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NUMERICAL MODELLING OF INTENSE ELECTRON BEAM TRANSPORT

IN THE SPIRAL LINE INDUCTION ACCELERATOR

I. INTRODUCTION

Advanced high-current accelerator concepts, such as the heavy ion

accelerators that are being considered as inertial fusion drivers [1], or

the compact high-current electron accelerators [2] that are under

development for military and commercial applications, present unique and

challenging beam transport problems. In both cases, the beam currents are

in the multi-kiloamp regime, where space charge and self-magnetic forces

play a major role. In the heavy ion fusion accelerator, both the

longitudinal and transverse emittance are strongly constrained by the

requirement that the ion beam subsequently be focused, over a focal length

of several meters (the radius of the reaction chamber), onto a target with

a radius of order 0.2 cm. In the case of high-current electron

accelerators, there is considerable interest in generating beams of

energetic electrons in very compact devices. To minimize size, multiple-

pass designs such as the ion-focused regime recirculator[3], the modified

betatron accelerator (MBA)14] and the spiral line induction accelerator

(SLIA)[5] have been investigated. Each of these includes tightly curved

transport sections with radii of curvature of order 1 meter. This paper is

concerned specifically with the magnetic transport issues that arise in the

context of SLIA.

In the proposed design for SLIA (see Fig. 1), the beam is transported

along an open-ended beam pipe which makes multiple passes through each

accelerating cavity. The accelerating cavities are aligned along the

straight sections of the beam pipe, where the beam is transported on a

solenoidal focusing field. To bring the beam back around after each

straight section, it is taken through a 1800 achromatic bend, where a

strong focusing stellarator (helical quadrupole) field is provided, in
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addition to the solenoidal field and the vertical bending field. Because

the field coils are wound directly onto the spiral beam pipe, and because

each bend is magnetically shielded from its neighbors, each bend can be

individually designed to be achromatic near the expected beam energy at

that point. (A perfectly achromatic bend would be defined as one in which

each beam particle exits the bend along the trajectory, relative to the

axis, with which it entered the bend.) A schematic diagram of the proposed

SLIA proof-of-concept experiment (POCE)[5], which uses three bends and

makes two passes though each set of accelerating cores, is shown in Fig. 1.

Two key problems must be addressed in this transport scheme. The

first concerns the effect of the hoop forces which act on the beam in the

bends. These are the net electrostatic and magnetostatic forces acting on

a given beam segment, due to the remainder of the curved beam. Hoop forces

have been analyzed only for a coasting beam in a circular torus, such as

the MBA.[6] The second difficulty arises from the fact that a matched beam

in a solenoid has a circular cross-section, while a matched beam in the

combined solenoid/stellarator fields has an elliptical cross-section.[71

Thus it is necessary to use matching elements at the entrance and at the

exit of each bend, in order to avoid mismatch oscillations of the beam

cross-section which can result in emittance growth. In an higher en^rgy

SLIA design, there can be on the order of 10 passes through the

accelerating cores[2], implying 19 bends and 38 such transitions.

In this study, we focus our attention on two specific parameter

regimes of immediate interest: (1) the POCE, in which a 10 kA, 35 ns beam

is to be injected at 3.5 MeV and then accelerated tr 9.5 MeV in steps of

1.5 MeV, and (2) recent experiments[8-10] in wAich an 850 keV, 200 A
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injector was used to study the capture of the beam onto a solenoid, and the

matching at the entrance of the stellarator field.

These studies are based on numerical simulation. Initially, the

simulations were performed using the ELBA three-dimensional particle

simulation code[ll], which solves Maxwell's equations self-consistently

with the complete relativistic beam dynamics. In the ELBA code, the beam

pipe is represented as a straight metallic cylinder, but bends are included

via a mapping scheme which was adapted from the work of Friedman[12], with

corrections to the electromagnetic fields which are valid to first order in

the small parameter rv/R. Here, rw is the beam pipe radius (3 cm in the

POCE) and R is the major radius of the bend (80 cm in the POCE). The

electromagnetic field corrections are discussed in the Appendix. The bulk

of the studies reported in this paper were done with a faster running

version of the code called SST (Single Slice Transport).[13J Here, self-

field effects due to variations in the beam density or current along the

length of the beam are neglected, so that only a single transverse slice of

the beam need be simulated. For transport in a bend, results from the two

codes for beam displacement and optimum vertical field showed agreement to

within less than 1 for POCE parameters.

The organization of the paper is as follows. In Section II, we

discuss the initial equilibrium of the intense beam in the solenoid field.

In section III, we present transport simulations for each of the three POCE

bends. The optimum vertical field is determined for each bend and compared

to the theoretical estimate of Chernin and Sprangle.16] The effect of this

correction to the vertical field on the achromatic properties of the first

bend is also assessed. In section IV, we present simulations of transport

into and out of the stellarator fields with various beam profiles for POCE
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parameters. We show that emittance growth results from phase-mix damping

of mismatch oscillations of the beam[14-16], but can be reduced or

eliminated though the use of magnetic focusing elements. We present a

novel method of accomplishing this match via a single thick quadrupole

lens. We present end-to-end simulations of the POCE with and without

matching elements. In section V, we discuss the recent experimental

results of Refs. 8-10. Simulations with these parameters illustrate the

sensitivity of the mismatch oscillation characteristics to the radial

distribution of the beam. Our conclusions are given in section VI.
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II. EQUILIBRIA FOR SOLENOIDAL TRANSPORT

In accelerator transport studies, it is frequently assumed that the

beam has a Kapchinskij-Vladimirskij (K-V) distribution[17] in the rotating

frame in the directions (x,y) transverse to the propagation direction (z).

