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FOREWORD
Since 1980 there has been a tremendous advance In the state-of-the-art of OFT. This is
due primarily to the association of Wright Laboratory's Flight Dynamics Directorate
(WlJFIG) with the Department of Electrical and Computer Engineering of the Air Force
Institute of Technology (AFIT/ENG) and with Professor Issac M. Horowitz, the founder of
OFT. Numerous technical publications by WL/FIG and AFIT/ENG researchers have
resulted from this association. This symposium is a testimonial to these researchers and
is intended to transfer many of their results to the general public.
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PLENARY ADDRESS
QFT - PAST, PRESENT AND FUTURE

Isaac Horowitz, Professor Emeritus
University of California. Davis

Davis, CA 95616
and

Weizmann Instimte of Science
Rehovot, Israel

ABSTRACT

Quantitative feedback theory (QFT) is an engineering science devoted to the problem of
achieving precise performance specifications, despite high uncertainty in the means of producing
the desired outputs. It was an outgrowth of the author's work in Active Network Synthesis.
Eariy in its history it chose the input-output system description, frequency response and the lcop
transmission as its principal and natural design tools. QFT is especially oriented towards the
practical designer in its emphasis on the cost of feedback, design transparency, and the
mathematical simplicity of its design methods. QFT has developed such techniques for SISO,
MIMO, single and multiple loop, linear and nonlinear, lumped and distributed plants. But it is as
yet in its infancy, pointing to vast, available problem areas.

I. Network Synthesis Origin

My role in the development of QFT was influenced by my prior work in Modem NetworkSynthesis, especially Active Network Synthesis. A set of building blocks is assumed available:
resistors (R), inductors (L), capacitors (C) in passive network synthesis; R, C and transistors in
active RC synthesis. One is to design a function, usually the transfer function, by combining
these elements in a systematic manner. Modem type "existence" theorems were rare in those days
because it was assumed that primarily engineering research was suppo,.d to show how to buildpractical systems rather than just prove that syst-ms could be built with idealized elements. So the
theorems were mostly implicit, construtive in nature, usually presenting design techniques based
on canonical structures. As the subject advanced, the practicality of the design constraints was
increased such as element si, value spread and dissipation factors.

My interest was in Active RC synthesis. The poles of RC transfer functions are confined
to the negative real axis. Feedback around the active element can move them into the complex
plane. But active element parameters usually have much greater variation than passive elements.
So in the problem statement I would list their maximum variation (va). and the assigned tolerances
(vd) on the desired transfer function. In a narrow band filter, vd would be very small. Find a
synthesis technique for this purpose. assuming some R. C elements could be built with arbitrarysmall variation. There are two problems here. One is the filtr problem. to obtain the desired
nominal transfer function. The second is the sensitivity problem, to obtain the desired small vd/va
ratio. Here,. feedback is intentionally used in the filter problem and introduces the second problem
which it has a major role in solving. Active network synthesis had heretofore not incorporated
sensitivity to such an extent.

It is an obvious transition from such an approach, to feedback control where the sensitivity
problem is paramount and the filter problem is mostly secondary. The sensitivity aspect is easier
in SISO feedback control because uncertainty is lodged in the plant fu3ction P(s), which appears
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as a single block in the transfer function T(s) - FPG/(I + PG). It is more complicated in active
synthesis: the low-frequency model of the active element has four resistances and a controlled
source. In the more challenging structures, these five parameters are scattered about in the system
transfer function, so unlike feedback control it is not simply a matter of making the loop
transmission large enough over a large enough frequency range.

2. PRINCIPAL FEATURES OF QFT

The principal features of QFr almost all appear in the first QFT work in 1959 [1]. Major
considerations were: time domain vs transform domain, input-output vs detailed internal
modelling, frequency response vs state-space, sensitivity function vs loop transmission, global
optimization vs detailed quantitative design. The transform domain was chosen because of the
great difficulty of satisfying specifications and stability directly in the time domain. Professor
Barnard [2] is working in the latter area. Input-output seemed obvious because systems theory in
general focuses on the relation between blocks, rather than on the internal design of the individual
blocks. So why bother with the unnecessary complexity of detailed internal descriptions when
the information is irrelevant for our purpose? In a 20th order system, why use 20 equations when
19 of them are only definitions? Controllability, observability and hidden oscillations are easily
handled in a proper input-output description, i.e., which considers parameter uncertainty. For
several decades it was rather lonesome in the frequency domain, which was derided by the
dominant modem control society. However, times are changing and "the stone which the
bideJ.s scorned has become the corner stone" [3].

The sensitivity function S = (1+ L) 1 seems to be the natural design tool because it gives
directly

effect with feedback -

open-loop effect -

and offers hope for analytical, automatic design. However it is very cumbersome for detailed
quantitative design, although it may be suitable for global measures an,ý global optimization
wherein one throws a variety of factors into a single cost function. But in multivariable design,
one is interested in detailed control of n2 input-output relations. It is difficult to discern and
achieve such detai!ed control via a single scalar cost function. It has additional disadvantages. A
practical L = PG -- k/se as s -- -, so the first e leading numerator coefficients of S must equal
those of its denominator. If degree of S is e + m, only 2m free parameters are available for
design. This seems to be the reason why its compensation functions turn out so impractical in
terms of bandwidth, which is the principal cost of feedback.

Another important factor is high-frequency sensor noise effect at plant input, TN =
(0-S)/P. In thisrange IL I<<1, S-+- 1,,P-+0, so TN is highly insensitive to S. Butwritten
as TN = JP(I+ L) A L/P, it is very sensitive to L, and one sees the importance of fast decrease of
I L I at large c. At I L 1 =10-3, an increase to 10.2 (tenfold) changes I S I at best from .999
to .99 (1%), i.e., an insensitivity factor of 1000. Thus the sensitivity function is highiy
insensitive to two imnortant costs of feedback: sensor noise and loop bandwidth.

It is instructive too that Bode, the pioneer of feedback theory and the definer of the
sensitivity function S, did not use S for actual design, but instead used L, the loop transmission
function [4]. This was the choice of QFT at the outset [1]. Our commitment to detailed
quantitative design drove us to use L because of the vagueness of the global figures of merit. In
fact, I believe that once the decision was made that plant uncertainty was the problem and practical
quantitative design the objective, then the problem structure led QFT into the direction it has taken
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since its beginning in 1959 [1]. An additional coft nature has awarded to QFr is its design
tanspabency, which is so often emphasieo by its practitioners. One clearly ses and has in his
grasp the importinerally tak en f ante dwidth, design complexity, sensor noise effects, etc

hs property and the close u-elation of QFrT to Bode's work were sustaining sources during the
long. lonely period when QFs was congined to the wilderness by academia and by governmentfimding amis

For about half a century feedback control concentrated on the filter problem, and neglectedits abilit'y to cope with uncertainty. The following quotations ame illustrative:

"..it is generally taken for granted that the dynamic characteristics of the process Will
change only slightly under any operating conditions encountered during the lifetime of the
control system. Such slight changes are foreseen and are usually counteracted by using
feedback. Should the changes become large the control equipment as originally designed
may fail to meet petformance specifications."

(Kalman (5])

"Conventional control sy.¢,mos are designed to meet certain specifications under certain
given conditions of the t- Aronment and the system parameters, but should these
conditions change, the performance will change as a result."

(Gibson and McVey (61)

The above was the natural outcome of classical feedback's concentration on the filter
problem. They were used to justify use of nonlinear compensation (so-called adaptive systems)
m problems amenable to relatively simple linear time-invariant (LTM compensation. I believe that
I showed most of these arguments were invalid [7]. Successful QFT design for huge plant
uncertainties (1000 to 1) were published. It is also worth noting that this lack of appreciation of
the power of LTI compensation is widespread even today. Recently a student auditing a QFT
course did an example with plant uncertainty factor of only 10. His advisor was skeptical of his
results and performed the simulations himself. Modem control theory for many years appeared to
be concerned with the same problem as classical feedback control, the filter problem. However,
classical feedback control dealt in a relatively practical manner with the filter problem, whereas
modem control theory, with its apparent primary interest in existence theorems, often emerged
with unrealistic results. QFT was a pioneer in its re-definition of the basic purpose of feedback
control QFr is "classical" only in that it uses the classical tool of frequency response, whereas in
the much more important sense of design objectives, it is modem feedback control which is
classical, actually 'distorted classical,' because practicality is secondary to existence theorems.
After many years, some universities have caught up with this fundamental truth.

3. PROGRESS OF QFT

Following the single-loop SISO design technique, two directions were obviously open.
One was to consider use of internal variables available for feedback, as in the SISO cascade-loop
structure. Frequency response and the Nichols chart as the synthesis tool-- were overwhelmingly
vindicated. O(e sees almost by inspection how the feedback burden should be allotted among the
loops, and the trade-offs between the loops, their bandwidths and their ,ensors. This is due to
the "VDintwise synthesis" nature of QFT. Thus the actual plant uncertaint) and the desired much
smaller closed-loop system uncertainty obviously impose constraints on the loop transmission
operator L(s), or equivalently on the sensitivity function S(s) = (1 + L)- 1. In QFT these are
translated into bounds on L(jo), separately at each m rather than on a global operator, following
the ancient technique of breaking a difficult problem into smaller easier problems. In a multiple-
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loop system this feedback burden can be divided among several available loops. By doing so
separately at each co it is relatively easy to see the important trade-offs involved in this
apportionment of the "feedback burden." It is very easy to see that it is overwhelmingly in favor
of the major burden on the outer loop in the low-(o region with respect to sensor noise effects,
compensator complexity and bandwidth, and that the opposite is true in the high-wa region. Also,
it is easy to locate the critical 0)-range in which the transition should be made, and how to do so.
It is enormously more difficult to do so by means of the more mathematically sophisticated global
operator technique. Funrthermore, the transparency available in the pointwise technique, easily
seen by the ordinary engineer, is lost in the process. This is another major difference between
QFT and Hl. with its use of a global sensitivity function.

In this manner, systematic QFT design procedures were developed for a number of SISO
multiple-loop structures. However, the general SISO multiple-loop problem has not as yet been
solved in the QFT sense. It is an important problem over and above its own sake, because the
general MIMO system with available internal feedback variables, can be rigorously transformed
into SISO multiple-loop problems whose solutions are guaranteed to solve the original MIMO
problem.

A second direction of QFT was in design optimization for the single-loop system. A
reasonable definition was made, and it was shown that the optimum exists and lies on its bounds
for all o) values. It became obvious even then and much more so later, that there is ample room in
QFT for the mathematically oriented researcher whose primary interest is in existence theorems.

QFT has proceeded step by step to noninimum-phase (NMP) systems, digi Wl compensa-
"* tion, multivariable plants with and without internal feedback variables. It was proven that despite

contrary opinion, digitally compensated feedback systems are inherently inferior, in the sensitivity
sense, than analog feedback systems. An especially important QFT breakthrough was made in
time-varying and nonlinear feedback plants wherein the problem is reduced to risowmusly
equivalent LTI problems. Two design techniques have been developed. In one, the nonlinear
and/or time varying uncertain plant set is replaced by a LTI set which is equivalent with respect to
the set of desired plant outputs. The following modelling is necessary for the nonlinear MIMO
case: Given a set of output n-vectors I/ = fy) and associated set of plant input vectors U =

Iu), f'nd the set of nxn matrices P = (P) suchthat y=Pu. ThIS is quite tricky in feedback
because it can be very important whether P is MP or NMP. But suppose both models appear to
give equally good results in the time domain? This problem is avoided to a large extent in the
second technique where the nonlinearities become equivalent disturbances. They have been
successfully applied to many multivariable problems, including man-in-the loop flight control
The reader is referred to Reference 8 for a more detailed exposition of QFT progress.

4. FUTURE OF QFT

If one accepts the feedback problem in the QFT sense of design to achieve quantitative
performance specifications despite uncertmi'nty, then the research problems are limitless. We are
living in a sea of uncertainty, and nature depends on its myriads of self-correcting feedback loops.
Nature is far from delicately, fragilely balanced, as espoused by many. Thanks to its feedback
loops it is highly robust. History, especially recent history, has dramatically shown that it is
some of man's economic and social systems which are delicately fragile. One might attribute this
to (1) ideological rather than empirical asessment of the plant (nature of man), and (2) woeful
ignorance of quantitative feedback theory.

There are very many open areas of rsearch even in LTI feedback theory: SISO and MIMO
internal variable feL.dback even with all feedback returned to plant inputs, but more important with
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feedback returned to internal plant points, thereby introducing 'plant modification' (8]. The latter
has hardly been touched and is extremely important in biological, economic and organizational
systems. It can greatly reduce the cost a feedback in typical control problems if it is considered
in the original plant design. There is needed much more extensive, intimate experience in the
design of MIMO systems in order to achieve greater insight into the trade-offs between the loops
and the cost of feedback. I would urge much greater involvement of the theoretical researcher in
actual design. That is, in my opinion, the only way for deep understanding and consequent
practical research usefulness, and for formulation of deep, realistic research problems. QFT has
made its greatest progress by such interaction with practicality. There is hardly a single QFr topic
which is totally completed. In the NMP SISO system, is it possible to obtain better, simpler
criteria for the existence of a solution? A versatile loop-shaping program would be very useful in
general. We need more detailed tools for trade-off between loop bandwidth economy and design
complexity. I have not mentioned as yet distributed plants with input, output and control all
distributed, and the design tolerances are also distributed, very important in traffic control and
transportation.

QFr has only opened a door into feedback design for nonlinear, time-varying uncertain
plants. But the techniques may be far from the last word in design economy. Much more design
experience is needed with such plants. QFT has at least provided rigorous design techniques
enabling such experience to be attained. Consider the vast amount of work in LTI feedback
theory, which is nevertheless far from complete, and the much greater complexity and importance
of nonlinear plants.

The most critical and challenging area is in non-LTI compensation. We have a pretty good
idea of the power and limitations of LIn compensation, whether for linear or nonlinear plants.
The only way to beat the game is by non-LTI compensation, and therein is the challenge.
Adaptive systems with their emphasis on identification are only one means of non-LTI
compensation. Consider the huge support it has received since its inception in the late 1950s.
Yet, I am not aware of any such adaptive design techniques which quantify their advantages, if
any, over LIn compensation. The only such techniques I know of have been done by QFT for
oscillating adaptive systems, and to some extent for a specialized nonlinear element FORE (first
order reset element). In both, the design theory enables one to see beforehand the advantages, if
any, of non-LTI compensation and therefore if it is worth the extra complexity. In some problem
classes there is no option, as the problem is not solvable by LITi compensation.

Linear time-varying (LTV) compensation is an intermediate stage between LTI and
nonlinear compensation. The following QFI result is fascinating and provocative [9]. Consider
a lumped (ODE) uncertain nonminimum-phase, unstable SISO plant whose finite number of RHP
poles and zeros are close together. With L7I compensation a stable design is always possible for
a nominal case, but even in an optimal design (10], it remains stable for only very small
departures from nominal. LTV compensation permits its stabilization over a large class of
arbitrarily large uncertainty. However, the normally acute sensitivity to the plant is transferred to
the compensation. Very small variation in the latter renders the system unstable. This is a
fantastic result. It is far easier to build a compensator (say a digital controller) with very narrow
tolerances than a plant whose power level can be billions of times greater. But even more
fascinating is this means of transfer of razor-edge sensitivity from one part of a system to another.
This is only a glimpse into the power of non-LTI compensation and a suggestion of how much
more powerful nonlinear compensation may be.

Non-LTI compensation is the means for radically changing the relation between cost of
feedback and its benefits, and of achieving results otherwise totally unattainable. Its potentialities
are unlimited. However, I would advise the researcher to first obtain deep knowledge of LTI
feedback theory and its limitations. Also, do not attack this formidable opponent on too wide a
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front. It has been tried unsuccessfully for decades by many brilliant researchers in adaptive
control. Try first to squeeze out just a bit of profit in some area where the limitation of LTI
compensation is clearly delineated

5. CONCLUSIONS

It is suggested that QFT is essentially what feedback control theory is all about. It is only
in its infancy at present. Unlimited ,-pportunides face the enthusiastic researcher in the unending
quest for achieving highly precise results, despite large uncertainty in the means of producing the
results. There is room in QFT for highly diverse talents: the nonmathematical practical engineer
with physical insight and inventive talent, the skilled msithematician interested in existence
theorems and abstract generalizations, up to the stubborn, even plodding researcher who by hard
dedicated work acquires deep understanding of his subject.
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BANQUET SPEECH
QFT INDUSTRIAL APPLICATIONS:

PAST, PRESENT, AND FUTURE

Dinner-Speech by Dr Eduard Eitelberg

Ladies and Gentlemen!

It is an exceptional honour to ha~ve been asked by Professor Isaac Horowitz and the conference
organizers to speak at this important meeting of people that have either grown up with or been
converted to QFT.

I assume that the number of QFT opponents or indifferents present is insignificant. Hence my
aim is not to bore you with what you know anyway - that the QFT is the best control system
design strategy and philosophy today. Having thus established my loyalties, I will try to stay on
the topic of my speech.

I would like to restrict attention to industry that produces goods, excluding for example the
tourism industry. Due to often vLstly different financing philosophies I would like tc distinguish
between the military or defence industry and the non-socialist non-monopolistic (?)
market-related industry, whose product must be marketable at a profit although sometimes therej
is very little difference in the actual production activity. It may not be a commonly accepted
classification, but there are practical differences in control theory applications where the control
system is an inherent part of the manufactured product on the one hand and where the control
system is part of the production process (hence "process control").

I am not qualified to survey the defence industry applications for various reasons. One is the
extreme confidentiality in this field. The other is that many of you know more than I do. Hence I
shall concern myself with the non-military industrial applications.

At another level, if "past" is what was before now, and if "future" is after now, then there is no
need to talk about "present." Hence, for the purpose of this speech, I would like to consider the
last five years as "present" - this is in the order of magnitude that an idea may need to become a
marketable product.

With these clarifications, I can say that the QFT non-military industrial applications do not yet
seem to have a past. It has a presence in a few products, such as earthquake instrumentation,
welding machines and a few other confidential /classified machines. I actually requested data from
23 QFT related researchers and their acquaintances. To those 10 who responded - a big thank
you! Not one of them has reported process control applications of QFT. What is more, I do not
foresee in the near future significant QFT applications in the process control industry, the way
QFT is understood at the universities, unless dramatic changes of attitudes occur among all
concerned groups. I would not be surprised if more and more products included feedback loops
designed with the QFT (or if there were fewer of them), this depends mostly on the attitude of the
academics.

In the following I shall explain the reasoning for both of these statements and for the difference in
process control and control in products. Let us address the products first.

Designing a product usually involves experimentation in a laboratory-type environment. Most of
the respondents to my survey did not report laboratory application of QFT although some had
product development experience. I am convinced that if students are forced to control realistic
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laboratory experiments, some of them will be able to apply QFT in industrial products. There are
at least four academic institutions known to me where efforts are made in this QFT direction -
two are in the R.S.A. (at UDW and Wits) and two are in the U.S.A. (at AFIT and UMass)

What do I mean by a realistic experiment? I mean an experiment that is not finished in an
afternoon. I mean an experiment where the student will have to specify the sensor and actuator
and will have to justify his control system specification by the currently available technology.
The experiment must educate the student to modify or build systems that facilitate the
controller's performance. I realize that this may be too expensive for many universities and one
may have to use post-graduate supervised industrial training before a graduate becomes an
engineer. At least two such places are known to me - El-Op in Israel and Sandia National
Laboratories in the USA. There certainly are others. This engineering experience cannot be
replaced by QFT-CAD.

Process control is much more difficult to learn in a laboratory than control in a product, because
of the sheer size ..nd expense of the usual plants. Furthermore, in my experience, QFT knowledge
and application skill has almost nothing to do with the chance of its application in the process
industry. Most industrial decision makers do not understand control theory of any kind and
frankly find control thcoreticians to be a nuisance.

Let me try to put the above statements into some perspective.

The hardware and associated software in controlled systems can be classified as indicated in
Figure 1.

operators

cotrollers i

communcation ,cocommunication

l actuators] Csensors

inputs outputs & measurements

Figure 1: Hardware in (prccess) control systems.

Sensors, actuators, communication hardware (e.g. transmitters, I-to-P converters, signal
conditioners, multiplexers), and power supplies are called instrumentation in process control
circles.

A lot has been published in recent years about the design and reliability of (digital) controllers,
about their programming, hardware and software maintenance, operator interfaces, Distributed
Control System (DCS) communication via bus systems (as opposed to instrumentation
communication) and so on.

Concurrently, the application design aspects of instrumentation have been neglected by the
academic control community with the result that almost the complete field of instrumentation in
many areas of process industry is often handled by technicians and vendors. Universities,
generally, do not graduate instrumentation engineers (McMillan, G.K. and Weiner, S..f How to
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Become an Instrument Engineer - The Making of a Prima Donna, ISA, 1987).

The U.S. market for instruments and controllers was in 1989 about (US) $6 billion, it was
probably twice that in the world (Control Engineering, Oct. 1991). Total U.S. automation
spending was $33 billion. [Compare this to G.E. (U.S.) yearly turnover of $60 billion (Control
Engineering, Nov. 1991). Of this control spending only 3% -as spent in the aerospace industry
(Control Engineering, Oct. 1991).]

Il process industry, probably most control related projects are carried out on existing plants as
retrofits. In an unpublished ICI presentation a typical "control" project cost break-down was
given as:

Contract Engineering: 11%
Own Engineering: 8%
Civil/Mech/Elec. Eng: 25%
DCS: 40%
Instruments: 15%
Benefits Analysis: 1%

Hence in an "average" (few hundred thousand U.S. dollar) control project, just over 50% is spent
directly on the control loop hardware and associated (configuration) software - controllers (DCS)
and instrumentation. Only the benefits analysis actually deals with feedback control system
design aspects and specifications. In my experience there is not even a separate heading in a
project for this activity, the management does not know about it and cannot care less, there is
nobody to talk to about QFT or any other control system design techniques. Gften even the
Ziegler-Nichols tuning rules are not handled at the engineering level, the technicians use them for
better or for worse.

Of course, there are engineers who know better. But I am pretty convinced that QFT will have to
be sneaked into process control projects - and keep quiet, don't frighten anybody.

I would like to tell you a little personal story. During a 10 month sabbatical leave from the
academic world, I acted as the coordinator between electrical, instrument, computer and boiler
building companies for' about one month during commissioning of a chemical recovery boiler.
That meant 20 hour work-days and sometimes sleeping in my car on site.

Once, because it was not spelled out in the contract, because of incompetence of the computer
control contractor and because the paper company was loosing about $100 000 of production per
day, I volunteered to tune the control systems. There was no possibility of system identification
or literature study and the control coittractors said that it was impossible to get it right in less
than a week. I told them, "Watch me!" and tuned 26 loops in about half a day and a night. That
included running between the control room and the various actuators at the top of the boiler or
down at the fuel heaters in order to clf.ck if the valves were limit cycling or why some outputs
reacted wrongly (mostly because of faulty equipment or manual by-passes). I succeeded, thanks
to QFT helping me to interpret what I saw. This all happened at about 30% load. Some time
later, at full load almost no retuning was necessary.

Some people hare suggested that more QFD-CAD is needed for its success. I think that good
CAD is needed in learning stages until one memorizes the individual moves of loop shaping etc.
graphically. During commissioning there is no time for elaborate designs and after commissioning,
"outsiders" are most unwelcome in the vicinity of the control room. If one could design a plant

like a product then the whole situation would be easier for QFT, but this is improbable because of
the cost and because most process plants are built by a combination of (sometimes rather
uncooperative) manufacturers.
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How can QFT be sneaked into process control? Firstly the "sneakers" must be educated with
realistic laboratory experiments and designs. This will lead to the recognition that in order to
apply QFT one does not have to design to uncertainty specifications. In the process industry one
can *very seldom extend the loop bandwidth over the plant bandwidth, hence loop shaping
proceeds backwards from the stability mari.ins to steady state. The PI control structure with
measures against integrator wind-up is eminently suited for this approach - mostly fix the gain
and then find the shortest possible integrator time. One may have to design tu specified
regulating behaviour, but it mutt be recognized that this requires process redesign or fiding and
eliminating limit-cycling loops in other parts of the plant more often than fancy controller design.

In relation to MIMO control, the processes are mostly designed so that single loops and their
common sense combinations are justified and can be tuned individually or in a common sense
sequence. Remember, "ordinary" people must be able to maintain these systems.

In both cases, SISO and MIMO, the most crucially neglected part of the control system is the
instrumentation. Instrumentation must be handled in QFT and alongside it. Instrumentation
limits the achievable performance and hence should be specified (at least) partly by the control
system designer in a quantitative manner. Furthermore, instrumentation fails very often and
(speaking to the younger generation) a successful control engineer must be able to use QFT for
extending instrument and plant life and reduce maintenance costs, down time and accidents.
Failure mode and process interlocking designs have yet to enter (seriously) the QFT-club. These
are presently important activities under the instrumentation and DCS headings of a project

Therein lies hope. Control engineers with QFT background must become instrument and "DCS"
experts or stick to these experts in order to apply QFT. One could try and become a project
manager in order to be able to decide what is done during a project, but there seems to be a
universal incompatibility between simultaneous managerial and design engineering wind sets.

Finally, let me entertain you with a story about how important a single $2000 instrument can be.
A few million U.S. dollar boiler rebuild project in Africa was won by a world-leading
Scandinavian company. Their base price was close to cost, but a substantial premium was
payable if they managed to increase the fuel (black liquor) throughput by 20%. Their
commissioning engineers could not achieve this goal during the normal commissioning. During an
extended stay they almost achieved this, but just before they were at the goal they set the
precipitators on fire and in addition melted or burnt substantial parts of the ducting and
machinery. It took over a year for the respective lawyers to sort this mess out. The "culprit" was
a reputedly 0.5% accurate magflowmeter measuring the fuel flow rate. It had its regular so-called
calibration certificates (for the electronics, mind you) but its primary sensor had not been visually
checked for at least two years, before I checked it. I found that due to lining deformation this
flowmeter measured about 7% less and hence the plant had already had 7.5 more throughput
before upgrade than conveyed to the unsuspecting contractors, who in effect were trying to
achieve 29% performance improvement. This was constructively impossible.
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LIST OF QUANTITATIVE FEEDBACK THEORY (OFT) SYMBOLS

Version 1.0

Prepared by

Professor C. H. Houpis

Air Force Institute of Technology

and

Flight Dynamics Directorate, Wright Laboratory

Wright-Patterson AFB, Ohio

July 11, 1991
Revised March 12, 1992

The awareness of the power of QFT to solve real world problems
has evoked the interest and involvement of a greater number of
control engineers and researchers. At the recent IFAC ACE and the
ACC meetings in Boston, MA, the QFT participants stated that this
increased involvement necessitates the establishment of a iL~t of
standard QFT symbols. They suggested the publication of this list
in order to avoid confusion to those trying to learn and understand
QFT and to enhance its acceptance and development into fertile
research areas and the solving of real world control problems.

This list is based upon the following:

1. The articles written by Professor I. M. Horowitz that are
listed in the References listing in "Quantitative
Feedback Theory (QFT)," Dr. C. H. Houpis, AFWAL-TR-86-
3107, Flight Dynamics Laboratory, AF Wright Aeronautical
Laboratories, AFSC, Wright-P>Etterson AFB, OH.

2. Chapter 21 of "Linear Contro' System Analysis & Design"
by D'Azzo & Houpis, McGraw-Hill Book Co., 3rd Edition,
1988.

3. Chapter 16 of "Digital Control Systems: Theory, Hardware,
Software," by Houpis & Lamont, McGraw-Hill Book Co.,
2nd Edition, 1992.

4. Master Theses by the flight control students of the Air
Force Institute of Technolgy, Wright-Patterson AFB 1H

This is the first attempt in establishing a standard list of
QFT symbols. Based upon the use and the reviews and comments that
are obtained of this list a new version, hopefully, will be
published periodically. -°
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Symbol Defintion

ap-- The specified peak magnitude of the
disturbance response for the MISO system

a.l. -- Arbitrarily large

a.s. -- Arbitrarily small

a,, = Lm i-- The desired lower tracking bounds for the
MIMO system

bii = Lm T -- The desired upper tracking bounds for the
MIMO system

aii' -- The desired modified lower tracking bound for
the MIMO system: a11' = a,, + Ar011

b'-- The desired modified upper tracking bound for
the MIMO system: b1 i' = bif - Af011

B0 (j~i) -- The bounds on Lm L(j~1 ) for disturbance, B0 ,
BR(jOi) and tracking bounds, BR, respectively, and
B 0(j6 1 ) the optimal bounds, B., for the MISO system

S-- Ultra high frequency boundary (UHFB) for
analog design

B1  -- Ultra high frequency boundary (UHFB) for
discrete design

Bu= LTa TRU -- The Lm of the desired tracking control ratio
for the upper bound of the MISO system

Bt = Lm TR-- The Lm of the desired tracking control ratio
for the lower bound of the MISO system

B-- Stability bounds for the discrete design

BW -- Bandwidth

A'r -- allotted portion of the ij output due to a
disturbance input

SDO(jW) -- The (upper) value of Lm T0 (jw1 )

6 hf(j~i) -- The dB difference between the augmented
bounds of Bu and B, in the high frequency
range
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6,(jO) -- The dB difference between Bu and BL for a
given w

dij-- The interaction or cross-coupling between the
of a MIMO system

D -- MISO system disturbance input

D ({did -- The Ut MIMO disturbance control ratio matrix

-- Script cap dee to denote the set of

SI D} disturbance inputs for a MIMO system D = {D)

F, F = (fid} -- The prefilter for a MISO system and the Uxt
prefilter matrix for a MIMO system
respectively

FOM -- Figures of merit (see the D'Azzo & Houpis
text)

G, G = (gij) -- The compensator or controller for a MISO
system and the txt compensator or controller
matrix for a MIMO system, respectively. For
a diagonal matrix G = (g1)

y, y: -- The phase margin angle for the MISO system
and for the i loop of the MIMO system,
respectively

Yij-- A function only of the elements of a square
plant matrix P (or Pe)

k -- A running index for sampled-data systems

where k = 0,1,2 ...

kT -- The sampled time

A -- The excess of poles over zeros of a transfer
function

L., Loii -- The optimal loop transmission function for
the MISO system and the ii loop of the MIMO
system, respectively

LHP -- Left half-plane

LTI -- Linear time-invariant

21



MIMO -- Multiple-input multiple-output; more than one
tracking and disturbance inputs and more than
one output

MISO -- Multiple-input single-output; a system having
onetracking input, one or more disturbance
inputs, and a single output

ML, MU -- The specified closed-loop frequency domain
overshootconstraint for the MISO system and
for the it loop of a MIMO system,
respectively. This overshoot constraint may
be dictated by the phase margin angle for
the specified loop transmission function

mp -- Minimum phase

nmp -- Nonminimum phase

NC -- Nichols chart

-- The number of plant transfer functions for a
MISO system or plant matrix for a MIMO system
that describes the region of plant parameter
uncertainty where E = 1, 2, ... , 3 denotes
the particular plant case in the region of
plant parameter uncertainty

-- the symbol for bandwidth frequency of the
models for TRU, TRL, and T = (tij)

, 0i -- phase marqin frequency for a MISO system and
for the i loop of a MIMO system,
respectively

-- Sampling frequency

P -- MISO plant with uncertainty

P= (p -- txm MIMO plant matrix where p~1 is the
transfer function relating the i output to
the jth input for plant case

-- Script cap pee to denote a set that
represents the plant uncertainty for 2 cases
in the region of plant uncertainty, i.e.,
P = (P) for a MISO system and P = (P,) for a
MIMO system
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P = (pj) -- The inverted plant matrix for plant case
where I - m

PC*= P(W -- The Uxt effective plant matrix when PC is not
a square plant matrix and W is an mxt
weighting or a squaring-down matrix

QFD -- Quantitative feedback design based on
quantitative feedback theory

QC = (q~jj) -- A xt matrix whose elements are given by
q (j = 1p (I

Q-- Script cap que to denote a set that
represents the plant uncertainty for a MIMO
system , i.e., Q - (Qj)

R, R = (r1 } -- The tracking input for a MISO system and the
tracking input vector for a MIMO system,
rpspectively

RHP -- Right half-plane

T -- Sampling time

TP(jwj) -- Script cap tee inconjunction with P or (q1i)
denotes a template, i.e.,T P(jw1 ) andTq(jfi))
represent the templates, for a given
frequency, for a MISO and MIMO plants
respectively

T -- The desired MISO tracking control ratio that
satisfies the specified upper bound figures
of FOM

TRI -- The desired MISO tracking control ratio that
satisfies the specified lower bound FOM

To-- The desired MISO disturbance control ratio,
whichsatisfies the specified FOM

TO, T{ -- The MISO tracking and disturbance control
ratios for case t

T= (t} -- The txt MIMO tracking control ratio matrix
for plant case
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Tt-- The script cap tee denotes the set that
represents the tracking control ratios for E
cases, i.e.! T1 = (Tat) for the MISO system
and Ti =T(TR )for the MIMO system

T.-- The script cap tee denotes the set that
represents the disturbance control ratios for
E cases. i. e., TD = (Tot) for the MISO
system and TD = (TD' for the MIMO system

-- A set of assigned tolerances on t,,: T•rj and
Tfj= 2AYDIj the assigncd tolerances for
tiacking and disturbance, respectively

U -- The txt controller input vector

UHFB -- The ultra high frequency boundary

v, v -- The MISO prefilter output and the txt MIMO
prefilter output vector, respectively

V -- lim,[Lm Pmex - Lm Pmln] is the dB limiting
value for a MISO plant

V1  -- Vim.LLm (q 11)m, - Lm (qj 1). 1 .] is the i'h loop
template dB limiting value for a MIMO plant

W = (wj) -- The weighting or squaring-down matrix

w = u + jv -- w'-domain variable; the use of u and v must
be interpreted in context

Y, Y = (Yij) -- The output of a MISO system and the output
matrix of a MIMO system, respectively, where
Yfj = Yrf + Ydij

Yri-- Is that portion of the ith output due to the
.th input

Ydij -- Is that portion of the ith output due to the
disturbance input d1 j (cross-coupling effect
or interaction of the other loops)
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Air Force Sponsorship
of

Quantitative Feedback Theory

P. Chandler
Flight Control Division

Flight Dynamics Directorate
Wright Laboratory

Wright-Patterson AFB, OH 45433

Introduction

This paper is an attempt to present, in approximate chronological order, the support provided
to Dr. Horowitz by the Air Force for his research into control theory. It is not intended to be
complete, but to document the major milestones in the development of QFT achieved under
this support. The Air Force has provided real problems and this has resulted in significant
enhancements to the theory.

Air Force Support Prior to '76

Air Force sponsorship of Dr. Horowitz's work extends back almost 20 years. The earliest
this author could locate was from 1973. He was fundcd under a grant from Air Force Office
of Scientific Research (AFOSR) through their arm European Office Aerospace Research and
Development (EOARD) under grant number 73-2149. Indeed, much of the early Air Force
support for Dr. Horowitz came through EOARD.

Under this grant he published the milestone paper entitled "Synthesis of Feedback Sys-
tems with Nonlinear Time-Varying Uncertain P'lants to Satisfy Quantitative Performance
Specifications", that appeared in the IEEE Proceedings in 1976. This paper presents an
approach to solve feedback control problems with uncertain nonlinear plants by means of an
equivalent linear time invarient (LTI) plant set. Schauder's fixed point theorem is applied
to prove that the equivalent LTI plant set satisfies the original nonlinear problem. This
important milestone turns an uncertain nonlinear problem into an uncertain linear pioblem,
which is then solved in a conventional manner. Prior to this there was no rigorous theory for
treating uncertain nonlinear control systems with quantitative performance specificatiorns.
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Air Force Support From '76-'77

During this period, sponsorship of Dr. Horowitz was provided by a grant, number AFOSR-
76-2946 from AFOSR to the University of Colorado, Boulder. At this time he held a chair at
the Weizmann Institute of Science, Israel and was also professor at University of Colorado.
His work on quantitative synthesis during this period is best described in the review paper
"Quantitative Feedback Theory", which was published in IEE proceedings in '82.

He also worked in two other areas that are significant advances, one in adaptive control
-the other in plan, modification.

One research area not normally associated with QFT is "adaptive control". However, of
the various adaptive design techniques which have been proposed, the only one for which
there exists quantitative systematic design to specifications was done by Dr. Horowitz and
his students. This is the class of Oscillating Adaptive Systems developed in a series of
doctoral theses. Furthermore, the design theory tells the developer if and to what extent
the adaptive system is superior to a LTI design. Part of the work in adaptive control is
documented in "A Synthesis Theory for Multiple-Loop Oscillating Adaptive Systems" and/
published in International Control in '79. This work presents the first quantitative design
effort in adaptive control.

Also during this period, Dr. Horowitz worked on plant modification. This is documented

in the paper "Synthesis of Multiple Loop Feedback Systems with Plant Modification" in
IJC in '79. This approach is for cascaded plants; for example, process plants and robotic
manipulators. For a cascaded plant, the feedback is permitted to proceed directly to internal
plant variables, constituting plant modification. This permits a drastic reduction in the cost
of feedback, in terms of loop bandwidth and effect of sensor noise. This is the first quantitative
work of its kind. The designer can achieve the desired trade-off between increased plant signal
level and cost of feedback.

Dr. Horowitz's coauthors and students have not been mentioned, and this, by no means, is
intended to slight their efforts. Dr. Horowitz significantly contributed to controls education.
He has had a great number of students, and it is not possible to acknowledge them all in so
short a document.

Air Force Support From '77-'78

This period signifies the first involvement of the Flight Control Division of the then Air Force
Flight, Dynamics Laboratory (AFFDL) and now the Flight Dynamics Directorate. This work
was sponsored t~inder grant AFOSR-77-3355 to Weizinann Institute of Science, Rehovot,
Israel. This work is documented in the report AFFDL-TR-79-3 120 entitled "Research in
Advanced Flight Control Design". The monitors for this effort were in turn Capt. Terry
Tarr, Bob Poyne-er, Bob Lemble, and Phil Chandler.

The obje-ctive of this effort was to investigate feedback design techniques which can work
when the plant has significant uncertainty and there are exacting performiance requirements.
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Design techniques were to be developed for nonlinear systems and applied to a F-4B 3-axis
nonlinear control problem.

This effort is a landmark in the development of QFT. Before this time there was no syn-

thesis theory for control design that could incorporate uncertainty and performance bounds
quantitatively. Two breakthroughs were achieved yielding precise quantitative synthesis for
both linear and nonlinear time-varying, single and multiple input-output systems containing
plants with large uncertainties.

The first breakthrough was the development of the concept of LTI plant sets that, for
given inputs, are precisely equivalent to the nonlinear plant. This converts a nonlinear
problem into a set of linear ones.

The second breakthrough was in converting a complex Multiple-Input Multiple-Output
(MIMO) problem into a number of Single-Input Single-Output (SISO) control problems.
The tolerances on the output of one SISO loop appear as disturbances in another loop. A
specified degree of decoupling "s achieved in the process. This effort was applied to a F-4B
nonlinear 3-axis flight control problem. All of the performance specifications were completely
satisfied. Any other approach, at this time, would have been very conservative and required
numerous iterations.

Air Force Support From '80-'83

During thhi period, the Air Force, through AFOSR (EOARD), sponsored an effort entitled
"Flight Control Design based on Multiple Input-Output Nonlinear Model with Uncertain
Parameters" at the Weizmann Institute of Science. This effort was initiated under grant
AFOSR-80-0213 and joint funded by EOARD (Maj Powell) and under the 2304N3 task
managed by Bob Schwanz, then later, Frank George. This effort is documented in AFWAL-
TR-83-3036 entitled "Multivariable Flight Control Design with Uncertain Parameters".

This effort was to develop pitch pointing, yaw pointing, and direct side force control laws
for a YF-16 CCV model. The objective was to decouple the pitch, roll, and yaw axes so that.
for example, a yaw pointing command will have a small specified effect on roll and lateral
acceleration. In addition, the pitch pointing mode would decouple pitch angle from normal
acceleration.

This is a major milestone in the development of QFT, for, in it's application to the YF-16
CCV, it is the first practical application of the design technique of decomposing the MIMO
problem into a number of SISO feedback loops. This demonstrated the great flexibility of
QFT in controlling three outputs that are highly coupled. A significant step forward was
made when it was discovered that the YF-16 CCV did not satisfy the theoretical high fre-
quency condition. This event forced a significant advance in the theory, which demonstrates
the importance of applying theory to real problems by the academic researcher. The YF-16
CCV effort was first presented at NAECON, '81 in the paper entitled "A Synthesis Technique
for Highly Uncertain and Interacting Multivariable Flight Control Systems".

This period of time saw major advances in the theory. These advances were first presented
in the paper "Improved Design Techniques for Uncertain Multiple Input-Output Feedback

27



Systems" in International Journal of Control, '82. It was shown that fixed point theory was
not needed to justify the theory. Simpler matrix algebra would suffice. Significant overdesign
was wrung out of the theory. The original theory is used for the first loop, then the exact
system equations are used for the other loops. This was motivated by the YF-16 CCV high
frequency bound problem. Also, arbitrarily small sensitivity constraints were taken out of
the design theory for those problems that did not require it in the' specifications.

Also in this time frame, the Laboratory sponsored, and Dr. Horowitz conducted, a
short course in QFT. This course was entitled "Practical Design Techniques for Nonlinear
and Multiple Input-Output Feedback Systems with Large Uncertainty". The course was
14 hours long over two days with 45 attendees from throughout Wright Patterson AFB. It
was conducted and video taped in the candid classroom at AFIT in Mar '82. The agenda
included: 1)quantitativwý LTI SISO problem, 2)example nonlinear problem ý + ay 2sign(y) =
kx, 3)nonlinear F-4B short period response, and 4)YF-16 CCV direct side force mode.

Air Force Support From '83-'87

Robust Multivariable Control

This was a very productive period in the development of QFT. A number of papers were
written, of which only three are discussed. This period was typified by the variety of issues
delved into. The work came under the heading Robust Multivariable Control in the Flight
Control Division and was supported under contract F33615-83-C-3000.

Saturation: Control surface actuator rate and amplitude limiting is a real and critical
problem in flight control and for Ln unstable aircraft can result in departure. In the paper
"Quantitative Non-linear Design for Saturating Unstable Uncertain Plants", International
Journal Control, '86, a nonlinear saturating element is introduced in the feedback loop. This
loop prevents saturation of the actuator. Unlike most techniques used todty, the design
accepts large signals and can work close to maximum capacity. The system responds to the
large input signals with virtually no delay. There are many tricks developed over the years
for this problem, but this approach is one of the few with a good engineering-theoretical
foundation.

Non-Minimum Phase: It is well known that non-minimum-phase (NMP) plants restrict
the potential benefits of feedback. In the SISO case, a plant righ. half plane (RHP) zero
constrains the system transfer function to have a RHP zero at the same location. Modern
fighter aircraft are typically NMP in the longitudinal axis. The system can be stabilized,
but the stability margins may be quitc small. In the paper "An Important Property of Non-
Minimum-Phase Multiple-Input Multiple-Output Feedback Systems", IJC, '86, this led to
the apparently hitherto unknown, but important fact that not all the nxii transfer functions
need suffer from the NMP liability. The MIMO capability allows the NMP liability to be
placed on a less important output, and the critical outputs can be minimum phase.

Discrete: All flight control syst( ms today are implemented digitally, i.e. are sampled-data
systems. Heretofore nearly all of the theoretical work in QFT has been continuous. In the
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paper "Quantitative Feedback Design for Sampled-Data Systems", IJC, '86, the theory is
developed for design in the w' domain. The detailed design procedure parallels very closely
that for continuous systems. Because of sampling, all digital control systems are NMP. The
design shows how this effect can be minimized with the sampling frequency for minimum
phase plants. For NMP plants the constraints are the same as in continuous time, which is
demonstrated quantitatively.

X-29 Study

The X-29 has very strong non-minimum-phase properties at some points in the envelope.
This results in a reduced benefit of feedback, and robustness (or stab;lity margins) to pa-
rameter variations can be very small. Dr. Horowitz performed a brief study under contract
F33615-81-3201, problem number 426, to examine the robustness properties of the X-29. As
a result of these investigations, he rediscovered the singular loop transmission approach for
control design for NMP plants. The technique (which he calls singular G) has been used in
the past in an ad hoc manner, but he was the first to put it on a theoretical footing and
thoroughly explore it's properties. The singular G name is derived from a G compensation
matrix that is not full rank. This means that at least one of the outputs is not independent,
i.e. two outputs have a fixed ratio. Ordinarily, this means giving up some design freedom,
but the NMP problem is eliminated and robustness to parameter variations is much greater
and the need for scheduling reduced.

Inherent Reconfiguration

The Self-Repairing Flight Control System (SRFCS) Program Office retained Dr. Horowitz
as a consultant to investigate inherent reconfiguration. The SRFCS program objective was to
develop and flight demonstrate a flight control system that would identify and isolate control
surface failures and damage, .then reconfigure the control laws to maintain performance and
stability. Dr. Horowitz's task was to explore control design techniques so that, even under
severe control surface failures, the tolerances can be satisfied automatically, with no need
of explicit identification and switching in of new (a priori designed) compensators. This is
denoted as inherent reconfiguration.

The primary motivation for this effort is that the control laws need to be sufficiently
robust for the period during which the identification is isolating the failure. The approach
taken by Dr. Horowitz is a natural extension of QFT, and clearly reveals the cost of feedback
needed. This enables the designer to make intelligent trade-offs between fixed compensation,
scheduling, and adaptation-identification. Identification, when it is necessary, can be done
more slowly and accurately when the design is stable over as many failures as possible. The
designs performed by Dr. Horowitz proved to be remarkably robust.

A SRFCS contractor, Lear Astronics, applied QFT to their design to maximize robustness
to failures. Elements of this design were flown in the real-time simulator.
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Air Force Institute of Technology Involvement - '82 to

Present

During this time, Dr. Horowitz began his association with the Air Force Institute of Tech-
nology (AFIT). Based upon the success of his earlier work, the laboratory requested that
AFIT, through Professor C. H. Houpis, become involved with Professor Horowitz in a joint
QFT research and development effort. Since the early eighties, Professor Horowitz has been
an AFIT Distinguished Visiting Professor under the financial sponsorship of the laboratory
(now directorate). A number of AFIT Masters of Science thesis students have been in-
volved in this research and development effort, and has resulted in a number of journal and
conference publications.
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OVERVIEW OF

MI1O QUANTITATIVE FEEDBACK THEORY (QFT) TECHNIQUE

Constantine H. Houpis
Air Force Institute Of Technology

Wright-Patterson AFB, Ohio, 45433, USA

INTRODUCTIONle

Quantitative feedback theory (QFT) has achieved the status as a
very powerful design technique for the achievement of assigned
performance tolerances over specified ranges of plant uncortainties
without and with control effector failures. This paper presents an
overview of the MISO QFT analog design technique'. The MISO QFT PC
CAD package demonstration on Tuesday afternoon will reinforcs this
overview.

1. The 3ISO Control System

The overview of the QFT design technique is presented in terms of
the minimum-phase (m.p.) LTI MISO system of Fig. 1. The control
ratios for tracking (D = 0) and for disturbance rejection (R = 0)
are, respectively,

Ti(s) = F(s)G(s)P(s) - FL (1)
1 + G(s)P(s) I + (

P(s) P (2)
1 + G(s)P(s) 1 + L

or TD = a constant :p (3)

The tracking thumbprint specifications, based upon satisfying some
or all of the step forcing function figures of merit for under-
damped (MP, tp, t,, t,, KJ) and overdamped (t,, t,, KJ) responses,
respectively, for a simple-second system, are depicted in Fig 2(a).
The Bode plots corresponding to the time responses y(t)u and y(t)L
in Fig. 2(b) represent the upper bound Bu and lower bound BL,
respectively, of the thumbprint specifications; i.e., an acceptable
response y(t) must lie between these bounds. Note that for the m.p.
plants, only the tolerance on IjTR(Oi) I need be satisfied for a
satisfactory design. For nonminimum-phase (n.m.p.) plants, toler-
ances on LTR(jiO) must also be specified and satisfied in the design
process. 7.8 It is desirable to synthesize the tracking control ratios
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corresponding to the upper and lower bounds Tiu and TR, respective-
ly, so that Sm(jwi) increases as wi increases above the 0 dB crossing
frequency of TRU. This characteristic of 6S simplifies the process
of synthesizing a loop transmission L0 (s) = G(s)Po(s), where P. is
the nominal plant transfer function, that requires the determina-
tion of the tracking bounds BR(iw;) which aze obtained based upon
61 (jwi). The simplest disturbance control ratio model is T,(s) =
Y(s)/D(s) = ap a constant (the maximum magnitude of the output based
upon a unit step disturbance input).

2. Plant Templates of Pj(s), OP(JM)

With L = GP, Eq. (13) yields

Lm T. = LmF + Lm1L]()

The change in TR due to the uncertainty in P is

A(Lm Ti) =LM TR - Lm F = Lm L (5)

By the proper design of L = L, and F, this change in TR is restrict-
ed so that the actual value of Lm TR always lies between Bu and BL
of Fig. 2. The first step in synthesizing an L, is to make templates
which characterize the variation of the plant uncertainty, as de-
scribed by j = 1,2, ... , J plant transfer functions, for various
values of wi over a speci- fied frequency range. For the simple
plant

P(s) - (6)s(s + a)

where K r {1,10} and a e {1,10}, is used to illustrate how the
emplates are obtained for a plant with variable parameters. The
region of plant uncertainty is depicted in Fig. 3. The boundary of
the plant template can be obtained by mapping the boundary of the
plant parameter uncertainty region as shown on the Nichols chart
(NC) in Fig. 4. A curve is drawn through the points A, B, C, and D
and the shaded area is labeled !P(jl), which can be represented by
plastic a template. Templates for other values of wi are obtained
in a similar manner.

3. U-Contour

The specifications on system performance in the frequency domain
[see Fig. 2(b)] identify a minimum damping ratio • for the dominant
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roots of the closed-loop system which becomes a bound on the value
of MP = M,. On the NC this bound on M. = ML [see Fig. 2(b)] estab-
lishes a region which must not be penetrated by the template of
L(jw) for all w. The boundary of this region is referred to as the
universal high-frequency boundary (UHFB), the U-contour, because
this becomes the dominating constraint on L(jw). Therefore, the top
portion, efa, of the ML contour becomes part of the U-contour. For
a large problem class, as w , the limiting value of the Plant
transfer function approaches

li_ K
Wi-. [P(jw)] = K (7)

where X represents the excess of poles over zeros of P(s). The
plant template, for this problem class, approaches a vertical line
of length equal to

Lima.
-( .)[Li P. ax - Lin Pmin] = Lm K. - Lm Kin 4 V dB (8)

If the nominal plant is chosen 4t K = K., then the constraint ML
gives a boundary which approaches the U-contour abcdefa of Fig. 5.

4. Sounds D.(Jw) on Lo(Jw)

The determination of the tracking BD(jwi) and the disturbance BD(jci)
bounds are required in order to yield the optimal bounds B,(jOi) on
Lo(jwi). The solution for BR(jwi) requires that the actual
--AT1 (jW) S SR(jui) dB in Fig. 2(b). Thus it is necessary to determine
the resulting constraint, or bound BR(jwi), on L(jwi)). The procedure
is to pick a nominal plant Po(s) and to derive the bounds, by use
of templates or a CAD package, on the resulting nominal transfer
function L,(s) = G(s)P,(s). The disturbance bounds can be determined
by the method described in Reference 2. For the case shown in Fig.
6 Bo(jwu) is composed of those portions of each respective bound
BR(jwi) and BD(ji4?) that have the largest dB values. The synthesized
Lo(jci) must lie on or just above the bound Bojwi) of Fig. 6.

S. Synthesizing (or Loop Shaping) L0 (s) and F(s)

The shaping of Lo(jw) is shown by the dashed curve in Fig. 6. A
point such as Lm Lo(j2) must be on or above Bo(j2). Further, in
order to satisfy the specifications, Lo(jw) cannot violate the U-
contour. In this example a reasonable Lo(jw) closely follows the U-
contour up to w = 40 rad/sec and must stay below it above w = 40 as
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shown in Fig 6. It also must be a Type 1 function (one pole at the
origin). Synthesizing a rational function L0(s) which satisfies the
above specification involves building up the function

L0 (ja) = LOk(jw) =P0 (jw) n [KkGk(j (o)k=O0

where for k = 0, G, = 1/jO', and K = II=,.A Lo(jo) is built up term-
by-term or by a CAD loop shaping routine,9 in order to stay just
outside the U-contour in the NC of Fig. 6. The design of a proper
4(s) guarantees only that the variation in ITR(jW1)I is less than
or equal to that allowed, i.e., 6R(jcW). The purpose of the pre-
filter F(s) is to position Lm [T(jw)] within the frequency domain
specifications, i.e., that it always lies between Bu and BL (see
Fig. 2(b)] for all J plants. The method for determining F(s) is
discussed in the next section.

6. Prefilter Design17 '.

Design of a proper L0 (s) guarantees only that the variation in
IT,(jw)I is less than or equal to that allowed, i.e.,
6R(jw) : A[Lm TR(jw)]. The purpose of the prefilter F(s) is to
position

Lm T(jw) = Lm L(jw) (10)
1 +L (jO)

within the frequency domain specifications. A method for
determining the bounds on F(s) is as follows: Place the nominal
point of the wi plant template on the L.(jwi) point of the L0(jw)
curve on the NC (see Fig. 7). Traversing the template, determine
the maximum Lm T. and the minimum Lm Tm values of Eq. (10)
obtained from the M-contours. Based upon obtaining sufficient data
points, for various values of wi, and in conjunction with the data
used to obtain Fig. 2(b) the plots of Fig. 8 are obtained.
Utilizing Fig. 8, the straight-line Bode plot technique, and the
condition

Lim F(s) = 1 (11)
s-O

for a step forcing function, an F(s) is synthesized that lies
within the upper and lower plots in Fig. 8.

34



7. Simulation

The "goodness" of the synthesized Lo(s) and F(s) is determined by
simulating the QFT designed control system for all J plants. MISO
QFT CAD packages are available that expedite this simulation phase
of the complete design process (see Appendix).

S. *I80 QYT Discrete Design Technique 3"6

The bilnear transformation, z-domain to the w'-domain and vice-
versa, is utilized in order to accomplish the QFT design for both
MISO and MIMO sampled-data control systems in the w'-domain. This
transformation enables the use of the MISO QFT analog design
technique to be readily used, with minor exceptions, to perform the
QFT design for the controller G(w'). If the w'-domain simulations
satisfy the desired performance specification then by use of the
bilinear transformation the z-domain controller G(z) is obtained.
With this z-domain controller a discrete-time domain simulation is
obtained to verify the goodness of the design.

Appendix -- QFT CAD PACKAGES

A. INTRODUCTION

The first useable MISO QFT CAD package was developed, in 1986 for
the analog design and in 1991, for the discrete design at the Air
Force Institute of Technology (AFIT). This CAD package has been a
catalyst in assisting the newcomer to QFT to understand the
fundamentals of this powerful design technique.

A.1 NISO QFT CAD -- The AFIT package is called "ICECAP/QFT" which
is designed for the VAX. Those desiring a copy of this package can
contact: Professor Gary B. Lamont, AFIT/ENG, Wright-Patterson AFB,
OH 45433. Currently Professor Lamont is developing a PC version of
this package. These packages have been designed as an "educational
tool."

A.2 MIBO QFT PC CAD -- Dr. Oded Yaniv, Tel-Aviv University, Israel,
has a MISO QFT PC CAD package for both analog and discrete system
design.

A.3 OTHERS -- Professor F. Bailey, University of Minnesota,
Minneapolis, Minnesota, has also developed QFT CAD packages. The
QFT CAD packages mentioned in this Appendix will be demonstrated
Tuesday afternoon during *he symposium.
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B. NIMO QFT CAD

A MIMO PC QFT CAD package was developed by Mr. Richard R. Sating as
a Master thesis, under the direction of Professor C. H. Houpis, for
his AFIT MS degree. This package was designed to handle MIMO
control problems of arbitrary dimensions for both the analog and
the digital case with the option to use the improved method during
the design. This package will also be demonstraed on Tuesday
afternoon.
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SYNTHESIS OF UNCERTAIN MIMO FEEDBACK
SYSTEMS BY QFT - A TUTORIAL

ODED YANIV*

Abstract

In the QFT design technique for MIMO uncertain feedback systems, the objective is to de-
sign the controller and prefilter such that given closed loop specifications are achieved over a
given range of plant uncertainty. This tutorial uses a two input two output plant to explain
the properties of the QFT technique for linear time invariant systems, which are: (1) Design to
plant uncertainties both in model and disturbances, (2) Design to performance specifications,
(3) Emphasize 'cost of feedback', (4) Elimination of underdamped closed loop behavior if pos-
sible, and (5) the design procedure is always reduced to a sequential SISO and/ca: MISO design
process whose bounds can be calculated in a closed form.

"Faculty of Engineering, E.E.-Systems, Tel-Aviv University, Tel-Aviv 69 978, Israel.
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1 Introduction
The synthesis of MIMO feedback systems with uncertain plants (Wendell, 1988) is a problem
which has aroused a great deal of interest. Some of .ie most important synthesis methods
are He. (Francis, 1987), Adaptive Control (Astrom, 1985), the British school (Mayne 1979,
Rosenbrock 1974) and the QFT method (Yaniv and Horowitz, 1986). In addition to robust
stability and performance, a good synthesis technique should meet the demands of low cost of
feedback solution, no internal conditionally stable loops if possible, and gain and phase margin
specifications. The last property has been discussed in several papers using various definitions
of gain and phase margin, for example (Davison 1986, Sobel 1983 and Tannenbaum 1986).
The definition adopted by QFT emphasizes the distance from the critical point -1 of the loop
transfer function at different channel breaking points. In general terms, this implies a smooth,
not underdamped, time response for tracking commands as well as disturbances at the plant
output.

The tutorial is set out as follows: The problems QFT solves are defined in Section 2, while
Section 3 develops the design process for the basic tracking problem, and Section 4 is devoted
to a design example.

2 Definition of the Problem

In Fig. I P = [pi(a)]' is a linear time invariant plant model. Due to plant uncertainty P can
be any member of a given set denoted by P. For all ij = 1,... ,n, let the following definitions
hold:

"* ai(w) - a non-negative function of w.

"* b6j(w) - a positive function of w, bij > ajj.

"* mi(w) - a positive function of w, exists wl and zi such that mi(w) < zi < 1 for w > W1.

"* yi(w) - a positive functions of w.

"* F = [jA] - a prefilter.

"* G - diag(g,) - a strictly proper controller.

" TR [ti] = [I+ PG]- IPGF - the transfer function from rj to yj in Fig. 1.

"* TD = [do] = [I + PG]-IP - the transfer function from plant input j to IN in Fig. 1.

" VP = {D), a set of disturbances at the plant input.

"" L* - the true loop transmission from the input at e, (of Fig. 2), where only the channel
at ej is disconnected, derived as follows: feed an impulse into e' and measure the signal
returned to e, the transfer function of the latter is L?.

"* wo - this frequency is defined as the frequency above which the disturbances are of low
magnitude and sensitivity to plant variations is not important (since at hirh frequencies
the benefits of feedback are negligible).

The problem QFT solves: find F and G to satisfy (1-4) below for all P E P:

* Stability: the closed loop system

TR = [I + PG]"-PGF (1)

is internally stable.

'Throughout this paper, all matrices are n by n whose elements are proper rational transfer functions.
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SClosed loop performance: For a givenw o, ail andb j

ai(w) _5 jtij(w)j I5 bij(w); for i,j = 1,...,n, andW < Wo, (2)

M Margin performance: For i 1 ....= , n, the i-th loop stability margin satisfies:

11 + 41 !>_i(W); i= 1 .. ,. (3)

* Disturbance rejection performance: For each member D of V)

(TDDýt < vi, i- =1,-., n. (4)

Remark 2.1 Inequality (3) used by Horowitz (1972) is not identical to the gain and phase
margin found in classic control tezs (See D'Azzo and Houpis, 1988), but rather the 'closest
distance to the critical point -1' of the transfer function Li", which is given by the value Di(w).
For example if D,(w) = 0.5, the gain and phase margin are 6dB and 30" respectively.

Remark 2.2 For F = I and for a diagonal controller G, tj = L?/(1 + L"), is the transfer
function from input ri to output yd (O'Reilly, 1991). A proper choice of m,(w) will eliminate
any underdamped behavior of t1 i, so that the uncertain MIMO system will then ethibit a better
time response similar to that seen in SISO systems. The same is valid for output p• due to
disturbance at the plant output i, since its transfer function is (1 + L).)-

3 The Design Procedure
The Horowits MIMO design method (Yaniv and Horowitz, 1986) which is concerned with sat-
isfying (1-2), turns the design process into a sequence of MISO probl-ms. The solution of
each MISO problem is the controller gi and the prefilters fij, J = 1,..., n (each fj being due
to the closed loop specifications from input at j to output at i), giving a nombined solution
G = diag[gl] and F = [fj] for the MIMO system. The main task during the design of each
MISO problem is to find bounds on an open loop transfer function. Each bound is a closed curve
on the complex plane dividing the latter into two regions, one of which is called O(W), so that if
the open loop transfer function at frequency w belongs to u(w) and satisfies the Nyquist stability
criterion, the synthesis procedure must work. In order to satisfy each of the performances (1-4),
more constraints are placed on each of the MISO problems. T,-s the permissible region or(w) is
reduced, which in turn implies a solution for the MIMO system, if a solution is found. This is a
kind of simultaneous stabilization problem with constraints, i.e., at each step, gi is designed so
that the bounds are satisfied and the same controller gi stabilizes a given set of plants.

3.1 Stability and Closed Loop Performance

Consider the feedback system shown in Fig. 1. Let (i1 ,...,i,) be a given order of the integers
(1,...,n), and P" = JLp)] be defined recursively as follows:

= [ kl-1 Pih phi i] ;&h...,in (5)

Based on the sequential loop closure technique of Mayne (1979) and Rosenbrock (1974), it is
shor- that (for the sake of clarity ih = k and the superscript k denotes the recursive step
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number):

li = A g sq-l9. A+ gqý i- /k ,..... n; ... I ,- ,n (6)
(8)\

where dj = E k .+ E kt #; = Il k.(7)

Clearly, ti does not depend on k or on the chosen recursive order (i1 .... ,i.) and qk does.
Hence (6) gives (n - k + 1) equations for ti j as a function of qk. Equations (6-7) reduce the
MIMO problem into n2 MISO problems in the following way. At step m, (m = 1,... ,n), the
designer obtains the scalar transfer function g,. and f mj (j = 1, ... ,n) so that for all P 4S P

am,(w) ~ ~ 1gmqm- 1 +gmq~ (m- ()WLI_I

is internally stable. (8)

where d'," is assumed (in the Horowitz MIMO technique) bounded by

E P.k. u~+ E IP. b

Remark 3.1 The gm and fni designed for j = 1 ...I, n, are used to define the parameters of
the next step (step m + 1, Equations (6-7) for i = m + 1). After n steps, all gi and f,, are
known and the design process comes to an end.

Remark 3.2 Step m is equivalent to solving n uncertain MISO problems with the same con-
troller gm and n prefilters f,,j, which can be solved within the framework of the QFT technique.
Moreover, a parameter z can be chosen, generally between 0.5 and 0.8, so that 1(l-+q,'gmq) > z.

3.2 Margin Performance

In order to satisfy the margin conditions 3, i.e,.

11 + Ln' 1_ ,N(w); i = I,- .. ,n. (9)

the bounds for gk should also guarantee [15]

I1 + Li ni(w); i =1,...,k. (10)

The solution of these inequalities, to find bounds on gh such that (101 ;, true, is a closed curve in
the complex plane which can be calculated for each case and phase of ga by solving a quadratic
equation. The bound on gk will be the union of bounds due to all the constraints. In the trivial
2z2 case this may decrease the allowed region for the second step (say design g2) such that

21+ 1 - 1>3~) 1+12 - 1>d() 1)PII+ p _P1 2P21/(P22 +32) di(w); 2 P22 - P12P21Ap/(p +9gl1> d2(w) (11)

The solut.ion of these inequalities, to find bounds on g2 such that (11) is true, is a closed curve in
the complex plane which can be calculated for each case and phase of g9 by solving a quadratic
equation. The bound on g2 will be the union of bounds due to all the constraints.
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4 A 2z2 Example

4.1 Plant and Performance definition

* Plant Model: P--I[''l', k12" ] (12) /

* Plant Uncertainty: k11 and k22 in [2 - 6], k12 and k2l in [0.5 - 1.51

* Closed Loop Performance: Are given on (tgj], off diagonal tracking elements less than
-20dB and the diagonal satisfy the constraints given in the following table:

W b511,b22  al.a22
1 1.1 0.9
2 1.1 0.8
3 1.0 0.6
5 0.7 0.2
10 0.1 0

4.2 Design Execution

4.2.1 Design step #1

Find a solution to the two MISO feedback systems described schematically in Fig. 3, i.e., find
11, fl and f12 such that for all plant cases and tij[I < be

all < Itill < b11, and a12 < ItI2l < b12. (13)

Since the off-diagonal should be as small as possible, the choice 112 = 0 and121 = 0 is reasonable.
Thus the solution of the MISO problems

8 ii lij [+ib 52 /•ill <bi1, <I-2q / <12< b12  (14)

is a solution to step #1. The bounds and nominal loop transmission are given in Fig. 4. The
controller and prefilters are:

#15(1 +#/45) A1If2=0
T= 1+ a/5)(1 + /140+ 82/1402); 1 + 1.4s/2.5 + 82/2.52' 112 =0. (15)

4.2.2 Design step #2

Find a solution to the two MISO feedback systems described schematically in Fig. 5, i.e., find
g2, f21 and !22 such that for all plant cases and ItijI < bj

a=• < lt=•l < b=l, and a22 < -It2 < 522. (16)

where

2iP22 -- i (17)

and
43= 1!p (18)
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The bounds and nominal loop transmission are given in Fig. 6. The controler and prefilters
are: 25(1 + s/25) 1;22 = I

= 1+ /90 + 82/902; 1 -2 - 1.48/3 + S2/3; /210. (19)

4.2.3 Frequency Domain Simulations

The next table gives upper and lower values for the closed loop transfer function diagonal ele-
ments and upper values for the off-diagonal values.

W 1 2 3 5 10
tu 0.99-0.99 0.86-0.85 0.59-0.58 0.26-0.25
L•2  1.00-1.00 0.94-0.92 0.75-0.52 0.39-0.35
t2i 0.02 0.04 0.05 0.05
t2 2  0.04 0.07 0.08 0.07
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A Delta Transform Approach to Loop Gain-Phase Shaping Design of
Robust Digital Control Systems*

A.J. Punyko÷
F.N. Bailey'

Abstract: This paper addresses the existence of loop gain-phase shaping (LGPS) solutions for the design of robust digital
control syste.s for SISO, minimum-phase, continuous time processes with parametric uncertainty. We develop the
frequency response prop!rties of LGPS for discrete time systems using the A-transform, a transform method that applies
to both continuous and discrete time systems. A theorem is presented which demonstrates that for reasonable
specifications there always exists a sampling period such that the robust digital control problem has a solution. Finally,
we offer a procedure for estimating the maximum feasible sampling period for LGPS solutions to robust digital corirol
problems.

1. INTRODUCi ION
The Loop Gain-Phase Shaping (LGPS) approach to robust control system design uses

closed loop performance and relative stability specifications, combined with a model of process
uncertainty, to define complex plane gain-phase constraints on the nominal open loop gain
function. The designer then "fits" a realizable nominal loop gain function Lo(s) to these
constraints and uses L.(s) to obtain descriptions of the necessary compensation networks. The
LGPS concept for single-loop, analog, robust control system design was originally proposed by
Horowitz in (Horowitz 1963) and later combined in the general framework of quantitative
feedback theory, or QFT (Horowitz 1982). In (Bailey and Hui 1991) it was shown that for SISO
robust control system design, LGPS has performance advantages over traditional loop gain
shaping and its derivatives (LQG/LTR, H.-Optimization, etc.). Moreover, LGPS allows the
control system designer to directly attack the robust performance problem, unlike other methods
which indirectly address robust performance by solving a stabilization problem.

The fitting of a realizable nominal loop gain function to specification/uncertainty
generated gain-phase constraints is the difficult part of the LGPS design procedure. Although
several iterative search approaches. have been demonstrated, no closed form solution exists (Gera
and Horowitz 1980; Thompson 1990). An important unresolved question involves the existence
of solutions to the fitting problem. If one plans to use an iterative search approach to the
solution of this problem, it is important to know whether a solution exists. In (Bailey and
Cockburn, 1991), a mathematical formalization of LGPS was used to study the existence of
solutions to the fitting problem in the continuous time case. There it was shown that in the case
of minimum phase (but possibly unstable) processes with only parametric uncertainty, a fitting
solution (and thus a solution to the LGPS design problem) always exists if there are no
constraints on the open and/or closed loop bandwidth. However, fitting solutions in the case of
non-minimum phase processes is problematical (Horowitz and Sidi 1978).

The increasing popularity and flexibility if digital controllers has lead to the adaptation

"This work was supported in part by a grant from FMC Corporation.
+Dcpartmcnt of Elcctrical Engincering, UnivCrsity of Minnesota, 200 Union St. S.E., Minneapolis, MN 55455, USA, 612-
625-7808.
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of LGPS concepts to the design of digital control systems. This problem was considered in
(Horowitz and Liao 1986). However, these authors merely present a design example in order to
show the effects of sampling on the continuous time LGPS problem. Additional papers on QFT
design of digital controllers (Yaniv and Chait 1991; Lamont, Houpis, and Ewing 1991) have
primarily focused on design techniques. Unfortunately, none of these papers discuss the
existence of discrete time LGPS solutions. In fact, because discrete time plant models are
generally non-minimum phase, for a fixed sampling period there may be no solution to discrete
time LGPS problems.

In this paper we adapt the mathematical formalization of the LGPS problem as described
in (Bailey and Cockburn 1991) to address questions about the 1xistence of solutions to discrete
time LGPS problems in the case of parametric uncertainty. We will assume that the discrete time
robust control problem arises in the context of digital control of a continuous time process. Thus,
we will assume that the discrete time process is the step-invariant equivalent (or zero-order hold
equivalent) of a continuous time process which is finite-dimensional, linear, time-invariant,
minimum phase, but possibly unstable. A glossary of notation and definitions is provided in the
Appendix.

.2. THE CONTINUOUS TIME ROBUST CONTROL PROBLEM
Given a process model with uncertainty, a model of external disturbances, and desired

stability and performance specifications, the goal of the general robust feedback control problem
is to design a controller such that the closed loop system meets the desired stability and
performance specifications.

Because the LGPS approach assumes that only the process inputs and outputs are
available, the most general controller configuration is the two-degree-of-freedom structure (TDF)
(Horowitz 1963). Given the particular TDF structure shown in Fig. 1, the LGPS approach to the
robust control problem is to choose a loop compensator G(s) and pre-compensator F(s) such that
the closed-loop transfer function T(s) meets the desired stability and performance specifications.

In the next sections, we outline the continuous time LGPS robust control problem and
then summarize the continuous time LGPS existence conditions detailed in (Bailey and Cockburn
1991).

2.1 Problem Description

The Process Model
Throughout this paper, we model the continuous time process as an arbitrary SISO

dynamic system with parametric uncertainty. Formally, we have this set of assumptions about
the process model, P(s).

Assumption IC: We assume that the continuous time process model P(s;ct) is finite-dimensional,
linear, time-invariant (FDLTI) and has only parametric uncertainty. We assume a transfer
function model of the process in the form
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Sb,(a)s

P(s) P(s;a) with a E A c lP, n>m

Sa(ct)s -
j,,o

where the coefficients b,(a) and a3(a) are uncertain due to underlying uncertainty in some model
parameters a (e.g., masses, gains, inertias, etc.) and AP is a compact set of parameter variations.
We also assume that there is a nominal parameter vector aoe AP which defines the nominal
process model: Po(s):=P(s;cz). Also, we consider only those processes that are minimum-phase
(i.e., no closed RHP zeros), have. no uncertain poles on the jco-axis for all ae A., and assume that
a%(a)b.(a)>O for all aC A. We define the pole-excess of the process as r=n-m>0.

d

F(s) = Pre-compensator
G(s) = Loop Compensator
P(s) ; Process Model
L(s) = P(s)G(s) = Loop Gain
T(s) - F(s)L(s)/[l+L(s)] = Closed Loop Transfer Function

Fig. 1. A TDF Feedback Control Structure.

Performance Specifications
We assume that the closed loop performance specifications1 are given in terms of bounds

on allowable variation of IT(jco) 1: 0 < a(w)c(Qo) 5 IT(;jo) I < b(co)c(o) < -c, where a(-), b(-),
and c(-) are real-valued functions of C). Thus, for each a) we define 8T(o):=ln[b(aw)/a(co)] as the
allowable logarithmic gain variation in IT(jo) 1.

Assumption 2C: We assume that the performance specifications ST(aw) satisfy the fact that
5T(w)>r(cn), where 'r(o) is real-valued, non-negative, non-decreasing, and t(w)--cc as o-4.

'For simplicity we will consider performance boundaries related to robustness in the presence of process uncertainty.
Similar performance boundaries can be developed for robustness in the presence of external disturbances. The results of
this paper easily generalize in the case where both types of performance boundaries are considered.
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The above assumption means that closed loop performance is required only for "low" frequencies.

Stability Specifications
Throughout this paper, we assume that the stability (and/or relative stability) specifications

are given in terms of a desired Nichols plane gain-phase region surrounding the (-180*, 0 dB)
point. For simplicity, this specification will be described by a rectangular region,
S,:=(G.*÷,GmAm÷,A*), as shown in Fig. 2.

0 d8
-lad+,. .led,4;,

G.

-180"

Fig. 2. Stability Specification Region S,=(G=÷,Gm,;4m÷,4').

Assumption 3C: We assume that the stability specifications S, satisfy the restrictions that C.-
and Gm* are bounded, while 4,,÷r 100,1800] and 4,,,e [-t180*,0'].

2.2 The Continuous Time LGPS Solution
Given a process model P(s) and specifications on desired performance and relative

stability, the loop compensator G(s) and the pre-compensator F(s) of Fig. 1 are chosen through
a procedure based on the following six steps:

1) Development of process uncertainty templates describing process gain and phase
variations due to (parametric) uncertainty.

2) Use of these templates, closed-loop performance specifications, and a model of the
external disturbances to develop "performance boundaries" describing gain-phase
constraints on acceptable nominal loop gain functions, L.(s).

3) Use of the templates, along with system stability and/or relative stability
specifications to develop "stability boundaries" describing additional gain-phase
constraints on acceptable L.(s).

4) Fitting a realizable, nominal loop gain function L,(s) to the gain-phase constraints
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represented by the performance and stability boundaries.

5) Manipulation of the resulting L,(s) to extract a description of the loop compensator
G(s).

6) Selection of the pre-compensator F(s) to shape the closed-loop transfer function,
T(s)=F(s)L(s)/[ 1 +L(s)].

The mathematical objects and procedures described above (e.g., templates, boundaries,
fitting, etc.) are all based on modifications of classical frequency domain design procedures
which reflect the LGPS assertion that both gain and phase information should be used where
available. Moreover, these objects can be represented in either the C-plane (the complex plane)
or the N-plane (the Nichols or gain-phase plane). Both of these representations have their
advantages at certain steps in the development of LGPS theory. A complete discussion of these
issues can be found in (Bailey Cockburn 1991). A brief summary of that discussion follows.

Uncertainty Templates
For each frequency we [0,-), the process uncertainty region or template' Q(€o) is a set

of points in the N-plane representing all possible uncertainty induced values of the normalized
process transfer function P(oo)/P(,jO). A useful viewpoint is that, for each wo, the set Q(CO)
represents a region of gain-phase uncertainty about the nominal process Po0j). Thus, for each
a--•, we define Q(o) as

Q(€o) := {(O,g)e N: ý=argP(jco;cx)/Po(jo))], g=ln IP(jc;a)/P,(jw) I for all oe A)

Use of the normalized process causes all of the templates to have their nominal points located
at the point (00, 0 dB) in the N-plane. Since G(jco) is assumed to have no uncertainty, the
template Q(o) also represents the gain-phase uncertainty of L(j0o)=P(jO)G(j0o).

In the limit case as O)--oo, the parametric uncertainty templates approach a vertical line
in the N plane. This template is called the "high frequency uncertainty template" and is denoted
by Q(-). In the N-plane, Q(-) is a bounded vertical line with nominal point located at (00,0
dB). The high frequency template plays a major role in the demonstration of the existence of
both continuous and discrete time LGPS solutions.

Performance Sets and Boundaries
Given a template Q(w) and performance specifications ST(wo), for each ao, the performance

set BN(o)) describes an N-plane region that acceptable nominal loop gain functions,
L,(j)----G(jo)Po(j), must avoid in order to satisfy the robust performance specifications. The
boundary of Bp(w) is called the performance boundary and is denoted aBi(0)).

It is also known that, for all o0)_0, the performance sets Bp(a)) are bounded in magnitude

'The uncertainty templates Q(w) generated by the normalized process PWjo)/P.oo) are LGPS versions of the multiplicative
uncertainty terms l+D•,jw) in P0.0)=Po(jl)[ 1+D,(jo)].
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and enclose the N-plane point (-180*, 0 dB). In the limit case as O--c,, the performance sets
Bp(co) converge to a high frequency performance set Bp(-), which is itself a vertical line located
at the point (-1800,0 dB). This property arises from the facts that ST())-+4 and Q(co)---Q(--),
as O)---0.

Stability Sets and Boundaries
Given a template Q(a0) and the stability specifications S,, the stability set B,(o)) describes,

for each (o, another N-plane gain-phase region that any acceptable L.jcn) must avoid in order
to satisfy the robust stability specifications. The boundary of the stability set is called the
stability boundary and is denoted aB,(o,).

The stability sets B,(o) are also bounded in magnitude and enclose the N-plane point
(-1800, 0 dB). In the limit case as w-4o , the stability sets B,(o) approach a single high-frequency
stability set, denoted B,(o-). This high frequency stability set will also have a rectangular shape
in the N-plane. In addition, there is a frequency c,>O such that Bp(o)cB,(co) for all o)>cA. Thus,
at frequencies greater than q, any Lo(jco) satisfying B,(w) automatically satisfies Bp(O)).

Existence Results
While the performance and stability sets Bp(co) and B,(oa) are more conveniently defined

in the N-plane, equivalent C-plane sets are needed for later use in the proof of existence
theorems. In Fig. 3 below, we show the shape of the high frequency C-plane performance and
stability constraints, denoted Cp(-) and C,(-) respectively. Note that Cp(ao)cC1 (o).

Given the above results it is possible to prove the following theorem on the existence of
contiviuous time LGPS solutions. A formal proof is given in (Bailey Cockburn 1991).

Theorem I: If the process model P(s;a) satisfies Assumption IC, the performance specifications
8T(ow) satisfy Assumption 2C, and the stability specifications S, satisfy Assumption 3C with
0m.*<l800, then one can always find a realizable, rational loop-gain function Lo(s) such that
l.0(jo)) meets these closed loop specifications.

• ?'r,•_f Sketch: By choosing Lo(jo,) to have large gain and bandwidth, it can avoid the
performance and stability constraints, Cp(a) and C,(). At some large frequency Oa)>(o,, Cp(a)
and CQ(a) will closely approximate Cp(o) and C,(Q) and Cp(cQ)cC,(o)). Since (m÷<180", there
is a negative "gap" angle r<o between C,(Q) and the positive real axis (see Fig. 3). For >,Ol,
L4j•) is chosen to fit through this gap area
until it is inside the stability constraint C,(Q). At this point, Lo(jO)-O as required by its pole
excess. 03

In summary, the above theorem shows that in the minimum-phase case, the continuous
time LGPS robust control problem described above is underspecified. Thus, before beginning
an iterative search technique to find an LGPS solution, one knows that a solution exists. In
addition, since the problem is underspecified, additional design criteria such as bandwidth
minimization can be considered.
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Im

Fig. 3. Fitting Lo(jo) to the Constraints Cp(-o) and C,(oo).

3. BACKGROUND ON A-TRANSFORMS
In the past, control system designers have used several different transform techniques in

the design process (e.g., the Laplace-transform, Z-transform, and W-transform). In recent work,
Middleton and Goodwin have proposed an alternative transform, the A-transform, that unifies
the treatment of continuous and discrete time systems. The A-transform has several advantages
including the facts that (1) it provides a single unified framework for describing all known
control system design techniques (2) it has better numerical properties than the Z-transform and
(3) it converges to the Laplace transform as the sampling period goes to zero. As will be shown,
the A-transform is a "corrected" Laplace transform, with the corrections on the order of the
sampling period (A). Moreover, in the case when fast sampling is employed, these corrections
become "insignificant" (Middleton and Goodwin 1990).

3.1 Discrete Time Models
Although we assume the reader is familiar with the linear difference equations and Z-

transforms, in this section we present a brief review of these topics in order to facilitate a clearer
presentation of the discrete time 8-model and the A-transform.
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Shift Operators and Z-Transforms
The standard description of discrete models uses the forward shift operator q defined by

the relation

qx k := Xk-

These models are useful because they exactly describe a linear difference equation and are easily
implemented in digital control or signal processing algorithms.

The Z-transform is the traditional transform technique used to analyze a time series (xk)
which is described by a shift-operator model. Given a time series (x,}, the one-sided Z-
transform of (xk) is given by

Z{xk) Z X(z) : XkZ "

where Z denotes the Z-transform operator. In elementary texts (Franklin and Powell 1980), it
is shown that if there exist constants M,a e R such that Ix(k) I < Met for all k, then the one-
sided Z-transform exists for all Iz I> e0.

Delta Operators and A-Transforms
The discrete time delta operator 8 performs a forward difference operation and is defined

by

xh = XkkI - Xk

A

where A is the sampling period. It is directly related to the forward shift-operator q by the
relation

q -. 1
A

As the complex variable z is a frequency domain representation of the shift operator q,
the transform variable associated with 5-operators is the complex variable y. Given a time series
{X}), the A-transform of Ixk) is obtained as

T {xk) = X,(Y) :A A xk (1 +Ay)-k
k-O

where T denotes the A-transform operation.
From this definition it is clear that y=(z-1)/A. Thus, one can obtain a table of

A-transforms from a table of Z-transforms by noting that
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x .( *6 A x (z} .) y ,;

I
X(z) * - X 1 -

Finally, it can be shown that as A-,0, T{x(.)) converges to the Laplace transform (herein
d&noted by S). For a complete discussion of Unified Transform Theory, which includes delta
transforms, see (Middleton and Goodwin 1990).

Discrete Time 8 Models
In view of the relation between the shift operator q and the delta operator 8, one can

directly compute a 8-model from a shift operator model, Z-transfer function, or difference
equation. However, if this discrete time model was obtained from an underlying continuous time
process,, there are significant numerical advantages in determining the 8-model directly from the
continuous time state equations (Middieton and Goodwin 1990).

To derive a discrete time step-invariant equivalent model, we assume a zero-order hold
at the input of the continuous time process and an ideal sampler at the output. Then, if the
continuous time model is

p x = Ax +Bu
y =Cx

the corresponding step-invariant discrete time 8 operator model is given by

Pa : Fxk + GukP": y• :Cxk

where,

F = (--. • ^T d'c)A = C -e A

G = ( e d -r)

0

The corresponding A-transform of this step-invariant discrete time model is

p,(y) : T {('SP(s)/s]) = C(TI - F)-G
I +Ay
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Stability Analysis and Frequency Response Using A-Transforms
In the complex y-plane, sinusoids of frequency (o correspond to points y=(e•-1)/A. For

e ([-n/A•r/Aj, these points describe a circle with its center at -1/A and radius 1/A as shown in
Fig. 4. This circle (herein called the P3-circle) represents the stability boundary in the y-plane and
stable poles of PA(y) will lie inside this circle with 1I+Ay < 1. For convenience we define
3:--(ei-1)/A as the complex parameter along the stability boundary, which is analogous to the
continuous time complex variable jo. Thus, one can express the frequency response of PA(y) by
P,(13), where 03=(ejo-1)/A. An important point on the 13-circle is the fold-over frequency 13r,
where Of=-2/A corresponding to o.w=-,=-n/A.

Im~y)

-2 .1 ReQ')

Fig. 4. Stability region for the y-plane.

:1 3.2 Results From A-Transform Theory
Given a discrete time signal {Xkl which is a sampled version of a continuous time signal

x(t), one can obtain the Laplace transform of the underlying continuous time signal x(t) by taking
the limit A-i-0 of ;he A-transform of (Xk). The following lemma shows that this property of A-
transforms hold for all signals x(t) that have a Laplace transform.

Lemma 1: (Middleton and Goodwin 1990)
Suppose x(.) (R---R) satisfies

(i) There exist M, X r i such that Ix(t) 1 _< Me' for all t; and
(ii) For any Rely) > X, x(t)e-" is Riemann integrable.

If X,(y) is the A-transform of {x(kA)), then for any Rely) > A.,

lim XA(Y) f x(t)e - t dt = X(s) 1,.y

where the above integral is a Riemann integral.

/
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Another important feature of the A-transform is its ability to reveal connections between
continuous and discrete time equivalent process models as the sampling period is varied. The
following lemma illustrates this property.

Lemma 2: If P(s):=C(sI-A)'B is a linear, time-invariant, continuous time process, the step-
invariant equivalent discrete time model P,(Y)---C(yl-F)'G satisfies

lim PAM() " P(s) IU
A-4

* Proof: If F and G are given as above, it is easy to show that

lim PA(y) = C(yI-A)y'B

Note that Lemma 2 has the following obvious Corollary.

Corollary 1: If PA(y) is the step-invariant equivalent, discrete time model of P(s), then

lim P(13) - POW ).
A-4O

where 1=(e--)/A and oe [0,ir/A).

In addition to the above results, there are other advantages in the use of A-transforms in
the study of discrete time control systems. Some of these are:

(1) For fast sampling, the poles and zeros of the 5-model are approximately invariant
with respect to the sampling period. However, the extra zeros .rising from sampling
(Astrom, Hagander, Sternby 1984) vary with A and converge to -- as A--.0. This means
that for fast sampling the system dynamics stay approximately constant, while the
sampling zeros move towards -c.

