development life-cycle; etc. The CIM-OSA architecture
unfortunately brings into the remainder of its description what are clearly implementational
issues. Specifically, much of the material concerns itself more with the definition, installation and
operation of communications networks than with information architecture issues. These issues are
not relevant to specifying an information framework or architecture.

[ntegrated Computer-Aided Manufacturing (ICAM) Factory of the Future (FoF)

The United States Department of Defense (DoD) was one of the first organizations to
identify the need for a framework or architecture to guide Computer-Integrated
Manufacturing/Enterprise Integration activities. Almost fifteen years ago a major research and
development initiative was launched by the DoD with the participation of approximately 75
major aerospace and defense contractors. That project was called the Integrated Computer-Aided
Manufacturing (ICAM) program. ICAM went on to spawn several information technology-related
research and development projects under the Air Force Manufacturing Technology (ManTech)
program. The prime responsibility of ManTech was to transition new materials and processes out
of the laboratory environment and into aerospace and DoD production facilities. Information
technology was then added as a focal area to support these new materials and processes. ICAM
also influenced the Industrial Modernization Incentives Program (IMIP) and Best Practices
program by encouraging defense contractors to apply advanced information technologies to reduce
cost and improve quality. One major product of the ICAM effort was an architecture, the
centerpiece of which is referred to as the Factory of the Future (FoF) Conceptual Framework. The
FoF architecture proposed a radically new concept for manufacturing — one in which an enterprise
would be comprised of a series of semi-autonomous, but closely coordinated “work centers”
including a: Marketing Center; R&D Center; Product Definition and Planning Center:
Provisioning Center; Sheet Metal Center; Machining Center; Composites Center; Electronics
Center; Assembly Center; and Logistics Support Center. These centers, operating somewhat like
separate “mini-enterprises” were tc be logically integrated into a single, unified enterprise through

22

-of-the- view

an Integrated Information Support System (11SS). 1ISS was to utilize the emerging
ANSI/SPARC three-schema database concepts [Tsichritzis and Klug, 1978} to accomplish this.
A strategic plan or “roadmap” was created for the development of other critical technologies and
derailed architectures for each center. The roadmap also addressed initial implementations of the
centers at contractors involved in the product definition and/or product delivery of high-profile
weapon systems such as the F-16, F-18 and B1-B aircraft, Blackhawk and Apache helicopters, and
Trident submarine. In addition, projects were planned to develop tools and methods to support
the analysis of existing “As 1s” contractor environments and to aid in the planning and
implementation of “To Be” Factories of the Future based on the concept of centers. The ICAM
Definition (IDEF) suite of enterprise modeling methods and tools, and the ICAM Systems
Development [life-cycle] Methodology (SDM) are examples of the results of these latter efforts.

It is true that the ICAM FoF architecture was not focused solely on enterprise information,
and enterprise analysis methods and tools were only one part of the effort. However, ICAM must
be viewed as a visionary effort directed at radically transforming the existing environment into a
fundamentally new and improved envirenment, through one or more major paradigm shifts.
ICAM recognized, however, that the move from the “As Is” to the “To Be” must be accomplished
in an orderly, evolutionary manner. [CAM resulted in substantial benefits through improvements
in both efficiency and effectiveness. It is worth noting that the FoF architecture was published
approximately ten years ago. The technologies envisioned as being necessary to realize that
architecture are, for the most part, today’s state-of-the-art technologies. The final ICAM projects
(for example, the Automated Airframe Assembly Program led by Northrop Aircraft Division)
are just now being completed. Many aspects of the architecture and the associated technologies do
not look exactly the way they were originally envisioned. The architecture, being dynamic, has
evolved and adapted based on lessons-learned and in response to the availability and capability of
various enabling technologies.

James Martin information Engineering Framework

Like both the Zachman “Framework For an Information Architecture” and ESPRIT CIM-
OSA (both of which are described under separate subheadings within this section), James Martin’s
Information Engineering Framework can be viewed as a matrix [Martin, 1990]. Martin’s matrix
has two columns representing data and activities (processes). There are also five rows addressing:
Strategy - Technology Impact; Strategy - Enterprise Model; Business Area Analysis (BAA);
System Design; and System Construction and Cutover (Implementation). These are very similar
to the original six rows of Zachman’s matrix, except Zachman splits system design into two
separate categories for high-level or conceptual design versus detailed design. The similariries
between the frameworks or architectures of Martin and Zachman are probably a result of the
relationship of both men to International Business Machines (IBM) Corporation, and reflects the
influence of numerous IBM modeling and systems design approaches and methodologies
(including HIPO® and Business Systems Planning®, both of which were precursors 1o IBM’s
current methodology. the Applications Development Cycle or AD/Cycle®). Martin’s framework
has the same basic, intuitive appeal as Zachman’s. Aside from the additional detail in both the
original version and the extended version of Zachman's architecture, the primary difference
between Martin's and Zachman’s is in the area of relationships to CASE tools (which are
described under a separate subheading in Section 3.2., Modeling Methods and Tools, of this
document). Marun’s framework is inherently oriented to a CASE tool environment and assumes
that the output of the modeling and design efforts in the first four rows of the matrix will be used

23

-of-the- view

to generate code as part of the fifth row of the matrix, namely System Construction and Cutover.
Martin’s framework is closely tied to IBM’s AD/Cycle systems development methodology,
which includes approaches to enterprise modeling and legacy database re-engineering, and which is
based heavily on the use of CASE tools.

»

Zach “Framework For an Informati rchi T

As far as specific information architectures go, this is the one that appears to receive the
most use, or at least mention, in industry. The Zachman Information Architecture was officially
proposed in 1990 by John Zachman of IBM. Zachman, with assistance from Steve Pyryemybida
of Northrop Corporation, first developed the framework in 1987 as an informal, practical guide
for information systems analysis and planning [Zachman, 1987]. it was originally described by
Zachman and Pyryemybida as a “framework for an information architecture” — implying that
much remained to be done to make it into a full architecture. Regardless of that, it is commonly
referred to now as an information architecture. Like CIM-OSA and James Martin’s architecture
(both of which are described under separate subheadings within this section), the Zachman
architecture is presented as a matrix. Zachman does not address some of the peripheral aspects
addressed by CIM-OSA, but in the major area he does address, he goes into more detail.
Zachman’s architecture is more similar to Martin’s than to CIM-OSA, only Zachman’s provides
considerably more depth than Martin’s in several areas.

Zachman's matrix is two-dimensional; however emphasis is not only on the two axes
themselves, but also on the cells of the matrix that represent the intersection points of the axes.
There were initially three columns in the Zachman architecture representing focus areas: Data
Description (Entity-Rel- tion); Process Description (Input, Process, Output) and Distribution or
Network Description (Node-Line). There were six rows representing levels of models based on
differing business perspectives: Scope Description (and/or Objectives); Model of the Business;
Model of the Information System; Technology Model (or Technology Design); Detailed
Description (or Technology Definition); and Actual System (or Technology Implementation).
Since the Zachman Architecture is not a formally-defined, published architecture with version
control, there are many different versions with slightly different names or labels appearing for the
rows and columns. Regardless of the source and the labels used, the meaning of the rows and
columns remains largely the same.

The Zachman architecture has certain advantages. It is intuitive and practical, ina simple
sense. The contents of the cells (e.g. Entity-Relationship Data Models, Business Function
Flowcharts, Data Flow Diagrams, etc.) are all things with which most systems analysts and other
information management professionals are already familiar. To a large degree, they represent the
existing, unintegrated methods and tools typically utilized for enterprise analysis and systems
development. What is missing, however, is any rigorous, formal, logical basis for categorizing
things this way, for determining what specifically to include in the contents of the cells, and for
identifying and explaining the relationships between various cells — in other words, there is no
formal, underlying structure for the matrix. This has already resulted in substantial confusion
among various parties attempting to utilize the architecture for specific projects in their
environment.

- view

The IDEF Users” Group (UG), with Zachman's permission and assistance, has modified
and extended the original architecturel. In the IDEF UG Framework, there are six focus areas
(columns): Why (Value, Motivation or Direction); Who (People, Organization); When (Time);
How (Process); What (Data); and Where (Network, Location). There are five perspectives (rows):
Scope Description; Business Description; System Description; Technology Constraint
Description; and Derail Description. The [former] sixth row (Technology Implementation) is
considered to be outside the architecture and is no longer included. The modifications and
extensions proposed by the IDEF UG, as well as those proposed by Zachman himself, still do not
appear to have completely resolved the basic problems of ambiguity. Zachman and others have
also proposed to apply what they call “recursion” to the cells in order to derive additional
extensions to the framework. This proposal is similar to the 2nd and 3rd-order recursions stated as
being necessary under the CIM-OSA discussion above. In this case, however, Zachman et al are
beginning with 30 cells (6 X 5) as primitives. With the lack of underlying formalism or logical
rigor, it can be expected that this “recursion” will not result in clarification, but rather may
introduce additional confusion.

3.2. Modeling Methods and Tools
Bin nd Elementary N- lationship (B[EN]R) Modelin

Binary and Elementary N-ary Relationship (B[EN]R) approaches have their roots in the
fields of artificial intelligence and linguistics. They deal with “semantic networks” (described
under a separate subheading within this section) and other similar notions. In semantic networks,
knowledge (information) is encoded as a set of nodes connected to each other by a set of labelled
arcs. Nodes represent classes (also known as concepts or objects), situations, etc. Arcs represent
relations (also known as relationships, links or associations) among nodes. Semantic models are
most often used to depict natural language processing. That is unfortunate since it tends to slant
their application to the representation of language utterances (i.e. form) rather than the meaning
(i.e. content) behind the utterances. B[EN]R approaches were introduced by Abrial [Abrial et al.,
1974]. Senko {1977], Bracchi [Bracchi et al, 1976] and others. BIEN]R models contain: entities;
entity-names; and relationships. B[EN]JR models do not include a separate component for
“auribute” at the primitive level. Attributes are represented as distinct entities which are then
related to the entity or entities which they are “attributes of”. This point merits some additional
explanation.

The real difference between the way B{EN]R and E-A-R methodologies (described under
a separate subheading within this section) treat attributes is that BIEN]R modeling simply does
not allow entities to have other information associated with them unless that information is
explicitly represented through the use of relationships to other entities of a lower-level nature (i.e.
“attributes”). As an example, whereas an E-A-R model might contain an entity PERSON with the
atribute ADDRESS, the BIEN]R methodology would force the modeler to define ADDRESS
as a separate entity (albeit an abstract, lower-level entity) associated with the PERSON entity by
the relationship LIVES-AT. Other, still lower-level entities such as STREET, CITY and
STATE would be associated with the entity ADDRESS using one of several fundamental

'Zachman has proposed his own extensions to the original architecture. These are basically the same as the IDEF
UGy extensions, except that the names and deseriptions of what entities belong in cach “cell” are much more clearly
and logically derived in Zachman's version.

LLKM S -of-the- Review

association types (e.g. membership, composition, generalization, etc.). The basic idea of these
approaches is to model the environment explicitly and distinctly using sentences that express simple
elementary propositions, thus not introducing a specific grouping of these elements. While this is
typical of semantic network-based approaches to analysis, this stands in stark contrast to many E-
A-R models that look more like database definitions than information models. The grouping of
attributes under particular entities in these E-A-R models is motivated more by database design
considerations than by the semantics of the information being modeled. B[EN]R models were
largely static at first; however, some have recently been enhanced to account for rules about the
dynamics of the environment being modeied.

The Nijssen or Natural language Information Analysis Methodology (NIAM) [Gadre,
1987] is an example of pioneering work in B[EN]R modeling during the 1970’s. NIAM s
described in more detail under a separate subheading within this section. Perhaps the most
advanced of the B[EN]R approaches is the Semantic Association Model (SAM?*), and its
extension, the Object-oriented Semantic Association Model (OSAM), developed by Su [1983,
1986]. In addition to an abstraction association (which differentiates object types from their
occurrences or instances), ther. are seven other associations: membership; aggregation; interaction;
generalization; composition; cross-product; and summarization. Dr. Robert Meersman of Tilsburg
University in The Netherlands is currently working on a superset of NIAM based on the object-
oriented paradigm. He is calling this new approach NORM. Early references to the work
described the acronym as standing for Natural Object Relation Methodology. Recent references
show the acronym as standing for Normalized Object Relational Model. In any case the key point
is that while the specification will be object-oriented, the assumed implementation will still be
relational. The intent is to combine the best of both worlds.

Business Entity-Relationship Model (BERM

BERM f{Jorgenson, 1991a and 1991b; Jorgenson and Walter, 1991] is an Extended Entity
Relationship (EER) modeling methodology. EER’s are described under a separate subheading
within this section. BERM represents an attempt to incorporate some elements of the object-
oriented modeling paradigm (which is also described under a separate subheading within this
section) into the traditional Entity-Atcribute-Relationship (E-A-R) model (which is again
described under its own subheading within this section). BERM also attempts to introduce a set of
standards into the application of E-A-R modeling, particularly with respect to developing the
content of the models. This is intended to strengthen the rigor of such models, as well as to
improve the productivity of the modelers. BERM was developed at Boeing and has been applied
on several projects within Boeing,.

Regarding the use of object-oriented modeling approaches: BERM applies the abstraction
or type hierarchy to E-A-R models by introducing a categorization scheme that divides objects in
the information model into: Proposition or Fact Classes (e.g. Machine); Proposition or Fact
Types (e.g. Personal Computer); and Proposition or Fact (e.g. PC # 12345-67). This may be
somewhat of an overcomplication of two basic object-oriented concepts. First, there are simply
{super]classes/types and their subclasses/types — regardless of what level they are at in the class or
type hierarchy. Second, there is the notion that classes may have specific instances. Information in a
BERM model is also categorized as: Physical Class (i.e. physical objects); Process Fact Class (i.c.
rules, functions-processes); Object Fact Class (i.e. assertions, axioms, attribution); and
Construction Operator Class (i.e. logic). Entities or objects are typed first; then propositions or
relations involving the object are typed: then based on rules or semantics associated with the entity

20

classes and/or the proposition class, validation is performed to ensure that a given rule or
proposition can be applied to the given entity.