The K-V distribution, which has a flat radial density profile, is an exact

equilibrium in the limit Yb 4 - and V/yb 4 0, where Yb is the relativistic

factor corresponding to the beam kinetic energy, v = Ib[kAJ/1 70b is

Budker's parameter, Ib is the beam current and Ob = (1 - 1/b/2)

However, particle simulations of the POCE beam in the 5.492 kG solenoidal

guide field show at instability if the beam is injected with a transverse

K-V distribution. The beam radius exhibits growing oscillations at the

envelope frequency which typically reach amplitudes of the order of 7 to

10% of the equilibrium radius. These are shown in Fig. 2 (solid line),

where the RMS radius rb is plotted versus transport distance z for the POCE

beam (10 kA, 4 MeV, normalized RMS emittance %n,rms = 0.158 cm-rad)

initialized with a K-V distribution. Note that in this simulation and

throughout the paper we assume that the diode is nonimmersed, so the

canonical angular momentum of the beam is zero. Eventually (over a scale

length of several meters), the oscillation amplitude saturates. The

instability is a kinetic effect which does not occur in envelope code

calculations and is not suppressed by simply initiating the beam with

carefully matched envelope parameters. It indicates that the initial

distribution is not a true equilibrium, and that the beam dynamics are

acting to rearrange the distribution to approach equilibrium. Similar

phenomena are seen if the beam is initialized in other distributions that

are not exact equilibria for finite V/Yb, e.g., a parabolic density profile

with a Gaussian velocity distribution. Although the instability is rather
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weak, it tends to mask the features of interest. Oscillations of this type

are probably inevitable in a real beam, where one does not have perfect

control over the beam distribution.

The K-V distribution can be derived from the Vlasov equilibrium given

by f(r,p) - n0 /2ny0m 6(H-wL-yo0mc2 ) 6(P- 0 0 omc) in the limit yo 4 -. [18]

Here the energy H, the canonical angular momentum L, and the canonical

axial momentum P are constants of motion and w, Y0 , O0 and no are

parameters. We have derived an improved distribution by retaining the

first order terms in 1/y 0 , which result in corrections to the K-V including

the self-generated diamagnetic axial magnetic field and the kinetic energy

variations due to the space charge depression.f19] Although the charge

distribution is not radially flat in this approximation, it has a sharp

cutoff as does the K-V. When the POCE beam is initialized with this

higher-order K-V distribution, as in Fig. 2 (dashed line), growing

oscillations of the beam radius are not observed.

Simulations of the POCE injector[20J, as well as experimental

measurements[8-10], indicate that the beam injected into the SLIA transport

system has a rounded radial profile, and thus does not have a K-V type

distribution. In simulation studies, we have found it convenient to use a

numerical technique to initiate the beam equilibrium, rather than the

analytic expansion described in the previous paragraph. We begin the

simulation with a beam distribution that reflects the macroscopic

properties of interest (radial density profile and emittance), and with

carefully matched envelope parameters, including an ad hoc correction to

the initial particle energy as a function of radius due to the space charge

potential of the beam:

2 2 2
yr Yb + •(r rb)/rb (1)
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where y is the relativistic factor assigned to a particle at radius r and

rb is the IMS radius of the beam. We have followed this procedure for a

variety of equilibria and find that the space-charge correction reduces but

does not eliminate the unstable oscillations. The beam is then transported

numerically for several meters in the solenoid field, thus allowing the

oscillations to saturate and damp. Such equilibria were used to initiate

the simulations presented below.

7



III. TRANSPORT THROUGH THE 1800 BEND

Hoop forces occur in the bends because a given point in the curved

beam experiences a net transverse electro- and magnetostatic force due to

the remainder of the curved beam. These self-fields have been analyzed in

some detail for a beam of circular cross-section in a toroidal

configuration.[6] Assuming the beam is on axis, the optimum vertical field

is given by

My b~c2 1 inc2 .v 2  r 2

Bv eR 13b e b)ln(r) + (2)

where m is the electron mass, R is the major radius of the bend, rw is the

radius of the beam pipe, e (taken to be positive) is the elementary charge

and c is the speed of light. The parameter 6 depends on the details of the

beam equilibrium in the bend: & = 1 if -ne assumes consta.t current

density across the beam cross-section and 6 - 2 if one assumes constant

circulation frequency. The first term in Eq. (2) is the ideal value for a

low-current beam; the second is required to correct for the hoop forces.

For the POCE, in which Ib = 10 kA, R = 80 cm and rw = 3 cm, these

forces can be substantial. In the first bend, for example, the design

energy is 4 MeV and the ideal vertical field is 186.9 G. Equation (2)

gives Bv between 236.2 G (for 6=1) and 248.6 G (for 6=2). There are

additional uncertainties in these values because a) the beam cross-section

in the bend is not circular but is instead a slowly rotating ellipse and b)

the SLIA bend extends for 1800 with entrance and exit points, whereas the

published calculation applies to a full toroidal configuration.

Field parameters for the three POCE achromatic bends are given in

Table I.[21] In Table I, Bs i: the axial magnetic field at the geometric
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axis, b is the quadrupole field gradient near the quadrupole field axis,q

and Xp is the pitch length of the quadrupole windings. The FST and ELBA

codes use the following somevwat idealized approximations for the external

fields in the bend. The axial field is given by

Bz - B sR/(R + x) . (3)

The quadrupol: fields are

B = b [y cos(k Z) - (x - X )sin(kqz)] (4a)
x q q q q

B = bq[(X - xq)cos(kqz) + y sin(kqZ)] , (4b)

where k - 4n/X and x is the x-coordinate of the quadrupole field axis,q p q

which is displaced relative to the geometric axis in the bend[221:

2

Xq ,-r 1 + ) (5)

The vertical field enters as

By - -B v(1 - Ilx/R) (6a)