(2) The delta operator has superior numerical properties compared to the equivalent shift
form. The main reason for this is that the delta operator moves the z-plane point (l+jO)
to the origin in the y-plane and thus eliminates the offset associated with the shift operator
pole-zero locations.

For those interested in using the A-transform for system design or analysis, there is a set of
numerical tools in MATLAB called the Delta Toolbox (Middleton Goodwin 1990).

4. THE DISCRETE TIME ROBUST CONTROL PROBLEM
In this section, we describe a discrete time robust control problem that arises in the design

of a robust digital controller to satisfy the continuous time LGPS problem outlined in Section 2.
We then prove the existence of a discrete time TDF controller which meets the related y-plane
frequency response specifications and the corresponding continuous time specifications.
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4.1 Problem Description
As in the continuous time case, the discrete time LGPS approach assumes the TDF

structure, shown in Fig. 5. The problem we address is the LGPS design of a robust digital
controller for the uncertain discrete time process Pa(y~a) described below.

Process Model
The first step in the discrete time LGPS solution is to identify the Nuivalent discrete time

process model and the discrete time closed loop performance and stability specifications.

d

q~k) +,.. + y(k)

F,(y) = Digital Pre-compensator
GA(y) = Digital Controller
P,(^) = Step-Invariant Discrete Time Process Model
LA(y) =Py)GA(y) = Loop Gain
Ty F,(y)L%(y)/[ I +LI(y)]

Fig. 5 An SISO Discrete Time System with TDF Structure.

Assumption I D: The discrete time process Pa(ra):=y/(1+Ay)T({tl[P(s;ca)/s] } is the step-invariant
discrete time equivalent of a continuous time process P(s;cz) that satisfies Assumption IC. (Note:
T in this definition is the delta transform operator defined in Section 3.) We also assume a
sampling period A such that all poles of P(s;a) are inside the primary stri; [-co),c], where
a-=-t/A, all the sampling zeros of Pj(ya) are real, and all other non-sampling zeros of PAjya)
are stable'.

Performance Specifications
We assume that the discrete time closed loop performance specifications are given in

terms of bounds on the allowable variation of the closed loop transfer function, TA(P) (see Fig.
5). These performance specifications arte given in the form 0 •< a(p3)c(1) ! frIT.() I b(13)c(p) :o
for P<P,. Thus for each O<P, we define the allowable logarithmic gain variation as

Further research into the bchavior of non-sampling zeros is needed. However, for fast sampling. we know that the

non-sampling zeros of P(ya) will approach the zeros of P(s;a).
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In addition, we assume that these discrete time performance specifications ST,(O)
converge to the continuous time specifications BT(€o) as A--O. Moreover, we require the &,at
discrete time performance specifications relax completely as D3-.4p,. These assumptions are given
below'.

Assumption 2D: We assume that 8TA(p)-*T(o)) as A-i0 and that 8T,(P)--.* as- .

This assumption merely states that the performance specifications are reasonable: one should not
expect to achieve performance near or at the foldover frequency.

Stability Specifications
As in the continuous time case, the stability and/or relative stability specifications are

given in terms of a rectangular N-plane gain-phase margin region: S, := (G,,,G,,,,,). This
region was shown previously in Fig. 2.

Assumption 3D: We assume that the stability specifications S, satisfy the restriction that G.* and
G=÷ are bounded, while 0,,e [0°,180'1 and 4,,E [-180o,00].

4.2 The Discrete Time LGPS Solution
As will be shown, the basic elements of discrete time loop gain-phase shaping are very

similar to the continuous time case and the procedure for demonstrating the existence of LGPS
solutions in the discrete time case is similar to the one described in Section 2.

4.2.1 Discrete Time LGPS Definitions

Discrete Time Uncertainty Templates
Let P(2y,ax) be a step-invariant, discrete time plant model that satisfies Assumption ID.

For each 0•p3•f<, we define the discrete time gain-phase uncertainty template Q,(P) as

Q(P3):=((O,g)e N: O=arg[P.(P3;a)/PA(P;cLo)], g=ln IPA(P3;a)/PA(P3aO)1, for all ae Ar}.

As before, these are normalized templates and thus will have their nominal points at (00, 0 dB).
Given the above definition of Q,(P), we can prove the following properties of the uncertainty
templates.

Propertv 1: If Pj(ycr) satisfies Assumption ID, then for each PE 10,p3,) the uncertainty templates
Q.j3) are gain bounded above and below in the N-plane.
* Proof: Let P(s;ct)=C(ct)[sl-A(o)I'B(ca) for some state variable representation of P(s;a). Then,
Assumption ID implies that the matrices A(ct), B(a), and C(a) have elements that are bounded,

Ilf the performance specifications are given in terms of a continuous function 8T(o), the use of the Bilinear
Transformation to map ST(co) into discrete time specifications 8T,(O) will satisfy Assumption 2D.
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continuous functions of cz Ap1 ='. Thus, the matrix
a

a -- fe A IdT
A0

also has elements that are bounded, continuous functions of ar Ar. This implies that the
coefficients of the transfer function PC(-oa)=C(a)[TI-F(a)o]G(a), where F=KIA and G=fB, are
bounded, continuous functions of ce A. From Assumption ID, P,(y•a) can have no uncertain
poles or zeros on the y-plane stability boundary for all ate Ap and the sampling zeros are on the
re-J axis. "IN's Pj(y,a) is a continous function of a and maps the compact set Ap into a compact
set in C which does not contain the origin. Thus, 0< IP,(f3;ct) k<c for all ae All, where fk [O,30).

rrv 2" Let ,,r. be the continuous time uncertainty template for P(s;ct). Then, the discrete
time template Q,(1)-Q((e'- 1)/A) will converge to the continuous time template Q(0o) as A-.O,
for cm 10,t/A).
* Proof: This result follows from Corollary 1.

In the continuous time case, the high-frequency uncertainty template Q(-a) plays a
fundamental role in the proof of the existence of LGPS solutions. In the discrete time case, there
is a similar high-frequency template Q(o3f), where P, is the discrete time fold-over frequency
defined in Section 3.1.

Property 3: At the frequency , the uncertainty template Q(P3f) is a vertical line in the N-
plane located at (00,0 dB).
* Proof: Since pre-R, it follows that P,(D,;a)ER.

Property 4: Q(1lr)•Q(ao) as A--O.
* Proof: This also follows from Corollary 1.

Performance Sets and Boundaries
Given an template Qj(1) and performance specifications STJ(1), the performance set

Bp(13) describes an N-plane region that any acceptable LAO(3)-GA(P)PA(3;O) must avoid in order
to satisfy the performance specifications. Since the gair,-phase uncertainty of LA(P3) is the same
as the gain-phase uncertainty of Pj(ya), a performance set is obtained by shifting the uncertainty
template over the M-contours' in the N-plane simulating alternative choices of IGJ(3) I and
argiG,(A)}. '

Given a template Q,(O) with its nominal point shifted to the location q,,,e N, there is an
associated total closed loop gain variation over the entire template denoted 8M(O3;q..,) given by

1M-contours are C plane loci of constant M= Wo(1+z) I. See [do891 for details.
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8M( qý) := max M - minM
Q.0) Q.0)

B) Pr -ty 1, as the template nominal point q is shifted toward larger gain (in the N-plane),
the vwuuiC of 8M decreases to zero. And, as q. is shifted toward the point (-180°, 0 dB) the
value of 8M increases toward -. Thus, given a performance specification requirement 8TA(P),
it is possible to find a set of nominal point locations q,,e N such that 8M(O3;qc.)>5T,,(O3). For
each A3, we define the performance set B,(]3) as

Bpa([) = {q.,EN: 8M(3;qc)>STj(3)).

The boundary of the performance set B,(P) is denoted aBp,(P).

por 5: As A---O, the discrete time performance sets B3(O) converge to the continuous time
performance sets Bp(co), where J=(eJ-l)/A.
* Proof: This follows from Assumption 2D and Property 2.

Property 6: The discrete time performance sets BM(13) will converge to the continuous time high
frequency performance set Bp(eo), as 03-+f3r and A--0.
* Proof: Follows from Assumption 2D and Property 4.

Stability Sets and Boundaries
Given specifications on relative stability, S, (G*,G ,,, ), the stability set B,(IO)

describes for each J3, a gain-phase (N-plane) region that all nominal loop functions
L3(O)=G,(I3)P,(j3) must avoid in order to satisfy the stability specifications. We define the
stability set B,•(P3) as the set of all template nominal point locations cqome N such that the gain-
phase template intersects the stability specification region. That is,

B.(p) = [qfeN: S, n QA(3) 0).

The boundary of this set is denoted aB](30).

Property 7: As A-40, the discrete time stability sets B,([3) will converge to the continuous time
performance sets B, (¢o), where f3(eo'-1)/A.
* Proof: Follows from Property 2 and Assumption 3D.

Proerty 8: The discrete time stability sets B,(3) will converge to the continuous time high
frequency stability set B,(oo), as 3-•43f and A--)O.
* Proof: Follows from Property 4 and Assumption 3D.

Property 9: The sets Bp( 3f) and B,,(D3f) have the property that BPa(I•r)cBA(P3f).
* Proof: This follows from the fact that Bp,(D3)= ((O.g)e N: Q,(O3)r-(-180 0 ,0 dB)*O). Since the
point (-180',0 dB) is contained in S, we see that B,(- cB,,(P,).
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Property 9 indicates that the discrete time stability sets will enclose the performance sets,
as 0-4N3. This is a crucial argument in the continuous time LGPS existence theorem given in
[bc9l] and we see that it is also valid for the discrete-time case. This result simplifies the loop
fitting procedure because it shows that for 03 sufficiently large one needs only satisfy the
high-frequency stability set.

As in the continuous time case, a complex plane description of the ciscrete time loop gain
constraint sets B,(O3) and B,J(13) facilitates the proof of the LGPS existence theorem. The
equivalent C-plane discrete time performance sets and stability sets are denoted by C.'(03) and
C1 (I), respectively. These discrete time Cplane constraints have the same convergence
properties as the N-plane constraints, i.e., C()--C,) and C•(3P)cC:(pf), etc.

4.2.2 An LGPS Existence Theorem for Discrete Time Systems
From Section 2, we know that if the continuous time process is minimum-phase and has

only parametric uncertainty, the LGPS problem normally has a solution. As long as (b.*<180*,
there exists an 4(s) that meets arbitrary performance and stability specifications. Theoretically,
there is no limit on the "bandwidth" of the solution in this case and the use of large gain and
bandwidth allows us to meet arbitrary specifications for processes with parametric uncertainty.
However, when the process is non-minimum phase, the existence of a feasible LGPS solution is
problematical. In this case, the non-minimum phase zeros place an upper limit on the allowable
bandwidth of the solution (Freudenberg and Looze 1988). Thus, in some cases it is impossible
to find a real, rational loop function that wil! meet the given specifications.

In the discrete time robust control problem, the step invariant discrete time process model
typically has non-minimum phase zeros. Thus, in general the existence question of discrete time
LGPS solutions also appears problematical.

However, for the discrete process P,(y), we also know that as A-40, the zeros due to
sampling will separate from the "non-sampling" zeros (Middelton and Goodwin 1990).
Moreover, the A-transform description of the sampled process reveals the fact that the sampling
zeros move towards -.o, as A--0. Thus, for arbitrarily fast sampling, we can move the
"bandwidth limiations" due to the non-minimum phase zeros to arbitrarily high frequencies. This
suggests that as A-40, there exists a real, rational discrete time nominal loop function Lo(y) such
that the closed loop system satisfies arbitrary performance and stability specifications. This
reasoning is justified in Theorem 2 below.

Theorem 2: Let P('y) be a discrete time process model that satisfies Assumption ID. Then, if
the performance specifications 8TA(p3) satisfy Assumption 2D and the stability specifications S,
satisfy Assumption 3D with 0m÷<l80°, there exists a sampling period A>0 and a realizable,
rational nominal loop function LAo(y) such that Lo(P) that will satisfy these specifications.

* Proof: Let Lo(y)=y/(I+Ay)T{(E'(Lo(s)/s)), where Lo(s) is a solution to the continuous time
LGPS robust control problem. From Section 4.2.1, we know that CJ(1)--C,(0w) and
Cv^(I3)-CP(o)) as A-40. We also know that the high frequency constraint sets C.,(D3) and C,(P3f)
converge to CQ-o) and Cp(oo), respectively, as A-40. Since 4,,,<1800, there exists a negative
"gap" angle r<o between CQ(-) and the real axis such that Lo(jO) can fit through the gap and
roll-off as necessary. Now, if L,,(O3) is the frequency response of LA,(y), Corollary I says that
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the function L.(P) aiso satisfies these constraints as A-.0. 03

Theorem 2 tells us that by choosing A arbitrarily small, we can approximate the
gain-phase constraints of the continuous time LGPS problem, C,(o) and C(mo), arbitrarily close
with ecauivalent discrete time gain-phase constraints, CJ) and Cp(j). Moreover, we can
approximate Lojo) with a discrete time LAO(13) as close as necessary. Thus, we can always find
a solution to the discrete time LGPS robust control problem described above.

5. ESTIMATING THE MAXIMUM FEASIBLE SAMPLING PERIOD
The above ,esults show that given reasonable specificatio.is there exists a sampling period

A for which one can solve the discrete time robust control problem using LGPS. While these
results represent a contribution to the theory of QFT they are not very satisfying as they give no
hint to the range of acceptable A. A control systems designer would like to know that the
specifications can be met for all A less than some maximum value Am. Unfortunately, this
problem and others related to existence of LGPS solution of non-minimum phase processes is
quite difficult. In this section we outline this problem and offer a technique which is useful in
estimating AM.

To begin, we note that the estimation of AM involves all of the elements of the LGPS
design problem. That is, the feasibility of the LGPS fitting problem for non-minimum phase
processes depends on the specifications, the process uncertainty, and details of the minimum
phase behavior of the process. To date only rough rules-of-thumb exist in the problem of
estimating feasibility in these cases. However, in the discrete time case, we have two advantages:
1) the non-minimum phase nature of the problem is somewhat limited by the structure of the
discrete time process model and 2) we can influence the "non-minimum phase effects" by the
choice of A.

5.1 Fast Sampling
In most digital control problems, the step-invariant discrete time process model Pj(y) has

added zeros. That is, if P(s) has n poles and m zeros then Pj(y)=[y/(I+Ay)]Tt5VP(s)/s) typically
has n poles and n-I zeros. The additional n1=n-m-l zeros of P,(y) are commonly termed
sampling zeros (Astrom, et. al. 1984). As A--0 in the y-plane, the poles and "non-sampling"
zeros of P,(y) cluster around the origin y=0, imitating the pattern of P(s), while the sampling
zeros of PA(y) are real (assuming no aliasing) and cluster around the point "=-2/A (Middleton and
Goodwin 1990).

In the case of parametric uncertainty where P(s)=P(s;c) for c Ap, the resulting step
invariant equivalent PA(ya) will have poles and zeros dependent on a. In addition, as A-.0 the
poles and "non-sampling" zeros of P,(ya) converge to the a-dependent poles and zeros of Pts;a).
However, as A-40 the sampling zeros of PA(Y, ) converge to a-independent locations. Thus, we
will use the term fast sampling to denote situations where PA(,•a) can be approximated as

P,(y) -P,(yct) Nj(y)

where P^(j3;a)=P(jo;a) and N,(y) contains all of the sampling zeros of P,(y) (See Fig. 6). Also
note that when o)A is small, 8=(ej'- l)/A-jo and thus there is a significant frequency range where
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PA(8)=P(,O)).
In our estimation of AM, we will assume that these fast sampling properties hold: 1) the

separation of the sampling zeros from the remaining pole-zero cluster, 2) the a-independence of
the sampling zero locations and 3) the assumption that P,(B)-P(jo) for a significant frequency
range.

5.2 Phase Deviation of L4 o(B)
The LGPS fitting procedure outlined in Section 4 assumed that the, . vas a phase margin

gap r" and that a minimum phase, rational Lo(s) could be found such that Lo(jco) fit through this
gap. The difficulty of the discrete time LGPS fitting problem is the fact that the sampling zeros
contribute additional phase shift to P,,(B) and thus to L,,o(B). For any fixed A, this additional
phase shift may prevent LAo(B) from conforming to the r- gap and the high frequency stability
constraints. In this section we estimate the additional phase angle 0,(B) contributed by the
samplirg zeros. We assume that this phase shift b,(B) will represent the deviation in L.(B) from
[%(jo) for B=(e•-1)/A.

4 0

,,.-2 -1 Re0Y)

Fig. 6. Fast Sampling Conditions in the y-plane.

As shown in Fig. 6, when the B-circle is close to the imaginary axis, the additional phase
contribution of Nr sampling zeros at frequency 6=jwo can be estimated as

= tan'(owAn,/2)

Note that we have assumed that the sampling zeros are all located at the point y=-2/A. They are
in fact distributed on both sides of this point.

5.3 The Allowable Phase Deviation in L, 0(B)
By choosing A small, the above relation shows that we can make 0,(B) small and thus

make LA,(B) close to Lo(jo). The next question is the allowable range of 0,(B) when solving the
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LGPS fitting problem.
As implied in Sections 2 and 5.2, there are two critical elements in the LGPS fitting

problem: one is the existence of a negative gap angle r and the other is the existence of a cA
such that C(ao)cC,(o) for all o>CA. Since some of this gap is used by the phase angle of LOjco)
as it is rolled-off to enter the region where >ox>o,, the designer must decide how much of the
gap is available for 0,(03). We will denote this "available" gap 0, and note that 0,4', as shown
in Fig. 7. Thus, we will require that

0,(P,) < 02 < r- = 180 -0,.

The above result indicates that part of the gap I" will be used for the roll-off of L0(j0))
and the other part for the phase lag due to sampling zeros. This suggests a trade-off between the
bandwidth of L,(B) and A.: the designer has a choice of using the available gap to provide
phase shift for rapid roll-off of Lo(f3) near j3,, or sampling zero phase shift in 0,.

S.4 Estimation of the Frequency q
To minimize loop gain-bandwidth, the loop gain function L,.(B) must fit through the r

gap at frequencies 13 near B,=w,. Implementation of the AM estimate implied in Section 5.3
requires an estimate of the frequency B3,. This is complicated by the fact that Co, depends on
the details of both the specifications ST(ca) and the size of the template Q(Co).

0 dB

Fig. 7. N-Plane Depiction of the A!lowable Phase Tolerance 0. in L.0 0j).

One estimate of o), may be obtained by noting that BP(co)cB,(o) only when Bp(w) is
closed in the N-plane. Moreover, Bp(w) is closed only at frequencies where ?(Q)1<ST(Q).
Since we require that 8T(o))-.- as w-4--, and we know that Q((o)--+Q(o) which is finite, we are
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assured that such frequencies always exists. Thus, we can estimate og as the smallest frequency
, such that IQ(ow) I<BT(o) for all o>iA.

5.5 Estimation of AM.
Given the above development we now conclude that AM should be sufficiently small such

that the fast sampling conditions hold and
,Am -5 2/(d),n,)tan(O 9)

where 4 is an estimate for the frequency o,. This result is intuitively attractive because it
includes all of the features one w"uld expect in such an estimate: the template size, the
performance specifications, and the ..ability specifications. However, note that some amount of
continuous time LGPS design is needed to determine o, and to select 0r.

6. AN EXAMPLE: A DC Motor with Uncertain Load
This example illustrates the utility of the above estimate for the maximum feasible

sampling period AM for a specific discrete time LGPS robust control system design problem.
In this example, we find a discrete time LGPS solution to the continuous time robust control
problem discussed in (Bailey and Hui 1991).

Process Model
A DC motor with an uncertain inertial load can be modeled by the following transfer

function

Km
P(SJ) I dn L(Jm+JL)S2 + R(Jm+JL)S + Ký

where JLC:[7x10"r,1.4x10"2j and JLo=1.4xlO3. The remaining constants (in SI units) have the
values

L=2.2x10"3 K.=0.2
R = 0.4 J= 1.4x10 3

Specifications
(i) The continuous time performance specifications for the closed loop system are given
as follows:
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(rad/sec) T(jc) I (dB) MR3) (MB)

OI0 0 10.05 0.1
coe[10,100] 0 ± 0.20 0.4
0o=300 -20± 2.00 4.0
o)=3000 -40:± 20.0 40.0

(ii) The closed-loop stability specifications S, are given as the gain-phase region enclosed
by the 5 dB M-contour in the Nichols plane. This corresponds to a gain margin of about
4 dB and a phase margin of about 350.

(iii) As additional specifications, Lo(s) is required to be Type I (i.e., one pole at s--0) and
the loop compensator must have a pole excess of one.

Solution 1
The first step in the design of a digital controller is the selection of the sampling period

A. From the continuous time uncertainty templates in (Bailey and Hui 1991), we =e that
kI(() k20 dB for all w;.1000 (rad/sec). Given this information and the shape of the

specifications 8T(o3), one can estimate that IQ(o) 1kST(0o) for all o.,Ž.2000 (rad/sec) and thus the
estimate' for al, is chosen to be Zq=2000 (rad/sec). From the continuous time solution L.jO0)
given in Fig. 9, notice that 0,=100. Thus, from Section 5 the estimate for the maximum feasible
sampling period is AM=1.76x104 (sec). Initially, we will use A=AM=1.76x0"4 sec.

Given A, the next step is to develop discrete time process uncertainty templates
Q,(P)=Qa((eO-I)/A)), several of which are shown in Fig. 8. Note that these discrete time
templates are almost identical in size to the continuous time templates shown in (Bailey and Hui
1991). In fact for this choice of A, the discrete time templates were identical to the continous
time templates for frequencies up to the foldover frequency, 0o)=l.785x104 (rad/sec).

Given the templates, the performance specifications, and stability specifications, the next
step is to find the discrete time performance and stability bound,',ries. Because A is small, the
discrete time performance specifcations 8Ta(P) and the continuous time specifications 8T(ao) are
nearly identical. Thus, we will use the continuous time specifications given above. For these
reasons the discrete time performance and stability constraints are also identical to the continuous
time constraints, i.e., B,A(P)=B,(o0) and B(j3)--Bp(0). Fig. 9 shows the performance boundaries
for w3=3, 10, 30, 100, 300, and 3000 (rad/sec), and the high frequency stability boundary B,(-).

Fig. 9 shows a typical minimum phase continuous time LGPS solution L0(j0)) and a
discrete time solution L,,o(y). Note that both loop functions satisfy the performance and stability
constraints.

For this particular example, it careful analysis shows that g-2600 (rad/sec).
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Solution 2
In Fig. 10, another continuous time LGPS solution is shown with 0,=25°. Thus, given

o=2000 as found above, the estimate is Awb7.4.663x10 4 sec. However, for this example, if A=AM,
no realizable, minimum phase, discrete time loop function L,(y) was found that fits the
constraints. Experimentation suggests that the absolute maximum sampling period for this
particular example is A-0.33 (msec). With A=0.32 (msec) one can satisfy the loop constraints
with the minimum phase loop function L,(y) shown in Fig. 10. The process uncertainty
templates for A=0.32 (msec) are identical to those shown in Fig. 8. Note that in this case, the
estimated AM is high but reasonably close to what appears to be the true AM.

10,

0

20 
-IS0 -100 .00

PHASE (degrees)
Fig. 10. Continuous Time and Discrete Time (A=0O.32 msec) LGPS Solutions.

7. CONCLUSIONS

In this paper we have developed the frequency domain properties of loop gain-phase
shaping for discrete time processes. With these properties, we have demonstrated the existence
of discrete time LGPS solutions to robust digital control of SISO, minimum-phase, continuous
time processes. The properties of discrete time LGPS were developed using the A-transform
discussed in (Middleton and Goodwin 1990). The A-transform allowed us to explicitly relate the
continuous time LGPS results given in (Bailey and Cockburn 1991) to the more difficult (and
usually non-minimum phase) discrete time LGPS robust control problem presented in this paper.
The results show that for reasonable specifications there always exists a sampling period A>O
such that the robust digital control problem has a solution.

In addition we presented an estimate for the maximum feasible sampling period for robust
digital control problems. It was shown that the question of maximum feasible sampling period
is related to the LGPS fitting problem for non-minimum phase processes. For step-invariant
equivalents of minimum phase continuous time procteses, the non-minimum phase behavior
(caused by sampling zeros) is determined by the relative degree of the continuous time process
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P(s) and the sampling period A. By assuming fast sampling and by estimating the locations of
the sampling zeros, we estimate the additional phase lag introduced by the sampling zeros. We
then use this estimate of additional phase shift, along with partial information about the
continuous time LGPS solution, to estimate the maximum feasible sampling period AM.

In general, the existence of discrete time LGPS solution for problems where the sampling
period is fixed a priori is problematical. Additional results in the area of LGPS feasibility for
non-minimum phuse processes are needed in this area.
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APPENDIX

The following is a glossary of the notation and definitions used above.

Discrete time frequency response variable (analog of jo in continuous time)

Of Discrete time fold-over frequency

13, Discrete time frequency such that C.j(f)cC,,(P) for all P3p-1,

Bp(az), BM(P3) Continuous and discrete time N-plane performance constraint sets

B,(o)), B1(3) Continuous and discrete time N-plane relative stability constraint sets

B,(oo), C,(oo) Continuous time high-frequency stability sets (N-plane and C-plane)

Bp(c.), Cp(a) Continuous time high-frequency performance sets (N-plane and C-plane)

CP(o)), Ca(o) Continuous and discrete time C-plane performance constraint sets

C,(0), C.a(ý) Continuous and discrete time Cplane relative stability constraint sets

r Negative gap angle between real axis and the edge of C,(--)

A Sampling period in seconds

MT(co), 8T,(p) Performance specifications of allowable variation in 1T(w) I or •r,(j3) .

G.', G.* Lower and upper gain margins

L0(j4), L6(0 Continuous and discrete time nominal loop gain functicn

Q(00), Q6(0) Continuous time and discrete time process uncertainty templates

Q(-o), Q(Wfo) Continuous time and discrete time high-frequency uncertainty templates

S, Relative stability specifications

Lower and upper phase margins

Continous time fold-over frequency (o=i=n/A)

Wý Frequenry such that CP(co)c:C,(o) for all >owo,
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Abstract

Recent developments in the use of computers for QFT design have concentrated
in automating the various aspects of the standard QFT design procedure. This
paper examines one aspe:t of the standard design technique which could, and
perhaps should, be altered by the use of computing power. This is the use of
the UHB and the choice of nominal point. It is argued that more exact criteria
are now usable given the increase in computation power ava'lable, and that the
simplification of using the UHB is no longer necessary.

Additionally a view on the need for additional restraints within the QFT pro-
cedure is shown; namely some constraints on the loop gain to ensure that the
perceived good performance in theory is not the result of eliminating the "nasty"
dynamics by using a pre-filter.

1 Introduction

Since the introduction of the Nichols chart for the implementation of the graphical
approach to QFT little has changed in the bi sic approach to design of controllers
for single-input single-output (SISO) linear time-invariant systems. This paper
looks at some of the assumptiois and simplifications used and considers whether
they are still useful given the vas, increase in computing power now available.

The four main areas that are considered are the assumption that there are no
unmodelled high frcquency dynamics, the purpose of the Vniversal High-frequency
Bound (UHB), the choice of the nominal point for the templates, and the require-
ment. )r additional constraints on the loop transfer function, other than the re-
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quirement that the variation of the closed lorp transfer function is smaller than a
given bound.

This paper is designed to promote discussion of the fndamental design process
of QFT, and to determine whether changes should be p, oposed in the techniques
used.

2 High frequency shape of templates

It is generally assumed within the standard QFT design theory (Horwitz and Sidi,
1972, Horowitz, 1982) that at high frequency as w -. oo that the templates of
plant uncertainty tend to a vertical lines with length given by the magnitude of
the uncertainty in the gain of the system. This assumption leads to the statement
(Horwitz and Sidi, 1972) that the ideal loop transfer function should follow the
UHB exactly for all frequencies greater than w., the frequency at which optimum
loop transfer function L(jw) first touches the UHB. This statement is based upon
the assumption that at high frequency there is only uncertainty in magninude,
and no uncertainty in phase. This is clearly not true for the case of unmodelled
high-frequency dynamics. This criticism was raised by Doyle (1986), and a reply
was given by Yaniv and Horwitz (1987), however the fundamental problem nf the
assumption that the templates tend to a vertical line as w -- oo remains. This
causes problem because the current usage of teh UHB is based upon this principle.
Other problems with the current usage of the UHB are tackled in the next two
sections.

3 The purpose and accuracy of the UHB
There are a number of related interpretations of the purpose of the Universal High-
frequency Bound (UHB) but its main use is to ensure that at high frequencies the
controlled system cannot go unstable and has sufficient noise-rejection properties.
More specifically, it attempts to ensure that the system obeys the Nyquist stability
criterion, and that all of the templates remain outside a given M-circle; typically
the M = V2 M-circle is chosen to ensure a minimum amount of damping.

In the standard QFT design technique the nominal point of the templates to
be manipulated on the Nichcls chart is a point with the highest phase and lowest
gain. It is then fairly simple to determine the UHB by ensuring that, even at the
highest frequencies when the uncertainty, as mentioned above, is assumed to be in
magnitude only, the template does not intersect with the required M-circle. Thus
the UHB of normal QFT design is typically a vertical line in the Nichols chart
extending from the Al = V- lM-circle down a distance given by the uncertainty of
the magnitude at high frequency. The main historical reason for the development of
this UHB seems to be the saving in the time required to compute and manipulate a
iarge number of high-frequency templates on the Nichols chart, Given the increase
in computational power available it is now possible to calculate the templates at
many more frequencies than before and thereby eliminate the need for the UHB.

What is required is a condition at each frequency that ensures the template
does not intersect the specified M-circle. Example 1 takes a simple system and
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shows how, for a particular frequency, the UHB and the true bound on the nominal
loop transfer function L(jw) differ.

Example 1: Consider the plant

K 0.5< K _ < 4
P(s) = - where

(1 + as) 0.5 < a < 2

at a frequency of w = 1. Figure 1 shows the true template (solid line) with its
nominal, with K = 0.5, and a = 2 marked by. *. It also shows the M = v1
M-circle (dashed line) and the region into which the nominal must not pass at
this frequency to avoid the template intersecting the M = v1_ M-circle (dotted
lU.e). The figure also shows the UHB for this plant marked by the dot-dashed
line, which has a vertical section of 30.1 dB (The magnitude of the high-frequency
uncertaiiLty).

20*

to .. ..... .. ... ... ... ..................... 
i,........... .... ............ . ...... ', .. ........... ... ... ...... .. ...... .....

1 0 ....... .. ........... . .. .... . . . .. ... ..... i ..• .. .... .. .... . .. . ............ .-. ,,.. -.. , ... ....... . .. . .... ........ ... ..

.2 0 ..... . . . 4 - .. ... ....... . .

.0. . ..

-400 -350 .300 .250 -200 -150 -100 -50 0

Am (&Wg

Figure 1: The M = v12 M-circle, the corresponding UHB, the true boundary and the
uncertainty template.

It should be noted that not only does the bound on the template have a higher
gain for the nominal point, but it would, if continued, also extend considerably
further to the left, i.e., a greater phase lag, than does the standard UHB. This is
related to the choice of the nominal point of the templates, a point discussed in
the next section.

4 Choice of the nominal point

It is generally assumed that the choice of the nominal point is not fixed in the QFT
design technique. However because of the current usage of the UHB it is essential
that the nominal point of the templates is chosen for minimum gain, maximum
phase-lag, thus ensuring that all of the template, however large, is to the right of
the nominal in the Nichols chart, and hence all of the template avoids the specified
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M-drcle. If this condition in not met then the UHB becomes useless, because the
template specified can intersect the M-circle while the nominal remains outside
the UHB.

This can be illustrated by using Example 1 again but chosing the nominal to
be the point where K = 0.5, and a = ý.5. Figure 2 shows the template with
the nominal marked by *. It cau clearly oe seen that while the nominal remains
outside the UHB, for some choices of parameters (e.g., K = 4, a = 0.5) the plant
is inside the M = v'2 M-cirde. This aspect of the choice is not clearly specified in
the standard QFT design procedure. Additionally this problem arises when other
template shapes are considered. This problem a!so appears in the work of East
(1981, 1982), where the use of circular templates is considered (Ballance, 1992).

to i

o4 .i 4_-4.i i
-310

.350 .100 -250 .200 -150 .100 50 0

Figure 2: The M = v2 M-circle, the corresponding UHB, and a template with nominal
outside the UHB while intersecting the M = v/2 M-circle.

5 Specification of QFT problem
The final point to be raised in this paper is the specification of the QFT prob-
lem. The emphasis in the QFT design procedure is in meeting the tolerances of
the closed-loop specification. This is gnerally achieved by the use of the two-
degree-of freedom controller structure, ensuring that the loop controller reduces
the spread or variation of the closed loop transfer-function envelope, and using
by the pre-filter to ensure that the closed loop response falls within the specified
tolerances. Except for the simple use of the UHB, or more preferably ensuring that
the templates cannot intersect with the M = v/2 M-circle, there is generally little
specification or constraint on the form of the resultant loop, transfer-function. Any
undesirable responses may be eliminated by the choice of the pre-filter to ensure the
tolerances are achieved. However, the result of this is that, while the tolerances on
the dosed loop transfer function may be achieved, large gains may exist at sensitive
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frequencies within the loop that are not considered in the input/output analysis,
because they are cancelled by the pre-filter. This can cause problems in systems
where measurement noise is a particular problem at a frequency close to that at
which it is desired to control the system. In order to achieve the required perfor-
mance of the system in terms of noise suppression and disturbance rejection, it is
normally necessary to undertake some post-design evaluation of the noise problem
and re-design if required. An alternative to this procedure is to directly include
requirements or specifications on the sensitivity function S(jw) = [1 + L(jw) 1-'.
The treatment of such specifications can be incorporated in the standard QFT
design technique quite easily, however their use is not yet widespread.

6 Conclusions

This paper should serve as a basis for consideration of the fundamental principles
underlying the QFT design procedure. Its aim is to question whether the advances
in computational power available to the control system designer should alter the
assumptions and simplifications that are inherent in the QFr design procedure. It
ha." outlined four areas in which consideration should perhaps be given to altering
tbh basis upon which QFT computer aided design packages are based. These are
tue effect of high frequency unmodelled dynamics on thetemplate shape, the use
of the UHB, the choice of the nominal point of the templates, and the need for
additional specifications on the sensitivity of the loop frequency response.
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In this paper, a rigorous formulation is presented for stability analysis of closed-loop

linear, time-invariant, single input/output systems using Nichols charts. This formulation is

based on the celebrated Nyquist stability criterion, the simplified criterion that employs the

notion of crossings, and the properties of the mapping from the complex plane to the Nichols

chart. An extension of this criterion for a class of uncertain systems is also presented.
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1 Introduction

In this paper we develop a graphical stability criterion using a Nichols chart rather than the

standard complex plane. The motivation for this development is that use of Nichols charts

can often simplify control design. Chief among the techniques that employ Nichols charts is

the Quantitative Feedback Theory (QFT) [1]. Numerous examples demonstrated that the

design procedure used in single-input/single-output QFT does indeed lead to a stable design

and even to robust stability in case of uncertain plants. However, a rigorous proof for the

stability of this, and for that matter of any other Nichols chart based techniques, has never

been formulated. Indeed, in [2] it was remarked that in some cases it may be difficult to

define the dosed-loop stability using Nichols plots. In this note we present a simple and

natural proof that is based on the celebrated Nyquist criterion.

2 Preliminaries

Before describing our main results (Theorems 3,4), we need to take a closer lok at some of

the technicalities involved with the Nyquist criterion.

The classical Nyquist stability criterion for rational functions ([3]) has be-n extended

to include certain classes of distributed parameter, nonlinear and time-varying systems. In

this paper we shall consider the class C of distributed parameter, linear time-invariant

plants whose impulse response p(t) has the form [41

p(t) = p8 (t) + p,(t) (1)

where p.(t) is khe inverse Laplace transform of a proper rational function P.(.) that

has no poles on the extended jw -axis, and p,(t) is an absolutely integrable function on
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t E [0, oo) (i.e., p. E L,[0, oo)). The Laplace transform of p(t) will be denoted by P(s).

Define the loop transmission as L(s) = P(s)G(s)H(s), where both the forward G(s)

and the feedback H(s) functions are rational and fixed. Assume that there are no unstable

cancellations between poles and zeros when forming L(s). Define the standard Nyquist

contour, r, as in Fig. 1, where jw -axis indentations are added as necessary to account for

imaginary poles of L(s). We as~iime that r is chosen big enough to include all unstable

poles of L(s). Let n denote the total multiplicity of these poles. The Nyquist plot is the

image of L(s) under r. The Nyquist stability criterion for the feedback system shown in

Fig. 2 with P E C is the following [4].

Theorem 1: The feedback system in Fig. 2 is stable if and only if the Nyquist

plot of L(s) does not intersect the point (-1,0), and encircles it n times in

the counterclockwise direction.

Such encirdements are related to the net change of the argument of L(s) as s com-

pletes a full counterclockwise (or clockwise) revolution around r'. Hence, Nyquist criterion

is an immediate consequence of the argument principle of complex analysis [5].

A recent article [6] presented the following simplification of the Nyquist criterion.

Let R4 be the ray (-oo, -1). A crossing occurs when the plot of L(s) intersects R]. The

crossing is said to be positive if the direction of the plot is upward, and netiative otherwise,

as shown in Fig. 3.

Theorem 2: The feedback system in Fig. 2 is stable if and only if the Nyquist plot

of L(s) does not intersect the point (-1,0), and the net sum of its crossings

is equal to n.
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It is this simplification of the Nyquist stability criterion which we use in our Nichols

chart stability result.

Note in passing that in Theorem 2 the ray Af- may be replaced by any complex

ray emanating from the point (-1,0). More generally, it may be replaced by an arbitrary

curve connecting this point and the point at infinity, under a suitable definition of crossing

orientation.

3 The Nichols Chart and Main Result

The Nichols chart NC represents complex numbers in terms of their magnitudes and phases.

Each complex number, s, has a cartesian representation (x,y) and a polar representa-

tion (r, 0). For historical reasons, we shall assume a non-principal choice for the phase:

-360 < • _ 0. The coordinates of the Nichols chart are (#, log r), in this order. The hor-

izontal coordinate 0 ranges between -360° and 00, while the vertical coordinate log r

ranges theoretically from -co to +oo. In practice, the actual Nichols chart is naturally

limited to a finite range of log amplitudes. For simplicity, we use here log r instead of the

20 log r used in control studies.

The map

T : (x, y) l (4,Iogr) (2)

transforms the Nyquist plot into the Nichols chart, and will be used to derive the Nichols

result. To have a better understanding of this map, we consider it as the composition of two

maps f og , where
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1. g (z, y) -- (logr,,)

2. f (r, 0) (-, r•,)

The map g amounts to taking the logarithm of a complex number. It is a bijection

from the punctured complex plane C, onto the bi-infinite strip

S:= {(r', 6): -oo<r'<oo, -3600 < 0<0}.

(A bijection is a one-to-one and onto map). It is orientation preserving: a clockwise plot in

C,x (say, not crossing the positive real axis) is transformed by g to a clockwise plot in S.

As defined, it is an analytic map at any point (X, y) not on the positive real axis. On this

ray, it is not even continuous.

The map f is evidently a continuous bijection from the bi-infinite strip S into the

Nichols chart. It is orientation reversing: a clockwise contour in S will be transformed into

a counterclockwise contour in NC. In particular, it is not an analytic mapping (to see this

apply the Cauchy-Riemann conditions).

The map T is thus seen to be an orientation reversing, one-to-one map from Cx

onto the Nichols chart NC, which is continuous except for a jump across the positive ray.

Mathematically speaking, the Nichols chart should have been drawn with the phase as

its vertical abscissa and the log magnitude as its horizontal abscissa. For unknown reasons,

Nichols [7] who introduced this 20 log r/phase chart, added the map f, and chose a non-

principal branch for the angle 0 in NC; and this format has since been adoptcd as a

standard.

Let us now consider the action of T on a closed curve T in Cx. Of course, the

cace we have in mind is when 'IQ is the Nyquist plot of L(s).
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The image curve T(T) in the Nichols chart may fail to be Closed, due to the

.i 3continuity of f on the positive real axis. Each time %P hits the positive real axis,

T(l) disappears at the right or left margin of the vertical strip NC and reappears on the

opposite margin. In particular, due to orientation reversal, each clockwise winding of IQ

around the origin will result in T(T) traversing NC from right to left, i.e. from =0

to -$=-3600.

Each of the continuous pieces of T(%P) formed this way will be called a Nichols

branch. The single-sheeted Nichols plot is merely the union of these branches, drawn on a

single copy of the Nichols chart.

If one wishes to retain continuity of the Nichols plot, one has to extend S and NC

periodically in the angular coordinate. A Nyquist curve winding k times around the origin

would be transformed this way into a continuous (but not closed!) curve drawn along a scroll

of at least k Nichols sheets. This curve will be called the multiple-sheeted Nichols plot.

Using the established properties of the map T, we can now proceed to describe the

Nichols stability criterion. We emphasize that this criterion can be equally performed on

a single-sheet plot or a multiple-sheet plot. The decision to use the one or the other is a

matter of convenience only.

Theorem 3: The following are equivalent:

1. The feedback system in Fig. 2 is stable.

2. The one-sheeted Nichols plot of L(s) does not intersect the point q

(-180*,OdB), and the net sum of its crossings of the ray Ro := {(#,r'):

-180*, r' > OdB} is equal to n.

S. T.e multiple-sheeted Nichols plct of L(s) does not intersect any of the
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points (2k + 1)q, k = 0, ±1, ±2,..., and the net sum of its crossings of

the rays Ro + 2kq is equal to n.

Proof. This is a straightforward adaptation of Theorem 2 to the Nichols chart. The

bijection T takes the ray J% [-co, -1) CCX onto the ray R0 C NC, and the point

(-1,0) into the poiht q. Orientation reversal means that each counterclockwise crossing

of R4, is mapped into a a crossing from left to right of R0. We can now qoute Theorem 2.

QED

Some remarks on Theorem 3 are in order:

1. The choice of -180* in Theorem 3 is canonical, and cannot be altered; on the

other hand, the ray Ro may be replaced by an arbitrary curve that connects the point

q with the upper boundary of the Nichols chart and maintains positive distance from its

left and right margins. This follows from the remark following Theorem 2.

2. It has become customary in control design to use only half of the Nyquist plot (i.e.

the Bode plot). Because of conjugate symmetry, if there is a crossing at some so E r then

there will be another crossing at go, and of the same sign. That is, each crossing of the half

plot is tantamount to two crossings of the complete plot.

3.1 Examples

To illustrate the Nichols chart stability criterion, let us consider several examples that cover

various cases, stable and unstable, minimum phase and non minimum phase, and of varying

types. In all the examples below, for simplicity, the feedback system is the one shown in

Fig. 2 with unity feedback, H(s)=l. The Nyquist contour is the one shown in Fig. 1.
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Example 1. This example is stable and minimum phase

Ls) =-

The full and half Nyquist plots on a. NC are shown on Figs. 4-5 with k =2. Because there

are no crossings of the rays Ro + 2kq for any positive gain k and the open-loop system

is stable, the closed-loop system is stable. Note that the same conclusion can be arrived at

using either half or full plot.

Example 4l This example has the same L(s) of Example 1, however, the range of

the gain is k < 0. The sign of the feedback loop remains unchanged, negative, and we use

k = -2 for plotting. Let us first consider the full plot shown in Fig. 6. One can observe a

positive crossing (i.e., from left to right) of the ray Ro at w = 0. This crossing occurs below

or above 0dB if k> -1 r k < -1, respectively. If k = -1, the plot crossesthe point q

and hence we cannot deduce stability from the criterion. Therefore, the closed-loop system

is unstable for any k < -1. Similar conclusion can be arrived at using the half plot (Fig. 7).

Note that if the half plot touches but not actually crosses the ray R0, the full plot will show

a single crossing there. However, if the half plot is tangential to this ray, there is no crossing

there.

Example 3. This example has three stable poles and no zeros.

(3s+1)(3s+5)(S +10)

The gain used for plotting is k = 3000. When drawing the NC plot, one can use a single

chart or several as needed. As described earlier, any poltiun of the NC plot can be shifted

left or right by k360*. Based on a shifted (i.e., using a single NC sheet) full plot (Fig. 8),
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two positive crossings are identified. Hence, the closed-loop system is stable if and only if

0 < k < 1000. The non-shifted full plot (Fig. 9) indicates the same conclusion. Based on

the half plot (Fig. 10), a single positive crossing is identified at w = 8.11 and IL(j8.11)I = 3

(or 9.5 dB). This implies two positive crossings of the full plot.

Example 4. This example is taken from [6]. The system is ope, -loop stable

Ls-) k(s + 50)'(. + 1000)

( + 1)(s + 2)(a + 5)(s + 200)(s + 500)"

The full and half NC plots are shown in Figs. 11-12. The gain used for plotting is k = 1.

In the half plot there are several crossings are at -18 dB (negative), -67 dB (positive) and

-98 dB (negative). Note, however, that these are not counted for stabiity analysis since

IL(s)l < 0 dB. Because the system is open-loop stable, we have closed-loop ctability if and

only if the sum of all crossings is zero. Therefore, the closed-loop system is stable if and only

if 0 < k < 8 or 2240 < k < 80000. More specifically,

* if k < 8 there are no crossing above 0 dB; stable

9 if 8 < k < 2240 there are 2 positive crossings; unstable

o if 2240 < k < 80000 there are 2 positive and 2 negative; stable

e if 80000 < k there are 4 positive and 2 negative crossings; unstable

Example 5. Consider a stable type 1 system

k
L(s) k

s(3 + 1)(S + 10),

The full and half NC plots are shown in Figs. 13-14 for k 1. Based on the full plot there

are two positive crossings at -40 dB. Therefore, closed-loop system is stable if and only if
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0 < k < 100. The same conclusion can be reached using the half plot. Note, however, that if

the system type is greater than zero, the half plot must include the segment corresponding

to the indentation about the origin. In the complex plane, each integrator contributes to

the Nyquist plot a semi-circle of infinite radius. On a NC, each integrator contributes a

180° wide horizontal segment at magnitude of co dB. This segment will always end at the

start of the half plot, i.e. at the'point corresponding to w = c. Clearly, in this example

the segment does not cross the ray R0 . Hence, we conclude that the half plot has a single

positive crossing at -40 dB. This implies two positive crossings of the full plot at -40 dB.

Example 6. Consider a type 1 unstable system

k
L() (-1)

The shifted full, non-shifted full, and half NC plots are shown in Figs. 15-17, respectively.

The gain used for plotting is k = 1. Based on either the shifted or non-shifted full plots there

is a single positive crossing of the ray RD at oo dB due to the jw-indentation in r. The plot

is not closed on the NC, but as mentioned earlier this does not influence the analysis. At any

rate, there is one open-loop unstable pole and together with the single positive crossing we

conclude that the closed-loop system will have two closed-loop unstable poles for any k > 0.

The half plot shows single positive crossing due to the integrator. Such a crossing will not

be counted as any other crossing two in the full plot because it already reflects the map of

the complete jw-indentation by L(j).

Example 7. Consider a non minimum phase type 1 system

L(s) k(l - s)
(s+ 1)
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The full and half NC plots are shown in Figs. 18-19 for k 1 1. Based on the either plot one

concludes that there are two negative crossings at 0 dB. Hence, the closed-loop system is

stable if 0 < k < 1.

the oo dB segment. Again, the fact that the plot is not closed on the NC is not

important for stability analysis.

4 Robust Stability

Having derived the Nichols chart stability criterion for a fixed plant, let us turn our attention

to uncertain plants. In many physical situations, the actual plant response is not known

precisely. Rather, it is known to belong to a connected set P of plants. The idea of

robust stability amounts to checking stability using one randomly chosen nominal loop Lo =

G(s)H(s)Po , where P0 E P is termed the nominal plant, and then demonstrating stability

of the whole set P by some argument involving the connected nature of P. This in

particular implies the stability of the actual plant P. Note that the attributes of the set P

are passed to-L(s) because both G(s) and H(3) are fixed.

In the Nyquist level, this is done as follows: at each frequency on the Nyquist contour,

r, the responses of the L(a) fill in a neighborhood of the nominal response 40(a). This

neighborhood, which is typically an open connected region, is called the template at s.

As . travels along the Nyquist contour, the union of these templates becomes a connected

region, which we shall call the Nyquist envelope. The following robust stability result is a

minor modificaton of a well known result [8] (Theorem 1), where we do not explicitly assume

contiectedness of P, but add a crucial assumption on the number of unstable poles:

Theorem 4: Let P be a set of admissible plants that share the same number of



S

unstable poles. Assume that each template is connected. Let Po(s) E *P. Ten

the feedback system in Fig. 2 is robustly stable iff the fixed system corresponding

to Lo(s) is stable and the Nyquist envelope does not intersect the point (-1,0).

A similar picture is seen on the Nichols chart. Connectedn•-ss raises a small techni-

cality: if a connected Nyquist template intersects the ray J%, its singly-sheeted image in

the Nichols chart may fail to be connected. In this case, we shall find it necessary to assume

horizontal connectivity across the margins.

Similarly, the singly-sheeted Nichols envelope is not necessarily connected even if the

Nyquist envelope is. However, one can reconstruct a connected multiple-sheeted Nichols

envelope, with connected templatcs.

Under the map T, and taking connectedness into consideration, the following Nichols

stability criterion is obtained:

Theorem 5: Let P be a set of admissible plants that share the same number of

unstable poles. Assume that each template in the mutliple sheeted Nichols chart

is connected. Namely, each template in the single sheeted chart is connected or

connected across the margins. Let Po(s) C- P. Then the following are equivalent:

1. The feedback system in Fig. 2 is robustly stable.

2. The fired system corresponding to Lo(s) is stable and the single-sheeted

Nichols envelope does not intersect the point q.

3. The fixed system corresponding to Lo(s) is stable and the multiple-sheeted

Nichols envelope does not intersect any of the points (2k + 1)q, k =

0 , 4-1, -2,...
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The proof is again routine, using the map T and Theorem 4. The condition that the

plot does not intersect any of the points (2k+ 1)q is in fact the one used in the Quantitative

Feedback Theory.
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ABSTRACT

Recent interest in robust control has been focused upon the issue of performance robust.-
ness, particularly in the frequency domain. Of the various techniques, Quantitative Feedback

Theory (QFT) has often been recognized as more transparent, with a formulation of the
greatest engineering significance in many applications. In the QFT problem, it is sought to
obtain an admissible set of complex functions which, evaluated along the jco axis, meet open
loop magnitude and phase constraints. (These constraints are the image of closed loop
transfer function bounds which are to be met in the face of parametric, and possibly non-

parametric plant uncertainty.) From this set of admissible controllers, an appropriate optimum

is to be chosen. Although boundaries of the admissible set are readily available (as gain-

phase contours), the optimization is not straightforward. Furthermore, a more fundamental

issue is raised as to which of two figures of merit, sensitivity or controller bandwidth,
represents with the most fidelity the "true" QFT design objective: minimization of the cost of

feedback. In this expository paper, we begin to examine these questions. In addition, candi-

date formulations for the synthesis problem are proposed including nonlinear programming, a
real-function optimal control formulation, as well as complex extremal methods. As a benefit

of these formulations, a definitive link is established between the traditional QFT problem for-

mulation, sensitivity functions, and H2-L.2 optimization theory.
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L Introduction

Much of the current interest in frequency domain robust stability and robust performance

dates from the work of Bode (1945), and Horowitz (1963). Techniques developed by

Horowitz, which characteize closed loop performance specifications against parametric plant

uncertainty, mapped into open loop design constraints, have come to be known as Quandta-

tive Feedback 7heory (QFT). In this paper, it is sought to present the QFT problem in its

very simplest form in order to illustrate the key points of the controller synthesis problem.

Most all simplifving assumptions, such as those of minimum-phase and/or single-input,

single-output (SISO) plants, impact only the structure of the admissible set. However, the

nature of the optimization problem is more broadly applicable. Although the structure of this

admissible set is the subject of recent study (Bailey and Hui, 1991), it is the formulation and

solution of the optimization problem whiclh remain as key unresolved issues.

In fact, the underlying issues are much greater than that of simply identifying computa-

tional techniques. One principal goal of recent work in robust design, and in QFT in particu-

lar, has been to make preciso and mathematically rigorous many of the applicable design

goals and "rules of thumb" that have often been known to classical designers. Of these, we

shall attempt to define and make precise the idea of cost of feedback in the context of the

QFT problem, and to examine two candidate measures of this cost: controller bandwidth, and

sensitivity integrals.

1.1. Structure of the SISO Problem

For illustration, consider a two degree-of-freedom SISO system (Figure 1) with plant P,

forward loop controller G, and prefilter F. The problem is posed in continuous time and in

the s-domain. LUt the plant P(ars) of known structure be described by parametric uncertainty,

where the parameter vector a E IR" is contained in a compact set. Furthermore, let the plant

P be stable and minimum phase over this set. (More general assumptions would have the
plant set be path connected and stabilizable by a single controller G over all a. Combined

parametric/non-parametric representation of uncertainty is also appropriate.)

For the open loop system, let

L(a,jw) • P(ajco)G(jco) (1.1)

and define a "nominal" system
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L0(jco) = po(jO))G(jo) (1.2)

where

Po(jco) _. P(a0 ,jcO) (1.3)

for a nominal parameter value ao. Then,

T(a,jco) 1A +L(ac•jc) (1.4)

represents closed loop. Later we consider the effect of a noise signal N(jow) entering the feed-

back path (Figure 1).

1.2. Statement of Closed Loop Transfer Function Bounds

The QFT robust performance problem is then, for some appropriate bounding functions
I Tu(jo)) I, I TLc(Jc) I, find (if possible) a set of admissible controllers ( G }, and then for some

G E ( G ) a suitable prefilter F, such that

ITL(jco)l 1 IF(j1o) T(cc,jco) 1 ITU(1jc)I for all ca E [0,0o) (1.5)

and for all a. Then find (if possible) some G* E { G } which is optimal by some measure.
Note here that (1.5) is, precisely stated, a system of constraints dictating a given level of per-

formance robustness in the face of parametric plant uncertainty. This stands in contrast to

methodologies in which performance, performance robustness, and/or stability robustness

measures are themselves optimized, without auxiliary conditions.

Equation (1.5) is furthermore a pointwise, hard constraint, specifying that closed loop
responses are bounded in an "acceptable envelope" at all frequencies. For real-rational,

strictly proper controllers, feedback proves ineffective at high frequencies (where

I L(Oco) I - 1). Therefore, a more realistic re-statement of the specification (1.5) would be in

a split-frequency form

ITL(jwco) 1 IFjco) T(t,jco)I < ITu(jco)I for all co E [OCOc) (1.6)
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IT(oajco)l < ITu(joc)l for all co E [o~oo) (1.7)

where oc is part of the designer's specification (subject to iterative refinement) identifying the

bandwidth over which feedback is likely to be effective. Altematively, the frequency woc may

•idicate a crossover point at which robust stability requirement- (not stated explicitly here)

dominate the robust performance constraints.

Tn a split parametric/non-parametric plant model there is, in general, a'other transition

frequr icy o)H above which the parametric model is irrelevant. This CoH is sK ,-.times referred

to as the Horowitz high frequency. A related, more general notion is that of the normal

bandwidth of a plant, presumably intended to indicate the frequency range over which plant
transfer function magnitude is above some useful value. (In some cases, this may also indi-

cate the range over which the structured portion of the plant model is significant.) These fre-
quencies (OH and mc will not, in general, be coincident; it is, in fact, the difference between

the controller bandwidth and the normal plant bandwidth which becomes a significant issue in

the QFT formulation. We shall address these ideas subsequently. However, for the purposes

of this initial discussion, the formulation will be in terms of the original specification (1.5);

the implications of (1.6) and (1.7) will be noted, as applicable. We now introduce the syn-

thesis problem.

2. Open Loop Synthesis

From the known structure of (1.1)-(1.4), it is possible to map the constraint set (1.5) into

a system of constraints on the nominal open loop transfer function Lo0(j). This step is par.-

and-parcel of the QFT method and is well documented (Horowitz and Sidi, 1972,1978). The

effective result may be viewed as generating a system of constraints of the form:

B(L,0(cD),w) Ž 0, co E [0,oo). (2.1)

Under some conditions, this may be given in the more explicit form:

I Lo(jco)I - b(LLo(jco),co) > 0, co E [0,-o). (2.2)

Analytic expressions for (2.2), and its gradients, have been developed by Thompson (1990),

Thompson and Nwokah (1991).
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There is the additional requirement of closed loop stability (over all a) that is somewhat

implied by (1.5). The mapping to open loop conditions (2.1) or (2.2) does not, however,

preserve this property, and it must be added as side condition (usually an encirclement condi-

tion, commonly known in QFT as the "U-Contour") Furthermno.e, these constraint sets must

pass certain necessary conditions (e.g., in terms of allowable se,.sitivty reduction) in order for
admissible controllers to exist; see Bailey and Cocicb3,vi'• ('C'9), B•,'-y and Hui (1991),

Thompson and Nwokah (1991), Nwokah, et a. (192).

3. Optimization Criteria and Techniques

If a non-empty set of admissible controllers [ 1 } .'is ý ,m, ter . to f-citt an

appropriate objective function, ideally one which mrn-. 41w V-It,-ol"er"

ideas introduced in the previous section. We begin; w•,v-' an ofo.•...iOr i.;.e radiu,.m±

QFT objectives.

3.1. High Frequency Gain, Bandwidth, and the Cost of Feedback

For illustration, consider L, with a known (fixed) pole-zero excess =. Then the higt T*-

quency gain k., of L. is given by-

k. lim (jco) L0(joi) (3.1)

This is simply the gain constant of a transfer function in standard form. Example: Suppose

L.(jw) is given as

k(a + jco)
L6()) = jo)(p + jw)(b + jo) (3.2)

then e = 2 and k. = k.

Minimization of the open loop k,. within the performance bounds (2.1) was the criterion

originally proposed by Horowitz and Sidi (1972,1978) as it suitable measure of cost of feed-

back. This is often interpreted as minimization of the open loop bandwidth, an analogy which

stems from the classical servo-design problem. Although this statement is not precise, the two

concepts are rooted in the same philosophy.

As stated, the objective in QFT is to meet closed loop performance (1.5) and stability
robustness specifications while minimizing some measure of cost of feedback. This can be

viewed as an extension of the classicai servo-design problem, but where the additional
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constraints provide guaranteed closed loop robustness margins; always the implicit intent in

classical design, but which for years was never formulated explicitly. Note that these con-

straints (2.1) essentially fix the level of pt-formanct,, thus fixing what would be considered

the usual definition of open loop bandw-dth: co : I L4jo)) I = 1 } . In fact, the system of

constraints on Lo (e.g., 2.2) could be viewed as a phase-dependent prescribed rolloff on

co E [Roo). This leaves the remaining degrees of freedom in the phase of L0(jco), as well as

its high frequency gain; we shall find subsequently that there is a definitive link between these

two quantities as well.

Within these remaining degrees of f,:e.dom, it was argued (Horowitz and Sidi,

1972,1978) that amplification at the piks ir'. 4.f !'ih freqt:-ncy noise N(jco) entering the

feedback path (Figure 1) became the i , .n inray high-performance feedback

systems. As an illustration, for the feedýs,•' , `. .iY,'Igare 1 consider the transfer function

from noise input N(o) to the plant inpuiL ,i• *•

T(jDo) _ G(j () (3.3)
N(jo) 1 + G(jco)P(jo)(

In certain applications, design objectives may lead the loop transfer function L.jco) to be

pushed far beyond its normal bandwidth, as suggested by Figure 2. In such cases there exists

a frequency range, indicated by [cul,cza], over which I L 0(jco) I = I Po(jo) G(jo) I < 1, but

yet I G(jco) I > 1. Over this frequency range, the loop gain is transferred almost er.ýrely to

the controller, the noise transfer function (3.3) becomes

U(jco) = O(jco)(34
N(jcO) (3.4)

which, depending upon noise bandwidth, would likely imply saturation of the plant inputs.

The implication within this context is that excess controller bandwidth reflects the cost of

feedback, and furthermore, it was argued that high frequency open loop gain is a a readily

available measure of this quantity.

To make a connection between the ideas of bandwidth and high frequency gain, consider

the open loop transfer function as effectively

L 0 0jco) k (3.5)
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over some frequency range of importance. In this simple case, open loop bandwidth (by any

definition) is directly proportional to k. = k. For more complex systems, the analogy is less

direct. However, Horowitz and Sidi (1972,1978) argued that the frequency range "of impor-

tance" from a cost-of-feedback standpoint is at high frequency (more specifically, on the inter-
val [col,ac] of Figure 2) for which (3.5) must hold for all strictly proper plants. Thus, to

complete the formulation let us state the traditional QFT cost-of-feedback objective as minimi-

zation of controller bandwidth, with measure k...

We shall return to build upon these ideas shortly. What we wish to accomplish first is to

establish a connection between the QFT criteria and objectives, and the more familiar con-

cepts of sensitivity functions.

3.2. Sensitivity and the Cost of Feedback

We assume that the reader has some knowledge of the motivation for and properties of

sensitivity functions; for a more detailed treatment, see Freudenberg and Looze (1988). For
the closed loop system of Figure 1, recall the definition of the sensitivity function S

S(ca,jCO) 2 1 (3.6)
- 1+L(ajco)

Now, for small perturbations in a about the nominal condition a,, consider the nominal sensi-

tivity function SO(jo) = S(ac,jom). The benefit of feedback is achieved at all frequencies for
which I S0 jco) I < 1, while feedback is detrimental at all frequencies for which I S 0(jo) I > 1.

When I SO(jc) I = 1, sensitivity is equal to that of the open loop system.

For illustration, let there be some frequency w, such that I So(jo) I < I for all

ao E [OcO,), and I SO(jco) I > 1 for all o E [Ica,oo). The cost of feedbick in this formulation
would typically be given as the area of sensitivity increase; i.e..

J logISo(jco) I dco (3.7)

However, a well known fact for stable, minimum-phase systems is the following (Bode,

1945):
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f logIS,(jo()I dc• - 0 (3.8)
0

thus implying

m 0

f logISo0(o) I dco = - f log I S0 ,Oc) I dco (3.9)
0

Hence the well known property that for stable, minimum-phase systems, the area of sensitivity
reduction equals the area of sensitivity increase. Freudenberg and Looze (1986) showed that
for unstable and/or non-minimum phase open loop systems, the area of sensitivity increase

exceeds the area of sensitivity reduction by a fixed amount dependent upon the RHP factors.

What we wish to illustrate hee within the integral sensitivity framework is the direct

link between the notions of robustness and cost of feedback. Here, the feedback design objec-

tive is interpreted to be that of obtaining a certain level of sensitivity reduction on the interval

c0 E [O,Ca5). If a desired nominal sensitivity characteristic were somehow known (pointwise)

on this interval, then the value of I So(jco) I could simply be assigned (assuming certain real-

izability and closed loop stability requirements were met). However, this would then fix the

area of sensitivity reduction

0,

J logISo0(co)I da, (3.10)
0

which, by (3.9), fixes the cost of feedback (3.7). In other words, no additional degrees of

freedom exist.

In practice, admissible sensitivity functions are not known a priori, but rather are

obtained based upon various synthesis criteria. One such method is that of a H" sensitivity

minimization problem, which can be posed in the general form:

min' sup {P(0)) I 5 0(0c)I } (3.11)

where p represents a scalar, frequency, dependent weighting function and G represents an
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appropriate set of admissible controllers. In this case, the optimal controller G is that which

minimizes the worst case nominal sensitivity cn co E [0,ow). From ou standpoint this is

viewed as an unconstrained minimizstion problem; i.e., there are no auxiliary conditions on

S, such as (2.1). This problem has also been well-studied; see Helton (1985), Francis (1987).
However, the notion of robust performance within this framework differs markedly from that

of traditional QFT. What we now wish to suggest is that there exists an alternative,

sensitivity-domain synthesis formulation based upon QFT.

3.3. QFT Robustness Bounds and Sensitivity Functions

Traditional QFT design bounds (e.g., 1.5) are predicated on the possibility of large

parameter uncertainty. To establish a connection between sensitivity functions and QFT, it is

possible to state synthesis criteria (e.g., 2.2) alternatively in terms of sets of admissible sensi-

tivity functions f S(a,jw) } induced by parametric uncertainty (Nwokah, et al., 1992). In fact,

the closed loop bounds (1.5) can be mapped into upper and lower magnitude bounds on the
worst-case sensitivity function (over a), pointwise at each ca E [0,oo). Such bounds are the

sensitivity domain analog of the tradidonal QFT bounds (2.1) and (2.2).

An admissible sensitivity function I SO•co)l which minimizes the area of sensitivity

increase (3.7) can (if it exists) be shown to lie on the boundary for all co E [0,00), analogous

to the result of Horowitz and Sidi (1972,1978). Note that these bounds must not violate (3.9).
From this standpoint, the magnitude of the optimal nominal sensitivity function is known on

co E [0,00), and a strictly proper, real-rational approximant of desired order and accuracy may

be synthesized. The primary benefit of the sensitivity-based QFI' formulation is in

simplification, particularly in the MIvO case. Since this formulation neglects some phase

information, simplification is achieved at the cost of some increased conservatism over tradi-

tional QFT.

However, this formulation also differs from traditional QFT in its notion of cost of feed-
back. Here the cost of feedback was essentially fixed, in terms of the area of sensitivity
increase (3.7), and no additional degrees of freedom exist. The controller bandwidth question,

as discussed in Section 3.1, remains as a separate issue. In the case of an optimal nominal

sensitivity function, the controller bandwidth must necessarily be fixed. But for real-rational

approximants to this solution. .e resulting controller bandwidth is embedded in the order and
accuracy of the approximation.

Therefore, it appears that gain/bandwidth optimal controller synthesis methods may be

necessary for sensitivity-based QFT problems as well. In the discussion of the synthesis prob-

lem to follow, we shall base our developments primarily upon traditional QFT, while drawing

upon the commonality between the two formulations. Before proceed1ig, let us summarize
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our review of the traditional and sensitivity-based QFT problems by presenting an outline of

their prominent features vis-a-vis some competing methodologies.

3.4. Comparison of Feedback Design Methodologies

Here we compare, in spirit, some of the significant points of the four feedback design
paradigms discussed. In particular, we are interested in the handling of robustness to plant

uncertainty:

Classical Design:

Objectives: Meet various performance and stability figures of merit (e.g., gain margin,
phase margin, overshoot, etc.), no explicit optimization. Characterization of plant uncer-

tainty: implicit. Treatment of stability robustness: implicit. Treatment of performance
robustness: implicit. Advantages: designer can make tradeoffs between multiple objec-

tives. Drawbacks: dependent upon experienced designer, concepts only applicable to
SISO systems, no guaranteed closed loop margins.

H-infinity Sensitivity Minimization:

Objectives: Minimize worst-case nominal sensitivity on u) E [O,oo); unconstrained
minimization (no pointwise conditions). Characterization of plant uncertainty: non-

parametric. Treatment of stability robustness: in terms of nominal sensitivity. Treat-
ment of performance robustness: in terms of nominal sensitivity. Advantages: Straight-

forward extension to MIMO systems. Drawbacks: Conservatism due to neglected phase
information, notion of performance robustness linked to stability.

Sensitivity-Based QFT:

Objectives: Minimize area of sensitivity increase on co E [o,,oo) subject to magnitude
bounds on wcrst case sensitivity (over a) pointwise, on co E [O,co,); constrained minimi-

zation. Characterization of plant uncertainty: parametric, retain partial phase informa-

tion. Treatment of stability robustness: pointwise, in terms of worst-case sensitivity.
Tieatment of performance robustness: pointwise, in terms of closed loop hard con-
straints. Advantages: Less conservative than H, more applicable to MIMO systems

"than traditional QFT. Drawbacks: More conservative than traditional QFT.

Traditional QFT:

Objectives: Minimize high frequency bandwidth subject to explicit closed loop
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magnitude bounds, mapped into open loop gain-phase contours; constrained minimiza-

tion. Characterization of plant uncertainty: Parametric, retain all phase information.

Treatment of stability robustness: pointwise, in terms of worst-case sensitivity. Treat-

ment of performance robustness: pointwise, in terms of closed loop hard constraints.

Advantages: guaranteed closed loop robustness margins with no cor.mervatism. Draw-
backs: computationally intensive, no known globally convergent solutions.

4. Traditional QFT Synthesis Formulation

Now having motivatxd the traditional, as well as the sensitivity-based QFT formulations,
we wish to focus on optimal synthesis for the traditional problem. However, we expect to

find some commonality with the methods of optimal sensitivity as well.

4.1. Parametric Optimization

To begin our discussion, take the objective function for QFT as high frequency gain

within the framework of the traditional problem (2.1) or (2.2). Historically, an admissible
controller was found by trial-and-error, and successful completion of this step was normally

considered acceptable; explicit minimization of high frequency gain of a given design within
the perform-m.nce constraints was generally not considered practical. This ideology generally

lacked constructive existence conditions and convergent algorithms, although steps have been

taken in this direction via Hilbert transforms; see Gera and Horowitz (1980), Sobhani and

Jayasuriya (1992).

However, with discretization of the constraint set (2.2) by taking (D E [0,00) into

ao E (W.,... con., and by choice of a controller G(xjo,) of fixed structure with free design

vector x E IRa", a constrained nonlinear programming problem may be posed. Analytic forms

for the constraints (2.2) may be obtained which are, in general, piecewise smooth. This philo-

sophy for QFT synthesis was proposed by Thompson (1990). More general frequency domain

optimal design methods are due to Polak, et al. (1984), Boyd, et al. (199G), Boyd and Barratt

(1991).

Based upon previous work, it is found that a number of drawbacks to the nonlinear pro-

gramming formulation for QFT exist:

In general, the constraint set (2.2) is non-convex; only local optima are found.

Robust stability constraints tend to be frequency-independent, not of the form (2.2).
With limited computational effort, the best way to cope with this constraint is to review

designs graphically, at each iteration, to check for violation of stability bounds.
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Computations become badly scaled with open loop poles in the vicinity of the jco axis.

Considering only a collection of constraints (2.2) at discrete frequencies, high frequency

gain minimization becomes ill-posed; i.e., this gain can be made arbitrarily small as some

controller parameters become arbitrarily iarge. In this case, it becomes necessary to aug-

ment the cost function with additicnal terms to penalize controller gain. bandwidth area.

Despite these drawbacks, parametric optimization techniques are successful in many cases.

However, it appears desirable to explore alternative formulations to this problem.

4.2. Function-Analytic Methods

As an alternative to parametric optimization of open loop high-frequency gain, consider

the following minimization problem:

min f p(co)ILo(j))12 do (4.1)
LE L Cjl 2 o

i.e., minimization of what is essentially a weighted H2 norm of the open loop transfer function
L., with scalar weighting function p. The admissible set L is a subset of all RH 2 functions
which also satisfy the QFT performance robustness constraint

B(Lo(jo),co) > 0, co E [0,oo) (4.2)

where the set RH 2 is (for now) comprised of all real-rational, strictly proper, minimum-phase

functions bounded in the closed right half-plane.

This formulation can be considered a constrained H2 minimization problem. The tradi-

tional QFT problem of high frequency gain minimization is a special case which can be

recovered (symbolically) by the choice of weight p(co) = ( 1) *.
CO

4.3. Properties of H2 Norms, High Frequency Gain, and Rules of Thumb

At this point, we argue that (4.1) is a natural generalization of the high frequency gain
objective function. To illustrate an important property, given a simple L. E RH2 it can be
shown that the unweighted H2 norm of L., denoted as 11 L1 112 is a product of th4 DC and high

" * ( . ) is the Dirac Delta function.
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frequency gains.

Example: take

L-s) k (4-3)
s+a

in which case k =c - and k,,=k. Now,
a

"i L"1 ,GO 2d k2 dkO (4.4)iILOII2 = J ILO~,jm)I~din = J -r-
0 0 (02 +&

k2.',0
=- ta- (4.5)

a a

= T (4.6)

Note that this can be written as:

1l Lo 11= I k ic. I LLUowo)-LL' 0i) Jj (4.7)

Properties of this nature were noted by Horowitz (1963), including a dual result linking
the high frequency gain k. with the integral of phase angle. In fact, Horowitz used this pro-

perty extensively as a rule of thumb to argue that the Lo(o) with minimal high frequency

gain must have minimal phase angle (i.e., greatest allowable phase lag) for all w 6 [0,00). In

practice, the competing objective is stability. Previously, these concepts were little more than

rules of thumb, but we now wish to retain these ideas as we develop a more precise formula-

tion.

/
/
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4.4. QFTI Synthesis by Variational Methods

In view of the preceding arguments, let us now consider an alternative formulation for
traditional QFT. Let the original robust performance criterion, as in (1.5), be specified in

terms of RH 2 functions TL, Tu, with pole-zero excess eL and eu, respectively, eL > eu, and
let there be a non-empty set of admissible controllers { G } leading to satisfaction of the

closed loop problem

I TLJco)) I < I F(co) T(a,jco) 1 < I Tu(jco) I for all co E [0,0o) (4.8)

over all a. Now consider the system of open loop constraints of the explicit form:

I LO(jco) I - b(LLo(jco),co) > 0, o E [0,oo), (4.9)

and, for illustration, consider the case where the constraint (4.9) is active (i.e., equality holds)
for all co. Now, write Lo(jco) = R(co)eJ(m). From (4.9), this leads to the constraint equation

R(co) - b($(co),co) = 0, co E [0,0o). (4.10)

Then for the objective function (4.1), subject to (4.10), the following variational prob-

lem may be posed:

mnin p(ci)[R(co)] 2 + X(co)[R(co) - b($(c9),co)] 2 dco (4.11)
(R,*,X) 0

with multiplier X and weighting function p. Boundary conditions should be specified in this
case as ý(0) = 0, and, if possible, R(oo) = 0, ý(co) = -2e

Remark: The variational problem suggested by (4.11) could be considered a frequency-
domain analog of the time-varying optimal control problem with a state-space constraint, par-

ticularly for treatment of the inequality (4.9). Such a problem, for choice of weight

p(co) = 8(-) is precisely the traditional QFT problem.

Again, we make this statement symbolically; we do not expect to obtain a solution to

(4.11) for p(co) = 6(-), although we might hope to do so under more reasonable assump-
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tions. However, in the statement of (4.11) the following additional points have been

neglected:

1. LoOco) = R(ma)ej4(m0 must be realizable by a strictly proper, real-rational function.

2. The real functions R and ý must be Bode gain-phase compatible; i.e., * must be the Hil-

bert image of R, given as

logR( 1 () d . (4.12)

3. Closed loop stability margins must be maintained, i.e., *(o) must be bounded away from

-n in the vicinity of C: R(w) = 1.

Item 3 is somewhat beyond the scope of this treatment, although robust stability bounds are

ultimately incorporated into a system of constraints such as (4.9). Howe-ver, inclusion of the
gain-phase compatibility condition (4.12) would be difficult. Instead, let us examine the fol-
iowing.

Proposition: Compute (if possible) an optimum R*(c) and *(w) from (4.11), and form

a candidate l.(jo) = R*(co) ejm'("). Then, choose a real-rational approximant L. of the

desired order, one which also meets closed loop stability margins. The approximation error

could then be given as

[1L: - Lf = I L0'(jo) - LtjOC)1 2 dco . (4.13)
0

Various real-rational interpolation and approximation techniques have been well studied and
are often employed in H' frequency domain synthesis.

However, the wisdom and feasibility of optimizing R and * independently, as in (4.11),
is open to question and is to be the subject of further studies. It is thought possible that the
known structure of the constraint set (4.9), itself derived from magnitude ratios of real-rational

functions and their extrema over compact parameter sets may, under certain conditions, pro-
vide sufficient structure to yield gain-phase admissible optima R* and ý* without auxiliary

conditions. Some commonality with the Hilbert boundary value methods of Gera and

Horowitz (1980) is also sought.

In our final full section, we review some important results from the theory of complex

extremals which may provide yet another direction in optima! synthesis techniques.
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5. Direct Complex Extremai Methods

A number of developments in complex variational methods arise as possible tool] for the

QFT synthesis problem. We introduce them here.

In the development of complex analysis results, it is frequently convenient to work in the
unit disk I z I < 1. A suitable mapping z = eST can be established between the axis s =jco and
the unit circle I z I = 1.

5.1. Interpolation Problem of Ahifors

The following problem has been solved explicitly by Ahlfors (1953) using variational
techniques:

Problem: Find a function f(z), analytic in the unit disk, which solves

2xmin 1f_ I f(je)l12 dO (5.1)
f 0 0V

subject to:

f(7,) = A1, II = 1, i=I,...,n (5.2)

The function f is constructed as

f(z) = L(z) + P(z),W(z) (5.3)

where L(z) solves the interpolation problem (5.2), ly(z) represents a variation, analytic in the

unit disk, and P(zi) = 0 (chosen as a Blaschke product).

The desired minimizing function r*(z) is given as

n

Co(z) = I E kw (5.4)
i-1~I zz -Izzk)i
nk-I

Here i represents the complex conjugate of zi. To apply this result directly to the QFT
problem, the following conditions would be required:
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1. Discretization of the constraint set on w E [0,00) -* Co C {CD 1 ..... r}.

2. A priori assignment of the closed loop gain and phase at these frequencies; i.e.,

Lo(Jwi) = Ai, i = I,....n (5.5)

Thus, the degrees of freedom of LOjc) along the constraints B(LO(jo),(o) at these frequencies

would be eliminated, and essentially unconstrained loop optimization would be performed

over the set of frequencies defined by the difference:

CoC [0,00) - 0 (5.6)

This clearly is not the desired solution. Instead, it is clear that an extension of Ahlfors' prob-

lem (5.1) and (5.2) must be developed.

Proposition (extended complex extremal problem): Find a function f(z), analytic in the

unit disc, which solves:

2xt

mrin If(eiel 2 dO (5.7)
0

subject to:

B(f(eie),O) = 0, e E [0,2n] (5.8)

Solutions to this problem, which would lead to a closed form solution to the traditional QFT

optimal synthesis problem, are currently sought.

5.2. Complex Euler-Lagrange Equations

In other relevant work, Euler-Lagrange equations for extremal holomorphic mappings of

the unit disk have been developed by Poletskii (1983). This approach can accommodate a
finite number of N bounded, real-valued functionals 01, i = 1,...,n.

The extremal problem is stated as follows: Given a bounded domain D E C, find f
such that
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f*= min -0(f) (5.9)
fED

subject to

( = aj, i = 1,... ,N . (5.10)

Formulation of the QFT synthesis problem within this framework is also under investigation.

6. Conclusions

In this introductory paper, the traditional QFT performance robustness problem has been

posed in sufficient detail to state the optimal synthesis problem. In order to motivate this for-

mulation, some of the aspects and common features of traditional QFT, sensitivity-based QFT,

and HI sensitivity minimization were reviewed. The issue of cost of feedback was addressed,

both in terms of controller bandwidth implications, as well as in terms of sensitivity functions.

Once the optimization problem was posed, it was found that a nonlinear programming

approach was appealing in some cases, but presented specific limitations. Providing certair.

questions can be addressed, the approaches of real and complex variational methods appear to

hold promise to provide a more direct and insightful solution to this very practical control

synthesis problem. These issues are to be the subjects of future development.
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ABSTRACT

The problem of performance robustness, especially in the face of significant
parametric uncertainty, has been increasingly recognized as a predominant issue of
engineering significance in many design applications. Quantitative feedback design
(QFD) is very effective for dealing with this class of problems even when there exist hard
constraints on closed loop response. In this paper, SISO-QFD is viewed formally as a
sensitivity constrained multi objective optimization problem whose -•olution cannot be
obtained analytically but (when feasible) can be obtained graphically. In contrast to the
more recent robust control methods where phase uncertainty information is often
neglected, the direct use of parametric uncertainty and phase information in QFD results
in a significant reduction in the cost of feedback. An example involving the unscheduled
bank angle control for the C-135 military transport airraft is included for completeness.
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List of Symbols Used.

L..: Banach space of essentially bounded Babe functions

If,,.: norm on L,,

H': Banach space of bounded analytic functions.

IIA•L: sup{IA(iw) :w eR}, Ae"H

RH": Banach space of bounded analytic functions with elements from the ring of
stable, proper real rational functions.

Unit of RH': An element of RH' whose inverse E RHI.

e,r: relative degree of transfer function

SISO: single input, single output

NMIO: multi-input, multi-output

•,'X: radian frequency

compact parameter space with elements a_'

QFD: Quantitative Feedback Design

A := B: A is defined by B

A - B: A is approximately equal to B.

Gg: Ir controller

GQ: QFD controller

SH: H' sensitivity function

SQ: QFD sensitivity function

R,: Positive real line
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RHP: Right half plane

RHS: Right hand side

LHP: Left hand side

"LHS: Left hand side
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1. Introduction

The last decade has witnessed a steady and growing research effort in robust
control; see for example the recent book (Dorato and Yedavalli 1990). The majority of
this effort hus been devoted to systems that are assumed to have unstructured
uncertainty. This allows such problems to be transformed into a form where the small
gain theorem (Zames 1981) and powerful recent mathematical techniques from
functional analysis and operator theory (Francis 1987, Maciejowski 1989) can be
successfully employed for system analysis and synthesis. However many problems of
practical interest appear as models with both large parametric uncertainty and high
frequency non-parametric uncertainty. Typical examples include flight control and
tubomachinery control over a flight envelope parametrized by power level, height and
mach number, as well as general automotive engine control problems. All these
problems yield a collection of linear models obtained by a linearization of a
parametrically dependent nonlinear differential equation set about a finite number of
different operating points. This problem class is often endowed with hard stability and
performance constraints such as on rise time and overshoot. This problem class also
requires plant uncertainty to be expressed as variations in both gain and phase.
Traditional control of this problem has relied on gain-scheduling or the on-line switching
of controllers designed for models obtained at the aifferent operating points; as and
when due. The design of the switching logic and some resulting stability problems are
nontrivial. When feasible; parametric robust control makes gain scheduling redundant.
A non-parametric description of uncertainty is of course possible but will almost always
result in loss of phase information. This often leads to higher bandwidth controllers.
The quantitative feedback design (QFD) robust control methodology (more usually
called quantitive feedback theory) introduced by Horowitz (Horowitz 1959, 1979, 1982,
Horowitz and Sidi, 1972, 1980, Shaked and Horowitz 1976) is perhaps the only known
technique that considers both large parametric uncertainty and phase information
simultaneously. The major pay-off is the ability to satisfy both robust stability and
multi-objective hard performance constraints, with the minimum possible cost of
feedback. The downside is that the method though systematic and powerful in the
hands of an experienced control engineer has not until recently lent itself easily to formal
mathematization as in the more recent paradigms such as H'c control and f-synthesis.
The present effort is an attempt to bridge the gap. A key aim of the present work is to
systematize the QFD design process. The QFD problem can be posed as a formal
sensitivity constrained optimization problem (Jayasuriya, Nwokah, Yaniv 1991) which
reduces to the problem statements in H'0 -control when the hard performance constraints
and parametric uncertainty descriptions are relaxed. Consequently the newer methods
may be viewed as restricted quantitative feedback design methods (Perez, Nwokah,
Thompson 1991).

This paper is divided into six sections of which this is the first one. In section two,
we develop a complete description of the representation of plant uncertainty. In section
three we formally state the QFD problem and subsequently convert it unto a consteained
sensitivity optimization prob!em whose general analytic solution is unknown. in section
four we transiate these requirements into the classical OYD format and use graphical
search techniques and H-" design methodology to generate sub-optimal solutions to the
sensitivity optimization problem. In section five we give a nontrivial example with the

128

___ I



corresponding I- solution. This example clearly demonstrates the more aggressive
controller bandwidth problem which is called for whenever there is a Ion of phase
uncertainty information. Finally in section six we give some concluding remarks.

2. Representation of Plant Uncertainty

We assume that the process to be modelled is uncertain due to both parametric
"and unstructured, non-parametric uncertainty. Parametric uncertainty is uncertainty
that can be represented by parameter variations, in an appropriately structured process
model, while non-parametric uncertainty is any process uncertainty which cannot be
explained adequately in the context of the structured uncertainty. Typical sources of
non-parametric uncertainty are unmodelled dynamics, unmodelled parameter variations
and measurement errors. The process consists of the union of parametric and non-
parametric components.

We may therefore represent the uncertain process as .ollows:

(P(s)}= PNa,s). P(s) . (1)

Here, {P(s)} is the plant set, P(as) is the parametric plant subset, while P3 (s) is the
corresponding non-parametric plant subset, (Bailey, Hui, 1991). The parametric plant
set is described by- {P(ca,s), a E fl C Rm ) where a is an m-dimensional parameter
vector that ranges over the compact parameter space U Each nominal parameter point
a, E 11 generates a nominal plant P0 (s -= P(o,s) E P(at". The set P(Cs) is
represented as:

kfl(s + zi) ll(s' + 2 qks + '.ý)
fl kasn (a +p j) (s' +2•wes +- 4) (2)

Here, r represents a possible time delay. Each of the p. -,.meters, k, zi, c•, 4 Pj, ,e
is uncertain, continuously dependent on a E fl, and lies in a specific compact interval.
However the order and relative degree of P(cs) is fixed. This representation is most
appropriate for the process behavior in the low to mid frequency range. On the other
hand, the unstructured plant subset Ps(s) is assumed to affect the process dynamics
significantly only at high frequencies. We may then suppose that the plant set admits
the following "split frequency" representation:

SP(Cs), V W <: OA, s ,= iý

P Ph~s).p(s) V w > , s =. iW

where Ph(s) is the high frequency model of P(a,s). The frequency LA marks the
beginning of the high frequency region. For w>" ,.he overall plant set (P(s)}
degenerates to the high frequency model Ph(a,s). Ps(s). In this paper we shall assume
that Pn(s) 1_ 1, for w < 4., and use a relative stability bound to constrain its effect at
high frequencies w> c. In practice P,(Iw) is only given as a gain and phase deviation
about some nominal high frequency gain of 1 and phase of 0" So that the so called
universal high frequency boundary becomes a function of frequency w > 4. In
traditional QFD, P,(iw) 1 Vw, thus insuring that -:he universal high frequency
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boundary is independent of frequency for w c> o. Let Ph(as)- •7. Then for our

present purposes, assume:
[ph& s)PO(i)[ : k m(w•) ,V W > (A (4)

where m(w) iPn(iw) ,V w > cA, and

JP(a,ic%) j< -- ,Vyk e (5)

where e is the relative degree of P(as), and k represents the parametric plant high
frequency gain defined by:

k :- lim SIP(-)(

We also assume that:
(i) P.(s) is stable but may have high frequency non-minimum phase zeros.