Regarding the standardization of model content: standard relation types, objects, etc. have
been defined and put into a general “pool” to be utilized or applied by modelers. Rather than
creating unique names for relations or objects — when they are in fact the same as, or similar 1o,
other relations or objects — the modelers are encouraged to check the standard definitions and to
use either an existing standard or a more specialized version based on an existing standard. This is
on the one hand a methodological issue, but on the other hand uses the American National
Standards Institu.e (ANSI) Information Resources Dictionary System (IRDS) Conceptual
Schema (CS) architecture notion of Application Schemas [Burkhart et al, 1991] to provide
modelers with at least a starting set of basic model contents applicable to one or more application
domains. The layers of the IRDS CS are described in more detail in a complementary document
to this State-Of-The-Art (SOTA) Review Document, entitled Needs Analysis and Requirements
Specification For an Integration Toolkit and Methods (ITKM).

Accelerator, a commercially-available automated E-A-R modeling tool, is utilized to
create and store BERM models. BERM has demonstrated that object-oriented and other Al
concepts can and are being applied in existing enterprise modeling languages such as E-A-R.
Although these hybrid methods, techniques and/or languages will undoubredly make
representation and integration of enterprise modeling languages more difficult, it indicates that
there is a requirement for Integration Toolkit and Methods (ITKM) technology to accommodate
various kinds of modeling languages, including extensions to existing, fairly stable modeling
languages.

“ompuyter-Ai Software Engineerin ASE) and Re-Engineerin

Computer-Aided Software Engineering or CASE tools are not directed ar enterprise
modeling in general. Rather, they are directed at the modeling or specification of application
program logic and database structure using a set of programming and database constructs thar are
neutral with respect to any particular programming language or database definition and
manipulation language. The objectives of specifying programming logic and darabase structure
using CASE rools include:

3 Berter definition of application program logic and database structure through the explicit
separation of logical entities and operations from the specific constructs used in any given
programming or database language to express or implement those logical entities and
operations. This layer of independent is intended to allow systems analysts and/or
programmers to concentrate on the semantics of the domain being specified and to nort get
overly focused on or, in some cases, constrained by, the syntax of particular programming
and database languages.

J Automatic generation of program code and/or database structure in any particular
programming language (e.g. COBOL, C, etc.) or database definition and manipulation
language (e.g. IMS® DL/1®, DB2® SQL, etc.). This is accomplished by translating (in
the sense of compiling) the CASE specification language constructs into specific
programming and/or database language constructs using a mapping between the two sets of
constructs. Programming and database syntax rules, and in many cases efficiency
algorithms, may also be included in the CASE tools so that the program code and

ITKM . Scare-of -the- view

database schemas that are generated are well-structured and operate efficiently in various
target implementation environments.

CASE tools are intended to reduce the errors that occur between specification and
program and database development by making more direct use of the specification itself. When
making changes to a program or database during a lifetime of maintenance, changes are made to
the specification and the program or database is regenerated. As long as this procedure is
followed, the specification and the programs and databases will always be in synchronization. The
specification can serve as documentation throughout the life of the system. The specification in this
case must be rigorously and formally defined. Configuration management is still a major task in
a CASE environment. Many CASE tools have built-in support tools to assist with configuration
management. However, the programs and databases do not have explicit access to their logic or
structure (as represented in the specification) while they are running or being accessed and,
therefore, cannot be self-referencing or self-modifying.

Each CASE tool typically has its own programming and database constructs. In fact, one
software vendor (Systematica Limited) markets a CASE-related product called the Virtual
Software Factory (VSF)® that allows users to define their own CASE constructs and tie them to
several sets of programming language constructs provided by the vendor to create their own
custom CASE tool environment. Unfortunately, specifications developed in one CASE rtool
environment cannot be easily ported to run in, or integrate with, those of another CASE 1ool
environment. This problem was specifically pointed out in the ITKM industry survey (refer to
Section 2. above). CASE tool vendors have also been hearing about the problem from their
customers with increasing frequency. Several efforts are already underway to integrate and extend
CASE tools in order to eliminate, or at least mitigate, this problem. These efforts include: a new
committee formed under the American Naticnal Standards Institute (ANSH X3 - Informarion
Processing Systems, Standards Planning and Requirements Committee (SPARC), known as
X3H6 CASE Tool Integration Models (CTIM) and chartered with developing standards for
CASE tool integration [Note: the name originally used by this group during its formation was
CASE Integration Services (CIS)]; the Electronics Industry Association (EIA) CASE Dara
Interchange Format (CDIF) project also under ANSI (but not under X3/SPARC); DARPA’s
Software Technology for Adaptable Reliable Systems (STARS); and an effort known as
Standard Dara Access Interchange (SDAI) being conducted as part of the Product Data Exchange
using STEP (PDES)/STandard for the Exchange of Product data (STEP) project of the
International Organization for Standardization. While these tool integration efforts may relate
more specifically to CASE rtools, they appear to be addressing many issues common to model
integration in general (or at least to information model integration). This is due at least in part to
the fact that many proponents of CASE tools consider them to be complete enterprise modeling
tools, and are constantly extending both the definition and capabilities of CASE tools to support
this notion. The capabilities have been considerably slower to expand than the definition.
Improving the graphics-based modeling user interfaces at the front-end of existing CASE tools is,
however, a major focus of many CASE tool vendors. Also, many of the work tasks encompassed in
the CASE tool iniegration projects and the kinds of issues being addressed as part of those efforts
overlap to a considerable degree with the ITKM and ANSI X3H4 Information Resources
Dictionary System (IRDS) efforts. The logical architecture for ITKM and the IRDS Conceprual
Schema (CS) standards effort (which includes a Defining Schema, a Normative Schema, and
various Modeling Schemas and Application Schemas) are supposed to be generic enough to handle
all tvpes of enterprise models, including those produced through the use of CASE tools. The

28

ITKM S -the-Art Revi

approach would be to initially address static models, then dynamic models, followed by higher-
order models, and finally methods and tools that relate more closely to systems development,
such as CASE tools. When CASE tools are the subject of the integration effort, the generic syntax
and semantics of CASE tools would be “re-represented” in (in other words, subsumed into) the
Normative Schema, thereby producing a Modeling Schema content module for CASE tools. If
various CASE tool vendors have done a good job of integrating among their tools using their own
neutral [CASE] model, it will be all the easier to represent that model in a Modeling Schema
using the Normative Schema — including a Conceptual Schema, and mappings to External
Schemas (graphical user interfaces) and Internal Schemas (vendor-specific tools). This would then
provide the means to access and integrate various CASE tools within an IRDS or ITKM system.

As stated ecarlier, the CASE tools described above have typically been thought of as
systems development tools, rather than broader enterprise modeling tools. Some people now refer
to these traditional CASE tools as “lower- CASE”. They then describe a new, expanded aspect of
CASE rtools referred to as “upper-CASE”. Upper-CASE tools would be focused on enterprise
modeling in general (or at least on information modeling) and would have primitive constructs
associated with modeling or representation, rather than specifically with programming logic or
database structure. Upper-CASE tools could be used to represent entities and processes at higher
logical levels of the enterprise. Many of these higher-level entities and processes would not be
translated or generated into program logic or database structure — at least not in the near future.
Upper-CASE would allow the overall enterprise domain to be modeled, thereby providing both
an enterprise model useful in its own right and a context for individual, lower-CASE application
models. A number of CASE tool vendors state they are working on upper-CASE, but there are no
CASE tools on the marker currently that can really be described as addressing upper-CASE. One
approach to realizing upper-CASE is to interface existing lower-CASE tools to existing
enterprise modeling tools. For example, Oracle Corporation’s CASE*® has recently been
interfaced with IntelliBase, Inc.’s RIDL*™, a NIAM-based data or information modeling tool.
Another approach is to directly extend the capabilities of existing CASE tools.

Some CASE tools are coupled with or include utilities to re-engineer existing program
logic and, to a lesser degree, database structures. In the case of program logic, these utilities start
out working backwards, in the sense that they parse existing, legacy program logic and create a
CASE-based specification or model using the CASE constructs. This model can then be directly
used to re-generate more efficient code in the same language (for example, modular structured
COBOL where “go to’s” existed before), or to generate code in a new language (for example, C
code to replace FORTRAN). Oftentimes systems analysts or programmers modify the model
before generating new code. This provides them an opportunity to correct errors in the old logic,
make the logic more efficient, and/or add new logic to reflect changes in the application
requirements since the time period when the program was last modified. Similar utilities can be
run against existing database structures (i.e. database schemas and calls embedded in program
logic) to create logical database models. The logical models can then be used to re-generate a
better-structured database using the same database management system, or to migrate from one
database management system to another (for example, from IBM’s DB2 relational database to
Oracle Corporation’s ORACLE ® relational database, or from IBM's IMS hierarchical database
to IBM’s DB2 relational database). In practice, there are a number of serious hurdles in translating
trom one darabase form to another, particularly from hierarchical to relational form [Dement and
Woodruff, 1988]. Current tool capabilities in this area are quite limited. 1BM's Applications
Development Cycle (A/D Cycle) is heavily oriented to coupling re-engineering tools such as the
Bachman tools with IBM and third-party CASE tools. Vitro's Corporation Vitro Automated

Structured Testing Tool (VASTT), including an Intermediate Language Representation (ILR) as
its programming language-neutral form, is another, somewhat more limited example of a re-
engineering tool for legacy programs.

angqg] 1!13”5

Novak and Gowin [1984] have proposed using a Concept Map as a schematic device for
representing a set of concept (i.e. object) meanings embedded in a framework of propositions (i.e.
expressions of relationships or other statements involving the object). Concept Maps are
comprised of concepts (named using concept labels) related to other concepts by means of linkages
(named using linking words). The concept-linkage-concept notion is basic to semantic networks.
GUIDE [1991] refers to semantic networks as using the “thing-link-thing™ construct to represent
knowledge. Semantic Networks in general are described under a separate subheading within this
section.

Concept Maps are based on three major ideas in what is known as Ausubel’s cognitive
learning, theory: 1) Cognitive structure is hierarchicaily organized, with more inclusive, more
general concepts and propositions superordinate to less inclusive, more specific concepts and
propositions; 2) Concepts in cognitive structure undergo progressive differentiation, wherein
greater inclusiveness and greater specificity of regularities in objects and events are discerned and
more propositional linkages with other related concepts are recognized; and 3) Integrative
reconciliation occurs when two or more concepts are recognized as related in new propositional
meanings and/or when conflicting meanings of concepts are resolved.

Because meaningful learning (acquisition of knowledge) proceeds most easily when new
concepts or concept meanings are subsumed under broader, more inclusive concepts, Novak and
Gowin advocate that Concept Maps be organized hierarchically, where appropriate; that is, the
more general, more inclusive concepts should be at the top of the Concept Map, with progressively
more specific. less inclusive concepts arranged below them. Hierarchically constructed Concept
Maps help to subsume more specific meanings into larger, more general concepts. The use of
hierarchies and decomposition is inherent in the process of analysis, and is found in many
modeling methods and languages (including traditional structured analysis and design techniques).
It is not inconsistent with the semantic nerwork approach, and in fact, merely represents one
meaningful way of organizing or relating nodes in the network. Concept Maps externalize the
individual's propositional frameworks and can therefore be used to check on faulty linkages or to
show that relevant concepts may be missing. Concept Maps, used as a tool for negotiating
meaning, can make possible new integrative reconciliations that in turn lead to new and more
powerful understanding.

There aie, however, some problematic issues which arise when a hierarchical organization
of concepts and propositions (such as Concept Maps) is utilized. Novak and Gowin state that
written or spoken messages are necessarily linear sequences of concepts and propositions. In
contrast, knowledge is likely stored in our minds in a kind of hierarchical or holographic structure.
When we generate written or spoken sentences, we must transform information from a hierarchical
to a linear structure. Conversely, when we read or hear messages, we must transform linear
sequences into a hierarchical structure in order to assimilate them into our minds. Maintaining the
semantics intended by the speaker or writer while parsing natural language sentences is an
extremely difficult task. Because it is so difficult, some argue that the concentration should be on
the form of the sentence (its syntax) rather than its content or semantics. Limiting ITKM to
“form™ over “substance” would do little to improve the state of enterprise information from what

30

it already is today. This area is the subject of considerable research by Sowa [1984; 1991a, 1991b
and 1991c] and others.

The basic form of Concept Maps is circles representing concepts with lines between them
representing relations or linkages. As noted above, the general form is hierarchical, but there can
(and should, according to the suggestions by Novak and Gowin) be “cross linking lines” that go
outside of or around the general hierarchical structure to indicate “bigger picture” contextual
relationships between groups or clusters of concepts and relations. These lines actually go from one
fairly general concept to another, somewhat orthogonal, but equally general concept to indicate
that the hierarchical nature of the diagram introduces “branches” that may in themselves be related
in some ways. The general direction of an arrow is assumed to be downward (in correspondence
with the hierarchical decomposition, which is based on moving from more to less general
concepts); upward arrows on lines are used to indicate when this is not the case.

The biggest problem with Concept Map syntax and basic model semantics is a lack of
rigor or regularity, particularly in semantics, but also to some degree in syntax. This looseness,
rather than providing necessary flexibility, introduces ambiguity and opens up the possibility of
missing important semantics in the model. Concepts can be either objects (in the sense of static
information entities, e.g. “Rain”, “Water”) or events (i.e. “Raining”). The relation between any two
concepts is supposed to be labelled using a linking word. The problem is that in some cases the
linking words is a very weak verb like “has” or “is”, sometimes it is a preposition like “by”,
sometimes it is a phrase like “such as”, and sometimes it is 2 stronger verb or verb phrase like “[is]
made of”, “[is] kind of”, “causes”, “influences the selection of”, etc. Many of the linking words
could be expressed as concepts — as events in the case of most verbs, but in some cases as either
objects or events. For example, “rains” might be modeled as a relation between “Sky” and
“Water”, instead of making “Raining” or “Rain” an event or object concept and then having
relations between that concept and both “Sky” and “Water”, as in “Water Can Appear As Rain” and
“Rain Falls From Sky”). In the case of “such as”, there is already a syntax convention that allows
you to give an example (i.e. specify an instance) of a concept through a label placed outside and
directly underneath the concept (e.g. if the concept were “Dog”, it might have the label “Terrier”
underneath it, or it might have “Sparky”). [Note: alternately, Terrier might also be modeled as a
concept, appearing below “Dog” on the map with a relation labeled “kind of” or “type of”
between them. However, Concept Maps do not deal with type hierarchies in the sense of class-
subclass or “class as instance” distinct from the basic “is a” abstraction relation holding between a
class and an individual instance of that class].