Bx - Bvr',/R , (6b)

where n is the vertical field index anO is responsible for weak focusing in

betatrons. In this coordinate system, the beam moves in the z direction,

and x and y are the horizontal and vertical coordinates, respectively. The

curve lies in the x-z plane with the inside wall of the curved beam pipe at

x = -rw. In Eqs. (3-6), we assume rw/R -. 1.
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Each bend is designed to be achromatic near the expected beam energy

for that bend. In other words, if the beam is within 10-20% of the design

energy for a given bend, the beam should exit with the same position and

angle, relative to the axis, that it had when it entered. A perfectly

achromatic bend will have no effect on the beam trajectory relative to the

axis no matter what the beam energy. In practice, parameters have been

determined that are correct to first order in the small parameter AE/E

where E is the design energy for the bend and AE is the deviation of the

beam energy from the design energy.[21,23]

Simulation results for the first bend show that if B is set to thev

vaJ.ue Bv = 186.9 G which includes no hoop force corrections, the beam

centroid displacement within the bend will exceed 1 cm. This is shown in

Fig. 3 where the x and y positions of the beam centroid are plotted versus

transport distance for the first POCE bend. Here the bend entrance is

located at z - 50 cm with the exit at z - 301.3 cm. Even with this

unacceptably large displacement, the achromatic design brings the centroid

back to within 2 mm of the axis on exit. A series of runs were performed

to determine the maximum beam centroid displacement rcmax as a function of

the imposed B v. The results are shown in Fig. 4. The optimal value of

the vertical field is seen to be 233 G, for which the beam centroid remains

within 0.06 cm of the geometric axis at all times. This value of Bv is a

25% increase over the ideal value but is somewhat smaller than expected

from Eq. (2). Numerically determined optimum vertical field values for all

three bends are given in Table II. For comparison, the ideal values (no

hoop force correction) and the predicted values from Eq. (2) are also

given.
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With a 25% increase in the design value of the vertical field, it

might be expected that other corrections to the design parameters of the

stellarator and solenoidal fields would be necessary to preserve the

achromatic property of the bend. For instance, an achromatic design

requires that the frequencies associated with the various fields produce

integer numbers of oscillations as the beam traverses the bend. However,

Hondelli et al.[24] have shown that the vertical field correction, with an

appropriate correction to the vertical field index, simply preserves the

frequency that would be expected in the ideal, low-current case. Figures 5

and 6 confirm this conclusion. These figures show the centroid position

x c(z), yc (z) as the beam passes around the first POCE bend with the optimum

vertical field value given in Table I. In Fig. 5, the beam energy was

offset from the design energy by AE = -10%. In Fig. 6, 6E = +10%. In both

cases, the beam centroid returns to within 0.2 cm of the axis.

In principle, it is also necessary to correct the vertical field index

fl to account for diamagnetic effects in the intense beam, which tend to

reduce rl to less than the design value over most of the beam cross-section.

We have performed several simulations with 11 set between 0 and 1.0 (at low

current, the design value is n - 0.5). These simulations showed that the

value of the vertical field index had less than a 1% effect on the beam

centroid position, and had no effect whatsoever on transport at the design

energy or the achromatic properties of the first bend. This result might

well have been anticipated inasmuch as the strong focusing due to the

stellarator fields dominates the weak focusing arising from the betatron

field. In subsequent simulations, we simply set n = 0.5.

We also measured the sensitivity of the achromatic design to errors in

the settings of the axial and stellarator magnetic fields. In Figs. 7 and
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8, we show the results of setting AE - -10%, and varying Bs and b . It is

apparent that the achromatic design is tolerant to errors in the 2-3% range

and that the design values are not optimized for AE i -10%. Further runs

at AE - +10% showed similar sensitivity to field errors. The optimum

values at AE - +10% differ from those at AE = 0 or 6E i -10% but not in an

easily predictable way (i.e., corrections to the optimum fields at AE =

+10% are not simply the negatives of those at 6E = -10%). These

observations are not surprising in that the achromatic parameters are

correct only to first order in AE/E.
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IV. MATCHING VIA MAGNETIC FOCUSING ELEMENTS

A major concern in the SLIA design is the transition at the entrance

and exit of each bend. In the straight sections, the beam is transported

on a solenoidal field in an equilibrium state with a circular cross-

section. In the bends, a strong focusing stellarator (rotating quadrupole)

field is also imposed, to improve momentum compaction. Chernin[25] has

derived an envelope equation for transport in stellarator/solenoidal fields

and has shown that matched solutions exist in which the beam cross-section

is elliptic, with constant major and minor radii and with the orientation

of the beam ellipse rotating in phase with the stellarator windings. Since

the transitions onto and off of the bends will be made more than fifty

times in a 50 to 100 MeV accelerator, it is crucial that each transition be

made smoothly and with a minimum of emittance growth.

For beams with coupled x-y motion, Chernin[25] has provided a suitable

definition of emittance which is a straight-forward generalization of the

usual emittance definition (e.g., Ref. 26). This definition is

£rms E Illl/4  (7)

where Z is a 4 by 4 matrix with elements

Eij - <uiuj> - <u i><ui> , (8)

u 1 x, u2 a dx/dz, u3 a y, u4 w dy/dz and "< >" signifies an average over

the beam particles. The emittance crms is conserved by Chernin's envelope

equation[251, which makes the usual assumption that all forces acting on

the beam are linear in the radial coordinate r. It is therefore assumed

that the beam density profile is flat-topped, which is necessary if the

13



space-charge forces are to be linear. The normalized, RMS emittance is

Cn,rms - Oyerms. In terms of the matrix elements Eij, the major radius r+

and the minor radius r of the beam cross-section are given by

1r2
1 2 .E + E(9)T± 11 + 1 33 ± 0(

=~ 2 )23]/2.where 0 [(' 33) + 4E 31 For a beam with circular cross-

section, r+ = r - ¶42"•rb.