Furthermore, it is totally without structure, in the sense that the relative degree of
its members are finite but may not be fixed.

(ii) On the other hand the structured model P(cs) may be unstable from some or alla E Rl, but has a fixed relative degree for all a E 1f. Furthermore, every member of
P(or,s) has the same number of unstable zeros.

(iii) The plant set {P(s)} is topologically path connected (Nwokah 1988, Foo and
Postlethwaite 1988).

A consequence of this assumption is that:

llm P. (S) P-_,(a,s) . ka C 7

Write

B2(a,s) = iHn 1 (8)
1- S+Zj

for the Blaschke product of the unstable zeros for P(a,s), and

Bp (as) =-ji (s pj (9)
JI 9S +P pJ

for the Blaschke product of the unstable poles of P(as).

Then factor P(as) as:

P(a,s) = P.M (a,s) . P,(a,s) (10)
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where Pm(as) represents the stable and minimum phase factor and P,(as) is the all

pass factor given by.

P,(s) - Bs (as). B•' (as) e--.

In the present description of plant uncertainty, it is perfectly legal for the poles of
P(a,s) to migrate to and fro across the imaginary axis, or indeed for all the poles to lie
entirely in the open right half complex plane as a ranges over fl. However all the zeros
of P(as) are constrained not to migrate across the iw axis and the unstable zeros are to
stay in the interior of the closed right half complex plane. This extremely realistic
description of plant uncertainty was originally proposed by Astr6m, Neumann and
Gutman (1989), and used by Nwokah (1988), and has recently been implicitly used by
Bailey and Hui (1991), Bailey and Cockburn (1991). On the other hand the
unstructured uncertainty description mandated by the HI methodology dictates that
there be no criss-crossing of poles across the imaginary axis, or equivalently that every
member of the plant set {P(s)} must have exactly the same number of unstable poles
(Morari and Zafiriou 1989). For our present sensitivity based QFD design to work, we
shall impose the same restriction on the unstable poles of P(as). However, we retain
the full sensitivity uncertainty description as in standard QFD formulations (Horowitz
and Sidi 1972).

3. The QFD Problem Specification and Solution Feasibility

The QFD problem can now be stated as follows. There is given an uncertain
family of linear time-invariant finite-dimensional plants {P(s)) as described in section 2.
There is also given an ideal target closed loop transmission function T0 (s) and an ideal
disturbance response transfer function TB(s). The QFD problem is to find (if possible)
an admissible pair of strictly proper, real rational, and stable functions {G(s), F(s)} in
the two degree-of-freedom feedback arrangement shown in Fig. 1, such that the
following conditions are satisfied with some measure of optimality:

a) T(as) is stable V a E fl (robust stability) (11)

b) I T(as) - T(s) I _tSr(s), Vs, V a e fl (robust performance) (12)

c) TD (s) I < I TB(s) i -6D(s), Vs, V a e fl (disturbance attenuation) (13)

d) sup IH (,iw) I :5 Mp, V a e f2 (relative stability margin) (14)

where 6 r(s) > 0 and 6D(s) Ž 0 are specified a priori, and

T(,s) H(as) F(s), T0 (s) = H0(sF(s) (15)

H(as) L(a,s) H (s)- L.,(s) (16)

L(a,s) = P(ca,s) • G(s), L0 (s)= Po(s)" G(s) (17)

under the constraint that G(s) is an internally stabilizing controller (Frtudenberg and
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Loose 1088) for the plant set {P(s)}. Because of internal stability all non-minimum
phase zeros of L(as), including those from the rational approximation of e-sr are
required to appear in T(as). P.(s) is the nominal plant model and unlike the
traditional QFD methodology cannot be chosen arbitrarily. The robust performance
specification given in (12) is slightly different from the one originally defined by Horowitz
and Sidi (1972) but is in an analytic form (Doyle 1987) which enables direct time domain
to frequency domain conversions via Parseval's theorem (Robinson 1962). Krishnan and
Cruickshanks, (1977) have argued that there is insignificant practical difference between
the traditional measure and the one used here. Our design example to follow also
confirms this viewpoint. We next convert the system design data into equivalent
sensitivity constraints.

From Bode's sensitivity equation, suitably normalized for large uncertainty (Crus
and Perkins 1964, Nwokah, Jayasuriya and Chait 1901), we can write:

T(,,s) - To(s) S(a,) P(,s) - P(s)

To(s) PO(W) 'afl (1)
1

where S(as) := 1 +L(,s)" Therefore:

T(,,s) - T-(s) l - iTo(s)S(as) [() P() vat ra a (19)

Define the nonnegative function 8G(s) by
M I P(Qs) - P.(s) 8- &(s), V . (20a)
agon Po(s)

Now, PO Toaw SI~s bs -n- IS
T(s)I - To(s)i 6G(s) Sm~ IS (,s)P . (20b)

Now put s M iw. If the RHS of (20b) is upper bounded by -r(w), the tracking constraint
(12) reduces to:

I s(()iT(i)I : MT(W) V t- >_ 0,Vae (21)

Notice that S(-, iw) carries both gain and phase uncertainty information with it, but the
phase uncertainty information embodied in the variations of P(aiw) is lost when we
take the bound 60 (w). From Fig. 1, it is clear that the 2isturbance transfer function
TDW(s) is given by

TD(a,s) - 1 = S(a,s) . (22)

1 + L(a,s)
Thus, the requirement (13) reduces to:

IS(a,iw) I < I To(iw) I : =M() V w > O, V eL (23)
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Finally, the constraint M. on the allowable maximum dynamic magnification of
the frequency response of H(a,iw), translates to a worst case phase stability margin O
given by:

sinOM Vafl, (24)

or equivalently:

IS(a,ih)I • Mp, V a f [ (25)

This is easy to establish from a simple analysis of M-circles (Netushil 1973).
Consequently, the system specifications (11)-(14) have now been converted to sensitivity
inequalities. It then follows that all the QFD constraints are simultaneously satisfied if
there exists an internally stabilizing controller G(s) for the plant set {P(s)}, such that
S(a,s) is stable V a E 11 and satisfies, for s - iw, equation 25 and:

S(aLiw) 1 min{MT(W), M(W)J -M M(W) V W O0, V ae fl (26)

Here, M(w) is a bounded continuous function that satisfies

(i) lim M(W) - 1

01l) M (4) - Mp

(iii) sup M(W) - MD (27)

(iv) 1 Mp < MD < oo

Bode's sensitivity integral (Fruedenberg and Looze 1988) shows that if S(aiw) is
stable V a E R then

{ flogI S(ajiw) I ReN, O Ya (28)

where Pi(a) is an unstable pole of P(a,s). Since in our present formulation the poles of
P(a,s) are not allowed to migrate across the imaginary axis, we may choose as our
nominal model Po(s) E (P(s)}; the plant with the worst instability. That is to say, the
nominal model must be chosen such that

SRe(P9) > max • Re Pi(a) (29)

where P9 i = 1,2 ... N. are the unstable poles of P,(s), which is the transfer function for
the parameter combination that generates the worst instability. On the other hand, the
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unstable zeros of the nominal model are chosen as those with real parts nearest the
imaginary axis, i.e.

N, N,
E Re(zf) <max E Re zi (a) (30)

All the QFD specifications are now satisfied if S(aiw) is stable Vaeil and also satisifes:

I (o) 5M() W>0,V Ce e a (31)
Let c% be the first finite frequency at which S (a,iw) - 1 for all a c fl This is

called the sensitivity cut-off frequency (Rosenbrock 1974). Bode's sensitivity integral
then gives:

00 W

flog IS(a,iw)J dw-f log IS(a,iw)I dw+ f log IS(aJ,iw) dw, Vae•ft (32)
0 0 •

The benefits of feedback are only obtained in the interval 0 < w < 4, while the cost of
feedback is paid for in the frequency interval w < w < oo. Feedback is said to be
benefitial (Bode 1945) at the frequencies where F'1 +L(a, ,w) > 1, or equivalently
I S(a,iw) I < 1 and is non-beneficial otherwise. Using Bode's sensitivity integral, we

may then define the cost of feedback as f log I S(a,]w) I dw over the frequency interval
where feedback is not beneficial. It follows that the required cost function to be
minimized is given by.

0'0 NP

f log I S(a,iw) I dw- If log I S(a,iw) I dwl + R R(P") 2_ 0 (33)

As the number of unstable poles is fixed by the plant, the cost of feedback is

minimized by minimization of If log I S(a,iw) dw I, over all a e ft It turns out that
0

this is equivalent to the minimization of the gain-bandwidth area of log i 1 + L I. Let C
be the set of all robust stablizing controllers for {P(s)}. The OQD optimization problem
is then set up as follows:

min ?a logIS(a~iw)I dI (34)

subject to the sensitivity constraint:
•(1) I s(•,i•) _M(W) , V W,, V a e a. (35)

From (33), it is clear that (34) is also equivalent to:

rmin I maxf log i S(a,iý.)ld (35)
GeG 0
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This agrees with the clamsical notion that tracking performance should be achieved if
possible with the minimum amount of feedback, or minimal value of the gain-band
width area of the loop transmission fuction.

Theorem 3.1.

Subject to the constraint I S(c ,iW) j5 M(M), V w,

f
mi 0aologI S(ariw)Id f log M(w) dw.

Proof:

The result is well known and follows from the principle in statistical decision
theory for example (Kwakernaak 1985) that equalizers yield min-max solutions.

Any admissible optimal sensitivity solution S,(s) to the QFD problem must be
analytic in the closed right half complex plane and satisfy:
I S,(iw) I - M(w) almost everywhere.

Theorem 3.2.

There exists an So(s) e Hco and satisfying the QFD constraints (i.e. constraints of
Theorem 3.1) if and only if M(w) Ž0, M(w) e L.o and:

00

f log M(w) dw > - oo. (37)

Proof:

This follows easily from Hoffman (1962) and Robinson (1962).

Combining Theorems (3.1) and (3.2), produces existence conditions for solvability of the
QFD problem.

Theorem 3.3.

An H* solution to the QFD problem exists if and only if:

(i) There exists some G(s) e H' such that S(a,s) I+P (c,s) G(s) H

(ii) IS(a,iW)I <M(W) VW>O, Vaefl
00

(iii) M(w) e 4,, M(w) ý 0 and sataifies f log M(w) dw > - oc.
-00

In other word•, if an optimal sensitivity function So(s) exists, its magnitude
I So(iw) I lies on the sensitivity boundary M(w) almost everywhere. This conclusion was

also arrived at by Gera and Horowitz (1980) from a different route. However, as pointed
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out by Gera and Horowitz (1980), a finite order Spt(s) E RH" that, simultaneously
satisfies the bounds on M(w) with equality does not exist. Consequently, the existence of
a theoretically admissible optimal sensitivity function So(s) e H"" does not necessarily
impty the corresponding existence of a realizable (feasible) sensitivity function
Sopt(s) e RH"O. Of the three conditions of Theorem 3.3, condition (i) is the most difficult
to establish. Bode's sensitivity integral equation (Freudenberg and Looze 1988) shows
that for the bounding function M(w) to be feasible, it is necessary for the following
inequality to hold:

Z Re (P) f log M (W)dw> 0 (38)
i-I 0

A sufficient condition for this to be satisfied is that (Thompson and Nwokah 1991):

lim MT(W) -o,

a condition that has traditionally been assumed in QFD work without any particular
mathematical justification, and succintly expresses the well known fact that the benefits
of feedback cannot be obtained over an infinite frequeacy band (Bailey and Cockburn
1991). Observe from (34) and (35) that the optimum cost of feedback now reduces to

00

f log M(w) dw. Any sub-optimal sensitivity function MK(w) which satisfies:

MN(w) < M(w) in the frequency interval 0 < w < u;, will clearly satisfy the QFD
performance specifications, but will also necessarily satisfy M.(w) 2: M(w) in some range
in the frequency interval uý < w < w,,. The o0timal bounding function M(w) is shown

in Fig. 2. Notice that if (P} is stable, so that • Re (Pi) - 0, feasibility merely requires
i--I

that: f log M(w)dw =d 0. When this falls, use of a suboptimal M,,(W) involving a
0

relaxation of the original performance specifications but which meets the condition is
mandatory. When (P} has no unstable inverse V a e R a feasible finite bounding
function MK (w) always exists (Bailey and Cockburn 1991). After the feasibility
condition is satisfied, it becomes necessary that Mo(w) satisfies the Bode gain-phase rules
(Bode 1945) in order for a realizable S0pt(s) to exist.

When all the necessary feasibility conditions are satisfied, the QFD problem then
effectively reduces to the synthesis of a suitable approximation of S0(s) with a finite
order unit Spt(s) E RH° such that:

ts-t(s) - So(s)1100 < e ,(39)

for any arbitrarily small e > 0. It so, then a feasible sub-optimal sensitivity function
Sopt (s) which, satisfies the inequality constraints on M(w), can be written as:

S.,t(s) = .4(s) S.(s) = B(s) S,(s), (40)

where A(s) can be suitably approximated as:
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A(s) = Bp(s) (41)

and Bp(s) represents the Blaschke product of the unstable poles of Po(s). A
mathematical solution of this optimization and approximation problem does not exist
because in general S0(s) is not continuous on the boundary, i.e., the imaginary axis
(Robinson 1962). In practice the actual sensitivity function may be oscillatory,
displaying several resonance peaks, none of which must exceed M(w) if the specifications
are to be met.

4. Solution Via Automatic Analytic Loop Shaping

Although constructive general existence conditions for the problem posed in section
3 are unknown, QFD has employed graphical techniques to obtain acceptable solutions
for the same problem for a very long time (Horowitz and Sidi, 1972). From (22), write:

s(c,i) - 1 = 1 (42)
1+L(ct,iw) 1 +Lo" P(aiw)

P0 (iw)

where L. :-P. -G. Suppressing the arguments cf, iW, temporarily, the above equation
can be rewritten as:

Pa

s P - (43)

Here,

P.(s) = Pmo(3). B.,(s) B C(s) e-' (44)

where -r, is the maximum time lag, and Pmo(s) is the nominal minimum phase and stable
transfer function that contains the stable conjugate symmetric factors of the unstable
terms in B.(s) and Bpo(s). Consequently, L. can also be written as:

Loi-L .oLa (46)

where

Lmo "Pm- (46)

and

L. = B, B-' e- t ' (47)

Assume that M(w) is a feasible sensitivity bounding function. The QFD performance
and stability specifications now translate to:
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P,

ISI - _M(w), PwŽ_, vc (48)
Pa

Define the admissible loop transmission set as:

P,

Bp(wJO) L, Lo: Po <M, V OC(O, -24, V •X[O cc), V a e r (49)
BP~w~~)= Lo: +-'i

and 6B (w, 0) as the boundary of Bp(w, 4). This boundary represents the set of all {L.}
where (48) is satisfied with equality. Any optimum loop transmission function L0,t
which solves the QFD optimization problem (27-29) must lie on 8Bp(w, 0) V w e[O co),
(Gera and Horowitz 1980, Thompson and Nwokah 1991). The generation of aBp(W, 0)
proceeds as follows: From (31), it is clear that feedback is effective in controlling
sensitivity only in the semi-open frequency interval [0 w.). Note that when W -4.,

P(ct,s) is assumed to satisfy:

P(a,s) =, k(c) (50)

Define the nominal high frequency plant as:

P.(s)=k, wherek. c k(cr), ac e (51)Se

Hence
PO(s) kP( s),-- >- 0, VWŽ>_ , Vaefl, (52)

follows from the path connectedness assumption for P(a•,s). Let

MAX
ca k(@): - k.,. (53)

and

min
a f k (c): = k min (54)

P0T8is rea and represents a vector from the origin to any point on the
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closed compact interval: k, k,

For any w e [0, u.*), LO describes a complex vector from the origin to a contour

surrounding the point (1 + iO) in the complex plane. This contour lies entirely in the
RHP, does not touch or enclose the origin, and transitions to the real interval

[Lkm, ' kiat w =c and thereafter.

Therefore write:

Po

and

L0 mx + iy (58)

Then equation (48) reduces to

a,) + ib(a) < bM, V w>0 (57)
x + iy + a(a) + i b(a)

Suppressing the argument Ca temporarily and squaring both sides of (57), the above
gives:

az + b2  ,

(X + IL)M + (y + b)2 > 2 a V W>o , (58)

When the inequality in (58) is replaced by an equality, we can obtain as a condition for
satisfaction of (48), the equation of a circle with center (-a, -ib) and radius rm ="V/a2 + b2

M

Let the union of the set of circles generated at any given frequency w, and any M
for all a fl be denoted by Cp (otw). Then Bp (w, 0) is defined by:

BP (w, 4) C\CP (ca, w) , (5,)

and

a Bp (,•,0): = a CP (a, W) (60)

where a Cp (a,w) is the external boundary of C. (ca, w). The radial line from the origin
to a C, (a, ,u) at an angle of -- 9 from $he positive reai line gives the minimum
(optimun) I Lo I at the given frequency and angle 4 for which (48) is satisfied with
equality. By sweeping through 0 e [0 - 2 7r] the optimum I L, I at the given w and any
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phase angle 0 e (0, - 2ir can thus be determined. Note that a CV (a, w) divides C into
two disjoint regions: and interior and an exterior region. Any admissible I " I is
required to lie (preferably) on the boundary 8Bp(w,0) or at least in the exterior region
Bp(w, 0) in order for the corresponding sensitivity function to satisfy the Q.FD
specifications at w. For feasibility, the interior region is a forbidden region. By
repeating the same procedure at a finite number of frequencies, a series of non-
intersecting performance boundaries are generated on the complex plane. These
boundaries are easily translated to the Nichols chart. The relative stability specification
I S (a Aio1; M. also tranulates to a corresponding (closed) region C,(a, w)

surroundiug th3 critical point ( -1 + i 0) called the relative stability region with
boundary 89C,(•,iw), which is determined as follows:

P0From w> • :, -p- is a vector based at the origin and terminating at any point

e i ~' -s] C R+. Consequently in the inequality (58), b(a) - 0, V ,w .>0.

At w- , M()- Mp. (61)

Hence the inequality (58) at w - • reduces to

(x + a)' + y _,M > (62)

Again, if the inequality in (62) is replaced with an equality, we obtain the equation of a
circle with center (-a,iO) and radius

r,, - a (63)

The centers of these sets of circles for all a e 02 lie between

ko ke
<k a < (64)kma - - kmi.

Call these sets of circles C, (aw) with boundary dC, (•,•w).

Observe that

c, (C, W) _C C.0t, W) V W >- U (65)

which gives a further justification for terminating feedback after w - cA. The region
C, (a, w) is called the high frequency forbidden region while a C, (a,•.') is called the
universal high frequency boundary. Notice that (-I + -0) C C, (aw). Since for
feasibility, L,, / C, (a,) V w > 0, C, (a, w) effectively forms a forbidden relative
stability region that is derived directly from the stability constraint M.. Any admissible
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Lo is also required to avoid the interior of C, (6, w). All these sets and boundaries which
are displayed in Fig. 3 are easily translated to the Nichols chart as shown in Fig. 4. If
equation (63) is replaced with rI'm -.-- to take account of the high frequency plant

gain I P.(iw) I - m(w); then a C, (crw) becomes a function of frequency, (see Fig 4a).
Observe that a C, (aw) expands with increasing w because M decreases towards 1 and
m increases as w - co, so that r'. increascm. Define

8 C, (•s) :-a B (w) , (66)

where a B, (w) is symmetrical about the 4' - - 180" line. However its position along
this line is completely determined by the choice of k.] e k(a), subject only to the
constraint:

(-1 + iO) C C, (cr W) (67)

This would appear to suggest that an 'optimal' choice of a nolinal model P.(3)
may be possible but the exact criteria of optimality are unknown at present. For
example if maximization of the gain margin of L. in the classical control sense is desired,

then it can be shown that an optimal choice of P.(s) is that for which 1 .-1. This

choice has fortuitously been made in most traditional QFD work (Horowitz and Sidi
1972). On the other hand if a full unstructured description is used for P(cr,s) as in HI

control say, then P.(s) must necessarily be chosen so that -- 1, for only then are
P-P 0 .

we guaranteed that: I -8 5  1 V a e 6. Having generated the performance
P0

sets Bp (qS,w) and the universal high frequency boundary a B,(w), the design problem
reduces to fitting a feasible L. (if one exists) to satisfy the QFD specifications without
violating either of the boundaries t Bp (4', w) and a B, (w) for all w e (0 oo), or the Bode
sensitivity integral constraints and the gain-phase rules. Note that condition (i) of
Theorem 3.3 is automatically satisfied if such an L. exists and satisfies the Nyquist
stability criteria.

Write

La==_I) N, Z. NP 01 ~iP
La- ( )"" -I I- e- (68)

i-I I+ s iI j1 5

Then,

log L, " Log Lmo + log La

and
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-hargL. arg Lmo + arg La (89)

-arg Lmo + 2 ttanan - - W70 (70)

TJ i--I

where

0- , if Nz - Np is zero or even

7r otherwise.

Since internal stability dictates that G be stable, we aim to loop shape on Lmo. But
ILmo = ILo I and as

L =. L. La-1  
(71)

it follows that:

(iN, tn1~ Np
argiLmo argLo + 2 ta - tan-' V- +w w T + 7r-l (72a)

ij-I

= arg Lo + OM (72b)

Consequently by translating the boundaries Bp(w) and B,(w) on the Nichols chart by0.(w) at every frequency w, we obtain the design boundaries Bp.(w) and B.a(s) onwhich actual loop shaping will be done. When the new boundaries B,,(s) and Bin(s)indicate that loopshaping is impossible, a stable non-minimum phase controller G iscalled for whenever 0m is very negative. This puts the boundaries back into the phase
region [0 - ir. Once L.o is designed, we recover Lo from L. - L= • L,.

The process of selecting an appropriate L. from the set of all admissible L's thatsatisfies the boundary conditions with minimum controller gain and minimum controllerbandwidth is the very essence of QFD loop shaping. Traditionally this aspect of thedesign involves trial and error procedures. In an attempt to systematize the process, wemake the loop shaping procedure automatic by first ,alvins an mociated HIoptimization problem. The H' optimal controller is then used as an initializingconti. Aler in a nonlinear optimization automatic loop shaping algorithm developed byThompson (1990). The initializing H' controller is needed in the routine because unlessan initial controller is "near" to the optimum in the low frequency region, theoptimization scheme may converge to some unacceptable local optimum. The H-"controller often satisfies the "nearness" condition and hence avoids the problem. Thedetermination of the appropriate H" initializing controller using suitable H1'
ja ITIapproximations to the QFD specificiations 6T , and ; as appropriate weighting

functions respectively for the sensitivity and complementary sensitivity functions isdeveloped in detail in (Nwokah, Jayasuriya and Chait 1991,1992).
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Denote the resulting IH controller by GE. Once GH is determined, we draw the
graph of LH(iw) - P0 GH(iw) on the Nichols chart. This forms the initializing loop
transmission function for the QFD optimization algorithm. On the same Nichols chart is
superimposed the standard QFD performance and stability boundaries obtained from
equations (58) and (62). The over-design in the W0 solution will usually be graphically
apparent. The QFD optimization routine strives to reduce the gain-bandwidth area of
LH by moving L1(iw) towards the boundaries at every frequency. Once the boundary
conditions are satisfied, the loop transmission function can be rolled off as rapidly as
possible in order to reduce the controller bandwidth as shown in Fig. 5. The resultant
loop transmission function is designated as Lq. It is not difficult to show that

[LH(iw) -- iLQ(iw) w >_ 0 .(73)

Starting with the same nominal models P., equation (73) then establishes that:

iGH(iw)I _ IGQ(iw)I, Vw 0. (74)

Thus, although general existence conditions for solvability of the QFD
optimization problem (34) are unknown, the existence of an H°' solution to the resultant
unstructured uncertainty problem is certainly a sufficient condition for solvability of the
corresponding QFD problem. The reason for this lies in the different descriptions of the

P PC
relative uncertainty Lo in (37). In QFD, 2 is some contour centered at (1 + io) in

'PP

the complex plane. On the other hand the corresponding Hr description of - is a

disk centered at (1 + iO) whose radius is given by the maximum distance from (1 + iO) to
P0the boundary of -•-. Consequently the H•° uncertainty template at any frequency

entirely contains the corresponding QFD uncertainty template at that frequency. Or
equivalently, the performance boundary B,(wo,) generated by the H11 disk surrounding

_P0  P 0
-( (iw) will enclose the corresponding Bp(w•,) generated from the contour -p--(iw) atP

every w, i.e.

Since admissible loop transmission functions must lie on or above their corresponding
boundaries at every w, the inequality (73) can easily be established.

5. The Design Ezample

The following QFD design example is based upon the formulation for the C-135
lateral autopilot (Thompson 1990). The three flight conditions considered in this
example, with relevant information, are given in Table 1.
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Table 1: Flight conditions for the C-135 aircraft (Thompson 1990).

Flight Altitude Mach Grows WtL Velocity
Condition (ft.) Number (lbs.) (ft./saec)

1. Cruise 1 42,000 0.75 190,000 725

2. Cruise 2 25,000 0.65 250,000 6860

3. Power Approach Sea Level - 165,000 2r75

Equivalent plants Pi(s), i = 1, 2, 3 for the above flight conditions are given as follows:

Flight Condition 1.

P1 (s) 0.7278(s + 22.35)(s + 15.66) (75)
(s + 0.5295)(s + 16.52)(s + 23.27)(s - 0.01572)

Flight Condition 2.

P:(s) 0.7088(s + 30.3)(s + 0.8731) (76)
2(- + 1.575 + 0.6179)(s + 28.71)(s - 0.032)

Flight Condition 3.

3 2 1.434(s + 4.12)(s + 1.37) (77)
Pa(s) - (s2 + 2.56s + 1.6913)(s + 3.42)(s - 0.04)

A connected set P(as) can be constructed from the 3-plant set (75)-(77) (Thompson
1990). Observe that the least stable plant arises from flight condition 3. Assuming flight
condition 3 as the nominal model, 6G(w) was generated as in Table 2 below.
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Table 2: Relative plant uncertainty; C-135.

w(rps) 8G5 (w - max P(a,iw) - P(w) db)e en Po(iw) [d

0.01 -7.80
0.02 -8.53
0.05 -4.17
0.1 -3.11
0.2 -1.83
0.5 -1.96
1.0 6.23
3.0 10.45
8.0 11.24

86 (w) is bounded above by the RH' function:

0.38(1 + .--.. )(1 + ... )(1 + .. )
8G _ 20.02 0.2 1.1 (78)(1+ 0.- )(1 + s- )(1 + -s

T.032- 0.55 3.0i
which is obtained by a Bode approximation of the data in Table 2, where W2(s) is the
complimentary sensitivity weighting function in H' control. The tracking specifications
are given by (Thompson 1990):

1+-
T0 (s) = 2 (79)

(1 + 0..5)(1 + s)(1 + (79)

and

0.5s I (80)
(1+ •--)(1 + s)(1 + T.)

0.5 10
Combination of all the performance specifications then yield:

ST 0.032 0.+ 0.55 +
max I S(a,'i) < M-r (M): = W-' (3) - -'--T = 1.31 1 3 3

2 0.02 0.2 1.1

where WI(s) is the sensitivity weighting function in H' control. Stability and
disturbance requirements are constrained by Mp < 1.41 or equivalently,
max I S(a,iu.) I < 1.41. Using the above sensitivity inequalities, the performance
boundaries were generated. The nonlinear optimization package developed in
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(Thompson 1990) was applied to an initial controller as shown in Fig. 5, and four
iterations yielded the controller:

12.877(1 + s.- )(1 + .-• )(I + .- )1 +
Gq(s) - (82)(1 + -I )(' + )(1( + s.- )(1 + .- )

(1 03 + 18 0.525 14.01

with the. corresponding prefilter given by:

F(s) - 1 (83)
(1 + .- )(i +

The response to a step input command in bank angle for different flight conditions is
given in Fig. B. Note that the performance specifications are completely satisfied for
every flight condition.

6. Concluions

Quantitative feedback design is a very useful robust control methodology whenever
large parametric uncertainty and hard constraints on closed loop response are indicated.
Until recently however, the technique relied almost entirely on semi-analytical and
graphical methods, making comparison with H' control at best indirect. By using H,
control as an initial trial design however, the QFD methodology can be systematized.
The formalization of the QFD process such as is presented here makes comparison with
HI and --synthesis straightforward. The renult of the non inclusion of phase
information in these methods is the inevitability of a higiier cost of feedback, as shown
by the example. The extension of these ideas to multivariable systems is not difficult
(Nwokah, Thompson, Perez 1990). Investigations into the adaptation of this approach
to nonlinear control design along the lines originally suggested by Horowitz is in
progress.
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A ROBUST DIGITAL FLIGHT CONTROL SYSTEM
FOR AN UNMANNED RESEARCH VEHICLE

USING DISCRETE QUANTITATIVE
FEEDBACK THEORY

D.J. Lacey, Jr,* I.M. Horowitz*, C.H. Houpis*, S.N. Sheldont

Abstract This design was created and tested on Sun SPARC-
station 2 workstations. All development and testing

This paper synopsizes the application of dig- was done using MATRIXx.
ital multiple-input multiple-output Quanti-
tative Feedback Theory technique to the de-
sign of a three axis rate controller for the 2 PROBLEM DEFINITION
Lambda Unmanned Research Vehicle. Sim-
ulations show that the resulting robust con- The challenge was to produce a robust digital flight
troller performs well throughout the flight en- control system for Lambda using QFT and deliver a
velope without gain scheduling. A small per- set of controller difference equations. This controller
turbation linear model developed from flight aims to uncouple the roll, pitch and yaw responses.
test data is used for the design. Nineteen sep- The system must meet all performance specifications
arate plants are used to represent the flight throughout the entire flight envelope which includes
envelope of the aircraft resulting from varia- speeds from 45 to 110 knots, center of gravity lo-
tions in speed, altitude, center of gravity lo- cations between 21.8 and 32.4% Mean Aerodynamic
cation, and weight. The design employs the Cord (MAC), vehicle weights from 181 to 215 pounds,
Nichols Chart and is accomplished in the w'- and altitudes up to 5000 feet. Air speeds may vary
domain. between 76 and 185 feet-per-second.

1 INTRODUCTION 2.1 Assumptions

Several assumptions were used to simplify the design
The Control Systems Development Branch of the procedure. The design uses a linear time-invariant
Wright Laboratory at Wright Patterson Air Force (LTI) model of Lambda which is known io be a non-
Base, OH (WL/FIGL) developed the Lambda un- linear system. Further, the equations of motion and
manned research vehicle (URV) for in-flight testing the A/C dynamics are assurned to be Laplace trans-
of experimental aircraft (A/C) control hardware and formable. In addition, the following conditions are as-
software. In order to provide the necessary test data, sumed:
Lambda requires a stable, robust flight control system
which performs well throughout the entire flight enve- * Small-angle perturbation models are valid.
lope. * Aircraft mass is constant.
Quantitative Feedback Theory (QFT) is a frequency
design technique incorporating plant uncertainty early * The aircraft is rigid: that is, no bending or flutter
in the design process resulting in a robust controller modes.
[1]. In this design effort [2] the variations in plant * The commanded inputs and the commanded out-
parameters come from different flight conditions. Ro- puts are measurable.
bust automatic flight control systems in a URV, and
unmanned aerial vehicles in general, are important to # Three-axis rate signals--pitch rate (q), roll rate
their mission because they reduce pilot work load, in- (p) and yaw rate (r)-and the Euler angles-
crease safety, and aid in the recovery of the vehicle, pitch angle (0), roll angle (4), and yaw angle

*Air Force Institute of Technology (1)-are availabie on the Lambda URV.
t Wright Laboratory * A digital sampling rate of 50 Hz is used.
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2.2 Scope ing the second loop. The technique of designing loops
using elements of previously designed loops is part of

The detign is limited to the development of the the QFT improved method (Method Two). Method
set of controller difference equations needed to con- Two takes into account the reduction in uncertainty
trol Lambda throughout the expected flight envelope, resulting from the compensation of the previous loops
Eventually, the success of the design will be proven [4]. Once the loops are shaped, the design is simulated
when the automatic flight control system is installed on the computer to validate the performance expecta-
and flown on Lambda. ticns. The steps used for application of the discrete

QF T technique are:
2.3 Standards

9 Choose the Flight Conditions
The controller is required to have a 45' phase margin * Determine the Plant Transfer Function Matrix,
throughout the flight envelope in all three axes-pitch, P(s)
roll, and yaw. In addition, the A/C is required to
meet figures-of-merit including specific rise time and * Invert P(s)

overshoot requirements shown in Table (1) [3]. p s pTAs) P12(8)P'()- ps(s) ph(s) 1 1
L 8 P112(0) P2 2 (8)j

* Calculate the Q(s) M•.trix

Table 1: Design Figures-of-Merit * Cca r

/ if ~Model Jj'(see) fT. (sec) Mpl (~] Q(s) = P.a ~a) ~ q (2)
_L_ _ _ 0.84 1.56 P12. P*2

0 1.0_ * Transform Q(s) to the w' Domain, Q(w') which
""0.15 2.05 1.25 include& the necessary zero order hold (ZOH).

0.87 1.56 1.0 * Determine the Frequency Response Data

8 0.44 0.78 1.0 * Extract the Template Data from the Frequency

3.48 6.22 1.0 Response Data
1.76,3.13 1. Plot the Templates for One Input-Output Pair1 1.76 313 1.0

* Choose a Nominal Plant

* Use the Templates to Form the Stability and Per-
formance Bounds

3 DESIGN APPROACH * Shape the Nominal Loop, Lo(w')

3.1 Approach/Methodology * Extract the Comiensator, G(w'), from L.(w')
* Synthesize the PrefIlter, F(w')

Beginning with a mathematical descrir)tion of the

A/C, followed by definition of .,he flight envelope, indi- * Shape the Aemain;ng Loops

vidual flight conditions are selected using variations in * Form the Remaining G(w')'s and F(w')'s
flight speed, center of gravity location, vehicle weight, o Verify Loop Shaping in the w'-plane
and altitude. Analysis of the model reveals the lateral-
directional dynamics can be separated from the Ion- * Transform the F(w')'s o F(z)'s and the G(we)'s
gitudinal dynamics. Thus, the deeign reduces to a to G(.)'s

single-input single-output (SISO) QFT system de- * Simulate using the G(z)'s, F(z)'s, and P(s)'s
sign for the longitudinal channel and a two-by-two
multiple-input multiple-output (MIMO) QFT system
design for the latcral channel. In .iddition, unstable 3.2 The Aircraft Model
and nonminimum phase conditions exist. Inversion of Lambda is a small remotely-piloted airplane with a
the plant matrix is necessary [1], therefore the plants 14mfootwing span and weight of approximately 200
must be square. In this case, flight data used for 14 fo t uses a wer propinatelagethe mathematical model produced square (three- by-. pounds. :; uses a pusher propeller behind th'e fuselage
three pmatmtil and in froit of a conventional aft tail. The horizontal

tail consists if a horizontal stabilizer and a split ele-

A two-by-two MIMO system QFT design requires the vator. A vertical tail is located ori either end of the
synthesis of two separate transmission loops. Design horizontal tail, and consists of a vertical stabilizer and
should start with 'he loop with the smallest band- rudder. The wings are slightly tapered; each has three
width. Once obtained, the first loop is used in develop- trailing, movable control surfaces.
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Even though each cont-ol surface can be operated in-
Table 2. Lambda Descriptive Data - dependently, the flight data, used to create the math-

"Dimensions ematical model upon which this design is based, were
Wing Span ........................ 14 ft obtained using the control surfaces together. All four
Wing Area ........................ 19 sq ft of the flap control surfaces were operated together as
Length ............ ............... 9.6 ft
Height With Larding Gear ........ 3 ft were the two rudders. The split elevators were de-
Propeller Diameter ................ 2.3 ft flected together while the ailerons were operated dif-

Weights ferentially. Since the mathematical model does not
Maximum Fuel .................... 14 lb include flap actuator dynamics, the flaps are not used
Maximum Payload ................ 15 lb as a control surface.
Maximum Flight Weight .......... 200 lb It is expected that Lambda will gain weight. Indeed,

"Performance
Maximum Level Speed at Sea Level 115 mph today's model of Lambda is heavier than it was when

(100 knots) first built, which was heavier than specified. The
Stall Speed ........................ 63 mph weight increase results from adding equipment, such as

(55 knots) video cameras and additional sensors. For this reason,
Stall Speed With Flaps ............ 52 mph this design includes weights up to 215 pounds. Ad-

(45 knots) ditionally, since Lambda is designed to fly at speeds
Engine up to 100 knots, speeds up to 110 knots are included
Power ............................. 18 hp to encompass all of the expected plant variation. The
Type .............................. 2 cycle heavier weights are very demanding of the technique

Control Limits 2 cylinder and contribute greater plant variation compared with
Elevator Deflection Limit .......... ± 15" the higher speeds which contribute little variation.
Rudder Deflection Limit ........... ± 25" The small perturbation model is based on a series of
Flap Deflection Limit ............. 20' down test flights and was developed by Swift [5]. The model
Aileron Deflection Limit ........... ± 15" incorporates the traditional stability derivatives into

a state space representation of the A/C. A MATLAB
macro file creates the state space representation along

Lambda closely resembles the Pioneer UAV success- with the stability derivatives when given a set of flight
fully employed by the United States Navy in the Per- conditions. The A/C, excluding actuator and sensor
sian Gulf War. The Pioneers are slightly larger and dynamics, is described using nine states. They are: q,
twice as heavy but share the configuration of an aft p, r, 0, 0 ,1, a, u, 63. Of these, q, 0, a, and u are
tail, center mounted engine, and pusher propeller. used to describe the longitudinal channel, while the
Lambda has ten separate control surfaces. They are: states p, r, €, ¢, and 63 describe the lateral-directional

9 Left Elevator o Right Aileron dynamics. The A/C model state space representation
is:

* Right Elevator o Left Outer Flap i(t) = A(t)x(t) + B(t)u(t) (3)

* Left Rudder o Right Outer Flap y(t)= Cx(t) (4)
9 Right Rudder o Left Inner Flap Assuming zero initial conditions (x0 = 0) and a trim
o Left Aileron * Right Inner Flap condition (ia = 0), the Laplace transform of the plant

is the perturbation model:

i(s) = A(s)X(s) + B(s)U(s) (5)

Y(s) =C(B)X(S) (6)
where:

A~)=[A(s)j.~,., 0~), 7

B(s) = [ () ](8)
C(s) = [ c(C)ieg C(s)io (9)

"The Lambda longitudinal and lateral-directional dy-
namics are modelled as (iproupled. Actually, some iin-
modelled coupling c.-ts, howevr, this de,;ign uses the
best model availablis

The actuators used ii th-, model are second-order in
Figure 1: Lambda URV the pitch and roll channels and first -ordt .d the yaw
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The longitudinal matrices, A,B,C, and D are then where T is equal to the sampling interval. From:
assembled into a state space representation:I

rA B T=Sampling Frequency (20)
.. .. .. (17) Lambda has a samoplinig frequency of 50 liz which is

C DJ equivalent to a sampling interval of 0.02 seconds. TIhe
relationships betweeni s, z, and] thle w' plane are pre-

TIhe state space representation is used in a MA'IRJlXX sented in [63].
S'.steni Build simulation to produce a linearized state InI this design, the w'-plane representation of the
space model which includes thle actuators and sensors, plants are found using the Hlofnmann algorithm [7]. T1he
I %ie resutlting state space representation is then tranis- llofziiann algorithm allows convvrsion of the s domain
fi rmed to a transfer function which relates the output representation through the z- plane and into tile w'
t, the input.. The transfer functions are used in the p~lane without the normal numerical difficulties [3]. An
d.-sign of the QFT controller which includes a compen- important feature of l1ofinann's algorithm is the au-
sator all well as a prefilter (Fig. 2). A complete set of totinatic inclusion of the zero order hold. A '/011 is
transfet functions used in the design is included in the assumed to exist between the digital controller and
appendix of [21. the analog A/C. The 11ofrnaiin algorithm allows con-

version of:

.------ - X(s) =AX(s) + flU(s) (21)

and:
Y(s) =CX(s) + DU(s) (22)

Ij.I1  ~w'X(w') = A*Xlw') + [1 1 2 Uw) (3

and:

-------- Y(w') =CX(w') + DU(w') (24)

Figure 2: QFT Controller Block Diagram wee

A*= A[AT tanh (AO = A-A, (25)
3.5 w' Plant Tranisfer Fuiictions

I aunbda uises digital flight, cont~rol hardware requiring B. = [AT th At B ;-= A,B (26)
a digital flight control system (Il-sign. Although an ad- [2 tan 2~
ditional trmisformn is necessary, thle w'-plane is used] AsxtrnFyosri prxmtoo ,i sdiInI this deslign because it allows lisp of s plane devel- Asitem ayosrisprxmtonoA 1 suedn
optmient. tools, such as the Nichols (Chart.. Diesigninog this design. Since there are 19 plants included in this
either ili the w' plane or dit hs a lanie, thle pseuIdo designi, the I ofrinan n. algorithm is; performed 11) t irnes
contimiotis approach (PC"I), produceS a.inn'~ "Warping" by tising the programming capability of MA'l'RlX x
wei ~i t.r arush ,itoin ig t. be a r w' ln - ntr ii..I and placing the program codec [31 in an iterative loop.
z dofroiia Th Ie dogree oif -warpling .lei'rea.'.m is lI 'I lbt, w' plane representation of the transfer ftiic-
sarnpiv pl Ine dec te-ases as s hown nil [(;. ntin at. the nonniinal emiiditions contains non-ni ii oinf in

'flie w' pl~tit- repr,-s.'nitaGi i is normally obtairitd by ptii.sti (N Ml) zeros at 100 and 130 resulting froni the
transforming til- s plivic plantl withi a zero (rdler w' transformuation, which always produces a transfor

('t function with the safrie iitfitdir (if zeros as poles T1hebol)d ('/011), into the z-plane then 1wllroriiing tile hi- NMI' zero at 1010 is +w. to mlbf ýimopliig ratr and the,
linear transformiation: NPzr t10isdwt h ,4 ulfe Ipl

2 + w'I (18 over Zf'ti s ini thle s I' is oil am fr I II'r flii nr ion If the

- 2. w''l numnbrr of poles ec-lXuia t ~i.it miil .. f? 4;p'-f~s is two
there will ho' two adilvtiflin1 pr(, t~tt I~. aoll no'1 will

2 j>2 he NM Pl A cotniplet. sewt of wl 1Aift' tra eitifr fitinit ionus
'I L4J is li ti)nt14ed inl till-' iiitiiild~Six 4
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Figure 3: Frequency Response of the 19 Longitudinal Figure 4: Example of Template Used in Longitudinal
Plants SISO Design

3.6 Frequency Response Data 3.8 Nominal Plant

The QFT technique uses templates that represent the Any one of the plants can be chosen as the nominal
plant parameter uncertainty, at the specified design plant; however, choosing the plant with the least num-
frequencies. The plant uncertainty is represented by ber of right-half-plane (RHP) poles and zeros may
the 19 LTI plants. For this reason, the frequency re- make the loop shaping easier. The location of the
sponse information for all of the plants at the design nominal plant on each of the templates is needed before
frequencies is necessary. The frequency response data the bounds--tracking, disturbance, and stability-can
of the 19 longitudinal plants are summarized in Fig. 3. be plotted on the Nichols Chart (NC). Plotting the

bounds on the NC is key to the QFT technique. Be-
cause the plant uncertainty is captured in the tem-
plates and the templates are used to form the bounds,
the single transmission loop shape meeting or exceed-

3.7 lantTempatesing the plotted NC bounds guarantees each plant con-
sidered will meet or exceed the tracking, disturbance,

Plant templates are developed from the frequency re- and stability performance specifications. The nominal
sponse data. First the template frequencies are cho- plant chosen for the longitudinal SISO design is flight
sen on the basis of plant variation. Where the plants condition one. Additionally, the same flight condition
vary signifi 'antly, the template frequencies must. be is used in the lateral-directional MIMO system design.
closely spaced. For this design the frequenc;es v=
0.001, 0.005, 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7,
1, 2, 3, 4, 5, 6, 8, 10, 20, 50, 100 (rad/sec) are used; 3.9 Stability Bounds
where v is the w' analog of w in the s-plane.

Next, the tmplate data are "stripped out" of the fre- A benefit to the designer using a predetermined (fixed)
quency respons, data. Twenty two sets of template sampling rate is the need to consider only the stabil-
data are formed, a set for each template frequency. ity boindst during the transmission loop shaping. The
Each set contains magnitude and phase information maximum gain in the loop is primarily constrained by
for tfle 19 plants at the template frequency. Only the the NMI' zeros. Therefore, the objective is to "pack
mnagrnitudo and pha.a,, differences are important to the in" as much transmission loop gain as possible. If the
QFT terhtique., In plotting the templates, the data tracking and performance specifications are not met,
are ncrmabzed by subtracting the smallest phase from a change in the sampling rate must be made to allow
the phase data and the smallest magnitude from the higher loop transmission gain. The military standard
magnitude data The templates are then plotted. The requirement [8] specifies a phase margin y = 45* to be
template is defined by a set of points, each represent- used to form the NC stability contour M.. The y =
ing a plant. The spread of the points is due to th,- 45' requirement corresponds to a 3 dB M1, contour on
plant variat ion at the template frequency. the NC.
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duce a high order compensator, however, both loopTable 4: All-Pass-Filter Used in the Longitudinal shaping design techniques are used in this design.
SISO System Design Although the final design is based on the "minimum

Template Frequency v (rad/sec) Phase OA (deg) order compensator technique", the "backward loop
" shaping technique" is used to determine the theoretical

0.00 1 0.002 maximum loop transmission. In the lateral-directional
0.005 .0 MIMO design the "backward loop shaping technique"
0.05 0.10 is used as a performance baseline. An illustrative dis-
0.10 0.20 cussion of the techniques are included in [2]. Loop
0.20 0.40 shaping produces the following minimum phase trans-
0.30 0.61 mission loop (L,,,.):
0.40 0.81 0.0183(w' + 2)(w' + 5)(w' + 10)(w' + 50)P-, (28)
0.50 1.01 (w,) 2 (w, + 160 ± j120)(w' + 300)
0.60______________ 1.210.60 1.21 Figure 5 is the MP loop transmission Lm, plotted on
1.00 .the NC. A NC showing a plot of all the plants including

the NMP elements is shown in Fig. 6.
2.00 4____________ .083.00 6.06
4.00 8.08 ,, .5 .00 ' 10 .1.. ... - ], " ".... . . . ..
6.00 12.1 . ' ... i> •:, .. "

lot 20.220.0 40.0 ":•- =:.i,-:•:-- .•• • •-
50.0 W4.9 i -"'-"" '' N."
100 15_-_-___-___ -4-

,,. .:! • ' -• . , ,

3.10 The All-Pass-Filter Technique / -

The all-pass-filter (apf) technique is used throughout / ,L I
this design [91 to remove the NMP elements from the
design while still accounting for their effects. The apf -2 -. . . " .,
technique complicates the design; hý.vever, it allows W ".

the designer to rapidly determine the maximum pos-
sible loop transmission. The pnase of the apf OA is Figure 5: NC Showing MP Transmission Loop After
included when plotting the stability bounds. The apf Loop Shaping
used in the longitudinal SISO design is:

apt = (w' - 100)(w' - 130) (27)
(w' + 100)(w' + 130) 3.11 w' Compensator

The amount of phase associated with the template fre- The w' compensator, G(w'), is found by dividing the
quencies is summarized in Table 4. At low frequen- loop transmission by the nominal plant. If the loop
cies, below v = 0.5 (rad/sec)(w = 0.4999958[rad/secl), transmission includes .,ihe plant, G(w') is simply the

shift is negligible. At higher frequencies, above poles, zeros, and ga.r added during loop shaping. If
the the nominal plit n 4 included in the transmission
v = 0.5 (rad/sec), the shift must be incorporated in loop, the zero a -j aot absorbed in Lo become
the stability bounds. The moving Nichols chart tech- poles and zeros, n . .:tively, of G(w'). The longitudi-
nique, which is slightly different from the method usu- nal SISO G(w) for :his design is:
ally employed, is used to plot the stability bounds on
the NC. For a discussion of the moving Nichols chart 0.0183(w' + 2)(w' '(w' + 8)(w' + 10)(w' + 50) (29)
technique, see [2]. (w') 2 (w' + i-. ± j120)(w' + 300)

The stability bounds are used in shaping the loop 3.12 Prefilter Design
transmission where the design can proceed using a va-
riety of techniques. The two techniques used in this The prefilter, F(w'), is obtained by plotting the fre-
design are the "backward loop shaping technique" and quency response data of the closed !oop system:
"minimum order compensator design technique". A
high order compensator is not desirable for Lambda 1 L(w') _ G(w')P(w') (30)
and the "backward loop shaping technique" may pro- 1 + L(w') 1 + G(w')P(W')
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which indicate that a robust design is achieved, that is,
"all responses lie between the upper and lower specified

.tracking bounds.

0. ~ ~1 &0 3 36 .

-aO S •-4 ""4. ' 5 "- -- .. +..