Also, although the notion of clustering is used to relate groups of concepts with other
groups of concepts within a given Concept Map, some of the examples in the methodology
textbook seem to show linkages between two concepts that only have meaning when other higher-
order concepts back up the tree are considered at the same time — and clustering was not used in
these cases. That is to say, the relationship between just the two concepts at hand really has no
meaning unless it is considered in the broader context of one or more ancestor concepts, but there
15 no explicit indication of this situation in the Concept Map.

In some examples, the same concept is shown as a parent (superordinate) in one Concept
Map and as a child (subordinate) in another “equivalent” Concept Map. If the change in the
relation (directionally et al) is represented explicitly that might be O.K., but it just seems to be a
gloss to. in effect, flip what is supposedly a hierarchically ordered diagram and say it is still
equivalent to the original. This seems to be intended more as a point about navigation (i.e. how
one works one’s way to a given concept) or presentation, than a semantic point about hew a concept
that 15 a subordinate in one relation can be a superordinate in an equivalent relation. Navigation

31

and the relation itself are two very different things. There may be many paths or routes to take to
get to an object or concept based on the relations it stands in and the other concepts in those
relations. But each of those relations has a certain logical ordering to it and that cannot or should
not be arbitrarily altered with making corresponding changes in the relation itself. For example,
“Is Part Of (Tire, Car)” and Has Part “(Car, Tire)” are two differently ordered variations of the
same relation, but one when a switch is made from one to the other, it is noted by the change in the
relation name as well as the reordering of the objects in the relation. That is also a different issue
than stating that one can get to the concept “Tire” by knowing that it “Is Part Of a Car”, “Is Made
of Petro-Based Material”, “Has Tread”, etc.

Novak and Gowins note that the most common problems with Concept Maps are usually
signaled either by a linkage between two concepts that leads to a clearly false proposition or by a
linkage that misses the key idea relating two or more concepts. The former seems like it involves
relationships which simply do not hold (i.e. they are simply false) or are incorrectly identified
(e.g. there is a relation berween “Water” and “Lake”, but that relationship is not properly
described as “Lives In”). The latter could be a valid relationship between two concepts, but it is
just not the most appropriate relation given the context being modeled. That could include
relationship names which are technically correct, but are too vague to provide much useful
meaning. For example, “Water Is In Lake” may mean many different things. It could be intended
to indicate that the water is physically located in the lake versus someplace else, for example if it
had been pumped into the fields for irrigation. It could mean that the lake has water in it, rather
than being a dry lake (which, in California at least, is probably more often the case). Or it could
even mean that water is one of the things that make up or comprise a lake, with others things being
algae, fish, reeds, tree stumps, etc.

Some general guidelines are provided for a method of using Concept Mapping: Start with
a concept or small set of related concepts. These might be extracted from oral or written
material. Identify related concepts. Organize the concepts from most general to most specific
[Note: Identifying and organizing the concepts can be performed in parallel in an iterative
manner]. Label the linkages (relationships) between concepts using linking words. This is not to
suggest that one and only one correct linking word exists between any two concepts. Often there
are two or three equally valid ways to link two concepts, but each will have a slightly different
connotation. For example, if the concepts “Water” and “Ice” are linked with words such as “Can
Be”", “Becomes” or “Sometimes Is”, each proposition thus generated has a similar but not identical
meaning, [t is necessary to isolate concepts and linking words and to recognize that although both
are important language units, they have different roles in conveying meaning. Sometimes it is
useful to apply arrows to linking lines to show that the meaning relationship expressed by the
linking word(s) and concepts is primarily in one direction. As noted above, hierarchical maps
ordinarily imply relationships from higher-level concepts downward to subordinate ones. To
reduce clutter, the convention used is that no arrows are shown unless the relationship indicated is
something other than a superordinate to subordinate linkage between two concepts. Finally,
identify the larger-context (i.e. “big picture”) linkages between clusters of concepts on the same
Concept Map. These are cross-linkages and, like other linkages, should be labeled with linking
words.

In summary, Concept Maps represent an informal method that leaves much open to
subjective opinion and personal preference. Concepts Maps may be useful, however, as a
“brainstorming” methodology to be applied during the very early stages of a modeling effort.

12

. Proposicional Analysis (CI

Concept Propositional Analysis (CPA) is a method for evaluating interviews with subject
experts about their field or domain of expertise, as well as descriptions or models produced
based on those interviews. For example, CPA might be used to interpret models of the material
acquisition, handling, storage and delivery processes based on interviews with personnel from the
Materiel function or organization within the target enterprise. CPA is based on the psychological
notion that the meaning of any concept for an end-user or domain expert is shown by the set of
propositions that the end-user or domain expert constructs incorporating the concept.

CPA is often used with the Vee Knowledge Acquisition Methodology (which is described
under a separate subheading within this section). CPA/Vee, when used as a tool for interpreting
responses in an interview, is read from knowledge claims (statements made by the interviewee) to
the objects and events [embedded in the questions] presented, in order to construct inferences about
concepts, principles, and theories held by the interviewee. Based on Gowin’s Vee analysis, it is
thought that the propositions an interviewee makes in response to questions are the interviewee’s
knowledge claims based on his or her interpretation of the objects or events and data provided.
Given a fixed set of events or objects and questions, the concepts, principles, and perhaps theories
the interviewee is using to make a knowledge claim can be inferred.

The underlying premise of the CPA technique is that subject-marter experts should not
really be allowed to develop their own models or that, in any case, they cannot be counted on to
directly express the underlying concepts, relations, rules, theories, etc. they use to make decisions
and perform other tasks as a domain expert. The idea is that a modeler caprures a mid-world or
“user view” model based on interviews with the expert, and then analyzes and interprets that model
to capture and model the real, underlying concepts, relations, rules, theories, etc.

Conceptual Graphs (CG)

Conceptual Graphs (CG) [Sowa, 1984] is a modeling form based on Typed Predicate
Calculus. CG draws upon the work of Charles Peirce (1883) in Existential Graphs and on the
notion of semantic networks as used in artificial intelligence. Semantic Networks are described
under a separate subheading within this section. While CG utilizes a formal language for
expressing propositions or assertions, the language is easier to read than traditional Interpreted
Predicate Logic (IPL). IPL is described briefly under a separate subheading within this section.
CG is particularly geared toward capturing propositions from natural language statements (i.e.
representing linguistic relations). In addition to the ease of capturing propositions from natural
language statements, CG has another strong point: the graphical and linear forms are equivalent
[Note: this is somewhat aided by the fact that the graphical form is not purely graphical, i.e. it
relies on text in cases where graphical symbols would be confusing or ambiguous]. This is in
contrast to the linear or textual language EXPRESS, the graphical form of which (EXPRESS-G)
allows only the expression of a limited subset of the semantics representable in the linear form
(EXPRESS is also described under a separate subheading within this section). The CG form can
also be easily utilized for inferencing. There are currently few, if any, automated tools to directly
support CG. However, a project is being formulated to develop a general CG software tool. That
project would involve a number of universities worldwide.

CG is used frequently to represent abstract data types, with emphasis on constraints among
abstract data types. This is accomplished specifically using the notion of type hierarchies found in
the object-oriented paradigm (which is described under a separate subheading within this section).

33

However, CG can be used to represent instance-level assertions or constraints, as well -— or
mixtures of abstract and instance-level constraints (for example, where most constiaints apply at
the abstract or class level, but others apply only to specific instances). Type definitions are
specified through Lambda expressions (i.e. they are based on the Lambda calculus). Existential
(“there exists an X...”) and universal (“for all [for every] X...”) quantifiers may be specified. Ses
of referents may also be specified.

The basic graphical modeling form uses boxes for concepts (which are objects or abstract
data types), and lines as relations which link concepts. Concepts may be “data objects™ (like
Person or Horse), or they may be processes, events or states (like Lead or Leading. or Sit or
Sitting). In this form, nouns and verbs are treated uniformly. In other words, to repreient the
statement “Person Leads Horse to Water”, concepts would be modeled for: Person, Lead (or
Leading), Horse and Water. Person relatzs or stands in a relation to Lead, as do Horse and Wate
so relation lines would connect Person to Lead, Horse to Lead and Water to Lead. This is
syntactic. A relation line may be separated into two parts, with a circle separating the twe
segments of the line. Within the circle, the relation or role name may be specified. The relation
berween Person and Lead would be Agent, whereas the relation between Horse and Lead would be
Patient, and the relation between Lead and Water would be Destination. These are semantic. An
alternative form would be to treat Lead as a bundled relation. This requires producing two
separate burt related graphs, with one containing Person, Horse and Water all related
{syntactically] to a concepr called Lead, and a second relating the concept Lead [semantically] to
the roles or relations for Agent, Patient and Destination. The two-graph form is a little more
difficult to manage. since both graphs must really be considered together to fully understand the
proposition being represented. However, using a semantic network of pointers or a similar
representational mechanism in an automated support tool would largely mitigate this issue and
would allow clean separation or unbundling of semantics.

Boxes (i.e. objects) can be further quantified (e.g. “any 2 horses”, “[specifically] the horses
named Trigger and Silver”, etc.). They can also be referred to by other graphs in the overall
model (which is, in effect, a semantic network of individual, related Conceptual Graphs). In this
case the objects are said to be “co-referent”. Circles (i.e. relations or roles) cannot be quantified or
specifically referred to (although the same relation or role can, of course, appear numerous times in
the overall model). Graphs may also be nested. Nested graphs may be expressed textually using
nested “IF THEN" rules. Graphs may be negated by putting a box around the entire graph and
placing a “not sign” next to it.

To-date, CG has predominantly been used to represent static models, i.e. static objects
and propositions or assertions about them. This is not to say that some of the propositions or
assertions cannot involve actions or states (for example, “The Cat Sat On the Mat” or “The Cat Is
Sitting On the Mat”) — in this sense CG even allows differentiation of states from actions).
Rather, this is only to say that the full dynamic semantics of a process are not typically modeled
using CG. The basic constructs of dynamic or process models (e.g. operation, sequence,
antecedent, consequent, etc.) could be represented using CG’s, burt the language does not directly
lend itself to the modeling of process semantics. In fact, current practice does not necessary
reflect the full capability of CG for modeling. Per GUIDE [1991], CG is both expressive and
flexible. Definition can take place at any level of detail. Conceptual Graphs can represent
everything in predicate calculus, including modal, intensional or higher-order logic. Because of
this, CG forms a well-developed notation for the schemata of situation semantics. Situation
semantics provide for the representation of an event or state of affairs independently of the contents
of the event or state of affairs. This allows for reasoning about the event itself (e.g. Who said it

34

ITKM Statc-of-the-Ars Review

happened? Wh > Where?) separately from reasoning about the conwents of the vent (e.g. What
Happened?). For example, the proposition “John saw the punch press come down on the operator’s
hand” really deals with two things: John’s seeing of some event, and the event itself (i.e. the punch
press coming down). John definitely saw something, but it might tur> out thar uic punch press did
not come down on the operator’s hand. It may only have appeared that way trom where John was
standing. Man* other events may l.ave occurred because of what John thought he saw. He might have
called 911. He may have gotten excited or upset. The notions of agents, belief stawes, and other
aspects of modal logic are important to situation semantics and car be modeled. to ar least some
degree, using CG.

In application, the CG language does not come with a largs <et of standard language
constructs such as those found in EXPRESS, although several primitive constructs are described in
the primary t=xtbook on CG [Sov-a, 1984], and a CG electronic mail network informally shares
some higher-level basic constructs among CG users. The primitives of the CG language could, of
¢ varse, be used to define the higher-level constructs (and this is typically the case with constructs
shared over the e-mail Network). Certain CG modeling syntax and conventions provide some of
the capabilities of these constructs, such as defining domains and ranges (including parti . 1lar
instances) and lexical referents. While both CG and EXPRESS may be described in a broad sense
as constraint languages, it should be noted that CG is purely a conceptuai information modeling
tool, whereas EXPRESS can quickly be taken to the point where it looks like a Problem
Statement Language (PSL). In other words, EXPRESS crosses fa- over into the domain of systems
design and development. specifically database dcfinition and program lc jic structuring.

Sowa has proposed using CC in conjunction with e Enrity-Attribute-Relationship (E-A-
R) m:thodology and/or the NIAM methodology (both E-A-R and NiAM are described under
separatc subheadings within this section). E-A-R or NIAM would be used for high-level,
conceptual modeling (to identify major entities and establish context) and CG would be used for
specifying the dewails of particular lower-level relations of interest and for expressing other
propositions involving the identified entities.

Given the nature of CG, it appears to be suitable as the basis for a Normative Language for
representing the “meta modeling” coustructs in Layer 2 - Normative Schema of the American
National Standards !nstitute (ANSI) Information Resources Dictionary System ‘IRDS)
Conceptual Schema (CS) architecture [Burkhore et al, 1991]. In fact, the ANSI IRDS CS Task
Group has recently decided to use CG as the basis for its initial Normative Language for purposes
of expressing. in an ANSI standard, the constructs necessary for the IRDS CS to support model
integration. The neutral, meta mo.!<l conctructs expressed in CG form would then be mapped (via
IRDS CS layer 3 - Modeling Schemas) to specialized constructs in other enterprise modeling
languages such as NIAM, EXPRESS, IDEFO and/or .DEFi/1X, SADT® Acti-Grams and/or
Data-Grams, etc. which may be more appropriate for developing parricular kinds of models (e.g.
duta models, process models, logical database designs, etc.) at iRDS CS Layer 4 - Application
Schemas. For readers interested in exploring conceptual schema issues further, the layers of the
IRDS CS are described in more derail in [Burkhart et al, 1991] and in a complementary
docum nt to this State-Of-The-Art (SOTA) Review Document, entitled Nesds Analysis and
Requirements Specification For an Integration Toolkit and Methods (ITKM) [refer to Section
3.3.2.. Requirements Specification For Architecrural Elements or Components Of un ITKM,
subheading on “Lavers Of Schema [Language] Definition For Model Integration”, pages 48-50].