Simulations show that large-amplitude envelope oscillations are

excited at the entrance and exit of the first POCE bend if no matching lens

elements are used to facilitate the transition. The characteristics of the

oscillations (wavelength, damping and emittance growth) are not determined

entirely by beam envelope parameters but are sensitive to the distribution

function of the beam.

In Fig. 9, we show r (z) for the POCE beam as it transits the first±

bend of the POCE. Four different beam profiles are simulated. In Fig.

9(a), the beam is initiated with a K-V distribution. At the entrance to

the bend (z - 50 cm), the beam transitions to an elliptic cross-section,

but overshoots the elliptic equilibrium and enters into a series of

undamped large-amplitude oscillations, which are particularly evident in

r+(z). At the exit from the bend (z = 301.3 cm), the beam transitions to

an elliptic cross-section of lower eccentricity. After a series of damped

oscillations of r ±(z), the beam approaches an elliptic equilibrium in the

solenoidal transport system, but shows no sign of damping back toward the

conventional equilibrium with circular cross-section. Little or no

emittance increase occurs, as seen in Fig. 10.

This type of behavior is characteristic of the K-V distribution.

Because the radial profiles of charge and current density are nearly flat,
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the self-forces are nearly linear, there is very little phase-mix damping,

and Chernin's envelope equations[25] provide a nearly complete description

of the beam dynamics. The damping of the weak oscillations about an

elliptic equilibrium in the solenoid is probably associated with self-force

nonlinearities that result from the inexactness of the K-V equilibrium, as

discussed in Sec. II.

The results are markedly different if the beam profile is rounded, as

can be seen in Figs. 9(b)-9(d). In case 9(b), the beam is initiated with a

spatially parabolic profile,

nb(r.0)[1 - (r/ 2rb)2J , r < 2rb

nb(r) = (10)

0 , r > 2 rb,

where rb is the RMS beam radius. In Fig. 9(c), the beam is initiated with

a Gaussian spatial profile and, in Fig 9(d), with a truncated Bennett[271

spatial profile,

n (r=0)[1 + (r/r 2-2 , r < 3rb/ 4 T
nb(r) b (II)

0 , r > 3rb/T'

Each of our non-K-V beams have Gaussian distribution functions in velocity

space. In each of these cases, the beam becomes mismatched at the

stellarator entrance, damps toward an elliptical state in the bend, becomes

mismatched again at the exit, and finally damps toward a circular cross-

section. Each stage of damping is accompanied by emittance growth as seen

in Fig. 10. The damping would appear to be associated with phase mixing,

15



due to the nonlinear self-field forces arising from the rounded beam radial

profiles. Since rounded beam profiles are typical in the SLIA, the

pictures presented in Figs. 9(b-d) are representative of SLIA physics,

rather than the K-V case, Fig 9(a), where the oscillations are highly

coherent and undamped. We can expect considerable emittance growth in the

accelerator unless lens elements are introduced to carefully match the beam

at the entrance and exit of each bend.

Tiefenback[9] has shown that the beam envelope parameters Zij can be

matched exactly by using a compound magnetic lens consisting of three ideal

thin focusing elements (one solenoid lens and two quadrupole lenses).

Petillo et al.[21] have used an envelope code to show that this scheme can

be implemented with realistic, finite thickness lenses to obtain a useful

inexact match. We have found a novel solution to the matching problem

which employs a single thick quadrupole lens.

The key to this matching scheme is the effect of a thick quadrupole

lens on beam transport in a solenoidal field. This is illustrated in Fig.

11, where we plot the major and minor radii r ±(z) obtained from solutions

of the envelope equations with beam and solenoidal field parameters

corresponding to those of the first POCE bend. A thin quadrupole lens,

Fig. 11(a), simply induces a series of quasiperiodic quadrupole envelope

oscillations, i.e., the beam cross-section oscillates between states of

maximum elliptic eccentricity, passing through a circular cross-section in

between maxima. However, when the quadrupole lens has finite thickness L0

[defined as the full-width-at-half-maximum length of the field envelope

b0 (z)], as in Fig. 11(b), the traces of r+(z) and r_(z) separate, so that

the cross-section is non-circular at all times, but oscillates between

states of maximum and minimum elliptic eccentricity. As the thickness of
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the lens increases further, to LQ - 5 cm in Fig. 11(c), r +(z) and r_(z)

become well separated, and oscillate separately around central values

corresponding to an elliptic equilibrium state. For a still thicker lens,

L = 10 cm in Fig. 11(d), r+(z) performs small-amplitude sinusoidal

oscillations about a well-defined equilibrium value and phase locking is

observed such that r (z) is approximately stationary at the extrema of

r+(z). The beam has been transformed from its initial circular equilibrium

to a new approximate equilibrium in which the cross-section is elliptic and

slowly rotating. The eccentricity of the ellipse is nearly constant and is

determined by the integrated strength of the lens fdz b0 (z). Recall,

however, that in the context of a more exact kinetic treatment, rather than

an envelope model, the elliptic equilibrium will eventually damp back to

circular if there is phase mixing due to a rounded beam radial profile (see

Fig. 9). The transition to an elliptic equilibrium via a single quadrupole

lens and subsequent damping toward a circular beam cross-section has been

observed both experimentally[22] and in particle simulations.