..P .. ....

~~~~~ .. ... ...... . . .. .+ , +

Figure 6: NC Including All 19 Plants and NMP Ele- _-. . 1
ments -

1 1. a 2.5 3 3!a.. .

The frequency response bounds, developed from the Figure 8: System Build w' Simulation Frequency Re-
specifications, are plotted over the closed loop response
producing a family of curves. See the first plot in

Fig. 7. Poles and zeros are placed in front of the closed
loop system until all of the responses are contained
within the performance bounds, as in the second plot 3.14 z-Plane Transformations
"in Fig. 7. F(w') and G(w') are transformed to the z-plane for

digital implementation on Lambda. The z-plane rep-
resentations are obtained by performing the bilinear1!i 1-1 TIT-transformation; see Eq. (19). In addition to perform-

d ...... ing the transformation, the user function divides the
I Mil Inumerator and denominator by the denominator lead-

ing coefficient resulting in a normalized z-plane repre-
S sentation of F(z) and G(z):

.013975z' + 0.0093168z + 0.0015528 (33)
z2 - 1.6439z + 0.66874

96.749.5 - 374.312. + 566.96.3 - 4•(7•222 + 247.35Z -L 9.;53

Figure 7: Closed Loop Response Without and With .3 - 0.7682qS. - o.S7ao5,, + 0.17073*, - 0.36585 + 0.1096 (74)

Prefilter, F(w') 3.15 Comparison of w' and z-Plane F's and

G's
The prefilter for the longitudinal SISO QFT design is: The w-plane and z-plane compensators and filters

) 0.001875(w'+ 200)2 must be comparable up to frequencies greater than
(w, + 5)(w, + 15) (1 5w (rad/sec) The sampling frequency on Lambda

is 50 Hertz, therefore w, = 314 (rad/sec)and the
where: w'and Z-plane representations must be faidy close up

lirn F(w') = 1 (32) to w = 105 (rad/sec). The frequency response of F(w')
w•.--0 and F(z) are plotted in Fig. 9 where a good compar-

ison exists within the required frequency bandwidth
3.13 w' Simulation 0 < w < 105 (rad/sec). Similarly, a good comparison

The w-plane design is simulated to verify the perfor- exists between G(w') and G(z) [2].

mance before proceeding with the design. The w' sim- The synthesis of the QFT compensators and prefilters
ulations are performed using the System Build capa- for the two-by-two lateral-drectional MIMO plants
bility of MATRIXx . Time domain step responses are follows the same steps. The first transmission loop
plotted along with the performance bounds (see Fig. 8) and thereby the prefilters and compensators are done
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exactly as the same as a SISO design. However, in can be overcome if Lambda's speed is held constant.
forming the second transmission loop the compensa- In the simulations, Lambda can hold a pitch rate con-
tion of the first loop is used to reduce the amount of stant until the speed drops. As the speed drops, more
uncertainty, elevator is needed than is available to the controller.

Since the simulation results are good, within the per-
4 SIM LATIN REULTSformance limitations of Lambda, it is assumed that the
4 SIM LATIN REULTSA/C will perform well with this controller design.

The design is simulated using the best model available, With the exception of generating the MISO equiva-
in this case the same one used in the design with the lent transfer functions, the QFT design for the lateral-
additional nonlinear elements added. The nonlinear directional MIMO portion of Lambda follows the same
elements are due to the software and hardware lim- procedure as the longitudinal SISO channel. The de-
iters. MATRIXx has the ability to simulate a system sign is effective but somewhat limited by the low--order
with both continuous and discrete elements. This "hy- compensator requirement. Again, adding the nonlin-
brid" simulation capability is used to verify the perfor- ear elements in the model limited the response but did
mance of the design. Adding the limiters produces the not produce instabilities. Better performance could be
simulation results shown in Fig. 10. The simulations obtained through faster sampling, higher bandwidth
predict the performance expected from Lambda in ac- actuators, and higher--order compensation, all of which
tual flight. They show good performance at all flight would allow higher loop transmission gain. In spite of
conditions for a step command of 100 per second for the physical and imposed limitations, the QFT con-
at least two seconds. After two seconds, the deflection troller performs well.
limits on the actuators begin to affect the response. In contrast with previous efforts that used models de-

veloped from computer predictions from design speci-

5 SUMMARY, CONCLUSIONS, fications, this design employs a model developed from
AND RECOMMENDATIONS flight test data. In the model, A/C dynamics sepa-

rate into two independent channels--the longitudinal
channel and the lateral-directional channel. The Ion-

5.1 Summary gitudinal channel is a S150 system while the lateral-

A single QFT controller is synthesized that produces drcinlcanli w-ytoMM ytm
satisfactory performance throughout the flight enve-
lope. It is important to note that no gain scheduling 5.2 Conclusions
is necessary. Response of the system remains stable
in spite of the inherent nonlinearities present due to The QFT design technique is powerful and useful for
hardware and software control limiters. The hybrid the design of a rate controlled autopilot for URVs
simulation with nonlinear elements (see Fig. 10) is the requiring robust autopilot systems. Lambda simula-
final test of the design as it includes all that is known tions show a single QFT1 controller can perform well
about the plant. Some of the performance limitations throughout the entire flight envelope of Lambda with-
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out additional sensors. The technique is straight- thesis, Air Force Inst. of Tech., Wright Patterson
forwarl. Synthesis and simulations can be per- AFB, OH, Dec. 1991.
formed uwing a computer aided design package such [3] D. G. Wheaton, "Automatic Flight Control System
as MATRIXx using minimal computer resources. The Design for an Unmanned Research Vehicle Using
"method is completely transparent, in that the designer Discrete Quantitative Feedback Theory," Master's
is able to predict the ultimate performance early in thesis, Air Force Inst. of Tech., Wright Patterson
the design. More importantly, the designer is able to AFB,OH, Dec. 1990.
make engineering tradeoffs during loop shaping. For
example, performance at certain frequencies can be in- [4] Horowitz, I., "Improved Design Technique For Un-
creased by reducing the performance at frequencies of certain Multiple-Input-Multiple-Output Feedback
lower interest to the designer. Systems," Int. 1. of Control, vol. Vol. 36, no. No.

6, pp. pp 977-988, 1982.

5.3 Recommendatione [5] G. A. Swift, "Model Identificaion and Control Sys-
tem Design for the Lambda Unmanned Research

Working on a controller for Lambda is a unique op- Vehicle," Master's thesis, Air Force Inst. of Tech.,
portunity. Simply knowing that the controller design Wright Patterson AFB, OH, Sep. 1991.
will be used is highly motivating. Wright Laboratory [6] Houpis C. H. and G. B. Lamont, Digital Control
should continue to challenge AFIT students with the- Systems-Theory, Hardware, Software. McGraw-
sis proposals involving Lambda. The students benzfit Hill, 1988.
by facing a real life challenge and the laboratory getc
needed research. [7] Hofmann, L. G. and R. E. Michael., "Technique

for Analysis of Digital Control Systems." General
This design is to be implemented on Lambda and the Electric Company, Avionic and Electronic Systems
performance to be compared with predictions. The Division. Binghamton, New York.
Lambda model should be improved as more informa-
tion becomes available and should be extended to in- [8] Military Specification-Flying Qualities of Piloted
clude the effects of operating the ten flight control sur- A.rcraft. MIL-STD-1797A. 30 Jan. 1990.
faces independently. The weight of Lambda should be [9] Houpis, C. H., "Quantitative Feedback The-
reduced or ,at least, held to its current value since ory (QFT)-Technique for Designing Multivari-
the heavier weights are the main source of plant varia- able Control Systems," Tech. Rep. AFWAL-TR-
tion and contain open loop unstable poles. Addition- 86-3107, Flight Dynamics Laboratory, Wright-
ally, other QFT controllers should be synthesized for Patterson AFB, OH , Jan. 1987.
Lambda.

This design is aimed at stability throughout the enve-
lope assuming no failures. Future efforts should con-
sider the effect, of component failure or battle damage
on the controli',bility of the A/C. Because of limited
computer resources aboard Lambda, this controller is
limited to fifth order compensation. Superior perfor-
mance is achiev d in simulation with higher order com-
pensation due to higher available loop transmission
gain. Future eff ,rts might add the computer resources,
without additional weight, to Lambda to allow higher
order compensation and a faster sampling rate.

Finally, Lambda's performance could be improved by
installing faster actuators since the present actuators
severely limit the loop transmission gain.
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ABSTRACT

The OFT and LQG/LTR techniques are applied to design flight control laws for the AIAA Control
Design Challenge nonlinear aircraft model. In this approach, the nonlinear aircraft model is
first linearized and the LQG/LTR technique is used to obtain a baseline control law. Then the OFT
technique is applied to enhance robustness of the baseline control law in order to account for
nor'inearities of the system. The OFT enhancement is used in the inner loop control to achieve
good flying qualities. The outer loop control laws are designed for the low order aircraft model
using the LOR technique to accomplish hands-off autopilot for the specified maneuvers.

1. INTRODUCTION In order to achieve good flying qualities,
design goals for the inner loop control laws

One of the demands for modem advanced are specified by first and second ordr
fighter aircraft is high maneuverability. In transfer functions as shown below.
order to achieve this objective, we can trade
some degrees of stability robustness for (a) Longitudinal Axis
maneuverability. In addition to this trade-
off, certain maneuvers (e.g. flight with high N.= Gcj
angle of attack) introduce significant Fs s2+2ý.osS.oi
amount of nonlinearities. However, in
practice, linearized aircraft models are
often used to approximate the short period where Nz(g), Fs(inch), G(g/inch), ws
aircraft dynamics for designing control
laws. Thus, errors between nonlinear (rad/sec) and CS denote normal
aircraft dynamics and its linear acceleration, stick input, stick gain, short
approximation become critical, and the period frequency and short period damping
control law design techniques which better ratio, respectively. Cs is set to be 0.7 at all
account for nonlinearities are needed.

flight conditions and ow varies at each flight
In this paper, the OFT approach is explored condition as shown in table 1.
to design flight control laws for the AIAA
Control Design Challenge nonlinear aircraft Flight Condition. os
model. The nonlinear aircraft model is first ..................
linearized and the LOG/LTR technique is 0.5M/9,800 ft. 3.6
used to obtain a baseline control law. Then 0.9M/9,800 ft 7.3
the OFT technique is applied to enhance the 0.6M/30,800 ft 2.2
robustness of the baseline control law in 1.4M/39,800 ft 7.0
order to account for the modeling errors.

Table 1. Short Period Frequency
2. CONTROL DESIGN OBJECTIVES
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The stick gain G converts the longitudinal Longitudinal Control
stick input to normal acceleration command The longitudinal dynamics at the flight
to achieve a desired 2nd order response. condition O.5M/9800tt is a nonminimum-

phase single-input/single-output transfer
(b) Lateral/Directional Axis function. The nonminimum-phase appears

at +6.6465. The reference command is the
p Gacosco desired normal accceleration and the input
F= s+a control Is the symmetrical collective

stabilator. To accommodate the flight
r= Gasinao regime in the neighborhood of the flight

Fs S+a condition and model errors induced in
linearization, various degrees of parameter
variations are introduced intentionally. The

0= longitudinal controller is designed to
F, tolerate these uncertainties without

significant performance degredation from
where P(deg/sec), r(deg/sec), the give~i specifications. The intention is to

obtain a longitudinal control which works
P3(deg), .o(deg), G(deg/sec.inch) and a for the nonlinear aircraft model in a
denote roll rate, yaw rate, side slip angle, reasonable large flight regime about the
trimmed angle of attack, stick gain and given flight condition.
bandwidth, respectively. The values of a are
shown in table 2. Lonnitudinal Control Desion

The design approach taken here follows
Flight Condition a three steps:

0.5M/9,800 ft 2.2 * Use LQG/LTR to generate a baseline
0.9M/9,800 ft 2.4 design which is stable and performs
0.6M/39,800 ft 1.7 reasonably well.
1.4M/39,800 ft 2.2 * Use QFT to generate the loop

transmission constraints or bounds
Table 2. Bandwidth to define the potential robust

compensators to acieve the desired
For normal acceleration control, collective specifications.
Sstabilators are used as the control effectors - Use the classical loop shaping
and ailerons and differential stabilators are techniques to enhance the LQG/LTR
used for roll rate and yaw rate control. compensator to meet the OFT bounds.
Outer loop control laws are designed to
gena3rate the commands in the longitudinal (1) LOG/LTR Baseline Design
and lateral/directional axes for the The standard LQG/LTR techniques are
specified maneuvers so that the error used to find a stable, resonablly good yet

responses of the aircraft are within the not fully sa blefactory compensator
specified error tolerances.

3. LINEAR OFT METHOD GlOs 7(s+1 9.6824)(s+5.8356)(s+1 459.47)(s+8.8769)

The aircraft model of the AIAA control design
challenges is linearized around the four (s+0.8821 +j2.1527)(s+0.8821_-j2.1527)
given trim conditions. To demonstrate our (s+7.5082)(S+5.0158)(s+0.02)
design approach, the flight condition
O.5M/9800ft is considered in the following The time response of the design is v'ary
to illustrate the main ideas. satisfactory except the steady state
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error ano large control bandwidth state error. This can be easily fixed by
(refer to Figs.1&4 ). classical loop shaping by adding a small

zero and an integrator. The further
(2) OFT Bounds analysis of the LOG design reveals that
The LQGILTR design dose not take the the LOG/LTR controller contains a small
model uncertainties and variations into pole and a very large pole. The small
account explicitly. Based on the OFT pole can be cancelled by the small zero
theory, given a quantified model just mentioned without affecting the
uncertainty, for example a 10% performance much. That very large pole
aerodynamic coefficient variation, one causes excessively large control
set of the so called tracking loop bandwidth. This can be easily corrected
transmission bounds, which by replacing with a relatively small
characterize the lower bounds for pole around 100. Thus an enhanced
potential loop transmissions, is compensator with an integrator Is
produced to guarantee the closed loop obtained:
system performs uniformly well within
the allowed performance tolerance with GlIQn ,47P(s+1 9.68 2 4 )(s+5.8356)
respect to the given amount of (s+1X00)(s+8.8769)
variations. Another set of stability
bounds which characterize the (s+0.8821 +j2.1527)(s+0.8821-i2.1527)
forbiddeen regions for loop
transmissions, is derived to guarantee (S+7.5082)(S+5.0158)S
the closad loop system stabitity. For
this longitudinal control problem, the Fig.3 also shows the enhanced loop
allowed tolerance on the magnitude of the transmission against the OFT bounds.
closed loop response is shown in Fig. 2, The envelops for the variations of the
where the upper and lower bounds are the time and frequency responses are
added to the desired specification shown in Figs.5 & 6 for 5%,10% and
discussed in Sec. 2 to indlcae the 20% parameter variations.
tolerance. The 10% aerodynamic
coefficient variation leads to the Lateral/Directional Control
frequency response variations portrayed The lateral dynamics at the flight condition
by templates for a number of 0.SM/9800ft is a 3x3 multiple-
frequencies as indicated in OFT [3]. input/multiple-output transfer function
These templates and their associasted matrix. The reference commands are the
tolerances determine the tracking and desired sideslip, yaw and roll rates and the
stability bounds. The algorithms control variables ares the unsymmetrical
developed in [41,[5] aro used to differential stabilator, rudder and aileron.
construct these bounds as shown in The intention is to obtain a lateral control
Fig.3. which works for the nonlinear aircraft

model In a reasonable large flight regime
(3) Enhancement about the given flight condition.
This baseline design is overlayed on the
Nichols Chart to check against the OFT Lateral/Dire-tkinal Control Deaign
bounds. Figure 3 displays both the OFT The same 3-etep approach will be followed
bounds and the LQG/LTR design loop for lateral compensator design. The details
transmission. Under the 10% variation will be included in the final paper.
of the aerodynamic coefficients, the LOG
design satisfies most OFT bounds but a 4. AUTOPILOT DESIGN
few. It implies the LQGILTR design
would not behave as robustly for the Autopilot control !aws are designed for
1 0%parameter variation as a OFT altitude hold. bak angle hold and velocity
design. Noticeably, the LOG design lacks hold modes to provide pilot relief automatic
an integrator and thus causes a steady
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flight control. The longitudinal and
lateral/directional command inputs to the REFERENCES
inner loop control laws are generated to
achieve the specified maneuvers with [1J I. Horowitz, "Feedback Systems with
precision. The closed loop flight control Nonlinear Uncertain Plants," Int. J.
system consisting of the airframe and the Control, Vol.36, No.1, pp.155-171,
inner loop controller are approximated with 1982.
the' low order systems specified In the
design objectives and the LOR technique was [21 I.Horowitz and M Breiner, "Quantitative
employed to design controller gains for each Synthesis of Feedback Systems with
autopilot mode (see Figure 7). Uncertain Nonlinear Multivariable

Plants," Int. J. Systems Scd, Vol.12,
The velocity hold mode autopilot Is achieved No.5, pp.539-563, 1981.
by commanding the throttle to regulate the
error between the commanded velocity and [3J Horowitz, I. and M. Sidi, "Synthesis of
the fed back velocity, (Vcom - V), and to Feedback Systems for Large Plant
regulate acceleration Nz to regulate the Ignorance," Int. J. Ctrl, v.16,
error between the commanded altitude and pp.287-309, 1972.
the fed back altitude, (hcom - h), and to
regulate vertical velocity, dh/dt. The bank [4] C.Y. Chang, T.S. Chang and C.W. Chen,
angle hok- mode autopilot is achieved by "Loop Transmission Bounds for
commanding the roll rate to regulate the Multivarlable Diagonal Control in
error between the commanded bank angle Quantitative Feedback Theory," to be

presented in 1992 American Control
and the fed back bank angle, (corr, - 0. Conference, June 1992.

5. SIMULATION RESULTS [5] G.G. Wang, C.W. Chen and S.H. Wang,
"Loop Transmission Bounds in

Nonlinear simulation was performed using Quantitative Feedback Theory,"
the inner loop control laws designed with submitted to I. J. Control.
the LQG/LTR plus QFT technique at each
specified flight condition to evaluate the
resulting designs against the design
specifications The time response of the
normal acceleration with the control laws
designed by the LQG/LTR plus OFT technique

at a flight condition of 0.5 Mach at 9,800
feet is shown in Figure 8. Using the
autopilot control laws designed for the 1
altitude hold maneuver together with the,
inner loop control laws, the nonlinear -J

simulation was performed. At 9,800 feet,
0.5 Mach, a vertical velocity of 50 feet/sec
was commanded and held for 4 seconds. Then 0
the altitude hold mode was engaged. The
aircraft vertical velocity response is shown t . 4 , , 7 , 0

in Figure 9. The altitude command input and
the resulting aircraft altitude are shown by Figure 1. Step Responses
the dashed and the solid line, respectively in
Figure 10. The results show very good
aircraft responses. In order to quantify the
error between the commanded and the
achieved altitude, the error response Is
shown in Figure 11.
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Figure 2. Design Specifications Figure 5. Step Response Variation of
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VEHICULAR LONGITuDINAL CONTROL

USING QUANTITATIVE FEEDBACK THEORY

Susan J. Gardner and Sami Fadali
Electrical Engineering Department, University of Nevada-Reno

Abstract

Quantitative Feedback Theor'r(QFT) has proven itself as one of the most
viable methods of control for systems with large parame,.i variations. These
large variations are prevalent in modern automobiles and trucks. The vehicle
dynamic model is the sum of the forces, propulsion force, air drag force and
gravitational fc.rce (Fd - F -Fa ). The propulsion force (Fd) includes

saturation constraints and varying masses and time delays in engine and
brakes. Gravitational force (F ) is a function of the highway terrain. The

air drag force (Fa) is both constant (due to steady velocities and wind) and

incidental due to wind gusts and will be addressed in a later paper. To allow
more vehicles/hour on existing roadways, it is evident that an automated
controller must operate very dissimilar vehicles in changing environments
(topographies, weather, emergencies, etc.) to control speed, spacing and
lateral positioning. A requirement for a controller for this purpose is
smooth (comfortable) operation during manuevers such as stopping or
entrainment with rejection of euvironmental disturbances. Speed and spacing
(longitudinal control) is the emphasis ot this paper in which QFT is offered
as one possible solution.

Introduction

Today, roadways have become overburdened and congested worldwide. In
California alone, three million more cars are expected on its roads and
highways by the turn of the century (California Senate Research 1991). Not
only are the number of autos increasing but the number of miles .traveled is
growing due to the extreme dependence on the auco and the growing separation
of work, home and shopping. The purpose of the "smart highway" or Intelligent
Vehicle Highway System (IVHS) is to improve existing highway efficiency.
Expected added benefits are greater safety, convenience and a decrease in fuel
consumption and pcllution from the largest source of air pollutions. By
eliminating stop-and-go driving, emissions/mile will be reduced.

One aspect of the automated highway is the "platoor.ing" a number of
vehicles as a group. This entails control, both longitudinal and lateral,
being surrendered by the drivers so that a shorter distance between cars may
be maintained than would be safe for manual control. This compresses the area
of highway necessary to transport these vehicles and ultimately increase the
highway's vehicles/mile capacity.

Several approaches have been used to effect the longitudinal control.
Due to the performance variations in individual vehicles caused by
maintenance, weather or loading and the changing roadways (wind and
topography), QFT seems a viable solution.
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Representation of the Dynamic Model

The simplified analog transfer function model for the throttle-torque
response of the power plant is shown in Figure 1 (Morris 1983, Frank 1990).

throttle 
torque

perturbto K perturbation

Ts+ I

manifold and power-stroke torque
rotational dynamics delay converter

Figure 1. Block Diagram of Propulsion Plant

The Laplace representation of the force due to the propulsion system, Fd, is a

first-order transfer function:

"ST

Ts + 1

where C, the driving coefficient, is the product of the gains of the manifold
and rotational dynamics and the torque converter. The variable, T, represents
engine dynamics and r is the time delay inherent in the system.

The dynamic formula is the sum of the forces both internal and external,
i.e. air drag, Fa, and gravitational force, Fg, exerted from an uneven

terrain.

FF - Fd - F -F

where

Fa - Ca(V + Vw)2Sgn (V+V) (1)

F - m g sin$ (2)g

In equation (1), Ca is a function of the air drag coefficient, air density and

vehicle frontal area. The variables, V and Vw, are the vehicular and wind

velocity, respectively. Equation (2) is the horizontal component of the
gravitational force which is the product of the mass, m, the gravity constant,
g, and the sine of the angle of the road with respect to horizontal, e. The
sum of the dynamic forces is shown in Figure 2.

F F
g a

Figure 2. Dynamics Block Diagram

171



Objectives

The purpose of longitudinal control is twofold:

1) To maintain a desirable speed (velocity)
2) To maintain a proper headway between vehicles (spacing)

These two objectives must be met during normal operation while rejecting
disturbances such as gravitational forces and wind resistance (addressed in a
future paper). Also special maneuvers such as speed changes or vehicles
entering and exiting the platoon (entrainment) must be performed while still
maintaining the desired speed and spacing. The performance of the controller
is also limited by requirements of energy conservation and comfort over all
speeds from 0-30 rn/s (0-67 mph).

Controller Design

There are two outputs, velocity and spacing, and therefore two
controllers for this system. The one system is divided into two SISO systems
where the speed regulating system is nested within the space controlling
system, Figure 3.

xrspeveilI
cotolrregulator lat S

sensor

Figure 3. Control System Block Diagram

It is intended that there be a fast response to changes in velocity
requirements while the outer loop should be slower so that it is less
sensitive to changes in space between cars. This will allow a compression of
the platoon when a hill is approached or when adjustments are made for the
entrainment of another vehicle. Without this compression, the platoon might
spread out during the process and thus use more highway area that could lead
to a domino effect on following platoons.

Speed Controller

The inner loop controls the velocity which is limited by the requirements
for comfort and fuel economy, that is, no more than a .2g acceleration and a
.2g/s jerk. In the case of a mid-sized car, this means a speed of response

2between 20 and 60 seconds with a maximum slope of l.5m/s . An overshoot of
10% is arbitrarily chosen with a steady state error of 5%. These constraints
are shown in Figure 4.
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3m/s 2  ± 5%

"1608

Figure 4. Constraints on Closed Loop Response

Using standard templates which lie within these constraints, the bounds are
identified in the frequency domain about the approximate cut-off frequency,
W c of .07, Figure 5.

0

-30

-40

frequency

Figure 5. Frequency Response of Standard Templates
Satisfying Constraints

The plant equation is:

V(s) Fd(s) + Fg(s)
U(s) ms

Ts+l +m gsin9

ms

Since the time delay term is not multiplicative it cannot be transformed into
a simple phase shift in the frequency domain. Being additive, it was
necessary to substitute the second-order Pade' approximation, which introduced
the effects of a non-minimum phase zero into the equations:

2 2
12 - 6r s + r s

- - 12+6r s+r 2 s2
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The parameter variations are:

T - 1 to 2 m - 750 to 1750 kilograms
T- .3 to .6 s g sin 0 - -. 06 to .06 grade

Using these values to produce the Horowitz templates, the familiar QFT
boundary curves are produced at frequencies 3 octaves above and below Wc'

Figure 6.

alpift I

Figure 6. Boundary Curves for Speed Regulator

During this process, the zeros created by the time delay moved back and
forth across the imaginary ais as the various parameters were varied. This
had the effect of causing instability for which it was impossible to
compensate, that is, the critical circle moved across the Nichols Chart as in
Figure 7. Since this is inherent in the plant, it meant that certain vehicles
were unable to perform at specific loads, on specific grades with this time
delay. Although in this application, this is a more concern of the auto
designer than the control engineer, it did give some insight into how a sensor
with a similar time delay, as in the case of the outer space regulating loop,
may effect stability and that is a concern of the control designer. For this
application, the workable curves of Figure 6 were obtained by putting a
smaller load variation, i.e. those given.

40O .0 . I . 4 0 .

-I

20 - .817.

Figure 7. instability Caused by Varying Parameters
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Using the curves produced in Figure 6, a compensator, 0c(s), was designed

to bring the return ratio to a close proximity to the bounding curves.

.32 (a + .02)
C (s) -

(s + .05)

The resulting bode plots were obtained by varying the parameters over the
compensated plant with feedback, H(s) - 1, Figure 8.

\ -2-

14

.10-

1044 1090

Figure 8. Bode Plots of Compensated Plant

A precompen.ator, P(s), of .16/(s + .15) further shaped the curves to
align within those templates of Figure 5. The step response for the velocity
controller is shown in Figure 9.

0.4

CL

0 10 20 30 40 50 60 tie

Figure 9. Step Response of the Speed Controller
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Space Controller

The outer loop controls spacing between vehicles. The spacing
information is obtained .by a radar mounted on the front of the autos. This
necessitates a rather lengthy time delay which appears in the feedback loop.

For this application, the Pade' approximation for e- ~ i~s again used, this
time in the feedback loop. The time constraints on the space coiutroller are
not rigorous, due to the desire for a slow response time to allow for
compression of the platoon during operations such as entrainment or
approaching a bill. A response time 4 times slower than the velocity
controller, 240 seconds, achieves this spring effect in the platoon. An
overshoot of 10%, and a steady state error of 5% is arbitrarily chosen. Such
a large steady state error is appropriate since a "spacing policy" for each
vehicle based upon their mass and performance. This "'spacing policy"
determines the target position for the spacing controller and allows a safety
margin.

Again in the method of QFT, frequency constraints were determined from
the time constraints in which appropriate standard templates lie. The G p(s)

equation for the outer loop was the entire closed loop compensated transfer
function of the inner loop. The Horowitz boundaries were calculated using

this new G p s) convolved with the feedback function, H(s) - e 2to obtain

the return ratio, L(s). The four parameters of the inner loop were again
varied, with the additional one of r 2# which varied from .05 to .2 seconds.

Due to the difference in response times between the two loops, the boundaries
for all the frequencies 3 octaves below and above w a were closed curves such

that the critical curve was the only consideration. Because there were no
boundary restrictions except for stability, it was only necessary to
compensate with a simple gain of .01778 to obtain Bode plots which lie within
the appropriate area within the frequency domain. Figure 10 shows the step
response to the outer loop (no precompensator was necessary).

0.8-

0.6-

0.4

0O.2

0 010 .5 200 21

Figure 10. Step Response of the Space Controller
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Conclusion

The disparity in the response times between the inner loop and the outer
loop trivialized the outer loop. However, in real practice, it may be found
that the outer loop may need both a faster response time and a longer time
delay. (It may take longer that .2 seconds to determine the space between two
moving vehicles.) In that case a balance between the two loops may be harder
to achieve. Also one controller that may substitute for these two must be
designed in the case of lose of either feedback loop. With this design, when
the inner feedback loop is opened, the space controller causes the vehicle to
become wildly unstable in which an accident is entirely probable. The QFT
method has proven as a method of design and stability analysis that could be
implemented in all these cases.

This is just a beginning design which, to become workable, must be
considered in the MIMO case. The speed controller must have an external input
from a traffic controller, Vr, for the reference. The space controller must

have not only information about the space between vehicles but needs velocity
data from the car in front, Vf, to determine what change in velocity will

effect a spacing between them, making this a tracking problem. Without
considering such things as emergency stopping, etc. there are at least two
inputs and two outputs. In any future practical application, the MIMO case
must be considered.
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MULTI-INPUT MULTI-OUTPUT FLIGHT CONTROL SYSTEM DESIGN FOR THE YF-16
USING NONLINEAR QFT ANL PILOT COMPENSATION

R B Miller, I M Horowitz*, C H Houpis*, and F Barfield*

LI. ntroduction
This paper asserts the validity and value of both nonlinear (NL) QFT and man-in-the-loop modeiling to the

application of aircraft (A/C) flight control system design. Nonlinear QFT is basically a standard linear QFT design
with the exception that the NL characteristics of the plant over the desired range of operation are included in the range
of plant uncertainty. In previous work [5], NL QF" was used for a single-input single-output (SISO) design that
developed a technique to design pilot compensation for tracking tasks with the goal of reducing the pilot's workload.
This workload reduction provides the pilot with the opportunity to focus maximum attention on mission
accomplishment as opposed to simply maintaining stable flight. This technique was applied and validated for a NL
SISO design for the YF- 16 A/C. This paper presents a multi-input multi-output (MIMO) design on the same plant

Assumptions, Scope, and Standards
The assumptions utilized are: 1) Only the modelled inputs are of interest for final performance, and 2) All

inputs and outputs are Laplace transformable. Assumption #1 is required to reduce the workload involved with the
design. A sufficiently large number of inputs are used to ensure that this is a reasonable assumption. The second
assumption does not place any real limitations on the analyiis since Laplace transformability requires only that
"either (1) the function is smooth, continuous and bounded, or (2) the function is unbounded and there exists a 8 sucht

that Jo f(t)e'stdt exists. This flight control problem involves the design of a pitch and roll control system for the
YF-16. The plant model is a 6-DOF NL FORTRAN simulation. For this design the only independent commanded
controls are symmetric hori&ontal tail (elevator) and aileron deflections. The simulation includes rudder and leading
edge flap compensation which were left intact. The rudder controls are required for lateral stability, but the decision
to leave in the flap controls is rather arbitrary. As long as the design model is the same as the simulation model,
treatment of additional control surfaces is not a significant issue. Response specificiations are based on guidelines
presented in MIL-STD-1797A, Flying Qualities of Piloted Aircraft.

Nonlinear QFT is used to design a 2x2 flight controller whose outputs elevator and aileron command, are used
I - -f to control C* and roll rate, p. C* is a blend of normal acceleration and pitch rate as felt at the pilot station, given

by C* = Nzp + 12.4q. The design is based on obtaining satisfactory responses for step commands in both CO and
roll at the two flight conditions 0.9 mach, 20,000 feet (0.9M,20K) and 0.6M,30K. The maximum commands on
which the design is based are 2.2 g's for C. and 300/s for roil rate.

Inner Loop Design. The inner loop design consists of the development of the stability augmentation system
(SAS) compensator, designated G in Fig. 1.1. For this design, G and F are 2x2 diagonal transfer function matrices.
The compensator, G, stabilizes the A/C and ensures appropriate outputs to pilot inputs. The prefilter F is developed
following the completion of the SAS compensator, for simulation and verification of the inner loop design.

Pilot Compensation. The outer loop design consists of choosing a pilot compensation filter, Fp in Fig. 1.2, to
provide satisfactory system response with minimal pilot work load. The outer loop design is based on the Neal-
Smith (NP) pilot model of Eq. (1.1) which consists of a gin, a time delay, and a first order filter. The basic

S(1.1)

design strategy is to model the pilot by parameters which have been thown to result in satisfactory pilot ratings

[8: 10.15]. and synthesize pilot compensation that results in the appropriate system response while it is being driven
by these optimal pilot characteristics. Thu., the pilot model simulates an actual human pilot in the loop, "flying"
the system in a manner which he considers to be acceptable. Designs which do not consider the pilot may be
capable of producing the appropriate A/C responses, but if the pilots do not like the way they "fee,", time

/ consuming and e; pensive modifications must be made. These modifications can be avoided by the development of a
design technique that considers the pilot-aircraft interaction in the early design phase so that the completed product is
always satisfactory to the pilots.

Air Force Institute of Technology

Flight Dynamics Directorate, Wright Laboratory
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Simulation. A linear inner loop MATRIXx simulation is performed, followed by a full NL simulation on a
VAX with the FORTRAN YF-16 simulator. Comparison of the two simulations indicate the validity of the
equivalent LTI design models. Finally, the outer loop design is simulated on the NL FORTRAN simulator.

Equivalent Linear Time Invariant Plant Models. A set of equivalent linear time invariant (LTI) plant models
that rigorously represent the NL plant are generated by a MATRIXx program (6] based on Golubev's method and ex-
tended to the MIMO case. This program, given an input-output time history of a 2x2 plant generates an equivalent
LTI transfer function set that represents the NL plant used to generate the time history. This equivalent plant is
valid for the snecified inputs only. Thus, given a NL model, by generating input-output time histories for all
realistic inputs into the plant, a VA of equivalent LTI transfer functions Pe - (P(s)) are developed that represent the
""siagi NL plant. This set of plants represents the parameter uncertainty for which the QFT design method was
developed, and includes the NL effects of the plait. I has been proven that for a very large problem class the
"solution to the Pe uncertainty problem is guaranteed to solve the original NL uncertainty problem (4].
Generation ofEqW nt L77 Plants

Both the Golubev technique for SISO systems (SISOTF) and the modified technique for MIMO systems
(MIMOTF) are implemented in MATRDIx. These programs have been significantly tested with known transfer
functions, and give excellent fits. Fits for all of the actual equivalent transfer functions used in the design and their
errs are shown in App. B of ref (6].

The YF-16 simulator is used to generate sets of input-output ime h es for plant generation, which utilizes
N the full NL six degree of freedom equations of motion. The original simulator control system is significantly

modified to ease the task of filling the response envelopes. Since this design is limited to a 2x2 system, 1) the
original rudder and leading edge flap controls are left intact, and 2) the connections to the elevator and ailerons are
broken and controlled independently of the original control system. The use of pure gain compensators as shown in
Fig. 1.3 results in tight loops whose outputs are very similar to the commanded inputs, which makes it a relatively
simple task to fill the desired response envelope. Additionally, since the gains Kc and Kp do not affect the
equivalent plant, they can be altered from run to run. During the simulator runs, surface commands to the actuators
(inputs) and A/C responses (outputs) are recorded. These input-output histories are used with M[MOTF to generate a
set of equivalent LTI plants which represent the A/C for the full range of desired responses.

The inputs used for plant generation are 8ecmd and 8acmd (see Fig. 1.3) while the outputs are C* and p. Notice
that the elevator and aileron trim values are not included in the plant input as far as linear plant generation is
concerned. Theory requires that the inputs used for equivalent plant generation should include only the inputs which
are directly responsible for the obtained outputs (3]. In the case of C*, the addition of the trim value is enough to
make the input appear as a negative step, which results in stable plants for the YF-16's longitudinal axis. Since this
axis is well known to be unstable, these plants obviously cannot be equivalent to the actual system. Fig. 1.4
clarifies the difference in the plant generation with and without including the trim value. In the figure, delta Be*
represents the change in elevator only (no trim), and It" includes the trim value. Note that when the trim value is
included, the input looks like a negative step with significant overshoot A relatively slow, stable trander function
can easily be matched to the resulting input-output pair. Without the trim value right half plane poles (rhp) are
required to match the input output pair, as is expected for a longitudinal F-16 transfer function. Note that the plant
used in this design is defined with the original rudder and leading edge flap compensation in place, and open-loop
simulations verify that the leading edge flap compensation is not sufficient to stabilize the longitudinal axis.

For the CO loop, an interesting technique is used to drive the system to the desired output set. Since the system
outputs closely resemble the commanded inputs, weighted averages of the response envelope are used to drive the
system. As a result, the response envelope is filled rather nicely. Problems are encountered in determining equiva.
lent plants for most of the cases with overshoot and no undershoot that do not violate the requirements of (qii)
having no phase uncerainty at infinity. Therefore, those responses are not used in the design. Instead, underdamped
responses which contmin both undershoot and overshoot are used to fill the upper area of the response bounds. For
the roll ratw responses, the driving inputs consist of filtered steps of varying speeds formed in MATRIXx, and the
step responses of those filters used as inputs to the roll channel. A total of 22 equivalent LTI plants are developed

-' for the design using MIMOTF with actual simuLor responses. These plants represent the A/C at the two flight
conditions 0.9 M, 20,000 feet and 0.6 M, 30,000 feet. The maximum commands are 2.2 g's for CO and 30*/s for
roll rate. At the second flight condition (PC), the system reaches moderately high angles of attack up to

....... lifoxaateTy I5. -These system responses enclosed in their 7•,spective bounds are shown in Fig. 1.5. and the plant
transfer functions are given in App. A of Ref [6]. Note that .4e original thumbprints were somewhat less severe,
but we tightened around the achieved resposes to provide for a more stringent test on the design.
Cautios and Pitall•

The generation of equivalent plants for the MIMO pmbium requires an additional consideration. For a response
of the form Yl Yll + Y12 there exists an infinite number of solutions because of the addition involved. It is not
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sufficient, however, to get a good fit on only the response yl, but is also important to accurately model the
individual components YlI and Y12. In the NL problem, superposition does not apply, and the individual
components of the response are not available. To ensure that the individual elements of the equivalent plant matrix
are correctly weighted, the inputs are staggerd by one second. That is, for each set of commanded inputs, one is
commanded at time t = 0, while the second input is not applied until t a Is. Some runs have C* first, while others
have C* as the delayed response. The delay is applied to each of the variables with the intent that the range of plant
uncertainty includes the case of simultaneous responses. This staggering effect uirces MIMOTF to reasonably
weight the individual components of the response since during the first second one of the inputs is zero and there
exists a substantial response on only one of the outputs. An analysis of the individual components of the responses
"of the generated plants when simulated with the input with which they were derived, shows them to all be reasonable
at least for the majority of the run. In some plant cases, toward the end of the run the individual components of y 1I
and YI2 begin to diverge in opposite directions with a cancelling effect In reality [2], the control system forces the
plant input to contain rhp zeros to exactly cancel the rhp poles of the plant, so this apparent divergence from reality
is not necessarily a real problem. In some cases, the "equivalent" plants are only valid for the first 80 or 90% of the
run. Three second responses are considered to be sufficient for the desired outputs but the plant generation runs are
extended to five seconds to prevent premature divergence of the unstable longiudinal equivalent plants.

IL. Inner Loop Deign- .•Introducio

Since the designs are based on the equivalent MISO systems, in this section the term 'plant', or P refers to the
equivalent MISO plant, qii. In both designs, oveidesign is neglected and the only criteria considered is stability and
the requirement for a maximum open-loop crossover frequency of 30 rad/s to ensure sufficient attenuation of
structural modes. That is, maximum loop transuniss;n is obtained while meeting the crossover and stability
requirements. The reason for neglecting tracking and disturbance boundaries is that experience (2] suggests that the
30 rad/s crossover requirement is the dominant constraint, which means that a detailed QFT design to satisfy the
tracking and disturbance requirements with minimum overdesign would result in higher crossover frequencies. The

decision is made to design the roll rate compensator first because of lesser uncertainty presenL
Design Requirements

". -The requirements on the completed design are: 1) the time domain responses fall within the specified envelopes,
4 .2) stability nargins of 6 dB and 45* are maintained, and 3) a maximum crossover frequency of 30 red/s is maintained

for all plant cases& By obtaining maximum loop transmission, the tracking and disturbance requirements are
automatically satisfied if they are obtainable. The expe,'tation that the crossover requirement will be dominant is
substantiated by the simulation results. Note that the increased loop transmissions are helpful for gust alleviation
and robustness over a larger range of uncertainty.
TemPaes

Templates which represent the entire plant uncertainty in the frequency demain are obtained for a set of
frequencies (6) based on the appearance of the composite freqiiency response plots of Fig. 2.1. When little variation
exists in the templates of a certain frequency range they result in very similar boundaries and only the most
restrictive (highest frequency) need be drawn on the Nichols chart (NC). The plots of Fig. 2.1 provide insight into
the characteristics of ql and q22 that are worth mentioning. For instance, they bring out the fact that both ql l and
-M have an excess of one pole, since all cases have a final slope of -20 dB/dec. One case for ql 1 has a very large
zero, and the -20 dB/dec final slope is not entirely obvious from lie figure. Also, qII contains two rhp poles in
some cases, and only one in others. Since q22 has a -20 dB/dec final slope, irdicating the one excess pole, but 2700
of phase change, it can be noted that in all cases q22 contains one rhp zero.
Loop SaRpng

In order to minimize the complexity of the compensator G, the nominal plant is included in the loop
trasmission function L0 as shown in Eq. (2.1)

~ i~-'+ l ~* .( + Co. Id I~ s--+ CIS + C
L, GP. = ) = 0) (2.1)+') '. ( 3 .+d.i. 4

V-, +IP .. ,"..

By beginning the l•p aping withthe nominal plant poles and zeros, the complexity of the compensator is reduced
since G- Lo/Po. Compensator poles and zero are added to lbing the Ioop down the edge of the stability bounds. A
high frequency complex pair of poles is generally added at the end to provide maximum attenuation for high
frequencies where the design model may no longer be valid.
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P Loop Compensator
The stability contour is detrmined by the required gain and phase margins. The 3 dB contour corresponds to a

450 phase margin, but D ensure the 6 d gain margin requirement, it must be extended on the lower half, The do-
[ signs are made in coder to provide maximum loop transmission at all frequencies while meeting the stability and

crossover frequency requirenents. Since the template at 30 rad/s is 13 dB in magnitude and the nominal plant is
located at the bottom of the template, the nominal loop must fall at -13 dB at 30 rad/s to guarantee a 30 rad/s

i / crossover for all plant cmes. The compensaor gp used for the final loop shape of Fig. 2.2a is
g )-259.2(s + 4s + 251s + 30)• gp0s)

2 (2.2)
is +10(s + 140s + 30,625)(.2

CO Loop Compensator
The stability requirements for this loop are the same as in the roll channel, 3 dB and 45 . In this design the

frequency response for q22eq is idntical to that of the original q22, thus the second loop design is based on the
original equivalent plants derived previously. The completed loop shape of Fig. 2.2b is achieved with the

g(s) = .16"s + 21s + 15Is + 26("s . ,s + 10(s 2 s +75s.5625 (2.3)

Fig. 2.3 shows the frequency domain thumbprints with the frequency response for the completed inner loop
"design without prefl•ts. The prefilters, fl, for C*, and f22 for roll rate ar determined in the usual manner, and are
respctively 3(+0 __

f I(s) Ws + 4Ts 2+3W} US) =,...,.,,(2.4)

The frequency response with prefilters are shown for both cases in Fig. 2.4. Note that in both cases the responses
am adequately enclosed within the thumbprints.

_11. Simulation of the Inner Loop
Inrodur ion

A MATRIXx simulation with the equivalent linear design models, and a full NL simulation with the o,•gin-i
FORTRAN simulator used to generate the design models are performed. The first simulation is used to vali('te the
"design, while the second is used to determine the validity of the design models. Also, modifications made to the roll
compensator to improve the NL perormance ar detailed.
Linear Simduations

CO Linear Simulation. The first linear simulation is that of the C* compensation with the equivalent L0i
design models via MATRIXx system build. For the linear simulations, the response is independant of the input
magnitudes and only unit step simulations are performed. The linear simulation of all plant cases is shown in Fig.
3.1. The responses are all predominantly within the bounds with only minor excursions toward the end of the run.
These excursions are from the plants at FC 2 and are due to small complex zeros in the linear plarits. These zeros
result in nearby closed-loop poles with very large time constants and small residues. These li•nar responses are
"judged to be satisfacory, and the simulation phase is continued.

Roll Linear Simulation. The roll channel unit step responses are also shown in Fig. 3.1. In this case, more
pronounced boundary violations are noted. A small, oscillatory component of the time response prevents the
responses from being completely enclosed within the bounds. Note that these oscillations are present only in the
cases of P 2. A look at the Bode plots of q22 (Fig. 2.1) at these conditions indicate a peak at approximately 2.5
rad/s. An inspection of the q22 transfer functions reveals the existence of a pair of complex poles and zeros in this
frequency range that nearly cancel, but not completely. Since the final objective is the NL response, the linear
simulation is considered acceptabie and the NL simulation performed. Note that the roll compemsator was modified J
to the form of Eq. (2.2) following the NL simulations and these simulations are based on an earlier version [6].
Nonlinear Simulations

Nonlinear Simulation of the SISO Systems. First, NL simulations are performed on each channel separately.
As opposed to the linear simulation where simple step commands are sufficient simulations, the NL system must be
evaluated with commands of varying magnitudes. For the SISO C* simulation, C* is commanded from I to 5 g's at
each PC for a total of 10 :uns. The response on roll rate for the SISO C* simulations is essentially zero for all
cae The SISO simulations for roll rue consist of step cummands from 10 to 40*/s in increments of 100/s. In
these simulations, the C response is negligible. The normalized responses enclosed in the thumbprints are shown
for both cases in Fig. 3.2. Both sets of responses are completely satisfactory.

"Nonlinear MIMO Simulations Over the Design Range. The true test of the NL design consists of simulations
"over the range of input magnitudes on which the design is based. As mentioned earlier, it is essential that in the
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equivalent plant generation phase, equivalent plants are generated for the full range of desired outputs. Figure 3.3
shows the normalized responses of the NL plant over the full range of input magnitudes on which the design is
based. The only significant boundary violations are in the roll rate response, and are similar to those
of the linear simulation. Before attempts are made to eliminate these boundary violations, the NL system is
simulated over a wider range of input magnitudes to provide additional insight into corrective measures. The results
of those simulations can be found in Ref [6]. The roll rate responses show troublesome oscillations very similar to
those seen in the linear simulation, but they are somewhat more pronounced. Again, the only problem responses are
at the second FC, O.6M, 30K, and the oscillations get progressively worse as the commanded magnitude grows from
the original design range. The frequency of oscillation is approximated to be between 2 and 5 rad/s. This value is
consistent with the peaking of the Bode plots of q22 at 2.5 md/s discussed previously. One attempt to eliminate this
oscillation is to include an exact cancellation of the troublesome pair of complex poles and zeros of the nominal
plant (q22). This additional compensation eliminates the upper violations in the response, but oscillations are still
present and significant 'dips' are present before the response reaches its final value. The most obvious solution to
the problem is to increase the leop transmission in this frequency range. A second look at the loop shape of the
completed roll loop shows that increased loop transmission can be obtained in this critical frequency range without
violating the 30 rad/s crossover requirement by the implementation of the m'-lified compensator given by Eq. (2.2).
Simulations of the roll system with this modified compensator at 0.6M, 30K over the original design range are
shown in Fig. 3.4. The C* responses are virtually unchanged from those with the original roll compensator. The
resultant responses are located predominantly within the bounds, but could stand improvement.

In designing a fixed compensator, it is expected that there be a trade off in quality of performance at the various
"parameter values. By examining the templates for both loops, it is apparent that superior performance is obtained at
the first PC. In both cases, the responses at the frist FC are predominantly located at the top of the templates,
implying a higher loop transmission for that condition. The general appearance of the template for p at 30 rad/s is
shown by Fig. 3.5, where points marked by 'o's are for 0.9M, 20K, and 'x's represent responses at 0.6M, 30K. In
order to design a fixed compensator, the specified criteria must be met for all case%. Therefore, the loop transmission
for the plants represented by the bottom of the template is always less by the height of the template at any given
frequency. Hence, there is a trade off between the use of a fixed compensator and optimal performance for
all parameter values. The constraining criteria in this design is the 30 rad/s open loop crossover requirement,
resulting in lower loop transmission in that vicinity of approximate!y 13 dB for roll rate, and 12 dB for CO. Note
that in a case such as this where the two flight conditions represent the extreme ends of the templates, scheduling of
the compensator gain could be used to provide comparable loop transmission for all cases. An additional 7 dB of
gain in the roll ckhnnel, and 3 dB in the C* channel, for the second FC results in the responses of Fig. 3.6 for the
extended simulation range. With gain scheduling, the gain values used for Fig. 3.6 can br: achieved without
violating any of the design specifications. Additional simulations would be required for this scheutling to determine
whether the dominant factor causing this separation is velocity, altitude, or a combination of the two.

Additional Simulations. Additional NL simulations are given in App. C cf Ref [6]. Included are the full A/C
outputs and surface deflections for: 1) simultaneous pitch and roll commands for a few of the cases of Fig. 3.4, 2)
roll out of a coordinated turn, and 3) a 1200/s roll command from straight and level flight.
Summary

This section presents both linear and NL simulations of the compensated inner loop. There are strong
correlations between the two simulations, indicating that the equivalent LTI plants are at least reasonable. There are
some coupling effects between the two outputs that can not be overcome with fixed compensation, but a gain
scheduling option is suggested which can result in satisfactory responses over the entire design range and beyond
without violations in any of the system requirements.

IV. Pilot Compensation
Introwdction

"This section describes the development of the Pilot Compensation filterw, fpc and fpp shown in Fig. 4.1 to
augment or replace the prefilters fl I and f22 . The puruose of this pilot compensation is to reduce the pilot's
workload while ensuring acceptable responses. Essentia'.y, the technique is to model the pilot with parameters
known to give good pilot ratings and design the pilot compensation such that it shapes the response- to their desired
forms. Note that the darker lines in Figure 4.1 represent feedback paths which are not physically connected.
Kobylarz [51 designed pilot compensation based on a single equivalent plant of the designed inner loop. This paper
considers an equivalent plant set as in the iiner loop design to shape the loop to ensure satisfactory response over a
range of flight cor)-ditions, but the pilot compomsation is designed as two independent SISO systems. That is, when
equivalent plants for the C* inner loop are generated, the roll command is zero and vice versa. The decision to
synthesize the pilot compensation in this manner is based solely on time constraints, and the method used for the
"MIMO SAS design can be used for pilot compensation with the only difference being the requirement for more
plants and the conversion to the MISO equivalent loops.
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Criteria for pilot in the loop pitch response is fairly well defined and can be found in the NS report [7M as well as
MIL-STD 1797A. Criteria for roll response, however is very limited. Theroefor, an approach very similar to the
one used by Kobylm'r is used for the longitudinal compensator. and a new appniach is introduced for the lateral
design. Because o the differences in die two designs, they am Iesnted sepmly.
Plant Generadon for Pilot Compensation

After the inner loop designs am completed, SISOTF is used to generate a new set off equivalent LTI plants that
represent the closed inner loop system as shown in Fig. 4.2. Plants am generated for CO commands of 1, 3, and 5
g's at 0.9M. 20K. and I and 2g's at 0.6M, 30K. For the roll channel, plants are generated in 1001s increments from
10 to 300/s at both flight conditions. Templates representing the magnitude and phase uncertainty are then generated
for both loops as in the inner loop design. The uncertainty has been consilerably reduced by the inner loop design,
thus templates we required for moderate and high frequency regions only.
Pilot Model

Since the ideal pilot input is one of pure gain (81. the pilot model used in the design includes only the inherent
"time delay and unity gain. The selection of unity gain is somewhat arbitrary, because the total gain of the inner
loop is given by the product of the pilot ain and the respective compensatr gain. Hence, any value of pilot gain
could be achieved from the designed system by adjusting the compensator gain such that the total gain is the sare as
that of the original compensator. For instance, if the optimal pilot gain for a certain application is 2 instead of 1,
the compenwa should be implemented with half the gain determined from the design process.
Longintdinal Pilot Compensation

"The NS report [7] clearly lays out frequency domain characteristics for closed loop C* response that result in
satisfactory pilot fmings. Specifically, the report calls for a closed loop bandwidth of 3.5 rad/s and a maximum of 3
dB of droop for w < mW. The report defines the closed loop bandwidth as the frequency at which the cosed loop
response has a phase lag of 90*. The final specification is for maximum closed loop resonance of 3 dB. These
criteria are readily displayed on the NC of Fig. 43. Pilots of the NS study generally preferred responses with over-
"shoot but no undershoot so that the droop for 0) < ()BW should be held as close to zeoo as possible [5]. The
frequency criteria of Fig. 4.3 can be modified by manipulating the templates around them in order to develop a new
set of bounds as in the QFT technique so that by satisfying the modified bounds with the nominal loop the criteria
would be met for all plant cases. Instead, because the templates are very small in the frequency range of primary
interest, the decision is made to shape the nominal loop based on the original criteria, with the templates
occasionally being placed over the avminal loop to ensure that no plant case violates the specified requirements.

The synthesized longitudinal pilcA compensator, fpc, is given by

f 4s) 55. + 7)76 + 3001
is + 40(s + lOs + 10,000)

where one of the poles and zeros cancel a pole and zero from the original prefilter derived previously. Therefore, the
total outer loop compensation is given by

fe(s) 165ds + 7)'

ala 42 + os + 10000) (4.2)

Note that in shaping this loop, the phase lag of the pilot model must be included. The compensated loop shape is
shown in Fig. 4A. Note that this compensation results in a slight violation of the bandwidth specification. The
reasons for allowing this violation are given in the simulation results section.
Lateral Pilot Compensation

As mentioned earlier, specifications for closed loop roll specifications are somewhat limited. Guidelines are
primarily limited to rise times and damping factors. MIL-STD 1797A (sec 4.5.1.1) indicates that rise times of the
roll rate re9ponse between 0.33 and Is generally result in satisfactory pilot ratings. Barfield [1] has indicated that
desirable roll rate responses have high damping factors. Since the purpose of this design is to introduce pilot
compensation techniques, and not to meet a prespecified set of requirements, the decision is made to adopt a general

itermaof
1) 0.33 < TR < 1.0, and
2) 0.8 < C < 1.0

The first step in the synthesis technique is to develop simple-second-order transfer functions which exhibit the desired
closed loop response. For this design, four transfer functions are used, representing the four extremes of damping
factors and rise times, given by

5.29 56.25
2 =. TRul 2 C-.8, TR-0.33

s (+ 3.68s,+ 5.29 I ,+ 12s8 + 56.25
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10.24 100 (4.3 a-d)

If dts transer functions are designated MT(s), then it can be easily derived from Figs. 4.1 and 4.2 that
MIs)= L(s) (4.4)

where L(s) = e'S`LI(s). LI represents the desired transfer function rf the closed inner loop plus compensation.
Solving Eq. (4.4) for LI (including the closed loop effect of the pilot's delay) gives

L1(s) - M.(s)L•(s)= ,,(4.5)

i-C MI(s)
The next step is to plot the frequencyresponse of L(s) for all casez in Eq. (4.3) on a NC. It is reasonable to expect
similar time responses bfun any system which has a similar Nichols plot [2]. Therefore, by using the four cases of
LI as an approximate set of bounds, the open loop Nichols plot can be directly shaped to develop the pilot
compensation which results in the desired response. Again, the templates are used to ensure that the resultant loop
falls wi:hin the desirable range for all plant cases. Note that in this case, the phase lag of the pilot model has already
been accounted for in LI, and it is not included in the loop shaping process. The four "tounds" are shown in Fig.
4.5. Because of the radical behavior of the faster response models, the decision is rnadr to emulate the slower
response models. It is noted from the bounds, that larger damping factors tend to move the Nichols plot to the
right, and that higher loop transmission correlates with faster responses. The compensated loop is therefore shaped
to be similar in shape to the slower bounds, but to the right of the left-most bound with slightly higher loop trans-
mission to get a response reasonably within the chosen specs. The designed lateral compensator is given by

S= 0.314s + 6) (4.6). ._- tpps) • sis+ 5)(46

In this case, the roll prefilter designed previously is cancelled out, so Eq. (4.6) represents the complete compensator,
f for the roll system outer loop. The completed loop shape with this compensation is shown in Fig. 4.6.
?n of 11w Pilot Compensation
mThe only simuiatons performed on these designs are with the actual NL simulator. Originally, the fourth order

Pade' approximation for the pilot mod-I is used in the simulations. However, simulations with the designed
compensator and pilct model shows periodic peaking after the responsc has appeared to be settled down. This peaking
effect is shown in Fig. 4.7. Extensions on Kobylarz's simulation of Fig. 6.8 [5] to eight seconds showed the same
problems as re experienced with this design. After the Pade' approximation is replaced with a true delay, these
peaks disappetor. The normalized pilot in the loop simulations are given in Fig. 4.8. The C* responses are enclosed
in the original bounds, but since the roll synthesis is based on a new set of general requirements those respon.ses are
displayed without bounds. The C* simulations extend from I to 5 g's at 0.9M, 20K, and 1 to 3 g's at 0.6M, 30K,
and the roll responses are from 10 to 300/s at each FC. The C* responses are clearly bounded by the original
thumbprint, and contain overshoot without significant undershoot as desired (5]. It is difficult to obtain these
desirable responses over both flight conditions while satisfying the bandwidth requirement of 3.5 rad/s. Attempts to
satisfy the bandwidth requirement with fixed compensation result in at least one of the responses containing 10% or
larger under'=oot. As in the design of the inner loop, gain scheduling can be used to provide the desired responses
while meeting all specs. It is interesting to note that in this case, however, the second FC requires less
compensator gain to give the desired response, which is the oppo'ite of the case in the inner loop design. The roll
rate responses have relatively high damping factors, but are slightly less than 0.8 for the responses at 0.6M, 30K.
An equivalent second order plant fit with SISOTF indicates that the worst case corresponds to • 0.78. The settling
times for roll rate are within the specified criteria, given by TR - 0.8Is at 0.9M, 20K, and TR - 0.73s for 0.6M,
30K. In both loops, there is essentially one response form at 0.9M, 20K and a distinctly different response at the
condition 0.6M, 30K. These differences indicate that even with the decreased uncertainty after closure of the inner
loop the two flight conditions are significantly different. Additional pilot in the loop simulations are included in
App. C of Ref [6]. including simulations as the full MIMO system.
Summary

This section presents the pilot compensation techniques used in this design. The paper covers the entire design
process, from method to simulation. Additional simulations and details we provided in App. C of Ref [6].
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I. ABSTRACT

Control law design for rotorcraft fly-by-wire systems normally attempts to decouple the
angular responses using fixed-gain crossfeeds. This approach can lead to poor decoupling over
the frequency range of pilot inputs and increase the load on the feedback loops. In order to
improve the decoupling performance, dynamic crossfeeds should be adopted. Moreover, because
of the large changes that occur in the aircraft dynamics due to small changes about the nominal
design condition, especially for near-hovering flight, the crossfeed design must be "robust." A
new low-order matching method is presented here to design robust crossfeed compensators for
multi-input, multi-output (MIMO) systems. The technique minimizes cross-coupling given an
anticipated set of parameter variations for the range of flight conditions of concern. Results are
presented in this paper of an analysis of the pitch/roll coupling of the UH-60 Black Hawk
helicopter in near-hovering flight. A robust crossfeed is designed that shows significant
improvement in decoupling performance and robustness over the fixed-gain or single point
dynamic compensators. The design method and results are presented in an easily-used graphical
format that lends significant physical insight to the design procedure. This plant pre-
compensation technique is an appropriate preliminary step to the design of robust feedback
control laws for rotorcraft.

H. NOMENCLATURE

Git(# ItL) Low order (LO) fit to crossfeed relating "out" to "in" for configuration #1

IDEAL Refers to exact analytical decoupling solution for a specific configuration.

dAVGe,, LO Average decoupling in dB for all configurations using Giut(#1LO).
MSW Mean-Square Weighted.

Moaji Mag. in dB of the on-a-is frequency response at wi for configuration "".
Mor, ij Mag. in dB of the off-axis frequency response at (oi for configuration "j".
NAVFIT Computer program used to compute low-order "fits" to transfer functions.
TARGET Refers to a heuristic decoupling crossfeed solution for a class of configurations.
TEMPLATE Gain and phase values for "ideal" crossfeeds at a specific frequency.
Waj Weight for a point at oi for configuration "j"
(a) Short form for (s+a).
(ý,0) Short form for (s2 + 2•o s + W2).
Atjv .. ,-AO.j Differences in gain and phase at oi for configuration "j"

Paper presented at the Symposium and Tutorial on Quantitative Feedback Theory, Aug 3-4, 1992, Dayton, Ohio.
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IlI. INTRODUCTION

Backi irond.

Cross-coupling is a characteristic problem for helicopter flight control system design. The
UH-60 Black Hawk, shown in figure 1, is representative of such a helicopter with highly coupled
motion because of its single main rotor and canted tail rotor that is located above the center of
gravity. The Black Hawk will be used as the Rotorcraft Aircrew Systems and Controls Airborne
Laboratory (RASCAL), a joint U. S., Army / NASA program to evaluate advanced controls and
systems concepts (ref I). A key goal of the flight control design for RASCAL is to achieve high
bandwidth and decoupled response characteristics as required by the current helicopter handling-
qualities specification (ref 2). This same goal is needed to operate RASCAL as an in-flight
simulator.

The achievable level of feedback is severely limited in rotorcraft flight control design due
to rather large inherent system delays. Among the most important delays are those associated with
the rotor dynamics, actuator dynamics, and sensor filters (ref 3). The needed feedback gain levels
can be substantially reduced when the decoupling requirement is achieved largely using
crossfeeds ("feedforward"), rather than relying heavily on feedback. This approach has been
applied in the design of a number of rotorcraft flight control systems (ref 4) and was notably
stccessful in the flight tests of the in-flight simulation control system for the BO-105 helicopter
(ref 5), an airframe that exhibits very high levels of open-loop cross-coupling. Substantial
emphasis was placed on a sophisticated multivariable crossfeed design and flight test validation as
the first step in development of a high-bandwidth flight control system for the BO-105. Excellent
decoupling of the mid- and high-frequency characteristics was achieved for the forward flight
condition (80 kts), thus reducing the need to use high-gain feedbacks. At low frequency, the
feedbacks yielded higher loop gains and ensured closed-loop performance robustness, stability,
disturbance rejection, and long-period modal decoupling. Feedback gains were kept to a
minimum in order to avoid closed-loop instabilities and control limiting that were encountered
with earlier high-feedback gain designs for the BO-105 and had been problematic in earlier flight
control designs for the UH-60 (ref 6). A successful high-bandwidth, highly-decoupled, but low-
gain in-flight simulator was achieved for the BO-105 based on a point design at 80 kts. The BO-
105 experience highlights the value of a careful crossfeed design as a precursor to feedback
design, regardless of the feedback synthesis method.

Figure 1 - RASCAL UH-60 Black Hawk
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A comprehensive study of rotorcraft flight control was conducted by Takahashi (ref 7),
who used advanced H-2 loop shaping methods to synthesize a multi-variable flight control system
for the RASCAL in hover. Takahashi based the H-2 synthesis on a nominal hover condition
design point, and then evaluated the robustness of the design based on a large family (72) of off-
nominal conditions. The work was especially thorough in its use of comprehensive linear and
nonlinear simulations of the RASCAL UH-60 -- including the dynamics of the rotor system, rotor
wake, airmass, acuators, and fly-by-wire system elements. Handling-qualities that were
satisfactory with, )ut improvement were achieved for the most aggressive helicopter missions in
the synthesis stuly. Later piloted simulation evaluations of the control system design indicated
some unexpected loss of performance robustness for the off-design points. The multivariable
nature of the feedback structure made it somewhat cumbersome to tune the system gains to isolate
and correct these deficiencies. Current work is aimed at simplifying the H-2 approach to achieve
a control system structure that is more easily adjusted.

Another of the proposed concepts for the RASCAL flight control system is based on the
app'ication of Quantitative Feedback Theory (QFT). QFT is a classically-based feedback control
design method for robust compensation of uncertain plant transfer functions (ref 8,9). The
method is well suited to the rotorcraft flight control problem as described above because it
directly addresses costs include actuator limiting, sensor noise amplification, and loss of stability
robustness. The benefits of feedback are performance robustness, stability, and disturbance
rejection. In QFT, aircraft dynamics uncertainties are modeled in direct terms of gain and phase
response variation ("uncertainty templates") associated with the family of design points to be
included in the design. As such, the QFT problem formulation is very well suited to the helicopter
problem, where sophisticated simulations provide a large family of single point dynamic models
as a function of physical parameters such as wind speed and direction, weight at hover, center of
gravity location, moments-of-inertia, main rotor speed, and aircraft turn rate. It is impractical to
gain schedule the control system compensation as a function of the many parameters which affect
aircraft dynamics; furthermore, many of these parameters are not measurable in-flight. Therefore,
a large degree of uncertainty of aircraft dynamics will exist that must be included in the design.
Dynamics variations are generally most significant for helicopter near-hovering flight, while
control power is generally at a minimum level due to the lack of airspeed. These factors combine
to make the hover condition flight control design a most challenging problem for the application
of QFT techniques.

The classical approach to crossfeed design uses coupling numerator theory, as explained
in detail by McRuer et al. (ref 10-12). The concept of "constrained variables" (see also
reference 3) is an important aspect of this approach. This concept allows the crossfeed design to
take into account the approximate effects of the feedback loops not yet synthesized at this stage of
the control system formulation. In the cited references, coupling numerator techniques were
applied either to obtain crossfeeds for single design point models or to gain schedule as a function
of key flight cond;tion variables (e.g., airspeed, air density, gross weight, and vertical velocity as
in reference 11) but did not consider the problem of crossfeed design for highly uncertain
systems. The current work combines coupling numerator theory with the QFT concept of
uncertainty templates to yield an approach for robust crossfeed design.

The coupling numerator approach for crossfeed synthesis is first reviewed and demon-
strated for a single point design problem (nominal hover condition). The current work treats the
pitch-roll coupling problem, which is a key source of coupling for most helicopter flight near
hover. The new robust crossfeed design is explained and then applied to a design problem that
considers five near-hover flight conditions. The performance of the robust crossfeed is shown to
be superior to the conventional crossfeed based on a single point design model. The formulation
and computer implementation of the new method allows the direct generalization to a relatively
large number of flight conditions. Since, as discussed above, crossfeed pre-compensation is
commonly used in helicopter flight control synthesis, tne techniques presented in this paper are
a!so applicab!e to design approaches other than QFT.
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IV. METHODOLOGY

Overview of Control System Structure and Design Aporoach

The overall control system structure for the QFT RASCAL design is shown in figure 2.
The vertical channel is not shown since it generally has a much lower oandwidth than the angular
channels and thus is considered as an open-loop response for this study. The current study consid-
ers only the key roll-to-pitch control crossfeed Ga, (referred to herein as "pitch axis crossfeed")

and pitch-to-roll control crossfeed Gs•" (referred to herein as "roll axis crossfeed"), but it does
account for the presence of the yaw feedback compensation (Gr). The method can be extended to
include yaw axis crossfeeds, in which case the full 3-input/3-output architecture would require 6
crossfeeds (ref 11). Using the robust techniques discussed in this paper, the crossfeeds are opti-
mized for effectiveness in the frequency range of 2-10 rad/sec (at and above the crossover fre-
quency), which will reduce the feedback load associated with the decoupling requirement. The
crossfeed designs of this study are included in the bare-airframe dynamics to yield the "compen-
sated open-loop response." With the mid- and high-frequency cross-coupling now effectively
suppressed by the crossfeeds, QFT techniques can then applied to the compensated open-loop
response to synthesize feedback and prefilter elements of the control system that satisfy the
remaining design specifications. Cross-coupling suppression at low frequency (i.e. below 2
rad/sec) will be accomplished in the completed system by the large loop gains (feedback*plant)
which are effective below the crossover range.

gFp 2 b on ( rol Sytm lc lDiagram

1 P (deg/sec)

ý164 0 (deg/sec)

F 'r ,obon

+ "8p (in) (desc)

F, /__ 
I

Figure 2 - Control System Block Diagram
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Rotorcraft Models

High-order linear models of the UH-60 dynamics near hover are extracted from a compre-
hensive nonlinear simulation program (UMGENHEL- ref 13). UMGENHEL is a methodically
restructured and upgraded version of the original GENHEL helicopter blade-element simulation
program (ref 14). The UMGENHEL linear models include dynamics of the fuselage, rotor,
airmass, engine, and governor. Also represented is the control mixing, which provides limited
decoupling through static crossfeeds. Since the control system actuators and digital component
dynamics are symmetric in the pitch and roll axes, they do not affect the crossfeed calculations
and therefore are not included in the model at this stage of the design.

Results presente, . this paper are for a 6 degree-of-freedom (DOF), reduced-order (quasi-
steady) UMGENHEL model. The use of the complete high-order UMGENHEL model is critical
for the design of the feedback-loop elements (ref 3) but is of less importance for the crossfeed
design at this stage. The simulation is capable of efficiently gencrating large families of linear
models over a wide range of flight and configuration conditions. The current study includes the
nominal hover operating pint plus 24 off-nominal points. Each off-nominal point represents an
expected near-hover trim condition within the desired operating range of a constant-gain QFT
controller. The 24 configurations include variations in trim airspeed (longitudinal and lateral),
rotor RPM, aircraft weight and center of gravity, turning rate, climb speed, and descending speed.
For this paper, only four off-nominal conditions were considered:

Config.#l: (Nominal) hover
Config.#2: 15 kts forward speed
Config.#3: 15 kts rearward speed
Config.#4: 15 kts right sideward flight
Config.#5: 15 kts left sideward flight

The final crossfeed design will be based on the complete high-order UMGENHEL model using
the entire family of 25 configurations.

Decouolin the Pitch and Roll ..es.

This se-.ction presents the crossfeed methodology for pitch/roll decoupling. First, the ideal
decoupling rela,'ionships for full-order crossfeeds are presented and illustratcL with results for the
UH-60 at the nominal hover condition. Lower-order approximations to these ideal crossfeeds are
shown to be much simpler yet still effective in the frequency-range of concern (2-10 rad/sec).
Then, the effect of variations in the plant dynamics are shown on the decoupling performance of
the nominal crossfeed. A new graphical method based on the QFT concept of templates
concludes the section.

"Ideal" decoupling relgtionships. The "ideal" roll-to-pitch and pitch-to-roll crossfeeds

(G'5' and Gs ) are determined that cause the off-axis responses ( - and P to be zero

without the pitch and roll-rate feedback loops. Although the pitch and roll-rate feedback loops are
dropped, yaw-rate feedback is included and accounted for in the crossfeed calculation. In the
development that follows, the prime symbol (') denotes that the yaw loop closure is included in
the input-output relationship.
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The crossfeed-compensated off-axis pitch response is determined from fig 2 as

follows:

qq 'i((Z

where

The "ideal crossfeed" exactly eliminates the off- axis response

q =0

frma which the ideal roll - to- pitch cossfeed is obtained:

fq"

( q

Followir.g references (10-12,3)

q (+ G, N" (3)

where,

A = denotes: Det(sI - A) ; and A is the matrix of stability derivatives.

NL denotes the "conventional" numerator obtained by subsituting the forcing function column

forlateral control input (45.) into the column of the system matrix (sI - A) associated with the

q response and then evaluating the determinant.
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N, ;, denotes the" coupling numerator"obtained by simultaneously subsituting the

forcingfunction columns forlateral and pedal control inputs (85 and 8,,) into the columns of the

system matrix (sl - A) associated with the q and r responses, respectively, and then evaluating

the determinant.

When the yaw feedback is tight , then the yaw response is "constrained" to zero, and the

effective cross - coupling response becomes:

q q, r,.S) (4)

8•

Similarly, the eftective on - axis pitch response with the yaw response constrained by the

yaw feedback loop is:

(7q N(5)

Subsituting (4) and (5) into (2) yields the final reult for the ideal roll - to - pitch crossfeed:
Mq P

Ga" -. '. a"(6)Ism. N q r8$. spa

Similarly, the off - axis roll response with the yaw response constrained is:

N" (7)

The on - axis roll response with the yaw constrained is:

N P (8)

and the pitch - to - roll ideal crossfeed is obtained as:

Go" 61 s (9)"5•. N; ,
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Ideal Deceupling for the Nominal Configuration. The on-axis frequency responses

(SE and are shown for the five configurations in figures 3 and 4, and the

uncompensated off-axis responses (..Jand (~Jin figures 5 and 6. Overall variability is
significantly greater for the off-axis responses than for the on-axis responses. Variability in all
responses is greatest at the lower frequencies (below 1 rad/sec), due to the serisitivity of the speed
dynamics (e.g., phugoid mode) to trim rotor flapping angles.

( (#4)

I-P((#3
\'laat

FREQUENCY (RAD/SEC)

Figure 3 -On-axis Roll Rate Frequency Response

0 (q 4-Region of Interest -4W,

C,

0.1 1 10
FREQUENCY (RAD/SEC)

Figure 4 On-axis Pitch Rate Frequency Response
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Figure 5 - Uncompensated Off-axis Roll Rate Frequency Response
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Figure 6 - Uncompensated Off-axis Pitch Rate Frequency Response

The on-axis and off-axis time responses (yaw constrained) for configuration 1 (nominal),
following a doublet input, are dtpicted in figure 7. The doublet was tuned to a natural frequency
of 3 rad/sec to highlight the cross-coupling dynamics at and above the crossover frequency range,
where the crossfeeds must be effective. As seen in figure 7 for the nominal configuration with no
crossfeed, the magnitude of the off-axis coupling responses are about 30-40% of the magnitude of
the on-axis responses. This indicates rather significant cross-coupling.
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Figure 7 - Time Responses for Nominal Configuration with Doublet Input

Using the coupling numerator relationships (6) and (9) above, the ideal crossfeeds for the
nominal (#1) configuration are

S0. 571(0,.966)(. 503E - 03)(-.695E - 02)(.26X23.6)

N::, 16.6(-.143E -01,.519)(-.171E -03)(-.-6E -01)(.263)(4.06)

and
!L N: - 2.98(.0541,.833)(.0362)(.264)(-8.16)(0)
"N"' ,.' 65.6(-.253,.489)(.0222)(.264)(.949)(0)

which were obtained using the LCAP controls analysis program (refs 3,15). Note that these "ideal"
crossfeeds have unstable poles, and so are not practical. Practical, stable dynamic crossfeeds are ob-
tained by approximating the ideal crossfeeds with low-order equivalent transfer functions over the
frequency range of interest (2-10 rad/sec). The low-order crossfeed fit results obtained from
NAVFIT (refs 16, 17) are summarized for the nominal configuration in table I. These crossfeeds are
simple first and second order functions with stable (i.e. physically practical) c'ynamic modes.

Note that static crossfeeds used in helicopter flight control are commonly obtained from the
high frequcncy gain of the"ideal" solutions of equations 10 and 11. These solutions presume
existence of a closed high-gain yaw-rate feedback loop. Another common alternative is to use the
static crossfeed solutions determined by inverting the control distribution matrix (C*B). In that case
the solutions presume an ; yaw-rate feedback loop (ref 4,5). These static gains were obtained
from LCAP and are shown in table 1. This approach, as will be shown, yields solutions that are poor
approximations of the "ideal" crossfeeds in the 2-10 rad/sec frequency range of interest.

In QFT loop-shaping terminology, the performance characteristics of a crossfeed apply not
only to a single design configuration but to a "specified set" of configuraticns. This single crossfeed,
appropriately selected for a set of configurations, is called in this study the "target" compensation,
and the low-order (LO) approximation to this "target" is called the "achieved" compensation.
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TABLE 1. Approximations to the Ideal Crossfeeds for the Nominal Configuration

Type of Fit 6i4w.(#1)- * ~#)

G(# A-1s0Ac -2.35E -02 -5.OOE-02

G(#1LO) -0.0275(29.7) 49.5
NAVF1T (4.54) (0.351, 11.8X0.2)

Ref 9

Figure 8 is a Bode plot for configuration #1 showing the accuracy of the static and lower-
order dynamic approximations to the ideal crossfeed G5* (#). The static crossfeed, commonly
used because of the simplicity of its determination and implementation (a matrix mixing
function), matches the ideal result only at very high frequency, and so can be expected to perform
poorly. The simple low-order dynamic crossfeed G61 (#I,,) matches the ideal result very well
ever the frequency range of concern (2 to 10 rad/sec).

c~J Ideal Crossfeedi, G~"(#I)

Low Order Crossfeed, G'.(#I,,

a I Region of

0.1 1 10 100
FREQUENCY (RAD/SEC)

Figure 8 - Frequency Response Accuracy of Fit for Ga.-
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Nominal Decounler Applied to Off-nominal Configurations. Consider the results of
using the low-order crossfeeds in the last row of table 1 as decouplers for all of the off-nominal
configurations. The off-axis responses obtained by such a strategy are shown in figure 9. The
resulting decoupling performance for each off-nominal configuration is still improved relative to
the uncompensated cases. Performax:.e between 2 and 10 rad/sec as shown in figure 9 may be
compared with figure 6 to Kllustiate this. Note that performance below 2 rad/sec is not improved
significantly using the nominal crossfeeds. However, it is presumed that pitch and roll feedback
loops (not presented here) will accomplish decoupling at the lower frequencies.

*

•20,,J Zo

,-4,---Region of Interest-

"0

-20•

I I

-40 -_ (#3)

-60 . . . . . .

0.1 1 10
FREQUENCY (RAD/SEC)

Figure 9 - Off-axis Pitch Rate Responses Using 8.** (#1 o)

Since the choice of an "ideal" crossfeed so far has been arbitrarily chosen as the
mathematical decoupling solution for configuration #1, a few questions now arise. First, would a
design based on the "ideal" crossfeed solution for one of the other configurations (#2 through #5)
result in more "robust" decoupling for the entire family? "Robust" here implies significant
improvements in decoupling across all configurations. For example, a low-order approximation
for configuration #2, Ga' (# 2w), might be a more robust solution for decoupling the entire

family of configurations than is Gal (#1l,.). Crossfeed templates are introduced in the following
section to better visuhlize the range of possible design solutions.

Graghical Basis for Robust Crossfeed Design.

The strategy developed in this study is patterned after QFT graphical techniques that use
the Nichols chart for presentation of "target" compensation, "achieved" compensation, and
configuration variations in gain and phase ("templates"). For example, figure 10 compares the
Nichols chart representation of the low-order crossfeed Ga" (#Wl) with that of the "ideal"

crossfeed Ga, (#1) for the nominal hover configuration. This figure is simply a re-plot of the
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lower-order dynamic crossfeed results from fig 8 (including the phase data). The "ideal" croseed
based on the nominal configuration is shown with the symbol "+" for five frequency points over
the 2-10 rad/sec frequency range of interest. The five frequency points are logarithmically-spaced,
(i(A)= {2.0, 3.0,4.47, 6.68, 10.0 radI/sec).The (small) mismatches of the ideal and lower-order
crossfe,'ds are clearly visible for this frequency range. Gain and phase values for "ideal"
crossfeeds based on the other remaining four configurations may also be depicted on the Nichols
chart at each of the frequency points. Figure 10 shows the result for a frequency of 2 rad/sec.
This collection of "ideal" gain and phase values at a specified frequency is called a "crossfeed
template" and may be connected with lines for useful visual effect.

In.

Te(m1)lat3.0 radsec

.** daue at l at P- aw

(#1) at 4.5 rad/sec

i~~~(3 atI~ ZO#4at2aratse

wt

(#4(# aat 6.7 raadseec

I'7

'130 140 150 160 170 180
PHASE ANGLE (DEG)

Fiur 0 - Nichols Chart Representation of Low-Order Approximation, 5•'•,(#lm)

The G•" crossfeed template for each of the five frequency points is shown in figure 11. Each
template depicts the variability of the "ideal" crossfeeds over the family of plant configurations. In the
earlier crossfeed design 1 the "target" gain and phase values used in the low-order fit process were those

associated with the ideal solution for the nominal configuration (#1) denoted with the symbol '+" on
each template. This is obviously the best solution for decoupling the nominal plant dynamics.However, an inspection of figure 11 shows that a design that closely tracks the ideal crossfeed solution
for configuration #1 (G" (#1)p ) will be quite far from the crossfeed solution for configuration 5, and

may in fact worsen the coupling behavior for this configuration. Therefore, the queston now is
whether there is a beter strategy for selecting a "target" point in each template that will result in
improved ai .fctors decoupling performance. The
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Figure 11 -Frequency Templates of Ideal Crossiteds '

quality of overaUl decoupling for the family of configurations is assessed via the decoupling
performance metric discussed in the next section.

Decouping Performance Metric

If a crossfeed is doing its job properly, then the off-axis frequency responses of the family
of configurations will be substantially attenuated over the freq.,encies of concern "q". The array
of off-axis response magnitudes for each of the "j" configurations are obtained at these "i"
frequencies and dcenoted by Moff,,ij in dB. The magnitude of the off-axis response is conveniently
normalized relative to a baseline on-axi response to yield a measure of relative decoupling. The
choice of wh;ch configuration to usa for this baseline is arbitrary since we are mostly concerned
with comparntive improvements in decoupling for various strategies. In this paper the nominal
configuration (#1) is established as the baseline configuration , and is denoted by Moni.1 dB at
each frequency "qi". The decoupling at each of the five frequencies "averaged" over all of the
configurations is expressed (for each axis) by the metric:

$ S

$,Vo = c (M.j, -Moe,i ,j)/25 dB (12)
c•j.I el-l
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The decoupling performance results for the uncompensated case and the two crossfeedsof the previous section (static and low-order) are shown in table 2. The baseline pitch decoupling
for lateral inputs with no crossfeed is obtained by using the data from figure 6 for theiMn•monrn•aitl off-axis response Moffij. The on-axis roil response data from configuration #1
(Ma,1 ) is obtained from figure 3. Using these data, the baseline decoupling with no crossfeed is
JAV.u..w=29.8 dB, or a linear attenuation factor of roughly 30 dB. In other words with nocrossfeed, the pitch response coupling is about 3% of the on-axis roll response i the frequencyrange of concern. This high level of decoupling reflects the action of the mixer box (included inthe bare airframe model) which decouples the control moments. The mixer box is effective forthe pitch axis which has low relative aerodynamic damping specific moments due to the high
relative pitch inertia. The static gain crossfeed G(#1 static) does little to fiuther improve the
decoupling. If nominal crossfeed compensation G M (#L) is implemented, then the Mof'jj
values would be taken from the plots in figure 9 instead of from figure 6 to compute
J,.,, ,=43.7 dB. There is a large improvement in decoupling when the low order fit to the
"ideal" nominal crossfeed is used.

The results for the roll axis decoupling for longitudinal inputs are also shown in table 2.Here the uncompensated coupling is significant (15.0 dB=-18%) due to the lower roll axis inertia.The static crossfeed solution actually worsens the overall cross-coupling (12.2 dB) while thenominal lower-order crossfeed shows an improvement in decoupling JA,. = 17.8 dB (13%),although the coupling is still significantly above desired levels (25dB_5%).

Table 2 - Decoupling Performance Summary Using Approximations
to Ideal Solution for Nominal Configuration

Pitch Axis Decoupling for Lateral Input Roll Axis Decoupling for Long. InWt

40 100
S* U

U U

20 10
29.8 31.6 43.7

15.0 12.2 17.8
dB d8 dB

Uncomp. G(#1 static) G(#-IC) Uncomp. G(#1 statc) G(#11ol

This metric is easily extended for a large number of configurations and strategies. Acomputer program was developed to automatically scan configuration frequency files andtabulate the results. A single value of the metric may even be used (cautiouslyf to summarize
decoupling performance for more than one axis (the average, for example). The safest
procedure, however, is to apply the metric individually to each degree of freedom.
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KJ
Choosing a Strategy. In the previous examples, the "target" crossfeed values used in the
fitting process were chosen based on the "ideal" crossfeed solutions for configuration #1
(nominal). The average decoupling performance metric using this strategy, JAvo,., LO , was im-

proved relative to the static crossfeed, JAVO.h1 s,,- for both the pitch and roll cases. Many heuristic
strategies for selecting appropriate target values were also considered in this study. Referring to
figure 11, one obvious method would be to select target values based on the average or centroid of
each crossfeed template.

The heuristic strategy recommended in this paper, which balances simplicity of
implementation with excellent decoupling performance, is called "mean-square weighting" (MSW)
decoupling. The first step in this strategy is to find a "target" crossfeed point (gain/phase location)
on each template that is a weighted-average which favors a cluster of points within a given
template. Then, the lower-order fitting technique is used to design a crossfeed to best match these
target points. Weights in the fitting program are chosen so that the crossfeed design matches more
closely the target points associated with the templates having a smaller size -- where the proper
choice of desired target value is well defined and should be ensured. When the template is large in
size, the weights are reduced since the exact location of the crossfeed is not as we!l defined. This is
illustrated in figure 12 for a set of artificially constructed templates.

Template at (01

Low-Order Crossfeed

Template at 0)2

U? Weighted Average

(-6 -63)True Average
S~(-8,4-3)

_P"(. (-14,63

So Template at .0)3

7 7-
(-12, -81) 1-12, -63)_

-90 -80 -70 -60 -50 -40 -30
PHASE ANGLE (DEG)

Figure 12 . Illustration of the MSW Strategy with Synthesized Templates
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To implement the MSW strategy, first determine the average gain and phase point (dB and
degrees) for each template [G(avg)[ and ZG(avg). The difference between the average gain and
phase of a template and the "ideal crossfeed" gain and phase for each configuration (j) in the tem-
plate gives the gain and phase deviations for the template "i". Now looping over all the template
frequencies gives arrays as a function of i and j:

AM,,j= G(#j)j-fG(avg)j)1  dB (13)

Ao,= (ZG(#j)- ZG(avg))1  deg (14)

The mean square weight for the point (ij) is defined as:

Wi.j -- min[1,{A 2 1] (15)
AM.j +0.01745(AOj )I.

where the weighting of 7.6 deg of phase to ldB is adopted as recommended in practice (ref 17).

The MSW "target" crossfeed point for the template 'T' is defined as:

IW, R(#O) I XWij .G(#j),
MMSWi = cmfj Wi and OMswj = cod Ij - (16)

Ccnfj Cafrj

The lower-order "fit" to the above "target" crossfeed points is found by using the following
weights in the NAVFIT program at frequency "i":

WNAVrr,i = min[1,{ 2 +.1 aphal) (17)
amgC +O0.01745(a~hs.)(7magt

where

:mag.I 2 and 2= }. .G(# j) - ZG(avg))2 (18)
5 •Confj1,5 j-.

A sample calculation of weights is provided in table 3 for the artificial data in figure 12.
Template 2 has the highest relative weighting because the template points are more highly clustered
than the other templates.

Table 3 - Sample Target Crossfeed Values

Template "i" _G(avg_ _ ZG(avg MMswj *OMSW,i WNAV~r.i
1 -3.33 -39.0 -2.52 -39.5 .51

2 -6.67 -60.0 -6.42 -59.6 LOO

3 -12.67 -69.0 -12.50 -666 .92
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V. ANALYSIS

Mean-Souare Weighted Decouoling Improvement.

The "mean-square weighting" (MSW strategy) was applied to design pitch and roll cross-
feeds which are robust for all five configurations. The following low-order MSW crossfeeds are
obtained:

G ,(MSWw) = -0.0272(24.5) (19)(4.62) (

,,(MSW ) = 0.275(1.61)

(2.51X0.292) (20)

These crossfeeds may be compared with those in table I which approximated only the
nominal "ideal" crossfeed. The weighting did not change the pitch decoupling crossfeed signifi-
candy, which alread,: exhibited satisfactory decoupling. The MSW roll decoupling crossfeed has
been considerably adjusted relative to the earlier result.

The performance improvement of the three crossfeed approaches (static, nominai, MSW)
are compared in table 4. Here the results am referenced to the uncompensated decoupling perfor-
mance to highlight the differences between the decoupling strategies. In table 4 a value of 0 dB
would indicate no relative improvement over the uncompensated case. As shown before, the static
crossfeed slightly improves the robust decoupling in the pitch axis, but degrades the decoupling in
the roll axis. With the MSW crossfeeds, significant performance improvements are achieved. The
pitch rate decouplng improves by 4.6 dB relative to the nominal crossfeed, yielding an overall
relative attenuation of 18.6 dB. An even larger improvement in roll rate decoupling is shown. The
MSW result is 8.5 dB improved over the nominal crossfeed for an overall relative attenuation of
11.3 dB. Absolute decoupling of both axes (pitch axis decoupling =48.4 dB; roll axis decoupling
=26.3 dB) is well within the desired goal of 25 dB.

Table 4 - Decoupling Performance Improvement Summary

Pitch Axis Decupling Improvement Roll Axis Decouplirig Improvement
20 10

20

0 U)
eE

is1 13.9 18.6 -2.8 2.8 113 =

" dB dB dB dB dB dB o
*_.)

G(#1static) Gf#11o) G(MSWlo) G(#lstaki) G(#110) G(MSWlo)
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Figures 13 and 14 show a carpet plot of the off-axis longitudinal and lateral frequency
responses for all five configurations using the MSW crossfeeds. In both axes, the improved
performance of the MSW crossfeeds are clearly apparent. Most of the improvement is gained for
frequencies of 1-3 rad/sec which is the critical range for reducing the cross-coupling impact on the
bandwidth of &.e feedback loops. The improvement in roll axis decoupling is especially significant
(20 dB) in the crossover frequency-range (1-3 rad/sec).

.... Region of Frequency Responses

- M(#1 5) with Nominal Crossfeed

W

Region of Frequency Responses
S M(#1-5) for MSW Crossfeed

1FREQUENCY (RAD/SEC) 10

Figure 13 - Comparison of Frequency Response Bounds for Nominal and

MSW Compensation -Longitudinal Axis

0

S"ll Region of Frequency Responses

SJ M(#1-5) with Nominal Crossfeed

V

~C?

z

Region of Frequency Responses

M(#1-5) for MSW Crossfeed

FREQUENCY (RAD/SEC) 10

Figure 14 - Comparison of Frequency Response Bounds for Nominal ai'd
MSW Compensation - Lateral Axis
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Off-axis control activity commanded by the MSW crossfeed is shown in !'igure 15 for the
doublet input to the primary axis. The MSW crossfeeds are seen to command smooth and low
bandwidth cross-coupled inputs. These commands would be practical for implementation.

Metric Robustness.

The average performance metric presented previously does not contain information about
the decoupling achievable for a specific configuration. It would be undesirable, for example, foraverage improvement to be achieved at the expense of severe degradatons in specific configura-

nW N
tion. Toevaurt heI exten thtti myb ro blee T m, et tR f-xs antdesponses wit DultIp th

bandthlst improved or " wost" configuration be

5
mohe forst improved or " imrst" confv guration be

5

JwORST. Strategy = I• (Mon.ij - Mw onri) / 5 dB (22)
Wi =1

where MB and Mw are the dB values from the off-axis performance curves for the best- (most im-
proved) and "worst" (least improved) configurations, respectively. These metrics for specific con-
figurations should be compared with the average improvement over all of the configurations as a
-check for relatively uniform improvement. This check was done for all the crossfeed strategies de-
scribed in this paper and no anomalies were observed in any of the data sets.
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VI. CONCLUSIONS

1. A new method for the design of robust crossfeeds for rotorcraft flight control systems has been
developed. The objective of the design approach is to decouple the family of anticipated dynamic
responses over the frequency range of 2-10 rad/sec. This reduces the load on the feedbacks at mid
and high-frequencies, and thereby allows a e -sired reduction in feedback loop bandwidths.

2. The design method makes extensive use of frequency-domain graphical techniques (Bode and
Nichols plots analysis) which lends significant physical insight to the design procedure. The ap-
proach easily lends itself to computational implementation and computer graphics tools.

3. The method was applied to a reduced order model of the UH-60 Black Hawk helicopter in near-
hover flight. Reduced-order (quadi-steady) models and a limited set of configurations (5) were ex-
amined. Crossfeed were designed to attenuate the pitch/roll coupling. The new robust crossfeeds
were found to provide a significant improvement in 6iie roll coupling from longitudinal inputs as
compared to static or fixed operating point dynamic crossfeeds.

Future work will expard the present analysis to include all 24 off-nominal configurations
for near-hovering flight and will also include the full-order helicopter dynamics. Crossfeed con-
nections to the yaw and heave channels will also be included. Final crossfeed design will be
included in the UH-60 dynamic response as a precompensator for a RASCAL QFT control law
design.
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A Penetratin contol

Quantitative Feedback

Anthony E. Bentley

Process Development and Fabrication Division

Sandia National Laboratories, Livermore, California

Abstract

Quantitative Feedback Theory was used to design a control system for arc weld
penetration control. The feedback signal is obtained by measuring the amount of visible
and near-infrared light emitted from the back side of the weld. The system is sensitive
enough to use a fiber-optic cable for transmitting the light from the weld to the sensor.
This facilitates welding assemblies with limited access to the underside of the wel.
Welds of constant penetration have been demonstrated in tests with travel speeds varying
from 1.5 to 6 inches per minute (0.64-2.54 millimeters per second), and with 200 per-
cent changes in part thickness. The system also compensates for sharp discontinuities in
heat sinking and arc length.

Introduction

Arc welding encompasses a group of several joining teclniquef that use an electric
arc to melt and join metals. The arc is established between the workpiece and the tip of
an electrode, which can be either a consumable wire or a nonconsumable carbon or
tungsten rod. When a nonconsumable electrode is used, filler metal can be added by a
separate wire not carrying the welding current. Shielding gases (usually inert) are often
added to protect the arc and weld zone from oxidation, and provide the desired arc
characteristics1.

1. American Welding Society, Welding Handbook Volume 1, Eighth edition, edited by L. P. Connor,
(American Welding Society, Miami, Florida, 1987), pp 4-7.
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The feedback technique described in this paper was developed for the girth weld of
a stainless steel pressure vessel using the Gas Tungsten Arc (GTA) welding process
(shown in Figure 1)-since GTA welding is used extensively throughout the nuclear
defense industry. However, the system is applicable to virtually any type of arc welding,
and for any part geometry, provided that there is some degree of access to the back side
of the weld. For the components designed at Sandia in Livermore, the GTA girth weld is
one of the most complicated and critical fabrication processes. If the bond is not of suffi-
dent quality, often the entire assembly must be discarded.

Modem commercial GTA welding equipment operates under the direction of a
welding operator who determines proper machine settings. In more advanced systems,
individual weld parameters (weld process inputs) such as arc voltage, weld current, travel
speed and wire feed speed, are held reasonably constant with feedback control loops;
however, set noints for the individual weld parameters are selected based on the results
of narrow experimental parameter searches, which are expensive even for statistically
designed experiments. Characteristics of the back side of the weld such as weld width,
depth and surface appearance are used as acceptance criteria during the parameter selec-
tion process. In this case however, (since visual inspection of the back side of the weld is
difficult) these visual cues are supplemented by nondestructive examination with X-rays
or ultrasound, and by destructive sectioning, tensile testing, and bend testing. While
these methods are useful, they do not improve quality, but simply inspect quality, and
in the process add tremendous cost to the product.

SHIELDING GAS
(FLOW RATE AND TYPE)

ELECTRODE (ANGLE
AND COMPOSITION) ARC C•CRRENT,

VOLTAGE AND LENGTH)
PART THICKNESS-

ROTATION . i '
(TRAVEL-.
SPEED) *. l

FIXTURING (COOLING WATER FLOW RATE)

Figure 1. Gas Tungsten Arc (GTA) welding parameter--
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The goal of this work is to reduce the need for post weld inspection by implement-
ing real time penetration control. This can be viewed as replacing destructive testing
with in-process nondestructive testing. That is, by utilizing feedback control, weld quail-
ty variation can be minimized to the point that inspection becomes unnecessary. Achiev-
ing this requires sensor systems capable of accessing weld quality in real-time. As noted
by Richardson below, there is currently enormous effort in this area of weld penetration
control, yet results have been met with limited success:

Unfortunately, the development of reliable penetration sensors cannot at this
time be considered to be broadly successful. This is certainly related to
shortcomings of current sensor technologies themselves, but also to the lack
of knowledge of how to control penetration once detected. That is, we do
not have a good quantitative understanding, in engineering terms, of how
control is achieved by manipulation of process parameters in the face of a
multiplicity of disturbing variables2 .

Since visual inspection of the back side of the weld is often impossible, the ideal
weld penetration sensor would only require access to the top side of the weld. Currently
several top-side penetration sensors have been investigated by other researchers; 'howe-
er, all except two use indirect assessments of weld penetration, and therefcore introduce
uncertainty into the feedback measurement 3 .

The two toD side direct penetration measurement methods consist of ultrasonic
sensing and a newly patented method involving a video camera. The ultrasonic method
uses shear waves through the base metal to determine the location of the fusion interface.
This method is difficult to implement because of the necessity to couple the transducers
to the workpiece and synchronize sensor movement with the electrode motion 4 . The
second method is used in the joining of metal pipes. A small gap is left between the two
pipes and a video camera is positioned ahead of the electrode, almost tangent to the
workpiece at the weld pool5. This gives a "side view" of the weld and allows the control-
ler to actually "see" the depth of penetration for the first weld pass. It works well for the
root pass, but gives no penetration information for the remaining fill passes. One prob-
lem we have encountered in the fabrication of pressure vessels is called "double-drop-
through", when full penetration occurs on a fill pass. This is undesirable because it has
been found to cause hot cracking in some alloys and may also produce a concave under-
bead surface. Ther--fore, for our application it was necessary for the penetration assess-
ment to apply not only to the root pass, but to the fill passes also.

2. Richard W. Richardson, Paul Taylor, "An Experimental System for Full-penetration Gas Tungsten-Are
Welding', Edison Welding Institute Research Brief, B9007, September 1990, p 1. (Emphasis Added.)

3. R. B. Madigan, H. R. Castner, "Survey of Weld Penetration Techniques', Edison Welding Institute Re-
search Report, MR9002, January 1990

4. Ibid., Page 4.

5. F. Nadeau, P. Fafard, G. Patenaude, J. Tremblay, "Method 'and Apparatus for Controlling Root Pass Weld
Penetration in Open Butt Joints', United States Patent number 4,733,051, March 22, 1988.
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For our purposes, then, the ideal feedback technique would measure penetration
directly (including partial penetration) for both root and fill passes. Other investigators
have explored two methods for direct measurement from the back side of the weld. The
first uses a video camera, or a fiber-cpti- bundle coupled to a video camera, to obtain an
image of the underbead. It then uses elaborate processing techniques to determine the
fusion zone width. This not only requires synchronization between the optics and the
electrode, but also requires enoutjh access to the back side of the weld to position the
camera or insert and position the fiber bundle6 .

The other back side measurement technique uses a simple photo-sensor to measure
radiation which is related to penetration. The sensor does not have to be located directly
behind the weld if fiber-optic cables are used to direct the light to the photo-diode. This
is the method that was used for this study since it has the advantage of being the simplest
technique to implement, and yet is considered a direct measurement of penetration7 . The
high-temperature fiber optic cable used is only one sixteenth of an inch in diameter so it
can be inserted into the pressure vessel through the fill tube. (See Figure 2.) Also note
that the vessel doubles as an "integrating sphere" so that the cable does not have to be
aimed at the weld. This improves reliability and greatly decreases measurement complex-
ity by eliminating the need for alignment and synchronization with the electrode.

•j• %FIBER OPTIC BUNDLE7

INFARED

Figure 2. Weld penetration control scheme

6. Madigan, Ibid. pp. 3-4.

7. Ibid, p 3.
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At Sandia National Laboratories, this technique was pioneered by Marburger 8.
Initial results were extremely encouraging. The empirically designed feedback system
was able to make real-time corrections for large variations in weld parameters to achieve
welds of constant penetration. It was found, however, that the relationship between
penetration and radiation changed as a function of travel speed. This was attributed to
the change in width to length ratio of the molten pool for different travel speeds.

This present study more clearly defines the correlation between back-side radiation
and weld penetration, and accounts for the effect of travel speed on the penetration
measurement. Also, with the redesigned feedback control system, welds of more consist-
ent penetration were produced with wider variations in weld parameters including travel
speed.

Welding systems are inherently uncertain, nonlinear, and time varying in their
input/output relationships. Historically, controls have been designed by linearization of
system behavior over a narrow range about some operating point. This has produced
controllers that are not optimized or even unstable away from the linearization point. To
avoid instabilities away from the linearized region, designers often settle for a reduction
in open loop gain-not realizing the maximum benefits of feedback. For this work, the
control algorithms were developed using Quantitative Feedback Theory (QFT) that does
not require linearization 9 and is the ideal tool for design of highly uncertain systems such
as welding.

Quantitative Feedback Theory easily handels the design of systems with multiple
transfer functions describing the uncertain dynamic charateristics of the process under
control. Thus input/output information obtained under a wide variety of weld process
conditions to characterize the static as well as dynamic behavior of the welding process,
was used in the design. This charaterization encompasses the welding system as a whole,
not just the arc, weld pool, power supply nor any state variables within the process. This
globail approach yields a controller that is optimized over the entire range of weld per-
formance explored during the process characterization phase, and has proved able to
control well beyond the optimized range.

8. S. J. Marburger, "Feedback Control of Penetration in Gas Tungsten Arc Welding', Master of Science
Project Report, Spring Quarter 1983, Department of Mechanical Engineering at Univerity of California
at Berkeley.

9. Isaac Horowitz, "Application of Fixed Point Theory To Uncertain Nonlinear and MIMO Feedback Prob-
lems', Dynamic Systems and Control Division. ASME. Vol. 24, (1990:ASME] pp 45-49.
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Procem Characterisation

A simplified block diagram for the control system is shown in Figure 3. The ele-
ments in the diagram are shown as functions of 's'-implying the use of Laplace trans-
forms. Laplace domain system analysis assumes linearity and time invariance, yet as
stated above, the welding process is nonlinear and time-varying. It has been shown,
however, that frequency domain techniques (Such as Laplace) can be successfully applied
to a large class of nonldaear, uncertain and time varying processes 1 ' 2 .

COMMAND T COMP ATOR SYSTEM
-- F(s) •Es G(s) W( SXs)) ~)T"

Figure 3. Block diagram of feedback system

For this project it was decided to use weld current as the control variable X(s) to
compensate for process disturbances. Varying only the weld current while holding all
other inputs constant, reduces the system to a single-input/single-output system and the
transfer function becomes: W(s) = Y(s)/X(s), where Y(s) is the Laplace transform of
penetration (measured in volts on the photo-diode) and X(s) is the Laplace transform of
the weld current control signal. All other inputs are considered to be process disturb-
ances-which add uncertainty to the system equation.

To our knowledge, the transfer function W(s) is not available in the welding litera-
ture, but it can be estimated by calculating the ratio of input to output signals (weld
current to light reading.) This was done by varyinl' the weld current with sinusoids of
various frequencies, and recording the ratio between the radiated light* and weld current
command signal. (See Figure 4.) Collecting this information at several different frequen-
des + produces a Bode plot which represents a transfer function of the welding system.

10. Horowitz, M. Sidi, "Synthesis of Feedback Systems With Large Plant Ignorance for Prescribed Time
Domain Tolerances', International Journal of Control, Vol. 16, pp 287-309, 1972.

11. Horowitz, 'Synthesis of Feedback Systems With Nonlinear Time-varying Uncertain Plants to Satisfy

Quantitative Performance Specifications', Proceedings of IEEE, Vol. 64, No. 1, January 1976.

12. Horowitz, Synthesis of Feedback Systems Academic Press, 1963.

Note: The object of this project is to control penetration. Since no purely direct measure of penetration
exists, we measure the amount of light from the back side of the weld. This light is measured by
amplifying the voltage on the photo-diode--no attempt was made to correlate that voltage to units of
light energy, since weld penetration is the really the variable we want to measure, not light energy.

+ Figure 4 shows the input/output information for a single frequency and is not actual data. The actual
input data used to test the system was a waveform consisting of several frequencies superimposed
together at random phase. Frequency correlation was used to separate out the magnitude and phase
information for each frequency individually.
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Figure 4. Are weld input (current) and output (light) data.

Because welding processes are uncertain, each test (even under identical conditions)
will produce a different Bode plot. Nonlinearities in the process produce further uncer-
tainties. For example, in arc welding the amount of heat produced (and consequently the
amount of glowing metal) is roughly proportional to the square of the weld current.
Thus the back side radiation R Z a * 12. Now suppose we test the system with some
current waveform whose average value is I, and then repeat the test with the same
current waveform that is scaled by some constant 8. Then: Ri s a. 1 2 ,

2 Z a-8 2 .12, and the zero frequency magnitude of the two bode plots will be:

S aI2 = a.I and & $ a'82'I2 = a.B.I 0'
I I IS B.I II

Were the welding process linear, with no uncertainty, then the two testc would
have produced identical results that is:_Ri would be equal to _. But since it is not,

each test will produce it's own unique representation of the system dynamics-its own
Bode plot. Thus, the system nonlinearities have simply increased the system uncertainty.
By testing the system over the entire range of operation, all nonlinearities can be ac-
counted for as increases in uncertainty. However, the system need not be tested for each
and every possible condition-only those conditions that produce acceptable outputs.
This is because, if the system is designed correctly, only acceptable outputs will be pro-
duced by the closed-loop system--any condition which causes the process to head for an
unacceptable output will be avoided via feedback control. Therefore, calculating the
Laplace transform of all acceptable outputs, and dividing those by the Laplace transform
of the corresponding input, gives a set of transfer functions that span the range of uncer-
tainty inherent in the system.
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Four such transfer functions are represented in the Bode plots shown in Figure 5.
The data was gathered by making full penetration welds on 1.5 inch (3.8 cm) outside
diameter stainless steel tubes* while modulating the weld current at various frequencies.
The datum in Figure 5 are from welds made on tubes of three different wall thicknesses.
Note that while the phase information seems to be independent of part thickness (possi-
bly due to the fact that all welds were full penetration), the magnitude changes signifi-
cantly. This is because it takes less current to penetrate the thinner tubes--and minor
fluctuations in current will thus yield much greater variations in weld penetration. To
further quantify the process uncertainty, more frequency data was obtained for welds
made with fifty different combinations of the parameters shown below:

Weld Paramete Low Setting High Setting
Transformer tap setting+ Low Medium
Travel speed (inches/min) 2.5 (1 mnm/s) 4.4 (2 mm/s)
Part thickness (inches) 1/32 (0.8) 1/16 (1.6 mm)
Arc length (inches) 1/16 (1.6 mm) 7/64 (1.8 mm)

All welds were autogeneous, (with no filler metal). Material composition was not
varied in this initial experiment, but was explored later. Data was taken cn both single
and multiple pass welds of full and partial penetration. The fifty Bode plots produced
(shown in Figure 6) constitute a set of weld transfer functions, that span the range of
uncertainty in the welding system. (Each weld transfer function will hereafter be referred
to as a "plant".) The goal of this project is to design one compensator, G(s), that will
produce good welds for any plant within the set of weld tiinsfer functions. That is: at
any time the weld may "take on" the dynamic characteristics of any one of the plants in
the set, and the feedback system must adjust the current to maintain constant penetra-
tion.

* The tubes used were readily available and much less expensive than machined pressure vessels of Fig-
ures 1 and 2. The dynamics of the relationship between the light emitted from the back side of the
molten pool and the radiation measured at the sensor is the same for welds made on the pipes as on
the actual pressure vessels. The only difference between the two is in the reflections of the light inside
the vessel-a function of vessel or tube geome-y--resulting in a steady state shift in the light reading.

+ Changing the transformer tap setting from low to medium results in twice as much are current and four
times as much power for the same input signal.
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Design Procedure

The feedback system was desined for maximum disturbance attenuation, and
minimum response time, overshoot and complexity. The ideal tool for designing a
control system to the above specifications is the Nichols chart. The Nichols chart pro-
vides a convenient way to graphically "close the loop" on a feedback system. The straight
horizontal and vertical lines on the Nichols chart are lines of constant magnitude and
phase for the open loop system, and the curved lines represent contours of constant
magnitude for the closed loop system. Thus one can quickly get an idea of the relation-
ship between the open and closed loop system response from the Nichols chart.

The frequency information for the fifty welds can easily be plotted in Nichols chart
form for a discrete set of frequencies. This produces a set of plant "templates", three of
which are shown in F;gure 7. These templates give a quantitative measure of the amount
of uncertainty in the plant W(s). For each frequency, there are fifty points plotted (one
for each plant in the set), and they are connected by straight lines. Any plant not repre-
sented by one of the fifty points, but within the rtnge of weld uncertainty tested, should
fall inside the area bounded by the lines connecti- 4g the fifty points.

f - 0.01

5f-- 0.2

C

"c -30 2-46

-00
-360 -300 -260 -200 -160 -100 -60 0

Phase (degrees)

Figure 7. Plant Templates for f = 0.01, 0.2 and 2 Hz.

* As material is melted, a permanent change in the microstructure and geometry occurs. Therefore, the
weld underbead is only controllable in the positive direction-there is no mechanism for causing the
fusion zone to "un-melt. Because of this nonlinearity, overshoot must be minimized.
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If the plant templates are printed on transparent paper, and superimposed onto a
Nichols chart of the same scale, the magnitude and phase of the closed-loop trar.5fer
functions T(f) can be read directly from the Nichols chart. This makes it possible to
design for all plants in the set at the same time. Any compensation added to the system
from G(s) will affect all plants equally, and thus translate the plant template to another
location on the Nichols chart. To guarantee closed-loop stability, it is necessary to ensure
that the compensated plant L(f) [ where: L(f) = G(f) .W(f) ] stays away from the region
on the Nichols chart about -180, until the gain is well under 0 dB. The closer a system
comes to this area of instability, the more overshoot the closed-loop system will have.

By insuring that the magnitude of the closed-loop transfer function I T(f) I (where:
T(f) = L(f) / [1 + L(f)]) is less than some value -f for all plants in the set, one can control
the amount of overshoot in the output responses. A typical practice is to design for
.y=2.3 dB-which is associated with minimum overshoot and optimum response times.
The frequency bounds for the compensator G(s) (which guarantee a stable closed-loop
system with IT(f) I < y for all plants in the set) can be determined by moving the tem-
plate over the range of the Nichols chart.

Shown in Figure 8 are the Nichols chart frequency bounds in dashed lines. To
determine the bounds, one of the plants was chosen as the "nominal", and a hole was
made in each template at the location of the nominal. Each template was then moved
around the Nichols chart (taking care to keep the template square with the coordinate
axes) and the regions were found where all of the plants on the template satisfied the
criteria: IT(f)I <s -y The boundary whert I T(f) I = - is marked on the Nichols chart
(through the hole at the nominal) so that if the compensated nominal plant falls above
and to the right of the bound, then I T(f) I < - for all plants in the set.

Assuming the significant process disturbances are primarily low frequency, insensi-
tivity to process disturbances is maximized by minimizing steady state error-th it is:
minim variation in magnitude of the closed-loop transfer functions A I T(f) I at zero fre-
quency. The smallest frequency for which the input/output data was collected was 0.01
Hz, so the system was designed for a maximum error of I dB at f=0.01 Hz. That is:a I]T(O.01) I s I dB.

Also shown in Figure 8 is the "trajectory" of the uncompensated nominal plant
Wn(f) (shown in solid) as the frequency is varied from 0.01 to I Hz. The uncompensated
system is stable and satisfies all of the bounds except at f=0.01 Hz. It would therefore
not provide the desired level of disturbance attenuation. If the gain were raised to satisfy
the bound at f=0.01 Hz, then it would violate the higher frequency bounds and become
unstable. The purpose of G(s) is to "shape" or compensate the open loop system response
so that the closed-loop system meets all design objectives. The trajectory of the compen-
sated nominal plant Ln(f) is also shown (in solid) in Figure 7 where:

G(s) = 53.4•(s + 0.6) (s + 2.2) (M)
(s + 0.016) (s + 1.3) (s + 36)

The compensated system meets the stability bounds comfortably. The Bode plot of
the compensator G(s) is shown in Figure 9 and that of the compensated nominal plant
ý (s) in Figure 10. The closed-loop Bode plot for the fifty welds is shown in Figure 11.

ote that both design criteria were satisfied.
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The design so far has considered only those control elements needed to minimize
system sensitivity to outside disturbances. We now turn our attention to those special
provisions needed to establish a stationary full penetration weld Pand transition into a
moving weld while -maintaining constant penetration. These provisions, namely the Pre-
filter F(s), the Set Point Feed Forward loop, the Travel Speed Feedback loop, and the
Start Travel Comparator (see Figure 12), also expand the range of disturbances over
which the controller can maintain consistent weld quality. The design and operation of
these special provisions is best explained by detailing their operation in the complete
control system.

[n manual welding, the operator first establishes a weld pool, then starts the part
rotating, whilst increasing weld current to maintain the pool size. This is emulated by
the expanded control system shown in Figure 12.* Notice the addition of a set point feed
forward loop and a travel speed feedback loop.

The system works as follows: At the start, both the travel speed and radiated light
signals are zero (since there is no weld to emit light and the part is not rotating.) The
controller initiates the weld with a 'step function' change in weld current-a sharp
change from zero to a pre-defined nominal current. + Initially, the feedback signals,

*Figure 12 is an expansion of Figure 3. The welding system W(s) has been broken up into four compo-
nients: The power supply, part rotation motor, weld process uncertainty (disturbances) and the re-
mainder is lumped together under the label 'weld physics'.

+ The nominal weld current can be predetermined for each part by the welding operator, or if desired,
the operator could guess a nominal current and allow the controller to automatically adjust to the true
nominal setting.
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along with the start-up filter output, are zero, so the Step Function Input drives the
power supply with the nominal current and the weld pool begins to form. As the weld
penetrates the joint, the photometer begins to register light. This signal is fed back and
compared to the output of the start-up filter F(s). The start-up filter smooths the Step
Function Input to a signal that more closely approximates the process of an establishing
and growing weld pool. The difference between the approximated start-up signal and the
actual Radiated Light is called the error signal and is processed by the compensator G(s)
and added to the nominal current setting to adjust the weld current control signal. If the
weld is responding nominally, the error signal will be small, and the controller will con-
tinue to weld at the nominal current. Changes are made to the weld current only when
there is a difference between the actual and desired penetration.

When weld veretration reaches the appropriate depth, the controller should start
the part rotating. This is accomplished by the Start Travel signal and Travel Speed
Feedback loop. When the light reading reaches 60% of the set point, the Comparator
starts the part rotating, and the Travel Speed Feedback increases the set point (thereby
increasing weld current) to maintain penetration. The magnitude of this adjustment was
determined empirically, and is proportional to travel speed. Travel speed variations
during welding are also handled in the same manner.

INFU WELDING SYSTEM W(S) •,

+ START TRAVEL

j I

W , TRAVEL SPEED FEEDBACK

+ + OUPT

RADIATED LIGHT FEEDBACK

Figure 12. Expanded block diagram of feedback system

* However, the width.to-length ratio of the molten region decreases as travel begins. That is: a traveling

weld will produce a molten region that is longer and narrower than a stationary weld. The light signal
may be the same, but the weld will be narrower. To maintain constant underbead width, the controller
must increase the set point for traveling welds.
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Experiental Results

The system was tested with various disturbances to the welding process to deter-
mine how well the controller would be able to maintain penetration. Figure 13 shows
two welds made with a step change in travel speed from 1.5 to 6 inches per minute (0.64
to 2.54 mnn/s). (All of the test welds were made on tubes. After welding, the tubes were
cut longitudinally and flattened-out.) Figure 14 shows that the controller had no prob-
lem compensating for step-chang-as in heat-sinking, while this disturbance caused large
variations in the welds made without feedback. Figure 15 shows the end view of a pipe
that was welded to test the system tolerance to changes in part thickness. The system
had no trouble welding this part, so in order to further disturb the system, step-changes
in heat-sinking was also added. (See Figure 16.)

The system was next tested on the tube shown in Figure 17, which not only intro-
duces step-changes in part thickness, but also step-changes in arc voltage-which is relat-
ed to arc length. (An Arc Voltage Controller [AVCJ is normally used that adjusts the
position of the electrode up and down to maintain constant arc voltage. The AVC was
not used in this test.) The tube was difficult to flatten out, so the results are shown with
two photographs of the same part, taken at different angles. See Figures 18 and 19. The
first weld (weld A in Figures 18 and 19) compensated remarkably well, except when the
weld was coming off the bottom plate where it pulled away from the tube causing light to
come from between the bottom plate and the tube, and be interpreted as penetration.
The next weld (Weld B) did much better, because the first weld had sealed the bottom
plate to the tube, thus preventing the above mentioned problem. Weld C was made
without feedback control.

In order to assess the system sensitivity to sensor positioning, twelve welds were
made, on the same tube, at the same set-point, but at different distances from the light
cable. The width for each weld was measured and is plotted verses distance in Figure 20.
Although the underbead width variation as a function of distance from the fiber cable
was significant, it is clear that positioning the sensor accurately enough to maintain
constant penetration will not be difficult. Also note that there is an optimum distance for
maximum sensor input, at about tl-izee inches (7.6 cm) from the end of the light cable.

Originally there was some concern that with open groove butt welds, the arc light
would shine through and be interpreted as penetration. To address this question several
welds were made on tubes wihopen grooves from 0.03 to 0.09 inches (0.76 to 2.3 nun)
wide. For the tubes with the 0.03 inch gap, weld penetration was unaffected by the
presence of the gap. This L most likely because any light coming through the gap enters
th~e vessel at a right angle to the fiber cable-and therefore is not well coupled to the
photo-diode. The system did have trouble keeping constant penetration with larger gaps
because a greater portion of arc light was being picked up by the sensor.
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Figure 13. Welds made with step changes in travel speed from
1.5 to 6 inches per minute (0.64-2.54 mm/see)
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Figure 14. Welds made with sudden changes in heat sinking
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Figure 15. End view of variable thickness tube

Edge View of Flattened Tube

Feedback .
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Figure 16. Welds made on Figure 15 tube with changes in heat sinking
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Figure 17. Tube with step changes in thickuness and arc length

C •• .•• :,i ' F• i!/

""A B

Figure 18. Welds on Figure 12 tube (A & B with--C without feedback)
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A B C

Figure 19. Weld~s on Figure 12 tube (A & B with-C without feedback)
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Distance of Weld From End of Light Cable (inches)

Figure 20. The effect of distance on light reading
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Contro/er Rfnawmets

Once the control system was built, it was possible to make welds of constant back-
side radiation, and the relationship between travel speed, radiation and underbead width
was more accurately quantified. As would be expected, travel speed has a nonlinear
effect on the penetration measurement. This is illustrated in Figure 21. Figure 21 plots
underbead width verses back-side radiation for three different travel speeds. Assuming
that radiation is proportional to the area of the molten pool, the effect of travel speed on
this relationship can be modeled. Since the area of an ellipse is proportional to the
width "W" times the length "V, the radiation "R" is also proportional. The width can be
measured after the weld is made, but the length must be calculated. For zero travei speed
the length is equal to the width, and increasing the travel speed will cause the length to
increase proportionally to the width. Therefore:

L = B.W (2)

Where S is greater than or equal to one, and is a function of travel speed. Then the
area (and thus the radiation) is proportional to the width squared. That is:

R = a.W2 (3)

The solid lines in Figure 21 are the result of a least-mean-square fit of Equation 3 to
the data from several welds made at 1.5, 3 and 6 inches per minute (0.64, 1.3 and 2.54
mrm/s). The set point adjustment needed to maintain constant penetration with varia-
tions in travel speed is different depending on the desired underbead width, and is not
simply proportional to travel speed.

0.5 1.5 inches per mrin 5
. -- 9.3 a,15

o 0.50 3 a.C

"0 .

.,

0.20o

V 0.15 1

0.10

C
z 0.06 6 Inches per minute _

0.00

0 0.15 1 1.5
Ught Reading (volts)

Figure 21. Effect of travel speed on the light reading
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The Nature of Underbead Light

All of the above mentioned test welds were made on stainless steel. The original
system utilized an opaque filter between the end of the fiber cable and the photo-diode to
attenuate visible light, and pass infrared. This was done to remove ambient light from
the penetration reading,* and worked well until a new application arose for welding on
carbon steel. A large difference was observed in the relationship between backside radia-
tion and penetration for the two different steels. In order to understand this difference
an infrared imaging system was set up, as shown in Figure 22, to determine what the
sensor was actually seeing. The infrared images for two welds made on the two different
steels, but with identical weld parameters are shown in Figures 23 and 24. Note that for