G can be directly mapped to and from natural languages, or more accurately, stylized
narural languages. However, the “from™ part is extremely dangerous to take at face value: as Sowa
himeelt states, parsing a natural language sentence and transforming it inte formal logic does nor

35

- - - v ¢ w

guarantee that the intension (read, the “real meaning”) of the sentence will be captured. Sowa notes
a major role for humans in this effort. It should not be done automatically by an automated
modeling tool, or if it is, the result should not be accepted into the production knowledgebase
without the review and approval of a human.

Data Modeling Versus Information Modeling

First, to clarify the difference between the terms dara modeling and information
modeling: according to the International Organization for Standardization (ISO) [1987b], data
modeling concentrates on the form of the data that is modeled. That is to say, structural forms for
data are defined that are convenient for storage and/or manipulation in a computer. In particular,
update possibilities are optimized, although access path structures, important for retrieval, are
often emphasized as well. Information modeling concentrates on the meaning (semantics) of
“data”, i.e. the aspects that make “data” into “information”. Semantic models or information
models are considered to be independent of, but of critical importance to, the data models that
describe the representation and storage forms of the information. In the terminology of the
ANSI/SPARC and ISO three-schema database architecture [Tsichritzis and Klug, 1978;
International Organization for Standardization (ISO), 1987a], data models represent the
implementational or Internal Schema view of data, whereas semantic models represent the
abstract or Conceptual Schema view of data. Information models formally define exactly what
the data represents, which semantic rules and constraints exist, and what information manipulation
actions are needed by the user. The International Organization for Standardization (I1SO) [1987b]
identifies several methods for information modeling, including:

Abstract Data Types,

Binary Relationship Models,

Conceptual Graphs,

Deep Structure Sentence Models,
Entity-Attribute-Relationship (E-A-R) Models,
Function, Process or Operation-Oriented Models,
N-ary Relationship Models,

Network Models (Including CODASYL),
Object-Role Models,

Process-Interaction Models,

Relational Models,

Semantic Networks or Nets, and

Set Theoretic Models.

Qaoaaaaoaoaadada

SO groups these methods into three broad categories based on their fundamental concepts
and characteristics. Since some of the methods above might fall into more than one of the three
categories (i.e. they possess some aspects of two or even all three categories), there is no firm
mapping of the methods to the categories. The categories of approaches are:

O Entity-Auribute-Relationship (E-A-R),

M Binary and F':mentarv N-ary Relationship B[EN]R), and
O Interpreted Predicate Logic (IPL).

36

ITKM Statc-of-the-Art Revi

Each of these is described in more detail under its own subheading elsewhere in this section of this
document.

According to the International Organization for Standardization (ISO) [1987b] and
Vernadat [Vernadat and Kusiak, 1988], Entity-Attribute-Relationship (E-A-R) approaches are
based on the conceptual work of Bachman, Chen and others. Specific modeling approaches or
methods have been put forth by: Chen [1976] (the Chen Entity-Relationship Model); Codd [1979]
(RM/T, for Relational Model/Tasmanian); and others. The IDEF1 and IDEF1X modeling
methods developed by the Air Force under the Integrated Computer-Aided Manufacturing
(ICAM) program fall into the E-A-R category. The Chen Entity-Relationship Model and
IDEF1X are probably the two most widely used E-A-R modeling methods. The ITKM State-Of-
The-Art (SOTA) survey, as well as other SOTA reviews, have found © A-R to be among the
most widely used methodology for data and [limited] information modeling, as well as one of
the most widely used modeling forms in general. GUIDE [1991] states that the reason E-A-R
have been so widely accepted is that the models draw upon the basic “thing-link-thing”,
particularly “noun-link-verb”, relationship which most humans find natural for modeling.

The primary components of an E-A-R model are: entities; relationships between entities;
attributes of entities; and values of attributes. The overall domain or universe of discourse of the
model may aiso be specified in some form. All E-A-R models have the notion of identiry, i.e.
some way to refer to a specific entity. Some E-A-R modeling methods that are oriented more
specifically to logical data modeling and/or physical database modeling include the notion of a
key attribute. Key artributes establish a logical and/or physical access path into an entity and often
also serve as logical and/or physical linkages between related entities. The domain and range of
attributes may also be specified in the model. Attributes, while almost always treated as separate
components or constructs of E-A-R models are sometimes described as really being
“characterization relations”. Some extended E-A-R modeling methods allow relationships
themselves to have [limited] attributes.

The relationships represented in E-A-R models have traditionally been binary, although
some extended versions of E-A-R modeling methodologies allow #n-ary relationships among
entities. Individual binary relationships are frequently further quantified through a construct called
“cardinality”. In precise terms, cardinality refers only to cases where specific cardinal numbers are
used to quantify the relation (e.g. 1 Purchase Order can have no less than 1 nor more than 10
Purchase Order ltems). Stating that there may be many Purchase Order Items for one Purchase
Order would be qualification, but not really cardinality. However, the term cardinality is
commonly used in the modeling community to refer to quantification in general (e.g. many,
several, erc.), as well as strict cardinal quantification. Regarding “many-to-many” relations, there
is an age old question ol whether the relation must be normalized (a process in which intermediate
entities are introduced to further decouple the many-to-many relations and reduce it ideally to a
purely quantifiable relation). Many-to-many relations do not pose a logical data or information
modeling problem. They are, however, impossible to implement using relational databases. Since
logical E-A-R models often g=t implemented using relational databases, and since the general E-
A-R form is frequently used or adapted for physical database modeling as well — many
practitioners stipulate that all relations in E-A-R models should be normalized to at least 3rd
Normal Form (essentially no many-to-many relations).

37

-of-the- view

Several E-A-R models distinguish berween Kernel (Independent) versus Dependent
Entities. Independent entities can exist on their own in the model (or at least be identified
uniquely), without any other entity in the model. Dependent entities by their nature depend on one
or more other entities in the model for their existence (or at least, identity). A common example
involves a Purchase Order and a Purchase Order Item. Most enterprises allow a Purchase Order to
exist (at least certain kinds of Purchase Orders at certain points in the procurement process)
without any Purchase Order Items. Purchase Order in this case would be modeled as an
independent entity. However, the inverse is not allowed in most enterprises, i.e. a Purchase Order
item cannot exist without a Purchase Order. Purchase Order Item would then be modeled as a
dependent entity. In terms of “identity” versus “existence”, it could technically be said thar a
Purchase Order Item could not be identified without knowing the Purchase Order on which it is an
item [Note: this is not to say that physical or even logical access would necessarily require first
accessing the Purchase Order entity to get to the Purchase Order Item, but it does indicare that
identifying the Purchase Order Item requires knowing the Purchase Order. For example, the key
attribute of the Purchase Order Item would likely be a concatenated key attribute that includes
the Purchase Order key attribute (Purchase Order Number, for example), as well as some unique
component (the Purchase Order Item Number itself)]. Because “identity” is this sense is so closely
allied with keys and other logical and physical access issues associated more with the
implementation of relational databases than with pure logical data modeling or information
modeling, we prefer “existence” as the determinant of independence or dependence.
“Identification” can be handled with other syntax conventions, as described under the subheading
of IDEF1/IDEF1X within this section. IDEF1X also supports the modeling of independent versus
dependent entities quite well (using squared versus rounded boxes). Some people consider this a
feature of extended E-A-R models, but we consider it a differentiating feature among E-A-R
models.

E-A-R models are oriented towards the definition of static semantics. It is, therefore,
difficult, if not impossible, to fully model the dynamics or behavior of information in
environments that experience high-levels of complex information interactivity and/or changes in
information structures or relationships. In other words, it is difficult to use E-A-R models to
model the processes that act on the entities and the states that the entities have before and after the
process. Also, it is difficult to model relationships that are “optional” or which occur only under
certain conditions, since the optionality rules or conditions cannot really be expressed using basic
E-A-R constructs. E-A-R models are themselves “static” in that they represent only a point-in-
time or snapshot view of the data or information in some universe of discourse such as a
manufacturing enterprise.

EXP nd EXPRESS-

EXPRESS [Schenck and Spiby, 1991] is a conceptual schema language (as defined by the
International Organization for Standardization (ISO) [1987a]). It is being developed by 1SO
TC184/SC4/WGS in support of the ISO STandard for the Exchange of Product data (STEP)
project. As a conceptual schema language, EXPRESS is intended to provide for the specification
of the objects belonging to a universe of discourse (UOD), the information units pertaining to
those objects, the constraints on those objects and the permissible operations on those objects. The
UOD in this case is those aspects of product definition necessary to develop STEP. EXPRESS is
a formal specification language for expressing a standard information model (information
modeling is described under the subheading of “Data Modeling Versus Information Modeling”

38

within this section). EXPRESS consists of language elements which allow an unambiguous data
definition, with the constraints on the data clearly and concisely stated. A future version of
EXPRESS is intended to address process modeling as well. Currently, however, EXPRESS does
not include language elements which allow input/output, information processing or exception
handling to be represented. EXPRESS is not a programming language or a database language.
However, it draws upon several well-known and widely-used programming languages including
Ada; C; C++®; Modula-2; Pascal and PL/1, as well as the database language SQL. EXPRESS is
driven by a number of requirements including;

O The size and complexity of STEP demand that its specification language be parsable by
computer, not just humans. Therefore, EXPRESS must be a formal, rigorous specification
language that lends itself to machine interpretation, automated consistency checking and
view generation.

O The diverse material encompassed by STEP must be partitionable into smaller working
sets. The STEP schema, created using EXPRESS, will serve as the basis for this
partitioning.

O The language must focus on the definition of entities, which are the things of interest.
Definition must be in terms of dataand behavior. Data represents the properties by which
an entity is realized, and behavior is represented by constraints and operations on that data.
EXPRESS allows specification of entities, attributes and relations, as well as description
of the constraints and permissible operations on those entities, attributes and relationships.
Because of this, EXPRESS may be considered as somewhat of a hybrid between
traditional Entity-Attribute-Relationship (E-A-R) models (which are described under a
separate subheading within this section) and constraint languages.

O The language must avoid, as much as possible, specific implementation views. EXPRESS,
as noted above, is a congeprual modeling language following the ANSI/SPARC and 1SO
three-schema database architecture {Tsichritzis and Klug, 1978; International Organization
for Standardization (I1SO), 1987a). Therefore, it is neutral with respect to particular
physical implementations.

The basic form of an EXPRESS model is textual (or linear). Model semantics are
provided in the form of declarative statements or sentences using EXPRESS syntax and a large
number of standard EXPRESS constructs. A group of related declaiative statements comprises a
block, which can be thought of a submodel of the larger, overall EXPRESS model for the entire
UOD. Perhaps the biggest difference between EXPRESS and other information modeling
languages, in general, or constraint languages, in specific, is the relatively large number and varied
nature (i.e. ranging from purely abstract constructs to database definition-related constructs) of its
standard constructs. This provides a certain degree of rigor and ensures that the declarative
statements are machine-interpretable. Since these constructs are largely at the fairly primitive or
meta level, they do not overly restrict the ability of modelers to define more unique entities and
relationships at the application domain or “mid-world” level. The constructs include some
cencepts typically not found in information models, but rather more closely associated with the
object-oriented paradigm (which is described under a separate subheading within this section).
These conceprs include: [super]types and subtypes; derived arttributes; aggregations; bags; sets;

39

ITKM State-of-the-Art Review

lists; rules; relational operators; functions (including many standard arithmetic functions);
procedures; and data types (e.g date, string, real, etc.). Some statements may be executable. That
is to say, statements can be written at a low enough level such that they can be executed. Because of
the EXPRESS syntax and the nature of its basic constructs, declarative statements in EXPRESS
look fairly similar to Pascal code. Executable statements, of course, look even more like program
code. Some arttribute definition statements using data types (such as integer, string, etc.) and
cardinality rules look like database definitions.

There is also a graphical form of EXPRESS, known as EXPRESS-G (“G” for graphical).
It was specifically developed for the graphical rendition of information models already defined
in the EXPRESS [textual] language form, but it may be used a modeling language in its own
right. However, it should be noted that EXPRESS-G only supports a subset of the EXPRESS
language. In other words, there are many semantics in an EXPRESS model that cannot be depicted
in the EXPRESS-G graphical form, and using the graphical form as a data acquisition or
modeling tool there are many semantics of EXPRESS that cannot be captured.

In addition to the general requirements noted above, there are several requirements which
EXPRESS-G in particular was intended to meet. For example: a diagram must be able to span
more than one sheet of paper; the graphical form should support levels of abstraction (for example,
entities may be modeled without their associated attributes being modeled); the actual pictures
should require only a minimal level of computer graphics capability and should be printable using
non-graphical symbols on a line printer; and a processor facility should be able to be developed
for converting from EXPRESS textual form to EXPRESS-G graphical form.

EXPRESS-G supports the notions of entity, attribute, types, relationships and cardinality
as found in the EXPRESS language. It also separately supports the notion of a schema, as distinct
from an instance-level model. Currently it does not provide any support for the constraints and
constraint-related mechanisms provided by the EXPRESS language (e.g. rules, functions,
procedures, etc.). In that sense, EXPRESS-G can be thought of as addressing the dara modeling
aspects of EXPRESS, without the constraint language portion of EXPRESS. There are three major
types of symbols in the graphical form of EXPRESS:

3 Definition: Symbols for denoting things (i.e. entities and attributes) which form the basis
of the information model. These symbols are used to represent the semantics or content of
the model.

O Relation: Symbols which describe the relarionships that exist among the definitions. Like
the definition symbols which they relate, these symbols are used to represent the semantics
or content of the model.

O Composition: Symbols (such as off-page connectors) which allow the diagram to be
displayed on more than one sheet of paper. These symbols are not really used to represent
model content or semantics, but rather to support the presentational semantics of the
model.