Envelope modelling and particle simulations indicate that the beam

response to a quadrupole lens is not very sensitive to the details of the

quadrupole lens axial dependence b0 (z), but rather depends primarily on the

integrated lens strength fdz bQ(z) and on the thickness L An approximate

criterion for the "thick lens" limit, as exemplified by Fig. 11(c) and to

an even greater degree by Fig. 11(d), is

L > z a 2eB (12)
Q 2eB5

where Xc is the cyclotron wavelength in the solenoidal field. (For SLIA

parameters, the oscillation wavelength is not significantly increased by
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space-charge fields.) In the first POCE bend, X = 17.2 cm, and the lens

is "thick" in Figs. 11(c) and 11(d), where L0  . 5 cm and 10 cm,

respectively.

The matching onto the stellarator equilibrium is accomplished by using

a quadrupole lens that is in the "thick lens" limit (given the beam energy

at that point in the beam line), adjusting the integrated strength of the

lens to match the eccentricity needed in the bend, adjusting the distance

between the lens and the bend such that the beam enters the stellarator

field at a stationary point of the oscillation, and adjusting the

orientation of the lens so that the angle of the ellipse is in the correct

phase as the beam enters the bend. A single quadrupole lens can also be

used at the exit of the bend to bring the beam back to a nearly circular

cross-section. In the ideal case (no envelope oscillations), the exit

quadrupole is identical to the entrance quadrupole.

It should be noted that the required minimum lens thickness LQ, such

that the lens is "thick," increases proportionally to the beam energy,

according to Eq. (12). For example, the lens of Fig. 11(c) is sufficiently

thick for the first bend of the POCE (electron energy 4 MeV), but not for

the third bend (7 MeV), as shown in Fig. 12. For practical reasons, it may

be necessary to use another matching scheme at high energy.

Although the features of the matching scheme are easily accessed and

surveyed by numerically solving the envelope equations, we have used

particle simulation to study the transport processes in full detail.

Figures 13 and 14 show the results of a simulation of transport around the

POCE first bend for a case in which the beam is initiated with a parabolic

radial profile identical to that of Fig. 9 (b). Here, a single quadrupole

lens is used to match the beam at the entrance to the bend. The lens is
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located 25 cm from the stellarator entrance, with peak quadrupole gradient

b0 - 292 G/cm, z-dependence as plotted in Fig. 15 and lens thickness L0 =

5.5 cm. At the bend exit, we fine-tuned the match using an exit quadrupole

with b0 - 255 G/cm (this fine tuning accounts for the phase of the small

mismatch oscillation as the beam exits the stellarator). The lens profile

of Fig. 15 is taken from measurements of an actual quadrupole lens used in

SLIA experiments.[22] With this matching scheme, the radial mismatch

oscillations of Fig. 9(b) have been minimized and the 13% emittance growth

of the unmatched case has been eliminated. For comparison, Fig. 14 shows

emittance plotted versus transport distance for this case and for the

simulation of Fig. 9(b). We have obtained similar results via the three-

element match of Ref. 21.

These simulations have been extended to provide complete end-to-end

particle simulations of transport in the POCE with each of the three bends

modeled as described above. The acceleration sections are modeled by

simply imposing an axial electric field over a short section of the beam

pipe. The location of each curve and each idealized acceleration section

for the end-to-end simulations is given in Table III. Results from a

simulation without matching elements are shown in Fig. 16. The beam is

initiated with a parabolic spatial profile as in Figs. 9(b) and 13 above.

Overall, the emittance cn,rms increases by 52%. Plots of r (z) show that

the beam becomes mismatched in each bend and damps back to an approximately

circular cross-section after each bend. It is interesting to note that, by

chance, the beam exits the third bend with an approximately circular cross-

section and little subsequent emittance growth occurs. For comparison, we

repeated this simulation with the third bend terminated at z = 1250 cm, at

19



the point of maximum eccentricity of the beam cross-section. In this case

we observed an overall emittance increase of 110%.

The results of an end-to-end POCE simulation in which single-element

matching is employed on all three bends are shown in Fig. 17. Here, the

initial beam parameters are identical to those of Fig. 16. With the use of

single-element matching, however, the normalized emittance is largely

preserved, increasing by only 10%. In this simulation, quadrupole lenses

with peak quadrupole gradient b M 149 G/cm were placed 4 cm from the

entrance and 4 cm after the exit of the second bend. For the third bend,

lenses were located 6 cm from the stellarator end points with b0 - 266

G/cm. The quadrupole lens profile of Fig. 15 was used for the first bend,

as in Fig. 13, and a similarly shaped quadrupole with L = 11 cm was used

on the second and third bends.
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V. SIMULATION OF THE 850 KeV EXPERIMENT

In preparation for the POCE, a series of preliminary transport and

matching experiments has recently been performed at PSI.[8-10] The

parameters for these experiments were chosen to replicate as closely as

possible the physics of the POCE beam at much lower current and energy.

Thus, the dimensionless ratio a = vr2/y 2 , which determines the relative

influences of the emittance and space charge forces, was chosen to be the

same for both beams. The significance of a can be noted from the envelope

equation for a beam in the presence of an axial magnetic field[28,151,

a2r 2 C2
b z 2v n 0 (13)

2z-2 + 4d222 rb 2d3rb 2 2 3 =
z c Tb 0  rb Oyb brb

where 9z = eB z/mc is the nonrelativistic cyclotron frequency and vn =

4c n,rms. The nominal POCE parameters are Ib a 10 kA, Yb = 8.83 (4 MeV),

Cn,rms - 0.159 cm-rad and rb - 0.5 cm, which gives a = 0.041. The low

energy experiments were done at Ib = 200 A, yb - 2.66 (850 keV), and rb =

0.25 cm. Preservation of the ratio a requires en,rms - 0.022 cm-rad (the

actual experimental value was somewhat lower, as will be discussed below).