the carbon steel weld, a much grcater portion of the back-side radiation is coming from
the area surrounding the fusion zone than for the stainless steel weld. Figure 25 shows
the image from a regular video camera on the same carbon steel. Note that the visible
underbead radiation is concentrated in the weld puddle-and thus for controlling weld
underbead width, visible radiation is a better feedback parameter than infrared, yet for
partial penetration welds, infrared is more significant. For this reason, the opaque filter
was removed to allow all available light to pass on to the photo-diode.

Electrode

Wolkpiece

Fiber Optic Cable

1rnl mo . -- and amplifier

Mirror -

Figure 22. Set-up for monitoring input to fiber optic sensor

* It was later discovered that the ambient radiation read by the sensor was negligible compared to the
radiation (both visible and infrared) coming from the back side of the weld. (Unless, of course, the
ambient light was aimed directly at the sensor or fiber cable.)
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Figure 23. infrared video Image of staibnls steel weld
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N.?.

Figure 25. Visible video image of carbon steel weld

Conclusions and Future Work

Overall, the back-side radiation feedback system worked well in reducing the proc-
ess sensitivity to changing weld parameters and disturbances. It has been tested with
travel speeds ranging from 1.5 to 6 inches per minute (0.64 to 2.54 mm/s) and with
+100% to -50% step changes in part thickness. It also compensates for sharp discontinu-
ities in heat sinking and arc length. Furthermore, the process was found to be reasonably
insensitive to fiber-optic cable alignment and position (as long as the cable is not aimed
directly at the weld).

The next step will be to use the feedback system for welding actual pressure vessels.
This will require penetration control for not only the root pass but also the fill passes.
Arc welding systems are inherently noisy (electrically), and are notorious for causing
digital electronic equipment to "crash". To eliminate the possibility of the system "crash-
ing" during a weld, the prototype controller was implemented in analog hardware. An
electrically shielded personal computer will be used in future work to implement the
control laws. This will facilitate multipass weld control and more accurate compensation
for variations in travel speed. It will also make the system more flexible and "user friend-
ly". Eventually the user will be able to specify the part geometry, material composition
and desired penetration for the root and fill passes and then use the computer to calculate
the corresponding set points that will be needed to make the entire part. It will also be
necessary to determine the effects of other disturbances to the system. Specifically: what
would be the effects of variations in wire feed rate, material composition, surface prepa-
ration, joint geometry, cleanliness, and electrode angle and composition.
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Many of the problems encountered in welding are related to variations in tempera-
tare caused by changes in energy input, heat sinking, misplacement of energy source, etc.
This feedback control technique has the potential to reduce or eliminate a number of
these and other problems because it tends to maintain the fusion zone at a constant size
and temperature. However, additional studies are required to deternmne what effect the
control technique will have on internal voids, the propensity for cracking, cold shunts,
and other welding problems.
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Ogujjitive Feedback Ter

Anthony E. Bentley

Process Development and Fabrication Division

Sandia National Laboratories, Livermore, California

Abstract

system based on electrode displacement feedback is developed that greatly im-
proves quality control of the pinch welding process. A correlation between weld quality
and electrode displacement is established for constant force. The system is capable of
producing repeatable welds of consistent thickness (and thus consistent quality), with
wide variations in weld parameters. This is the first time feedback control has been
successfully applied to pinch welding. Quantitative Feedback Theory rQFT) was used to
design the control laws.

Introduction

Pinch welding is a resistance welding process used to seal stainless steel tubes. It is
the last step in the fabrication of complicated pressure vessels that must be highly reli-
able. Since there are currently no nondestructive evaluation techniques available to
completely verify weld quality, the welds must be cut open and evaluated under the
microscope. However, total bond length and the shape of the end regions at the inter-
face can be determined (non-destructively) after a weld is made, from an x-ray radio-
graph. Weld quality can be estimated from this information. If the total bond length
does not significantly exceed 0.1 inch or the shape of the end regions show excessive
extrusion, the entire assembly must be discardJed. Since there is often no Possibility of re-
work, quality control is of paramount concern.
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The weld (illustrated in Figure 1) is made by passing a high current through the
part to be welded. Prior to the flow of current, a large force (typically one thousand
pounds) is applied by the welding electrodes to the tube. Because of the resistance in the
steel, current flowing across the tube generates heat. The combination of elevated
temperature and electrode force causes the tube to collapse, and a metallurgical bond
develops at the surfaces originally on the inside diameter of the tubes'. The resulting
weld quality is a complicated function that depends on a number of weld and tubing
parameters, the most significant of which are: current, weld duration and force.

Modem pinch welding equipment operates under the direction of a welding opera-
tor who determines proper machine settings based on the results of narrow experimental
parameter searchcs. These tests are expensive even for statistically designed experiments.
During the parameter selection process, welded tubes are slit longitudinally, etched (to
enhance grain boundaries) and classified as to the amount of grain growth across the
interface (among other things). An ideal weld interface (class 1 bond) is shown at 50OX
in Figure 2a along with the more typical interface (class 2) in Figure 2b. Poor quality
welds are either class 3 or 4 (also shown in Figure 2.) Along the weld interface there
typically exists bond sections of all four classes (with class 3 or 4 at the ends of the weld
and class 1 or 2 in the middle.

PINCH WELDING
ELECTROOES

CONM~ING 04ES

Figure 1. Schematic illustration of Pinch welding

1. T. R. Bieler. J. R. Spingarn, W. Jorgenson, "Voltage Dr,-i and Temperature., Measurements During Tube
Closure by Resistance Welding", Report #SAND82-8024. Sandia National Laboratories, Livermore, CA,
July 1982.
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The challenge associated with quality control of pinch welding is the large amount
of uncertainty in the relationship between weld quality and weld parameters. Prototype
pinch welds are developed at Department of Energy design laboratories, but weld param-
eters cannot be successfully transferred to the production agencies because of the diffi-
cultly in calibrating development welding equipment with production equipment. Fur-
thermore, calibration between production welders involves a tedious process of making
welds, measuring the current, and adjusting the placement of power cables until all
equipment receive the proper amount of weld current. (See Figures 3 and 4.)

once a system is properly calibrated, factors such as electrode wear and oxidation
on the tubes to be welded, can cause the relationship betweeni weld parameters and bond
quality to shift over time. Figure 5 shows the longitudinal cross-sections for two different
welds made on the same pinch welder with the same control parameters. The second
weld was made approximately one year after the first. Although all of the input parame-
ters were identical (within measurement uncertainty), the resulting quality was dramati-
cally different. From these figures it is dlear that there are large variations Uin weld quality
for constant weld parameters from machine-to-machine, and over time. in addition, weld
current is difficult to control due to power surges and dips created by other high-power
equipment on the same circuit and is also difficult to accurately measure because of its
non-sinusoidal, large magnitude.

Once the weld parameters have been selected dimensional characteristics of the
weld such as bond length, can be estimated through nondestructive examination with X-
rays or ultrasound. However, the only way to completely determine pinch weld quality is
the above mentioned microstructure evaluation. Production welds are randomly sampled
and destructively tested to infer weld quality of the unsectioned parts. While these
methods have allowed the production facilities to successfully produce high quality
products over the past thirty years, they do not improve quality, but simply inspect
quality, and in the process add tremendous cost to the product.

The goal of this work is to reduce the need for post weld inspection by implement-
ing automatic, real-time quality control. That is, by utilizing feedback control, weld
quality variation can be minimized to the point that inspection becomes unnecessary.
Achieving this requires sensor systems capable of accessing weld quality in real-time.
Although several methods have been investigated for real time quality assessment and
feedback control of other resistance welding processes, none are directly applicable to
pinch welding2. However, recent tests at Sandia demonstrated a correlation between
pinch weld quality and electrode displacement during the weld, and suggested that dis-
placement could be used as a quality measurement for feedback control. The objective of
the study reported herein was to more clearly define the correlation between electrode
displacement -and weld quality, and develop a feedback control system to produce pinch
welds of consistent weld quality, with wide variations in input power.

2. C. W. Pretzel and A. G. Beattie, 'Acoustic Emission Characterization of Pinch Welds*, Report #SAND85-
8890, Sandia National Laboratories, Livermore, CA, May 1986.
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Tuning Process

RBUSbar "

Figure 3. Production floor layout of pinch welding equipment.
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Figure 4. Machine-to-machine current variation-before and after tuning.
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Figure 5. Two pinch welds made with identical parameter settIngs. (m4)

Experimental Procedures

A typical electrode displacement curve for a nonminal weld is shown in Figure 6
suinerirnposed with the current waveform. used to make the weld. Weld time is specified
in cycles-meaning the number of 60 Hz current cycles used to make the weld. The
amount of current is controlled by modulating the duty-cycle of the 60 Hz current wave.
The duty-cycle is specified in units of "percent heat". That is, a S0 percent heat setting
delivers half of the available power to the part. (See Figure 7*.) Weld current is there-
fore a function of the primrnay line voltage and the percent heat setting.

At the commencement of this study, welds of ideal quality were produced with the
following parameters: primary voltage of 240 volts (rms), a heat setting of 45 percent,
weld duration of 12 cycles and 900 pounds force. The above settings will hereafter be
referred to as the nominal settings, and the weld produced by these settings, the nominal
weld. A new controller was purchased for the welder that allowed the percent heat and
weld duration to be externally controlled in real time. After the new controller was in-
stalled the heat setting required to make the nominal weld changed to 36 percent, later it
changed to 40, and finally returned tc: 45 percent. The reasons for these shifts have not
yet been determined but their effects can be eliminated through the feedback control
technique described in this paper.

*Note: Figure 7 shows the fire pulses delivered to the SCR's to initiate current flow. The SCR's are
turned off when the current through the SCR's crosses zero. Since the voltage and current are out-of-
phase, (with the voltage leading the current) the SCR's cu.ntinue to conduct current for a short time
after the voltage has crossed zero.
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Figure 6. Pinch weld input (current) and output (displacement) curves.
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Figure 7. Percent heat control scheme used In pinch welding.
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The open-loop sensitivity of weld quality to each of the above welding parameters
was assessed in the following manner: A series of 52 pinch welds were made, with varia-
tions in voltage, percent heat, and force. The welds were examined using radiography
and metallography to discover that in order to produce welds of consistent bond quality
the voltage had to be held constant to ±0.75 percent, the percent heat constant to ±1.5
percent and the electrode force to ±3.5 percent of the nominal settings.

Twenty one welds were made at nominal voltage, time and force settings, but the
percent heat was varied in equal increments from -22% to +22% of the nominal. The
electrode displacement curve for each weld was recorded on a storage scope and the final
displacement values were found 'Lo vary linearly with percent heat. Thle welds were then
cut open, and classified into four classes of bond quality along the length of the bond.
The specification requires a minimum of one tenth of an inch in Class I or 11 bond to be
acceptable. Figure 8 shows the bond quality data for the 21 welds as a function of elec-
trode displacement. Five of the displacement curves are shown in Figure 9. The five
welds in Figure 9 have been numbered for future reference. Also shown on Figure 9 are
the ranges of acceptable and not acceptable Welds based on weld geometry. The unac-
ceptable welds are broken up into two categories: hot and cold.

Cold welds do not hw.ve ennough heat to produce a quality bond of sufficient length,
creating a potential for the weld to eventually leak. Conversely, hot welds have too much
heating causing excessive melting to occur. As shown in Figure 10, there is an upper
limit in bond length when expulsion may occur (when molten metal is ejected from the
weld interface into thc. tube). Figures 10a though i~e show the metallographic cross-
sections of each of the we'lds represented on the displacement graph of Figure 9. The
weld in Figure 1 of was made with slightly less heat than weld 1 Oe, and had less dis-
placement, yet showed expulsion. Thus the midpoint of the two acceptance fiatits; shown
in Figure 8 was chosen for the ideal (or nominal) pinch weld.

Another series of twenty two welds was made with nominal percent heat, time and
force, but the primary line voltage was varied ±12% of the nominal. This produced a
family of curves identical to that of Figure 9. Finally, another set of 9 welds were made
at nominal percent heat, voltage and time, but the electrode force was varied. These
welds showed that the electrode force could be varied ±18% of the nominal and still
produce welds of acceptable quality. Furthermore the displacement curves of all 9 welds
fit comfortably into the "good" range of final displacement values. (See Figure 11.) Also
note that the welds with high force (corresponding with a high displacement) are the
coldest welds, and the low force, low displacement welds are the hottest of the welds.

The weld quality vs. displacement correlation is shifted when the electrode force is
varied-hence a single-input single-output displacement feedback system would not be
able to account for variations in both current and force at the same time. However, this
is not of great concern since the weld quality was found to be less sensitive to variations
in force (for the range used in this study) when compared to variations in percent heat or
line voltage. That is, at the nominal settings, the electrode force must vary 7 percent
from the nominal before any noticeable changes occur in the geometry of the weld, while
the percent heat need only vary 3 percent, and the primary voltage 1 .5 percent before
effecting the weld geometry.

245



Expulsion Umit--0.20 .................-- V -------------

C 00 0
.3
C0

00

0 00 L
0.030 0.035 0.040 0.048
Electrode Displacement (inches)

Figure 8. Pinch weld bond quality Vs. Displacement

0.06
V
0 0., WeN Hot

10.0C

CL

S0.02I

S0.01

0.00

0 3 6 0 12 16 1I

Time (cycles)

Figure 9. Pinch weld electrodle displacement curves
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(a) Weld *1 (b) Weld #2

Cc) eld 3 (ominl)(d) weld *4

4 VI

Ce) Weld #5 Mf Hot weld with Expulsion

Figure 10. Longitudinal cross sections for each weld in Figure 9 (14X)
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Therefore the control system designed in this paper does not compensate for varia-
tions in electrode force, however, it does measure electrode force, and waits for it to
reach the preset value before starting the weld, thus ensuring that all welds are initiated
at the correct force. The pinch welder used in this study uses a pneumatic force system
and is therefore extremely slow in response time. Because of the inherently slow re-
sponse, electrode force does not change significantly during the course of the weld, even
if the force has not yet reached steady-state. Since most pinch welds only last two tenths
of a second, and the force system has a response time on the order of seconds, the force
can be adequately controlled, (assuming that the input a~r pressure is set to overshoot it's
nominal value by some moderate amount) simply by w 'ting for the force to reach the
preset value before applying the weld current.

0.04 Coldest

}Good
1050 lbs.

0.03

0 Hottest2
A0.02

*~0.01

LU0.00 < - 70ls

L L _ -1111 -I

0 3 6 9 12 16 i8
Time (cycles)

Figure 11I. Pinch weld displacement curves Vs. electrode force
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Process Chazracterisation

A simplified block diagram of the control system is shown below in Figure 12. The
elements in the diagram are shown as functions in 's'--implying the use of Laplace trans-
forms. Laplace domain system analysis greatly simplifies the design of feedback systems,
but it assumes linearity, and a quick observation of the input-output waveforms of
Figure 6, reveals that the welding system is highly nonlinear. However, it has been
shown that frequency domain techniques can be successfully applied to a large class of
nonlinear, uncertain plants3"4.

Pre-Filter Compensator Controller Welder

Figure 12. Block diagram of feedback system

The next task was to determine the transfer functions for each of the components
in Figure 12. In this configuration, the feedback loop is used to reduce the process sensi-
tivity to parameter variations. Thus G(s) must be designed so that the closed-loop system
reduces the uncertainty to acceptable levels. However, this will also change the band-
width of the system. Both a compensator and pre-filter must be used in order to inde-
pendently control bandwidth (time response) and sensitivitys. Therefore F(s) must be
designed to provide the desired time response for the over-all closed-loop system (ideally,
this would be the same as the nominal weld #3 shown in Figure 9).

The weld controller H(s), controls the triggering of the SCR's which provide current
to the weld transformer, as shown in Figure 7. The outputs of the controller are the SCR
firing pulses, while the input is the percent heat control signal X(s). Varying only the
percent heat while holding all other inputs constant, reduces the system to a single-
input/single-output system and the transfer function becomes: P(s) = Y(s)/X(s), where:
Y(s) is the Laplace transform of the displacement, X(s) is the Laplace transform of the
percent heat signal, and P(s) = H(s) .W(s). All other inputs are considered to be process
disturbances-which add uncertainty to the system equation.

3. I. Horowitz, M. Sidi, 'Synthesis of Feedback Systems With Large Plant Ignorance for Prescrited Time
Domain Tolerances', International Journal of Control, Vol. 16, pp 287-309, 1972.

4. I. Horowitz, 'Synthesis of Feedback Systems With Nonlinear Time-varying Uncertain Plants to Satisfy
Quantitative Performiance Specifications", Proceedings of IEEE, Vol. 64, No. 1, Jan. 1976.

S. I. Horowitz, 'Notes for course EEC152, University of California, Davis, Department of Electcal Engi-
neering and Computer Science, Fall 1988.
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Since any wave form can be modeled as a sum of sinusoids and exponentials, The
welding system (here after referred to as the "plant") P(s), was characterized as follows:
The displacement data for the nominal weld was read into a spre-adsheet program, andtime domain equations were manually generated by the author, tc fit the output (dis-
placement) data. This produced the following model of the output for the nominal weld
as e function of time:

y(t) • y1(t) + Y2 (t) + y3(t) + Y4(t) (1)

Where:

yi(t) 0.361 ( 1 + 0.2 e46 tt. 1.2 e714 t)

y2(t) = -0.02 e"3 t Sine( 14t)

y3(t) = 0.02 e-6 t Sine( 33t + 450)

y4(t) = -0.03 e-s° t Sine(100t + 1350)

The plot of the above equation (lite) along with the actual displacement data
(heavy line) is shown in Figure 13a. The difference between the actual and model data is
also plotted on the same graph in heavy line. Notice the decaying sine wave is basically
all that is in the actual data that is not included in the model. This damped wave has afrequency of 120 Hz and is due to thermal expansion and contraction in the tube being
welded, produced by the 60 Hz driving current. Each time a current pulse is delivered to
the tube it begins to expand slightly, and between pulses the tube continues to collapse.
The final component to the output was ys(t) = 0.009 e"0 t Sine(2wrft) (f=120 Hz).

The resulting plot is shown in Figure 13b. The remaining difference between the
model and actual data was considered to be noise, since it was undamped and consisted
of higher harmonics of 60 Hz (that is, 180 Hz, 240 Hz, 300 Hz, etcetera).

Transforming y(t) into the Laplace domain yields:

Y(s) = YI(S) + Y2(s) + VY(s) + Y4 (s) + YS(s) (2)

Where:
Y,(s) - 435 Y2 (s) ff2

s(s + 14)(s + 86) (s + 3)' + 14

Y3(s) .013s + 0.3 Y4) -0.022 s + 1.1

(s +06)0 " +33 (s + 50) + 100,
YS(s) -Q0.009 s + 0.1

(s+8)2  + 7602
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pigure 13. Dbsplacement curve of thominal weld-actual and model data.
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The input to the welder was a step function (since the data gathered was made at
constant input parameter settings-that is the percent heat, voltage, and force were not
varied once the weld had begun). Therefore the transfer function W(s) is simply the
output Y(s) divided by the Laplace transform of the input step function. Since the La-
place transform of the unit step is 1/s, then W(s) = Y(s) / (1/s) = s.Y(s).

The controller H(s) provides a digital input signal for external control of percent
heat. Since the SCR's can only be fired once every W:lf-cycle, the welding system cannot
change percent heat more often than 8 milliseconds-the controller will not respond to
the control signal X(s) between pulses. This was characterized as time delay of 11 milli-
seconds. (The actual time delay ranges from 2 to 11 milliseconds depending on when a
change in X(s) occurs relative to the timing of the SCR pulses.) Thus we have:

P(s) = W(s).H(s) = s.Y(s).e-1t Where: r = 11 milliseconds (3)

This process was repeated for all five of the displacement curvws shown in Figure 9
and similar equations were derived for each. These five equations now ccnstitute a set of
plant transfer functions, that span the range of uncertainty in the welding system. The
goal of this project is to design one compensator, G(s) and one pre-filter, F(s) that will
produce good welds for any plant in the set. That is: at any time the weld may "take on"
the characteristics of any one of the plants in the set, and the feedback system must
adjust the percent heat to arrive at the desired displacement.

Plotting the magnitude and phase of equation 3 for s = jw (where j = I and
w = 217f) as a function of frequency o, produces a Bode plot. The magnitude portion of
the Bode plots of each of the five welds are shown in Figure 14. Note that up until about
30 radians per second, the five curves are fairly "well behaved"--that is, they do not cross
each other, and one can differentiate between the five curves easily. The magnitude for
each of the welds ends up with a final roll-off of -20 dB per decade, while the phase ends
up at -450* (before addition of the above time delay). This is because all of the equations
have a pair of complex zeros in the right half side of the s-plane. (This wis not obvious
from the equations, since they were expressed as sums of partial fractions rather than 3s a
product of zeros over a common denominator.) This complex pair of zeros is a result of
Y,(s)-the term containing the 120 Hz. oscillation.

It has been shown that if a system is minimum-phase (no zeros in the right half of
the s-plane), then the range of closed-loop uncertainty can be controlled by placing
bounds on the magnitude of the frequency response without restrictions on the phase.
Although the plant is non-minimum phase, the right-half-plane zeros have little effect on
the Bode plot for the frequency range of interest, (zero to about 100 radians per second)
and the above simplification can also apply to this design.

6. 1. Horowitz, Synthesis of Feedback Systems, Academic Press, Orlando, FL, 1963.
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Figure 14. Frequency response of the welds in Figure 9.

Thus, by insuring that the magnitgde of the closed-loop transfer function follows
that of the nominal in Figure 14, the time-domain responses are forced to follow the
output of the nominal weld shown mn Figure 9. Since the displacement curves of -weld
numbers 2, 3 and 4 were al produced by acceptable welds, we Will assume that any
displacement curve whose frequency response lies between that of welds number 2 and 4
(at least for frequencies lower than 30 radians per second) will also produce an accept-
able weld regardless of the phase characteristics of that weld. ideally we would like all
displacement curves to exactly follow the nominal, however some tolerance is required
for a finite bandwidth system. Figure 14 also shows the frequency bounds used for the
design of the compensator. The bounds (shown in dashed lines) closely follow the
nominal weld for frequencies less than 3, then gradually open up. if there exists a
compensator G(s) and a pre-filter F(s) that maps all of the five plant transfer functions to
lie within the bounds shown in Figure 14, then the resulting welds should produce dis-
placement curves that will lie well within the good region bounded by weld numbers 2
and 4 of Figure 9, and the final displacement values will match that of the nominal weld.
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Design Procedure

The width of the bounds in Figure 14 will hereafter be referred to as AB(w), and is a
function of frequency. The purpose of the feedback loop is to reduce the uncertainty in
the system so that A I T(w) I < AB(w) for all w, where T = L / (1 + L) and L(jc) =
G(jw) • P(jw)-That is, the range of the closed-loop transfer functions must be smaller than
the range or width of the bounds in Figure 14. Since P(s) is fixed, G(s) must provide the
necessary compensation to ensure that the closed-loop system meets the above condition
for all plants in the set at all frequencies. The Nichols chart is the ideal tool for designing
G(s) to the above specifications.

Plotting the frequency information for the five plants in Nichols chart form (Phase
Vs. Magnitude) for a discrete set of frequencies between I and 100 radians per second,
gives the set of plant "templates" shown in Figure 15. These templates give a quantitative
measure of the amount of plant uncertainty at each frequency. For each frequency, there
are five points plotted (one for each plant in the set), and they are connected by straight
lines. It is assumed that any plant not represented by one of the five plant equations, but
within the range of plant uncertainty, would fall somewhere in the area bounded by the
lines connecting the five points.

0

-10 -i2 W-

~ -20 w-25

-$ 0 003230 - u-837

-40
.- ISO -13. -00 -46 0

Phase (degrees)

Figure 15. Plant templates for = 1 to 100 radians per second
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These plant templates can then be printed on transparent paper, and superimposed
onto a Nichols chart of the same scale. This allows the designer to read the magnitude
range of the closed-loop transfer function A IT(w) I directly from the Nichols chart. Any
compe a, .n added to the system from G(s) will affect all plants equally, and will thus
trans! ce te plant template to another location on the Nichols chart. Therefore, by
moving -. ý emplate over the range of the Nichols chart, the designer can accommodate
all plants simultaneously and determine bounds for the compensator G(s), which if
satisfied, will guarantee that,& I T(w) I for the closed-loop system, will satisfy the bounds
AB(w). Also, stability bounds can be derived from the Nichols chart, by insuring that T(w)
is less than some value y for all frequencies. Since -y is also related to the amount of
overshoot in the output response, it was decided to design for -=O--thus allowing for no
overshoot at all. This was done because the electrode displacement is only controllable in
the positive direction. That is: current applied to the tube can only cause the tube to
collapse-there is no mechanism for causing the tube to re-expand. Therefore, because of
this non-linearity (which was not included in the process characterization), overshoot in
displacement can not be compensated for, and must be minimized.

Figure 16 shows (in dashed lines) the Nichols chart bounds for the nominal open-
loop transfer function. If the bounds are satisfied for the nominal case, then the frequen-
cy bounds in Figure 14 will be satisfied for all i.lants in the set. Figure 16 also shows (in
solid line) the "trajectory" of the uncorr.npensated nominal plant Pn(jw) as the frequency is
varied from 1 to 150 radians pe" secc-ad. Clearly the uncompersated system violates the
low frequency bounds, and would thus have large steady-state errors. Raising the gain to
reduce steady state error (without adding compensation) would drive the process unsta-
ble. Therefore the compensator G(s) mist not only have a large gain, but must provide
the necessary phase lead to stabilize the closed-loop system, and meet the design specifi-
cations. Figure 16 also shows (in solid line) the trajectory of the compensated nominal
plant L(jw) where: Lr.(s) = G(s) . Pn(s). The compensated system meets the bounds
comfortably. The comp'ensator G(s) is shown below:

G(s) = 1600(sa + 27s + 19')(s + 32)' (4)
s(sa + 25s + 25')(s +126)z

Figures 17 and 18 show the Bode plots of G(s) and L (s) respectfully. Figure 19
shows the Bode plots of the closed loop system for all plants in the set along with the
bounds of Figure 14. The purpose of the pre-filter F(s) is to "shape" the closed-loop re-
sponses to achieve the de-.ired bandwidth-that is, to cause the closed-loop responses to
"fit" inside the bounds of Fi4,ure 14-and thus meet the time-domain specifications on the
output response. Ideally we want all outputs to match that of the nominal weld, and so
the nominal weld transfer function Pn(s) is included in F(s). This design of F(s) deviates
somewhat from the classical QFT design method and is best explained later on in the
paper by detailing its operation in the complete control system. The pre-filter F(s) is
shown below, and the pre-filtered closed-loop transfer functions are plotted in Figure 20.

F(s) = Pn(s) + 1/G(s) (5)
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Figure 17. Bode plot of compensator G(s)
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Figure 18. Bode plot of nominal loop transmission Ln(s)

257



0

-10

-20

30
.40•

S-300

-60 . . . . .. '. .
1 10 100 1000

Frequency (red/sec)

Figure 19. Bode Plot of closed-loop system L(s)-/[ I + L(s)]
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Figrure 20. Pre-filtered, closed-loop system F(s) L(s) / I 1 + L(s)]

258



Input (step function) Pinch Welding Process P(s)

Process
Disturbance

Profile Compensator Controlle L Welder

Pn(S) E G(s) E H(s) E W(S) >

Displacement Feedback

Figure 21. Block diagram of expanded control system

Epermental Results

Applying equation 5 to the block diagram of Figure 12 and rearranging yields the
feedback/feed-forward structure shown in Figure 21. Note that the welding process P(s)
has been expanded to include unknown process disturbances, and that F(s) has been
realized with the equation of the nominal weld Pn(s) and a feed-forward signal.

The control system was implemented in software on a personal computer. It works
as follows: The welding operator selects the desired weld parameters (percent heat,
primary line voltage and electrode force) and starts the welding sequence as they would if
there were no feedback system connected. Once started, the controller opens a valve
allowing pressurized air to enter the pneumatic cylinders which intern apply force to the
electrodes. As the pressure builds, the electrode force is monitored by the computer.
When the force reaches the preset value, the computer initiates the weld with a step
function input to the controller. This starts the weld current flowing at the operator
specified percent heat. The electrode displacement is measured and compared to the
nominal displacement profile to become the error signal. If the welding process is re-
sponding nominally, then the error signal will be small and the compensator will not
change the specified percent heat. However, when process disturbances change the
behavior of the welding process, the compensated error signal adds an offset to the
controller input signal, changing the percent heat. The duration of the weld is also
shortened or increased as needed to drive the displacement to the specified value. When
no disturbances are present the system responds the same as it did without feedback.

Note, the computer has no knowledge of the primary line voltage nor the operator
specified percent heat-corrections to the perLent heat are made solely on the displace-
ment error signal. An obvious improvement to the robustness of the process would be to
give the computer access to the percent heat and primary line voltage settings and use
that knowledge to modify the operator specified percent heat in order to further compen-
sate for improper settings. However, in order to fully test the feedback capability of the
system, the voltage and percent heat settings were left as unknowns to the computer, and
were varied to simulate the process disturbances D(s) shown in Figure 21. The final
application would, however, incorporate the above improvement.
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The system was tested, and found capable of controlling the final displacement to
±1.5 percent. However, after cross-sectioning the welds an interesting observation was
made: although the final displacement values for all welds was that of the nominal weld
(weld number 3 in Figure 9), the weld geometry was closer to that of weld number 2 in
Figure 10. Although all welds were of acceptable bond quality, it was hoped that the
geometry would be closer to the ideal. The reason for this shift in the quality vs. dis-
placement correlation is currently unknown, but it is suspected that it is related to elec-
trode wear, since the electrodes were changed between the time of the prelinilnary exper-
iments and the final system tests-however, this cannot be fully verified since the old
electrodes were discarded. To correct for this sift, the nominal weld profile was scaled up
to obtain a larger final displacement.

The system had no trouble compensating for input voltages ranging from the
nominal of 240 volts down to 205 and up .o 275 volts. Encouraged by these results, the
system was tested for disturbances well beyond the region of weld uncertainty used for
the design, to include welds made at such extremes as 150 volts-46% heat and 240 volts-
74% heat. Electrode displacement traces for these welds are shown in Figure 22%, and
thi- corresponding metallogmaphic cross-sections in Figure 23.

74 % Hoat
-0.04 240 Volts

46 %HeatGood

0C

S0.02

S0.01 450%V ea

15

LU0.00

0 3 a s, 12 16 18 21

-rime (cycles)

Figure 22. Closed-loop displacement traces w/wide variations in power

*The ISO volt-46% heat weld continued past the time shown in Figure 22 until it reached tht correct final
value after about 24 current cycles.
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240 Volts (Nom~nal)

275 Volts 74% Heat

Figure 23. Metallography of Figure 22 welds-plus nominal (at 14X)
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All of the welds in Figure 23 were acceptable with around 150 thousandths of an
inch of high quality bond, while such variations in weld parameters without feedback,
would have caused disastrous effects on weld quality. (See Figure 24.) In order to fur-
ther test the system, welds were made with several different combinations of line voltage
and percent heat as shown in figure 25. The input voltage was varied from 144 to 275
volts, and the percent heat all the way from 5 to 99%. In each case the controller wNis
able to bring the final displacements to the correct value. Figure 25 graphically illus-
trates this decrease in sensitivity, by showing the regions of allowed variation in voltage
and percent heat for consistent bond quality. This is shown for both with and without
feedback. Welds made with feedback but outside the parameter space shown in
Figure 25 can still produce acceptable welds, but fall slightly under (or over) the desired
displacement and corresponding bond quality. The system could not be tested above 275
volts because of a limitation or the input transformer, and therefore the portion of Fig-
ure 25 that is above 275 volts is a projection.

Conclusions and Future Work

Overall, the feedback system worked extremely well in reducing the process sensitivity to
weld input power through the use of displacement feedback. Displacement was accurate-
ly controlled and bond quality maintained, with -40 to +15 percent variations in primary
line voltage and with ±80% disturbances in percent heat. The next step will be to deter-
mine the effects of other disturbances to the system and the ability of a displacement
based control system to compensate for them. Specifically: assess what would be the
effects of variations in tube hardness, geometry, cleanliness, electrode wear and align-
ment, etcetera. Finally, the design will be adapted into a multiple input, multiple output
system to compensate for all of the above added uncertainty, and also for variations in
electrode force. Quantitative Feedback Theory has also been used to apply displacement
feedback to the resistance upset welding process. The upset welding feedback system will
be implemented and tested shortly. This promises to be even more rewarding than pinch
welding and will find greater application throughout the welding industry.
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Abstra•t: Storage vessels are used extensively in the process industry for evening out
process stream fluctuations between adjacent process stages. It is shown here
quantitatively, that the product between vessel size and flow control bandwidth must be
about four times the operating flow rate in order to simultaneously minimize intersection
disturbances and avoid fluid escaping from the vessel. A higher value of this product either
means unnecessary process disturbances or questionable investment for an oversized vessel.
A lower value will lead to occasional spillages with the associated loss of production and
potential environment pollution. This formula is extended to the safe operation of larger
processing vessels by observing that the product between the reserve volume and the flow
control bandwidth must be about twice the operating flow rate.

1. INTRODUCTION

Consider the typical arrangements of an evening tank control problem between two
adjacent process stages in Figure 1.

IA Lr

is LC

. , 7

it+ " L +1 to i.

(a) Decoupling from upstream (b) Decoupling from downstream

Figure 1: Evening tank level control. LT = Level Transmitter/Sensor, LC = Level
Controller, LCV = Level Control Valve, LR = Level Reference,

volumetric flc,,v rate fr-,m stage i, vir 1 - volumetric flow rate into

stage i+1.
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The control system configuration in Fig. la decouples the process stage i+1 totally from
fluctuations, if the tank hydrostatic pressure does not influence ýi+l. The role of the

control system is to avoid over- or underflowing of the storage tank despite the
fluctuations (disturbances) in vi+.

The control system configuration in Fig. lb decouples the process stage i totally from ýi+l
fluctuations. The role of the control loop is to avoid over- or underflowing of the storage
tank despite the fluctuations in v..

2. MODELLING

Assume incompre:sible flows twithout significant restriction for the vaiidity of the general
storage control analysis), then the volume V of the stored material is modelled by

dV -
1)TtM i - Vi+1 Z

Assume for simplicity vertical side walls of the tank, then the transmitted level signal can
be scaled to represent the volume V directly. Hence, for the rest of this paper, we assume
that LT signal represents the volume in the range of

<v<Vmax (2)

Vmax is the vessel size. Let us use v for the measured volume (level), u for the controlled

variable ('i in case of Fig. la and ý i+1 in case of Fig. 1b). and d for the disturbance signal

in case of Fig. la and i in case of Fig. Ib). Using the corresponding capital letters

for Laplace transforms we obtain the transfer function models

1 (U - D) (3a)

and
Y 1 (U - D) (3b)

for Fig. la and lb respectively. Since the only difference is in the sign of the integrator, we
will continue with eq.(3a) (Fig. la).

3. CONTROL SYSTEM ANALYSIS
Denote the Level Controller transfer function with Gc (s), the level (volume) reference with

r (R in the Laplace domain), and the controller output to flow rate transfer function with
Gv(s). The resulting control block diagram is displayed in Figure 2.
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ft +Gc(s) Gv(s)S

Fizure 2: The 1 degree--of-freedom :ontrol problem.

Note that reference prefiltering is not considered here as we a;e solving a regula:zing
problem.

The pnmary design aim is to avoid disturbing the row rate U too much. The secondary
objective is to achieve the first aim while keeping

0 < y < Vmax (4)

That these objectives are contradictory and requirf a compromise is dear '-om the
corresponding tzansfer functions:

T I0=Tu(s) V Ls)(5r- 1 + L(s)()
r=O

and
- T1 (6)

r=O

with the loop transfer function

L(s) = Gc s) Gv (S) . (7)

Low gain and bandwidth Tu is achieved with low gain and bandwidth L. This, however,

leads to high (low-frequency) gain in TY.

With a reasonably practical controller design Tu will be just a low-pass system with unity
low-frequency gain (or very close to it). Hence, the only sensible way to limit

U-fluctuations is to limit Tu-bandwidth to, say,. 0 may be determined (or limited)
by the control system bandwidth in the proress stage i of Fig. Ia.

Uf the T is designed with at least 2dB maximum "over-hoot" between the gain and

phase crossover frequencies then the frequency 11 for the maximum value of L and

the frequency Q~ for the maximum value of are very close and (depending on the

bandwidth definition) just a little les3 than flu Also (max -+ L is

approximately 3 to I dB.
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The above is based on the elementary comparison of reasonaL e designs on the background
of Nichols and Inverse Nichols Charts and the assumption (Z little uncertainty between
gain- and phase-crossover frequencies.

The author of this paper is not aware of any storage control situation where a P, or PI
controller with some low-passing of the level transmitter signal would not yield
satisfactory results, because Gv is essentially a gain for all frequencies up to f2u" The
uncertainty of G. can be made very small with the help of valve positioners or with fast
local flow feedback loops (not shown in Fig. 1). If this (additional) instrumentation is
considered too expensive for an application then the standard QFT design of Horowitz
should be used, although designers with a little loop shaping experience can just as well use
the highest gain of Gv as the worst case for high frequency and the lowest gain of G as the
worst case for low frequency loop shaping. The lowest gain of Gv is relevant for the
storage size calculations, although it can lead to some overdesign.

4. STORAGE SIZE

Now we are in the position to present a general Bode magnitude plot for

in Figure 3, where the initial 20 d- roll-up is due to a P-controller (Gc(s) = Kp) and 40
e cidB 

fISis due to a PI controller (Gc(s) = Kp(1 + -). The "overshoot" of A dB is due to

additional loop dynamics, such as transmitter signal filtering.

Np'1  -.

[ P1 -e" ~
"Pi.

0-2

dec

Figure 3: Typical IT y. due to P and PI controllers, usually 3dB < A < 6dB.

267



One could now take the measured power spectral density Pd of D and demand that the

standard deviation of y be for example 3 times less than 1 Vmax (for r V
max

V =6a =6 fIT jiy dw (9)

For white noise D we can calculate approximately

max rd'-d v y for"'" controller

6VVd /"M for "PI" controller

Another computationally useful situation arises when d has occasional flow rate step
disturbances of the magnitude 6. These step changes will cause maximum volume
deviations from r roughly equal to

6v = ITy(f y) 6  ())

In my experience the actual value is less than the above 6V but not by much - see the
example in section 7. Hence, eq. (11) is a worst case boundary.

From Fig. 3, approximately:

ITy (fy)I 10' (12)
y y

With 3dB < A < 6dB, 1.4 < 10 A/20 < 2. Using the larger value, we obtain for the
maximum volume deviation from eq. (11)

26 (13)
6 VmaxW=r

y

and, with r =4. Vmax, the storage tank size is given as

S46 (14)Vmax -- FT

y
where Vmax is the storage tank volume, 6 is upper bound for fow rate step disturbances
and fQy (= f) ) is essentially the disturbance bandwidth transmitted from the tank into the
stage i (stage i+I in Fig. Ib). Obviously, the contiol system of stage i must have at least
the same bandwidth in order to counteract this disturbance.

In badly regulated or maintained processes sinusoidal disturbances can be observed. This
case is covered exactly by the above' •;uations (11) to (14), when 6 is the disturbance
amplitude and fly is the disturbance frequency If the disturbance frequency is not equal
to Q0 then a smaller volume Vma is needed than indicated by eq. (14-).y268
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Returning to eq. (10), we observe that the "P" controller case is more demanding on the
storage size than the "PI" controller case, so let us consider the former further.

A noise can be considered white only if its bandwidth is larger than the bandwidth of the
concerned system - in this case fl That means, in the time domain, this noise has a

y
standard deviation ad described by the inequi<ity

¢Zd q d fl / •r(15 )

Physically, this standard deviation cannot be greater than one sixth of the maximum flow

rate •' in case of approximately normally distributed flow fluctuations. Using a slightlymnax
exagerated bound

(16Gd < V (16)

yields with eqs. (15) and (10)

V , < 2max (17)max "--

y
On the other hand, the maximum possible step disturbance 6 in eq. (14) is given by

6 Vmax (18)

Whence
4i~4mmx-rv stx .< (19)

y
Comparing equations (17) and (19) shows that in the worst case design we should be
guided by the step disturbance considerations according to

Vmax fly = 4Vzmax (20)

5. UNSYMMETRICAL USAGE OF EVENING TANKS

Most well engineered systems operate the flow rates close to their maximum possible
values, so that positive step disturbances in d can only have very small magnitudes. Hence
the maximum possible step disturbance is bounded by

6< max i i+1 (21a)

for Fig. la and

6< max vi (21b)
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for Fig lb. Usually max i-i =max 'i =max"

Correspondingly, a symmetrical r - • Vmax does not make sense. Rather, one should use
an unsymmetrical rerenwe, e.g. r close to 0 for Fig. la and r close to Vmax for Fig. lb.

Under these conditions a smaller storage capacity is required - appro mately equal to the
maimum volume disturbance in eq. (13). Hence eq. (20) can be replaced by

Vmx = (22)

There is a caution however- starting-up of the plant with this design must be slow,
otherwise large magnitude positive steps in i may be caused.

6. OPERATION OF LARGE PROCESSING VESSELS

As opposed to evening tanks, most processing vessel sizes are much greater than Vmaxin
equation (2ý) - due to residence time calculations, or having to be able to store for
example 2A b•v-s of process stream, and so forth. In these cases the- spare volume for
regulating purposes is Vmax- r and equation (20) must be modified to

6V ny = 2 (23a)

with = Vm - r (23b)

In case of the processing vessels, keeping the vessel level undisturbed (not merely between 0
and Vma,) may be the primary objective with flow disturbance reduction being of
secondzry importance. Therefore, an integral controller gets preference over the
proportional controller.

7. A HYPOTHETICAL CALCULATION EXAMPLE

In a hypothetical process plant with very realistic data poisonous fluids are pumped from a
producuon stage, i, into a chemical treatment stage, i+1, at a full load operating rate of 2
I3/mm. A clarifying tank of 150m3 is used as in Fig. la. In order to obtain a sufftient
clarification efficiency (residence time) the "level" reference is set close to the mnamum
tank capacity:

r = 130 m3  (24)

Assuming G v = 1, what is the "slowest" filtered PI controller needed to avoid spilling
poisonous fluids (into a nearby river)?

The worst case disturbance is caused by blocking the treazmet stage i+I:
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The maximum allowable level deviation is

IVmax = Vmax - r = 20 m 3  (26)

Hence from eq. (23)

fly = 2 = 0.2 a(27)

VZ min

Let us use for simplicity a first order low-pass filter with the corner frequency of wF' then

Gc(S) = Kp (I + f) I s(28)

Using elementary loop shaping considerations we can choose

wF = L25ny = 0.25jn (29)

Then Kp is determined approximately from the requirement of

I 3 dB (30)

j1 + �(l + s/0.25)i

on the Inverse Nichols Chart in Fig. 4 (L leaving some phase reserve for low frequency
lag) yielding

Kp = 0.15 (31)

"The choice of 3dB in eq. (30) is motivated by the desire to avoid oscillatory behaviour in

the disturbance transfer function Tu.

Lastly fl1 is chosen so that ITu is less than 3dB. Hence

"fl .02 rad (32)min

or smaller sufices.

Figure 5 shows simulated step responses of volume and vessel inflow vi" Notice that with
respect to the step disturbance we have a spare volume overdesign by about 40%.
Nevertheless I would not change the right hand side of eq. (23a) to 1.4 .MAX Any tighter
design should be based on a detailed (simulation) study and signed approval of the
responsible process engineer with the fall knowledge of possible consequences.
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For demonstrative purposes this design is repeated by allowing 6dB in eq. (30), instead of
3dB. The parameters

wF 0.16  (33a)

K = 0.25 (33b)

1= 0.035 (33c)

yield now the hup transfer functions L and L as shown in Figure 6. The corresponding
simulated step responses are shown in Figure 7.

8. CONCLUSION

It has been shown quantitatively here that the product between the reserve volume 6Vma,

and the level control bandwidth fy must be twice the maximum process flow rate v max for
safe operation of the vessel and for minimizing disturbance coupling between the process
sections up- and down-stream from the vessel.
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QFT and Robust Process Control
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Department of Electrical Engineering
Indian Institute of Technology

Bombay - 400 076, INDIA

AbptnA~c-

This paper presents a survey of the QFT-based robust
controller synthesis work done at the Indian Institute of Technology,
Bombay, in the area of chemical process control. The control problems
considered are representative of those found in chemical and petroleum
industries and fall into the following classes: lumped linear SISO
multiple loop (1), lumped linear MIMO (3), lumped nonlinear SISO (2),
lumped nonlinear MIMO (1) and distributed linear SISO (2).
Specifically, problems concerning the following have been investigated:
cascade of five continuous stirred tank reactors (CSTRs), 2x2 high
purity binary distillation column, 2x2 fluidized bed catalytic cracking
unit, 3x3 continuous distillation column with sidestreams, isothermal
nonlinear CSTR with second order reaction kinetics, exothermic nonlinear
CSTR with exotic dynamics (strong parametric sensitivity and
ignition/extinction behaviour), isothermal fixed bed catalytic reactor
with axial dispersion (distributed system with pseudo-homogenous
catalysis) and heat equation. In every case, QFT procedures have been
used to synthesize feedback systems that satisfy the performance
specifications despite the considerable plant parameter uncertainty.

Introduction

In the last three decades, QFT has been used to successfully
design feedback systems for many an application drawn from the
aeronautical and electrical fields. It seems to us that QFT's
capabilities have, however, hardly been tapped by process control
specialists. Motivated by the paucity of the process control
apipications of QFT. the control group at the Indian Institute of
Technology, Bombay, set forth to explore the power and capabilities of
QFT in tackling scne typical control problems found in the chemical and
petrochemical industries. This paper surveys the problems solved by the
group in this area during the last one year. Detailed results are
available in the theses and reports cited under the references.

A total of 9 problems falling into various classes have been
successfully solved. The specific problems with the corresponding
problem classes are listed in Table 1. In Section 2, a short
description of each problem is given. Sectior 3 contains the concluding
remarks along with a summary of very recent a-ztivities in this area.
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2. Problems Solved Using OFT

2.1 Linear Plants

Probmem1 (SISO) : The system is a battery of five continuous stirred
tank reactors (CSTRs) in each of which a first order irreversible
reaction occurs. The first CSTR has a cooling coil through which the
coolant flows. The problem is to control the concentration in the last
CSTR using the coolant flow rate, despite feed concentration
disturbances and the very large (± 100%) uncertainty in several basic
reactor parameters. The performance specs are given in Table 2.

For the given uncertainty and performance specs, the standard
SISO QFT procedure (Horowitz and Sidi, 1972) yields a design that gives
large sensor noise amplification at the plant input. Using the design
perspective procedure (Horowitz and Wang, 1979), a 5-cascaded
multiple-loop feedback system giving significant reductions in sensor
noise amplification (peak reduced by a factor of 4), is synthesized.

Prnb~lem-2 (MIMO): The 3x3 distillation column with sidestreams model is
taken from Ray [1981]. By manipulating the rates of the distillate and
two sidestreams, the product purities in these streams are to be
controlled, according to the specs given in Table 2. A basically
non-interacting system (BNIS) is desired, i.e. the closed-loop system is
to be a decoupled one. All the 12 parameters occurring in the elements
of Ray's transfer function model are assigned ± 10% uncertainty.

The third MIMO QFT technique [Horowitz, 1979] is used to
successfully synthesize a 2-matrix-DOF feedback system.

Problem-3 (MIMO): Catalytic cracking is a very important process in the
petroleum industry. Mostly, fluidized bed catalytic crackers (FCC) are
used to carry out the cracking process. In our problem, the controlled
variables are taken as the regenerator temperature and amount of carbon
on the regenerated catalyst, with the air rate and catalyst circulation
rate as the manipulated variables. A linear five state FCC model [Denn,
1986] is first reduced to a second order model using the balanced
truncation procedure (Moore, 1981]. All ten parameters of the
corresponding transfer function matrix elements are then assigned ± 5%
uncertainty. Again, a BNIS system is desired, with the specs given in
Table 2. The third MIMO QFT technique is adopted here too, to solve the
problem. The design is found to be satisfactory even for the original
five state model of Denn.

ProhlpmzA (MIMO): A 2x2 ill-conditi~ned high purity distillation column
model has been analyzed in the H /SSV framework by Skogestad et al
[1988). Although a similar example (an extra time delay is present) is
solved using QFT by Yaniv and Barley (19901, for our own experience
concerning directionality problems, Skogestad's model is persisted with
and solved using the fourth MIMO QFT technique (Yaniv and Horowitz,
19861. The performance specs are those of Yanlv and Barley (see Table 2).
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2.2 Nonlinear Plants

Prnbl1emi5 (SISO): Eaton and Rawlings [19901 give a nonlinear model of
an isothermal CSTR with second order reaction kinetics. The plant input
and output are the flowrate and reactant concentration. [Disturbances
are dve to changes in operating temperature of the reactor. Assuming ±
27% urzertainty in the feed concentration. a two--,OF feedback system
consQ, ing of LTI controller and prefilter eipments, is synthesized
using the nonlinear QFT technique of Horowitz (19761. The design is
specitfc to a 0.05 step in reactor concentration setpoint. The
specified performance levels (see Table 2) are attained even with a
slowly time-varying feed' concentration (not. originally a part. of the
problem statement).

Prohlem-6 (SISO): An exothermic CSTR is usually a much more difficult
candidate to control than its isothermal counterpart. The exothermic
model discussed extensively by Uppal et al. £19741 exhibits exotic
dynamics such as strong parametric sensitivity and ignition/extinction
behaviour, over a range of parameter values. For this problem, the
controlled and manipulated variables are chosen as the reactor and
coolant temperatures, respectively. Disturbances in the feed
temperature in turn affect the reactor temperature. Three dimensionless
reactor parameters (dimensionless heat of reaction, Damkohler number,
and dimensionless cooling rate) are assigned uncertainties ranging from
± 12.5% to ± 40%. The specified command input is a unit step in the
dimensionless .-eactor temperature. The nonlinear QFT technique of
Horowitz f1976] is used for synthesis.

Rrbhl m- (MIMO): The design example is the 2x2 MIMC version of that in
problem 6. The controlled variables are the reactor temperat.:re and
concentration, while the manipulated variables are the coolant
temperature and feed rate. Uncertainty is assigned to the same three
reactor parameters mentioned above, and the plant set again includes a
case having an unstable steady state. The nonlinear MIMO QFT design
procedure used is quite similar to that presented by Yaniv (1991].

a.3 Linear Distributed Plants

ProhIM7. (SISO): Chemical processes involving solid catalysts are
usually carried out in fixed bed reactors. Some examples of such
processes are ammonia, sulfuric acid, and methanol synthesis,
hydrocracking, and polymerization. If axial mixing effects are
important, the reactor is typically described by a •econd order p.d.e.
with Danckw~rt's boundary conditions. The choser. pro(ec-;:; is a ,slightly
modified version of the vapor phase ethylene hydration example given by
Smith £1981]. It is required to synthesize a one-point feedback lcop
located half-way down the reactor (x 0 0.5). with the measured and
manipulated variables as the ethylene concentration at x = 0.6 and the
reactant velocity, respectively. Only sensitivity reduction at point x
= 0.6 is sought (the same spec is given in Table 2).

A localized feedback loop is successfuJly sý'nfhtýsized using
the one-point feedback approach of Keeman et al. [l986.i.
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S(SISO): The distributed plant given by the heat equation is
taken from Keleman et al. [1989). However, instead of only one feedback
loop placed at x., 0  n/2 by Keleman et al.,. an additional loop is placed
at Xo0 = 2n/3. The synthesis procedure [Hegde, 1992) yields a closed-

loop system having much less sensitivity.

Let the heat equation be written as p = hp, where p is the
partial differential operator and h is an uncertain real parameter. For
h E [0.15, 1.5), a one-point feedback loop is synthesized, as per the
procedure suggestes, by Keleman et al.

The sensitivity specs for both cases discussed above, are

given in Table 2.

3. Concluding Remarks

The above problems have been solved by graduate students using
an IBM-compatible P(VAT-386 and a PC/AT. Most of the effort has gone
into development of software in the MATLAB environment. However, the
whole software is yet to be integrated into a suite of QFT programs. In
passing, some useful routines developed for the following purposes, are
mentioned

/'
* Find L using interactive-graphics [Gera and Horowitz, 1980).

optI
* Find LTIE plant from the operating , Xoords (Golubev and

Horowitz, 1982).
* Fit a rational transfer function to tian ncy response data.
* Fit a 2-D rational transfer functioi usinX optimization

(useful in DPS). .• '
* Find the Laplace and inverse Laplace O'a~fO*tms, nUmerically.
* Perform equilibriation/trade-offs between channels (MIMO QFT)

(Horowitz and Sidi, 1980).

At the time of final submission of this paper, seven more linear STSO
(NMP) problems have been solved. Specifically, the systems are:
"steam-water heat-exchanger, shell and tube heat-exchanger, furnace,
catalytic reactor, blending process and distillation column (2 SISO
loops). Additionally, two non-linear SISC) problems - pH control and
problem 5 pertaining to the isothermal reactor but with nominal plant
cancellation network, have also been tackled. Two linear MIMO (NMIP)
systems: a distillation column with vapor recompression and a FCC unit,
are currently under design investigations.

Abbreviations

BNIS Basically non-interacting system
Concn. : Concentration
Dist. Disturbance
Recirc. Recirculation
Reg. Regenerator
Rej. : Rejection
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Resp. : Response
Specs : Specifications
Temp. : Temperature
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Table 1 : Problems Successfully Tackled Using Various
QFT Techniques, at IIT Bombay

Problem System Problem QFT Reference
No. Class Technique

1 Cascade of Lumped, LTI. Multiple-loop [Nagarkar and
5 CSTRs SISC), MP, design perspeo- Nataraj, 1992]

Multiple-loop tive (Horowitz
(six-DOF) and Wang, 19791

2 Distillation Lumped, LTI, Third MIMO QFT" [Joshi, 19921
column with 3x3 MIMO, MP [Horowitz,19791
sidestreams (2-matrix-DOF)
(Ray, 1981)

3 Fluidized Lumped. LTI, Third MIMO WFT [Joshi. 19921
bed cataly- 2x2 MIMO,MP (Horowitz,1979]
tic cracker (2-matrix-DOF)
(Denn, 1980]

4 High purity Lumped. LTI, Fourth MIMO QFT [Narayanan.
distillation 2x2 MIMO,MP EYaniv and 1992)
column (2-matrix-DOF) Horowitz. 1986]
(Skogested
et al. 1990]

5 Isothermal Lumped, non- Nonlinear Q1r [Kainat and
CSTR (Eaton linear, SISO [Horowitz,1976] Nataraj,19921
& Rawlings. (2-DOF)
1990]

6 Exothermic Lumped, non- Nonlinear QFT [Kundergi.1991]
CSTR [Uppal linear, SISO [Horowitz.1976]
et al,19741 (2-DOF)

7 Exothermic Lumped, non- Nonlinear MIMO (Kamat, 1992]
CSTR (Uppal linear, 2x2 QFT Algorithm
et al,1974] MIMO (2-DOF) Similar to that

in (Yaniv.1991]
8 Isothermic- Distributed, One-point feed- [Hegde. 19921

fixed-bed linear SISO back [Keleman
catalytic (2-DOF) et al., 19891
reactor
[Smith.1981]

9 Heat equa- Distributed, Two point (Hegde, 1992]
tion linear SISO feedback
(Keleman (2-DOF)
et al, 1989]
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Table 2 : Performance Specifications for Various Problems

Problem Tracking Dist. Gain- Remrar ks
No Tu or Tiu TL or T iiL pha3e

Z wL peak mag.- margins
n n tude

0.45 5.00 1.25 5.00 •0.0028 4.8 dB.
X10-5 xl10-5 to a 20/.' 42

step

t '4000P

2 0.44 0.057 1.25 0.057 - 2.3 dB 5 dB, For BNIC.45ITi I °

3 0.44 8.4 1.25 8.4 For BNIC,

xl -' xi0-4 IT..i J0-2 ,

4 See remarks For a step in r.C
yi (t) a 90ý.,

for t > 30 min
Also,)y i ( t)1-50%, jsi.

Steady state offset=@

5 0.45 1.48 1.25 1.48 Designed for a step in

xio-' Xle-, sconcentration setpoint
of magnitude 0.05.

6 0.45 7.5 0.8 4 Designed for a unit
step in dimensionless
reactor temperature.
Normalized time used.

7 0.44 8.5 0.8 4 For BNIC. II, ijI- .oi Vw,

and t- 5. 21.5.

Designed for a 30% stel
in reactor temperature
and 1% step in reactor
concentration.
Normalized time used.
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Table 2 (continued)

Problem Tracking Dist. Gain- Remarks
No T or Tiiu TL or TilL phase

peak mag- margins
n n tude

8 Not considered IT x.x ( ) I 4.8dB,. x %0=, x=0.6, x0o0.5
% ~42'

S 0.71Px xJj(i ) Notation as in Keleman
et al (1990]

for w e (0, 4]

9(a) Not considered IT XI 3.OdB. x.-=/4, x-iT/4
1. 20

S 0.91PXX Xo0 1 =R/2, xo2 =2n/3.

for [ E [0,1.5]

(b) Not considered ITx~xI 4.8dB, x =n/4, x~n/3,
S42*< 0.81P x x I X0o="/2

for w E [0,1.61
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Table 3 I Additicnal Information Concerning Design Problems

Problem Uncertainty Controlled Manipulated Distur- Performance

No. No. of Amount variable(s) variable(s) bance specs on

para- varia-

meters ble(s)

1 6 ±100% Reactor Coolant Feed Tracking and
concn. rate conc. dist. rej.
(5th CSTR) (1st CSTR)

2 12 ±10% Distillate Distillate - Tracking &

& side- & side- peak dist.

streams' streams' reap.(BNIS)

ccncn. flowrates

3 10 ±5% Reg.temp. Air rate & - -do-
& carbon catalyst
on reg. recirc.
catalyst rate

4 3 ±20% Distillate Reflux rate - -do-
±2% & bottoms & vapor

concn. boilup

5 1 ±27% Reactor Feedrate Reactor 0.05 step in
concn. temp. reactor concn.

& peak dist.
reap.

6 3 ±12.5% Reactor Coolant Feed Unit step in
±40% temp. temp. temp. dimensionless

±40% reactor concn.
& peak dist.
reap.

7 3 ±6.6% Reactor Feedrate Feed 30% step in
±25% temp. & and temp. reactor temp.
±25% Reactor Coolant 1% step in

concn. rate reactor concn
(BNIS)

8 Nil Reactor Feed Feed Sensitivity
concn. velocity conc. reduction
at x,=0.5

9(a) Nil Temp. at Heat Heat Sensitivity

Xo=r/2, input losses reduction

2n/3

(b) 1 ±82% Temp. at Heat Heat Sensitivity

xo=n/2 input losses reduction
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QFT-Like Design of an Idle Speed Controller for an Uncertain
Fuel Injected Engine
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Abstract

Idle speed control of a V-6 fuel injected engine is presented as a feasibility study of a QFT-like
design approach. The engine model is linearized about two operating conditions: i) loaded and ii)
unloaded where the latter model is the least stable. The control objective is to maintain idle speed
within a small tolerance despite uncertain torque demands imposed by various auto accessories. In
the interest of fuel efficiency, idle ai" valve setting and ignition timing are the control inputs where
each experiences an induction-to-power delay. Furthermore, each manipulated variable is limitzd by
its hardware, i.e. saturation and bandwidth.

I. Introduction

Combustion engines used in transportation account for approximately 2/3 of the fossil fuel usage in
the US. In fact, over a nineteen year study the EPA determined that the automobile sector was the
only group of combustion users whose emissions of pollutants has grown to over 144% of its 1970
estimates. With an increasing concern of the non-renewable resource depletion and the global
greenhouse effect, an urgent need exists to increase engine efficiency while reducing pollution
emissions. This need was emphasized recently (08 May 1992) by the United Nations where 143
nations debated an emissions control treaty.

This study focuses on increasing engine speed efficiency and reducing engine emissions. In
particular, the idlc speed of an engine is usually inflated so as to provide acceptable power in the face
of uncertain torque demands required by the accessories. As a result, engine efficiency decreases
while emission levels increase. In contrast, the objective of this work is to significantly lower the
idle speed of an unloaded engine by providing it with self-regulation capability. Although this
approach is not new to auto manufacturers, the simplicity of the proposed feedback configurations
obtained from the following QFT-like design methodology is extremely attractive.

II. Review of Design Method

The design methodology employed in this application was developed by Jayasuriya and Franchek
111-141 and has much in common with Quantitative Feedback Theory (QFT) 151. This method is well
suited for MISO systems, as it takes. full advantage of all inputs to maintain the oitput rather than
forcing diagonal dominance of a "squared" plant. Forcing diagonal dominance reduces loop
interactions, which can be counter productive.

• Graduate Student, School of Mechanical Engineering, Purdue University
+ Assistant Professor, School of Mechanical Engineering, Purdue University; author to whom all

correspondence should be sent

285



The MISO method consists of sequential loop closures where the controller for each closed loop is
designed such that the specified bounds on the system output and control effort are satisfied. While
the approach also allows internal state specifications, this application is restricted to satisfying only
the constraints for the output and control variables. Furthermore, the target transfer functions [11 -
[41 will be chosen as constant values of the saturation/performance levels of the variables, and
bandwidth constraints will be explicitly incorporated during loop shaping.

Figure 1 shows a block diagram of a generic MISO system.

/W

Figure 1 - Block Diagram -f Generic MISO System

The first design decision to be made is which loop should be closed first. The logical approach is to
first close the loop with the faster dynamics/smaller time delay and then subsequently close loops
with slower dynamics/greater time delays. For clarity, subscripts in the following descriptions will
indicate the order of loop closure.

The first loop is closed using a controller Gci(s) in the forward path and unity feedback, and the

closed loop v-ansfer functions are written for disturbance-to-output Y•s) and disturbance-to-control
W(s)

effort !11(s) with the currently unknown controller transfer function being included as GcI(s).
W(s)

Using these transfer functions, the time domain constraints are enforced by the satisfying the
following frequency domain inequalities:

YMAX> t I I = Fi(L1(0)) (1)

Ul MAX >U0(0 ) = F 2(LI(jto)) (2)

where a is the magnitude of the step disturbance, YMAX is the largest tolerable deviation, and ulMAX
is the saturation level of the control effort in loop 1. A widely held belief in QFT as well as this
technique is that satisfaction of frequency domain bounds implies satisfaction of the related time
domain bounds. While this is not mathematically rigorous, experience has shown it to be valid for
most physical systems.

Equations (1) and (2) are functions of the unknown loop transmission function Li(jo). These
equations give both lower and upper bounds on the magnitude of L1(jo) for each frequency co. For
a given frequency, as the phase angle is changed, equations (1) and (2) irace lower and upper
boundaries on the phase-gain plane. For a set of frequencies chosen by the designer, these phase-
gain boundaries for each frequency are displayed on the Nichols chart and delineate regions where
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the loop transmission function L(joe) must lie. The design is completed by loop shaping Ll(jo) to
these regions. In this sense, the approach is much like QFT [5].

If the dynamics of Gpl,(jo) are certain, a loop transmission function can be fitted to any portion of
these regions using a controller GCI(jo). For uncertain MISO systems, this design procedure is
altered. At a given frequency, an uncertain plant will occupy a region (template) on the Nichols chart
instead of a single point as for the certain plant. The necessary design modification is to make sure
that the en=re template at a certain frequency completely lies within the boundaries for that frequency.

To facilitate this design process, a nominal plant -10 is selected from the plant set and marked on
each template. At each design frequency, the corresponding template is moved around the Nichols
chart to find the acceptable design region. As the template for a frequency is moved along the border
"of the region for this frequency, the path the nominal plant L1o makes is marked as the design
boundary for the nominal plant.

Thus, by guaranteeing that the nominal plant stays within the new boundaries, the uncertain plant
will satisfy the design specifications. A controller is found by loop shaping the nominal plant. This
procedure works well for the first loop closure, but becomes increasingly more difficult for
subsequent loop closures as the number of boundary conditions increase and uncertainty from plants
of previous loops enters into the design bounds. This problem is explicitly discussed in Section IV
in context of the design example.

Now the second loop is closed with a controller GC2(s) and unity feedback. The resulting transfer
._Y(s) el rac ocnrlUl(s),

functions are written for disturbance-to-output W-s, disturbance-to-control effort of loop I W(s),

and disturbance-to-control effort of loop 2 -. Note that another constraining equation is
W(s)

introduced to bound the control effort u2(t), i.e.

YMAX ->JJ a = F3(L2(j0)) (3)

U1 MAX - F4 (L 2 (jW)) (4)

U2 MAX P200 = Fs(L 2(jo))) (5)

where a. YMAX, and u I MAX are as before and u2 MAX is the saturated value of the control effort
for loop 2. Note that the transfer functions in (3) and (4) are different from those in (I) and (2)
since the dynamics of loop I ar,. included here. In an analogous manner that the controller for the
first loop was designed, a controller for the second loop is designed here. This process is repeated
for further loops with each loop closure adding another constraint equation and altering die previous
constraining equations.

Ill. Engine Model

The system for this case study is the V-6 engine represented by the block diagram (Williams, et al.,
1988) shown in Figure 2.
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Figure 2 - Linearized Model of Uncompensated Engine

In Figure 2, w(t) is the disturbance torque, u I(t) is the spark advance, u2(t) is the idle air valve

setting, and y(t) is the engine speed variation.

The plants GI, GpI, and Gp2 are defined as

GI(s) = 15.9e-0' 04s

Gpi(s) = s + a ar f3, 3.51, bc-12.2, 2.41, cs(5.62, 121
S2 + bs + c

Gp2 (s) =de'° 6s . ds19, 121, fe12, 2.21, gs[ 4 .6, 101.
S2 + fs + g"

The gain of 19.1 on the disturbance represents the gearing ratio of an air conditioner compressor.

Unlike the model in Williams, et al., the parameters of the engine transfer functions are allowed to
vary in the indicated intervals. These intervals account for the loaded and unloaded operating
conditions of the engine.

The objective of a control design for this system is to reject a step disturbance of 10 Nm while
ensuring that the speed variation y(t) is less than 20 rpm. The spark advance uI(t) must be less than
20 points and the idle air valve setting u2(t) must be less than 1000 points. The term 'point' is a
measure of angular displacement. Also at steady state the spark advance must return to zero to
ensure minimal engine emissions.

IV. Design of Controller and Simulation Results

This section describes the synthesis of an idle speed controller for the V-6 engine described in
Section III using the technique described in Section II. Step responses for the compensated system
-ire performed to verify the design.

Design of Controller GCI

The spark advance-to-speed variation loop is the first loop to be closed since it has the smallest
induction-to-power delay. Figure 3 shows the feedback structure for this loop closure.
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Figure 3 - Engine Model with a Controller in Loop I (Spark Advaice)

The resulting transfer functions are:

Y(s) -19.1Gpr(s) (6)
W(s) 1 +Gpj(s)GCe(s)Gi(s)

Ut(s) = 19.lGpt(s) GeI(s) (7)
W(s) 1 + Gpt(s) Gcl(s) Gt(s)"

For a disturbance of 10 Nm, speed variation y(t) is to be less than 20 rpm and spark advance u I (t) is
to be less than 20 points. This is achieved by using (1) and (2) of Section il in the following form:

10.0 -19.IGpt(jO) 5 20.0 (8)
11 + Gpl(jw) Gci(jo) Gt(jtu) 2

19.0G.0(j)Gci(jo) :< 20.0. (9)I1 + Gp(jlw) GC1(jo) G(joo)l-

These may be written as:

I I< 20.0 (10) =i

(10.0) ( 19.1) IGpljw(1

Lfjcý) < 20.0 PI(Jw)I (11)
1 + L(jow) - (10.0) (19.1)

where L1(s) = Gp 1(s) Gcj(s) GI(s).

Inequalities (10) and ( 11) are interpreted as constraints on the closed loop sensitivity and transfer
function, respectively. Such interpretations are useful when verifying that a computerized search is
giving correct results.

In Section Hi, the procedure for finding the boundaries on the Nichols chart was explained. This
procedure involved finding the temp'ates for the uncertain dynamics and using them to plot the
boundaries for the design frequencies. Since template generation can be computational intensive,
Franchek and Jayasuriya 131 use Kharitonov polynomials for both the numerator and denominator of
the plant transfer function to bound the templates. The bound for each template is a rectangle defined
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by the minimum and maximum magnitude and phase. This approach will make the design
conservative by taking into account a larger template than will actually exist. In contrast, this work
grids the parameter space to develop "discrete" templates of the plant variations. These discrete
templates are generated by selecting several values from each parameter interval. Using all
combinations of these values the discrete templates are produced. Then the discrete templates are
normalized by subtracting out the dB gain and phase of the point produced by the nominal plant.
Figure 4 shows such a nor, amlized discrete template for the first loop for o = 1.0 rad/s.

40

0 Xx k • Nominal Plant 20 •..._.. 028 .1

-.

-20

-10 -40
-5 0 5 10 15 -200 -150 -100 -50 0

Phase (deg) Phase (deg)

Figure 4 - Normaized Template for Figure 5 - Boundaries for Loop I and
Loop I (co = 1.0 rad/s) Uncompensated Nominal Plant

For a fixed frequency, the normalized discrete template is shifted in phase and gain until each point
of the template satisfies the constraint (either (10) or (11 ), since each one has a separate search
dedicated to it). Note that the shifting is done by first selecting a phase and then stepping through
gain. The template starts out violating the constraint, and once an open loop (phase, gain) point is
found that satisfies the constraint, this point is recorded as being on the boundary. A new phase is
then selected and the process is repeated. For boundaries that are multiple-valued with respect to
phase, the search process is reversed such that a magnitude is selected and phase is changed until a
boundary point is found. This ensures that the entire boundary will be found rather than a branch of
it when doing a simple search. Of course, the original scheme works when the boundaries are
multiple-valued with respect to gain. Figure 5 shows the boundaries with the minimum phase
portion of the nominal loop transmission superimposed.

The nominal loop transmission L-0 (s) = Gplo(s) Gl(s) GCI(s) was arbitrarily chosen as having the
plant with the smallest parameters, i.e.

Gpto(S) = s + 3 ,
s2 + 2.2s + 5.62

The nonminimum phase portion, e-0.04s, of the nominal loop transmission function is "absorbed"
into the calculations for the bounds defined in (10) and ( 1). This can be seen in Figure 5 as the
horizontal elongation of the boundaries within the +/- 10 dB gain strip. Therefore, the boundaries
are generated for and the loop shaping is done on the minimum phase portion of L10. The dashed
boundaries of Figure 5 are generated by equation (10) and the solid boundaries are generated by
(11). Figure 6 shows the compensated loop for the first loop closure.
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Figure 6 - Boundaries and Compensated Figure 7 - Time Response for
Nominal Plant for Loop 1 Compensated Loop I (Nominal Plant)

Since satisfaction of the performance boundaries does not guarantee good transient behavior nor
stability, a lead controller is added to shift the loop to the left in 'he frequency range of 10 rad/s to 30
rad/s such that suitable phase and gain margins are achieved. An additional first-order roll-off was
added to suppress noise transmission. The final compensator for loop I is

0.7( s_ + 1)
134.6 l)(100

The bandwidth of this controller is 55 rad/s.

Figure 7 shows the nominal response of the system for the first loop closure to a 10 Nm step
disturbance. Clearly, the speed variation and spark advance are well within their limits of 20 rpm
and 20 points, respectively.

Design of Controller GC2

Figure 8 shows the block diagram of the system with the second loop (idle air valve) closed.

RI =0 , __ _I .... G ! P

Figure 8 - Engine Model with Controllers in Loop I (Spark Advance)
and Loop 2 (Idle Air Valve)
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In addition to the constraints for the first loop (spark advance ul(t) less than 20 points and speed
variation y(t) less than 20 rpm), the constraint of the idle air valve setting u2(t) less than 1000 points
is added. Therefore, from equations (3), (4), and (5) the following inequalities must be satsfied:

10.0 -19.1 Gpt(jw) - • 20.0 (12)I I + Gp 2(jo) Gc 2(jo) + Gpl(Ow) Gci (J0) GI(jOw)

10.01 19.1 Gploow) GCdjW) G ) 1 20.0 (13)11 + Gjp'2oj) Gc2(j¢o) + GPI j00) Gcj(.0)) G I (,OA~

10.0 19.1 Gpjow) Gc2(jw) <I1 + Gp2(jo) Gc 2(jW) + GpJw) (J)G(j) < 1000.0 (14)

Note that the uncertainty from loop I is present in the bounds for loop 2. This "uncertainty
interaction" can be dealt with by rewriting the inequalities as:

[1 20.0 (15)
1 + GL(jo) L2(jo) (19.1) (10.0) IGp, (jw) Gt(j•o

I 20.0 (16)
1 + GL(jo) L2(jw) (19.1) (10.0) •Gpl(jeo) GL(jw) Gcl(jw.016

SGL(jo) L2 (j0)) < 1000.0 L2(jAW)

I + GL(jo) L2 (jco))l (19.1) (10.0) OGp1 (jow) (17)

where

GL(S) = 1
I + Li(s)

LI(s) = Gpi(s) GcI(s) G1(s)

L2(s) = Gp2(s) Gc 2(s).

Now the product GL(s)L2(s) can be regarded as the uncertain loop transmission function for lot -,
and the controller can be found by loop shaping on the minimum phase portion of this "new"
transmission function. That is to say that GL(W)L2(s) is used to form the templates for loop 2, while
equations (15) - (17) are used to generate the boundaries. It should be noted that (15) and (16) differ
only by a factor of I As a result, one boundary will dominate over the other boundary,

"P3cmO(0o
depending on the magnitude of GC(jow). If the conditionc of the dominant boundary are met, then
the condition of the other boundary is ,net automaticaily.

For fhis loop, the bounds are not constant; they change values depending upon the point of the
template beiing used, i.e. the bound deplnds on the uncertainty point undet consideration. Since 36
discrete points are used to represent Gpi(s) and Gp2(s), there are now 362 points (Figure 9) in the
discrete template GL(s)L2(s), thereby substantially increasing the number of points that need to be
checked during each iteTation of the search algorithm. By inspection, it would be possible to reduce
the number of discrete points on the template. Because of the proximity of many of the points to
each other, the calculations for many of the points are redundant.

292



104

5-~ 20.

0. 0.
Cw Nofminal Plaint

-5 1 -20

-10 -40
20 0 20 40 -200 -150 -100 -50 0

Phase (deg) Phase (deg)

Figure 9 - Template for Loop 2 Figure 10 - Boundaries For Loop 2
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Figure 11 - Boundaries from (15) and Figure 12 - Boundaries and
Uncompensated Nominal Plant Compensated Nominal Plant for Loop 2
for Loop 2

Figure 10 shows the boundaries generated by (15) - (17). The solid lines represent (15), the dashed
lines represent (16) and (17). It can be seen that the boundaries of (16) and (17) lie wi.hin the
boundaries generated by (15); therefore, the boundaries generated by (15) are used in the design
process. Figure 11 shows the boundaries generated by (15) and the nominal loop transmission for
GLL2o. As with LIo, GLL2o is chosen to represent the lowest values of the uncertainty parameters
of Gpl(s) and Gp2(s).

Since full rejection of the step disturbance is required at steady state, an integrator is added to GC2(s)
with a small amount of gain. To complete the design, a lead controller is added to avoid the low
frequency boundaries. The final compensator is

Gc2(s) = " .1)

The bandwidth for this controller is 6 rad/s.

Figure 12 shows the compensated loop transmission for GLL2o. Figure 13 shows the system
response for the nominal plants Gpl(s) and Gp2(s) when a 10 Nm step disturbance is applied.
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Figure 14 shows the system response for the family of plants G-pl(s) aad Gp_(s) when a 10 Nm step
disturbance is applied. Clearly the performance bounds of 20 rpm for speed variation, 20 points for
spark advance, and 1000 points for idle air valve setting are satisfied for the uncertain engine.

V. Conclusions

The purpose of this work was to present a feasibility study of a QFT-like technique applied to al
engine idling problem. Using this technique, a fixed controller was found to be adequate for loaded
and unloaded operating conditions of the engine.

While the design technique proved quite powerful for the two inputs / one output V-6 engine idle
speed control system design, the technique becomes increasingly more computationally intensive for
MISO systems with more inputs and uncertain parameters. As the number of inputs increase, the
number of boundary conditions increase. This is generally not a problem since one of the boundary
conditions will be the most restrictive and hence will be the limiting factor in the design. Since
parametric uncertainty from previous loops propagates to later loops, the number of template and
search calculations increase combinatorically. Thus, the number of points from each parameter
interval should be judiciously chosen to accurately represent the templates while keeping template
and search calculations to a minimum.

This technique is based up.c!, satisfying frequency domain constraints such that corresponding time
domain constraints are met. While the transition from time domain to frequency domain is based
upon conjecture, the premise holds for this application.
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Abstract

Many papes have been published on the application of the QFT method to various problems. Although
QFr is recognized by a largc group in the control community as a robust control system design technique
not many true comparisons have been made with other techniques. In order to make comparisons, in our
view, it is necessary to find a common environment to implement various techniques, and to find common
and reliable examples based on real systems. The aim of this paper is to pave the way for such
comparisons by introducing a QFT toolbox which runs in the Matlab environment and using this to
provide solutions to two of the IFAC benchmark problems. Since implementationsof other robust control
system design techniques are also available in Matlab e.g. 11'. the techniques can be compared directly
using the same benchmark problems.

In this paper a brief description of the QFT toolbox is given and then the application of the technique to
a missile autopilot and a hydraulic positioning system are discussed.

INTRODUCTION:

Quantitative Feedback Theory has proved to be a valuable tool for robust control system design for
systems with structured and unstructured uncertainty. The basic design method is welt documented and
many publications are available on both the theoretical and practical aspects of the technique
(Astrom,1988),(Hlorowitz,1963,1972,1973 and 1982),(Sidi,1976). Some more recent developments are
discussed in (Yaniv,1986) and (Thompson,1990).
One aspect of the QFT method which has not received much attention in the literature and is addressed
by this paper, is the implementation of the technique in a suitable a computer environment.

A further aim of this paper is to show, using two benchmark problems, that most of the complexity of the
OFT technique, due to the lengthy procedures u.' calculating various frequency boundaries, can be easily
handled by a computer program. This approach enables the designer to focus on the more challenging
aspects of the design procedure, namely the compensator design. The design of the compensator, or the
loop controller, requires shaping of the loop function. This requires a certain amount of skill and
experience. However, it is shown that for a certain class of systems the loop shaping procedure can be
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greatly simplified using the computer software developed.

The final aim of this paper is to produce solutions to standard benchmark problems in order to allow
comparisons to be made with those obtained using other robust control system design techniques in the
future.

The organisation of the paper is as follows:
Section 2 is a description of the structure of the new Matlab toolbox. Section 3 contains the formulation
and solution to the benchmark problems, a discussion and conclusions follow. Appendices A and B contain
the original benchmark problems as published by IFAC.

2 - MATLAB QFr TOOLBOX:

SSTART The computer aided design package based on the
Quantitative Feedback Theory (OFT), has been

SYSTEM designed to provide a tool to deal with the
DEF IN IT JON problem of control system design for real systems

I NPUT where performance tolerances are tight and
models have significant degrees of uncertainty.

MODULE • SYSTEM MATLAB has been used as the working
environment for the QFT package which adds to

SPEC IFISCAT ION the extensive collection of compatible programmes
and toolboxes already available far other design
procedures. The suitability of the modular

N structure of the OFT approach for computer
CtMPENSATOP• [ implementation is shown in Fig. 1.

DESIGN -DES IGN The Quantitative Feedback design procedure
which has been described in the control literature

MODULE ,• can be implemented by hand calculations and
PPEFILTER graphical techniques. However, there is a

DESIGN significant amount of cut and try involved and the
generation of the frequency boundaries is
sufficiently tedious to deter all but the most
persistent of designers from exploring the benefits
of the technique. Thus a computer aided design

PEPOPIT package is essential. A package has been
GENEPAT ION previously developed for a VAX (Astrom and co-

workers, 1988), but the intention here was to
initially investigate a solution within an

environment familiar to most control engineers.

The software package to implement the design
technique is based on Matlab. This was chosen as
the software environment due to its wide

Fig. 1 - Strtcture of the QVF Toolbox acceptance within the control community and the
extensive tools already available within Matlab.
The structure of the package follows the five step

design procedure described in (liorowitz,1982). The software is based on three modules; input, design
and report generation (see Fig. 1).

2.1 - Input/System Definition Module:

This module deals with the specification part of the design process. These include various transfer
functions representing the uncertainty in the plant characterist~cs also the required rise time, maximum
overshoot and settling time of the closed-loop system. The aim at this stage is to define the acceptable
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bounds on the performance in the time domain. The next stage is to translate
the time domain bounds into the frequency domain. This process takes place START

inside a loop and is repeated until the time domain specification envelope
corresponds as closely as required to the frequency domain specification
envelope (see Fig. 3).

ENTER

The next stage in the procedure involves the SYSTEM

task of determining the trial frequencies
"and the "high frequency". This is done by MODELS

Cý plotting the required closed-loop frequency
•,,w 0,. response envelope together with the

,,CATOWS frequency response of all plant transfer
functions. The "high frequency" and the trial CONVERT TO

frequencies arc chosen by the user. Some
•P",T experience is required to selt~ct the most TRANSFER

suitable values. FUNCT IONS

The variation of the frequency envelope
I l,•.Adefined by the specification at each trial

frequency is chosen as the maximum
allowable variation of the gain of the closed- ADJUST

loop transfer function at that frequency.
," 1. The maximum allowable closed-loop gain STEADY STATE

and the open-loop plant gain variations at GAIN
infinite frequency are also defined inside

HD the input module. The final stage of the
input module involves the generation of the
plant templates. These are then passed to

"the design module.

Data Definition

2.2 - Design Module:

The design of the prefilter and the loop compensator is carried out
independently within separate procedures which greatly simplifies the

Fig. 3 software design.
Specification I2.2.- The Compensator Design Module:

This module handles the majority of the stages in the design procedure
(see Fig. 4). The first task is a search on the Nichols chart to find the frequency boundaries
corresponding to each trial frequency. This is done by a process of moving each template up and down
along lines of constant phase to find the point where the template fits inside the M-circles corresponding
to the allowable closed-loop variation previously specified. The points are joined for each template to
form a frequency boundary. Having found the frequency boundaries at low and medium frequencies, it
is then necessary to define the high frequency boundary. This is done by combining the high frequency
gain variation and closed-loop resonant peak.

Once all the boundaries have been computed the next stage is the design of the compensator. There are
basically two approaches that can be used to design the loop transmission or the loop function, and thus
determine a suitable compensator.

There is the general approach which is widely used. This starts from the nominal plant to which lead and
lag elements are added sequentially to satisfy the frequency boundaries. If required, complex poles are
added at high frequencies to improve the roll-off rate of the loop function. This approach has proved to
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Fig. 4 -le Structure or the Compensator Design Module

work for most classes of systems but is not necessarily the quickest way to arrive at the solution.

A second approach, which is available for loop function design in the OFT toolbox, is one which is
particularly suitable for computer implementation but its use is restricted to a certain class of problems.
If the loop function of a system has no resonances or anti-resonances, that is to say the loop function is
smooth on the Nichols chart then to arrive at a Quantitative design of a stable minimum phase rational
compensator two conditions must be satisf ied

-the loop function must satisfy all the frequency boundaries,

-the loop function must satisfy Bode's gain-phase relationship.

If these criteria are watisfied the OFT toolbox allows the user to select points on or above each frequency
S.....bound.r at the trial frequencies. These points are checked using Bode's gain-phase relationship. A valid

so)lution is one which passes through all the points without violatting the boundaries.

S' To design the compensator, the frequency characteristics of the nominal plant are subtracted from the
-frequency characterirtics of the defined loop function. Reshaping of the loop function may be necessary
at this point. The reshaping is cartied out inside a loop and continues until the gain and phase of the
compensator are compatible according to Bode's gain-phase relationship. The structure of the
compensator is then determined using a least squares transfer function fit to the data
(Levy,1I959;Sanathanan and Koerner,1963). This procedure is repeated until a solution is found which
satisfies the stability, sensitivity and disturbance rejection requirements. Such a solution is returned to
the design module to be used in the prefilter design.

Z2.2.2. Vie Prefilter Design Module.

The gain plots of the compensated system define an envelope which must now be manipulated to fit
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inside the specified design envelope. This is achieved by means of t~e :•)•ter. The task uf preat:
design is therefore equivalent to finding a filter with some pre-spccified gaitr cLaracteri~iics.

The gain characteristics of the prefilter are found by tran~slating the midpoint of the closed-loop env¢c.-,
onto the midpoint of the specification envelope, the amount of translation being the re-uJ-•d
characteristics. The phase characteristics are not known, but can be obtainý:d from the gain in-.'.'•rmal ion
since for any real filter there is a unique relationship between the gain and phase.

An alternative approach, also used here, is to design a digital filter to fit the required gain characteristics.
This can then be transformed to an equivalent analogue transfer function. The required prefilter gai.
chairacteristics are displayed and the user is prompted for the order of the numerator and denominator
of the digital filter t6 be found. A conversion is then carried out and the frequency response of the
resulting analogue filter is compared to the required gain characteristics of the prefilter. The user is then
given the choice to accept the design, to redesign, or to reshape the existing design by adding lag elements
at chosen frequencies. The last option is included because during the digital to analogue conversion stage

accuracy is lost at frequencies close to the sampling frequency. This problem can usually be solved by
adding a lag element at a frequency between quarter to half the sampling frequency. The design
procedure is completed by displaying the actual and the reqvired prefilter frequency characteristics. The
results are then returned to the main program.

23 - Report Generation Module:

This module produces graphical representations of the various stages of the design procedure. Several
plots are generated and saved for later processing. Ile plots which can be generated are;

- The Nichols chart, with the frequency boundaries and the selected loop tronsmission and the nominal
frequency response superimposed.

-The magnitude plot of the specification envelope and the designed system envelope for all plant
conditions.

-The -.!ep response of all plant transfer functions.
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- The controller output for a step change at the plant input.

- The step response of the discretized system for selected sampling intervals.

- The controller output of the discretized system for a step change at the input with various sampling
times.

3 - APPLICATION To TIlE BENCIIMARK PROBLEMIS:

In this section the application of the QFT to two benchmark problems published by the International
Federation of Automatic Control is discussed. Both problems were solved using the Matlab QFT toolbox.
Both problems are based on SISO systems and have a degree of uncertainty associated with them. The
problems are published in a report entitled 'Benchmark problems for control system design' prepared by
the IFAC Theory Committee in May 1990. The irtention of this report i3 to provide problems which can
be solved various techniques. Thus the relative mer7t5 Va.':h :echnique ca<n be compared.

3.1 - Missile Control System

The original problem specification can be found ir 9t, • ct-, :. ... r (5-ction 3). The formulation of the
problem and the specification are in a form suitable .- - '-or . irý -, dci.ign. A minimum amount of work
is required to find transfer functions from tha i:ai. p;, formulation and to obtain a suitable step
response envelope from the specifications.

There are eight flight conditions which produce eight transfer functions as follows ;

17277 s2 + 22655 s + 7.283e+06
P, (s) --- -------- ------- --

sS + 191.3 s2 + 316.4 s + 122, 1

14261 s2 + 19713 s + 1.148e+C7
1~PA(S) -------------------------------- ...... ------

se + 191 se + 325.2 s + 24650

53854 s0 + 2.806e+05 s + 1.019e+08
PN ()O .. ...........................................--

s' + 193 s' + 1183 s + 1.179e+05

47595 s2 + 1.825e+05 s + 1.358e+08

P,(s) -----.-.. -..-..------..--...... . . . ...........

s? + 193.5 s2 + 1316 s + 1.241e+05

76562 s2 + 3.888e+05 s + 4.494e+08
PA(s) -----------------------..... --.....................

s' + 194.3 s' + 1882 s + 2.0 36e+05

14522 s' + 57621 s + 5.7 88e+06
PN ( s ) = ..................... ... .................

s? + 196 s2 + 1248 s + 18849

12116 s? + 9260 s + 9.195e+06
P A (S ) - --.. ----.- .------------------------ ........---

se + 191 s2 + 353.3 s + 31058
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22306 e2 + 16439 s + 2.132e+07
P,(s) -.-. -.-- ---.-.-....---.--. - .--- .-..- .--

s3 + 191 s2 + 414.3 s + 42608

As it can be seen from Fig. 6 the model has very high gain and relatively high bandwidth. However the
main difficulty of the design process is to deal with resonance in the presence of model uncertainty as
the resonant frequency changes for every flight condition. It is not possible to reduce the gain in the
presence of the resonances as this would violate the universal high frequency boundary, also known as
the U-cc ,itour.
Simple attenuation of the resonance peak does not work either since an additional 90 degrees of phase
lag is introduced for every 20 dB per decade attenuation which shifts the loop function further into the
U-contour.

A possible design for the loop function is shown in Fig. 7. This was achieved by initially selecting
suitable control elements to reduce the effect of the resonances and then using the direct design
procedure to place the loop function on the frequency boundaries. All the frequency boundaries are
sat'sfied and hence this is one possible solution. The roll-off rate of the loop function can further be
improved by adding a simple lag element at roughly the break frequency of the open loop system,
which results in the loop function shown in Fig.8. The loop compensator required to produce such a
loop function has the frequency characteristics shown in Fig. 9. The transfer functions of the loop
compensator for each design is given below;

0.0002 s4 + 0.05431 e + 1.424 s2 + 9.918 s +25.48
G ,(s) --------------------------.- -- ---------------------................ -

0.000456 se + 0.1912 s3 + 24.56 s2 + 1000 s

0.0002 se + 0.05431 se + 1.424 s2 + 9.918 s +25.48
GA(s) -----------------------------------------------..................

4e-9 e3 + 0.0004 se + 0.1914 s' + 24.57 s2 + 1000 s

The loop compensator reduces the uncertainty of the closed loop system sufficiently so that the closed-
loop frequency response fits inside the specification bounds as shown in Fig. 10. A simple prefilter
then shifts the closed-loop frequency response into the specification envelope as shown in Fig. 11. The
required prefilter has the following transfer function;

1
F(s) =

FQs ............. o°.............,..................

0.00025 s3 + 0.0125 s? + 0.2 s + I

In this design the specification bounds have been selected to be very relaxed at frequencies above 100
rad/s (Fig. 11). This was done to reduce the open-loop bandwidth and hence reduce the cost of
feedback. Note that the compensator reduces the high bandwidth of the system.

The step responses of the system transfer functions at the eight flight conditions are shown in Fig. 12.
A settling time of about 1 second was chosen to be adequate. The control effort required for such a
response is shown in Fig. 13. Note that the controller output is multiplied by 10"' and hence it is very
small in magnitude.

3.2 - Hydraulic Positioniaig System

The original problem is given in The IFAC report (secticon 3). This is different from the missile
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problem in two aspects. Firstly a parameter range is specified for the state space formulation of the
problem. The parameters can have any value within their range independently of each other. Secondly
the system is non-minimum phase. The first problem was to find the extreme values of the parameters
that specify a maximum and minimum bound for the size of the transfer functions. The second
problem was found not to limit the performance as much as expected since the right half plane zeros
were far from the origin of the complex plane. Six transf.,r function were obtained as follows with
frequency characteristics shown in Fig. 14;

9.37e-14 s2 + 5.821e-11 s + 8650
P , (s) --------------.-.-. -. -- ----.-.---. -. --.-.--- .

s' + 1.045 s' + 90824 s

-1.705e-13 s? - 5.821e-ll s + 6712
P2(s)= ----------------------------..................

5' + 297.2 s? + 80018 s

-4.547e-13 s2 , 1.746e-10 s + 2709
PA(S) ...............................................

e + 1116 s' + 4P•18 s

-4.263e-14 s' + 2.183e-II s + 5352
P.(s) ...............................................

s' + 16.77 s2 + 57552 s

-2 e-13 s? + 16256

s3 + 1200 s2 + 2.917e+05 s

I e-15 sl - I e-lI s + 1442
P6(s) ......................................

s+ 0.2121 s' + 15137 s

Fig. 14. shows that the system becomes highly underdamped for certain values in the parameter range.
The main difficulty with this problem was that the gain of the plant was too small to achieve a fast
response. However the gain could not be increased because of the existence of the resonance peak.
The other interesting point about the plant was that the plant templates grew in width as the frequency
increased up to the resonant frequency indicating large variation of phase around the resonance region
as shown in Fig. 15.
A possible design for the loop function is shown in Fig. 16. All the boundaries are satisfied and the
loop function has a good roll-off rate at high frequency. Fig. 17 shows the same design at higher
frequencies indicating clearly the existence of the resonance in the nominal plant and the loop
function.
The compensator characteristics for this design are shown in Fig. 18. The compensator has the
following transfer function ;

1.057 s' + 52.74 s + 47.2
C,(s) ------ ---- -------------.*. ------.-. --.I.... ............................

2.06 c-05 s, + 0.00198 sl + 0.07285 S2 + 1.08 s 4 1

The amplitude characteristics of the closed-loop system are shown in Fig. 19. It can be seen that the

resonance peak of some plant transfer functions violate the specification bounds. The addition of a
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simple prefilter attenuates the resonance peaks. Since all the frequency boundaries are satisfied it is
possible to fit the closed-loop frequency response entirely inside the specification bounds. However,
this will result in a more complicated structure for the prefilter and was found to have little effect on
the step response of the systcm due to the low gain in the resonance regioai. Fig. 20 shows the system
response and the specification bound for the final design. The prefilter is required to provide limited
high frequency attenuation and the following transfer function is adequate;

1
F(s) .................

0.02 s + I

Fig. 21, 22 and 23 sho," !he step response, controller output and the response to a step disturbance at
the output of the system transfer functions respectively.

4 - DISCUSSION AND CONCLUSIONS:

The QFT toolbox has been implemented on a PC-AT, PC-486 and IlII Workstation. The open
architecture of Matlab makes the transition between the different platforms and versions of Matlab
very esy. Th. controller designs for this paper were implemented on a PC-486 running Matlab-386.

There are some problems with numerical errors when dealing with high order plants and controllers,
however when such problems occur external, numerically more robust routines can be called from
within Matlab and the results imported into Matlab for analysis and graphical representation. Such
problems were not encountered in this paper.

Both of the benchmark problems described in this paper precluded the use of the direct design of the
compensator alone, the resonances and also the non-minimum phase characteristics of the hydraulic
system required a combination of the general sequential procedure and the direct loop shaping
approach. However, this is very easily implemented within the toolbox and the designer can readily
see the implications of the selected elements on the loop function in relation to the frequency
boundaries. The design discussed in a previous paper (Azvine and Wynne, 1991) was concerned with a
controller for an aero engine for a commercial aircraft. This yielded a loop function which satisfies
the two criteria established earlier and hence the compensator could be determined by fitting an
appropriate transfer function in this case. The order of the transfer function and hence the controller
could be determined by the designer, provided the resulting loop function satisfies the frequency
boundaries. Thus a direct design of the compensator was possible in that case.

The two controllers which result from the design procedure applied to the benchmark problems, are
both of relatively high order in relation to the plant dynamics. However, to meet the design
specifications, given the relative complexity of the system dynamics it was necessary to implement such
high order controllers. In the case of the missile system the additional high frequency lag element was
introduced to reduce the control effort. The effect of this was easily assessed using the toolbox and is
one of the most useful fcawures of the Q-I method; the designer is 'in control' of the design at each
stage. The trade-offs between control effort, the cost of feedback and the achievable level of output
are transparent throughout the design. Thus it also allows the designer to make value judgements
about increasing the complexity of the controller to improve the performance of the closed-loop
system.

In both of the designs implemented here the specifications are slightly violated Fig 12 and 21.
However, in both cases it was d"-ided that the increased complexity of the controller together with the
added control effort was not justified for such marginal improvements in performance. This approach
to design is familiar to most engineers who are used to finding a solution which meets the specification
whilst operating within financial (cost) constraints.

The evidence in the UK is that industry is still predominantly concerned with SISO systems. The H'
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approach is being demonstrated to industrialists as a SISO design tool. Hlowever, the benchmark
problems used here provide a mechanism for evaluating the design procedures and together with the
new Matlab toolbox enable the evaluation of QF7 in relation to other methods to be made within a
common environment.

5 - REFERENCES:

Astrom, KJ., P.O.Gutman, I.Horowitz, L.Neuman and O.Yaniv (1988). Robust feedback control
design : the Horowitz method. Lecture notes presented at workshop prior to the 27th IEEE
Conference on Decision and Control, Dec. 6, Austin, Texas.

Azvine, B. and Wynne, R.J. 1991. Ifnilementing the QF-T method in the MATLAB environment. 5th

IFAC/IMACS symposium on CAD i i control systems, 15-17 July, Swansea, U.K.

Horowitz, I. 1982. Quantitative Feedback theory. IEE Proc., Vol. 129, Part D, No. 6, November.

I lorowitz, 1.M. (1963). Synthesis of feedback systems. Academic Press. Chap. 6, pp. 267-295.

Horowitz,l. and M.Sidi (1972). Synthesis of feedback systems with large plant ignorance for prescribed
time domain tolerances. International Journal of Control. vol. 16, no. 2, pp. 287-309.

Ilorowitz, 1. (1973). Optimum loop transfer function in singleloop minimum-phase feedback systems.
int. J. Control 18, pp. 97-113.

Horowitz, I. and M.Sidi (1973). Synthesis of cascaded multi-loop feedback systems with large pl.,it
parameter ignorance. Automatica, vol. 9, pp. 589-596.

Levy, E.C. (1959). "Complex curve fitting", IRE Traus. , AC4, pp. 37-43.

Sanathanan, C. and J.Koerner (1963). Transfer function synthesis as a ratio of two polynomials. IEE
Trans. Autom. Control, AC-8, pp. 56-58.

Sidi, M. (1976). Feedback synthesis with plant ignorance, non-minimum phase, and time domain
tolerances. Automatica, vol. 12, pp. 265-271.

Thompson, D.F. and O.D.1.Nwokah (1990). Frequency response specifications and sensitivity functions
in quantitative feedback theory. Proceedings of The American Control Conference, pp. 599.604

Yaniv, 0. and I.Horowitz (1986). A Quantitative design method for mimo linear feedback systems

having uncertain plants. Int. J. Control, Vol. 43, No. 2, pp. 401-421.

305 Li



188 Bode Plot

*0

Fzeqenc --~

L8

is'JU s 0 0 e 0 0

Frqec -58/

SO

Loopenc - wadst

Fi0 ........... ...nlo rqunyR sos o h isl

...... ..... ..... ... ... .O.D ON ... . ... ... ... .. .. ...... ... .. D E S..D...u

-2s -20 -IO -8 - s 3o10

Fig. ~ ~ ~ ~ ~ ~ o 7uci L opFnto n h ihl hr

28 ~306

0 8.........M...



hOhINAL PCjw). DOUhDS ON L(jw) A THE DESIGNED L(Ju)

so-

88 9.12S

/ 8.5

28

...............

-256 -286 -158 -188 -so a so 108

Phase e degrees

Fig. 8 - Improved Loop Function for the Missile Auto Pilot

Va -29
a

*-38

-48

-58
1O-'L le 18 L 8 182 18'14 10 0

Frequency -rad/s

lee

a e

-10
is' le 11 la @ 0 0 0

Frqunc 8a/

Fi.9-n rqec hrctrsiso h opnao
30
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Abstract: This paper presents a synthesis technique for time invariant, linear
multi-input multi-output feedback control in the frequency domain. The
technique handles stability, performance and robustness aspects of the design
in the framework of the Quantitative Feedback Theory, QFT. In particular, it
is suggested to transform the n square MIMO systems to n SISO sybtems, and to
use the standard QFT procedure for SISO system with additional constraints
which depends on the cross-coupling effects of the multiple loops. To
illustrate the basis of the procedure one detailed example is given.

I. INTRODUCTION

The most common systematic way to examine the frequency response of MIMO
systems for the feedback scheme shown in Fig. I is today the singular values
decomposition (Doyle and Stein, 1981), although they can not be used to obtain
systems phase information and it is impossible to analyze the individual
responses associated with particular pairs of reference r and output yJ,

Moreover, assuming a nxn MIMO system it is not easy to include direct
bandwidth specifications and sensitivity constraints for each channel of the
system.

On the other hand, in pioneering work by Rosenbrock (1969), the frequency
response analysis and design for MIMO systems are done with the aid of the
diagonal dominance concept, but in some process control as in the flight
control problem this idea can not be easily used because of the strong
interaction between loops.

Other alternative which was reported for the case of 2-input, 2-output systems
by Sponer (1966) in the Germany literature is to seek a equivalence between
the MIMO feedback system and single loops or channels in such way that the
cross-coupling effects appear in the transfer function of the single loop and
the rest of the inputs effect is considered as disturbance in the equivalent
SISO feedback scheme. The main obstacles for analysis and design with this
simple idea and with the Rosenbrock's approach, in the sixties, were the drawn
package facilities and computation requirements; however these problems have
today disappeared. This fact from engineer point of view has revitalized the
classic frequency response approaches for MIMO systems. Therefore a
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considerable effort is expended in developing feedback control system design
approaches for MIMO systems which are generalizations of classical frequency
respunse approach.

However most of the above mentioned ideas for MIMO systems problems assumed
well known plants and deals with the design of feedback schemes for a nominal
model which gives the desired system response. A serious disadvantages of this
philosophy is the ignoring of the most Important reason for the use of
feedback, namely the reduction of sensitivity to parameter variations. As
Horowitz (1991) remarks in the absence of this factor and of disturbances,
there is hardly a Justification for the use of a feedback structure. Moreover
in the MIMO case, the return difference matrix of the feedback loop it Is not
unique because it Is dependent on the break point of the loop and therefore,
the demonstrated analogy between the sensitivity functions to disturbance and
to plant parameter variations for SISO system (see Frank 1978) is not
validated.

On the other hand the Quantitative Feedback Theory (QFT) proposed by Horowitz
(1963) for SISO has been recognized to be an effective design approach for
dealing with significant parametric uncertainties in the SIS) case. However in
the particular case of MIMO systems with strong cross-coupling effects between
loops, it is not clear how to tackle, at the same time, the interaction and
uncertainty problems in a systematic handy mannef. The n2 scalar loop
transmissions for a nxn system together with the n scalar uncertain plant
transfer functions complicate the analysis and design because there exists n4

scalar expressions for the sensitivity functions, which are extremely
intermixed and which has to be analyzed to study the general sensitivity
behavior of the MIMO system. Horowitz et al (1976 and 1979) published various
approaches trying to reduce the MIO uncertainty problem to equivalence SISO
uncertainty problems. However a dominant design approach by OFT for MIMO
system is not now recognized. In particular I. Horowitz (1991) has made some
important remarks in his recently survey of OFT about constraints and problems
in the MIMO case.

On the other hand recently O'Reilly et al (1991) has proposed a new framework

called Individual Channel Design (ICD) to analyze and design MIMO systems with
2-inputs and 2-outputs taking into account the interaction effects between
loops, and using simple classical tools for SISO systems, like Nyquist and
Bode plots. The main contribution of the work of O'Reilly et al (1991) is the
characterization of toe cross-coupled effect of the MIMO system by a complex
function called Multivarlable Structure Function which allows us to write the
transmission of each channel for the MIMO system in a very general compact
form.

These two ideas have motivated this paper wherein the generic patterns for the

n2 SISO systems which are equivalent to the two degree of freedom feedback
MIMO system of Fig. I are presented. In particular it Is shown by these
equivalent relations that a generic pattern of the Horowitz's sensitivity,

t At /t
H , exists for each element tki of the closed loop transfer

i j Ij ij
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matrix with respect to the plant elements p for i=1,...n and J=1 .... n. These

n transfer functions allow us to complement both approaches, the ICD and the
QFT, to analyze and design controller for MIMO systems. It is proposed to cope
with the controller design for MIMO systems first analyzing the n equivalent
SISO problems with uncertainty in the framework of the ICD and second
introducing the sensitivity functions and robustness specifications as new
constraints in the well known QFT approach for SISO systems design. This.2

proposition allows us to Introduce directly the n sensitivity function for
each closed loop transfer functions t in the QFT approach and therefore theII

uncertainty effects in both gain and phase of the closed loop matrix T(s) can
be straightforward analyzed using the classical control concepts in frequency
domain.

This paper is organized as follows. In Section II, the analysis of
multivariable systems using the Individual Channel Design is presented.
Section III contains the details regarding the design technique. Section IV
shows the simplicity of the design on the basis of an 2-input 2-output system,
and the paper is concluded in Section V

II MULTIVARIABLE CONTROL ANALYSIS

Consider the nxn linear time invariant multivariable feedback system 4
configuration with two degree of freedom of Fig. 1. in which P(s) corresponds
to the transfer matrix of the plant with elements p 1j G(s) is a dynamic

controller with elements glJ and the matrix F(s) corresponds to a pre-filter.
Then, the transfer matrix of the closed loop system is given by

T(s)= (I + L(s))-'L(s) F(s) (1)

where L(s) = P(s)G(s) Is the open loop system matrix.

yd(s)

controller 
plant

Fig. I Two degree of freedom multivarlable feedback system

The variable s is up now dropped whenever confusion not arise as a
consequence. To determine the general expressions for the elements t ofII

matrix T, (1) in term of plant P. pre-filter F and controller G, flist the
MIMO system is transformed, withoui loss of generality, in n SISO equivalent
channels. Then the input-output pair (r ,y Is defining the ith channel, and

the effects of the remaining references r for jzi and perturbation vector d
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are assumed as glob-Al disturbances for the channel 1. Therefore, the block
diagram of the multivariable system, Fig. 1, assuming a diagonal pre-fliter F
can be modified as it is shown in Fig. 2 where the constant matrix A is given

by

A= I - vv 4 R, (2)i n II

with I the identity matrix, v E R the unit vector 1, the constant matrix M0 I

is given by

M =I -vv I g fnXn (3)
I n II

and Lhe f corresponds to the transfer function of the diagonal element I of

the prefilter F.

Transmittance of Ith Chnnel

Fig. 2 Equivalence SISO feedback system

Analyzing the inner loop in Fig. 2, it Is seen that the scalar transmittance
or direct trajectory of channel i, has the general form

gt 1 = yI/e= vIT(In + L A )L v (4)

Then, defining R (I + L A) and substituting the unit vector v and the

product Lv into eq. (4), the diagram of Fig. 2 can be redrawn as

r I e i I

T PeI
Fig. 3 Equivalent monovariable system for Ith Channel

with open loop transmittance
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It v T(R')-l lv (5)I I I

lv the column vector I of the open loop matrix L and the corresponding

perturbation signal given by

pe (R] (L A r + d ) (6)

Moreover the closed loop transfer function t 1, is reduced to

t = f it /(I + It ) (7)il I !I

Therefore, the n-input n-output multivariable systems can be analyzed as n
single loops, in which each individual channel is enclosed within a feedback
loop trajectory gt and the signal perturbation, p I, which is given by the

inputs interaction through channels and disturbance effects. In order to
abbreviate the presentation, it is assumed that the pair (actuator u1 , output

variable y has been appropriately assigned. This assignment problem has been

well addressed by various authors like, O'Reilly (1991), Horowitz (1976),
Skelton (1985); therefore, a diagonal ccntroller can be considered forsimplicity

G 4 diag[g, g .... gn (8)

Then, the matrix R is reduced to

J + - I _1g 0 p g 1. . . p l, g n

pI-1 ,1 g ... 1+P 1- 1,-lg 19 1 0 P 1 ,1  g1 ÷ ... p 1 - 1 ,ngn

R = p 1 ,g11  ... p g+ 1 pg ... P,ngn 1 (9)

p t +,lg1...p i +,i1lg _1 0 1+p 1+1,1+lg + ... p +1,ngn

[pn,lgl .. .Png+. 1  0 P, ... +Pn,ngn

Consequently defining the principal transfer function h as
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hI g pi /(I + gI p) (10)

which corresponds to the closed loop transfer function of channel I neglecting
the interaction between loops, the matrix R can be replaced by the product

I

Pil, ... pi, 1-1 0 P 1,1+1 ... Pl,n

h
I

PI-I,1 "'" P I-. -I 0 P1-1,1+1 - P1-1,n

h
i-I

with Ql= 1.p 1p ... P (12)
Pt, 1 "'" P1,+1- 1 P ,1+ 11 -" il,n

1P.,1 ... P1, 1-1 0 Pin,+1iI ... Pi,n

h

ip o....Op
Sn,i ' Pn, -! Pn, i+1 n,__n

n

Taking into account that matrix Q has a unit vector in the ith column and
using the notation

cofactor m = M (13)
Ii Ii

for matrix cofactors, the channel transmittance expression It1. (4), is

reduced, after some algebraic manipulation, to the generic form

Pit n
Ii gI I 9It I= i [Q;1 '"Q 1 " .*I --.. [P IQ:1  + QIiP I (14)

Q I I [] Q

Since, the term into the bracket of eq. (14) corresponds to the determinant of
the matrix
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plI p ...p p1P,1 1,1 "' P,n-1 P1,n

p
1,n-1 2,n

PH1• (15)
p p pi -

n-1 Inl n-.n-1 Pn-l,ni

n-1 , n-1ppnnPnt Pn2 "'" Phi

1 1

and the cofactor Q I = PH1,', then the direct trajectory of the channel It,
(14), takes the compact form

it,= g det(PHI )/PH' (16)
1 11

To obtain a similar pattern for the transfer function It as the reported by

O'Reilly (1991) for 2-input and 2-output, the PH' is divided into submatrices
according to

PH' (17)
/1

21 22

with p an scalar, P a row vector, P a column vector, and P a square
12 21 22

matrix of appropriate dimensions. Then, using the Shur's formula and
determinant properties, the channel transmittance, (16), can be iritten by

it g= p U( - p IP (P I-P )g p { - } 18)

1 P 1i 11 12 22 P21 gPl (I

where the rational function ;t called by O'Reilly et al (1991) the

multivarlable structure function (NSF), is reduced to

X 4p 1P I ( 1P (19)
1 11 12 22 21

This complex function X characterizes the cross-coupling effects in the loop

I for all frequencies and depends on plant elements pkJ for k and J different

from i, and principal transmittance hi, (9), which is a function of the

controller g and diagonal term p for j~i.
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It Is Important to note that expression (18) has the same pattern for all
channels. The channel transmlttances are obtained permuting rows and columns
In PH

Similar, the perturbation peI can be expressed In term of the matrix PH

obtaining the relation

np [1 - (p11 )- Pr I(Pm VPC'I ]h
pe,=E (r 1-ii id )+d (20)

)=I p,,[ I - (p Pr I (PM I )_cI]PC
jiii J S ,

I
where PmI iIs a n-2xn-2 matrix formed eliminating both first and kth columns

and rows of the general matrix PH5. (15), Prl is a n-2 row vector formedJ
eliminating both first and kth component of the kth row of the general matrix
PH1 and finally Pc1 is a column vector of dimension n-2 formed eliminating

first and kth component of the kth column of the matrix PH

Finally, in order to characterize completely the SISO channel structure, the
sensitivity functions of the closed loop with respect to a large parameter
variation Ap j of the plant for all I and J are sought. In other words, the

Horowitz's Sensitivity Function (Horowitz, 1963)

t at /t
H ~ (21)

Pkj Ap kl/pk

for each element of the actual closed loop transfer matrix, t I, with respect

to the actual plant elements, p 1. for i=l,...n and J=1,... n has to

calculated. Taking Into account the particular form of the closed loop
transfer function tI1 , (9), and the pattern for the open loop It1. (18), the

Horowitz's Sensitivity Function Is reduced, after algebraic manipulations, to
the geFeral expressicn

H = Hit f1 (22)P k j i t I g 9 1p I I( Y - X I) A p I1

Moreovpr, this expression can be reduced, depending on the considered element
with vorlation, to the following three patterns
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H Z f 1 (23a)
Pit I(I+1 Ito) (1 )

H = f for i*j (23b)
pi i (1 + lt 0 ) (1 - XI)

t -X
H = f - for ksl (23c)

p l I (I + It 0 ) (1 - x1)

It is to remark that these expressions for the channel sensitivity allow us to
analyze the effect of all parameter variations Apjk in the system without

assuming a particular structure, like the multiplicative or additive
uncertainty proposed by Doyle (1981).

From equation (18) and set (23), it can be observed that the term (1-x ) is

playing a very important role in both performance and sensitivity of channel
I. In particular, if the magnitude of MSF X is near one at some frequency wo

the channel i absorbs this frequency since the open loop transmission Iti,

(18) is practically zero. As consequence the feedback can not properly work at
wo and the channel can not attenuate disturbances with frequency component Wo.
This fact can be reconfirmed looking the expressions (23). If ;t tends to one,

since the three sensitivity expressions have the term (1-x ) as factor in the

denominator, the sensitivity becomes then huge or infinite in the limit. On
the contrary if the MSF xt is near zero at some frequency wo, the channel

transmittance it is approximately equal to g p I. This means, the

cross-coupling loops do not modify strongly the channel behavior at this
frequency. As consequence the sensitivity of the channel is given by the
channel sensitivity neglecting interaction effect. Again this fact is
validated by the channel sensitivity expressions (23). If xt is near zero the

first equation (23a) corresponds to the sensitivity of the standard single
loop It and the rest of the sensitivity values are near zero.

III DESIGN PROCEDURE
The above presented expressions for the MIMO system are generics and do not

depend on the method to design the controller g . However an apparent obstacle

of this framework is that the loop transmission of the channel, it , is

dependent on the controller g and on the rest of g for j=1 .... n through the
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transfer functions h Therefore the ability to shape it Ionly changing the

controller g1 C as the standard QFT for SISO system recommends, can not be

directly applied. Every time that the shape of the plot It IIs modified by the

controller g , the shapes of the others It for iti are also modified. This

disadvantage can be overcome extending the O'Reilly 's procedure for 2-input
and 2-output In the following way.

Since the prefilter F. does not modify the shape of the open loop It IIt is

assumed at his moment the Identity matrix without lost of generality.

Out of the bandwidth specifications, the designer can begin the procedure
redefining the channels according their bandwidths by (in) Increasing order.
In other words, channel 1 Is associated to the lowest bandwidth and channel n
to the highest bandwidth channel.

On the other hand, the bandwidth of the MIMO system has a very nice general
property which can be summarized as follows (Verde, 1991).

Assuming the polar plot of the NSF XInot near one, the bandwidth BW ttof the

closed loop channel I Is bound by the respective bandwidth BW hiof closed loop

channel I in which the loops interaction effect is neglected. In other words
the speed of a channel with cross-coupling between loops, depends only on the
bandwidth of the respective channel neglecting Interaction. Therefore the
cross-coupling loops do not affect strongly the bandwidth of the channel.

Now the channels reassignment according their bandwidths and the bound
property of the channels speeds enable us to shape one by one the open loop
it for each of the n SISO channels In the following Iterative way. The design

technique Is based on the manipulation of both open loop transfer functions
with and without cross-coupling interaction at high and low frequency regions.
Specifically the gap between high and low frequency depends on the chennel
under consideration. However it Is to remark that the narrower the gape
between channels is, the greater the Iteration number will be to yield a
satisfactory design.

In the first stage, It Is assumed that all the channels, excepts the first,
have very great bandwidths. As consequence the complex function h Ifor 1 *1

can be approximated to one and the only unknown function In the open loop
equation (18) of channel I Is the controller g I' Thus, the QFT design for SISO

system on g Ican always proceed on the basis of a known bounds of bandwidth,

sensitivity constraint and stability margins for channel one. Since the
controller g Ithrough the transfer function h Ican Introduce transmission

zeros in the MIMO system, It Is necessary to test during the QFT procedure
that this does not occur. A simple graphic procedure Is Indicated below which
can be straightforward implemented for this purpose.
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Taking into account that *the zeros of the function (1-X ) assuming h,=1

correspond to the transmission zeros of the MIMO system (see O'Reilly, 1991),
it is proposed, similarly to Nyquist criterion, to use the calculus of
residues for checking the lack of new RHPZ produced by the controller gI in

the function (1-X ). Therefore, it is only necessary to verify that the number

of net clockwise encirclements of the point (1,0) of the polar plots of tI

assuming infinite bandwidths (I. e. h =l) is held during the adjusting of theJ

controllers by the QFT.

Once the channel I design for gI is completed, the channel 2 design can then

be adjusted by the QFT on the basis of known transfer function h1, bandwidth

specification, sensitivity constraint, stability margins for channel 2 and
h =1 for the rest of the channels in the open loop equation (18). Again the

J
absence of new RHPZ in the system by g2 has to be verified. Of course the

graphics method suggested for this purpose can again be used.

The above described design philosophy can be implemented in an iterative
procedure for each element of the controller.

IV EXAMPLE

The following academic 2-input, 2-output example Illustrates the basis of
the above described ideas. Consider the plant transfer matrix

117 30.1
-10.7 1-10.3
-0.671±2.25j :-1.21±5.35j
-I.14-I.05J :-0.650±2.24j
-0.130 :-0.028±ooo5j

1 -0.00316
S..(24)

A 14.07 28.5
-11.5 1-10.3
-0.6572±2.19j:-0.658±2.24J
-0.523 :-0.784
-O.033±O.O03j -O.028±O.O01j

where the following convention for a polynomial p of order n with zeros

a 1 , a 2, a. and gain k has been used

P= k(s+a )(s+a )(s+a )... (s+a )= [kl-a :±a a... 1T (25)
1 2 2 n 1' 2' n

the system characteristic equation is given by
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Fig. 4 Frequency response of the MIMO plant
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A=[l(-1o.s)-3.19;-o.653±2.25j:o.133±6.376j)-0.405(-o.o03]T (26)

and set of finite zeros TZ= (-10,-0.65±2.2jl.

Assume typical frequency domain design specifications like the following set.

1) Zero steady state error in response to a unit step change in both outputs.
2) Bandwidth for output one less than 1 rad/s.
3) Bandwidth for output approximately 5 rad/s.
4) The system must be robust for plant uncertainty below 1 rad/s.
5) The effect of the controller inputs in the outputs decoupled as much as
possible (i.e the closed loop transfer functions t12 and t21 near zero).

First the analysis of the open loop system structure system using the ICD
tools is done. It can be observed from the Fig. 4 where the frequency response
of the plant is presented that the system is not diagonal dominant even at low
frequency.

Assuming initially infinite bandwidth for the two channels, (i.e. h,=1 and

h 2=1) the polar plot of the complex function MSF x1t=2 of the Fig. 5 allows

then us to determine the frequency range in which the system is stronger
coupled and very sensitive according the ICD framework. Two facts can be
observed. The MSF polar plot is far way from 0 indirating that the structure
is coupled, at low frequency and the plot is near i at low frequencies which
implies a lacking of structure robustness at frequencies below 0.2 rad/s.
Moreover to avoid the introduction of new RHPZ in the channels by the
controllers gI and g2, these must be designed in such way that the two

encirclements of the MSF ;t and x2 to the point (1,0) are maintained.

In order to achieve the steady state error the following structure with
integral action for both controllers gI and g2 is obviously proposed.

ki(s + a)

g 1 = s (s + b)

Specifically first. the controller gI is adjusted shaping the open loop

transfer function It with h =I by the standard SISO QFT procedure. In this
1 2

case the particular specifications are bandwidth less than 1 rad/s,
uncertainty compensation for frequencies below I rad/s and the MSF X2 plot as

near as possible to zero, maintaining the two encirclements to the point
(1,0).
The Fig. 6 shows the behavior of channel I with the designed controller. It
is to note from the frequency response of h and t the likeness between both
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bandwidths.

Once the the controller g1 is determined, the controller g2 must be designed

by the QFT on the basis of the a known h in the open loop transfer function1

it , taking into account specifications 3, 4, and 5 and maintaining the two

encirclements to the point (1,0) of the MSF x1 "

After the two controller has been independently determined, the design is
verify; if all the specifications are not satisfied, the controllers has to be

redesigned but now taking the transfer functions hI and h2 obtained

previously. The Fig 7 shows the response of channel 1 and 2 after four
iterations for the controllers redesign.

The Figs 8 and 9 show the sensitivity functions for the diagonal
elements of the closed loop transfer functions. It is from the sensitivity
that the robustness requirements are met.

V CONCLUSION

This paper presents a method for MIMO system desig- hich uses the advantages
of the QFT procedure based on SISO system. The basi, .dea consists to consider
a MIMG system as n equivalent SISO system where the cross-couplings effects
are already introduced in the transfer functions via the Multivariable
Structure Function proposed by O'Reilly et al (1991). It Is emphasized that
this is an introductory paper and many issues remain to be explored in future
work.
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A MIMO P.M. SYSTEM SYNTHESIS THEORY
WITH PLANT UNCERTAINTIES

** *
Jui-Lin Lai anu Bor-Chyun Wang

1. ABSTRACT

This paper investigates a linear time invariant system
with serious plant uncertianties. The Quantitative Feedback
Theory (Q.F.T.) synthesis technique is successfully to solve
such an fedback problem. And the plant modification feedback
system has been developed to save the "cost of feedback" under
a tolerable signal level range. For a HIMO system, the "cost
of feedback" is more serious in the QFT design, so it is very
useful to consider Lhe P.M. loop. In this paper, the M.I.M.O.
multiple loops system design with P.M. loop is developed. A
systematic design procedure is derived and numerical examples
are illurstrated. It is concluded that the "cost of feedback"
is largely reduced in the MIMO multiple loop P.M. system.

2. INTRODUCTION

The more use of a feedback configuration around the uncer-
tain plant, suffices to scare it into docile behavior. In 1972,
I.M. Horowitz and M. Sidi [11 have "itrodaced a design method
Q.F.T.(Quantitative Feedback Theory) to solve the u,.ertainties
in a plant even they are large. It is known that a feedback
control loop can improve the sensitivity of parameter uncer-
tainty and the effect of disturbance. By using a 2 D.O.F.
feedback structure in Fig.1, this synthesis theory will design
a controller G(s) to assure the sensitivity of system within a
prescribed quantity which is the difference between A & B in
Fig.2. The prefilter F(s) will make the frequency response of
the system be bounded within the design specification (Fig.2).
The pr blem had extended to more than two degree-of-freedom

D
_ _ _ __ _ _ 1 -Ro F G X P 1!

t o.0 N

Fig. 1 2 D.O.F.system structure
system [2,3], such as multiple-loop system (4], and plant
modification P.M. structure system [5,61. On the other hand,
the singe loop MIMO problem had developed in old method [101,
improved method [7,9] and EDA method [11].

For a heavy uncertained plant, the "cost of feedback",
C.O.F. noise response at plant input

Xi/ Ni (refer Fig.16)

* Institute of Control Engineering, National Chiao-Tung
University, and Chung-Shan Institute of Science and
technology, Taiwan, R.O.C..

** Institute of Control Engineering, National Chiao-Tung
University, and Department of Electronic Engineering,
Lien-Ho Junior college, Taiwan, R.O.C..
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usually high in order to satisify the required system perform-
ance. In this case, both single-loop and multiple-loop MIMO
4esigns cannot solve the problem. In this paper a MIMO P.M.
system which allows feedback into the inter mediate points of
a cascaded plant, is discussed. Since the design degree of

freedom is increased, then the C.O.F. can be reduced and the
problem in solved. The P.M. system ixidues plant output signal
level variation. This polynominal is restricted by a con-

straint in this paper.
Section 3 is dealing with the statement of the problem.

In section 4, we will explore Signal Level problem, reviews
some problems in P.M. structure system, and present the results
which shows the sensor noise effect is reduced. Section 5
illurstrates the system structure. In section 6, a M.I.M.O.
system will be examined and 2-loop P.M. system will be success-
fully applied to the MIMO synthesis technique with numerical
examples. The discussion about the observation of disturbance
response, and sensor noise response on corresponding output
point will be included in section 7. Section 8 is the conclu-
sion of the present paper and some suggestions for the further
work. Finally, some datum are listel in Appendix. In this
paper, the P.M. loop is allowed in the MIMO system to improve
tbe "C.O.F.".