EXPRESS-G graphical syntax has some similarities to Entity-Attribute-Relationship (E-
A-R) modeling forms, but in other respects is closer to Binary and Elementary N-ary
Relationship (B[EN]R) modeling forms (with respect, at least, to logical data models or logical
database definitions). E-A-R modeling, B[EN]JR modeling and data modeling are all described

under separate subheadings within this section). To be specific, a box is used to represent an entity,

40

-of- - vi

and a line between two boxes (or in the case of recursion to the same box) represents a relation. The
entity name or label appears inside the box. A tree relation (for example, a “person” may be either
a “male” or a “female”, or “outer shape” may be either “topology” or “geometry”) is represented
by a darkened relation line. A normal, required relation is represented by a normal tone, solid
line. An optional relation is represented by a normal tone, dashed line. The “t0” direction of the
relation is denoted by putting a circle at the end of the line. The line is labeled with the relation
name or role. One major difference with E-A-R models is that in EXPRESS-G attributes are
modeled as relations, not as name labels or “fields” within some portion of the entity box. The
name of the relation (i.e. the label on the line) is the name of the attribute. A normal entity appears
on one end of the relation, and a data type appears on the other end. For example, the entity
“person” might have a relation line with the name “birth-date”. That represents the attribute “birth-
date” on the entity “person”. At the other end is the data type “date”, which represents that “birth-
date” is a “date”. This form is closer to B[EN]R modeling, where attributes are treated as entities
themselves with specific “attribution relations” drawn (and individually labeled) between them
and their associated entity. “Date” is then related to another entity (in this case a primitive
construct) “integer”, representing that “date” is an “integer”. Cardinality (in the broad sense of
domain and range rules) is defined on this last relation. This allows for low-level specification of
attributes in a form more closely associated with data models or database definitions.

Extended Entity Relationship (EER) Modeling

[Note: includes DATAID, M*, Ross’ EER and Bachman Object-Role Model)

Extended Entity-Relationship (EER) modeling approaches were developed by Ceri
(1983], Albano [Albano et al., 1985], Dileva [DiLeva and Giolito, 1986], Ross [1987] and
others. While the nature of the extensions varies considerably, many of them relate to further
organization or classification of the entities and/or relations in the basic E-A-R model. For
example, an EER approach is used in the Italian DATAID logical darabase design methodology
and the Canadian M* methodology for analysis and modeling of production-rule systems. It
differs from basic E-A-R approaches in that it inciudes a new component, the Abstraction
Hierarchy, which allows for the identification of such things as subset relations (referred to as the
subset hierarchy) and categorization relations (referred to as the partition hierarchy). The
abstraction hierarchy can be thought of as a way of introducing some aspects of the object-oriented
paradigm into the E-A-R model. It should be noted that the syntax of IDEF1X allows for
limited modeling of categories, too. It also has a number of other syntactical and methodological
conventions which make it particularly well-suited to logical data and database modeling. For
this reason, some people refer to IDEF1X as an Extended Entity-Relationship model.

Ross" EER supports a notion very similar to the Abstraction Hierarchy through a
svntactical construct called an Entity-Type-Hierarchy (ETH) or Generalization Hierarchy. Ross
uses ETH's specifically to categorize entities into [super]type/subtype or class/subclass relations.
ETH was introduced into Ross’s EER largely to provide the basis for {future] inferencing. Since
ETH and the Abstraction Hierarchy of DATAID and M* are strict hierarchies, multiple
inheritance capabilities would be required. Ross also introduces other constructs often associated
with the object-oriented paradigm. Examples include Subsets (similar to the subset hierarchy in
DATAID and M*) and Aggregate Objects (known as “bags” in object-oriented terminology). An
Aggregate Object is simply a collection or group of other entities. It is represented as a
[collective] entity to which the nembers of the group relate. The collection or grouping is usually

41

based on some, logical, shared context — although in theory any entities could be grouped
together for some purpose. GUIDE differentiates two kinds of aggregation: one relating to
composition or part-whole (the archetypical example being a Bill of Materials); the other more
casually related to grouping (GUIDE calls this “predicated”). Ross’ EER also allows relations to
be treated as entities. The relations become Association Types, which can have attributes or stand
in other relations (in some cases, even with other Association Types). Whereas many extensions to
E-A-R models deal only with extensions to the static nature of entities, Ross’ EER extends into
constraint checking and even into some aspects of behavior modeling. The behavior modeling
introduces constructs and modeling syntax for modeling states, events and propagation rules.
Behavior modeling is described under a separate subheading for process modeling within this
section.

Like DATAID, M* and Ross’ EER, the Business Entity Relationship Model (BERM)
Jorgenson, 1991a and 1991b; Jorgenson and Walter, 1991] developed at Boeing attempts to
incorporate object-oriented approaches into E-A-R modeling. BERM is described under its own
subheading within this section.

Another EER model is Bachman's Object-Role Model. Some people classify this as a
separate kind of E-A-R — something besides an extended E-A-R. However, the same argument
could probably be made about any EER where the extension is i~ a fairl ceg-cgared area. in this
case, Bachman’s Object-Role Model simply allows entities to “role play”. For example, if we
have two entities Employee and Consultant, we can create a role entity called Project Manager.
Either or both Employee and Consultant can play the role of Project Manager, but certainly not
every Employee or every Consultant plays that role. The underlying premise is that many entities
found in typical E-A-R models, particularly those that do not really seem to fit the normal
modeling syntax, are not really entities at all. This methodology proposes identifying the real
entities (referred to as “objects”) and then expressing many of the would-be objects as roles and
associated relations.

There are a number of other interesting extensions to E-A-R approaches, some of which are
currently implemented in one or more E-A-R or EER models and others that are being proposed
by groups such as GUIDE. Some of these extensions relate to modeling more complex
relationships, for example, imposed existence constraints. This is an extension to, or further
qualification of, the optional relationships already represented in some E-A-R models. In this case
though, the existence rule is specifically defined. That may require a whole set of other complex
relations to be described in the model. A simple example is the case where two types of relations
can possibly exist between two entities, but only one or the other may exist at any given time
(determining which one depends on checking certain conditions, which may only occur ar the
entity or attribute instance level). Other E-A-R models are being treated as Conceptual Models
(based on ANSI/SPARC and ISO three-schema database concepts) and are being mapped to
virious data models which contain data about the implementation and/or presentation of data
represented in the Conceptual Model. Functions, processes or operations can currently be modeled
in any basic E-A-R model — but only as static entities. Extensions in this area deal with linking
these static representations of processes, etc. (through various formal relations) to the static
representations of the data or information that the processes take as input, manipulate and/or creare
as output. As noted above, Ross’ EER already includes some extensions in this area. Finally, per
GUIDE, Bachman has proposed extensions to his Object-Role Model to deal with something
called “concepts” or “data concepts”. The example cited is that Telephone Number is a “darta
concept” that identifics phone lines and/or people in relation to the phone system they are
connected to or use. Business Telephone Number and Home Telephone Number are “roles™ of that

F<N
t

]

ITKM Siate-of-the-Art Review

data concept. Bachman refers to this as “dimension”. This seems like a somewhat contrived, overly
bundled and unnecessarily complex way of representing what could easily and more clearly
represented using seveial szparate, bur closely associated relations. For example: a Person is
related to one or more Telephone(s) or Telephone Line(s) in scme manner (call the relation
whatever you like); Telephone Numbers are a typical way of accessing a given ielephone Linc or
Person; Telephone Numbers may in turn relate to Home or Office or Car or lots of other Places.
It is hard to see what is terribly unique about any of that or why new primitive constructs such as
“dara concepts” and “dimensions” are needed to represent it.

Hypertext

By dividing text (such as that produced by any word processor) into individual text nodes
and using the “node-link-node” model to link nodes, Hypertext systems allow a user to identify
and navigate to related text nodes by following the links [GUIDE, 1991]. Hypertext provides
somewhat more semantics than other text processing, in that keywords or concepts may be
identified as text nodes and linked or related to other words or text descriptions to provide some
expression of meaning. The means of providing this capability may, in fact, utilize an underlying
database or knowledgebase to store the text node and linkages.

Hypertext may be useful in that it provides a means for non-modelers to express scme
semantics simply by performing “modeling” using narrative text descriptions. Rather than to
allow completely free-form text, however, many hypertext systems use some form of guided text
selection with associated node assignment.

The Integrated Computer-Aided Manufacturing (ICAM) Definition (IDEF) modeling
methodology, and various automated tools developed based on the methodology, have been
utilized by numerous DoD), defense contractor and commercial enterprises since they were first
developed in the late 1970’s. IDEF is the most widely used modeling methodology in the
aerospace and defense industry, and is among the most used in the commercial industrial sector.
The ITKM industry survey results, presented in Section 2. of this document provide supporting
data about the widespread use of IDEF. IDEF was developed under Air Force contract because the
Air Force recognized a need for a standard approach to describing manufacturing enterprises, both
in terms of their current ("As Is”) state and their envisioned state after implementation of new
technologies ("To Be”). The majority of the new technologies being considered for
implementation at that time were “hard automation technologies” oriented to productivity
improvements on the shop floor. The IDEF methodology has, however, been used subsequent to
that period for modeling in support of technology projects directed at non-touch, above-the-shop-
floor labor.

According to Sarris [1988] three distinct but related IDEF methods were originaliy
conceived: IDEFO, for functional modeling of enterprise activities; IDEF1, for modeling of the
data and information used and/or produced by the various activities; and IDEF2, intended to
represent the dynamics of the enterprise. The IDEFO method was developed under the ICAM
Program by SofTech. Inc.. as a refined and expanded version of SofTech’s Structured Analysis
ind Design Technique (SADT) methodology. The IDEF1 method, in its original form, was
developed by Hughes Aircraft and D. Appleton Company (DACOM), also under the ICAM
Program IDEF1 was later improved by DACOM under a follow-on ICAM contract and became

43

KM Stare-of-the- VIEW

IDEF1X. IDEF2 was only partially defined under the ICAM Program, but has since been used as
the basis for several proprietary methodologies and tools which were developed under private
funding. ITKM industry survey respondents noted SLAM, TESS and SAINT as examples of
such technologies.

As a method for modeling functions (or activities, or at a superficial level, processes),
IDEFO has several strengths and several weaknesses. However, many of the weaknesses first occur,
or only become significant, when the method is applied to complex white-collar (i.e. analytical or
logical) functions rather than physical functions. Because IDEF0O models are among the most
rigorous and exhaustive of current functional modeling approaches, they can provide useful data in
a form that is acceptable as a starting point for more advanced modeling of funcrional
interrelationships and the information involved in those interrelationships. The biggest concerns
regarding current IDEFO modeling efforts are to ensure that the models contain sufficient detail
and that proper leveling be achieved in the models, as this is critical to the future usefulness of any
IDEFO model. Although functions (or activities or processes) are identified in IDEFO models
along with their inputs, controls or constraints, outputs and mechanisms (known collectively as
ICOM’s), tull understanding of the functions is dependent upon more detailed modeling of the
ICOM’s using IDEF1/1X. Unfortunately, there are several difficulties in linking IDEFO and
IDEF1/1X models. Although one can ascertain a limited understanding of functional
interrelationships by studying IDEFO models alone (specifically, by traversing functional linkages
up, down and across the hierarchical structures and/or tracing dara using a cross-reference of
informational elements to the functions that use them), a more direct representation of such
linkages is critical for the development of enterprise models to support enterprise integration and
white-collar, management automation. Additionally, IDEFO models identify functions from a
static perspective only. Much more extensive process modeling is required to capture complete
process dynamics, to support simulation or other behavioral modeling and to allow direct
execution of operations based on their process models.

IDEF1/1X is a good example of an Entity-Attribute-Relationship (E-A-R) modeling
method. The original version (IDEF1) drew heavily on the works of Codd in relational theory
and Chen in basic entity-relationship modeling, as well as on the internal expertise of the
companies that developed it (Hughes Aircraft and D. Appleton Company [DACOM]). DACOM
then applied lessons-learned from numerous industry applications of IDEF1 and from the Air
Force ManTech Integrated Information Support System (I1SS) Program to produce a revised and
extended version known as IDEF1X (IDEF1 eXtended). The primary differences between IDEFI
and IDEF1X are improved (i.e. cleaner, clearer) graphical representation and modeling
procedures, the capability to have role names for the information entities/attributes, and the
introduction of categorization relationships (also called generalizations). As with all information
(versus data) models, the information represented in IDEF1/1X is supposed to be independent of
any physical data processing media that might be used to store and retrieve it. The models are
intended to represent the neutral or Conceptual Schema component of the ANSI/SPARC and
I1SO rhree-schema darabase architecture [Tsichritzis and Klug, 1978; International Organization
for Standardization (ISO), 1987a]. In practice, though, this is frequently not the case. Oftentimes
IDEF1/1X models simply look like models of relational databases. This can be attributed partly
to the fact that IDEF1/1X models (and E-A-R models in general) lend themselves to modeling in
relational form, and also to the fact that they frequently get used to design relational databases
(1.e. they are used to develop logical data models and physical database models for relational
databases). The problem is that a distinction is not always made between IDEF1/1X models that
are intended as logical information models versus those that are logical data models or physical

44

[TKM Stac-of-the-Art Revi

data models for relational databases. As with all E-A-R models, IDEF1/1X represents entities,
relationships, attributes, and values (when populated with specific data).

Like IDEFO, IDEF1/1X reaches its limits when modeling environments with a high
degree of domain interaction (i.e. the target areas for enterprise integration). Most of the above-
the-shop-floor, white-collar domains fall into this category. One of the biggest weaknesses lies not
so much with IDEF1/1X itself, but with the nature of its linkage (or lack thereof) back to IDEFO.
A good information modeling method must deal both with intricate relationships among various
pieces of information and between information and the processes (or activities or functions) that
create, utilize, modify and destroy it. The concept of closely linking processes to information
(i.e. entities and their atributes) is fundamental to capturing and representing the dynamics of an
enterprise. This is particularly true of the integrated information required to support decision-
making and other analytical processes performed at the enterprise business level. This focus on
enterprise processes and the information required to support them is part of a new declarative
paradigm which places information in the hands of end-users. This is in contrast to the procedural
paradigm, which has traditionally been concerned with capturing data from end-users for purposes
of volume-intensive data processing. In the procedural paradigm, the control of information is
really in the hands of information resources management or data processing personnel, not end-
users. One specific limitation of IDEF1/1X in this area is the difficulty of using it in close
cooperation with IDEFO and other process modeling methods to model domain interaction and
the associated integrated information, particularly at a level sufficient for representing domain
views, cause and effect relationships, event propagation rules, etc. The semantics of information are
critical to this kind of modeling. This kind of modeling also requires explicitly representing the
“process of interaction” itself as an “object”. In other words, there is a need to represent processes
in objectified form. These objective representations of the processes of interaction are necessary to
describe both the relationships among components of information and between information and
enterprise processes. Other limitations of both IDEF0 and IDEF1/1X are that they do not
explicitly represent complex user, agent, or domain views, modes such as “time” (i.e. temporal
data), belief states, probability, etc., or context (as provided by a collection of modal data which
qualifies events or states represented in a model). These are all necessary for determining under
what situations or scenarios certain information is used, in what form, by what users, for which
functions, and for what purpose.