In these experiments, the beam was transported along a 1.5 kG solenoid

field into a stellarator section with length 251.3 cm and pitch X = 68.33p

cm, identical to that of the first POCE bend. This stellarator section,

however, was straight (rather than curved) so as to facilitate diagnostics,

and the stellarator strength was reduced to b q 68.5 from the POCE valueq

of 251.6 G/cm.

In the initial experiment, the beam was transported into the

stellarator fields without matching at the stellarator entrance. The data

from this experiment, giving the beam major and minor radii r (z), are
±
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shown in Fig. 18. Each data point represents a time-integrated average

over one shot of the device, obtained by inserting a piece of film into the

beam pipe at a location that was varied from shot to shot. It should be

noted that the experimental "major and minor radii" r± (z) are determined by

fitting a constant current-density contour at approximately l0% of the peak

current density in each shot, whereas the simulation r ±(z) values are

computed via Eq. (9) and are RMS values multiplied by 1.T. The

experimental measurements extend only to z = 350 cm, 50 cm beyond the end

of the stellarator section. As a result, the damping of mismatch

oscillations at the stellarator exit, as well as thp emittance growth

associated with this damping, was not measured. The simulations extend to

z- 500 cm, enabling us to study matching phenomena at the exit as well as

the entrance of the stellarator section.

In Fig. 18, it is evident that envelope oscillations are excited at

the stellarator entrance which subsequently damp toward an elliptic

equilibrium. Emittance measurements, which tend to be problematical for a

space-charge dominated beam, were made both at the injector and at the exit

of the stellarator section. The inherent difficulties associated with this

measurement were further exacerbated at the end of the stellarator section

by the need to aperture the beam and to transport the resulting "beamlet"

into a field-free region. Because the measurement was performed within the

3 cm radius beam pipe, the drift region over which the emittance could be

measured was limited to 10 cm. In fact, a definitive measurement of the

emittance at the stellarator exit has not yet been obtained.[221

Preliminary measurements of the beam initial radial profile showed an

approximately parabolic profile with emittance En,rms = 0.008 rad-cm and

beam radius 0.25 cm.[22] In our first simulation studies, we initiated the
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beam with a parabolic profile. One such simulation is shown in Fig. 19,

with beam parameters rb 0.2.5 cm, "n,rms = 0.011 rad-cm. The damping rate

was found to be comparable to that of the experiment, but the mismatch

oscillation frequency differs markedly (by 25%) from that seen in the

experiment. It was found to be impossible to match the experimental data

in simulations initiated with any of the usual distributions (KV,

parabolic, Gaussian, Bennett).

Since it is known[29J that core-halo radial profiles are associated

with increased phase-mix damping of radial mismatch oscillations expected

to be present in the injector[10,20], we then tried initiating the beam

with a core-helo profile in the simulations. It was found that the

simulations could provide a good match to the data. Subsequently, careful

measurements were performed which indicated that the beam had approximately

10% of its current in a diffuse halo extending to about twice the radius of

the main core, as shown in Fig. 20.

Creating a core-halo distribution for simulation purposes was

accomplished by adding a constant density spatial distribution with edge

radius 2 rb to the core parabolic distribution. The result was then

transported for 30 meters and allowed to come to equilibrium. The spatial

profile of our numerical core-halo distribution is shown in Fig. 21. Here,

we put 25% of the current into the initial flat-top halo. In the resulting

beam, particles with r > r + i 3.46 mm represented 8% of the total current.

In Fig. 21, the beam emittance is cn rms W 0.01 cm-rad. If we consider

only the particles within the r < r+ we have enrms = 0.0065 cm-rad.

Figure 22 shows the major and minor radii r (z) and the emittance

Cn,rms (z) of the core-halo simulation beam. The simulation reproduces the
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radial oscillation frequency and the damping rate observed in the

experiments. Total emittance growth in the simulation was 29%.

Experiments were also done using the three-element match of Ref. 21.

Experimental major and minor radii, again defined in terms of the time-

averaged current-density contour at 10% of the peak current density, are

plotted versus transport distance in Fig. 23. In this case, the mismatch

oscillations are greatly reduced.

Simulation results using the core-halo distribution as in Fig. 22 are

shown in Fig. 24. Here we have used a single-element match with peak

quadrupole gradient b0 = 75 G/cm located 5 cm from the stellarator

entrance. As before, the axial lens profile is that shown in Fig. 15. We

find smaller radial oscillations, as in the experiment, and emittance

growth of only 11%.
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VI. CONCLUSIONS

Simulation studies of recent SLIA experiments and of the SLIA POCE

have been performed. Simulation results shoved that as the intense beam is

transported through each bend, the beam experiences self electro- and

magnetostatic forces. To account for these forces, the design value of the

vertical bending field had to be increased by as much as 25%. Optimum

vertical field values, which were in reasonable agreement with the

theoretical analysis of Ref. 6, were determined for each bend.

Furthermore, we found that this correction to the vertical field did not

adversely effect the chromatic properties of the bend.

Simulations of transport into the stellarator fields showed that

radial mismatch oscillations are likely to be excited both at the

stellarator entrance and at the exit. Simulation results were quite

sensitive to the spatial distribution of the beam particles. We found

that, if the radial profile of the beam is rounded, the mismatch

oscillations damp and that this damping is accompanied by emittance growth.

These phenomena did not occur when the beam was initialized with a

Kapchinskij-Vladimirskij distribution, however. We believe that the

observed damping of radial mismatch oscillations is due to phase mixing

caused by nonlinear space-charge forces associated with a non-uniform beam

profilej14-16] By contrast, the K-V distribution has a uniform spatial

profile.