~~~~ .. .. . . ....... ... .....

A

0. I52Z.5 3.5 44.5 5 10.4 Ice to, too
(a) Time response (b) Frequency response

Fig. 2 System specification

3. PROBLEM STATEMENT

There is given an nxn linear time invariant plant with m
a b a

cascaded section, P p ....... P (all n x n matrices). The n
outputs of each section, may be measured and the data can be
used for feedback purposes, the command input vector R may
also be measured. There are m+1 degrees of freedoms, ie, m+l

independent matrices in NPM system. F,Ga . Ga in figure 3

are nxn of compensating transfer functions to be chosen. There

are assigned tolerances on these na elements of the overall

system transfer function T in the form of n' acceptable sets.
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Fig. 3 feedback structure around a loop IMO system

If the P.M. loop is allowed, the matrix degrees of free-
dom is drasically increased to (n+l)*m/2+1 (figure 4). In P.M.

system, if we draw all loops in one side of the cascaded plant
pa pm-l .... .pc pb pa, there are no loop crossing over, this is

"called no cross loop P.M. system (Fig.5). The D.O.F. is 2*m.
Even in the NCPM case, the cost of freedom is largely reduced.
But one must careful that the tolerable signal level variation
constraint must be considered.

.x P ( P G, G' P, 2 l,

vW -V3

Fig. 4 P.M. feedback structure
e X.XftP. C, X P..'C.1 C3 X2 Pe Cz X, P1 CO.C

F 
-N 

o

Fig. 5 NCPM feedback structure
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4. SIGNAL LEVEL CONSIDERATION IN PLANT MODIFICATION SYSTEM

Consider a single input single output (S.I.S.O.) system,
where the plant consists of m cascading sections, see figure 6,
with a required maximum output signal level C (s). The signal

level at the input of Pa is:

C 2 5  = X l C 1a 
( I )_

where C2s is the output of P This relation will not be

changed in the NPM cascaded multiple-loop feedback structure

in which all feedback path return to the input of plant P m.
C

Cms =(Xa-1) pa pb pC ........ p (2)

Suppose a feedback loop is put around plant Pa with compensator
H(s) in figure 6(b).

XE Pm Xas 1 XW-1  X2  pb C2 s  1 X1  pa C5

(a)

Xa PS Xms 1 X - 1  X2 Pb C22__ X1 Pa C

-:H -- Hb- •
21aba

(b)
Fig. 6 (a) a cascaded plant system

(b) adding a P.M. loop system

The signal at X1 is still CI/pa, but

C2 2 = X1 + HaC1 = C1/pa + HaC 1 1 + Haapa CI/Pa

= (1 + H a P Pa) 1 = (1 + H aPa) C2a 3

For the same required signal level of C1 , adding an P.M. inner

loop, the resulting signal level of C2 2 equals to C2s multi-

plied by (1 + H Pa). The plant pa appears to modification and

the system is called a P.M. system. It is conceivable that

this level of C2 2 may be so much larger than C2s, so Pb may

have to handle this large signal level. If the 'feedback
expert' is working together with the 'plant expert' in design
of the plant itself, then the trade - off in such significant
plant modification may be seriously considerd. In the case of
a existing plant, a P.M. design method must keep the increase
of the plant input signal within a tolerance range (4]. The 2
loop P.M. system structure is shown in figure 7(b). In addi-
tion, the insight obtained from a synthesis procedure is very
useful for those cases, and the feedback expert is called to
help the plant expert in the actual plant designed.[4].
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Fig. 7 (b) The P.M. 2-loop system structure.

In order to follow the same design notation as in a non-P.M.

cascaded system design [1,8], let L on G n b aen; where

a
Paen= 1 + Lan' Lan=H in nominal plant case. For the sake of

the signification signal level variation due to La, it is

impractical to let La cope completely with the uncertainty in

pa. The P.M. design theory is developed by base on individual

an sidering the frequency spectrum [4,5]. While the uncer-
tainty in the low frequency range, the control signals be dom-

inated, so it is take care of by the outer loop Lo. But L0

handle the uncertainty only Pb in high frequency range, thus

the UHWB region be determined by the variation due to Pb. The

inner loop L cannot handle all the uncertaunties of Pa, ie,a

4 1pa e may be not equal to zero, so the outer loop L0 must have

some overdesign to make up the difference. Since the uncer-

tainty in Pae is compatible with L and it's a allow for Pae

uncertainty, then L0 can be designed as a highly economical

loop in terms of bandwidth.

4.1 Signal Level Variation ratio (SLVR) and p

The signal level ( S.L.) problem is the basic cr.e in the
plant modification system design. SLVR is defined witx. respect
to a-single loop design for the same plant (figure 7(a)). The
maximum output signal level is :

L (jw)

Ics(Jw)Imax IR F(Jw) 1 + LsJW) 'max
S~p

and the maximum signal level at the output of Pb is
L S(jW)

IC2 a(jiw)Iax =JR F(jw)ll Pa(jw)il + Ls(Jw)j " ( )
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The ratio

r Ow) c 2a(Jw) 1a jCo(w) I (6)

Similarly, in.P.M. 2 loop system (figure 7(b))

Ic(Jw) l~ax =JR F(Jw) + Lo • (I0 7)

L (jwI)

1CI ~ =IR F'4 -~' P L 00I ( 822(jw)lmaxJ F= w) J Pae(Jw)[I + Lo(JW-TFlmax

r W) 2 2 (Jw)2 JWmax -CO~ max-
P Ic1 (Jw) It

The signal level variation ratio (SLVR) p is defined to be1CInz1ax rz I C Ia
pI()-- OW z- ( 10

IC2 I r I Cs Imax
The P.M. system synthesis theory is restricted to the R.M.S.
signal level, not to peak values. That is, this synthesis
theory is based on the amount of signal level variation Q
defined by :

f: IC22 (w)l'ax dw

f: 1C2,(w) 12axdw

4.2 Division of the Frequency Spectrum
According to the single ioop design result (Fig. 8), the

frequency range is divided into 5 distinct parts (where both

the h.f uncertainty of Pa and Pb are 14 db).(1) The very low frequency range R= [0 , wv] is the range of

JLs(jw)I 1 25 db over the entire plant parameter space. In
this range in P.M. synthesis the inner loops are not used
to help the outer loop Lo, ie, in R1 , Lsna Lon' where LJan
and Lon designed the nominal loop transmission.

(2) Middle frequency range R2 = [ W1 , W2 ] defined by -14 db

< ILs(JW)I S 25 db, where -14 db is due to P
(3) High frequency range I R= W2 , W3 ] defined by -28 db

pa pb.

S ILs(JW)l S - 14 db, where -24 db is due to P +
(4) High frequency range II R4 = [W3 , W4] where W4 =10 x W3.
(5) The very high frequency renge R5  [ W4 , c].

It is helpful for interpretation of SLVR in different frequency
range, in order to develope the design procedures of the P.M.
inner loop L..

1

339



4.3 Relation between SLVR p and 1i + LIan

If the maximum output over P in figures 7(a) and 7(b)
should be the same, i.e., JCljm~x = ICsImax. By inspection of

Equation 3, (1 + Pa H) is an important factor and it is useful

to relate Loci of constant 11 + Pa HI to Pa H on the Nichol's
Chart. Let La= paH ; f = 1/L and 1 then

a

T - The relation between 2 and t gives the

conversional Loci of constant x magnitude on the Nichol's
Chart, so the relation of 11 + L.1 with respect to La is the

reversed Nichol's plot, obtained by changing the sign of con-
stant magnitude curves. We will develops a subroutine unde.
'MATLAB' control program to plot this Loci, expression in Fig.
9. Those Loci is a very usefully tool in the P.M. system
design.

Our design philosophy is to make La as small as possible

in R1 , in order that the minimum signal level of C2 2 be very

closely equal to that of C2 s* This is because that the control

signal level is the highest in this low frequency, so that
even small precent changes could lead to large absolute dif-
ferences. In the high freq' ency ranges, where the signal level
is not important, only centrate in the reduction of the sensor
noise effect. The details are illurstrated by a numerical
example.

4.4 Numerical Example'

Example 1 : 2 loop with P.M. system (Fig. 7(b))

Plant : p = a pb

where pa K ; b _ M
s s+a

Plant uncertainties: 1 S K S 5 ; 1S M S 5 ; .1 1 a • 2
Perfomance specification : shown in figure 2

C
disturbance response : I V I = i ( 2.3 db

Restriction on signal level : Q 1 1.05 for step input.

The step by step design procedures for any SISO 2 -loop
P.M. system are follows

Step-1. : Choose an acceptable curve of 11 + La see figure

10 ) from a given value of permitted C2 2  power

increase Q as defined in Equation 11, where
* indicates the perminary design in the e.f.

Step.2. Determine the bounds BL on the inner loop L P aHa

and design L a in the E.f range R1 ,R 2 (figure 11).
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Step.3.: Determine the template of Pb P a where Pae a Pa/( 1 +

La*). Find the bounds BL (w) on the outer loop, in

order to satisfy the design specification on T(jw)
(figure 12).

Step.4. : Design the outer loop L0  from the bounds BL (w).
0

Fixed Lo, using L0 =G Pbpae to find the corresponding

bounds BL (w) in C.f R3 1 R4 ,R 5 range, such that L° is
a

still satisfied T(jw) (figure 13).

Step.5. Complation of the design of the inner loop L which
a

satisfies both BL*((w) and BL (w).
a a

From a given Q ( Q ý 1.05 in this example ) and base on

Equation 11, 11 + LanI(W) can be selected to satisfy specifi-

cation from Q. In 1978, Bor-Chyun Wang had discussed this
problem [5], and obtained a set of datum about the relation of
Q and the corresponding value of 11 + LanI. This example, we

use the result for 'CASE-C', as figure 9 and figure 10 bounds
S* is shown

on + Lani According to figure 10 the bound of Lan

in figure 11 with resulting La*

For pedagogic reason,. it is better to understand the
nature of La in R1 , R2 before considering how to derive I1 +

Lan(W) from Q. The nature of Lan is decisively influenced by

the nature of non P.M. cascaded loop design. Recall that in the
t.f range ( R1 , R2 ), there is little demand on La' the bounds

are upper ones. The resulting power variation Q was defined to

be tw- ratio of area under the curves jC 2 2 'x and

(figure 17), which gives Q= 0.9885 in this example, and satis-
fies the specification Q11.05.

S•~~ ~~o ....... .. . . . ...... ...... .... ...

p 33000"40I 20 -. - -

-Jo -- ~14 1

..0 -

"10-1 lot 1, 10, 10' -200o-110-100o -Ho i + ,•
Fi. ivson of the frequency Fig. 9 Loci of constant II(Lil on L.e

spectrils NichGl-Chart
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22.
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db 0 . 8 &.13d5

9 h\ 140
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Fig. 12 The bound of Ln and design Lo Fi.1thebun efse n dsg
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,oil.

0.2

0.3
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Fig. 14 Frequency responseFi.1Tmersoe
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(b) with prefilter
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Tn25

1' 22.5
S/ / \
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Fig. 16 Sensor noise effect Fig. 17 The signal level for C2 2 and C2s

4.5 Noise Consideration

Observe the noise response in the h.f range for output
sensor noise N.

single-loop system
X -2 L 

(

P P

•2-loop P.M. system:

The details of numerical examples for single loop system,
2-loop MPH cascaded loops system and 3-loop P.M. system are
enclosed in [4,6]. Here, one may ask, for &• 2-section cas-...
cadered plant 2 loop system, why choose the P.M. system instead
of NPM system. One of the reason 15 that only single sensor at
C1 is available in a practical system. So the 2 loop MPH iB

not existed. On the other hand, both sensors are avialable,
the noise power ration (NPR) V. is a good index to indicate

which structure is suggested. The Noise Power Ratio (N.P.R) W.
1is defined as the ratio of total noise power in th• cascaded

2-ioop non P.M. system to that a 2-loop P.M. system (51.

5. SYSTEM STRUCTURE

The MIMO P.M. multiple loop system is shown in figure 10.

IIR

T N1b 1N

pig. 18 2-loop e IMo P.M. structure ar
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Only the P.M. loop must consider signal level problem, prevent
pbmay have to be rebuilt to handle this signal level. The

system is process that the same as 2-loop SISO P.M. system,
and describe in the section 4. The system schematic details
are presented in figure 19.

924
Pal p 21

Fig. 19 Block diagram of 2-loop P.M. system

6. MI1O SYSTEM WITH P.M. MULTIPLE LIPS

-~ In MIHO system, assume the system with plants have uncer-tainties in parameters, thus, using Q.F.T. synthesis technique
approaches to design the system. The solution of this problem
has been developed for two construct steps. Frist, translate

a nxn MIHO system to n equivalent stmSi system, by using the

Fixed Point Theory. Next, accordance Q.F.T. to design each of
MISO system corresponding to our assigned tolerable specifi-
cation respectively. A single loop MIMO system, 2-loop MINO
structure and MIMO with P.M. system is considered in this sec-
tion. In the following a nxn, m section cascaded MIMO system
be provided. For simplification both n and m are chosen to be
2, that is 2x2, 2 sections system.

The P.M. system of figure 18 is plotted with the equiva-
lent single loop system in figure 20.

SF G U pb U a e

Fig. 20 Equivalent single loop for 2-loop P.M. system

where P e= [ + Pa P-a = ctp &-1 + a-_-I

p e pa b = [[Pa]- + H-IIPb (14 )

CI/q] = [I-1 b-iPaL-i+H= [/1 /qab a ( 15 )
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Concerning the uncertainties of plant P• is coped within two

loops, the inner loop do very small contribution at h.f range.

Hence the Alpaej can not equal zero in the h.f range, so the

WIWB region for outer loop L is not only depending on the

variation of the Pb but also depending on APa

7. NUMERICAL EXAMPLES

Plant p = pa pb

k I 11  k_____ In___ __ 12_

8 s+a a+a s+a

where p= k 2 1  k22  ; P a_21 Is22s as+a 8 a
Plnt uncertainties: 1 k 11 S 3 ; .2 5 k 1 2 1.4

.2 k k 2 1 S.5 ; 2 S k 2 2 . 3
1 5al 11 2 ;.1 S a 12 S .2

.1 a 21 (.5 S . 22S 1
.15 aS 2 2

perforance specification: the specification of t1 1 and t22

are shown in figure 2, and
I t1 2(jw)fS -20 dblt 2 1 (jw)IS -20 db

Disturbance response : Li ' 5 2.3 db ,i=1,2.

Three case are considered:
(i) Single-loop MIMO system.

Example 2:

R [71
Fig. 21 MlMO feedback system

First, to find the Q matrix depend on the plant P

B 11  B12  r 1-(s+a" s(s+a)

2Ls(a+a) sss+a [q
where B1 1= A/x 2 2 ; B12= A/x 1 2 ; BjI= A/x 2 1 ; B2 2 = A/x1 ;

A =x 1 1 x 2 2 - x12x21 ;
xli=kllmll+ k 12'21 ;x12= k, 1 12÷+ k 12'22;

x 2 1 =k 2 1 m1 1 + kI2 2 a2 1 ; x 2 2 = k 2 1 m1 2 + k 2 2 a 2 2 "
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The "basically nob-interacting" (BNIC) loop will be builded in

the t12 and t 2 1 , and reject the unwanted output Y1 2 and Y2 1 due

to the inputs r 2 and r 1, so that, f 1 2 and f 2 1 are set to be

zero. The L outer loop design:

There are two kinds of performance tolerancers. In the BNIC tij

terms is denoted as a D-type specification, and the interacting
tt4 terms are denoted as a A-type and B-type specifications.

There will obtain the specification in following :
1 b 12 _q 12 1= ! q12

DV12 Spec.': +L I•-ll b -qll= 10 b2 q-ll,
1 q2112

B spec. I d 12 -1 q 12 1  q1 2

1 21 q 1 1  d1 2  q ll

A11Spc lL11 bl
5~CC _IET a-

For D 12  specification, take the worst case, find 14121aIin

with all others known elements, the D.bounded can be plotted on
the Nichol's Chart. Base on this result be able to find the
value of T d 1 and the A, B specifications can be solved, also,

plot the a,b bound on the Nichol's Chart, is shown in Fig. 22.
Accordance A, B and D bounds to find the bounded of Llo and
designed Llo, is shown in the figure 23(a). Similarity, we can

find the bounds of L2o and designed L2o in figure 23(b). The

system response of frequency domain in the figure 24. There-
fore, those time responses of t1 1 , t 1 2 , t 2 1 and t 2 2 will be

bounded within the specification are shown in the figures 25.
Finally, the sensor noise effect is express tn the figure 26.

40 Ik ftv"W if ,12 ,A.,U.l .w- 0. 2

S......w=O . 5

-W32

40 ___

-4" - 350 -So0 -250 -200 .-50 .1o -50 0

Fig. 22 The bounds of D2,A11 snd 8l1
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soaor NBI, Ifet Mifor too. be

i.VI &I

°1 ca,....t+, '

o 4.* 10'

0 Gi
o 4 6 G

0.01 10,

4%e 10,
0 2 46

Fig. 25 (c) Step response for Y21 10*

k1 1  kiz k2 l k2 2 '11 '12 '21 M22 * 10 " 10, 10, 10'V 10 t 10 , 10 ,

"Case I I .2 , .2 1 2 , . , , .S , .1 Fig. 26 Sensor noise

C a m e 2 3 , . 2 , . 2 , 3 , 2 , . 1 , . 1 , 1 , . 1

C a s e 3 1 , . 4 , .5 , 2 , 1 * . 2 , .5 , .5 , 2

(ii) 2-loop non P.M. system
Example 3:

R F ~rf Z~Y
Sa

Fig. 27 2-loop MIMO feedback structure
A single loop design is used to demonstrate the advantage

of multiple loop design. When design outer loop will remain 5
db safety margin for the bounded in the h.f range. The outer
loop Llo and L2o will be designed that like to the case(i),

where results are shown in figures 28 to 30. Details are in
(12).

" 196d. h" toug oitld, bsoome
10'

(2)

0(2 )

10" .- I

11000' 10'010'

Fig. 28 (a) Frequency response of Yll Fig. 28 (b) Frequency response of Y2 2
(I) without prefilter (1) without prefilter
(2) with prefilter (2) with prefilter
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Fig. 29 (a) Step response for Y Fig. 29 (b) Step response for22

%,air Ibis ft oo ( fl fai, I MA. sane $bmf .t IfUf eil le 14 1#*'

7040

N

20 Tnn bI
50

db 0

T-20

30. T .2

20 -40

to0 " to o to' to' to' to0 10' 10-O I0 , 10 , 10 , to , 10' 10'

Fig. S0 (a) Sensor noise for N Fig. 30 (b) Sensor noise for Nb

(iii) 2-loop P.M. WIMO system
Example 4 :(figure 18)
Since here is a P.M. system, one more specification is

required the restriction on signal level : Q 5 1.05 for unit

step input. The design steps are shown in figures 31 to 33.

Recover from Q matrix to P matrix structure, which system

schematic detail present in figure 19, the really results in
the system responses is in figure 34 by simulations. From
figure 35 it will be found the 7teady state response of distur-
bance D input always converg; to near zero, so this system will

show the capability of disturbance rejection. The figures 36
and 37 are appear the relation of signal level variation ratio
for loop 1 and lop 2. Base on the equation 11 to calculate
the values of Q, that are 0.96 and 1.2. For a sensor noise
problem, the effects of sensor n,).se is shown in figure 38, we

will find that the 'cost of feedbuck' be reduced by P.M. loop,
which is much economical than single loop system. Given a
White - Noise at N, the responses at the plant inputs y1 2 and

Y22' are shown in the figure 39. By inspection of figure 38,

it is obviously that the noise response at h.f range is sig-
nificantly reduced which is unanimous with figure 39.
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Fig. 33 (a) Frequency response for La Fig. 33 (b) Frequency response r L
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Fig. 39 Noise effect for plant input

8. CONCLUSIONS

The QFT synthesis method is the most effective tool for
system design with large parameter uncertainties in the MIMO
plant. For a multiple loop P.M. system, the feedback signal is
able to feed back into intermediate point of the plant. In the
QFT, P.M. MIMO synthesis process, we have the fnllowing
conclusions:
(1) The optimization of the design should be : '.-vplished with

respect to ai (i th loop overdesign) by ti-Ae-off between

the outer (i th) loop and the inner ((i-1) th) loop for a
n-loop system.

(2) The fixed point theorem will ensure the solut&ion of equiv-
alent MISO system satisify the MIMO cascaee a-loop system.

(3) In this paper, we use equivalent single loops to design the
system, produces overdesign in the second loop. If the
improve method of MIMO is applied to the second loop, the
overdesign may be improved. However the method of oesign
may become complex in the MIMO multiple loop P.M. system.
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(4) The P.M. MIMO structure still permits greater reduction in
the cost of feedback even consider the bandwidth increasing
due to its signal level.

(5) The signal level probleL% is important in P.M. design to
prevent the saturation of the internal plant output.

In summary the permission of adopting P.M. loop will
largely increase the number of total loops in the overall
system. So the cost of feedback can be largely reduced.
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APPENDIX
Rational Function of Numerical Example

(1) 2-loop P.M. SISO system: (example -1)
L on_ 15x(s + 6)(s + 40)x40x10000/240
on s(s + 2)(s + 20)(st + 50s + 10000)

La 0.5x(s + 3)(30s + 1)x12000x400
an (s + 9)(30u +25)(sl +100s +120J0)(s + 400)

F 12
(a + 2)(s + 6)

(2) Single loop MIMO system: (example - 2)
L n_ 200x(s + 15)(s +130)x250x500000/1950

8(s + 5)(8 + 50)(st + 600s + 500000)

200x(s + 15)(s +120)x250x200000/1800
s(s + 5)(9 + 50)(sa + 300s +200000)

F 10
1ll iB + Z)is + 5)

F 2  
8

22 (a + Z)(s + 4)
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(3) 2-loop non P.M. MIMO system: (example - 3)

L ae 16x(s + 8)x40000
s(s + 1)(92 + 320s +40000)

ae 24x(s + 8)xOOOO
L2 n S(s +,3)(as + 103s + 10000)

Lb 10000 x 1000
in- (a* + 130s + 10000)(a + 1000)

L b- 10000 x 1000
(2 W + 130s + 10000)(s + 1000)

100FI: (a + 2)(s + 5)(s + 10)

F2 =* 100
22: (a + 2)(s + 5)(s + 10)

(4) 2-loop P.M. KIMO system: (example - 4)

Lae_ (a + 6)(s + 40) x 80666
In s( + 2)(s + 40)(s2 + 80s + 12100)

Lae_ (s + 6)(s + 40) x 666667
2n s(s + 2)(s + 20)(st + 200. + 40000)

L a_ 0.5x(s + 3)(30s + 1) x 4800000In (a + 9)(30s + 25)(s* + 150s + 16000)(s + 300)

=a 0.5x(s + 3)(30s + 1) x 60000 x 500
L2n (a + 9)(30s + 25)(st + 120s + 60000)(s + 500)

100
(s + 2)(s + 5)(s + 10)

F 100
F22 (s (s + 5)(s + 10)
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A MIMO UNCERTAIN SYSTEM WITH NONLINEAR COMPENSATOR

* *

Rusy-Chung Chu Bor-Chyun Wang

ABSTRACT

The quantitative feedback theory(QFT) design techniq-
ue has been successfully applied to solve the multiple-input
multiple-output(MIMO) uncertainty problem. But there is no any
literature studying how to apply special compensator to reduce
the cost of feedback in the MIMO design approach. In MIMO
uncertain system design, although the improved method can
reduce the inherent overdesign, but the cost of feedback (COF)
is still high in case of a large uncertained plant. In this
paper, a nonlinear element called " Clegg Integrator " (CI) is
introduced as part of the compensator in the design. It is
concluded that the "cost of feedback ", i.e. effect of sensor
noise, is further improved.

Four types of structure with C.I.element placed in
different location are used to illustrate and to compare the
quantitative improvement of the COF by numerical examples. The
result gives the control designer a more flexible choice in
the MIMO system.

1 Introduction

There is an equipment which has the ability to ach-
ieve objectives. It is denoted as the plant. Here, the values
of plant parameters are not known precisely, but the ranges of
their values are known. In 1972, 1. M. Horowitz and M. Sidi
[1] have L.resented a design method -- OFT to solve the single
( or multiple ) - input single - output( SISO or MISO ) single
loop system (Fig.1). A MIMO system [4] can be designed by a
set of MISO equivalent single loop systems with a similiar
structure as in Figure 1.

D

F e G x P

Figure 1. A two-degree-of-freedom structure.

* Dept. of Control Eng. , National Chiao - Tung University ,

Taiwan, Republic of china.

-Chung - Shan Institute of Science and Technology , Taiwan ,
.Republic of China.
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This paper is devoted to find controllers and prefil-
ters to statisfy assigned performance tolerances in a MIMO
system. The design approach for each loop of the MIMO system
is identical to that for the MISO single loop approach. By
using Schauder's fixed point theory [4], an uncertain MIMO
problem can be converted into separated single-loop problems.
The solutions to these single-loop problems are guaranteed to
solve the original MIMO problem. The COF in MIMO system is a
very important factor to indicate the goodness of the closed
loop design. For a large parameter variation plant, the COF
usually high, so the sensor noise effect is seriouse. Sometim-
es the COF is so large, it even saturating the input signal at
the plant input, so the overall system fail to operate. The
Clegg Integrator (CI), can effectively reduce the COF in SISO
[2] and PM [9] system. Therefo'e, in this paper, the nonlinear
compensator is first tried to improve the COF in a MIMO sys-
tem. It is successful to develope a step by step design method
for a nonlinear compensator in the MIMO uncertained system. It
is also proved that it can effectively reduce the COF. Since
thL frequency response method is not applicable for a system
containing nonlinear element, so in this paper, the real time
simulation is adpoted to prove the design result. In the foll-
owing paragraph, both MIMO old [4] and improved [7] methods
are considered.

A quick review of the QFT is in section 2. Section 3
presents the characteristic of aC.I. element . Section 4 illu-
strates the structure of systems which are discussed in this
paper. The synthesis of MIMO system by nonlinear compensator
is shown in section 5. For the purpose of easy comparison, the
same numerical example in section 2 is used in the MIMO NL
design for each structure. Conclusions and discussion are in;-
luded in section 7. Finally, rational functions of numerical
examples are listed in the appendix.

2. Review of QFT in MIMO System

2.1 MIMO Compensation

The basic MIMO compensation structure for a 2x2 MIMO
system is shown in Figure 2, where P is the uncertain plant
matrix, G is a diagonal compensator matrix, and F is

Figure 2 MIMO control structure (2x2 system).
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a prefilter matrix. Tiw non-diagonal G is not considered in
,this paper. These matrices are defined as follows:

Pll P12 g
Pm I

P21 P2 2  0 g 2

1 12 (2-1)
f 21 f 22

The signal flow graph of a 2x2 MIMO system is shown in Figure
3. There are four closed-loop system transfer functions tij(s)
relating the output yi(S) to the input rj(s), i.e. , Yi(S)-
tij(s)rj(s). Therefore, there are also four sets of acceptable
regions Tij(s). If we design the compensator matrix G, and the
prefilter matrix F according to these bounds, then tij(s) C

rj(s).

r is,9

]r 1 I, 1

r g2 p22 9

Figure 3 Two-by-two MIMO system scheme.

From Figure 2, the system control ratio relating fto

q1  p +dP PH . (2-2)
•, If P is nonsingular, let

Sml. Pil P1 (2-3)
P21 P22

The four effective plant transfer functions are formed as
qija I/pij - det P/AdJ . (2-4)

We obtain the following equations for a unit impulse input,
__ _ t2 1

Y11 q (glfl )(91,11 (2-5a)

qll t 22 ( 2 5bY1- 1gql(glfl2 ) (25b 12

___22__ tllq2  (g 2 f 2 1 - ) , (2-5c)
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q22 (92f22 t 1 2  (2-5d)
Y2 2 " 1+g 2 q2 2  - q2d

Figure 4 shows the four equivalent MISO locps.
dti d12

fl Y1. rZ 0 12 12qi

d22

f~l 92 i 2 ' f2 2
•'\ rV21 r2 O e 22

-i -I

Figure 4 Effective MISO loops.

If all of these MISO problem are solved, there exists
a fixed point, then Yij(s) may be replaced by a tij(s). We

can rewrite the above expressions as,
t tm tr d ,t (2-6)

where L i
trj f i (2-7)

t d i , q ,id * (2-8)
dij ÷1+Li

Li - giqii . (2-9)

When the response of an output, yi, due to an input,

rj, is ideally zero, then the Yij loop is called a basically

non-interacting (BNIC) loop. The design specification of BNIC
loop is

Il/(l+L ) Ib /qid1~ijb j- , kjai, (2-10)
Iq I

I k Ikj

and it is denoted as a D-type specification, specifically Dij.
The specification on the interacting loop is

aij(w) K It O(Jw) + td (Jw)I • b1 4 (w) ' (2-11)
jjr ii

where aij(w) and b 1j(w) are the lower and upper bounds of the

design specifications for the interacting loop. We obtain A-
type and B-type specifications.

A ILi/(1+Li)l bj/ajj , (2-12)

i1/(1+Li)I q dij , k 1 (2-13)
qkI b kj

Equation ( 2-12 ) is denoted as Aij., and equation ( 2-13 ) is
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denoted as Bij. Bij is almost the same as Dij except that T dij

is not known.
Equilibrium exists when it is impossible to reduce

the burden on any Li, without increasing it on some other L .
This results in only one column of the equivalent MISO systems
being dominant. Note that the above discussion is at a fixed
w value. It may be that there are different columns dominating
at different w values. However, after equilibrium is reached
* it may be desirable to sacrifice one loop for the sake
of another. This involes " tradeoffs " between the different
loops. These tradeoffs always make it harder on one loop when
reduction is accomplished in another.

2.2. Improved Design Technique

The improved design technique can reduce the inherent
overdesign.. Since the old method in section 2.1 does not
consider the correlation between the t i of the system, but it
is considered when the improved method is used to design t..he
second and subsequent loop.

Assume that loop one has been designed by using the
method one. Thus L1 ani flJ are given, and general equations
are shown as,

tlj- 1+L1 , (2-14)
1• :f2jL 2+d2jq22

t- 1+L2  (2-15)

where L1 - glq1 1 , L2= g 2 q2 2 , (2-16 a,b)

dlj= -t 2 j/q 1 2 , d 2 j- -tlj/q 2 1 , J=l,2. (2-17 a,b)

Substituting equation (2-14) into equation (2-15) yields,
t f 2jL2e + d 2je ( 8

2j 1+L2e

where

g 2 q2 2 ( 1+L 1 )
L 2e. = -112 +L = g 2 q 2 2 e (2-19)

12 P12P21 qq22 (2-20)12"P11P22 912q21 2-0

q 2 2 (l+L 1 ) (2-21)q22e =1-712 +L1 2-1

d 91gf IJP21 (1--y12) (-2
2je 1-712+Ll (2-22) •

Using equation (2-18) through equation (2-22), the elements
L2 e and f 2 j can be designed to meet the desired tolerances.
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3. Nonlinear Compensation

3.1 Introduction of the Clegg Integrator

The crucial limiting factor in linear design is that
the rate of attenuation of ILI can not be increased due to
fixed magnitude - phase relationship, so that ILI>IPI over a
large frequency range, in problems with large uncertainty in
the plant high-frequency gain factor.

One is led to consider the use of a nonlinear element
whose describing function D(jw) has a smaller phase lag than
that of a linear element with the same magnitude character-
istic. Such an element as part of L would seem to permit a
faster attenuation of the nonlinear ILd( jw)j than is possible

in a linear IL(jw)l. The Clegg Integrator is an integrator
which resets to zero at zero crossing of the input, and is an
ordinary integrator between zero crossings. Its response to
a sinusoidal input is shown in Figure 5 with the describing
function,

D(jw)n 1.62 exp(-w38 • 1.62 , exp(j52°). (3-1)

D(jw) has the same magnitude characteristic as an in-
tegrator of gain 1.62, but its phase lag, at all frequencies

is 520 less than that of the linear integrator. Hence, it
appears that the equivalent IL(Jw)I containing the C.I. , may
be decreased at a rate (180-m+5 2 )/(180-em) faster than that

of a purely linear L(jw), where em is the phasemargin of

system.

x(t) V. (t)

7r 2 7r 3r Wti
-3I
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Figure 5 Sinusoidal response of Clegg Integrator.

3.2 Characterization of C.I. for Synthesis Purpose

It is difficult that characterization of the non-
linear element is directly used for quantitative synthesis.
Thus, a general characterization must be derived for quantita-
tive synthesis.

Let 0 < t1 < t 2 < ..... < tn be the zero crossings of
x(t), the input to the C.I.. Then Yc(t), the output of the
C.I. , with t 0 -0, is

t t i t k
Yc(t) x(r)d X(T)dT - X(T)dT , (3-2)Y fti " 0 k-1 ftk_1

where
t i •t < ti+l i-O,l ...... n-1, t0=0

However,

Yc (t k _) - x(-r)dT E Yk "(3-3)

k tktk-1

Hence,
t 'i

Yc(t) - o Ex(r) - k lyk(T-tk)Jd- . (3-4)

valid for the entire interval, and assuming that the last zero
crossing is at tn. Thus the C.I. can be replaced by a linear
integrator and a train of impulses as an additional input,
the strength of the impulse at t + being obtained from the

output of the C.I. at t .. The equivalent representation of
k

C.I. is shown in Figure 6.
The above representation is suitable for analysis,

but the real problem is to exploit it for synthesis. Hence it
is necessary to turn to specific problem classes, that of
step response being considered in this paper, and replacing G
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ki yk6 (r -tk)

Figure 6 Equivalent representation of C.I.

of Figure 1 by Figure 7, with F temporarily taken as 1.

x

Figure 7 A nonlinear compensation control system.

Now, we consider a typical linear system which is
shown in Figure 8, and its step response co(t) with overshoot
is shown in Figure 9. When x-0, c-co, Fand the system transfer

function is given .by,

C (s) _n2

T(s)- - 2 + s+ 2 (3-5)

Uwn

+ S(V+Zfuh).

Figure 8 Second - order modei.
If r(t)- u(t), then

Co(t)- 1-exp(-fWnt)[coS(WnV 1_7 t)+

S sin(Wn•- t)] . (3-6)

1- f
Assume c (t)-1 when t-tl, then e(t)- r(t)-c (t)- 0. The first
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Figure 9 Derivation of nonlinear step response fromthat of equivalent linear system.

reset of C.I. occurs at t/ .From equation (3-6), we obtain

1-- - cos Wn(-

Assume that the maximum overshoot of co0 M occurs at t m, so

Co0(t m)-0 tm" W nvf7 - (3-8)

A 1 1 1

The area A 1 is given by,

AI [1-Co(t)ldt = xp(-ff(Y-cos-l)• x

0~ ~ ~ n n

[-+2-exp(e(xw-cos-t) .) (3-9)

1-f

The system output response to a unit impulse at a point x inFigure 7 is simply cI1- -T/(l+b). Now, x(t)- Al16(t-tl1),so Cl /
-[A 1T/(l+b) ] t- 1*

Hence
2

1-1-f

- 1 XP(-fr/vj)w (1+2fexp(f(v-cosn (W1n f f . (3-11)
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Substituting equation (3-8) into equation (3-6), we obtain

Co(tm) - 1+exp(-rv/7j7) . (3-12)
The maximum overshoot is found to be,

M n(E,b)-c 0C(tm )+cI (t m-t )-i
1-s exp(-/'/_ ){b-2exp[(- -)/v'j 7 ] 1

-1 M
M1

(b-2fexp[f((-cos =+)/V ]-. , (3-13)
where

M1 exp( -,7T/Th , (3-14) 7'

is the maximum overshoot in the linear design with same value
of f, and 1/s in place of the C.I.

It is seen from equation (3-13) that the nonlinear
step response is actually improved if the associated linear
response has significant overshoot. On the other hand, if
there is no overshoot on the step response, there is no reset
action at all and the nonlinear response is identical with the
linear. If the linear response has only small overshoot which
causes reset, so the resulting c1  then dominates between t1
and t 2 , causing undershoot. Clearly,the worst case is for a
critically damped stap response, and using the second - order
response function as a model the value of A1 is found to be
2/w if wn is the natural frequency. Hence, equation (3-10)
becomes,

n2b+1 . T -1 1 n w'texp(-t) (15
A 1 (s +Wn)2 ] -n

Premultiplying both sides of equation ( 3-15 ) by A1 /(b+l)
yields,

- 2wnt
c1- b+l oxp(-wnt) • (3-16)

We would like to find a maximum value of cl, so let a1(tx)-0.
It is easy to obtain txMl/wn, and to substitute it into equat-
ion (3-16), so Icl max-O.736/(b+1). Hence the peak undershoot
is,

0.73617)
Hence, b must be chosen such that the undershoot satisfies the
system tolerances. Such a tolerance on undershoot becomes a
necessary part of the design specifications for nonlinear
design. In practice, F being low-pass which can decrease und-
ershoot because the area A1 in Figure 9 is decreased such that
c is decreased also.
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4. Structure of the System

The MIMO system is shown in Fig. 10, where Pij is the
element of the uncertainty plant matrix P, f11 and f 2 2 are
prefilters and gl, g 2 are compensators. dl, d2 are step-
disturbance inputs and N1 , N2 are white-noise inputs. In this
paper, compensators are not limited to be linear. There are
four cases : (1) both g, and g2 are linear designs, (2) g, is
nonlinear design and g2 is linear design, (3) both g, and 92
are nonlinear designs, (4) g, is linear design and g 2 is nonl-
inear design. Their results are shown in section 5 and section
6 respectively. + -

, dZ

rZ f i9 + 9 2

Figure 10 Block diagram of linear system.

5. Synthesis of the MIMO System by Nonlinear Compensator

Take example 1 from section 6 to explain the design
technique by using C.I. element for MIMO control system.The
loop two is designed by using the improved method.

From equations (3-13, 14), we know the overshoot in
the nonlinear system with a C.I. element is less than in the
equivalent linear system. The value of fnl(non-linear) can
therefore be smaller than that of. fl(linear) for the same
overshoot Mn - M1 of equations (3-13, 14). We obtain

2

,Y-max 27. 2  from equation (3-5) and IL/(1+L)I•i.
w (wn-w)+j2fwnw

Let d7/dw be zero, then W-Wn(l-2f2)i/2,
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hence,

1 (3-18)

We use equations (3-13,14) to find fnl and substitute it into
equation (3-18) to find fnl* Hence -Y nl can be larger than -i

of an equivalent linear design, so that 6m (linear)> em (non-

linear), where 8m is the phase margin of system.

Since,

M1 - exp(-vf/. ) 2 17%.
and,

maximum undershoot - 20% - 0.736/(1+b),

so we obtain fl-0.5 and b-2.7. Substituting these values into

equation (3-13), we obtain fnl' 0.3. From equation(3-18), we

obtain 7n1 m 5dB. The specification of disturbance response

becomes IL /(1+L 1 )1 • 5 dB.
The design procedures are as follows:

Step.1. : Find bounds on Llno - glnqllo to satisfy the perf-

ormance specifications and the disturbance specifi-

cation I Tln 5 B.1+L ln 5dB

Step.2. : Design the loop transmission function L1 no, as

shown in Figure 12.
Step.3. : Design the prefilter f1 n by shaping the frequency

response of ~LI l to satisfy the specification,1+LlIn I

as shown in Figure 13.
Step.4. : Find bounds on L2eno ' g2nq22eno to satisfy the

performance specifications and the disturbance res-
I L2en

ponse 2rn K 2.3 dB.
I +L2en 2

Step.5. : Design the loop transmission function L2eno, as

shown in Figure 14.
Step.6. : Design the prefilter f22n such that the frequency

f ~22n L eresponse of 1+L 2 en meets the specification,l+2en

as shown in Figure 15.
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6. Numerical Examples

Example 1.

All parameters and specifications are the same for
examples 1-4 except maximum overshoot and maximum undershoot
specifications are useful at examples 1, 3 and 4.

Plant

P- [ P ll P12 1
P2 1  P2 2 .

P s~a s+a P s s+a
1 2 N'22 K21K2

s s s s+a
Plant uncertainty :.i 0 a • 2 , 1.4 • KI1 • 2,

0.2 ý K1 2 • 0.4 , 0.2 ý K2 1 ý 0.3
1.96 ý K2 2 1 2 , 0.7 K M1 1 ý 2
0.1 ý M 1 2 • 0.2 , 0.1 K M2 1 K 0.2
0.5 ý M22 M 1

"Performance specifications : the specifications of time domain
and frequency domain on itll(Jw)I

and It 2 2 (jw)l are shown in Figure
2.1, it 2 (jw)I•-20dB, and

it 2 1 (jw)jI-20dB.
Disturbance response : ILi/(l+Li)I ) 2.3 dB.

Maximum overshoot 17%.
Maximum undershoot : 20%.

. Figure 11 MIMO control system with nonlinear design
S~in loop LI.
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Figure 18 (c) Treqen response of Y21to Figure 18 (b) Fr meqec response of y22to
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I 4.J

A' t 11 2 o U I P Ls w 13 0

t 8

Figure 19 (a) Time response of step~- Figure 19 (b) Time response of step-

disturbance output Ylli disturbance output Y12 -
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Figure 201a Frequency response of t 11 Figure 20 (b) Frequency response of tl2.
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The frequency responses of till, t 1 2, t 2 1 and t 2 2 are

shown in Figure 16 (a) - (d) and their time responses are
presented in Figure 17 (a)-(d). The frequency responses yl and

y. with respect to step-disturbance input, are shown in Figure

18 (a)-(b) respectively. The time responses ylI, Y1 2 ' Y2 1 and

Y22 with respect to step - disturbance input, are shown in
Figure 19 (a)-(d). The noise responses, TNM and TN2 , are shown

in Figure 20 (a)-(b). It is concluded that the system respon-
ses all meet the design specifications from above results.

Example 2.(Figure 10)

The frequency responses of till, t 1 2, t 2 1 and t 2 2  are

shown in Figure 21 (a)-(d) respectively. The step responses of
ylI' yI 2, y2 1 and y2 2 are shown in Figure 22 (a)-(d).

Example 3.

in loop. ..... a + +
++ H

in loop 5. gind

a

The frequency responses of t 1 l, t 1 2 , t 2 1 and t22 are

shown in Figure 24 (a)-(d) and their time responses are prese-
nted in Figure 25 (a)-(d).

Example 4.

.- ~374
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. ...... ..... .. .
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Figure 25 (a) Frmeqnc response of Y11- Figure 24 (d) Frmeqey response of Y2
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Figure 26 MIMO control system with nonlinear design
in loop L2

The frequency responses of t1 1 , t12, t 2 1 and t22 are

shown in Figure 27 (a)-(d) and their time responses are prese-
nted in Figure 28 (a) - (d). Comparison of frequency responses
of TNl(s) and TN2(8) for four cases, are shown in Figure 29

(a)-(b). The noise time responses of TNl(a) and TN2 (s) prod-

uced by zero-mean sensor white noise are shown in Figure 30
(a)-(h).

7. Conclusions

This paper uses the improved MIMO design technique
and a nonlinear element, C.I., to design a MIMO system to meet
desired performance tolerances and to reduce the cost of
feedback. From numerical examples, we obtain the following
conclusions :

(1) The MIMO improved method can certainly reduce the inherent
overdesign, and the C.I. element can further reduce the
cost of feedback.

(2) The response cf nonlinear system to command input is alm-
ost exactly that of a linear system designed for the same
specifications, but the coupling of system is nonlinear.

(3) It is robustness of design such that the system response
is insensitive to variation of plant parameters and dist-
urbance. So, the nonlinear compensator can be successfully
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Figre30(a)Seso noise of TinI(Case 1). Fig~ure 30 ()Sensor noise of TNI (case 2).
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Figure 30 (a) Sensor noise of Til(case 3). Figure 30 (d) Sensor noise of Ti(case 4).
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Figure.30 (e) Sensor noise of T. 2 (case 1). Figure 30 (f) Sensor noise of T1 2 (case 2).
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Figure 30 (a) Sensor noise of TN2 (case 3). Figure 30 (h) Sensor noise of TN2 (case 4).
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adopted in the MIMO system.

(4) Considering loop two, the reduction of cost of feedback is
not evident whether the loop one is nonlinear d sign or
not. On the other hand, if the C.I. element is placed
within the compensator of loop two, the cost of feedback
can be more reduced.
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APPENDIX

Rational Functions of Numerical Examples

I. Example 1

9 (s)325925926( s+O.6) (s+45)
In~) (s+B8(s+150)(s 2+480s+600o2

lln (s+2)(s+3)(s+4)

18789903(s+1)(s+21)
92n~s) (s+9)(s+45)(s 2+336s+2802

f (s)-30
22n (s+2. M(s+3)(s+4)-

II. Example 2

g,(S),- 1062901961(s+0.6)(s+20)
(s+6)(s+154)(s 2 +640s+8002

30s)__30
11 ( s+2)(s+3)(s+5)3

9 () 21581502(9s+0. 62) (s+20)
2 (s4-8)(s+4)(s 2 +390S+300 2

f22(s)- (s+2. 5 )(s-+3 (s+7.4)

III. Example 3

(s)-325925926( s+0. 6) (s+45)
91n(s (s+8)(s+150)(s 2 +480s+600 2

lln (s+2)(s+3)(s+4)
g061842(s+l)(s+22)

92n'z-)-(s+5)(9.52)(s 2+259s+240

f 22nn S~ w - 32
f22n~s) (s+2)(s+4)2

IV. Example 4

gl~s) 1062901961(s+O.6) (s+20)
(s+6)(s+154)(s 2+640s+800 

2

f (s)-30
11 (s+2)(s+3)(s+5)
(s)-11200000( s+O.6) (s+18)

gn2 (s+3.5)(s+60)(s 2+264s+240
f 36

n22s)-(s+3) 2(s+4)'
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ABSTRACT

There are several Quantitative Feedback Theory nmthods that can be applied to
multi-input multi-output systems. These methods, without exception, arm based on
inversion of the plant and the controller, and hence cannot be directly applied to non-
square plants.

This paper proposes a sequential, multi-input multi-output Quantitative Feedback
Theory method that is based on direct design. The new method features a new concept
that unifies the treatment of square and non-square plants. The method and the concept
are presented in detail for the disturbance rejection problem of a square plant. It is
shown to be mathematically equivalent to the inversion based method. Because the new
m.thod is applicable to non-square plants, it should be considered a natural extension of
present, sequential, multi-input multi-output Quantitative Feedback Theory methods.

tResearch supported by NSF grant (No. MSS 8920628). This support is greatly appreciated.
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NOMENCLATURE

m : The rumber of plant outputs.
n : The ,iumber of plant inputs.
P : Anmbynmatrix;P={-(p},if -... I n.
Pij : A submatrix formed by eliminating the ith row and th colurmn of the matrix P.
PT : The ' ranspose of the matrix P.
p-.I : The inverse of the matrix P.
% : The cofactor of the element P.- in a matrix P; x i - (-1)i+J (AP).

: Determinant of the matrix P.

1. INTRODU'M2TION

Consider a linear time invariant (LTI), multi-input multi-output (MIMO),
uncertain plant (shown in Fig. 1). To reflect uncertainty in the plant, P(s)eO#, where P is
a set of LTI transfer function matrices. The control design problem considered in this
paper is to find a controller G(s) to meet certain performance specifications on the
closed-loop transmission from the disturbance D(s) to the output Y(s) and guarantee
robust stability.

Y(s)
- G(s) +'s--- P Is

Figure 1: The feedback system

Several methods have been developed for design of such a controller within the
framework of Quantitative Feedback Theory (QFT). One similarity among these
methods is that they all involve inversion of a square plant and a square controller
(Shaked et a6 1976, Horowitz 1979, Horowitz and Sidi 1980, Horowitz and Loecher
1981, Horowitz 1982 a, Horowitz 1982 b, Horowitz et al 1985, Horowitz and Yaniv
1985, Yaniv and Horowitz 1986). Because of this inversion, these methods cannot be
used for a non-square plant. It should be noted that Horowitz (1963, § 10) investigated
the non-square plant probiem by considering inversion of the return difference, I + PG.
For the more outputs than inputs case, Horowitz suggested to augment the plant with
zeros as necessary to obtain a square plant. For the more inputs than outputs case,
Horowitz suggested that the designer eliminate certain rows from thc plant in order to
square it (e.g., rows that are highly coupled to others). Notewoithy is the recent results
by Nwokah and his co-workers (Nwokah et al. 1990, Perez et al. 1991). In these works,
key developments from the "British" frequency domain methods arm extended to a class
of uncertain plants within the general spirit of QFT. These results are fundamentally
different from present QFT methods fo1 the following reasons: (1) they do not involve
plant inversion, (2) they involve of a certain degree of conservatism in cases of
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parametric uncertainty; and (3) the closed-loop specifications are given in terms of the
diagonal elements and a certain degree of interaction.

The objective of this paper is to develop a new QFT design method based on a

unified treatment of the general mxn MIMO plant. Naturally, this can be made possible

only if the method does not involve inversion of the plant and of the controller. The

underlying concept used to develop this method is presented in detail using a disturbance

rejection problem with a square plant (m--n). The applicability of this concept to non-

square plants will become clear from the presentation in this paper, and further details

will be the topic of future papers.
This paper is organized as follows. Section 2 desciibes the feedback control

problem. In Section 3.1, we first describe the present QFT sequential method for the

disturbance rejection problem. In Section 3.2, the new QFT method is presented, where

a recursive equation is derived for a square plant. In Sections 3.3-3.4, we compare "the

two methods and Ghow they are mathematically equivalent. Finally, in Sections 4-5 we

discuss the problem of robust stability and application to a non-square plant, respectively.

2. STATEMENT OF THE CONTROL PROBLEM

Consider the feedback system shown in Fig. 1. The plant transfer function matrix

(TFM) is P(s) = [pij], where P(s)eLP, iP is a set of LTI transfer function matrices. The

uncertainty can be of any type, e.g., parametric, additive, multiplicative or ot.•rs. The

TFM from the disturbance to the output is described by Y(s)-(I+P(s)G(s)) P(s)D(s).

Denote the transfer function D(s) to Y(s) by T(s),

T(s) = (I+P(s)G(s))"' P(s) . (1)

The control objective is to design the controller, G(s), that satisfies the following

performance specification

i--1,2, "" ,n
Iti(J)lg 3i(° lj--l,2, ... ,n "

In addition, the closed loop system must be robustly stable.