IDEFO ional Modelin

Sarris [1988] states that IDEFO, as a method for modeling functions (activities), has both
several strengths and several weaknesses. However, many of the weaknesses first occur, or only
become significant, when the method is applied to complex white-collar functions such as analysis
or decision-making, rather than to physical functions such as those performed closer to the shop
floor.

IDEFO is a fairly recent functional modeling method (developed in the late 1970’s and
early 1980’s) and was therefore able to draw upon lessons-learned gained from the use of earlier
functional modeling methodclogies. Many of its philosophies and conventions are based on the
concepts of top-down. structured analysis and design and segmentation of problem spaces into
reasonably-sized modules — concepts popularized by data processors during the 1970’s. In this
regard TDEFO iy similar to IBM's HIPO (Hierarchical Input-Process-Output), the Yourdon
methodology [Yourdon Inc., 1980], and other modeling methodologies of this genre. HIPO (or
vanations of it) is still used by several companies in industry, but is no longer a part of IBM's

45

‘KM State-of-the- view

official systems development methodology (now called Applications Development Cycle or
A/D Cycle). No official documentation of HIPO could be found. The Yourdon methodology is
still fairly widely-used and supported. It is described under a separate subheading within this
section. IDEFO is somewhat more formal in syntax than Yourdon. This results in a uniformity that
acts as an advantage particularly in large-scale modeling efforts. However, some flexibility is lost
through this formality. In some cases the environment being modeled must be modified to “fit”
into the model, rather than vice-versa. Unfortunately, this means that the model may then not
accurately reflect the real semantics of the environment being modeled. In other cases the IDEFO
rules are bent, opening up the possibility of inconsistent, ambiguous or incompatible models. The
ITKM State-Of-The-Art survey indicated that industry modelers strongly prefer flexibility and
are inclined to bend the rules if necessary to meet their modeling requirements. Consultants and
vendors of modeling tools understandably prefer more rigid application of modeling rules and
standards. This may explain the initial reluctance of some companies to try IDEFO. Its use
requires a serious commitment to modeling. The IDEF Users’ Group is helping to gain
acceptance of IDEFO standards, adoption of new syntax where reasonable and necessary, and
sharing among its members of approaches to developing complex models which otherwise might
lead modelers to modify the syntax or create unique syntax rules as “quick fixes” to difficult
problems.

A case in point of IDEFO flexibility limitations is the “3 to 6 rule” which stipulates that a
parent function may have no fewer than three and no more than six children. The reasoning is that
fewer than three children indicates that the parent may not really need to be decomposed: its one
or two subfunctions can be dealt with at the same level as the parent (e.g. if there is only one
subfunction, it might be added as a new function at the same level as the parent; if there are two
children, the parent might be replaced with the children — each treated now as a new parent at the
same level as their former parent). More than six children suggests a missing parent at the current
level or a missing interim level (e.g. a new parent might be added at the current level, under which
some of the children could now be placed; alternatively, some of the children could be bundled
together at the current level — those children would then get treated as parents at the next level
down and could then be decomposed into three to six children). The “3 to 6 rule” is also said to
have been based loosely on the idea of “chunks” of information which the human mind can deal
with most effectively [Miller, 1956). Miller suggested the optimal number was seven, plus or
minus two. For something as complex as a multi-leveled functional model, a smaller number was
considered more appropriate. This is a case, however, where the “seven, plus or minus two”
memory guidelines suggested by Miller may have been overzealously applied. The Yourdon
methodology. for examples, cites Miller’s guidelines as being useful during functional
decomposition, but is not rigid about application of the guideline as a formal rule. IDEFO, on the
other hand, is quite rigid about application of the “3 to 6 rule”. In some cases, application of this
rule results in mixing, within a given level, of functions that do not belong together at the same
level. In other cases, somewhat arbitrary “virtual parents” or extra children are created merely to
satisfy the syntax rules. This may, in effect, distort the accuracy and internal consistency of the
model.

Despite its “formality”, IDEFO is in many respects simpler than Yourdon and other
similar methodologies. This may arise from the fact that the Yourdon methodology and others
like it were developed specifically for use in [functional] analysis done as part of an information
systems analysis effort. The influences of data processing concerns and requirements are evident.
IDEFO is more neutral in the sense that it was developed for enterprise functional modeling done
as part of an overall factory analysis effort. There are few, if any, purely data processing-related

46

- view

conventions. However, to conduct a full information systems analysis using the IDEF
methodology, one would have to perform IDEFO0, IDEF1/1X and IDEF2 (or some comparable
system flow/system dynamics) modeling. As described under the subheading of IDEF1/1X
within this section, these disparate types of IDEF models do not always link together as smoothly
or accurately as methodologies that incorporate functional, informational and dynamics modeling
elements into a more unified methodology (such as Yourdon). Yourdon, for example even extends
fairly easily into structured programming specifications and population of a data directory or
data dictionary.

IDEFQ drew heavily on SofTech, Inc.’s SADT (Structured Analysis and Design
Technique) methodology and is, in fact, derivative of SADT [Freeman, 1987]. SADT is not
described separately in this document, since the most widely-used aspects of SADT are so
similar to IDEFQ. The explicit concept of maintaining a consistent purpose and viewpoint in the
model is directly inherited from SADT. SADT is a formal, complete information systems
analysis methodology. It differs from many other systems analysis methodologies in one major
way, namely the explicit segregation of data from function for at least some aspects of systems
analysis and design. The SADT methodology on the one hand emphasizes data flow diagrams (in
its “data-gram” form, which has no direct correlate in the IDEF methodology), and on the other
hand functional flow diagrams (in its “acti-gram” form, from which IDEFO is most closely
derived) [Leite and Freeman, 1991]. The functional flow diagrams lack many of the more
complex elements typically found in control flow diagrams, state transition diagrams and other
process dynamics-oriented modeling forms. In the case of IDEFO, this translates into the need for
IDEF2 or other models that provide more complete system dynamics, such as a way of
representing: temporal order; causal order; antecedents and consequents; conditional checks and
branching; and other process relationships that oftentimes get operationalized in program logic.
SADT was also responsible for contributing to one of IDEFO’s richest features — the capture of
data relating to functions in terms of four explicit categories: inputs, controls, outputs and
mechanisms (often referred to in IDEFO as ICOM’s).

Where IDEFO reaches its real limits (i.e. where its weaknesses become significant
deterrents to clear, precise modeling) is in the area of modeling analytical or decision-making
functions at the enterprise business-level. In these cases, the nature of inputs and outputs, as well as
the nature of the functions themselves, are much less well-defined than at the level of clerical or
data processing functions, or physical functions closer to the shop floor. Many of the functions
require deep, commonsense knowledge, as well as broad and deep knowledge of the particular
domain. None of that is easily represented in IDEFO models. Other limitations of IDEFO
models are that they do not explicitly represent complex user, agent, or domain views, modes
such as “time” (i.e. temporal data), belief states, probability, etc., or context (as provided by a
collection of modal data which qualifies events or states represented in a model). These are all
necessary for determining under whart situations or scenarios certain information is used, in what
form, by what users, for which functions, and for what purpose.

Still, IDEFO models provide useful data in a form that is acceprable as a starting point for
more advanced modeling of functional interrelationships and the information involved in those
interrelationships. The biggest concerns regarding current IDEFO modeling efforts are to ensure
that the models contain sufficient detail and that proper leveling be achieved in the models, as this
is critical to their usefulness as the basis for more advanced models. Although functions (processes)
are identified in IDEFO models, much of their description is dependent upon modeling of their
informational elements (inputs. outputs, etc.) using IDEF1/1X (the informational modeling
component of IDEF). As discussed under a separate subheading for IDEF1/1X within this section,

47

there are several difficulties in linking IDEFO and IDEF1/1X. Although one can ascertain a
limited understanding of functional interrelationships by studying IDEFO models alone
(specifically, by traversing functional linkages up, down and across the hierarchical structures
and/or tracing dara using a cross-reference of ICOM’s to the functions that use them), a more
direct representation of such linkages will be critical for enterprise modeling in support of
enterprise analysis and enterprise integration.

IDEF1/1X Information Modeling

IDEF1/1X is a good example of an Entity-Attribute-Relationship (E-A-R) modeling
method. The original version (IDEF1) drew heavily on the works of Codd [1979] in relational
theory and Chen [1976] in entity-relationship modeling, as well as on the internal expertise of the
companies that developed it (Hughes Aircraft and D. Appleton Company [DACOM]). DACOM
then applied lessons-learned from numerous industry applications of IDEF1 and from the Air
Force ManTech Integrated Information Support System (IISS) Program to produce a revised and
extended version known as IDEF1X (IDEF1 eXtended). The primary differences berween IDEF1
and IDEF1X are improved (i.e. cleaner, clearer) graphical representation and modeling
procedures, the capability to have role names for the information entities/attributes, and the
introduction of categorization relationships (also called generalizations).

As with all information (versus data) models, the information represented in IDEF1/1X is
supposed to be independent of any physical data processing media that might be used to store and
retrieve it. The models are intended to represent the neutral or Conceptual Schema component of
the ANSI/SPARC and ISO three-schema database architecture [Tsichritzis and Klug, 1978;
International Organization for Standardization (ISO), 1987a]. In practice, though, this is
frequently not the case. Oftentimes IDEF1/1X models simply look like models of relational
Jatabases. This can be attributed partly to the fact that IDEF1/1X models (and E-A-R models in
general) lend themselves to modeling in relational form, and also to the fact that they frequently
get used to design relational databases (i.e. they are used to develop logical data models and
physical database models for relational databases). The problem is that a distinction is not always
made between IDEF1/1X models that are intended as logical information models versus those
that are logical data models or physical data models for relational databases.

The IDEFIX Modeling Manual [D. Appleton Company, 1985] describes the basic

constructs as follows:

O Entities — Things about which data is kept, e.g. people, places, ideas, events, etc. —
represented by a box. Entities are named with nouns. The entity name is technically its
“identifier”, although many IDEF1X models that serve as logical or physical relational
database models also indicate one or more key attributes (described below) as either
logical or physical access paths into the entity and consider this, in practice, as an
identifier of the entity.

O Relationships — Relations or links between those “things” denoted as entities —
represented by lines connecting the boxes. All basic relationships may be referred to as
“connection relationships”. IDEF1X also supports “categorization relationships™ which are
a special kind of relationship used to represent classes and subclasses (also variously
referred to as types/subtypes, genus/species and categories of things/things in the
categories). Relationships are named with verbs.

48

O Astributes — Characteristics of those “things” denoted as entities — represented by
artribute names within the box. Attributes names are descripters.

Syntax rules define entities as either “independent” or “dependent” in regards to other
entities with wh'ch they have a relationship. In some other entity modeling techniques,
independent entiues are referred to as “kernel entities” and “dependent” entities as “characteristic
entities”. Independent entities can exist on their own in the model (or at least be identified
uniquely), without any other entity in the model. Dependent entities by their nature depend on ore
or more other entities in the modei for their existence (or at least, identity). A common example
involves a Purchase Order a.1d a Purchase O.Jer Item. Most enterprises allow a Purchase Order to
exist (at least certain kinds of Purchase Orders at ceircain points in the procurement process)
without any Purchase Order Items. Purchase Order in this case would be modeled as an
independent entity. However, the inverse is not allowed in most enterprises, i.e. a Purchase Order
item cannot exist withcut a Purchase Order. Purchase Qrder Item would then be modeled as a
dependent entity. In terms of “identicy” versus “existence”, it could be said that a2 Purchase Order
Item could not be identified without knowing the Purchase Order on which it is an item [Note:
this is not to say that physical or even logical access woula necessarily require first accessing the
Purchase Order entity to get to the Purchase Order Item, but it does indicate that identifying the
Purchase Order Item requires knowing the Purchase Order. For example, the key attribute of the
Purchase Order Item would likciy be a concatenated key attribute that includes the Purchase
Order key attribute (Purchase Order Numuer, for example), as well as some unique component
(the Purchase Order Item Number itself)]. Because “identity” is this sense is so closely allied
with keys and other logical and physical access issues associated more with the implementation of
relational darabases than with information modeling, we prefer “existence” as the determinant of
independence or dependence. Identification is vest handled through another convention of the
syntax, referred to as “identifying versus non-identifying cc nnection reiationships” (which are
described below). In any case, IDEF1X supports the modeling of independent versus dependent
entities quite well (using squared versus rounded boxes). A proposed ‘extension to IDEF1X [D.
Appleton Company (DACOM), 1988] allowing optionai/ncr -optional parents to be specified for
non-identifying relationships is also related to this issue, as is the No-Null Rule meriioned
below. Some people consider these features of extended E-A-R models, but we consider them
differentiating features among E-A-R models.

Relationships are defined as “identifying connection relationships”™ if the child entity is
identified by its association with its parent entity. If every instance of the child entity can be
uniquely identified without knowing the associated instance of its parent entity, then the
relationship is described as a “non-identifying connection relationship™. In standard IDEF1X, any
child entity in an identifying relationship is also a dependent eniity, since it “depends” on its
parent for its “identity”. As noted above, the semantics of existence might better be determined
on their own merits, with identifying relations being a separate, secondary consideration.
Relationships have “cardinality” — the specification of how many child entity instances may exist
for a given parent entity instance.

As noted earlier, IDEF1X allows the modeling of <atity classes (entities tha represent
categories of things) through the use of categorization relationships. The caregeiization relation is
alvo sometimes referred to as class/subclass, typesubiype, genus/species, categories of
things/things in the categories, and kind/kind of. The cardinality for a catcen~ry entity is always
zero or one. Category entities are always dependent. A category entity can have only one general

49

KN -of-the- view

entity. That is, a given category entity can only be a member of one category. This is, of course,
quite limiting semantically and sometimes leads to the introduction of contrived category
entities to get around the limitation. The general entity is always independent unless its identifier
is inherited through some other relationship (i.e. unless it is itself a child in some identifying
relationship).