We have presented a novel method of matching the beam onto and off of

the stellarator fields. Here we use a single thick quadrupole lens on each

end of the stellarator to transform the circular cross-section of the beam

in the solenoid field into an elliptical shape that closely approximates

the equilibrium configuration in the stellarator fields. The lens strength
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and orientation are adjusted to obtain the correct eccentricity and phase

at the stellarator entrance. An identical lens, with only its orientation

adjusted, is used at the exit to bring the beam back to a circular cross-

section. Simulations show that matching can be accomplished in this way

and that the degree of emittance growth can be greatly reduced by the use

of such single-element matching lenses.

We also performed end-to-end simulations of the SLIA POCE, where the

beam was taken through all three bends. These showed that matching

elements can reduce total emittance growth from 52Z to 10%. While the

level of emittance growth found in the end-to-end simulations was modest

even when no matching elements were used, such elements will certainly be

necessary in a 50-100 MeV SLIA design, where many more bends would be

required.

We have also explored other approaches to the SLIA matching and

transport problems, which are not reported here. For instance, discrete,

alternating-gradient quadrupole lenses were considered as an alternative to

stellarator windings. The motivation for this study was the possibility of

improved stability with regard to the electromagnetic instability of Refs.

30-32. It was found, however, that alternating-gradient transport is

comparably unstable.[33,34] It was further found that the instability

could be avoided in the stellarator configuration by carefully choosing

system parameters.[31,32,35] We also considered a design in which

stellarator windings were used on the straight sections as well as on the

bends. This design does not avoid the complication of changing the

parameters of the stellarator and solenoid fields between each bend, in

order to keep the bends achromatic as the beam energy increases. We found

that the stellarator-stellarator transitions (i.e., between the parameters
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of bends one and two) were no less problematical than the solenoid-

stellarator transitions of the POCE. This difficulty persisted even for

designs in which each bend had the same stellarator pitch length.

Finally, simulations were performed to model and understand the recent

SLIA transport experiments.J8-10] A core-halo distribution, similar to

that of the 850 keV, 200 A experimental beam, was used in simulations of

transport through the stellarator fields, with and without matching lenses.

These simulations reproduced each of the key features of the experiments,

including the motion of the beam cross-section, which followed the pitch of

the stellarator windings in all cases, the amplitude, frequency and damping

rate of the radial mismatch oscillations, and the reduction in the

amplitude of these oscillations through the use of matching elements at the

stellarator entrance and exit.

In the 850 keV simulations, the sensitivity of the results to the

spatial distribution of the beam was of key importance in our efforts to

reproduce the experimental results. Specifically, the initial measurements

of the spatial profile of the beam showed only the central core.

Simulation results with the same profile (Fig. 19) showed a 25% disparity

in the frequency of the mismatch oscillations between simulation and

experiment (see Fig. 18). By adding a halo, we found that this disparity

could be eliminated. The addition of a halo was motivated by the fact that

such core-halo distributions are associated with the damping of radial

mismatch oscillations[291 as might be present in the injector.[lO,201 The

existence of the halo was later confirmed experimentally. [10]
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APPENDIX: FIRST ORDER FIELD CORRECTIONS IN A CURVED GEOMETRY

In the ELBA[1lJ and SST[13] particle simulation codes, the

electromagnetic fields are computed in terms of the scalar and vector

potentials using cylindrical coordinates. In all cases, the beam is

assumed to be propagating within a conducting pipe of radius rw. Following

the approach originated by Lee[36], the equations are solved using the

gauge

1i.A - 0 , (Al)

where Ai is the component of the vector potential perpendicular to the

direction of propagation. This gauge works well for problems in which the

beam is nearly axisymmetric and dominates the field production. In the

ELBA code, a change of variables is made from (r,e,z,t) to (r,e,C.ct-

z,c=t). The (C,x) variables are numerically advantageous in that a) a

relativistic beam is nearly stationary in these coordinates and b)

information flow is always towards larger values of C. The SST code makes

the additional simplifying assumption that a/IC - 0. This approximation is

useful when self-forces arising from C-derivatives of the beam density and

current can be neglected.

In terms of the potentials, A1, f and a a Az - f, Maxwell's equations

in the gauge of Eq. (Al) can be written as[11,37]

BE + -z- -4np (A2)

•i + -4Ez
i aE

2 + 1E = -4n(J /C - p) (A3)
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and

V2 -fL+2rý)Aý -L" .(I J ~ -h 'a'r (A4)-0 -RcO -1 7 a -F ,

where

E a + -)c of• (A5)

For propagation around a bend, we neglect corrections to A and A and
re

retain terms in the equations for a and f to first order in rw /R, where R

is the radius of curvature of the bend. The corrections are treated as

explicit terms in the solution algorithms. Maxwell's equations for the

potentials in the bend are derived by transforming to a local orthogonal

coordinate system (r,e,s) which is centered on the axis of the beam pipe

with s measuring arc length along the bend. The (r,e,s) coordinates can be

written in terms of global Cartesian coordinates (x,y,z) with the origin at

the center of the bend:

x - (R + r cose)cos(s/R) , (A6a)

y - r sine (A6b)

and

z . (R + r cose)sin(s/R) , (A6c)

for r < r-- W

Maxwell's equations for a and 0 are written in the (r,e,s) coordinate

system and expanded to first order in r/R. We then make a change of

variables from (r,e,s,t) to (r,8,C=ct-s,x.t). The result is
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72 aE s -4p-1[cos L' sine 8# r coe82#

ra 8 r e 82o r73.