3. QFT DESIGN

In this section, we present the concept underlying the derivation of our new

method. For several reasons we consider here only square plants, i.e. m--n. These

reasons are: the complete presentation has been divided to several standard length papers

and the need to compare to present QFT methods that deal only with square plants. For

comparison purposes, we begin by briefly reviewing the present MIMO QFT sequential
method. Throughout the paper we use the brief notation of P for P(s) (where possible),

and:

P = (pij), T = ftj} and G = diag~ g1, g2, " ,g n--,2,

The main idea in the prespnt MIMO QFT method is to solve the feedback problem in n

sequential steps. At the imt step, one derives from Eq. (1) the appropriate relations fortQ

in terms of the single controller gi. QFT bounds on this g are then obtained to

simultaneously satisfy the specifications on the closed-loop transfer functions in the ith

channel, tij, j=1,2, ,n. Subsequently, thc designer proceeds sequentially to synthesize
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in a similar manner the remaining controllers. The new method presented in this paper
employs this same idea of sequential design.

3.1 The Present QFT Method

Assume that the plant inverse exists. The present QFT involves inversion of
the transfer function (PG). Using such inversion, Eq. (1) can be written as

(I+GI P-')T = G*' (2)

Using the notation pTh{q1(}, expand Eq. (2) as follows

14qll/g, ql7 g . q,0/g, t t1\t g,\ .... 0 0g

q21/g2 I+%A2/g . q2./92  0 1/g2 0-- .

qu/g +qf/g.) ýtml tan) 0 -0/'

Using Gauss elimination (Strang 1980), the TFM I+(PG)"I is transfonicd into an upper
diagonal matrix. The final resul of this process is

f l Iq ljjg j q% /g j q ln /gt ~ 1t n0 1 +q;2qg2 qA/g2

01" - (a-1),
0 0 -+ %i a.-Xm .i/g(n. ,) q( ,-j ,g(.j) . . .

0 0 ni:.g 'o

c11/, 00 0 0

C21/g2  C22/g2 0 0
(3)

C(, ca/2 /g(0 o) c .- lo)l/g( 1) 0/(

cnI~2 C~n-i fg can/go)/

where qj~j and

m I iKI q jc.
r-!iii

qfJ = L- (gi+qi)'

i-i

and
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Sq'. cij
- --- £--. whenm > j, wherem=2,3,--,nandj 2,3,'",n-I

i-I gi +q•

0 when m <j

1 when m j

After several algebraic manipulations, one can derive the relations for t.i in terms of %,
gi and til, iej. The following is the final relations for tij (Chait and Park, I992)

n

ll ci - E(ktkj)
Iti I = <5 NO (4)

gj+qii

3.2 The New QFT Method

The new QFT method employs the same sequential design principle used in the
present method. However, the new method does not require explicit inversion of the
TFM (PG). In contrast to Eq. (2), the new method utilizes the following equation

(I+PG)T = P , (5)

that can be rearranged to

(PG)T=--P-T . (6)

Expand Eq. (6) as follows

(Pgg9 P12g 2  pog 'a ti t12  tin (pu-tI, p12 -t 1 2  Pin-t.')

SP 2 1 g1 P229 2  P2890 1 t 2 l t2 2  t2 a j 2 j-t 2 l j22l 22 P2a.2. 7

[PuIg, Pn2g2  Naga., tnl t. 2  4.,J (Pa--tl P.2-t.2 Pa-tuJ

Now, consider Eq. (7) for the Kth column only

P11g1 P1292  pi5ge , I 1
SP 2 1 g1 P 2 2 9 2  P~g t2K P2KC t2KýPnlgl Pe2g2 ponge, ,t JO 'O PnK tnK,,

Since the controller 0 is diagonal, the above can be written in a coanpact form

P diag[g,,g 2, ",g] [(tk t2K ... t.K]T P diag[tik t2K t.]K [g1,g 2, 'g.]T.
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That is

jP2ItIK Pn2K o2 tnKJ•9 2i P22K t(8)

Pni tiK Ps2 t2((

In Eq.(8), there are n equations and n unknown (the gi's). This system of equations can
be solved directly tbr any g& using LU decomposition or Cramer's rui,. Of course, a
necessary condition for such procedure is that the inverse of the plant P exists.

The concept underlying the new method can now be presented Denote Eq. (8) in
a compact form by A x = b. For simplicity of notation, it is assumed here that the
sequential procedure starts from i=l and proceeds in order to i=n. If ncessary, Eq. (8)
should be first permuted to allow this sequence. As is done in the present mthold, we
derive relations for tij in terms of the single controller, gi. The sequential procedure for
deriving these relations is outlined in Table 1.

Step Procedure

1 Replace the ith element in the vector b by pK

2 Replace the ith element in the vector x by tiK

3 Replace the ith column in A matrix by the column
IPlIN & P2i&' "'" P(i-Itgig (l+Piigi) P(i+lI~ g, "'" Psg i]T

4 Using Cramer's rule, derive for ta
5 Repeat Steps 1-4 for the (i+i)th element while preserving previous

-I replacements

Table 1. The procedure for deriving tiK relations

Using the procedure in Table 1, at the ith stcp, we have

•l+pIlgi P12g2 Pligi pItatK 11 tIK PIK

P2.g1 l+p22g2  P2ig i  P2,tuK t21  P2K

Pilgi A292 I +Pigi P~ntnK tiK = Pir (9)

P(i + I)gl1 P(i + )292 P(i+ + ,,,gi P(,+ t)ntnK g(i + 1) P(,I)K " t(ijI)K

P01g 1  Pa2g2  paigi PoataK go Ps " tnK

From Eq. (9), the relations for tiK can be easily obtained by using Crarner's rule a-
follows (Strang 1980). Denote the above equation in a compact form as B y = c, where
B=[bl b2 ... bi b.] and b, is the ith column vector. Application of Cramer's rule gives
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tiK A[bI b2  bci-u c b(,+i) "" b. (10)AB

The matrix B can be written as a product of two matrices, B M N, where M and N ame
defined by

l+p,,g, P12g 2  pligi pin

P21g1 I+P 2 2g 2  P2igi P20

M p1-9g Pi2 g2  -1+Piigi Pin

P(i + I)1gI P(i. 1)29 2  P(i + l)igi P(i + I)a

P2tgi Pn2g2  P aigi  Pan

N -- diag[l, 1, -'1,, t(i+t)K, -- taK]

To compute AB = A(MN) = AM AN, since

AN = fj t.,

let us consider the matrix M. Since the controllrrs [g ,...,g(i-r] were already designed in
the previous (i-1) steps, the first (i- 1) columns of the matrix M can be written as follows

i 2
Pt P,2  pugi Pin

I 2

P2 . P2 2  P2 igi P2N
S~M-

1 2
PHt P 2  + Piigi Pin

! 2
Pu P P2 Pgi Pan

where

Pj I + pi& i =j
(PiA -- ;t~g i ;j

Next, define a matrix Li as follows
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( I 2

jt 2
L p= P 21 P 2  P22  P2.

=p', p2 pI

and hence

AM = A L gi +a

Finally, the denominator of Eq. (10) has the form

AB = (A Li gi+at') HIto. (1)
i-i,'

Next, we turn our attention to the numerator in Eq. (10). The matrix in the
numerator in Eq. (10) can also be written as the product of two matrices, VW, where

I 2
P11 P12 Pix Pin

I 2
P21. P2 2  P2K P2-

1 2
Pit Pi2 PiK Pin

1 2
P.l P. 2  P&'tK P..)

W = diag[l, 1, ,1, 11i+I)K, ,tK]

Expanding A[b ... b(i.1) c b(i+) ... b.] = A(VW) = AV AW, where
B UI

AV - {P. K (Z ki
k-I k-i+ I

and
N

AW = tiK
i-i.,

yields the final form for the numerator of Eq. (10)
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A(b,... b(.) cb( +))~bf...] -- {lpf. }- Z]t. } l--tiU (12)
I k-i+ I i-i+K (

Because the numerator and the denominator of Eq. (10) have a common terni, Eq. (10)
becomes

tiK -I L (13)

ALV g& + 
(3i

Note that

,dri

k-I

The structure of Eq. (13) is similar to that obtained in present MIMO QFT sequential
methods. This implies that QFT bounds for gi can be computed using the approach
suggested in these methods (e.g., see Chait and Park, 1992). Roughly speaking, at each
step we derive QFT bounds for gi using the relations for tik, k1=l,...,n, and their closed-
loop specifications, Pik.

3.3 A Comparison Between Present QFT and New QFT Methods

Now that we have presented the relations for tn1, t12, --- , tI , in Sections 3.1
(present method) and 3.2. (new method), we will prove that both methods arc
mathematically equivalent for this special case of, square plants (n=m). Consider Eq.
(13) for n--2 and i-l. In this case, ALV = AP and ak, = cx*. Hence,

. "P k. 'kik- , , k-2

"tIK - AP gt +a1 it (14)

By definition

( (-lIy-i (APjj) Adj Pij

AP AP AP

Divide each term on the right hand side of Eq. (13) by AP

391



k-I k-2

AP AP
IK a

AP

Using the definition ofq.., the denominator is simplified to q, f+g,, while in the

numerator we obtain

a

{itakitkK}k-2 = I(qlktkK)

AP k-2

For K=1, t,, can be written as

a

I " {(qlk tk
k-2

ql1 +g1

and for K>I, tIK becomes

"-'{(qak tkU

tiK q-- + gI

Therefore, we have shown that for the special case of square plants, both methods
(present & new) yield a closed-loop relations the first step that arm math-matically
equivalent. Although the relations for the next steps are not shown here, the eqivalency
holds for any step in the sequential procedure.

3.4 Examples

As an illustrative example, let us compare the two methods with the case of two
inputs and two outputs. Given n=-m=2, we have

p=PI I P12 T= I t12 .g
' 1721 P22) .21 t22) 0g2

(i) Present QFT method

Using the definition of qij,
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P2 -P12)

I- APj

where AP - PIIP22 P12P21.

Substitute these expressions into Eq. (4)

1-q12 t2_ Pll P22 - P12 P21 + P12 t21

tll g,+qu- (PCP22 - P12 P21) g91 + P22

and

"-ql2 t22  P12 t2 2
t12 -- +qll (P1IP22 - P12 P21) g1 + P22

For the second step, Eq. (4) gives

t21 - -____P21_______(PIIPn - P12 P21) g, g2 +P11 g, +Pg229 +1

and

= (PliPn - P12 P21) g1 +Pn

(PIIPz " P12 P2•) g1 g2 +P11 gs +PUg 2 +1

(ii) The new QFT method

For the first step (iM), we use Eq. (14) to derive t,, and t,2 " The cofactors and
the AP in Eq. (14) arm

al11 = P22.

(121 = P12,

AP = PII P22" P12 P21.

Substitute these expressions into Eq. (14),

PII P22 - P12 P21 + P12 t21
t (P]IP22 P 12 P21) g, + P22

and
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P12 t22
t12 = (PIIP22" P12 P21) g, + P22

For the second step, Eq. (14) is used to obtain

121 =P2P

(PI[P " P12 P21) 9g g2 +P 1 g1 +P,2g2 +1

and

(PP,,Pn - P12 P21) g, +P22

(PgPn - P12 P21) g1g 2 +P 11 g1 +PngZ +1

Therefore, we have shown equivalency between the present and new methods for the two
input/output case.

Next, we present the specific equations for the three input/output case using the
new method. For i-I, the procedure in Table I gives

1+PtIg, p12t2K P13t3K)r rtlk PIK

P21g1 p22t2K P23t3K 9g2  = P2K--t2K

P31g1 p32t2K P33t3KRAg3) P3K-t3K)

Using Eq. (13), ALI = AP, and

t PlK411I+P2k(121 +P3KX3[ -t2Kl2I -t3K'131

t~k = AP g, + mil

For the second step (i--2), the procedure in Table I givesCl+p,,g, P12g2  P13t3K"(tik ( PIK

P 21g, l+P 22g 2 p23t3K t2K - P2K

P 31g1  P 32g2  P33t3K), g 3 ) 1 P3K-t3K)

P11 P12 P13
AL 2 = P,22 P23

ýIP3 1 P32 P 33)

Application of Eq. (13) yields
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PtK04y+ P2KIa22+ P3K IX32 t3K C32
= AL 2 g_ aM

g1(PI Kcz2 + P2K41 22 + P3K032 + t 3Kl32)+ P2KP 33 - P3KP23 + t 3K0 2 3

g2 (gIAP+aC1 )+gIoa2+p 33

Finally, for the last step (i=3), using procedure in Table 1,

l+p11g1 P12g2 Pt3g3 14 ilk PI PK[P21g1 1+P22g2 P23g3  t2K =JP2K

P31g1 P32 92  P339 3,)1t3K) . P3K)

and apply Eq. (13) with ( I 2 \
PE Pt12 P13

I 2

P31 P32 P33)

PIK•a3 + P2K 2 3 + P3KC033
"t3K = AL3 g3+ 3L3

g9g2(PIKC913+ P2Kcx23+ P3KOx33)+ g,(P3pI-- PIKP31) + g2(P 3KP22 -- P2P32)+ P3K
g 3(g 1g 2A P + g2 tl + g,1• 22 + P 33)+- 1 g 2( 33 + Pllgl + P22g2 + 1

4. STABILITY

Robust stability of the control system shown in Fig. I is related to sequential
design of the return difference I+PG. The present QFT sequential procedure for closed-
loop robust stability (e.g. Yaniv and Horowitz 1986, Chait 1991, Chait and Park, 1992)
follows closely the one suggested by Mayne (1973, 1979) for fixed systems. This, in
fact, allows QFT methods to readily make use of related results on stability, interaction
and integrity of feedback systems with decentralized design (Mayne 1973, 1979).
Nwokah, in recent works has been making an explicit use of the similarities between the
"British" and the QFT frequency domain design methods (e.g., Nwokah et al. 1990).

5. NON-SQUARE PLANTS

The new method developed in this paper considers square and non-square plants
in a unified manner. This is because its focuses on the return different I+PG which is
always a square MTF regardless of the dimensions of P and G (recall, present MIMO
QFT methods involve 1+G-IP-'). Therefore, the new concept introduced for deriving tij
relations for computing bounds at each design step (as outlined in Table 1) is also
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applicable for the non-square case. Details of the new method applied to the non-square
case and for other MIMO feedback problems will be presented in future papers.

6. CONCLUSIONS

A new direct Quantitative Feedback Theory Design method for multi-input multi-
output systems has been developed. It was shown that the direct QFT design method is
mathematically equivalent with the present QFT method that involves plant and
controller inversion. However, the underlying concept used to derive the direct QFT
method is also applicable to a non-square MIMO system.

/
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QFT Design of Earthquake Simulator Machines

Allen .1. Clark*

MTS Systems Corporation
14000 Technology Drive

Eden Prairie, Minnesota 55344-2290

Abstract

One commonly used type of earthquake simulator machine is the servohydraulically
actuated specimen platform or shaking table. High accuracy servocontrol of such ma-
chines is very difficult because of the large load impedance uncertainty of the specimen
(large amplitude tests to catastrophic failure). It is also difficult because of the basic
nonlinear nature of large amplitude servovalve-actuator force and velocity character-
istics. Another problem is the requirement to control the system through multiple
resonances of the machine itself, in addition to the specimen's dynamic characteristics.
The process of developing mathematical models suitable for applying QFT techniques
to the earthquake simulator machine problem, and the results of that application will
be discussed.

"Applications Specialist, Advanced Technology Development
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A Model Reference Quantitative Feedback Design Theory
and Aircraft Engine Application
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May 12, 1992

ABSTRACT

A new decentralized robust control design framework, model reference quantitative feedback design
(MRQFD). is developed for the design of the MIMO parametric uncertain control systems. An internal
model reference loop is proposed to obtain the achievement of generalized diagonal dominance (GDD) and
the reduction of uncertainty in the resultant compensated internal loop system. Based on non-negative
matrix theory, a useful design guide is derived to achieve the GDD condition fcr the internal model ;Icrencv
loop. Then a sensitivity-based quantitative feedback design (QFD) method is developed and used to solve
the resulting series of single 1oor QFD problems. The MIMO quantitative specifications are guaranteed to
be satisfied by the proposed design c-amework for largely uncertain systems. A successful application to the
design of a robust multivariable controller for the Allison PD-514 aircraft turbine engine is presented to
demonstrate the effectiveness of the methodology developed here.

"Ph.D. Candidate. + Graduate student.

"Professor.
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1. INTRODUCTION

Over the last decade a steady and growing research effort has been invested into the robustness
aspects of mulhvariable cont-ol system design (see for example, Dorato and Yedavalli, 1990 and
references cited therein). In particular, the familiar classical concepts of gain and phase margin
have been generalized to the multivariable case (Postlcthwaite et al., 1981), whilst concepts such as
Bode's sensitivity function (Bode, 1945) have been introduced into multivariable system design in
the form of the spectral norm of the return difference matrix (Doyle and Stein, 1981). The majority
of the research effort has been devoted to the systems that are assumed to have unstructured
uncertainty. This allows such problem to be transformed into a form where the small gain theory
(Desoer and Vidysugar, 1975: Zames, 1981) and powerful recent maathematical techniques from
functional analysis and operator theory (Francis, 1987; Doyle et al., 1989) can be successfully
employed for system analysis and synthesis. However many problems of practical interest appear
as models with both uwage parametric uncertainty and high frequency non-parametric uncertainty.
Typical examples include flight control and turbomachinery control over a flight envelope
parametrized by power level, height and macn number, as well as general automotive engine
control systems. AU these problems yield a collection of linear time-invariant models obtained by
linearlization of a parametrically dependent nonlinear differential equation set about a finite number
of different operating points. This problem class is often endowed with hard stability and
performance contuints such as on rise time and overshoot. It is important to keep in mind that fcr
practical control engineers the control design process is interactive, which involves an interplay
between customer specification, almost always quantitatively described, uncertain plant
characterristics, and the multivariable feedback design process itself (O'Reilly and Leithead, 1991).
The quantitative feedback design (QFD) robust control methodology for multiple input multiple
output (MIMO) systems introduced by Horawitz (Horowitz, 1979; 1991) is perhaps the only known
technique that considers large parametric uncertainty and quantitative performance requirements.
The Horowitz's MJMO QFD method, using Schauder's fixed point theory, requires an nxn time
solution for the elements of the closed loop transfer matrix. The downside is that the method
though useful and transparent in the hands of an cxperienced control enineer has not until recently
lent itself easily to formal mathematization as in the more recent paradigms such as HF control and
ji synthesis.

Here we present a systematic methodology: a model reference quantitative feedback design
(MRQFD) theory, for the design of robust decentralized controllers for MIMO uncertain systems.
Kidd (1984) has proposed a linear model reference feedback system, combined with direct Nyquist
array (DNA) design techniques (Rosenbrock, 1974) to extend the DNA techniques to multivariable
uncertain systems. One of our efforts is to develop a useful systematic design procedure, based on
non-negative matrix theory, to achieve gener.,lized diagonal dominance for parametric
multivariable uncertain systems within the model .- ference concept. The theory of non-negative
matrices plays a key role in assuring that the interrnal model reference loop system satisfies the H-
matrix condition, that is, generalized diagonally c.rminant, over the frequency range of interest
(Berman and Plemmons, 1979; Nwokah, 1988). A ;,ensitivity based QFD method is then developed
and used to solve the resultant robust control probi--m for each loop of the generalized diagonally
dominant uncertain system. The QFD method protosed here ensures that satisfaction of the QFD
specifications for each individual channel is g-.aranteed to satisfy the MIMO quantitative
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specification. A successful application to the design of a robust multivariable controller for the
Allison PD-514 aircraft turbine engine is presened to demonstrate the effectiveness of the
methodology developed here.

2. MODEL REFERENCE QUANTITATIVE FEEDBACK DESIGN

2.1 The 3 Degree-of-freedom Feedback Structure

Consider the three degree-of-freedom multivariable feedback structure shown in Figure 1. The
n-dimensional signals r(s), w(s), e(s), u(3), d(s), y(s), and n(s) represent command input, filtered
command input, error signal, control input, external disturbance, controlled output and sensor noise
respectively. The matrices G(as), K,(s), Hm(s), K(s), and F(s) are all nxn rational transfer
matrices. G(Qs) is the parametric uncertain plant with real parameter vector ca being a member of a
compact parameter space Q. K.(s), H,(s), K(s), and F(s) are respectively the internal loop
controller, the reference model, the outer loop controller, and prefilter matrix. The transfer matrices
K,(s), Hm(s), K(s) and F(s) have the additional property of being diagonal.

The internal model reference loop (IMRL) can be redrawn as shown in Figure 2. Let the
reference model Hm(s) be described by a transfer matrix with the same pole-zero structure as the
plant transfer matrix G(cs), V cc r Q). Suppose an internal loop controller K,(s) is chosen such
that the resulting transfer matrix between u(s) and y(s), H,(a,s), behaving dynamically as the
reference model Hm(s). Then, the resultant control design problem leads to a two degree-of-
freedom (DOF) feedback structure as shown in Figure 3. Such a structure is similar to the standard
two DOF control structure, which was advocated by Horowitz (1963) and is now very popular in
the control community. However, in Figure 3, the transfer matrix H,(a•s) is compensated to be in
generalized diagonal dominance (GDD) condition, which is a key feature that distinguishes over
formulation from the standard 2-DOF structure. As shown in tht work of Yau and Nwokah (1991),
due to the GDD condition of H,(ars), the resulting 2-DOF control design is much easier than those
in the classical MIMO QFT method (Horowitz, 1979) and the sequential MIMO QFT method
(Yaniv and Horowitz, 1986).

The internal model reference loop can be also used in connection with the Nyquist array methoco
(Rosenbrock, 1974). Actually, the work here is motivated by Kidd (1984) on the extension of the
Nyquist array method to uncertain systems with the internal model reference concept.

2.2 The Feedback Control Specifications

The closed loop transfer matrix for Figure 3 can be given as:

T(cs) = [I + H,(a,s)K(s)F-' H,(ct,s)K(s)Fs) (2.1)

and the MIMO quantitative design specificatiorn would be formally stated as follows:

(1) T(, s) is stable forevery a fe ,
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(2) ItiH(0 j6))- tI0C0)I r •(co) , V co >O , i --1.2 . ..n, V cc (X6 ,

(3) 1 tij (m.,jm) I :Sr~(co), ioi, ij=l1,2,...,n, V a e fl,

(4) y. $(a)) <minjtii(ao.,)j, i=1,2,.....n,Vae Q/,na
i1=.a~j a

(5) + L~ff.j•)5 mi(co), i;1,2,.....n, V a e 12.

where L'(a,jtu) is the i-th diagonal entry of H,(cs)K(s), with jt(o) and yj(ao) being prespecified
performance bounds, and &,(co) representing the target tracking response. Condition (1) is a robust
stability requirement, while (2)-(4) are quantitative robust performance criteria. Condition (5) is a
disturbance attenuaion criterion. Note that conditicn (4) is a formal statement that the closed loop
specification matrices T(jco) satisfies a diagonal dominance criterion (Rosenbrock, 1974). This
condition, suggested by Nwokah (1988) , provides a link between the Nyquist array method
(Rosenbrock, 1974) and Horowitz's MIMO QFT method (Horowitz, 1991).

3. THE INTERNAL MODEL REFERENCE LOOP (IMRL)

3.1 Model Matddng Problem

As shown in Figure 2, the transfer matrix between u(s) and y(s), H,(ca,s) may be written as

Hj(cs) = [ I + G(cz,s) K,(s) 1-I G(as) [ I + K.(s) Hm(s) 1. (3.1)

In particular, Hm can be chosen to be equal to GD where GD is the diagonal elements of G(ao,s) for
a specific parameter vector cz0e Q (this choice of Hm may be arbitrary). The output error vector,
between the reference model and the plant is given by

e,(s) = ym(S) - y(s), (3.2)

and thc error vector e, is related to the input vector u by the transfer matrix equation

e,(s) = [ I + G(c.,s)K.(s) 1-1 [Hm(s) - G(a.s)]u(s)

= UI + G((s)K.(s)]- G(.s)-G-1 (cts)[Hm Ws) - G(cs)]u(s) (3.3)

Define
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S8Qx4s) (I + G(r, s)K,(s)]f',

H2(m.s): [ I + G(z, s)K, (s)]- G(a, s),

A.(a~s):=H,(s) -G(a,s), and

Amcr):G' (a~s)[m.(S) -G(a,s)J.

where Sa(czs), H2(cxs), A,(czcs), and Am.(cas) are respectively the sensitivity function of the IMRzL
system, the closed loop transfer matrx of the H2 subsystem, the model error, and the relative model
error. Hence, from (3.3), we have

ea(s) = S,(Cz~s) A.(axs) u(s) = H2(axs) A,(uý s) u(s). (3.4)

Internal stability requires that the error vector e,(s) be bounded for all bounded input u(s). Thus,
the matching criterion can be represented as

II Sa(ZxjCo)A,(Qz,s)llII =IIIH'2(cz,jo) A(a.,s) H S E(,-, Vwxie[0,oa.), V ae!Q. (3.5)

wherc egco) is the desired bound for the error vector e.(jw) for all bounded Ii u~jo) 11.

(3.5) is certainly satisfied if A. (a, s) --+0 (or equivallently, A,, -+ 0), V We [0, ce), and V ae L2.
It is noted that A, --ý 0 implies that G(arjco) -+ . 0a)jt). T'he model error A, and the relative model
error A.. are fixed when a parametric uncertain plant GQms), arz 92 is given and the reference model
Hm(s) is selected.

Suppose that A,(cxjco)) and Am.(xajo) are real ;table transfer function matrices for every ae C
and u(s) is the set of input signals 2-norm bounded by unity. If H2(a4s) is diagonally internally
stabilizable by the internal loop controller K,(s), then we may utilize the H.. norm (Francis, 1987)
to rewrite (3.5) as

max-I ac~)AW,)I.51 or (3.6)

max-IlI 12 (cS) L.fr-(,S) II.51.(3.7)

Note that (3.6) is a weighted senstivity H.. optimiz!,1un problem. Let

8,f'jco) :=max:~~(.jn I

Thus, for the purpose of the design, we may rewrite f'3.6) as

max 11 S,(a,jc-) Ii- 5- (3.8)

Observing equation (3.1), we know that if
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|l+G(a,jca)Kio) II b 1 and III + K(jo)H(ja) 11 >>1
VO)e[0,m-), Vailf, (3.9)

then 11 H.(jo)) I . II Hma(jo)) 11. Therefore, if a sufficiently high gain controller K.(s) is allowed to
be applied to the IMRL system, then Hs(as) will approach the reference model Hm(s). By (3.8), it
is equivalent to asking the sensitivity function to be sufficiently small for the error vector eC(jo) to
be very small in nmn.

We also may decompose H-,(as) as the following

I-I,(a,s) = Hm (s) + H.(a,s) - Hm (s)
= [I + (H,(a, s) - Hm(s)) H- 1 (s)] Hm(s)

and let

M.(as) := (H,(a,s) - H,(s)) H;'(s).
Note that the condition (3.9) would equivalently make M.(Cs) sufficiently small, that is,
11 M, I c 1 for every (o, and every ae 12, which provides a foundation of the diagonal stabilizability
for H,(as) and will be discussed later.

However, in practice there is likely to be some frequency above which equation (3.9) is notsatisfied. This agrees with the fundamental understanding that the benefits of feedback in reducingsensitivity to parameter uncertainty is restricted to a low frequency region, normally up to the
bandwidth of the system (Horowitz, 1963; Freudenberg and Looze, 1988).

As discussed previously, it is assumed that the variations or uncertainty in the plant parameters
are known to lie within certain range, that is, the compact parameter set Q is known a priori. The
internal loop controller, K,(s), is then determined such that thr modulus of the diagonal elements of
the plant transfer function matrix eqv'als the modulus of the reference model transfer function
matrix over the desired range. The off-diagonal entries of the reference model transfer function
matrix are chosen to be zero, since this then tends to reduce interaction within the resulting
compensated system. For the case of the diagonal relerence model considered here, this
corresponds to making the system H.(a,s) diagonally dominant or generalized diagonally
dominant, i.e. H-matrix condition, over the frequency range of interest for every ae CX

3.2 The Pole-Zero Characteristics of the IMRL
For simplicity, the notations s and ca will be omi=ed in the appropriate places without confusion

in the following discussions. From Figure 2,
y = (I + GK,)-' G(I + K,.3H.)u = H2H, u = Hlu (3.10)

where

H= H2 H , Hi= I + KH , H,= (I + GK)- G.
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In general, since the selection (if possible) of the matrices Hm(s) and K.(s) are unaer the control
of the designer, the subsystem H, may be assumed to be stable, and therefore the stability of the
overall inn=" loop system depends only on the stability of the subsystem H2. If the open loop plant
transfer function matrix bras unstable poles, then the plant may be stabilized by the appropriate
choice of a stable controller matrix K,(s). It has been shown (Kidd, 1984; Yau and Nwokah, 1991)
that the pole-zero characteristics of the IMRL system have the following relation.

ZHI ZG
det[H,] = PH P-- (3.11)

PH.. PH2

where ZH, and Z7G are the transmission zero polynomials of H, and G, and PHand PH2 are the
pole polynomials of HEm and H2 respectively.

Hence, it can be seen that the transmission zeros of the IMRL system are the set of
transmission zeros of the plant plus the set of transmission zeros of the subsystem H 1. The poles of
the system H, are the set of poles of the reference model plus the set of closed loop poles of the
subsystem H2 . Suppose Hm and G have the same number of unstable poles. Suppose further that
H. and Hm have the same number of unstable poles. Then, it is implied by (3.11) that H2 should be
stable. Therefore, if G is minimum phase and high gain diagonal stabilizable, Lhen H2 is high gain
stabilizable. If ZH, and P11, are both Hurwitz, then H, and G as well as H.. have the same number
of unstable poles. Write G(os)=[l+(G(a,s)-Hm(s) )H-1 (s) ]Hm(s), and define

M_,o (a,s) = (G(a,s) - Elm(s) ) H-1 (s), (3.12)

then we have G(as)=(I+Mco(a,s) )Hm(s). Therefore

I + GK, = I + (I+MrO)Hm K,= [I + MGoHmK.(I+HmK,)-a ](I+Hm K,). (3.13)

Define Tm(S)=HmK,(I+HmK,)- 1 . Then (3.13) leads to

I + GK. = (I+MoTm)(I+HmK,). (3.14)

It is noted that the stability of Tm is implied by the stability of I+HmKC (that is, HI). Suppose that
Moo(a,s) is a non-singular perturbation of the nominal plant Hm(s) for every a. Hence by
Rouche's Theorem (Rosenbrock, 1974), the stability of I+G(a,s)K,(s) is implied by the stability of
I+Elm(s)K,(s) together with the condition of the spectral radius of MGo(a,s)Tm(s) being less than
one, p(MGOTm)<l, for every a and for every s.

From the analysis of the IMRL presented above, it is clear that such a system possesses
characteristics that can be used in the design of feedback control systems for multivariable plants
subject to parametric uncertainty. If a sufficient feedback gain is applied to the subsystem H2 , then
the plant poles can be moved sufficiently leftward in the s-plane such that the dominant response is
that of the reference model. Hence K,(s) should be chosen to rrbustly stabilize G(cts). The
conditions for robust diagonal stability will be discussed in the next section.
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3.3 Conditions of Robust DiaenaI Siabilizability

As discussed prviously, the basic idea of the IMRL system is to choose the internal lcop
controller Ka(s) such that H.(ms) is restricted strongly near Hm(s) for every aef. Then we
stabilize Ha(s) by choice of an outer loop controller K(s) in the resulting 2-DOF design as
described in section 2 such that H,(a,s) is also stabilized for every ae QL From the analysis of the
IMRL system, it is noted that the existence of an IMRL diagonal controller, Ks(s), is strongly
dependent on th: feasibility of robust diagonal stabilizablity. Herr we first present some easilycomputable existence conditions for robust diagonal stabilization. Let G(as), a e 0 be an nxn
uncertain plant matrix set and DN be the usual Nyqaist contour. Then, by the Nyquist hodograph of
an element of the matrix G(cs), we shall mean the fuzzy Nyquist diagram generated by the union
of the value sets (or templates, Horowitz, 1991) of the said element of G(as) as s transverse DN,
and a ranges over Q. Write

G=GD+GC = [I+GCGB!I'GD, Va"I,
where GD=diag(glI, g2, ..., gft), and Gc is the matrix of the off-diagonal elements of G, with zero
diagonal elements. Define the interaction matrix of G as:

M0 = Gc'GV, Vaze 1

Then det G = det [I + MI]-det GD.

Theorem 3.1 : The transfer matrix G(a,s) is robustly internally diagonally stabilizable on Q if and

onIy f

(i) Each gii(as) is robustly internally stabilizable by some ksi(s), for i=l,2,...,n.
(ii) Zm (a) - Pm (a)= 0, where ZM. (a) and PM0 (a) are respectively the number of zeros and

poles of det [I + MG] contained in C, for every ae 0. Or equivalently, the Nyquistn

hodograph of det G(a,jco)[]'gii(a,jao))-' neither touches nor encloses the origin for all

i=a

(iii) det G(acs) and det GD(cas) (that is, Ilgii(as)) have the same number of unstable poles in
j=i

C, for every a.

Proof: By the principle of argument and the generalized Nyquist stability criterion, the proof can
be established straightforwardly. A slight modification of Perez et al.(1991) would also give the
proof.

Let (G(cs)} be the open-loop plant transfer matrix family and let (G(a,--)) be the
corresponding family of the high-frequency plant-gain matrices of [G(as)j, where
(G(a,oe) }={G(as) : I s I --+ oo. A necessary condition for the existence of a fixed diagonal robust
stabilizing controller for the family {G(a,s)) is that for every nominal G(ao0,-) and every other
G(a-oa) in {G(, oo)}, detG((, o)(detG(co,oo))-' > 0. The essence of this condition was noted by
Horowitz (1963) a long time ago, but has recently been reinvestigated (see for example,
Kwakemaak, 1982; Nwokah and Thompson, 1989 and references cited therein). It has been shown
(Nwokah, 1988) that all the known necessary condiuons for robust stabilizability were equivalent to
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the topological path connectedness of the high-frequency plant-gain family (G(cm -)}.

In the framework of the IMRL system, if G(as) is high gain stabilizable, then both GDD of
Ha(c.,s) and stabilization of H2(a,s) are feasible. For single-input single-output systems, the root
locus technique is a powerful tool giving a significant insight upon the behavior of a feedback
control system with adjustable gain. An extended tool, multivariable root locus technique, has been
introduced to multivariable systems (Owens, 1978; MacFarlane, 1979). It is clear that for MIMO
systems the finite eigenvalues of the closed loop system approach the transmission zeros of the
open loop system whereas the asymptotes of the remaining poles are again symmetrically
distributed within the complex plane. Since for uncertain plants the right-half plane plant zeros are
not exactly known and cannot be compensated for by unstable compensator poles, the plant zeros
must lie in the left-half complex plane. Furthermore, the asymptotes can be adjusted by means of
the controller so as to point to stable pole positions only if there are at most two poles more than
plant zeros, or equivalently, G(a,,s) has uniform rank r <2 for every ace i (Owens, 1978).

The conditions for robustly diagonal stabilization are stated in the following theorem.

Theorem 3.2: The sufficient conditions for the existence of a fixed, diagonal, proper, stable, and
minimun-phase controller K,(s) such that H2(as)=[I+G(a,s)Ka(s)]-lG(as) is asymptotically
stable for every aefl are as following:

(i) Each plant in (G(a.,s)) is arises from a stabilizable and detectable system;

(ii) The number of transmission zeros of each G(c.,s) in {G(cxs)) is the same, and furthermore
every transmission zero is in a bounded region of the left-half complex plane;

(iii) Each plant is a nonsingular perturbation of the nominal plant and has uniform rank r - 2;

(iv) There exists a fixed positive diagonal matrix D such that for each plant the matrix rLD has
all its eigenvalues in a bounded region of the right-half complex plane for every ar Q, where
rL.= lim G(c.,s)-G(ao,s)-.

Isi "-.-

Proof: The proof can be obtained from Kwakernaak (1982) by changing the square matrix therein

with the positive diagonal matrix in condition (iv) presented here.

The minimum-phase condition and uniform rank limitation are required to guarantee high gain

stability. However, in the real world, it is impossible to have infinitely high gain due to the
bandwidth consideration. The IMRL system can aiso be applied to non-minimum phase systems if
the number of non-minimrum phase transmission zrros is the same for every plant in {G(cs)} and
only a reasonable level of gain is required for GDD achievement, that is, the feedback would not
push the closed loop poles to the unstable transmission zeros. The application of the design
methodology to a MIMO aircraft engine controi problem presented in this paper is indeed a
successful demonstration of the IMRL scheme being applied to a non-minimum phase
multivariable system.
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4. ACHIEVMENT OF GENERALIZED DIAGONAL DOMINANCE

4.1 Preliminaries

Here we preset a brief summary of relevant non-negative matrix theory. Let R, C and P
represent respectively the sei of real numbers, complex numbers and non-negative numbers. IftS is
any set, then M..(S) represents the set of mxn matrices with entries from the set S. The
comparison matrix M(Z) of a complex matrix Z e M,.(C) is defined by: mk = Zkk 1, k=l,2,....,n,
and MkQ =-i zkQI for ki, kO=1,2,...,n.

Definition 4.1 (Berman and Plemmons, 1979) : A matrix A 6 M,..(R) is called non-negative
(denoted: A_0 ) if all the elements of A are non-negative (ai, >0 for i=1,2,...,n; j=l,2,...,m). We say
that A>B if A-BŽ0.

Definiion 4.2 (Rosenbrock, 1974) : A matrix Z E M,,,(C) is said to be diagonally dominant if
either:

n
(i) I zk I > Y, I z.io (row dominance), or

(ii) 1 z I > 1 1 z.k I , (column dominance)
0=14.tk

Definition 43 (Berman and Plemmons, 1979): A matrix Z r Mn. (R) is called an M-matrix if the
diagonal elements are non-negative, the off-diagonal elements are non-positive and principal
minors are positive.

Definition 4.4 (Ostrowski, 1937) : A matrix Z e Mn.n(C) is called H-matrix if M(Z) is an M-
matrix.

Definition 4.5 (Fan, 1967) : A matrix Z e Mr, (C) is irreducible if there does not exist a
permutation matrix P e Mrn,(P) such that

Pz P-1 = Z1 

.

12 ]

() 222]

where Z1, and Z2 am square submatrices.

A real matrix A e Mn.n(P) is said to dominate a complex matrix Z e Mnn(C) if ao Z Iz. I, k,Q
=1.2.n. Next the famous theorem of Perron and Frobenius on the spectral properties of non-
negative matrices is stated.

Theorem 4.1 : Suppose A e Mmn,(P) is irreducible. Then there exist an eigenvalue 1, of A (called
the FPrron-Frobenius eigenvalue) such that
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(ii) with Ao can be associazed positive left and right eigenvectors;

(iii) X0o I- for every other eigenvalue X of A;

(iv) the eigenvectors associated with X0 are unique to constant multipliers;

(v) if 0< B < A and 13 is an eigenvalue of B, then 1131 • •o; moreover, 1131 = implies B=A;
and,

(vi) ko is a simple root of the characteristic equation of A.

The Perron root of a non-negative irreducible matrix is the maximum eigenvalue of the matrix.
By Theorem 4.1, this eigenvalue is real and non-negative.

Definiion 4.6 : A matrix A r Mn,,(C) is generalized row diagonally dominant if there exists an
x e Ra, x>O such that

n
Iaii Ixi> Y IaijIxj fori-1,2,.... n.

j=I.j~i

A matrix A e M,.(C) is generalized column diagonally dominant if there exists a x e Rn, x>O
such that

lail xi> aji I xj for i=1,2,...,n.
j=1.joi

Let Z e M,, (C), write

Z = D+C = (I+CD-I]D, (4.1)

where D=diag(zll, z22,...,z,), and C is the matrix of the off-diagonal elements of 7, with zero
diagonal elements. Define the interaction matrix of Z as M =C D-1.

Theorem 42: For an irreducible matrix Z e Mm, (C), the following are equivalent:

(i) M=CD-1 has perron root ko<1.

(ii) Z is generalized row diagonal dominant.

(iii) There exists a diagonal Q>O such that Q-C ZQ is row dominant.

(iv) Z is generalized column diagonal dominant.

(v) There exist a diagonal Q>0 such that QZQ ' column dominant.

(vi) Z is an H-matrix.

Proof: The proof can be obtained with a slight mocfication of Limebeer(1982).

Corollary 4.2 (Nwokah, 1978): If Z e M.,,(C), trrn its eigenvalues are contained in the union of
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the discs

I;,-ziil < Xo Iziij, for i=1,2, ... ,n. (4.2)

where A is the peraon root of M=CD-i

4.2 Generalized Diagonal Dominance of The IMRL

Consider a MIMO system, with a diagonal reference model denoted by
H-Ia diag (hml ... h=) , (4.3)

a diagonal compensator denoted by

K, - diag(kl .... k,.), (4.4)

and with the inner loop system denoted by the transfer-function matrix equation

H, = (I + GK,)-i G(I + Kji-). (4.5)

HL t. I + KI, and H2 = (I +GK,)-G. (4.6)

Since K, and Hi- are diagonal matrices, H, is a diagonal matrix, and hence is already an H-
matrix. Since the product of an H-matrix with a diagonal matrix with non-zero diagonal elements
also gives another H-matrix, it follows that H, is an H-matrix if and only if H2 is an H-matrix
(Fielder and Park, 1962). Hence it is sufficient for H2 to be an H-matrix in order for H, to be
generalised diagonally dominant. The inverse transier matrix H2 is given by

Hil A2 = G + K,. (4.7)
Let B=(blo'I and W=diag(wl, w2, .. ,..w ) where bkk =0 for 15 <k 5m, bk-- 1~ for l*c , k,

0=1,2.m, and wk = I h2 I for 1 < k < m. Write ;. 0 = (BW-I) for the Perron root (maximum

eigenvalue) of BW-1. Then from Theorem 4.2, H2 being an H-matrix is equivalent to the condition
Xo< 1.

By Gershgorin's theorem (Rosenbrock, 1974) ar.d Corollary 4.2 , it follows that if:

XO hkk- Ih•. <1, k=l,2,... n, (4.8)

then 1RI2 is an H-matrix. Hence, for design purposes. we can let

Ihkk! I I Ihk , k=1,2, ... . (4.9)

and X < 1, to guarantee that A12 is an H-matrix. Wc state the result as the following Lemma.

Lemma143: If Ik,1+iii I j Igj , for i- " .,2....n, and Xo < 1, then H2 is an H-matrix.
X04k+i0 j= i
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Proof: Since HI = K, + 0. the lemma is a direct result of the above discussion.

For design purposes, the main concern is designing a controller K.(s) to make H12 an H-matrix.
Thus, by Lemma 4.1 and the property of norms

Ik.i + ii>I kI -I I, (4.10)

we obtain a bound on k,1 to insur diagonal dominance:
I n

kj 2t>Igiii+ Igiil. (4.11)

The above result provides a guide to the design of the controller K. to make ff. an H-matrix.
However, of particular importance is the design of the controller K. which makes the inner loop
transfer matrix H. anx H-matrix.

From the definition in equations (4.1), we have

Z = (I + M) D. (4.12)

Taking inverse in (4.12) gives:

Z-':- - D-' (I + M)-' . (4.13)

Since D is diagonal, asking (I + M)-1 to be an H-matrix is equivalent to making Z an H-matrix. We
therefore need to provide conditions, which guarantee that Z is an H-matrix whenever Z is an H-
matrix. By the properties ot non-negative matrices (Berman and Plemmons, 1979), it is clear that
10o(1) < 1Ifand only if(I -TW 1 exists and

(I-T)-I - k< (4.14)
k=O

Let 10 = 20(M)<1, then the eigenvalue problem Mx=-*0(M) x has a positive solution x. Such an x
exists by the Perron-Frobenius theorem. Thus

(I+M)x =[1 +;J)]x, x>0, (4.15)

implies that
1

(I+ x = x
1+XO

= I+ X(lk :]x

:t7r+ M)x, (4.16)

where M= M(_ 1 )k Mk. Due to the fact that X0 < I. --hen
k=1
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X= 0- o +X- - +Xg-...

I 1+~4 E + XfJ 0+..< +o+X2 +),3 +A.4 +.

I
- (since 0<4< 1). (4-17)

Hence

(I+M)x = - x 5 1 x. (4.1)

Therefore, for I + M to be an H-matrix, we need Xo(M) < 1, i.e. the Perron root of M less than 1, or1
-1<I, which implies LO(M) < I-. Hence we state:I -X0

Lemma 42 : Let Z e M,(C) have the interaction matrix M=-CD'-, with perron root

X(M) = A.0(CD-). Suppose AM) < then Z and Z-1 are both H-matrices.

Conbining Lemma 4.1 and Lemma 4.2, we obtain the main result of this seC.zion as follows:

Theorem 4.3: In the internal model reference loop system proposed in Figure 2, if

InIkji 1 7,o ii~j gIi + Igiii , i =1,2, .,..n, Vs e DN ,

andAO <- then H, = H2H, is an H-matrix for all s on DN.
2'

4.3 GDD for Parametric Uncertain Systems

Consider the IMRL system with the parametric uncertain plant G(cts) as shown in Figure 2.
The output vector is related to the input vector by the following transfer matrix.

H,(a,s) = (I + G(a,s)Ka[-; GCa,s) (I + K.Hit,) (4.19)

Let

H2(a,s) = (0 + G(cL. ,K.)-F G(a,s) (4.20)

The main purpose in this section is to make H ;ct, s) GDD for every member of G(as) in the
parameter set a e Q. Equivalently, we need to insu.e that H2(o,s) is GDD for every plant member.
Taking inverses in (4.20), we have

f122(a.s)= K, .,+ G(&ts) (4.21)

Write
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W(cs)- H2(a,s) (4.22)

Let Wo(s) be the majorant transfer matrix of W(as), which is defined as follows

UwQI = min Iw(a,s) , i= 1,2,... n; and (4.23)

IwQI =max Iwij(as)I , i~j, i= 1,2,... n. (4.24)

Define

Do(s) = diag (I wg(s) I), (4.25)

and
S I o ,i=j

Co(s) s)COW(s)i=j, i~ = (4.26)

The majorant matrices are most e!.sily obtained from the QFD uncertainty templates (Horowitz,
1979). Let the interaction index 4%,,(s) of Wo(s) be the majorant interaction index of W(as), and let
k0(a,s) be the interaction irdrx of W(as) V a e CL

Lemma4.3: )(s) > A.o(as) for all a s Q,where k(as) is the Perron root of W(a,s).

Proof : This follows the fact that the Perron root of an irreducible non-negative matrix is a
continuous and monotonic function of the matrix elements (Seneta, 1973).

Suppose W(a,s) is generalized diagonally dominant for all a e Q at every s considered, i.e.
4(a.,c) < 1 for every s, or the slightly stronger condition arising from Lemma 3.3, X,(s) < I for all
s. We note here that 1o(s) can be made less than 1 at every s by suitable choice of K,(s).

Let

Ug°(s) = min I ii(as) I , i = 1,2, ... n; and (4.27)

Ig°(s)l max I j(as) , ij = 1,2, ... , n. (4.28)

Parallel to Lemma 4.1, we can have the following Lemma for uncertain systems.

9(_) + n !rs

Lemma 4.4: If I k3 (s)I~tgz .2(s) 1, i=l,2,....n, forallseDN, and < l,
a A(s) j=l.j,*i

then H2(a,s) is an H-matrix for all a e Q?, and for ali s considered.

Similarly, we have a parallel version of Theorem 4.3 for parametric uncertain systems.

Theorem 4.4: If 1k13(s)j Ž Ig°(s)[ + j , Ig°(s)[, i=l,2,...,n, for all se DN, and

I then H,(a,s) = H2 (a,s) H1 is an H-matrix.. jr all a e Q, and at every s considered.
24
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In fact, if Ik-(s)I is very large then H,(Cs) will approach Hm(s), which is the very idea for the
model reference feedback system proposed here. By Theorem 4.4, we can find k,i(s),
i =1,2, .... n , at every frequency such that Theorem 4.4 is satified. Our recommendation is to
make , < 0.2 (Araki ct a[., 1981).

5. INDIVIDUAL CHANNEL DESIGN WITH QFD METHOD

Once a reasonable level of diagonal dominance has been achieved (X0 : 0.2) over the set 02, we
can use single loop QFD design methodology for the design of each loop of the MIMO system.
The QFD problem can be posed as a formal sensitivity constrainted optimization problem whichi
reduces to the problem statements in H' control when the hard performance constraints and
parametric uncertainty aescriptions are relaxed. Details of the sensitivity-based QFD are provided
in Nwokah et al.(1992).

Suppose there is given an ideal target closed loop transmission function Tb(s) and an ideal
disturbance response transfer function TV (s) for the resulting i-th single loop channel obtained by
the internal model reference loop method developed in the last section. The QFD problem is to find
(if possible) an admissible pair of strictly proper, real rational, and stable functions (ki(s), fi(s)) in
the two degree-of-freedom feedback arrangement, which is shown in Figure 3, such that the
following conditions are satisfied with some measure of optimality (for various individual channels
i, i=l,2,...,n):

(i) robust stability: T4(as)is stable, V z e 2,

(ii) robust performance: max IT4(a,s)- T0(s) 1 :5 5r(s), V s,

(iii) disturbance attenuation: max I Tb(s) 1 • I TD(s) I = Sb(s), V s

where 85r(s) • 0 and 8b(s) Ž 0 are specfied a priori, and

T1(Ox, s) = H'(cx, s)" fi(s), Tbo(s) = Ho" fi(s)

Hi(as)= L'(a,s) Ho(s) Lb(s)
I + Li(a, s)' - I + Lo(s)

Si(os) = 1 Sb(s) =
1+ L'(, s) l+ L(s)

L'(a,s) = hi(as)• ki(s), .}.(s) = hio(s)• k;(s)

under the constraint that ki(s) is an internally stabiliz-.:g controller for the plant set (h-(s)).
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After appropriate algebraic manipulations, we can obtain the equivalent descriptions for
conditions (i) to (iii) in terms of sensitivity function constraints. Furthermore by suitable choice of
the real rational stable weighting functions VW(s) and V'(s), the following equivalent H-
minimization problem for the QFD optimization problem caa be set up (Nwokah et al., 1992):

min sup I W'S' 11- + ,V'H' I.- < 1. (5.1)
k~eK (a I

Alternatively we can solve the simpler H- problem (Chiang and Safanov, 1988):
wisi

min -! !.. = . (5.2)
k, eK V'H'

Indeed pi<l/'" is a sufficient condition for the original H" to be solved (Francis, 1987). Once ki
is determined, we draw the graph of L-=h' ki on the Nichols chart. This forms the initializing loop
transmission function for the QFD optimization algorithm. On the same Nichols chart are
superimposed the standard QFD performance and stability boundaries. Then the QFD optimization
routine strives to reduce the gain-bandwidth area of loop transmission function by moving Lb;
towards the boundaries at every frequency, as the work done by Thompson and Nwokah (1991). If
the exact target function Tb(s) is the required performance, we can go further to dsign a prefilter
fi(s) making the closed loop system satisfy the quantitative specifications.

6. AN AIRCRAFT ENGINE APPLICATION

The application of the developed MRQFD method to the design of a robust controller for the
Allison PD-514 aircraft turbine engine is presented in this section. The PD-514 is a low-bypass-
ratio, twin-spool, axial flow turbofan aircraft engine with augmenter as shown in Figure 4. The
PD-514 has two control inputs, namely, fuel flow and exit nozzle area, which are used to control the
output of thrust and total air flow.

The objective of the multivariable engine controller design is to provide stable performance,
and to improve the engine thrust response by providing fast response with no overshoot, and zero
stead-state error over the flight envelope. Also, the control system is required to be robust in
achieving desired performance despite uncertainty.

The performance of aircraft engines can be moielled accurately through aerothermodynamic
relations. The result of this modeliing process is a set of highly nonlinear differential equations.
However, the resulting models are too complex to be used in controller design. Therefore, in order
to simplify the controller design process, the perrnrmance of the engine is linearized about an
operating point, which is defined by altitude, mach rmber, and power lever angle (PLA) or throttle
setting of the aircraft. The modelling process is then repeated for a number of operating points in
order to define the performance over the entire `ight envelope. The resulting linear models
introduce structured uncertainty due. to pararrett-r variations between models. Unstructured
uncertainty is also present in the form of unmodelle'a dynamics, unmodelled parameter variations,
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and measurement errors.

The modelling process of the PD-514 is described in the work of Gallagher (1992). The models
of the PD-514 are originally obtained in state-space form. In order to apply the MRQFD method to
the control system design, the models are transformed to the form of transfer matrix representation.
The flight envelope including forty seven operating points is shown in Figure 5. Here, a robust
decentralized controller is designed for a set of thirty seven operating points of the PD-514 engine.
"The number of the non-minimum phase transmission zeros is the same for all these thirty seven
operating points.

The input-output relationship may be written as:

y = G(a,s) u (6.1)

where

[uj [fuel flow ~ =[i lw[ n- o zzle a r a y' =-- -- I z lo tw J

and

G( gs) 1 g91 2  (6.2)

The transfer function for each entry of G(as) may be represented as follows.

k:(s+pz)(s+zp)gij = -s pj)( - ' i, j =1,2.

The values of kij, z!, z P), and p2, ij=1,2 for diffe•rent operating points were given in Gallagher
(1992). Figure 6 contains the Nyquist arrays for the thirty seven operating points. In Figure 6, the
uncertainty of the system is represented by the spread of the Nyquist plots for a single channel. In
this application, the thrust/fuel flow (g11) channel snows the most uncertainty, and the air flow/fuel
flow (g21) the least. Figure 7 shows that the interaction indices ar. not lecs than one for every
operating point, that is, the system is not robust GDD.

The first step in the controller design is the selec-tion of an appropriate reference model Hm(s).
The reference model was obtained by taking the 'center of gravity' of the transfer matrix set, and
neglecting its off-diagonal elements. This produces -'ne transfer matrix:

-0. 1371 (s+4.2407)(s- 11.1867 0
(s+3.1340)(s+,4.2407)

Hm(s) = 0.1891 (s+3.134)'(s 10.7487) (6.3)

(s+3.. 1340)(s+4.2407)

Then from Theorem 4.4, and letting Xe, = 0.2, we r'..ay generate the design bounds for the internal
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loop controiler K.(s). Figure 8 shows the design bounds of k,1 (s) and k,.(s) for the thirty seven
operating points. Implementation of the internal loop controller

20( 3.-28 0+
0

K.(s) - (6.4)
0 40(--+l)o 8.51

(-+1)
5

into the IMRL of Figure 2 results in the Nyquist arrays in Figure 9. This figure shows that the
uncertainty is significantly reduced and the system is generalized diagonally dominant. Figure 10 is
a plot of the interaction indices (Perron root) for the compensated inner loop, H,(as), which also
shows that the system is now sufficiently GDD, since ý, < 0.2 for most of the operating points
considered as suggested in Section 4. Now that the system is sufficiently GDD, the single loop
QFD method as described in Section 5 may be applied for the design of each individual loop.

The initial step of the QFD problem is the description of the desired performance of the system.
Figure 11 shows the upper and lower time response bounds for thrust/fuel flow channel and the
corresponding frequency response for the upper (Tu), lower (TI), and nominal (To) performance
botuds. Also, the maximum disturbance response was selected as 2 (6 dB) and the relative stability
margin was selected as 1.25 (1.94 dB). The normalized plant uncertainty 8H.. was obtained from
the Bode diagram of the plants for the compensated inner loop transfer function. The constraint for
the sensitivity function, M, (o), is thus obtained as described in Section 5. Figure 12 shows that the
desired time response bounds and their corresponding frequency response bounds of the second
channel (air flow/nozzle area). ThM required maximum disturbance response and relative stability
margin for the second channel is the same as the first channel. Thus, we also obtain the sensitivity
function constraint M 2 (O) for channel two.

Now, we may apply the QFD technique for designing the outer loop controller k1 (s) and k2(s).
If necessary, we may go further to design the prefiltmls f, (s) and f2(s). The outer loop controller is
designed to be

388.2(s+4.3)(s+: 0.0) 0
s(s+l 1.8)(s+306.0;

K(s) 0 507.0(s+40) (6.5)
s(s+ 13 .0)2

The compensated loop transmission function and the performance boundaries in the Nichols chart
are shown in Figure 13 for channel one and in Figure_ 14 for channel two. The thrust response to a
unit step input of fuel flow is shown in Figure 15 ferf four typical operating points. This response
satisfies the design requirements so it is not necessary to go further to design prefilter f, (s). Notice
that the reverse reaction near t=O is due to the effec.t of the existence of one nonminimum phase
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zero in the resulting closed loop transfer matrix. The air flow response !o a unit step input of nozzle
area is shown in Figure 16, which shows that the desired performance requirement is satisfied by
the designed control system. Hence, it is not necesaary to design the prefilter for the channel two
either.

7. CONCLUSIONS

In this paper we have introduced a new methodology: model reference quantitative feedback

design, for the design of the MIMO parametric uncertain control systems. If sufficient feedback
gain for a MIMO uncertain system is allowed, we may achieve robust generalized diagonal
dominance and uncrtainty reduction with the model reference concepts. The design guides for

obtaining generalized diagonal dominance condition, that is, H-matrix, have been derived for the
parametric uncertain multivariable systems. Since the quantitative specifications for uncertainty
and performance are of practical importance, a sensitivity based QFD method has been developed
and been used for each individual channel so as to obtain a robust controller which made the closed
loop system satisfy the MIMO quantitative specifications.

The developed MRQFD method has been successfully applied to the design of a robust
decentralized controller for the Allion PD-514 aircraft turbine engine. This application
demostrated the effectiveness of the proposed method for practical applications. Although further
nonlinear optimization techniques may be applied to obtain the optimal controller gain-bandwidth
area, it was not done here. Nevertheless, it was shown that the designed controllers gave a very
good result in stability and performance robustness.
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ABSTRACT

This paper introduces some recently developed frequency domain design techniques
that are effective in the design of control systems that are robust under parametric
uncertainty. We have extended the well known classical control tools (i.e., Nyquist
plot, Bode plot, and Nichols chart) developed for a fixed plant to the domain of
uncertain interval plants. Using this new family of plots, classical control design
techniques can be used to design robust control systems. The technique is illustrated
by examples.

1. INTRODUCTION

Control under parametric uncertainty is a problem of longstanding interest and many
useful results have been developed in the QFT school of thought ([1]) as well as the
parameter plane approach ([2] and see references in [3]). There appeared a renewed
interest in this area following the discovery in 1978 of Kharitonov's Theorem for in-
terval polynomials [4]. Despite its elegance this result could not be directly applied to

"This research was supported in part by NASA Grant NAG-1863 and NSF Grant
ECS-8914357
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control systems due to the severe restrcition in Kharitonov's Theorem that requires
independent perturbations of the coefficients of the polynomial. A breakthrough was
made by Chapellat and Bhattacharyya in their 1989 paper (CB Theorem) which lifted
this limitation. This paper introduced the notion of interval plants, namely a family
of plants consisting of a ratio of interval polynomials, and dealt with the problem of
determining the robust stability of an interval plant contained in a control loop with
a fixed controller. The CB Theorem gives Kharitonov-like results for this problem
by constructing certain one parameter segments, called CB segments [5], which com-
pletely and nonconservatively characterize the robust stability of such interval control
systems. This novel result has also been extended to show that the worst case H'
stability margin of an interval control system occurs on one of these CB segments [6].

Despite these developv--.nts, this area has mainly concentrated on analysis prob-
lems and still suffers from a iack of effective design methodologies. The present paper
is an attempt to show that classical control design methods can indeed be coupled
with the above results to develop controller design strategies for robustness under
parametric uncertainty. This is done here by developing robust versions of the simple
and powerful graphical tools such as Nyquist plot, Bode plots, and Nichols Chart. We
show that these extended plots can be precisely constructed from the CB segments.
Moreover extremal claisical stability margins occur on these segments. Consequently,
one can achieve complete frequency domain information about this important class
of systems and apply this to the controller design problem. This is demonstrated in
the paper and illustrated by an example.

The paper is organized as follows; We first give a brief summary of of the essen-
tial results on parametric robust stability and control. In section 3, we give procedures
for constructing various envelopes that contain the entire frequency response of the
interval system. Section 4 discusses the problem of extremal gain and phase margins
of the family, and a simple method of computing these margins are given in Section
5. Using these frequency envelopes, lead-lag compensation is attempted by examin-
ing the band of crossover frequencies much as in classical control for fixed systems.
Illustrative examples are included. Finally, some concluding remarks are given.

2. PRELIMINARIES

Consider the feedback system shown in Figure 1 with

Figure 1. Feedback System
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F(,) := FI(o) G(s) N(s),)F,(,) D--•s).1

We suppose that N(s) and D(a) lie in uncertainty sets described by

N(s) no + uha + n 2a2 + n3a + ' + nP-J' 1aP + 'haS

D(s) := + dia + d 2i2 + d3'3 +... + d,._1,-I + a o, (2.2)

where
tiE(7, n[,] and d.,• [d-, dt], for i E {0,1,...,p} := (2.3)

and F1 (a) and F2(a) are fixed polynomials in a. Let us define the interl Rolynomials

{N(s) I no+ ni a+ n2  + .+ n,,aP, n, E [n7,nf], iE•E
V(s) {D(s) I do + dis + d2a2 +-.. + d,', d, E [d7, d,+], i E pJ (2.4)

and the corresponding inervalL system consisting of the set of transfer functions:

G(s) { • I (N(s), D(a)) E (.A(a)xV(.a)) }. (2.5)

Let the Kharitonov _olynomials associated with N'(s) and V(s) be respectively:

K.(s) n; + n•a + n+,2 + ,n+s3 + n;s4 + n-s' +...
K,(s) n; +,+° +,A2 +nS;3 +n,;, 4 +4, +...K,'o 3 = + +,- +,-o 2 + 3 + 4

.(a) no 4+na+ n 2a+ n 3a + 4 a+n5•s +... (2.6)
K.(s) n- n+ + n +, +,a 2 ' +,;oa + 34+ + nts +...

and

Kx(s) := d+; + d+dj +d d 3+#"+ S4 +d-' + +..
Ks(s) := d;+o + dt + + d-d;3 + d-a4 + d,+s +...

Ks(s) := d + d-s + d;. + 4' + d5 4 + d ' +... (2.7)
Ks(s) d.=+dt+a+d ja2 + d;is3 + d + 84 +....

We write

X:,f(J) = K•,K ),K(),K )}(2.8)
Xr•(o) := KdC),KJ(s),K•(o),Kd(o)} (2.9)

and also define the set of line segments joining appropriate pairs of Kharitonov poly-
nomials.

AK'(a) + (1 - A)Kn(9), for A E [0,1], (i,j) E {(1, 2), (1, 3), (2, 4), (3,4)}

AK'(o)+ (1- A)Kd(s), for A E [0,11, (i,j) E {(1, 2),(1,3), (2,4),(3,4)}

We call these Kharitonov segments and denote the segment sets associated with D(s)
and A'(o) respectively as,

Sz,(3)7
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AKt(°) + (1 - A)K,(o) I A E [0,11, (i,j) E {(1, 2),(1,3),(2,4),(3,4)} j (2.10)

and
SW(J)

[ K (,a) + (1 -,u)Kj(s) I& E [0,1], (ij)E {(1, 2),(1,3),(2,4),(3,4)} ] (2.11)

We now consider the uncertainty set HV(a)xV(j) and introduce the set of seg-
menta introduced by Chapellat Bhattacharyya [7].

(K(o)xV~j))cB := {(N(s)xD(j))I

N(s) E X•g(.-), D(s) E SP(,), or N(s) E Sg(s), D(8) E Xv(s), }. (2.12)

The characteristic polynomial of the system is denoted as

II(s) = D,(5)D(,) + N#(°)N(j) (2.13)

Similarly the characteristic polynomial II(s) ranges over the corresponding uncer-
tainty set denoted by

II(s) = {F2(a)D(, ) + Fi(a)N(s) : (N(a), D()) E .N(s)xV(s)}. (2.14)

We now introduce the CB subset of the family of interval systems G(s):

These subsets will play a central role in all the results to be developed later. We note
that each element of GcB(a) is a one parameter of transfer functions and there are
at most 32 such distinct elements. Referring to the control system in Figure 1, the
following transfer functions are of interest in analysis and design problems:

(81= C(a) U,() = F(,) (2.16)
U~s) e(j)

T*(ss) =• G(s)F(a) (2.17)
v(s) y=•(a) = G(°)F()) (218)

r(• I1 + G(s)F(j)

T'(,N) :=e(s) = 1 (.9Ta~s) r(s) - + G(a)F(s) (.8
T(s) r(s) - 1 + G(s)F(j) (2.19)

Ts) u(s) _ F(s) (.0
T"() = ) - 1+ G(s)F(s)"(.0

As G(s) ranges over the uncertainty set G(s) (equivalently, (N(s), D(s)) ranges over
KV(s)xV(s)) the transfer functions T0(s), Tn(s), Tu(j), T(j) range over correspond-
ing uncertainty sets T0(s), T"(s), T"(s), and Te(s), respectively. In other words,

T{(,) = F(s)G(s) G(s) E G(.)} (2.21)
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T() 1 + G()G() C(s) E G(s)} (2.22)

1+F(s)G)
+ F(s) : G(s) E G(a)} (2.23)T'(,)~ :={+ F~s)G(s)

T*(•) { : G(s) E G(s)}. (2.24)
1 + F(a)G(s)

The CB subsets of the transfer function sets (2.21) - (2.24) and the polynomial
set (2.14) are also introduced:

T',,(s) := {F(s)G(): G(s) E GcB(s)} (2.25)

1 F(a)G(a) : G(a) E GcB(s)} (2.26)T•D(• := 1 + FC,)G(j)

T*8 (A) + F(a) : G(s) E GcB(s)} (2.27)

1CS(A) 1 GC() E GcB(s)} (2.28)

1i + F(s)G(s)

and

flcs(j) := {Fs(a)D(s) + Fi(s)N(s) : (N(s), D(8)) E (A/(j)xV(a))cu} (2.29)

In the paper we shall deal with the complex plane inage of each of the above iets
evaluated at # = jw. We denote each of these two dimensional sets in the complex
plane by replacing a in the corresponding argument by w. Thus, for example,

1(w):= {fl(,) :, = jw} (2.30)
and

TV,(w) := {T'B(s) : j = jw} (2.31)

The Nyquist plot of a set of functions (or polynomials) T(..) is denoted by T:

T := Uo<,<.T(w) (2.32)

The boundary of a set S is denoted 8O.
The control system of Figure 1 is stable for fixed F(s) and G(s) if the charac-

teristic polynomial
If(s) = FC(a)D(s) + Fi(C)N(s) (2.33)

is Hurwits, i.e. has all its n = q+ degree [D(s)] roots in the open left half of the
complex plane. The system is robustly stable if and only if each polynomial in 1I(s) is
of degree n (degree D(j) remains invariant and equal to q as D(a) ranges over V(s))
and every polynomial in U(s) is Hurwitz.

The following important result was provided in Chapellat and Bhattacharyya
[7].

Theorem 1. (CB Theorem) The control system of Figure 1 is stable for all G(s) E
G(s) if and only if it is stable for all G(s) E GcB(s).
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The above Theorem gives a constructive solution to the problem of checking
robust stability by reducing it to a problem of checking a set of (at most) 32 root lo-
cus problems. In the following sections we point out that these segments also suffice
to characterise the Nyquist and Bode bands and Nichols chart templates of inter-
val systems. This quantitative information is useful for developing robust controller
designs.

3. CONSTRUCTION OF FREQUENCY ENVELOPES

In this section, we develop three important frequency domain design tools.

3.1. Bode Magnitude and Phase Envelopes

For any function say, T(s) ltt PrT(W) IT(jw)I and OT(w) := LT(jw) denote the
magnitude and phase evaluated at a - jw. If T(s) denotes a set of functions we
let the extremal values of magnitude and phase at a given frequency be defined as
follows:

AT(W)M sup IT(jw)IT~jw)

inf IT(w)l. (3.1)

Similarly

rT(w) : sup LT(jw)
T(jM)

JT(w) :- inf LT(jw). (3.2)T(jw,)

Suppose that G(s) is an interval family as in (2.5). Our objective is to compute

A C. W), PO~W) (3.3)

and •G(•, •G•).(3.4)

We begin with the following two simple lemmas.

Lemma 1. Let A be a closed polygon in the complez plane, and "a" be an arbitrary
point in A. Let VA be the set of vertices and EA be the set of edges of A. Then the
following statements are true.

1) max IJa=max lal
A VA

2) min lal =min al
A EA
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Lemma 2. Let A and B be disjoint closed polygons in the complez plane, and "a"f
and V be arbitrary points on A and B, respectively. Let VA and VIS be the sets of
vertices and let EA and Eg be the sets of edges of A and B, respectively. Then the
following statements are true.

1) max( La- Lb}= max {La- Lb}
AiD VA1VB9

2) min{ La - Lb} = fn {La -Lb}
AiB VAXV9

Proofs of the above two lemmas are obvious from geometric considerations.
Let 9(w) denote the complex plane image of the set of polynomials N(s) E M(s)

evaluated at a = j,. Similar definitions hold for V(w), Sg(w) and Sp(w). .V(w) is
bounded by the set of Kharitinov segments Sg(w). Similarly, V(w) is bounded by
the set Sv(w). These facts along with Lemmas 1 and 2 lead to the following results.
Before we state Theorem 2, let us define the following sets.

G(w) {G(jw) = N I Nv(jw) E H(,w), D(jw) E V(w)} (3.5)
D(jw)

dcDw(w) {G(jw) =E I N(jw) E I.vwi'), D(jw) E Si,(w)} (3.6)D(jw)
fcj(w) := {G(jw) = E( I N(jw) E Sgp(w), D(jw) E KO(w)}. (3.7)

D(jw)

Theorem 2. For every frequency w > 0,

AGMW = O.W

Let us also define the set of systems constructed from Kharitonov vertices as
follows:

Gx(w) := {G(jw) = I N(jw) E K(w), D(jiw) E Xv(w)}. (3.8)

D(jw)

Theorem 3. For every frequency w > 0,

ýG(w) = (W)

±(w) = G

Using the above extremal properties it is possible to evaluate the Bcde magnitude
and phase envelopes of interval transfer functions. Let us consider the family of
transfer functions

P(s):= { P() G G(s)F(), G(O) E G(s) }. (39)
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Since F(s) is fixed,

jip(w) = IF(jw)l pc(w)

#w(() = IF(.i,)I I.(w). (3.10)

Similarly,

•e(w) =LF~jw) + GC~w)

tp(w) LF(jw) + or,(w). (3.11)

These relations are sufficient to construct the Bode magnitude and phase envelopes.

3.2. Nyquist Envelope

We further investigate the extremal frequency domain properties of the transfer func-
tions which occur in the configuration given in Figure 1.

Theorem 4. For every w > 0,

OG(w) C GcB(w) (3.12)

8T°(w) C T~g(w) (3.13)
OrT(w) C T'B(w) (3.14)

OT"(w) C T"B(w) (3.15)
OT'(w) C T'(,(w) (3.16)

The proof of this theorem may be developed from geometric arguments and is
omitted here. This result shows that at every w > 0 the image set of each transfer
function in (2.21) - (2.24) is bounded by the corresponding image iet of the CB
segments.

From the theorem 4, we obtain the following corollary which deals with the
Nyquist plots of each of the transfer functions in (2.21) - (2.24).

Corollary 1. The Nyquist plots of each of the transfer function sets TO(s), T'(s),
T"(s), and TO(s) are bounded by their corresponding CB subsets:

8TO C T;B (3.17)

OTY C Tv8  (3.18)

OTO C T"B (3.19)

OT" C T'B (3.20)

This result has many important implications in control system design and will
be explored in the next section.

/
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3.3. Nichols Chart Template

Using the magnitude and phase data obtained to generate Bode envelopes, it is
straight forward to construct Nichols Chart templates. At each fixed frequency the
magnitude and phase have certain ranges, the corresponding rectangle is created on
the magnitude vs phase plane. As frequency moves from zero to oo, different sizes of
rectangles are created. Finally, the Nichols Chart Envelope consists of the collection
of all these rectangles. An Illustrative example is given showing more detail.

Remark 1. For a fixed system, all of the above three frequency plots provide the
same information. However, for the case of interval systems, it is important to note
that neither Bode nor Nichols chart envelopes provide as accurate information as the
Nyquist envelope does. It is due to the fact that in general different parameter values
provide extremal values of magnitude and phase envelopes.

4. EXTILEMAL GAIN AND PHASE MARGINS FOR INTERVAL CON-

TROL SYSTEMS

If a fixed closed loop system is stable we can determine its gain margin -f as follows:

7'(G(s), F(s)) max { A • F2(.)D(,) + KF,(s)N(,)

is Hurwitz for K E [I,A] } (4.1)

•f-(G(C), F(s)) max{ K : F2()D(s) + -kFI(,)N(,)

is Hurwitz for K E iI} (4.2)

Similarly the phase margin # is defined as follows:

0+(G(s), F(s)) := max{ • : F2(s)D(s) + e0FI(s)N(s)

is Hurwitz for , E [0, } (4.3)

0-(G(,), F(s)) := max { • : F:(s)D(,) + e-OF1 (s)N(s)

is Hurwitz for 0 E [0,] } (4.4)

Note that -1+, 7-, 0+, and 0- are uniquely determined when F(s) and G(s) are fixed.
We now state some fundamental results on the extremal gain and phase margins

over the uncertainty set .(s)xV(a).

Theorem 5. Suppose that the closed loop system shoum in Figure 1 is robustly stable,
i.e. stable for all C(s) E G(s). Then

max 7 = max 7* (4.5)
G(a)eG( ) G(,)cGcD (a)

max = max (4.6)
G(,)EG(,) G(,)E-,.cs(,)
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and

min = min 79 (4.7)G(,)EG(a) O(#)EGc9(a)

mrin min (4.8)
F(.)EG(s) G(*)rGcs(.)

Proof. It is obvious that the extremal gain and phase margins occur on the bound-
aries of the set of Nyquist plots of F(s)G(s) for all G(a) E G(s). From the theorem 4
and corollary 1, the Nyquist envelopes are contained in the the set of Nyquist plots
of F(.)G(j) for G(s) E GcB(9). Therefore, computing extremal gain and phase mar-
gins of F(s)G(.) over G(s) E Gca(s) is identical to determining these margins over
G(.) E G(s). Q.E.D.

5. ANALYTICAL COMPUTATION OF EXTREMAL GAIN AND PHASE
MARGINS

In this section, we consider an analytical way to compute extremal (i.e., both maxi-
mum and minimum) gain and phase margins. As discussed earlier, the extremal gain
and phase margins are the minimum and maximum values of extremal margins of
individual segment systems of the form

K'(s) AE[0,1]1 or { KS(sA) I A E [0,1]} (5.1)
Sd(a, A) d.s

over (i,k) E {(1,2,3,4) x (1,2,Z3,4)}. Therefore, in this section, we develop simple
techniques to compute the extremal gain and phase margins over a single segment
system. This technique is useful when the designer wants to know which member of
the system among the family provides the extremal (minimum or maximum) margin.
The particular member is determined by the corresponding value of A. Hence, the
problem is reduced to choose the optimal value of A E [0,1] so that the corresponding
fixed system has the minimum or maximum stability margin.

Now Let us consider the following sgmenLstm for convenience.

Figure 2. Segment System

with

p(jwA) (j)
P4(jW) + AP2(jW)
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where po(s), pl(s), and p2(s) are fixed polynomials in ,, and A E [0,1].
The problem of computing the extremal gain and phase margins at the loop

breaking point "m" over a single segment system is described as follows. Let us
denote

(AxI') {(A,w) I Lp(jw, A) = 180*,A E [0,1]} (5.2)

and

pp max lp(jw, A)l (5.3)
(A-n)

. (=min lp(jw,,A)1 (5.4)

Smax Lp(.cW, A) (5.5)
(Azfl)

Thenn L(jJ A). (5.8)±P (Axn)

Then
1

maximum gain margin over p(s) : p :=- (5.7)

1minimum gain margin over p(a): := (5.8)
Ap

maximum phase margin over p(s): 9 := p - 1800 (5.9)
minimum phase margin over p(a): 1:= 2 p - 1800. (5.10)

Simila definitions can be made for the case of gain margins less than 1.
As seen in eqs. (5.7) - (5.10), the problem of computing the extremal gain or

phase margin over the segment system is a two parameter optimization problem. This
can be reduced to a simple one parameter problem as follows. Write

P,(jW) PiR(W) + 3Pii(W)

Then

p(jW, A) = .jw
P1 (jW) + AP 2(jW)

poR(,) + jpo,(w)

[oIR(W) + AP2R(W)] + j[p-I(W) + A•pz(W)]

PL.R(W)PIR(W) + poI(W)p1 1 (W) + A[PoR(W)PiR(W) + Po0 (W)P21 (U,)]

[PIR(W) + APi() 2R + [Pll(W) + APzxk'W)1 2

Po+(,)PiR(w ) -- oR(w)Pw•w) + A[P[oI()Pr,2R(W) - POR(W)P21(W)(

Im{p(.,A))
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In order to determine the gain margin, we set

Lp(jw, A) = 180" (5.12)

which implies
Im{p(jw, A)} = 0. (5.13)

Note that (5.13) will be satisfied when Zp(jw, A) = 0* or 1800. We exclude frequencies
w for which Zp(jw, A) = 0*. From eqs.(5.13) and (5.11), we have

Im{p(jWA)} = [pol(w)plR(w) - pR(t(w )W)1(W)J+A(poi(W)pR(w) - pOR(w)p2/(w)]
=0 (5.14)

equivalently

pOR(W)P2I(W) - POR(W)PiR(W)
A(w) =pol(w)p,,(a') - POR(w)P21(w) (5.15)

From this representation, we can easily conclude that instead of searching over both
w E [0, oo) and A E [0, 1], searching only selected ranges of w that satisfy A E [0, 1] is
enough. Thus, we let

A(c) =pOR(W)pI(W) - pO,(W)plR(u)
pO(W))p2,R(W) - POR(W)pr(W)

-0 or 1. (5.16)

Without loss of generality, we have

for A = 1 poR(W)puI(w) - po,(w)piR(w) - PoU(w)pR(w) + POR(W)Pr(W) = 0

for A = 0 PoR(w)plz(w) - PO0(w)pIM(w) = 0 (5.17)

The valid ranrc: of w with respect to the condition A E [0,1] can be easily de-
termined from the roots of the above two equations. Thus, the problem posed in
eqs. (5.7) and (5.8) is reduced to selection of maximum and minimum magnitudes
over the magnitudes evaluated over the admissible ranges of w determined from the
roots of eq. (5.17). Furthermore, the optimal value A*, equivalently optimal values of
parameters over the segment system, can also be easily determined by substituting
w* that corresponds to the maximum gain margin into eq. (5.15).

If the segment system is of the form

p(s),A) PI•(•) + Ap2(a)

one can follow a similar procedure to determine the extremal margins and the corre-
sponding optimal systems over the segment system. Similar procedures can also be
applied for computing extremal phase margins over a single segment. This is easily
derived by replacing the condition (5.12) by

IP(W, A)I = 1 (5.18)
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6. EXAMPLE: LEAD-LAG COPMPENSATION

In this section, we give an example of lead - lag compensation design utilizing the
developments described above. Let us consider the interval plant

ao
b3a8 +/b28 + ba,9

where its coefficients are bounded by the given intervals as follows:
ado E [4,6] b3 E [.4,.6]

b3 E [1.4.,1.6]
bi E [.8,1.2]

The objective of the design is to achieve that the entire family of systems has the
phase margin at least 30* and gain margin at least 20dB.

With the lag compensator

21.2766s +1
280.505a + 1

we have achieved approximately 35 )f guaranteed phase margin and 10dB of guar-
anteed gain margin.

With the additional lead compensator
aC+'.4
C+2.5

we have achieved approximately 550 of guaranteed phase margin and 22dB of guar-
anteed gain margin. Therefore, the controller is

- 21.27661 + 1 a+ .4
( 280.505. + 1 a + 2.5

Figure 3 shows Bode envelopes of the uncompensated system G(a) Figures 4 and 5
show Bode envelopes of the lag compensated system and the lag-lead compenated
system, respectively. Figure 6 has been constructed to show changes of frequency
reponses of uncoml-ensated and compensated systems. Figures 7, 8, and 9 show
the Nyquist envelop.,% and Figures 10, 11, and 12 show the Nichols charts of the
respective systems.

7. CONCLUDING REMARKS

The new results given here characterize the entire frequency domain design infor-
mation needed for interval systems. Using this development we also showed that
basically all frequecny domain based classical control design and analysis techniques
can be applied to interval uncertain systems.
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ABSTRACT

The approach of Quantitative Feedback Theory (QFT) for
robust control, has been receiving increasing attention lately.
The basic QFT technique comprises of these four steps : template
generation, derivation of the bounds on loop transmission,
determination of an appropriate loop transmission function and the
synthesis of the pre-filter. The usual "gridding" method of
template generation has a great deal of subjectivity, is
potentially risky as crucial points may not be considered, and
worst of all, becomes computationally untractable with increasing
number of uncertain parameters. As such, this method has been
severly criticized (Doyle 1986). In this paper. we. deal with the
problem of obtaining the bounds on the loop transmission function,
for plants with parameters varying independently in prescribed
intervals. A technique for calculating tne bounds in loop
transmission is developed, after suitably extending some recent
results concerning the r. le of Kharitonov segments in robust
stability analysis (Chapellat et al. 1990) . The developments
reported here should be viewed as a first attempt to use robust
stability results based on the Kharitonov approach to benefit the
synthesis procedure of QFT for achieving robust peformance.

1. INTRODUCTION

Quantitative Feedback Theory, pioneered by Horowitz
(Horowitz 1991), .is one of the few approaches for synthesis of
feedback systems for plants witt• significant parameter and
disturbance uncertainty. The design is quantitative in the sense
that it is intimately related to the sizes of the uncertainty sets
and the level of performance desired. QFT has been under
development since 1959 and can currently handle several problem
classes involving large parameter uncertainty: SISO and MIMO linear
and non linear, lumped and distributed, output and internal
variable feedback, time invariant and time var-ying plants, etc..

Consider a lumped minimum phase (MP) single-input
single-output (SISO) linear time- invariant (LTI) plant g(s) in a
two-degree-of-freedom feedback s5iriicture shown in Fig. 1. Suppose
the uncertain parameters of g(s) vary independently in prescribed
ranges to give a set of plants G { JI Despite the uncertainty in

the plant parameters, it is required that the following be
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satisfied by chooseing~ LTI rational strictly proper c(s) and f(s),

0 <IA (jw) ' :5 B (Jw (1a)

I + g(j(")c(jcw) (lb)
Y(s)

where Tr(s) =,and AW,) B(s) are stable MP tranefer
r (s)

functions.

Since we shall coi-sider oarv MP plants, the above
magnitude specifications are erifficiv at. Specification (1a) refers
to the tracking properties of the closed loop system. while
specification (1b) captures the extra stability Cgain-phase)
margins usually desired by the desi.ý-er. Note that G can include
unst3ble plantsi as well.

With the specifications (1) given in the frequency
domain, the QFT design~ procedure consists of the followuing basic
r~tepe (Horowitz and Sidi 1972)

(a) Comuzrtation of the set of values {g(jw1 ) }to give the

plant template T~ { g(i~) } in the Nichols plane for some

selected w . valuez.

Mb Using Tp {~(iwj~) },derivation of the bounds B(wi) in the

Nichols plane, on the nominal loop transmission L= cg a where g
is the nominal plant.

(c) Determination of a (sub optimal) Lothat satisfies the bounds

B(w) and has a pre-assigned pole-zero excess.

(d') Synthesis of a pre-filter f(s).

Since the plant parameters vary in continuous sets, in

practizc. approximate plant templates Tp {& g(jw ) are

generated in step (a) and used in step (b) to obtain the
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approximate bounds B (wi) on L (jwi. Several methods exiiti. for
a 0

the purpom. (East 1981, 1982, Bailey et al. '988). The most, widely
used technique, according to (Yaniv and Horowitz 1987). is as
follows. For each uncertain parameter, the minimum, mean, and
maximum values are picked, i.e. a grid of 3 points is made, and

T { f (iti).} is generated for all possible parameter

combinations using the picked values.

The above "gridding" technique, however, leaves much to
be desired, at least on two major issues. Firstly, gridding" is
highly subjective in nature, with the burden on the designer to
judiciously select the number and location of the grid points.
Even with fine grids it is potentially risky as there is no
guarantee that all the critical points of T ( critical forp
obtaining B(•i) ) are actually present in T - Secondly, the

pa
procedure can run into severe computational problems on most
departmental workstations, possibly precluding the use of the QFr
technique itself. This is because, at each w, one considers mp
plants, where m is the number of grid points and p is the number of
uncertain parameters. Should (m,p) be large, the quantum of
computation becomes tremendous. For example, if p Ig 15 and one
used the 3 point grid technique, then, at each w, 3 plants arc to
be considered. Again, if the parameter variations are large, m = 3-

might be grossly inadequate, with possibly at least an occasional
example demanding m = 10. Clearly, if QFI" is to be used in such
situations, alternatives to this strategy of a 'brute force global
search' (Fan et al. 1991) are needed.

In this paper, we propose, for the case of SISO LTI MP
plants with independent parameter uncertainty, an efficient
technique for generating the bounds Ba(wi) on Lo. The proposed

technique is free from subjectivity, takes into account all key
parameter combinations, wid yields practically the exact bounds on
L 0 Another significant feature is that this is achieved with a

tremendous saving in computations ( over that required for the
gridding technique ) for cases where the number of uncertain
parameters and/or the parameter variations are large. The
technique is developed by extending recent results of the
Kharitonov approach to robust stabilization (Chapellat et al.
1990).

This paper is organized as follows: Section 2 contains a
brief overview of the Kharitonov approach, together with an
important lemma that will be needed in the sequel. The proposed
technique is developed in section 3. In section 4. an example to
demonstrate the technique is pi-esented, Finally, section .1
contains the conclusions and scope for further research.