The categorization relationship may provide the basis for very limited inferencing (the
limitation arising from the fact that a given category entity can appear in only one category).
Unfortunately, categorization relationships in IDEF1X are often misused. Many of the relations
modeled as category relationships could be explicitly modeled as connecting relationships
through the introduction of additional entities and their relationships. For example, some
IDEF1X models might show a category entity called ENGINEERING ANALYSIS with
entities in the category such as STRESS ANALYSIS, THERMODYNAMIC ANALYSIS,
LOADS ANALYSIS, etc. Alternatively, this could be modeled by introducing entities for
THERMODYNAMICS, LOADS, and STRESS and relating those to ENGINEERING
ANALYSIS through specific relations. Categorization relations certainly have a place in models
with limited focus and in working models that will be subject to further analysis, decomposition
and expansion. However, modelers should be careful not to hide important semantics through
overuse of the categorization relation.

Another refinement in the IDEF1X syntax and procedures over IDEF1 is the explicit
representation of many-to-many relationships between entities through the use of “non-specific
relationship semantics”. In IDEFIX many-to-many relationships are procedurally allowed during
the initial stages of development, but before the model is finalized all many-to-many relationships
must still be normalized out of the model. This is accomplished by inserting fictitious,
intermediate “intersection’-type entities which serve to decouple the direct many-to-many
relationships. These “fictitious” entities serve to represent the relation between two or more other
entities. They enable the representation of other information or semantics about the relation itself
(including such things as combinations of foreign keys, or new attributes that serve to further
qualify or describe the “intersection” relation itself). However, once created these must be inferred
from an analysis of the model, since they look just like other “real” entities. That is to say, these
are not explicitly represented as entified relations by the modeling syntax of either textual or
graphical constructs in IDEF1X.

To give an example of this situation, the IDEF1X Modeling Manual [D. Appleton
Company (DACOM), 1985] uses an example of two entities: EMPLOYEE and PROJECT. The
relationship rule in the particular example enterprise being modeled is that a given employee (an
instance of the entity EMPLOYEE) may work on many projects at one time (relates to many
instances of the entity PROJECT), and a given project (an instance of the entity PROJECT) has
several employees working on it at one time (relates to many instances of the entity EMPLOYEE).
The normalization method recommended in the manual is to add a new “intersection” child
entity (called PROJECT-ASSIGNMENT) indirectly linking the two parent entities (i.e. by
creating a child common to both EMPLOYEE and PROJECT).

It is the opinion of some that the use of the normalization convention in IDEF1/1X came
about largely because of the limitation of many existing database management systems (DBMS’s)
to handle the physical implementation of many-to-many relationships. However, as noted earlier,
the International Organization for Standardization (1SO) [1987a] explicitly stipulates that an
Entity-Attribute-Relationship information model is supposed to represent the neutral view
(Conceptual Schema) of enterprise information independent of any physical data processing
constraints (such as the limitations of DBMS’s). Others are of the opinion that the intent of

50

[TKM State-of-the-Art Review

IDEF1/1X was merely to use a higher-level “normal form” that decomposed many-to-many
relationships into more elemental components. Still others point to the need to treat some
relations as entities and to add attributes to the relations, although this is a somewhat new idea
that may have had its origin in the object-oriented paradigm. In any case, the argument to be
made regarding IDEF1X is that adding the fictitious child entity is a convolytion of the model,
rather than a purification. The “intersection entity” is serving as a weak substitute for a more
direct, explicit representation of the many-to-many relationship between the two “real” entities.

An alternative, cleaner method would, therefore, be to provide the capability to directly
model such relationships so that they could be explicitly defined — and so that the nature of the
relationships could be represented through the use of “attributes of relationships”. For example, the
kind of relation that two or more objects stand in, the cardinality or quantifier on the relation
(such as many-to-many), and other data pertaining to the relationship should all be definable in the
model. Additionally, rules for exercising or processing certain relationships could be described
using relationship atcributes. IDEF1/1X addresses only the cardinality aspect. Hull and King
[1987] state that several more advanced E-A-R modeling methodologies have the capability to
explicitly represent other, more complex data pertaining to relationships. In their words, “In a
model that stresses type constructors, relationships between types are essentially viewed as types in
their own right; thus it makes perfect sense to allow these types to have attributes which further
describe them.”

As an example, the Extended Entity Relationship (EER) modeling technique developed
by Ross [1987] provides enhanced relationship modeling capability to a limited degree using
what he calls an “Association Type”. Unlike the IDEF1X “intersection entity” convention,
association types are not “fictitious” entities that get treated the same way as “real” entities (or
depicted the same way graphically). Rather association types are a separate modeling convention
for explicitly representing certain kinds of relationships. Relationships are described by means of
certain attributes defined under the association type. Ross calls these attributes “intersection data”.
{owever, the limitation is that association types are severely restricted in terms of the attributes
they may have. There are too few attributes to fully describe the semantics of a relationship. A
more general approach would simply allow any relation to be treated as an entity in its own right
using the same canonical form used for all other entities, but to explicitly denote that entity as a
relation that has been entified. In this way, the relation (as an entity) could have whatever attributes
are necessary to fully describe it, bur still be explicitly differentiated from “real” entities for
some purposes. Ross' EER is described in more detail under the subheading of Extended Entity
Relationship models within this section.

All relationships in IDEF1X must be modeled as binary (2-dimensional) relations. Some
relations by their nature relate more than two things. Relations may, in fact, be considered
potentially n-dimensional or n-ary (i.e. having an arity of 7). Proponents of IDEF1X and most
other E-A-R models stipulate that n-ary relations be modeled as a series of binary relations (this
can be referred to as “arity normalization”). This is at best unnecessarily complex and
cumbersome, and ar worst may cause confusion or misrepresentation of important semantics. On
the positive side, binary relationships are individually easy to grasp and lend themselves to
graphical presentation using E-A-R diagrams, tree structures and other hierarchical forms.

Attributes, the last of the three IDEF1X components, may be regular attributes or key
(identifying or linking) attributes. Key attributes, in turn, may be: unique identifiers of the entity;
primary keys versus alternate or secondary keys (only primary keys can be inherited or migrated
from parent entities to their children.); or foreign keys (migrated or “inherited” from a parent to a
child entity through a specific connection relationship or through a categorization relationship)

51

ITKM Statc-of-the-Art Review

versus local keys (internal to the entity). Most of this qualification of attributes is related to
implementational issues, and would not be appropriate for either information modeling or purely
logical data modeling.

Every attribute is owned by exactly one entity (this is referred to as the Single-Owner
Rule). Wherever else the attribute appears, it is a foreign attribute inherited or migrated through
some relationship involving the entity which owns the attribute. This is good to the degree that
attributes common to more than one entity indicate a relationship between the entities which share
that ateribute. Those relationships must be explicitly described. One entity must be determined
to be the “owner” of the attribute, and then relationships must be defined berween that entity and
each of the other entities containing the shared attribute. The attribute then migrates into the other
entities as a foreign artribute.

In other cases, there may be some other more general entity which has the common
attribute as one of its attributes and which is related to each of the entities that shares the attribute.
For example, the attribute WEIGHT might be an attribute of many different entities. Those
entities may all be subclasses of one general entity way up the class hierarchy (for example,
PHYSICAL ARTIFACT). In this case, PHYSICAL ARTIFACT would have WEIGHT as a
attribute and they would all inherit WEIGHT based on class inheritance. But the entities may not
be related to each other in any meaningful way without working up an inheritance tree to the point
of impracticality. For example, the entities DOG, AIRPLANE and CRITERION may all
share the attribute WEIGHT, but they little else in common in a practical, mid-world sense. The
problem is that identification and modeling of artributes like WEIGHT, SHAPE, etc. and their
relationships to other attributes all the way up a class hierarchy can be a major effort and may not
be merited given the purpose and objectives of the given model. Some modelers get around this
rule by introducing specialized variations of the attribute just to fit each particular appearance of
the attribute on some entity (the extreme case being DOG-WEIGHT, AIRPLANE-WEIGHT,
etc.). This results in unnecessary specialization of attributes. In some cases it might simply make
more sense to just be able to show the attribute as a local attribute of more than one entity, but
ensure that the attribute is defined in the attribute glossary and applied consistently in the model.
Of course, in a fully defined, fully machine-interpretable model, all the entities and relationships
including things like PHYSICAL ARTIFACT and WEIGHT would have to be explicitly
represented. This drives the requirement for a commonsense knowledgebase to be used when
performing IDEF1X and other forms of modeling.

IDEF1X also does not permit attributes to have null values (this is referred to as the No-
Null Rule). Specialized entities are created around each of the optional attributes. Like
intersection entities, these fictitious entities hide important semantics that should be made
explicit in the model. This restriction has no real place in logical information modeling since, of
course, there are possible attributes, or attributes of parents that only get instantiated in their
children under certain conditions. Explicitly representing this level of semantics is simply beyond
the capability of IDEFIX. This is again, related to the use of IDEFIX models for database
(particularly, relational database) design, and has little or nothing to do with pure information
modeling.

The IDEF1X method encompasses a fairly rigorous set of modeling procedures that
moves progressively through at least the following major steps: informally identifying “candidate
entities” (which may tum out to be true entities or which may, in fact, really only be attributes);
determining which candidate entities are really entities and which are attributes (this may involve
directly identifying cerrain “candidate entities” as entities and other as attributes, as well as
discovering other “hidden™ entities by studying related attributes); clustering the attribures around

52

-of-the- view

the identified entities (creating informal entity/attribute pools); formalizing the structure of
entities and their basic attributes; and finally identifying relationships among entities (starting
with non-normalized relationships and moving through normalization, and including
identification of inherited attributes and keys). This is a thorough, well thought-out process that
helps ensure a consistent model built on a sound logical basis. The weakest aspects of this method
tends to be the modeling of relations. Oftentimes careful attention is paid to identifying entities
and their attributes, but considerably less time and effort are spent identifying and analyzing the
relations between and among entities.

Like IDEFO, IDEF1/1X reaches its limits when modeling environments with a high
degree of domain interaction (i.e. the target areas for enterprise integration). Most of the above-
the-shop-floor, white-collar domains fall into this category. One of the biggest weaknesses lies not
so much with IDEF1/1X itself, but with the nature of its linkage (or lack thereof) back to IDEFO.
A good information modeling method must deal both with intricate relationships among various
pieces of information and between information and the processes (or activities or functions) that
create, utilize, modify and destroy it. The concept of closely linking processes to information
(i.e. entities and their attributes) is fundamental to capturing and representing the dynamics of an
enterprise. This is particularly true of the integrated information required to support decision-
making and other analytical processes performed at the enterprise business level. This focus on
enterprise processes and the information required to support them is part of a new declarative
paradigm which places information in the hands of end-users. This is in contrast to the procedural
paradigm, which has traditionally been concerned with capturing data from end-users for purposes
of volume-intensive data processing. One specific limitation of IDEF1/1X in this area is the
difficulty of using it in close cooperation with IDEFQ and other process modeling methods to
model domain interaction and the associated integrated information, particularly at a level
sufficient for representing domain views, cause and effect relationships, event propagation rules,
etc. The semantics of information are critical to this kind of modeling. This kind of modeling
also requires explicitly representing the “process of interaction” itself as an “object”. In other
words, there is a need to represent processes in objectified form. These objective representations
of the processes of interaction are necessary to describe both the relationships among components
of information and between information and enterprise processes.

Other limitations of IDEF1/1X models are that they do not explicitly represent: complex
user, agent, or domain views; modes such as “time” (i.e. temporal data), belief states, probability,
etc.: or context (as provided by a collection of modal data which qualifies events or states
represented in a model). These are all necessary for determining under what situations or scenarios
certain information is used, in what form, by what users, for which functions, and for what purpose.

D. Appleton Company (DACOM) [1988] has proposed a number of enhancements to
IDEF1X. Most are of a relatively minor nature and have either been adopted under the guidance of
the Air Force ManTech Directorate or, subsequently, by the IDEF Users’ Group (which was
established with the help of Air Force ManTech for purposes of standardizing and maintaining the
IDEF methodologies, primarily IDEFO and IDEF1X). The other enhancements of a more
dramatic nature were probably intended more as long-term recommendations, and have served as
input to the IDEF UG Research and Development Forum. One of the most notable of these
recommendations suggests adding object-orientation to IDEF1X or developing an object-
oriented IDEF method. Discussions under the subheadings of IDEF4 and the Object-Oriented
Paradigm, both within this section, may provide background material relevant to this topic.

53

LI KM State-of-the-Art Review
Modelin

IDEF2 was motivated by the need to supplement the IDEF0 and IDEF1/1X modeling
methods (then under specification) by modeling at least some aspects of system dynamics (at a
minimum, process and/or information flow). IDEF2 then became the final method within the
original IDEF methodology, and was directed at the modeling and simulation of system or
process dynamics.

According to Mayer and Painter [1991], IDEF2 models are really comprised of four
individual, but related submodels:

O Faality Submodel — Used to specify the model of the agents (e.g. people, machines, etc.)
of the system and environment. This submodel looks much like typical models used for
shop floor layout.

O Entity Flow Submodel — Used to specify the model of the transformations that an entity
undergoes. This can be thought of to some degree as overlaying an IDEFO functional or
activity model onto the Facility Submodel described above. Emphasis is on the particular
“paths” that an entity takes as it is processed or transformed in some way. This is by no
means a full state transition model and has no state table logic. Process triggers,
conditionals and branching logic are also not included here; to the degree thart they are
represented in IDEF2 models, they appear within the Resource Disposition and System
Control Submodels.

O Resource Disposition Submodel — Used to specify the logic of agent assignment to entity
transformation demands. Some state change triggering logic and conditiona! branching
may be represented in this model.

O System Control Submodel — Used to specify the effect of transformation-independent or
system external events on the modeled system. Some state change triggering logic and
conditional branching may be represented in this model.