+ cose 3  + rcose-+cose&a 3 r )+

- sine 8A•e+ e e) (A7)

and

V2 3Ea = -4n(J /C - p)

+ cose + 1 a - cose
RI fMac+ c- ý-rC+ 2 a r

sine ac(2 2Ar 1A rr + cose 8-7 +

Me8A 1 aAe'"

-sine12-, + e- T ,- (A8)

vhere

s _ a' 8 r at
E5  + at it - S cas (A9)

and Js is the current density in the s direction. Because we neglect

corrections to Ar and Ae, the gauge condition, Eq. (Al), and Eq. (A4)

remain unchanged. The remaining electric and magnetic field components are

8A 8A

E -1 3 r r t (AlOa)r c -c - TC - 'IO
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Eei 83 A 8Ae lat (AlOb)c- T&t r- ae'

I: 1La 8# Ae 1 MAe

JF[r coseq +T ie~ ) (Alla)

Be r r - r +~ 3 [r cose 7a cose(m + t)(Alib)

and

13 r
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Table I. Parameters for the SLIA POCE: bend design energy E, axial field
Bs, quadrupole gradient bq and quadrupole pitch length Xp.

Bend E (MeV) B (G) b (G/cm) X (cm)

1 4.0 5492. 251.6 68-33
2 5.5 5335. 207.0 83.78
3 7.0 5483. 182.3 125.67

Table II. Numerically determined optimum vertical field values for each
POCE bend. Values are in units of Gauss. For comparison, the
ideal values (no hoop forces) and the predicted values from Eq.
(2) are also given.

Bend B Bv (ideal] Bv [6=11 Bv [6=21

1 233.0 186.9 236.2 248.6
2 296.0 249.5 '98.6 311.0
3 354.5 312.5 .;0.1 372.5

Table III. Location for each bend, each ideal acceleration and each
solenoid transition for the end-to-end POCE simulations.
Lengths are in centimeters. Note that the acceleration after
the third bend is not included and that the POCE design features
longer straight sections than those used here.

Bend Bend location Acceleration Solenoid transition

1 50 - 301.3 400 - 450 422.5 - 427.5
2 550 - 801.3 900 - 950 922.5 - 927.5
3 1050 - 1301.3 ......
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Fig. 1. SLIA proof-of-concept experiment schematic.
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Fig. 2. RMS radius rb versus transport distance z for the POCE beam

initialized with a K-V distribution (solid line) and with a

higher-order K-V distribution (dashed line).
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Fig. 3. Beam centroid coordinates xc (solid) and yc (dashed) versus

transport distance in the first POCE bend with no hoop-force

correction. The bend extends from z = 50 cm to z -301.3 cm.
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Fig. 4. Maximum displacement of the beam centroid radius, r c,max, in the

bend versus vertical bending field B v. Optimum value is Bv = 233

G.
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Fig. 5. Beam centroid coordinates xc (solid) and yc (dashed) versus

transport distance in the first POCE bend with beam energy

mismatch AE - -10%.
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Fig. 6. Beam centroid coordinates xc (solid) and yc (dashed) versus

transport distance in the first POCE bend with beam energy

mismatch 6E - +10%.
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Fig. 7. Beam centroid displacement at the bend exit Sr versus percentage

error in the axial magnetic field bBs for runs with beam energy

mismatch AE - -10%.
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Fig. 8. Beam centroid displacement at the bend exit Sr versus percentage

error in the stellarator gradient Ab for runs with beam energyq
mismatch AE - -10.
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Figl. 9. Major and minor radii, r (solid) and r (dashed), of the beam
+

cross-section versus transport distance for beams with various

profiles: (a) K-V, (b) parabolic, (c) Gaussian and (d) Bennett.
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Fig. 10. Emittance Cn,rms versus transport distance for each of the four

cases of Fig. 9: K-V (solid line), parabolic (dashed), Gaussian

(dotted) and Bennett (long dashes).
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Fig. 11. Envelope code results showing major and minor beam radii versus

transport distance for several quadrupole lens lengths LO: a) L0

= 1 cm, b) L0 = 2.5 cm, c) LQ = 5 cm and d) L0  1 0 cm. Here,

L bQ - 2000 G in all cases, where bQ is the peak quadrupole

gradient of the lens. Beam parameters correspond to those of the

first POCE bend.
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Fig. 12. Envelope code results shoving major and minor beam radii versus

transport distance for a quadrupole lens with length L 0 - 5 cm

and quadrupole gradient b = 400 G/cm as in Fig 11 (c). Beam

parameters correspond to those of the third POCE bend.
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Fig. 13. Simulation result showing major and minor beam radii, r+ and r_,

as a function of transport distance. Here, single-element

matching has been used.
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Fig. 14. Simulation result showing normalized RMS emittance as a function

of transport distance for the single-element matching case as

shown in Fig. 13 (solid line) and for the case with no matching

as shown in Fig. 9(b) (dashed line).
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Fig. 16. End-to-end POCE simulation results showing (a) major and minor

radii and (b) emittance versus transport distance. No matching

lenses are used. The overall emittance growth is 52%.
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Fig. 17. End-to-end POCE simulation results shoving (a) major and minor

radii and (b) emittance versus transport distance. Single-

element matching lenses are used at the entrance and exit of each

bend. The overall emittance growth is 10%.
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Fig. 18. Experimental data from Lidestri et ai.[81 showing the major and

minor radii of the beam cross-section as a function of transport

distance. In this plot, the stellarator entrance is at z = 50 cm

and the exit is at z -f 301.3 cm.
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Fig. 19. Simulation result showing (a) major and minor beam radii and (b)

normalized RMS emittance as a function of transport distance for

a beam with a parabolic spatial profile.
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Fig. 20. Experimental data from Tiefenback et al.[10] showing charge

density versus transverse coordinate x.
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Fig. 21. Current density versus transverse coordinate x for the core-halo

simulation beam.
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Fig. 22. Simulation result shoving (a) major and minor beam radii and (b)

normalized RMS emittance as a function of transport distance for

a beam with a core-halo distribution.
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Fig. 24. Simulation result shoving (a) major and minor beam radii and (b)

normalized RMS emittance as a function of transport distance. In

this case, a single-element matching lens was used.
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