IDEF2 never became as formalized or standardized as IDEFQ and IDEF1/1X. For the
most part, it was not directly applied in the same sense as IDEFO and IDEF1/1X, but rather
served as the driving force behind several commercial simulation packages. This is largely because
simulation models, to be beneficial, need to be active or executable. They inherently lend
themselves to automation using computer technology. Several software vendors have developed
and marketed vendor-proprietary simulation software packages that implement some of the ideas
of IDEF2. The ITKM Industry Survey respondents cited SLAM/SLAM 11, TESS and SAINT
as examples. IDEF2, as well as commercial simulation software based on it, have been applied
largely to simulation of shop floor processes, often in conjunction with the planning, design and
implementation of Computer-Integrated Manufacturing (CIM) technology and cellular, flexible
manufacturing techniques.

Since no one standard version of IDEF2 exists (at least not in the same sense as IDEF0 and
IDEF1/1X), the need to perform dynamic modeling and/or simulation presents industry with the
following choices: purchase one of rhe vendor-proprietary, automated simulation packages that
implement at least some of the ideas of IDEF2; develop home-grown flow methodologies and
simulation modeling tools themselves; or develop limited workarounds, often based on extended

54

IIKM_MM_ALL}}‘ - WX

or recast versions of IDEFO functional models. The vendor-supplied commercial software oht

includes sophisticated, computer-based graphics and the capability to execute simulations. The+
packages, while useful for shop floor process modeling, often do not have the flexibiliry .
inherent capabilities for use in model:ng and simulation of higher-level, cognitive piocesses. Thc.ic
include the analytical and decision-making process performed by white-collar workers as pasi o!
product development, delivery and support. Home-grown simulation methodologies and software
are expensive in terms of the time and resources required to design, develop and maintain them.

Because of this, limited workarounds using IDEFO models tend to be fairly commar. s industry.
Other more advanced methods and tools for dynamics modeling and simulat > exist o are the
subject of current research and development efforts. These are described witirii ot s section o Iov

the general subheading of Process Dynamics/Simulation Modeling, and under FOEF3 - P oo
Flow and Object State Modeling.

IDEF3 Process Flow an i Modelin

IDEF3 is a proposed IDEF method specified by Knc..ledge Based Systems. Inc. undes
funding from the Air Force Human Resources Laboratory - Logistics and Human Factors Division
According to Mayer and Painter [1991], IDEF3 is a scenario-driven process flow modeling
method created to allow experts to describe a process as an ordered sequence of events o
activities. IDEF3 is based upon the concept of direct capture of descriptions of the tempora:
precedence and causality relations between situations and events. The major semantic entirics
represented in an IDEF3 model are: objects; properties; relations; and constraints. The functiors or
processes from an IDEFQ model can be used as a starting point for IDEF3 model building. bu:
there is no syntax rule that the functions and functional hierarchy must be the same between IDEF¢
and IDEF3 models. IDEF3 is intended to encompass and go beyond the capability of IDEF2 tc
model process dynamics or behavior. IDEF2, and simulation software based on IDEF2, coulc
still be used for lower-level simulations to predict the behavior of systems modeled more
explicitly in IDEF3.

The IDEF3 method consists of two modeling modes: process flow description; and object
state transition description. The process flow description captures a network of relations berween
actions within the context of the specific scenario or situation. An IDEF3 diagram consists of the
following structures: units of behavior (UOB’s); junctions; links; referents; and elaborations. The
UOB is the basic “object” in IDEF3 and may be a function, activity, act, process, operation, event,
scenario, decision or procedure depending upon its surrounding structure. UOB’s are described
using verbs or verb phrases. UOB’s may be decomposed into lower-level UOB’s (in other word-
they may form a composition hierarchy). UOB’s may also be described using a set o:
participating objects and relations that comprise what is called an “elaboration”. The probiem
with elaborations is that they are essentially free-form text with little or no structure. The
semantics of these diagrams is not formalized and would not be explicitly accessible to the 15t of
the model (specifically, if the model were in automated form, the elaboration semantics would
simply not be machine-interpretable). This is unfortunate, since many of the process semantics ¢
interest would be in represented in this form. UOB’s may be reused and cross-referenced. UOB's
are connected to other UOB’s through the use of junctions (or branches) and links. Junctions are
used to express the semantics of synchronous (parallel or coincident) and asynchronous (sequential)
behavior among a network of UOB’s. Specifically, the semantics are: “logical and”; “logical or”;
and “logical Xor”. Links come in three types: simple temporal precedence; object flow; and
relational links. The link described as “simple temporal precedence” is somewhat misleading a:

55

it really only represents “sequence”, which could be either true causal dependency or simple
temporal ordering. “Object flow” is basically the same as “temporal precedence” except
[information] objects are also passed between processes to indicate information flow. “Relational
links” are a general category for representing user-defined links.

The object state transition description summarizes the allowable transitions an object may
undergo throughout a particular process. The constructs of the object state description are: object
states; and state transition acts. An object state is defined in terms of property values and
constraints. The properties should be attributes in a related IDEF1/1X model. An object may
also have pre-transition and post-transition constraints associated with it. These specify conditions
which must be met before a transition can begin or be completed. Unfortunately, none of the many
existing constraint languages are used to capture the ronstraints in a formal manner. In fact, natural
English is used as the constraint language. While this may seem advantageous for capturing
constraints, the problem is that natural English can be a very imprecise and ambiguous.

IDEF3 also includes an informal procedural method for capturing process flow
descriptions and object state transition descriptions, as well as for describing the scenario around
which a given IDEF3 model is based. As noted above, the scenario is “described” or represented
using a Unit of Behavior. However, these scenario “descriptions” are not so much descriptions as
they are just name labels. There is no formal structure or syntactical construct for describing a set
of assumptions which pertains to the scenario. The primary way it appears that a complex scenario
can be represented is as a set or a composition hierarchy of scenario UOB's, or as an elaboration.
The semantics of rhe relations between the UOB’s would have to be specified using user-defined
relational links or the sequence relations (which are intended to be applied to processes not
scenarios). No other method of specifying a scenario “path” is apparent. IDEF3 is envisioned as
being supported by a simulator which would include: an activation sequencer (an IDEF3 syntax
parser); an abductive reasoner; a tokenizer (which would generate facts based on the elaborations); a
constraint propagator/truth maintainer; and a deductive reasoner. Generating facts based on
unstructured elaborations would be extremely difficult if not impossible. Likewise, propagating

ambiguous or imprecise constraints expressed in English may results in the compounding of

tnaccurate constraint semantics.

As least one project has attempted to link IDEFO, IDEF3 and Colored Petri Nets.
Colored Petri Nets are described in more detail under the subheading of “Process
Dynamics/Simulation Modeling” within this section. The IDEFO diagrams appear to be
developed as they normally are. They are then converted into IDEF3 diagrams (it is not clear
whether this is a manual, semi-automated or automated process). The inputs and outputs from the
IDEFO model (relabeled “primary inputs™ and “primary outputs” become IDEF3 objects which
take the role of states. The IDEFO processes become the Units of Behavior which transform the
states. The controls and mechanisms from the IDEFO model (which are referred to collectively
here as “resources”) become IDEF3 objects and are assigned their own input and output states. The
JOB’s are ordered in flow sequence and decision boxes (junctions) are added. Since IDEF3 does
not really have a simulation environment to support it at this time, the IDEF3 models are
converted to Colored Petri Nets for conducting actual simulations. Again, it is unclear whether
this conversion process is manual, semi-automatic or automatic.

56

-Ori 1
[Note: includes the Integrated Information Systems Constraint Language (11SyCL)]

IDEF4 is a proposed IDEF method specified by Knowledge Based Systems, Inc. under
funding from the Air Force Human Resources Laboratory - Logistics and Human Factors Division
and the National Acronautics and Space Administration (NASA). Edwards and Mayer [1989]
state that IDEF4 is intended as a design tool for software designers who use object-oriented
languages such as C++, SmallTalk and LISP [Note: there is nothing inherently object-oriented
about LISP, but the language does lend itself quite well to implementation of the object-oriented
paradigm]. The object-oriented modeling paradigm is discussed under a separate subheading
within this section. As a design tool, IDEF4 is intended to specify the semantics of a domain
(both its data and functions) at an abstract level, rather than encoding a particular implementation
of the logic for purposes of program execution (the latter is what an object-oriented programming
language, coupled perhaps with an object-oriented database, is intended do).

As is the general case with the object-oriented (hereafter abbreviated o0-0) paradigm,
IDEF4 emphasizes modularity or grouping based on related classes of objects. The proposed
IDEF4 method divides an overall model of some domain into submodels which are comprised of
various kinds of diagrams and data sheets. The two major submodels deal with object classes and
methods (refer to the separate subheading on the 0-0 modeling paradigm within this section for an
overall discussion of classes, methods, protocols and other general aspects of object-orientation).

For the Class Submodel, IDEF4 uses a graphical syntax form to represent object classes
and the associated inheritance of features (also referred to as characteristics or attributes) from
[super]classes to subclasses. Multiple inheritance is permitted. Object classes are represented as
boxes, and arrows among boxes are used to show [the relation of] inheritance. Separate diagrams
are available to individually depict aspects of object classes: fpe diagrams represent the basic
attribute relations for each class of objects; prorocol diagrams represent the means by which a class
of objects is communicated with through messages which invoke certain routines (also referred to
as processes or operations) — the protocol is sometimes referred to as the object’s interface;
inberitance diagrams represent inheritance relationships between [super]classes and their subclasses.
Individual class boxes in an inheritance diagram may have class invariant data sheets attached to
them. These data sheets give further information about the objects in a class, perhaps relating
various distinct features, in textual form. The text need not be formalized and may therefore take
any form. This opens up opportunities for inconsistency in specification and later
misinterpretation by programmers. For this reason, a formal language, the Integrated Information
Systems Constraint Language (1ISyCL) is being defined as a formal language for stating class
invariants,

For the Method Submodel, IDEF4 represents the method which can be used to implement
a routine or operation for a given object. Dispatch mapping is used to relate routines, classes of
objects and a set of methods. The dispatch mapping forms a link then between the Class
Submodel and the Method Submodel. Methods are specified using method taxonomy diagrams,
which represent groupings of methods into method sets, and client diagrams, which are used to
represent control relationships or “subroutine calls” between routines (technically, the calls would
be between the methods that implement the routines). In the taxonomy diagrams, boxes are used
to depict methods, and arrows between boxes represent the subset relation. In client diagrams, the
boxes represent routines (which will be implemented by the methods), and the arrows represent
control references. Contract data sheets are used to represent the linking of objects to specific

57

KM Scate-of-the- view

methods (i.e. the “contract”), and to model the procedural or functional logic of the method. It
should be noted however, that IDEF4 contract data sheets do not really represent object-oriented
code, in the sense of specifying how the method is to be implemented using any particular 0-o
programming language. Instead, contract data sheets are really abstract descriptions (in the form
of declarative statements) of the basic intent of the togic which fulfills the “contract” between the
object and the method. The declarative statements or assertions include both pre-conditions and
post-conditions, as well as the actual function. As with class invariant data sheets, there is currently
no formal language for expressing contracts. It is envisioned that the IDEF3 process modeling
language (discussed under a separate subheading within this section), coupled with the 11SyCL
constraint language, will eventually be used for expressing contracts.

Interpr Predi Logic (IPL

The Interpreted Predicate Logic (IPL) approaches, proposed by authors such as Steel
[1978], describe the environment solely in terms of entities (which may be data or processes) —
for which certain propositions or assertions hold. Models consist of a set of sentences encoded in
some formal language based on formal logic (predicate calculus). Because they use formal
languages based on formal logic, IPL approaches are not typically regarded as user-friendly. This
severely limits the ability of end-users, as well as modelers who are not familiar with formal
logic, to use such methodologies. Several IPL approaches provide for dynamically extending the
expressive power of the language by adding new constructs using the capabilities that are already
present. That is to say, the language may be extended by defining new constructs in terms of
{[compositions of] existing constructs (using the Lambda operator in calculus).

GUIDE [1991] notes that an important advantage of logic-based representation schemes,
such as Interpreted Predicate Logic (IPL) or other modeling languages based on predicate
calculus, is that inference rules can derive additional facts from existing facts and rules. Logical
representation schemes have a formal mathematical base, but lack any practical scheme for
organizing a collection of facts.

Conceprual Graphs (CG) is a modeling form based on Interpreted Predicate Logic, more
specifically on Typed Predicate Calculus. CG is described in more derail under a separate
subheading within this section.

NIAM
[Note: also includes NIAM's constraint language, RIDL-C, and NORM)

NIAM stands for Nijssen or Natural language Information Analysis Method. NIAM
appears to be useful as a conceptual information modeling language for representing the “big
picture” or context of information objects and their relationships (called “roles™) to other objects.
NIAM makes a clear distinction between purely conceptual objects (Non-Lexical Object Types
or NOLOT's) and syntactical objects (Lexical Objects Types or LOT's). LOT’s provide
extensional definitions for NOLOT’s (i.e. LOTS are the attributes and the NOLOT's are the
entities). NOLOT s often have as their associated LOT’s the names used to refer to an object
and/or to access it in a database. An object can be a NOLOT in one diagram (i.e. one domain of
discourse) and a LOT in another. For example, if you were talking about the conceptual object
Part you might model the character string “Part Number” as one of its corresponding lexical
objects. Then in another model where system implementation was the domain. you might model

SR

KN -of-the- view

Part Number (a data element in a database) as the conceptual object and model as a lexical object
its name in a particular database schema, e.g. “PHDRPTNO?”, a field name in an IMS database.

NIAM is a Binary or Elementary N-ary Relationship Model (B[EN]R) that is, in many
respects, similar to Entity-Autribute-Relationship (E-A-R) models (both the B[EN]R and E-A-R
methodologies are described under separate subheadings within this section). NIAM allows
certain constraints to be more formally modeled than E-A-R models, but does not have specific
conventions for cardinality. This is because NIAM deals with constraints on relations at a more
formal, logic-based level, rather than the less rigorous, but more flexible and richer cardinality
constraints of typical E-A-R models. Some NIAM modelers have introduced conventions to
handle the kind of cardinality modeling more typical to E-A-R models, but it is not indigenous
to the NIAM methodology. NIAM diagrams, like E-A-R models can in theory depict n-ary
relations, but the recommended app