459



2 THE KHARITONOV APPROACH TO ROBUST STABILIZATION

In this section,we first briefly review some important
concepts of Kharitonov polynomials (Kharitonov 1978), and then
give an important lemma that will be needed in the development to
follow.

Consider a real polynomial p(s). Let p*Von (s) and Podd (a)
be the even and odd parts of p(s) ,respectively. That is,

P (s) + po p 2 s 2 +p 4 s 4 4 +......

pevenr (2. 1a)

+ P1 s + p3 s 3 + P5 s 5 +........
odd

p (a)

We also have
ever. ~ OvO• 2- 4.

p () = p (jw) = PO P2 2 + p 4 4 ..........

(2.1b)
odd odd2 4

Pod(W) =Pod (U) = P1 P3 ' 2+ e4+......
p ) ( zp-p 3  +p 5 • +..........

Now consider a family F of real interval polynomials:

p(s) PO + Pl +. ....... + Pn-1 sn- + Pn an (2.2)

where
pe xe. Y 01. Pl r I x' y l]' -'."........ Pn• [Xn" Yn]"

(2.3)

Associated with the interval polyomial p(s) are four Kharitonov
polynomials defined as follows :

K F (a) Y2  + y 3 3 + x 4Na + x5 G + yg6 s+ .

(2.4.1)

KF (a) x0 + yls + y2s2 + x3sa + x4 s4 +4 5 s+ 5 y 6 s6+

(2.4.2)

KF3 (S) =Ye + x 1 s + x2s 2 + Ye 3 + y4a4 +X55 + x606+.

(2.4.3)
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KF4() =Ye + YY1i + xs 2 + x3 s3 + y4s4 + Y5s5 + X6a6+

(2.4.4)

We next consider the family G of SISO plants

n (s)
g(s) = d (a) (2.5)

Here, n (a) belongs to a family of real interval polynomials N, and
d (a) belongs to a family of real interval polynomials D, as
defined below

N n (s) n((s) = n + nls + . ............ +np s

where n 'x 1. [a P) *

(2.6)
D d(s) d (s) = de + ds +. ............. + d q

where d~ c [r,, 6, ], 41 i = e .. q}

(2.7)

Let KN be the set of four Kharitonov polynomials

associated with N. Further, let KCN be the subset of N consisting

of the four following line segments

[ NK2(s) ] K [ 8 KN3(s) .K 1 (2.8

ThLCe are called the four Kharitonov segments associated
with N. By line segment [ KNI(s) , KN2(8; we mean of course all

convex combinations of the form

KN((s) + X K 2 (s)

The subsets KD and PZD of D are similarly define d. Finally, let

G C be the subset of G defined by
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Fn(s)
G = - cG: G n(s) c KN and d(s) D K(Dd(s)

or ( n(s) c KCN and d(s) C KD (2.9)

Thus, G., contains at most 32 one parameter families of rational
functions. These are known as the *Kharitonov segments'.

Before proceeding further, we state the following two lemmas.

Lemma 2.1 (Chapellat et al. 1990)
Let g ( )/d(e) be a proper (real or complex) rational
function in H (C+) , with deg (d(s)) = q, then IlgI 1. < 1
iff

1) 1 nq < I d

2) d(s) + e j n (a) is Hurwitz for all e £ f 0, 2n ).

Lemma 2.2 (Chapellat et al. 1990)
Let Q(s) and R(s) be two arbitrary but fixed complex polynomials
and consider the family P of polynomials

Q (s) n (s) + R (s) d (s) , n(s) c N, d(s)cD

Then, all polynomials in P are Hurwiiz stable iff it is the case
wLan n(s), d(s) are such that n(s)/d(s)c GKC .
We now prove an important lemma that is of fundamental importance
in the sequel-

Lemma 2.3
Let g(s) = n(s)/d(s) e G. be a family of strictly proper

stable MP plants, such that n(s) and d(s) have fixed degrees. Let
A(s) and B(s) be stable MP transfer functions such that A(s)/B(s)
is proper. Then, if c is a stabilizing controller,

AIMjg c (1 + gc)-ll < LIIB(ju)l - I,,A(jwj)l V wa, V a e G

iff

AIlMg c (1 + gc)-l < ,laiB(•J•)I _ LJA(jw)! V w. V g r G
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(Lm denotes the log magnitude, in decibels)

Proof: We equivalently have to prove the following

=10 _ - Lm 12c < ImIB(.io)I - LIA(j)l)

+g 1 c gl2 e G w g c

iff

Lfl fg1c j - Ia1  £2c < LmIB(jw)j - LmnA(jw)l

I+ g 1 .g2 I GK( ,V

(2.1e)
Eliminating Lm in the above expressions , we have to show that

glc(l + g2c)I < J B(jw) J V gl,g2 e G, V
[g 2 c(1 + £lc) I A(Jw)

iff

Ig1c(l + g2c)J < j B(jw)l V g1 ,g2 eGg, V W

(2.11)

Multiplying across by IA(ji)/B(j)I ,and from the definition of
the JJ.-J1, we have to prove that

jIAg1c(1 + g20 )1 1  1 1 g
I Q 2 c (1+ )

iff
+ ic "÷ g2 c) I < 1 V 91 .92  e

I g2c(1 + gio)0 ' (2.12)

Let A = na/da, B = nb/db, C = nc/dc 91 nI/dl" g 2 = n2 /d 2 "

Then, we can write (2.13)
AglC(1 + 92c) db nanIlncd 2 dc + dbfnanl1n cn 2 nc (2-14)

Q2c(I + glc) nbd an2 ncddc + nbd a n 2 nfln c
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If Par: We start by noting that

Ag ic( + g2c)~ <1I gjg 2  G E

I 2c(1~ + g~c) w~

iff

a) Inqj <IdqI ,V gl*g2 C GK( (2.15)

b) (nbdan 2 ncdldc + nbdan2ncnlnc)

+ e (dbnanlncd2 dc+ dbnanlncn 2 nc)

is Hurwitz V e -[0,2n) , V gl*g2 c GKC12 ~(2.16)

Consider (2.16) which can be rewritten as

nI (nbda n2ncnc+ eJOdbnancd2dc+ eJe dbnancn2nc) + d1 (nbdan 2 ncdc)

is Hurwitz V e c [0,2n) , V gg 2  GKr

(2.17)
From Lemma 2.2, it is seen that (2.17) is equivalent to

nzI(nbdan2ncnc+ eJdbnancd2dc+ ejedb nancn2nc) + d 1 (nbdan 2 ncd )

is Hurwitz V e c [0,2n) V V gIc G, g 2 c GK(

(2.18)

Now , (2.18) can be rewritten as

n2( n bdan d l d.+ nbdancnlnc+ e jdbna n1ncn) + d2 (ejodbnan lncdc )

is Hurwitz v e c [e,2n) , V g1t G, g2 GK(

(2.19)
so that, by invoking Lemma 2.2 once more, we have

n 2 (nbdancdldc+ nbdancnlnc÷ e jdbnanlnnc ) + d2 (e "dbnanlncdc d

is Hurwitz V e £ [6,2-) , V gIc G~g 2 C G

(2.20)
We also note the following

Inq< I <Idqq I Vg 1 12 C ( ff InqI <ld ,V g1 -g2  .

(2.21)
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Thus.. Im A-20) ( 2.-21) and Lemma 2.1, we can c:onclude that

1 gcl+gc 1 "' gl.r.2c G

which is what was required to be proved.

Only if art : the proof is obvious as GK( is a subset of G.

0
On similar lines , it can be proved that

-11<

I (1 +gc)-I <-- Yc &)Y Vg cG~c

1ff l

S(1 + gc)- 1 • v •, V g z G

Therefore, if a controller c(s) is synthesised so that the
performance specifications are satisfied for all g z GKC. , then

they are also be satisfied for all g £ G.

3. TMIPLATE GENERATION

As has been discussed earlier, template generation is the
main computational bottleneck in QFT design procedures, especially
in cases where the number of uncertain parameters and/or their
range of variation is large. In the light of Lemma 2.,1. it is seen
that the design specifications i.e. (Ia) and (ib) a-.• satisfied
for all g c G iff they are satisfied for all g r GKC . The
important and interesting implication of this lemma is that the
whole QFT design procedure can now be carried out using only the
subset G of the entire uncertain set G. A real rational proper
stabilizing controller c(s) and prefilter f(s) can be designed so F.
that the design specification are satisfied for all g c GK(
Lemma 2.3 assures us that the specifications will be satisfied for
all g c G.

More specifically and importantly, the template Tptg(j~i)j

at any wi, can be now generated by considering a maximum of 32
parameter families, namely, the Kharitonov segments. At any
frequency w., the parameter k is varied in discrete steps ( the

number of steps depending on the accuracy desired) in the interval
(e, 1] and the resulting template is used to evaluate the bounds
B(wi). The consequent reduction in computations is tremendous.
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Firstly, the number of Kharitonov segments is at a maximum. 32, and
this is independent of the number of uncertain parameters, their
*w of variation, and the system order. In many cases (as in the
ezm*e in Section 4) the number of segments in much less.
Secondly. the choice of a very fine grid for A - fO, 1], say 100
points, does not render this method computationally untractable, as
would have been the case in the 'brute force' method. We
illustrate this through the following example. Let p : 5, and m =
100, say, due to the fact that the range of variation of the
parameters is rather high. Then, by the brute foris method, at
every frequency w, the number of computations is 10-. Varying A.

in [). i I in steps of 0.01 i.e. 100 points, results in a maximum

of 3200 computations at every frequency w'.. Thus, very accurate

results may be sought without the fear of excessive computations.

It is thus readily appreciated that the method of
template generation proposed above results in significant
computation reductions in QFT. It is also seen that this
reduction becomes more and more significant as the number of
uncertain parameters and/or their range of variation increases. At
this point a few remarks are in order.

Remark 3.1- The case of dependent parameter variation can also
be considered, using the proposed method. The results may
however be overly conservative.

Remark 3.2 : The proof of Leman 2.3 will go through without the
restriction on the poles of the plant . The restriction on the
zeros of the plant i.e. that the plant ziro3 must lie in the
L.H.P., is necessary. In other words, the above Lemma holds for
unstable plants which have no R.H.P. zeros. However, we shall show
later that Lemma 2.3 holds under much weaker assumptions.

We now illustrate the theory with an example.

4 ILLUSTRATION OF THE PROPOSED METHOD
In this section, we solve an example to illustrate the

method outlined in the previous section. We consider the design
example solved in (Horowitz and Sidi 1972). Here

K

g () = s(6+ a) (4.1)

K c (1.100] ,a c (1,10]

For this example, the Kharitonov polynomials for the
numerator and denominator are
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1 2 (4-2-.a)

q(as) = KN(s) = 100 (4.2.)

K1
1(s) = [3(s) = s + s2 (4.2.0)

2 4 2(42d

We thus have four Kharitonov segments which are formed as
described in Section 2. Using these four segments, and by varying
X in the interval [0,1] in steps of 0.2, the approximate template

T,.{ g(jw,) I is generated for w = 2. 5 and 15 rad/sec. This is

shown in Fig. 2 for w = 2. Also shown in this figure is the
corresponding template generated by the 'brute force' method. It
is seen that the template generated by the Kharitonov segments
completely encloses the latter. Using the specifications given in
(Horowitz and Sidi 1972)the bounds on the nominal loop transmission
L (ji) i.e- B(,i), are also calculated by both the methods. These

are tabulated in Table 1. It is readily seen that the bounds
obtained by both the methods are exactly the same.

5. CONCLUSIONS AND SCOPE FOR FURTHER WORK

In this paper we have presented a method that helps to
reduce the computational burden associated with template generation
in QFT. The proposed method is based on concepts from Kharitonov
polynomials developed in (Chapellat et al. 1990). Only SISO plants
with independent parametric uncertainty are discussed in this
paper. The case of dependent uncertainty can also be handled, but
the results may be overly conservative and lead to severe over
design. A future paper will explore methods of handling the
dependent case in a non-conservative fashion. A natural off-shoot
of this will be the extension of the proposed method to MIMO QFT
and this will indeed represent a significant contribution to this
design procedure. We thus hope that this work will go a longi way
in making QFT a viable method of controller design.
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TABLE 1: Bounds on the nominal loop tranmisnsion

Fr- q Bounds on the nominal loop transmission L in d13

rad/sec Phase
angle O= -30 O= -60 O= -90 O= -120 O= -150 O= -165
(deg)

Brute 5.875 3.375 2.1875 1.935 8.562 10.340
'1 force

method

Proposed 5.875 3.375 2.1875 1.935 8.562 10.34e
method

Er!te -2.3468 -4.eeo -5.500 -6.500 -2.687 5.453
•2 force

2 method

Proposed _2.3468 -4.000 -5.5605 -6.500 -2.687 15.453
method

Brute -9.125 -le.093 -11.109 -10.750 -8.234 1.310
•3 force

method

5
Proposed -9.125 -le.093 -11.109 -10.750 -8.234 1.310
method

Brute -20.125 -20.750 -20.820 -19.640 -15.340 -10.980
W4  force

method
10

Proposed 2 0 .12 5 -20.750 -20.820 --19.640 -15.340 -10.980method-"

Brute -33.000 -32.625 -31.375 -29.625 -24.980 -19.320
•5 force

method
30

merooed 33.000 -32.625 -31.375 --29.625 -24.980 -19.320
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Abstract: In this paper, we consider the direct application of QFT to a con-

trolled object that is described by a partial differential equation. In partic-

ular, we are interested in distributed mechanical systems described by various

versions of the "beam" equation. It is demonstrated that QFT can be applied di-

rqctly, without resorting to simplifications such as the use of a finite-state,

state-variable approximation during the design phase.

The price that one pays for not working with a finite-trtate approximation

is that the transfer function is an irrational function of `' . complex frequen-

cy, a.

The advantage of working directly with the irrational transfer function is

that one obtains a more accurate estimate of stability nargini and other high-

frequency (post cross-over) effects such as branwidth constraint violations.

We demonstrate that the irrational transfer function offers no special dif-

ficulty in the selection of compensators in the usual QFT-manner. The Laplace

transform is applied to the partial differential equation and to the boundary

conditions. The result is a system of equations that can be solved fc. t.ae

transfer function. For thlat purpose, a symbolic manipulator, such an

MATHEMTICA, is invaluable. Of course the result of a symbolin manipulator

must be verified in some way and we describe methods for that purpose.

Unstructured uncertainty is accounted for in every design method, including

QFT. In the standard QFT procedure, an "internal" damping is imposed in the

form of a maximum M-circle that must not be penetrated by any of the templates.

This is done to provide sufficient dpmping to a distrbme response but an im-

portant side benefit is that this M-circle constraint imposes a gain and phase

margin on the closed loop.

The nature of this uncertainty in the case of distributed mechanical models

is explored in our paper. Certainly, the deam.ng characteristics as well as

other high-frequency effects ignored in, say, the Euler beam equation are exmm-

pies of this unstructured uncertainty. Preliminary verification of the design

with simulation offers some problem and we explore the use of finite differ-

ence.
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A - cross-sectional area

c - a sheer-stress constant, a cOE/at

Ck - arbitrary constants

E - modulus of elasticity

fk (x,s) - irrational transfer-function parameters

Ge(s) - cascade compensator

h - height of a cross-section

I - cross-sectional mcimt of inertia

ITF - irrational _ransfer _fumtion

k - curvature

KL (x,s) - arbitrary constants

L - length of the beam

e- the mass of the effector or the load at the end of the beam

M - shear-stress moent

M(x,t) - mechanical moment

PDE - partial differential equation

P(s) - prtor

a - the Laplace variable

t - time

T(xt) - kinetic energy

u(x,t) - the linear displacement of the center line of the beam from its
undeformed center-line position defined by the hub angle

V(x,t) - potential energy

x - axial position

y(x,t) - transverse displacemnt: the linear, are lenath, displacement of
the center line of the bm frca its initial "at rest" position

4 - strain

0(t) - the hub rotation angle cozrrw i to the rigid body rotation of

the beam

M(x,s) - eig•evalue of the taplace-transfomd beam eqatios

A(x,s) - a transfer-fumction parameter that characterizes the nature of

the damping in the bewn
p - mass density

a - shear stress

'r(t) - torque, the manipulated input
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1. Introduction

The modeling of linear elastic beam has been the object of study for

decades and is associated with some of the most prominent names in applied

mathemti.cst. Of course, a model is the basis for control system design. most

often, these models take the form of a partial differential equation (a "PDE").

The most comon method of trtansforming the partial differential equation

into a form usable in feedback design is to obtain an infinite-series solution,

an eigenfunction expansion (Chait et al, 1990; Margolis, 1976). This approach,

also known as "modal modeling", is based on obtaining the eigenfumctions for

the partial differential equation of the system. Bach eigenfrnction is

associated with a natural frequency of the continuous media. To allow for

computation and manipulation, these infinite eigenf•nction expansions are

truncated at a finite number of terms. The accuracy of the model improves with

the number of frequencies included. At times, it is necessary to include a

large number of eigenfunctions in order to accurately predict the high

frequency behavior of continuous media.
While the eigenfurctions are well known for same of the more familiar .9fa,

it can be a difficult mathematical problem to obtain the eigenfunctions in oly

slightly more complicated situations. For example, wheA damping effects are

accounted for, the basic PDE is a non-self-adjoint operator and the solution of

the eigenfunctions of the adjoint equation ust be obtained as well as the

eigenfunctions in order to obtain the required orthogonality conditions. For

this reason, proponents of modal models will often resort to approximate, ad-

hoc methods of describing effects such as damping in the beem.

One wonders if these approximatioms and heuristics are really necessary? If

high frequency control (fast respose time) of the beam is to be designed, it

seems prudent to create a more accurate high frequency model of the beam. If

the stability margins are to be true measures of our factors of safety against

urmodeled dynamics, matters must not be oanfounded by errors due to

mathematical approximations. Also, consideration of the barndwidth constraints

require model accuracy in the higher frequency range.

It is proposed that high frequency (and also low frequey) control of an

elastic beam can be achieved by using the Quantitative Feedback Theory (QFT)

method proposed by Isaac Horowitz. This is because the FM madel can be used
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directly in this context without resorting to a detailed eigenfunction analysis

or without resorting to approximations, ad-hoc or otherwise.

Our primary contribution is to delineate all details of a ccuputer-aided

design procedure which includes the use of an irrational (transcendental)

transfer function. Section 2 delineates the manner in which the transfer

function is obtained from the underlying partial differential equmtion (the

"PDE"). For any complexity at all a computer aid, a symbolic manipulator, uast
be used to make the necessary manip•lations. It is demnxstrated in Secticn 2

that odal models are useful for checkirg the accuracy of colputer-aided

algebra in those extreme cases where the modal model is easily obtained. Other

types of checks are described there as well.

Section 3 is an example design, an application of WFr to the design of a

beam subject to shear-stress damping. A damping coefficient and the load mass

are the uncertain parameters in this example. Many interesting aspects of the

dynamic model are highlighted and the ariner in which some of these features

limit the performance of the closed loop is deoribei.

Section 4 is a sumary section which concluden with saw suesticns for

future research.

2. The Bernoulli-Ruler Beam FM

We have in mind the beam pictured in Figure 2.1. The intention is to treat

an example suggestive of applications to robot design or to the design of a

space-structure component.

This beam acts in a horizontal plane and is assumed to be stiff with

respect to any motion out of the plaWe. This permits us to ignore gravity and

the interaction of the dynamics associated with torsion and vertical banding.

It is further assmed that the beam is stiff with respect to axial forces and

centripetal acceleration is negligible (Ham, 1991, 207).

Another major assumption in the formation of this first model of the beam

is that the shear and rotary-inertia forces are mall and will be ignored.
Timenshenko states that "both corrections are unimportant if the wave length of

the transverse vibrations is large in compamison with the dimensions of the

cross section." (Tiumenhenko, 1953, 329). An initial asumption is that there

is no damping present in the beam. A PDE which includes damping effects is

presmted in Section 2.4

The beam is a continuous "pinneitree" system of length L. A torque,
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"r(t)", is input to the body through a hub at the pinned end and the tvan is

free to rotate around the center of the hub. The hub is assumed to be massless

and of negligible radius. The free end of the beam is rigidly attached to a

point mas of mass "me" which has no rotational inertia. We refer to this

mass, alternatively, as the "end-effector" or the "load".

The beam has a cross-sectional area of "A", density "p", modulus of

elasticity "E", and cross-sectional moment of inertia about the vertical axis

"I" all of which are assumed to be constant with respect to time "t" and axial

position "x".

"O(t)" is the hub rotation angle corresponding to the rigid-body rotation

of the beam and u'x,t) is the linear displacement of the oenter line of the

beam from its iandeformed center-line position defined by the hub angle. u(xt)

is assumd to be within the elastic range of the beam and sufficiently mall so

that the change in axial distance x, due to beam banding, is negligible. These

assumptions lead to the approximation that u(x,t) is approdmately equivalent

to the arc length traversed by the beam due to its dynmeic behavior. "y(xt)"

denotes the linear, arc length, displacement of the center line of the beam

from its initial "at rest" position.

Using these definitionn and assumptions (Cetinktmt, 1990, p,429, Korlov,

1990, p9), y(x,t), the transverse displacement of any point along the beam, is

given by:

y(x,t) Z u(x,t)÷x.o(t) (2.1)

The total energy of the beam can be characterized by its potentiel. energy,

V(t), and its kinetic energy, T(t) (MPirovitch, 1990, p270, Centinkumt, 1990,

p430). The kinetic energy of the system is expressed by

T(t) = 1 PA S~ Jdx + Ia& [i ~--,t (2.2)

The system potential energy, wholly med up of the energy stored by the strain

present in the beam, can be expressed by

V~) RIp [ x'~, ]dx (2.3)

The virtual work associated with the nxm-conservative forces acting an the

9"tem is

OW ~ a 4 y(~o, t) ](2.4)3W~t)ax

Appliring Hamilton's principle to theme three eqtations we can obtain the
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differential equation of motion for the system and its boundary onditions.

The equation of motion is equivalent to the familiar "Bernoulli-Buler Equation"

for a flexible beam,

RI a4y(x,t)+ pA 82y(x,t) = 0 (2.5)
aX4 Wat

Substitute (2.1) to obtain the more coLmn form of the beam equation:

S8u(xt) a'u(x,t) PA [e(t)]ET -- i-+ pA a t, .-p '32 ---- -.6)

Here, u(x,t) is measured with respect to the centerline of the beam that is

rotating with a non-constant angular acceleration. This angular acceleration,

a, prodces a transverse acceleration in the bean of a(x,t) = -x. "a" is

equal to a'e/att, so the right side of Equation 2.6 is interpr-ted as the

summtion of forces acting in the rotating reference frame. Note that all of

i1hese equations including the beam equation, are based upon neglect" the

axial forces (centripetal acceleration, Coriolis forces, etc.) in the system.

2.1 The IW Models of Elastic Beat and Stability Hhrgins

The Bernoulli-Euler equation is comnily used to describe the motion of a

beam at low frequencies. That is because we neglect in the derivation the

rotational inertial of a differential element as well as the shear forces

acting in the beam. This results in small errors at low frequencies, however

these errors become magnified at higher frequencies. This is because at high

frequencies, the transverse displaements become heavily damped and the shear

forces and rotb-7 inertia bec~ more prominent.

The famous Timenshenko PDE, is a model of a bem which includes the effect

of these forces; however, even this more comprehensive model breeks down at

even higher frequencies (CranIall, 1968, 347). That is to say, and this is

important,

Any PE model of the elastic beam will involve modeli ungacertainties

at the high frequencies. This Is the nature of mathmtical urdeling:

We cannot expect that all possible mechanical devees-of-frevedow are

represented. (2.7)

These uncertainties dm~onstrate the need for stability margins in our feedback

compensator design.

2.2 The Boundary Con-litianu

The following four boundary conditions are obtained by Hamilton's principle

y(x=O,t) 0 (2.8)
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The end of the beam is pinned, go there can be no translation at this point for

any value of time.

From static-beam analysis, we know that the bending moent of a beam is

related to its change in slope by:

a2y(xt) - (2.9)
-'x EI

where Mm is the moment at the point where the slope is evaluated. We can use

this relationship at x = 0 where the bending moment is known to be the torque

input to the beam to get,

a 2 y(x-O,t) - (2.10)

The end mass is assumed to be a point mass, so there is no rotary torsion

acting at the free e--. This giveb us the equation:

82 yxLt) = 0 (2.11)
Si x

The fourth boundary equation is:

Eiasy(x-L,t) 82y(x=L,t)

me is the value of the point mess. The first term is the shearing force

exerted on the end miss by the beam and the second term is the end mum times

its acceleration. Note that the derivative on the right side of (2.12) is the

acceleration of the end of the beam in inertial space so (2.12) is obtained by

applying Newton's second law to the point mess at the end of the beam.

2.3 The Transfer Function and MAZIMTICA

In this section, The Bernoulli-Ruler equation (2.6) is used with the four

side conditions (2.8,10-12) to obtain the transfer function for our dynamic

model. We perform a Laplace transform on (2.6,8,10-12). This leads to

obtaining the transfer function of the output, L[y(x=L,t)] to the Input torque,

Z[•(t) I. In this way the frequency response is obtained by setting a =Jw.

The advantage of this procedure is that it does not require any

approximations such as the truncation of an infinite series.

Transform Equation 2.5 to obtain:

R _d y(xS) pAsty(x,C) = 0 (2.13)

Assume that y(x,a) exp(xx) is the general solution to (2.13) and substitute
to find t\4 pM (2.14)
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Thus, there are four distinct solutions for

A Me •Ae(t/4) (2.15)

A [-pAS ]11/4 (2.16)

The general solution to equation (2.13) can now be expressed as:

y(x,s) = Clexp(,MX)4 )x)+( , ep(x)4Ceexp(MCx) (2.17)

We rearrange (2.17) in the usual way to obtain y(x,s) in term of trigonometric

functions:

y(x,s) = Klexp(Ax/42)sin(Ax/'2) )+Kaexp(Ax/42)cos(Ax/42))+

Kaexp(-Ax/12)sin(Ax/42) )+Kexp(-Ax/42)cos(Ax/42)) (2.18)

To solve for the four unknown paramters, K1-K4, we mist use the Laplace

transform on the bowinary onritiona: The four boundary equations (2.6,8-10)

become:

y(x=-0,s) = 0 (2.19)

dY( s - (a) (2.20)

d'y(xaL,s)dx2 LI 0 (2.21)

2d'y(x=Ls) a.s'y(xL--,s) (2.22)

dx'

Equations 2-10 through 2-13 can be solved by hand without complicated

mathematic mniplations, but the process is tedious due to the nmber of term

involved. To minimize the possibility of mathematical errors, the software

MATHETICA, a symbolic manipulator, as used to solve the set of five

equations (2.18-22) for the unknom constants, Kg through K. 7he resulting

values are complicated, page long, functions of a, s', es, sin(s) and cos(s) as

well as the physical paraumeters (9, 1, etc.) of the syutem, multiplied by the

input torque ( MbCormick, 1992 ):

K =fk(s,physical parameters). r(s) (2.23)

The transfer function between the angular displscement of any point on the

center line of the beam and the torque input can then be explicitly and exactly

stated as:

y(x,s)/r(s) flexp(Ax/42)sin(Ax/42))+fgexp(Ax/42)cos(Ax/42) )+

faexp(-Ax/42)sin(Ax/'/2) )+f4exp(-Ax/42)oos(Ax/42)) (2.24)

This transfer function is "irrational", clearly not the simple ratio of
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polynomials. At this point, we can substitute s = jw and obtain the frequency

response.

Although this frequency-donain solution to the beam equation is an accurate

manipulation of the underlying PDE and side condition, and of great value for

QFT design, other mathematical devices must be used to obtain the motion of the

beam in the time domain. This problem of obtaining the time domain responses

is addressed further in Section 2.5.

2.4 An Improved Model With Structural Duping

Damping is most often neglected when dealing with a flexible beam because

its effect is small and its origins are not always well-understood. Obviously,

the beam is a damped system, because the common experience is that oscillations

decay in time. However, a universally accepted theory for how this damping

occurs is an area of current research.

Humar (1990, p639) argues that damping in the beam can be represented by a

viscous external damping force on the beam and an internal resistance to

strain. Viscous damping from the envirorment can be added in by appending the

term of ca8y(x,t)/at to the left hand side of (2.5). "cv" represents the

environmental viscous damping constant per unit length. This constant may vary

from zero (in a vacuum) to mall values (in air) and, at times, to significant

values (under water).

The Laplace transformation of this term converts it to c, sy(x,s). This

value can be combined with pAa2y(x,s) (2.13) to obtain (c,s+pAs']y(x,s). The

effect is to change the value of "A" in (2.16). In this paper we choose to

ignore viscous damping because its effect will be dependent upon the beam's

working envirorment and is not intrinsic to the beam itself. Clearly, this

term will be important in sme applications.

Humar describes another form of damping: "resistance to internal strain

will depend on the strain rate, ae/at." (Humar, 1990, p639). This strain

produces a stress that has the value a = o8G/at. The constant, "c", is the

damping coefficient associated with this internal shear stress and, in this

study, it is assumed to be constant over the body. This stress varies linearly

across the beam cross-section of height h and produces a nment

JA oh dA (2.25)

Thus,
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M, 8 ,kdA (2.26)

wihere 6 : h. k and the curvature, k, is defined by

ka ay(x,t)
k R xa" t) (2.27)

Humar puts all this together to demonstrate that the PDE becoves

E 84y(X,t). +CSyNt)+ a'y(x,t) (aX4 "_-tX + ~ --- pA =-t - 0 (2.28)at'

We refer to the damping term as a "shear-stress damping".

Use the Laplace transform so that (2.28) becomes

[EI+cls],d'-(X,)+ pAsly(x,s) = 0 (2.29)

The solution to this equation is the same as for (2.13), however the

coefficient "A" becomes

A [ Ps i(2.30)

The inclusion of sheer-stress damping changes only the value of A and n, other

parameter so we include or exolude the effect of damping by merely selecting

one form or the other of this coefficient.

Siailarly, the effect of viscous damping, characterized by "c," is added cr

deleted from our model by including or excluding term. f,-% the most general

form for A:
A:[-pAa2 +cv aI,/4

A[ ?+cI ] (2.30)

To mmarize this section, we choose to neglect he effects of viscous

damping (c, = 0) but to include the effects of shear-stress damping. We
characterize this damping by the constant

ca a. c (2.31)

As sem c o in the discussion of damping, there is no generally agreed-

- upon value for c. so it is a candidate uncertain parameter in the QFr design

process. More explicitly, Equationm (2.24) and (2.30) are our model of the

damped beam for the QFT-compensator design. In this way, we produce an

accurate frequency-dcwein model, as accurate as the modeling asmsptions

themselves. Of course, since modeling assumptions inevitably exclude s

high-frequency mechanical effects, stability margins are still called for.

With this model in hand, we turn to the important matter of feedbeck

control system design.
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3. Application of QFT to the Design of Feedback Control of an Rlastic Beem

The first step in the QFT compensation procedure is to express the plant in

term of a transfer function relating the input torque and the output angular

displacement of the end ma*. The elastic-beam, irrational transfer function

•ITF) derived in Section 2 is

y(x,s)/'r(s) = flexp(Ax/42)sin(Ax/42))+f2exp(Ax/42)cos(Ax/42))+

f3 exp(-Ax/42) sin(Ax/4 2) )+f4exp(-Ax/12)cos(Ax/4 2)) (3.1)

where

A =[EI:, i (3.2)

Where fl through f4 are complicated, page long, functions of the Laplace

variable a and the system parameters (Mc.ormick, 1992, see his appendix).

By setting x = L (the length of the beam) an irrational transfer function

relating the input torque to the angular displacement is obtained. This

irrational transfer function poses no obstacle to the QFT design process

because it is possible to obtain the magnitude and Phase of the irrational

transfer function, y/T, by letting a = jw fo- a range of w.

3.1 Magnitude and Phase of the Uzndmped Beem Model

The problem -"ith assigning the chore of algebraic manipulation to a

symbolic manipulator is that the designer must have some way of checking all

facets of this computer-aided process. As a prelimnary check on this

computer-derived, irrational transfer-function model, the magnitude and phase

plots are developed for an undamped system (cs = 0). It is possible to develop

a six-dynamic-mode model to verify these plots since the eigenfunctions are

well known in that extreme and special case.

This is not to say that the derivation of the modal model does not involve

significant complications (McCormick, 1992). The modal model, as well as the

irrational transfer function model are not trivial to express in a computer

calculation. (In fact, it was necemry to check both of these complex models

with a simpler two-dynamic-mode modal model.) The Bode plots obtained from the

ITF model corresponds precisely to the Bode plots obtained from modal analysis.

These plots are presented in Figures 3.1 and 3.2.

It ca, be seen from the mgnitude plot (Fig. 3.1) that the two models agree

in wagitude up to the seventh resonoam , where the accuracy of the modal model

breaks down. This is expected became the modal model was developed using only
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six dynamic modes. At 5000 rad/sec the ITF model exhibits an odd jumep in

magnitude. Our speculation is that this effect is due to computational errors

but, fortunately, these errors occur in a frequency range well beyond that

examined in this paper.

Both magnitude curves display ',.e general form expected for this type of a

system. Because the system is lased on a torque input amd a position output,

an overall slope of -40 db/decade is expected on the magnitude curve: We

expect the transfer function will behave something like C/s'. In addition, we

expect the system will have resonant frequencies easily related to the modal

eigenvalues. Also, since we are studying a continuous model, there will be an

ever-increasing density of these resonances at the higher frequencies.

While the general form of the magnitude plots agree with what is

anticipated, the phase plots exhibit more intriguing characteristics. There

are also soe of the usual glitches that must be dealt with in any use of

software-derived phase values. (In o'w case, phase was most often calculated

using the all-purpose MATLAB.)

. - Software is often unintentionally programmed to make certain coumter-

intuitive choices about the folding of phase functions; for example, the

choices programmed into software where deciding whether to add multiples of 360

degrees to the phase values calculated from an arctangent subroutine. This

sort of problem is exemplified in Figure (3.2) by the +180 to -180 degree junps

in the ITF phase curve. The magnitude curve in this same frequency range

displays an average slope of -40 db so it is expected that the phase of the

"system should be -180 degrees at low frequencies. It is important to resolve

these curious matters.

Some of the confusing aspects in Figure (3.2) are resolved by redrawing the

phase curves to match the slope of the magnitude curve resolves . Also, it is

true that the MATLAB software will not always make a choice consistent with

what we know of such thingl where the phase curves is discontinuous by 180 or

360 degrees. (We found that a IYF which includes damping will not be as prone

.o these unfortunate choices of phase change, but not this is not ompletely

the case.)

A guide which aids us to explain and resolve the oddities of the phase

curve is the pole-zero diagram of the modal-model. The poles and zeros of the

six-mode model are shown in Figure (3.3). First of all, notice chat the zeros
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appear in mirror-image pairs, mirror imges about the iaginary axis. The poles

are pure imaginary and a few zeros are real but most appear as compex conjugate

pairs. The large number of noriminimnm-phase zeroa is consistent with the

observations of others in their study of dynamic structures: Safanov observes

that, "non-collocated control systems are always non--minimum phase above some

finite frequency." (Safanov, 1989, p2 5 3 0 ).

The effect of the minimum phase/non-minimum phase zero mirroring is wore

easily visualized oy expressing the poles and zeros in terms of their natural

frequencies as in Figure (3.4). Here the ordinate is a number, actually a

name, arbitrarily assigned to the pole or zero beginning at low freqcency and

proceeding to the higher frequencies. The very-low frequency slope of the

magnitude curve is -40 db/decade but there is a set of complex conjugate poles

at 55 rad/sec. These conjugate poles create a resonance in the magnitude plot

(refer to Figure 3.1) and would, ordinarily, decrease the slope of the

magnitude curve to -80 db/decade except that this set of poles is closely

followed by a set of real, mirror-ime zeros at RO rad/see. These zeros P'&

40 db/decade to the magnitude curve and, in this way, umintain the average

slope of the graph at -40 db/decade.

These poles (at 55 rad/sec) are undamped (refer to Fig. 3.3) so they shoul,
produce an abrupt shift of -180 degrees in the phase diaahram. Figure 3-2 sh' '.;

this phase jump to be from -180 to -360 degrees. The system zeros do . "

affect the phase diagram because the minimm phase zero shifts the phase - -)

degrees and the non-minimun phasa zero shifts the phase -90 degrees: T' je

phase shifts cancel each other out.

The next set of poles occurs at 200 rad/sec, followed by a set of zeros at

300 rad/sec. The same analysis applies except that the MATLAB phase plot shown

in Figure 3-2 does riot correctly assign the dIlrection of the jump and the phase

is indicated as -360 +180 = -180 degrees instead of -360 -180 = -540 degrees.

At 500 rad/sec the phase should decrease to -720 daegrees because of the

presence of another set of poles. Obviously, the software is returning the

phase modulo 2n.

The phase curves are corrected by hand and that procedure is carried out

over the entire frequency range and the resulting correct phase plot appears as

Figure 3.5.

Incidentally, the mirror-imtge zeros have no effect -n the phase curve
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throughout the frequency range and that fact has a strong influence on the

ability of a designer to compensate the system to achieve a high crossover

frequency. This is especially true where one aocepts the natural constraint

that only stable compensators can be used (it would be special embarrassment to

have a control actuator disassemble an expensive device merely because the

feedback signal is temporarily lost or shut down!). Also, the corrected phase

decreases rapidly with increasing frequency. This rapid decrease in phase also

has a strong influence on high frequency compensation and that point is

addressed in Section 3.5.
The primary conclusion here is that in the special case of an undamped

beam, the case for which the eigenfumctions are well-known, it is verified that

the MATHEMATICA-derived, ITF provides the correct results. This encourages us

to investigate the more interesting cases.

3.2 Msgnitule and Phase of the INmped Beam Model
We expect that the addition of damping (see eqation (3.2)) should create

magnitude and phase plots similar to those of Section 3.1 in the case of small

values of ca. The Bode plots for that case met those expectations.

The Bode plots for a relatively large damping ratio of ca = 0. 10 are shown

in Figures 3.6 and 3.7. The ccmparison with the undamped case is instructive.
First notice that the resonant peaks in the magnitude plot have been

diminished, especially at the higher frequencies.

Another more surprising result is that the addition of the damping term is

seen to decrease the average slope of the magnitude curve with increasing

frequency. This is an oddity and needs some interpretation. The explaination

is that the relative positions of certain low-frequency poles and zeros are

interchanged. The damping reduces the natural frequency of certain complex

poles while there is no similar effect on the natural frequency of the nearby

zeros. As the damping is internal to the system, no change in the zeros is

expected. The slope of the magnitiue plot is seen to decrease, due to this

effect, from -40 db/decade to -100 db/decade over the frequency interval shown.

The damped ITF model displays a roughly similar drop-off in phase as is the

case for the tndamped case. However, the abruptness of the 1hase shifts have

been lessened and result is smoother phase transitions. We observe no obvious

discrepancies with theory in the Bode diagram of the the damped ITF.
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3.3 QFT With the Damped 17T Model

Quantitative feedback theory has several characteristics that make it ideal

for control of a flexible beam. Being a frequency domain technique, QFr

enables the use of the PDE/ITF model for the beam. This enables the inclusion

of shear damping (and viscous damping if desired) in the model. It also

permits the designer to utilize a more precise high-frequency model without

approximating a large number of modes. In this way, better values are obtained

for stability margins and for the transmissions of sensor noise or disturbance

to the cotru .led variable, T(t).

As indicated in Section 2, there are many ways of re-er"et+ing a damped

beam. The most comnon models are the Bernoulli-Euler and Timenshenko models.

Both of these PDE can be derived only by neglecting certain high-frequency

effects. The Timenshenko beam is accurate for a wider range of frequencies but

at the cost of more complexity. In fact, all beam PDEs should be associated
with uncertainty at some high frequencies. This simple fact obligates the

designer to include stability margins in the cumpensation design. The QFT

provides these -mrgins through the usage of a peak modulus, Np in the design

process. Although the more common way to think of the Mp requirement is that

it is included in order to provide an "internal damping-ratio", a damping in

the feedback loop in response to any spurious disturbance signal.

The uncertainty of the value of the shear-stress dsiping coefficient is

another beam effect that is encourages the use of QFT. This damping coefficient

takes on some value within a relatively large range:

0.01 < c. S 0.10 (3.3)

Perhaps the most interesting reason for applyins Wr to & damped beam

system is that the damped beam system is most accurately represented by an

irrational transfer function (ITF). The irrationality of the plant transfer

function poses no special problem in the application of WT because WT is

based in the frequency domain. Since QFT is a frequency-doain procedure, it

brings out very interesting high-frequency behavior of the ITF: The process

brings insight into the manner in which the high frequency behavior of the ITY

affects stability and eventually limits the speed of response.

A minor adjustment should be made in the WT procedure as presented by

Horowitz to permit the use of the ITF model. Horowitz awss that the plant

model is a rational transfer fumction and uses this assmption to obtain a
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"universal high-frequency" template, a straight vertical line on the Nichols

chart at high frequencies. This assumption is invalid for this M system.

The minor adjustment is to require that templates remain outside the Mv-circle
in the Nichols chart. This stricture is imposed in the same manner for high
frequency templates as it is for low frequencies.

Still another reason for applying a frequency-domain procedure such as QFT

to a damped beam is that this beam system possesses right half-plane zeros.
Blind use of other procedures such as observer-based design can result in

effective ccmpensators with poles in the right half plane. This will happen
anywhere the closed-loop poles are arbitrarily placed at too high a bandwidth.

(That is the price one pays for turning over a design to blind calculation.)

As we have demonstrated, the irrational transfer function does possess right

half-plane zeros, and QFT makes it obvious how these zeros constrain our
ability to achieve a stable compensation scheme.

The uncertain QFT parameters chosen for this system are the end mass, m,
and the beam shear-damping coefficient ca. An uncertain end mass wma chosen
to represent what might happen, say, if the beam is a robot arm used to nove
many different loads of different mass. The beam damping coefficient seemi an
ideal candidate for uncertainty because its exact value is unknown and not

always measurable. All the other physical parameters were chosen to remain

constant.

The Nichols chart of the tuncmpensated plant is shown for the four extreme

parameter variations in Fig. 3.8. Note that all versions of the mncomensated
systems pass near the 0 db, 180 degree point at low frequencies and are,

therefore, near the stability limit. It can also be seen that at high

frequencies ( w > 40 rad/sec), the phase is rapidly decreasing while the
magnitude is relatively constant. The rapid decrease of phase is due to the

increasing density of pole pairings and the magnitude is not decreasing rapidly

because of the minimum/non-minimum zero mirrorings.

First, we make a useful observation: Care should be exerted when choosing

the r nominal point for the ITF model. The resonnces in the system cause
abrupt rises in the magnitude curve over narrow ranges of frequencies. The

tucertain parameters am associated with large changes in the resonant

frequencies. Because the templates are found for a relatively small number of

discrete frequencies and for discrete parameter values, sme of the abrupt
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rises in magnitude are not always represented in an arbitarily-selected, finite

set of templates. A wise choice of the nominal point can reduce the need for

including an inordinate number of frequencies and reduce frustration and

confusion.

To prevent these resonances from making the system response unstable, the

most unstable values of parameters (m = 1.0, c. = 0.01) wre chosen for the

nominal point. If the compensated system is stable for this, "worst case", set

of parameter values, the system likely will be stable for all of the other

allowable parameter variations.

3.4 Conmpensation for a Low Cross-Over Frequency

To test this application of the QFT procedure, modest design requirements

are specified in the first example. The step response is specified to have a

settling time of 10.0 seconds, an overshoot less than 10%, a steady state error

of less than 2%, a phase margin of 60 degrees and a gain margin of greater than

6 db (these margins corresponds to M6 = 1). These requiremnts are used in the

QFr procedure to produce the boundaries an the Nichols chart shown in Figure

3.94

Also represented in Figure 3.9 is the partially cumpensated (with cascade

compensator only) nominal point plant. Following the usual QFT procedure the

system is fully compensated using the following cascade compensator
5.5x 106

(s/1000+1) (s/20+1)(s/50+1)

and the precompensator

81P(s) =-/3+1)

Because the plant model used in the IFT design proceue is an irrational

transfer function, a finite-difference approximation of the PV (2.28) is used

to represent the plant for the time domain simulations. To be consistent with

this finite difference approximation, the models of the cascade compensator and

precompensator must be converted from transfer function representations to

discrete-time models where the time steps are dictated by the finite difference

simulations. only in this way can the step response of the fully compensated

system be obtained. This closed-loop simulation has my interesting aspects

(McCormick, 1992) but that is not a major topic of concern in this paper.

The closed-loop responses, obtained in this way for the given ranges of

parameter variation, are shown in Figure 3.10.
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It can be seen from this figure that the design requirements are met for

all of the allowable parameter variations. It was found that the effect of

variation in the shear-stress damping coefficient has a minimal effect an the

closed-loop step response of the ccapensated system whereas the end mass

variations plays a more influential role (McCormick, 1992). The indication in

Figure 3.10 is that QFr is a promising method for obtaining closed-loop control

for continuous, ITF models when the specified crossover frequency is relatively
low.
3.5 Compensation for a Higher Cross-Over Frequency

In Section 3.4, it is demonstrated that frequency-domain design methods are

a reasonable procedure for the damped beam when sufficiently low crossover

frequencies are acceptable. It is human and useful to wonder about the limits

to which one my push the performance of a feedback design. In this section we

make such a consideration without regard to the possibility that some other

factor, say the the structural strength of the beam, might be the limiting

factor in high-spe,-d control.

Figure (3.11) shows the range of magnitude and phase variations in the

uncompensated plant. Discrete frequencies are marked on the chart, as well as

the boundary for we = 1.0.

If only the worst-case set of parameter values is considered ( m = 1.0,

co = 0.01), the phase is seen to decrease much more quickly than expected by

examination of the slope of the magnitude curve. This is due to the non-

minimum phase zeros present in the system model. The rmaer of these zeros

increase with frequency, so the effect will become more pronoumced as frequency

increases. To illustrate all this, notice that in the first decade of non-

minimu phase zeros (40 to 400 rsd/sec) the phase loss is more than -300

degrees and the magnitude loss remains -40 db/decade.

If attention is restricted to stable feedback compensators, the addition of

zeros to the compensator seem desirable. Each minima phase zero in the

compensator would raise the system phase +90 degrees. However, it would also

raise the slope of the gain +20 db/decade. The gain must be below 0 db for

crossover to occur and the average slope of the beam magnitude curve is -40

db/decade. Thie means that the number of excess zeros over poles in the

compensator located before crossover can only be one.

To insure stability, the comsated plant must not have a phase of -180
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(360 .n) degrees before crossover ("n" is any integer). The plant is seen to

have a phase of -180 degrees at low frequency, so a low frequency zero must be

present in the feedback compensator to make the response stable. This raises

the average slope of the magnitude to -20 db/decade between 40 and 400 rad/sec.

The same kind of compensation is not possible at higher frequencies. It

was demonstrated, numerically, in Section 3.2 that damping smoothes out the

phase variations but decreases the slope of the magnitude curve with increasing

frequency. If the uncompensated plant had a even more-negative gain slope, it

would be easier to compensate the system for higher frequencies. Physically

adding damping to the beam would lower this slope, however it would equally

well lower the phase response.

Due to the fact that the phase starts at -180 degrees and drops off

increasingly fast while the magnitude stays near a steady slope of -40

db/decade, no stable compensation scheme exists to achieve a stable high-

frequency crossover. It is impossible to achieve a transiet responme faster

than some fundamental limit for the damped beam system by measuring only the

end deflection and controlling the input torque.

This result may have some physical justification. After all, the

fundamental PDE (2.28) will only admit finite wave speeds, there will be a

physical delay before a signal, r(t), at the hub can be transmitted to the

effector.

The situation gets even worse when parameter variations are included in the

design. It can be demonstrated that the variations in phase due to parameter

variation in the besm-effector system are as much as 170 for a particular

frequency (1t:Cormick, 1992). Also, as the frequency of the increases, these

phase variations increase. However, the magnitude variation does not increase

with frequency. It is this increase in phase variation, that controls the

design of compensation for crossover. The large phase variations in phase at a

fixed frequency are the result of the changes in the relative positior.s of

poles and zeros which, in turn, are caused by the parameter variations.

Incidentally, this sort of thing has been observed by others, Safanov noted

a similar phenomenon in his study: "...small variations in.. .system parameters

can result in the interchanging of poles and zeros... producing phase errors of

up to -360 degrees." (Safanov, 1989, p2531). These phase errors induced by

parameter variations further limit the possible rise time of the system.
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//
The variations in phase make the QFT teamlpates "wider" in the horizontal

(phase) direction for a given frequency on the Nichols chart. As the phase

will sometimes vary between -180 to +180 degrees at crossover (phase margin of

zero) a total phase variation of 360 degrees can occur at crossover. This

restricts the permissible positions in the nominal plant phase to 3600 less the

variation in phase at the crossover frequency. As long as the phase variation

is less than 360 degrees, this presents only an added difficulty to the

designer in the form of a lessened plbase margin. Above the frequency where the

phase variation becomes greater than 360 degrees, stable crossover is

unobtainable. As the phase variation is increasing with frequency, it will

eventually exceed 360 degrees.

Because parameter variation, and the interaction between system phase and

magnitude is at the heart of Wr, it is a good choice for the feedback design

of the damped beam system. For high frequecy crossovers, use of QT provides

an insight as to how the phase drives the design and eventually limits the

response time.

Of course, the case where an unstable compensator is feasible presents

other possibilities and opportunities.

4. Conclusions sal Sug-'ctixne for Future Research

The focus of this paper is a structural-beam system, with a torque input at

one end of a beam and the transverse displacement of an end mass as output. It

is demonstrated that this system has very interesting feedback control

properties that are easily visualized and understood through the application of

Isaac Horowitz's quantitative feedback theory.

WT is very useful in the compensation design because it permits the use of

an irrational transfer function describing the motion of the beam as governed

by its partial differential equation. It is this type of transfer fuxmtiocr.

that would obtain directly from a PDH model without approximation. This seans

that any high-frequency inaccuracies are the result only of the modeling

process itself. The use of an ITF is seen to pose no difficulty in the QFT

design process.

The price that one pays for the- use of ITF is that the algebraic

manipulations are considerable but these -we easily resolved using a symbolic

manipulator suah as MATHEMATICA. The modal-approximtion methods used by other

investigators still play an important role in the proceuknro we recommend:
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These models represent extreme and special cases where there is sufficient

accuracy to serve as a check to the results of symbolic manipulation of ITF.

It would seem that use of our method opens-uIk the door to the use of far more

accurate moueling in the ,orm of complex PDE ieL& This can only improve,

say, the design of very fast response-timw contrm. In turn, this will mean

that we can have more confidence in stabi.Ot" n .:- and i, "h estimates of

any bandwidth problem.

For example, we demonstrate in this ;er ýL.e ,-se of ITF t---, rigorously

include the effects of shear-stress damping or ,:ii z•_ier tai viscous il•rin in

the plant model.

The shear stress damping is seen to -.., .e -. fert .-a L• Liie

representation of the ITF. This seems to Le c--- % tne ',•.c luat thifI

can interchange the relative location of %',i.Jaons po_•eg and -zeros rf e 7T

Therefore it is desirable that this damping is incii~iPe in the plant modx ..2

as much accuracy as possible. QFT offers the designcr the mnique -bl i•

model the plant with high accuracy, at all frequencies, fo. a large c'/ o.

shear stress damping coefficients.

The trade off between transient response time and closed-loop stability is

the most important constraint governing the control of a damped flexible beam.

This constraint becomes more dmnding as frequency increases. This trade off

is at the heart of QFT design, a procedure de•eloped to minimize the bandwidth

necessary for meeting a specified transient response."

We expanded the interpretation of the "internal damping ratio"

specification proposed by Horowitz. By specifying a peak moduls, H6 # QFr
design not only provides closed-loop damping to plant disturbances, it also

insures stability margins. These margins are required in our example because

of the unavoidable approximations of the modeling process itsell.

We investigated the ultimate limits of feedbeck design, limits associated

by requiring that the cascade c pnsator not include right half-plane poles.

Through the accurate high frequency representation of the damped beam system

allowed by ITF, the speed of transient closed-loop respnes are seen to be

limited by consideration of stability: We demonstrated that it is impossible,

with minimum phase compensation, to achieve a stable, very high crossover

frequency for the damped beam system. This is in accordance with other current

research on continuous systems (Safsnov, '89, p253 1). We expect to show that
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all this is related to the finite wave speed implicit in dyimic beem

equations.

Further research in this area will employ even more accurate irrational

transfer function models of damped continuous structures. Even, we expect,

system. of PDEs. Our paper indicates that much interesting high frequency

behavior will be encountered in that way. We have established that Q'r should

prove to be an excellent ccopensation design for these advanced rrF models.

Finally, we recognize that another limitatin ,,f umirn computer-aided ITF

modeling is that finite difference or fi'Pite element methuds must be employed

to verify closed-loop designs. The det.r. _ir &, adopts our procedure will be

committed to further development of V%,.-:' t.•cer;.•. tools.
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ABSTRACT

Quantitative Feedback Theory (QFT) has received much criticism for a lack of

clearly stated mathematical results to support its claims. Considered in this paper

are two important fundamental questions: (i) whether or not a QFT design is ro-

bustly stable, and (ii) does a robust stabilizer exist. Both these are precursors for

synthesizing controllers for performance robustness. Necessary and sufficient con-

ditions are given to resolve unambiguously the question of robust stability in SISO

systems which in fact confirms that a properly executed QFT design is automat-

ically robustly stable. This Nyquist type stability result is based on the so called

zero exclusion principle and is applicable to a very large class of problems under

some simple continuity assumptions. In particular, the class of uncertain plants

include those in which there are no right half plane pole-zero cancellations over all

plant uncertainties. A sufficiency condition for a robust stabilizer to exist is derived

from the well known Nevanlinna-Pick theory in classical analysis. Essentially the

same condition may be used to answer the question of existence of a QFT controller

for the general robust performance problem. These existence results are based on

an upper bound on the nominal sensitivity function. Also considered is QFT design

for a special class of interval plants in which only the poles and the d.c. gain are

assumed uncertain. The latter problem lends itself to certain explicit computations

that considerably simplifies the QFT design problem.
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I. INTRODUCTION

Quantitative Feedback Theory (QFT) developed by Horowitz (1963, 1991) is

known to be a very effective design tool. The classic multiple-input single-output

QFT problem considers the synthesis of a fixed controller for a plant family p E P' so

that its output y(t) E Ad where Ard is an acceptable output set in response to com-

mand inputs r E 1R and disturbances d E 1) V p E P. The design technique essentially

consists of obtaining a set of bounds on a nominal loop transfer function which are

then used to guide the shaping of the nominal loop transfer function. If one is able to

shape such a nominal loop transfer function then that is accepted as a QFT sloution

to the problem. The many different QFT examples that appear in the literature in

fact suggest and seem to confirm that there is no problem with stability or satisfac-

tion of the assumed frequency domain equivalents of the time domain specifications

(However, the original time domain specifications may not be completely satisfied)

by all p E P. One basic question with the QFT method is how does one know aprioi

whether a suitable loop transfer function may be found. Unfortunately, this question

is not an easy one to answer. One may in fact ask the more basic question of whether

the plant family at least can be stabilized. The latter is obviously necessary to even

have a chance of finding a QFT controller for the robust performance problem. The

issue of stability is one of many criticisms of QFT by Doyle (1986).

In particular, Doyle (1986) raised the question of whether or not a QFT controller

exists for the simple two element plant families

for which it is well known that no proper LTI controllers exist for simultaneously

stabilizing both plants in each two element family. Subsequently, Yaniv and Horowitz



(1987) responded that QFT never claimed that controllers could be found for the

above families. In Horowitz (1991) a more complete answer was given to the question.

However, it was not stated as a direct robust stabilization result but instead it was

stated in the context of arbitrarily large feedback benefits (ALFB). In this paper we

ontext of arbitrarily large feedback benefits (ALFB). In this paper we will address

the question directly from a robust stabilization view point and in a sense restate a

fact that has been known to specialists of QFT.

Clearly, it is useful to know apriori exactly what type of linear uncertain plants

may be robustly stabilized. We show that the class of uncertain plants can be quite

general and will include the possibility of zeros and/or poles both crossing the imag-

inary axis from the left half plane to the right half plane and vice versa, subjected

to the constraint that there are no right half plane pole-zero cancellations. We give

two necessary conditions to determine whether a plant family is robustly stabilizable.

We also give a sufficient condition to determine whether such a controller exists. The

latter condition is derived using the Nevanlinna-Pick theory of classical analysis. The

sufficiency test reduces to (i) determining whether a certain proper, rational, stable

interpolation function can be determined to interpolate some fixed complex num-

bers at the unstable poles and non-minimum phase zeros of the nominal plant and

whether its oo-norm is smaller than the estimatable infimum of the amplitude of a

specially constructed plant family over all frequencies. Based on the latter result an

existence condition for the general QFT performance robustness question is also given

by viewing the problem as a sensitivity constrained optimization problem.

Another problem studied in this paper is the design of a stabilizing controller for

a class of interval plants in which the zeros are fixed but the poles are allowed



to be uncertain. A aim* necessary and sufficient test for robust stabilization is

derived for this clm of problems. The analysis result reduces to a question of

determining whether or not a specially constructed polar plot intersects the unit

box placed around the complex plane origin. As for synthesis we show that a set

of fiequency domain forbidden regions for a nominal loop transfer function can

be explicitly determined for this family by computing at most four points at each

frequency upto a finite firquency. In particular the forbidden regions appear as

parallelograms in the complex piane. The final step of course is the loop shaping

and one may proceed with this last step if the answer to the existence question is

affirmative. Also developed in the paper is how the general QFT problem may be

solved for this special clam. of interval plants. The latter is done by posing the QFT

problem as a sensitivity constrained optimization problem as is done in Nwokah, et

al (19).

The paper is organized as follows. In section II a necessary and sufficient result is

stated along with two necessary conditions, all for robust stabilization. Developed in

section III is a sufficiency test for robust stabilizability based on the Nevanlinna-Pick

interpolation theory. In section IV we formulate the robust stabilization problem

for a special class of interval plants with fixed zeros and uncertain poles and give a

necessary and sufficient test for robust stability. Also included is a discussion of how

robust performance is incorporated in the synthesis problem. Examples illustrating

the key results are in section V. The conclusions are in section VI.

11. ROBUST STABILZATION

Consider the classic unity negative feedback, multiple-input single-output 2 dof

feedback configuration where the interval plant family is described by the strictly
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proper transfer function:
P(S 0) =A (s, a)P~,~=P.(.,a)' (1)

and the proper compensator tansfer function is:

G(.9) = 1(2)

Hewe, a e I C R" denotes the uncertain parameter vector and

(a,,a) = P,(a)e' + ... + p1.(a),

P.(sa) = p.(a)S* + ... + p.,(a) (3)

with m < n.

The closed loop transfer functicn of the system is

P(s, a)G(j)
1 + P(s,a)G(s)' a E ',

whose characteristic polynomial is therefore

8(s, a) ffi Q.,()P.(o, a) + QI(s)Pi(a, a). (4)

Since P(s, a) is strictly proper and G(s) is proper, the coefficient of the highest

order term in 6(s,a) is

where q... is the coefficient of the highest degree term in Q.(s). When dealing with

the problem of robust stabilization, we assume that the uncertain plant description

does not allow a change in plant order. i.e., it is assumed that

p.•q•.,• 0,

or equivalently, we assume tha%

0 €p,(OP).
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Remark: Note that the above restriction does not prevent one from allowing pole-

zero cancellation for some arbitrary at E I. If there are such pole-zero cancellations

"we simply assume that there are common factors in the characteristic polynomial.

Consequently, the following reasonable assumptions about the plant family are

made

Auumptiona:

(i) ti m a compact set

(ii)p.i(a), j = o,..., n, phk(a), k = o,..., m, are continuous with respect to a

NO) 0 0 POS(R)

Denoting,
6,(jw,p~) •= 1 + Q:(,w)Pi(jw,a)

Q.(jW)P.(jW, a)' (5)

we have the following modified "Zero Exclusion Principle" (Anagnost et al. [1989])

in tems of 61.

LEMMA 2.1. G(s) stabilizes the whole interval pla.t P(s, a) if and only if:

(i) there exists an a,, e T such that G(s) stabilizes P(j, a.),

(ii) 0 0 1(jw, 'P), for all w• (0, oo] and

(iii) there are no imaginary axis pole-zero cancellations in

Proof First we prove sufficiency by contradiction. Suppose that G(s) cannot

stabilize P(s, a) for all a e T'. Then we have at least one parameter vector, say

a0, such that 6(s, a) is unstable. Note that all the zeros of 6(s,a) are continuous

functions of the parameter a. Let si(a) be a zero of 6(s, a) with a positive real part

for a = a., i.e.,

Re $(a,) > 0.

Define

a() = (1 - C) + ma.,

509



thn we have
@(o)=- 1, o(1) = o.

Clearly, Ac 31(a(p)) is continuous with res ect to • and since

Re s (a(o)) - Rea (al) > 0

R ei(a(1)) = Ree9(a.) < 0

there exists a constant p. E (0,1) such that

Rea(a(po)) = 0

In other words, we have a pure imaginary number

,((o) W , [0, oo).

Hence, by the definition of .1(a) we have

(j.,a(p,.)) o0

But,

from which it follows that either P,(jwo., p.)Q.(jw.) = 0 or 61(jw., a(p.)) 0. We

also know from the definition of 6(s, a) in (4) that if the condition P,(jw., p.)Q.(jw.)

0 is true then P1(jw.,p,/)Q 1 (jw•) = 0 must also be true. But these two conditions

cannot hold simultaneously because of condition (iii). Therefore,

which contradicts (ii). Consequently, the interval plant is stabilized by G(s). The

proof of necessity is obvious. 0
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The fdlowin corolry gives a simple necessary condition for robust stability.

COROLLARY 2.1. If there are closed right half plane pole-zero cancellations in

the loop transfer function L then the closed loop family can not be stable.

Proof. The imaginary axis pole-zero cancellation case is already covered by Lemma

2.1. For the case of right haft plane pole-zero cancellation suppose there is a pole

zero cancellaticn at a =a > 0 for some Ok E C!, then the closed loop characterLutic

equation becomes

S(j, 4h) = (a - a)9(s, a,)

and the closed loop system has a ight half plane pole at s a > 0.

E3

QFT Methodology: In the QFT problem formulation one considers the loop

trander function

L(s, a) = P0(u) o(•a)

where
L.(s) =

and

Here,
P,.(o) + - .

P•(e) =.p•,,(a.).m + ... + pzo(a.)

IT (a) = p,4(a.)," +... + p.(a.)

With the nominal loop transfer function L,(s) defied as above, by lemma 2.1

the robust stability problem is reduced to determining whether or not L.(s) is stable
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and
S.....1 P(jW, a)

Uw ) 1+L.(iw) P-.UW) 960 6 '1 and w 6 [,oa]. (6)

It is clear from Eqn. (6) that 61(jw, a) = 0, if and only if L. -1 which is

true if and only if the polar plot L,(jw) intersects the value set {_ }..From

this observation we can give an obvious necessary condition for robust stability as

follows:

Since, L.(a) is usually strictly proper (in QFT it is always true), we have

urn L.(jw) = 0

Thus a necessary condition for robust stability is stated in corollary 2.2 below.

COROLLARY 2.2. The plant family P(s, a) cannot be stabilized if 0 E {-•,j}.

Remark: It is worth recalling that in a typical QFT design one imposes a con-

straint on the maximum closed loop gain I1+•L f which is equivalent to a condition of.

the form 11 + LP(jw)I Ž 0 > 0. So clearly, if the latter condition holds the robust

stability condition 61(jw, a) 6 0 holds since 16:(jw, a)I > 0.

Next, we will state a necessary condition for robust stability in terms of the d.c.

gain of the nominal loop transfer function L,(s). The latter condition will impose

a special structural constraint on L4(s).

LEMMA 2.2. When Lo(0) is finite (i.e., L.(s) does not have any poles at the

origin), and - > 0 the plant femily P(ae) can be stabilized only if

L4(0) > inf,,e - if n' is even, or L.(0)< sup.,, {- -}, if n-. is odd.

Here n'. is the number of unstable poles of the nominal loop traasfer function L.(a).
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Proofi Considcr the closed loop characteristic equation

+L.(,s) P(Jca)6,(0, )= I + P,(s)j

The zeros of 61(j,a) are the same as zeros of A(s,a) = + L(s).

Rom the Nyquist stability criterion the zeros of A(s, a) all lie in the open left half

plane if and only if the Nyquist plot of U + L.(s) encircles the origin no times

in a counter-clockwise direction. Since, we know P(joo) > 0, it follows that if

nO. is even (odd), then P + L,(O) > 0 (< 0) to have an even (odd) number of

encirciements of the origin by A(jw, a).

Consequently,

L.(0) > n P(--0 fo) o evenC{ P(0
L.(0) < UIg P•-•() for n: odd

es'I P(0,a) J
0

Remark: Note that t0he case A-0joo) < 0 can be handled in a similar mawnr. In

this case the necessary condition of lemma 2.2 becomes

L.(0) < P(0) } for n: even

LO(0) > { P.(-,) for n: odd

Next, we turn to hie cae where the uncertain plant family forms a countable

set. The results devi aped above can all be applied in such a case by enlarging the

family to be a subset of an infinite family. However, such a characterization does

not provide a conclusive answer as is illustrated below.

Consider the two, two element families P1 = {-L) and P2 = {_Q} that are

well known to be non-stabilizable by proper LTI compensation (Doyle [1986!). If
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we want to use the above results then we must pose the question as follows: Can

the plant families

+ a[-s,]

and

P2 {f be-,.

be robustly stabilized? Note that the two element families are now embedded in

two ininite families. With these enlarged families if we try to use the basic stability

results of lemma 2.1 and/or corollary 2.2 we run into some difficulties. The plant

family fA does not even satisfy the basic assumptions of lemma 2.1 thus making

it impossible to conclude anything about the stability of the two plant family P 1.

However, the second enlarged family satisfies the basic assumptions of plant family

and f is an interval that includes the origin. Hence, from corollary 2.2 it

follows that the plant family P2 cannot be robustly stabilized. However, the latter

conclw'ion does not imply that the two plant family P2 cannot be robustly stabilized.

One of the difficulties in using the results developed thus far is the fact that the two

plant sets are not dense where as our previous results require the uncertain plant

family to be a dense set.

Robust Stablifation of a Denumerable Plant Family:

Consider the plant family P = {pj,p2, -.. ,p#) and let L.(.s) + • be the closed

loop characteristic polynomial with P., P r=P and L.(j) the nominal loop trander

function. In this case it is not necessary that corollary 2.2 holds. In fact the plant

family P, can have elements for which p+(oo)- 4  > 0 and others for which

"p-(oo) < 0 and still be stabilizable. Here, p(j) Define the two

families P+ and P- as follows:

P5P+U1-
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where

P+ =pi E• PIEL(oo) > 0}

pP'- =f (Pi E 'l•E*(co) < 0)

If L.(s) is chosen ctrictly proper with no poles at the origin, then L.(o0) = 0
and [L.(s) + PL,] = p(oo). From the Nyquist stability criterion it therdore

follows that the sign of [L.(s) + 9],= should necsarily be positive (negative) if z

p > 0(p < 0) and the number of unstable poles of L.(s) is even (odd) so that the
encirclement condition is satisfied. Hence, we have the following necessary condition

when the number of unstable poles of L.(s) is even.

L.(0) + p+(0) > 0, and L.(0) + p-(O) < 0

-p-(O) > L.(0) > -p+(O)

Similarly, when the number of unstable poles of L,(.) is odd we have the Ulowing

necessary condition:

--p-(0) < L.(0) < -p+(0)

Following the above discussion we can now state a necessary condition for robust

stabilizability of a denumerable plant family in theorem 2.1.

THEOREM 2.1. If L.(s) has no poles at the origin, then the plant family p is

robustly stabilizable only if

(i) -p(O) > L.(0) > -p+(O) when L.(s) has an even number of right half plane

poles, or

(ii) -p-(0) < L.(0) < -p+(O) when L.(s) has an odd number of right half plane

poles. 3
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With the above theorem it can now be verifed that the two, two plant, families

P1 and P2 cannot be robustly stabilized with an LTI compensator. For P, we have,

p+(O) = 1 and p- O) = I with P,(a) = -.'" From theorem 2.1 we require that

-1 > L.(0) > -1, no matter how many right half plane poles are included in L.(s),

which is impossible to satisfy. Hence, the family P1 cannot be robustly stabilized.

For the family Pj we have, p+(O) = -1 and p'(O) = 1 with Pe(s) = F." From

theorem 2.1 we require that either -1 > Lo(O) > I or -1 < L.(O) < 1, depending on

whether Lo(s) has an even or odd number of right half plane poles and is impossible

to satisfy. Hence the family P2 cannot be robustly stabilized.

I1l. EXISTENCE OF QFT CONTROLLERS

In this section we state a suffi&iency condition for the existence of a controller

for robust stabilization. The result is based on the well known Nevanlinna-Pick

interpolation theory. The classic Nevanlinna-Pick (NP) Problem can be stated as

follows:

Nevanlinna-Pick Problem: Let a,, bi, i = 1,..., m be complex numbers such

that Re (a) > 0 and Ibj _5 1 with aj 3 a1, when i 3 j. The NP interpolation

problem is to determine an analytic function f(z), if one exists, so that

= h, m, and Ilfl.. < 1

It is well known that the above NP problem is solvable if and only if a special

matrix A called the Pick matrix formed with the interpolating points is positive

semi-definite. The Pick matrix is defined as
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Now, we state a alight variation (considered by Khargonekar and Tannenbaum
(1985)) of the classic NP problem where bi's are allowed to be any where in the
complex plane. By choosing a real parameter -f Ž 0 one can look for an analytic
function fy(z) such that f(aj) 7 b,., i l,...,m. The maximum 7, 7m such
that for each If - 7I, fA exLts can be computed as follows:

Deine

A ... ... ... (7)

B. . ... ,.. . (8

6 ... (8)

If at least one of the b, 6 0, then

where ).. is the largest eigenvalue of A-'B.

With the above results we ame now ready to address the question of existence of
a robustly stabilizing controller. Recall, from section 11 above that the uncertain
family can be robustly stabilized if and only if an Lo(s) can be found such that it
stabilizes the nominal plant and 1 + Lo(jw)• 9 0 V w C [0, oo. We will first
state the following lemma which characterizes among internally stabilizing G's the

one yielding

9ininj Y" V er [0, 00)1 I+ L.U.W,) [,=

LEMMA 3.1. Let P. - • be a coprime fctorization of the nominal plant P.
over R!H" the set of all stable, proper, real-rational functions and let X, Y be two
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functions in RHO* satifying the equation

NX+MY=1.

Then

G Sahz,, 1 + L(jw)L

is given by
1

where A,. is the largest eigenvalue of A-IB with matrices A and B defined as in

(7) and (8) with

ai=Z

and

b. = MY(z')

where zs are the right half plane zeros of MNY.

Proof: It is well known that all internally stabilizing controllers for P. can be

characterized as {X+MQ
Y-NQ

Consequently,

1 I

- MY - MNQ

Now, define
I

S.(a)= -(MY - MNQ).

Next we can pose the following NP interpolation problem: Find a stable S. such

that the following interpolation conditions are satisfied

S.(z') -MY(z'), i 1,...,m
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where Zr, a = 1,..., m ae the zeros of MN including those at 0o needed to assure

a strictly proper controller if needed.

It can be easily seen that if S. is stable that Q is also stable. (Notice that if Q
wets unstable then for S. to be stable the unstable poles of Q must cancel some of

the right half plane zeros of MN. But if the interpolation conditions are satisfied

then MNQ(zr) = 0 implying that there should not be any cancellation of right

half plane zeros of MN by unstable poles of Q. Hence, it follows that Q must be

stable.)

The Pick matrix associated with the above NP problem is

A -- A - -f-2B

with A and B as defined in (7) and (8). Therefore -t., for which the NP problem

is solvable is given by ,yý where A. is the largest eigenvalue of A- 1 B. 3

Now we will state the following sufficiency theo em for the existence of a robustly

stabilizing controller.
• -- I P(w.,a)

THEOREM 3.1. If inf-tw0,..j inf@et1 pu I .)- P6 > 7m then there exists a

stabilizing controller for the entire family P(a, a), a E I.

Proofi Suppose L.(s) stabilizes the nominal plant P.(i). From lemma 2.1 if in

addition 1 + L(jw, a) 3 0, VW E [0, oo], a E I then the closed loop family is stable.

Thew•'s at which I + L in zero are characterized by L = -1 or L. -f-. But

L. = -Iisequivalent to
1 P

1+L. P-P.

Hence, if 6• •.then 1 + L 0 and the entire uncertain family is robustly

stable.
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Consequently, the family of plants is robustly stable if

Ii z.# Pi (9)
Note that

since P. E P. Let ,, infE{(o,..l. Then it is sufficient that -i. < p14, to

assure the condition stipulated in (9). r

Remark:

1. Note that the above existence condition can never be satisfied (i) if there

are uncertain zeros of P(a, a) that cross from the left half plane to the right

half plane and vce versa or (ii) xed zero on the imaginary axis. This is so

because p = 0 at some frequencies and some a E T.

2. It can be easily seen that the necessary and sufficient condition that 9+

rf-p requires the intersection of two complex functions. The sufficiency con-

dition of theorem 3.1 is simply based on the magnitude. So it is not difficult

to see that even if the magnitude condition is violated there still may exist a

stabilizing controller for the plant family.

3. If the nominal plant P. is chosen to lie in the interior of the plant family P at

each frequency, then Fp- will cover all phase angles in (0, 2r].

4. Since pA. is proper the infnite frequency interval [0, col may be replaced by

the finite range (0,wj where w, is such that

Now, we state a corollary of theorem 3.1 for the existence of a QFT controller for

performance robustness. Suppose the QFT problem is formulated as a sensitivity
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constrained optimization problem as in Nwokah et al. (1992) and let

inf(o.' I1 +1L.1 = P

COROLLARY 3.1. If -fm•. < #p and the plant family satisfies the conditions

of lemma 2.1 then there emists a QFT controller satisfying the robust performance

speifiatinscharacterized by op.

Proof: Obvious.

IV. A SPECIAL CASE

In this section we study the robust stabilization and the performance robustness

of an interval family in which the uncertainty is only in the pole locations. Hence,

the zeros of the plant family are assumed fixed. For this special case we show that

the robust stabilization problem reduces to determining a nominal loop transfer

function L.(s) that stabilizes the nominal plant which simultaneously avoids certain

forbidden regions that can be explicitly computed simply by locating four points

in the complex plane at each frequency. Then we show how an output disturbance

rejection requirement can be handled. Finally we show that if there are QFT type

tracking specifications that the synthesis problem can be reduced to a sensitivity

constrained optimization problem which in turn can be solved using the previous

output disturbance rejection synthesis procedure.

Consider the interval plart family

P(s,p) = P,(s,p)' (10)

and the proper compensator transfer function

G(s) = Q(s)
Q.(5)
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We amisme that all the uncertainties occur only in the denominator of P(a,p),

i.e.:

Po(.,p) Doi, pi E [a, Oil, i = 0,...,no. (12)
SlO

Let

and
QJ --•• ~.• -0, 1, (13) -

j=0

m. Ž mI.

Denote

p 44 (p0 ... p,,)T C .+) (14)

If [a. 6.1 x.. x [a.,,. #,..). (15)

The cl!,ed loop characteristic polynomial is given by

6(0, p) = Q.(j)P.(s, p) + Q1(S)P1(,). (16)

Without loss of any generality, in the following discussion we suppose that

0 < a'._ :5 0. (17)

Now, we turn to consider the conditions under which 6(jw,p) # 0 for all w.

First by denoting

61(jW,p) = P,(jw, ) + Q- J ,W) (18)
Q.(jW)

we can state the following modified "Zexo Exclusion Principle" in terms of 61.

LEMMA 4.1. G(s) stabilizes the whole interva• family P(s,p) if and only if:

(i) there exists a p. C f such that G(s) stabilizes P(s,pý),
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(ii) 0 W (.iw,,p), p E V, for all W 6 (0,o if Q.(O) #0 and for w c- (0, cOc if

Q.(o) o0.
Proofi Assume that the compensator G(s) is selected to have no imaginary axis

poles except at the origin. So we can assume that Q.(jw) 0 0 for w 96 0 from

which it follows that

0 0 6(jw, *)for w 0

if and only if

0 0 e4(jw,'P)

in the case of Q.(0) # 0 Now consider the case Q.(0) =0. In this case,

6(0, P) = Q1(O)P(O) # 0

because

QI(o) #9 , P(O)# 0

otherwise there is an unstable pole and zero cancellation. So the requirement

0 0 6(0,'P)

is automatically satisfied and we only rned to check whether 0 0 6(jSW, ') for

w >0,whichis equivalent to 006i(jw,f), w >0. (3 Using lemma 3.1,wecan

concentrate our discussion on the cae Q.(O) # 0 and consider 61(jw,p) instead

of 6(jW,p).

For the polynomial P.(jw,p), we can define its odd and even parts as folows:

p.(,p) = p ,W + psW..,

Then we have

P.-(jW,p) = J:•. p) + jP.O(.,,p). (20)
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We now define the following polynomials to fbAlitate the description of our first

result of this section.

DEFINITION 4.1

P"' )=r1  _a-•~2W +' +04 (2...,

C4 02W)=', •, + a,•...

'(jw) = O,- - aW3 + Owl

&p:(W) = aW -_ + ,S..., (21)

,-=g,, = ' ,.eM .;)

•P(w) = P.'),

AP. (W) = (PIM + P:"I),!(Pem + P:-),

PA.(jW) = :(W) +j P(W).

Clearly for each fixed w, and Vp e 1, we have

.P,!"(,.) _< PV(,,,,) _< .r:-,(W). (22)

Note that the parametes appearing in P,(w) do not appesr in Pr'(w), and

vice versa. Thus we have tw real numbers At, A2 with IAII :1 1 and A3 _1

such that

P'(w,,,p) = 'P. (W)A + P(,), (23)

w,,,P) = ,P(w).: + P(w).
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On the other hand, for an arbitary pair of At ,A2 with

l,•, < 1, A•, < 1,

there exists at least one parameter p E qI such that (23) holds. This is because:

(i)

P.'(,w) -< •:(*MAI + P:(w) - P•M (),

.•(,) _5 AP.P(W)A 2 + P.(w) _5 F.•(W).

(ii) For each fixed w , P.(w,p) and P.O(w,p) are continuous functions of

parameter p, P.'(w) (or P.-(w) ) and P.0'(w) (or P:"'(w) )are

their respective reachable maximum values (or minimum values). It follows from

the Mean Value Theorem of continuous functions that there emdsts at least one

parameter p e 6 satisfying (23). Therefore for each fixed frequency w,

P.(jw, W1) =AP.(wMAI + JAP(w)A-2 + P.(WW),

I,1<1,i =1,2.

And

A l+jALP:,-t-P,+P-QI

AP At1 + jA-3 + (+P.Q."

I k1, i 1, 2.

Denote
P,(jw)QI(jw) (24).(jw) = P.(iw)Q.(jw)
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as the nominal loop trander imction with the nominal plant PL and let u(W)

and v(w) be the real and imaginary parts, respectively, of L.(jw), i.e.

L.(jw) = u(w) + jv(w), (25)

For a fixed frequency w, by substituting (25) into (24), we have

61(jW,'&) = aP:'A1 + jAP* 2 +,P:(1+u) - P.V+j(P'u + P*'V)
PeP-O P.' U 0A (,+ U-: V+ )+ jA.P P+2. +

Iu1< 1,i = 1,2.

Denote

KIw) a- -ý* + v A+

= (w) = U + V (26)

and define a box arround the origin

B L= {(A( +jA 2) E R,; jAIj,- 1,i = 1,2.) (27)

Based on the above definitions and discussion, we will now state the following

Lemma.

LEMMA 4.2. For each fixed w,

.6(j,,, ,) = (,�P.(, + X (,(w)) + jwAP(A2 + K(w)); (Ah,,A 2) E B ). (28)

0

With the criterion function K(w) defined as follows:

K(w) - 1,(w) + jK 2(,). (29)
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we can state the first main result of this section given next.

THEOREM 4.1. Let G(s) be the compensator, and L.(.) = G(s)W , the nomi-

nal loop transfer function. The fixed compensator G(s) stabilizes the interval plant

family P(s,,p) if and only if.

(i) L.(jw) satisfies the Nyquist stability criterion and

(ii) the plot of K(w) does not intersect the box B.

Proof. From Lemma 4.1, we only need to show that under conditions (ii) , 0

6t(jw, W) for all w E [0 oo). In fact, for a fixed w , there is p& ' E I such that

$I(jw, p) = 0 if and only if there edists (Al +jA 2 ) E B such that

Al + K1 (&) = 0, and A + K 2(w) = 0,

because both AP. and AP.* are positive. And from Lemma 4.2 it follows that for

each fixed w , 0 S l(jw, W) if and only if one of the following inequalities holds:

IKI(w)I > ', or IK2(,,)I > 1.

This is equivalent to the plot of the criterion function K(w) not intersecting B and

the proof of the theorem is thus complete. 3

IV.1 Synthesis for Robust Stabilization:

Th'heorem 4.1 is an effective tool for synthesizing a robustly stabilizing compen-

sator G(s). The essential idea is to use clasical loop shaping to avoid certain

forbidden regions for the loop transfer function L.(s) corresponding to the nominal

plant • In particular, we can use Eqns. (24) and (25) together with the con-

dition that JK1 [ > 1, or 4K21 > 1 to get constraints on u(w) and v(w), the real and

imaginary parts of Lo(jwd), which can then be used to shape the latter function. The

527



forbidden region for the nominal loop transfer function, L,(jw), at each frequency,

is defined ,y the constraints

IK 1I <1 and IK21 < 1.

First of all we need to express u and v in terms of K1 and K 2. To that end

denote

_A•p w), (30)
A = L [P:AP: Pea:1

b(w) T' p .[-P.]. (31)

By solving u and v from equation (26) with 'ie above deinitions, v!, have

(,) J A(w) [ K, ]+ b(w). (32)

T'herefore the forbidden region for L.(jw) in the u-v plane is giwmv as follows:

By denoting the four points

7r.(1, 1) = A(w) [ + b(),

r•,(I,-l1) = A(w)[ .1J+ b(w),

1w(-1,1) = A()[ ] + b(w),

ir'(--1'-1) = A(w) [:-l + b(W)

it is easy to see that r1 is a parallelogram with the ebove four points as

its vertices. The above discuuion together with theorem 4.1 leads to the following

theorem.
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THEOREM 4.2. Let L.(jw) be the loop transfer function corresponding to the

nominal plant •.. The compensator G = L& stabilizes the whole interval plant

family if and only if:

(i) L4(jw) satisfies the Nyqust stability criterion and

(ii) for each frequency w 6[O, ov), L.(jw) 0fL.,

Note that by the definitions in (30) and (31), there are two constant matrices

A. E R2x2 and b6, E R2 such that

Consequently, during synthesis , we only need to select a specified frequency w,

such that

A(w) s A., b(w) -- b.

for w > w• Therefore during loop shaping L.(jw), instead of checking whether

or not

L.UW.) 0 rIL

for all w E [0, oo), we only need to check

and

L.(U) grTC,, (w., cc).

Since the nominal plant •, is strictly proper from corollary 2.2 a necessary condition

for robust stabilization is that

0 n'I..

IV.2. Disturbance rejection:
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In addition to stabilization, suppose we also want to attain the following distur.

bance rejection specification:

[T,(j, :[ r(w), w: E [0, ],(34)

where Td is the closed loop transfer function from a disturbance input at the
output to the output, wj is a specified frequency such that the frequency band of
the disturbance is included iu [0, wdl. It is easy to see that

T,,+(jw, *) - 1"+ - , - = P,(jw, ) (35)
P.(Ow,$}Q. Q.+ .W

By recalling (24), (25) and (26), for each frequency w, we have

+ Aj,)=~P.*(,\ + Ki(w)) + jAP:(A2 +142(W)),

Thus

Q11+ P(jW, T)J =V/(AP:e)(A 1 + K1 )2 + (AP*,)2(A2+1). (6

Moreover from (20)

IP.(w,,'1)l = /(P: + ,P.,h? + (P: + APOA2)2

< sp •/(IF:I + Ap,)2 + (IP:I + Ap)2

= u(W), (37)

which renders

-. ,(•P:)2(A, + ,K)2 + (Ap:)(o + K2)2 (38)

Hence, a suffcient condition for (34) to hold is

(w) (). (39)
/(AP.)2(K, + A1)2 + (AP.)'(K + A2 ) -(
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It can be easily verified that the forbidden region inside which inequality (39) is

violated, demoted D.,, consis of all points (KI,K 2) satisfying

u~w) > r(w),

/(AP:.)2 (K, + A1)2 + (P..) 2 (K2 + A2)2

or equivalently
(K1 + A1)2  (K2 + A2)1+<1i, (40)

I < 1 , i = 1,2.

The boundary of D,, is the envelope of the following family of ellipses:

(K1 + Ai) 2 + (K2 + A2 )1
.) + (- )2

with the center (Al, A2) moving within B. In order to estimate D, define a

rectangle arround the origin in the (K1 - K2) plane as follows:

,.- {(K 1,K 2 ); K1 <_ 1 + -r-", K2 < I1 +--• . (41)
rAP. a.

Then
D. EE.

and the boundary of D, coincides with that of E. except around the four comers.

Their relation is illustrated in Fig. 1. From (32) and (41), we can easily construct

the forbidden region in the u - v plane by considering inequality (39) at each

frequency. Denote

Uw + u+Vj; U A(w) [K' J+6(w),(KIK 2) EE.) (42)

and define four points as

.1,1);A(w) ,1+ _. + 6(w),
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1 -A() + b(w),

%,,(-II)= A(w)[-I •4 I]+6(w),

t -, ( -1) = A(w)[ • ] +6h(w).

Then IV,, is nothing more than the parallelogram having the above four points as

its vertices. It follows from the fact that B E E, that

IL e . (43)

Now we can state the following lemma.

LEMMA 4.3. If L.(jw) V •.,, then

lTd(/•w, P)l- :5 .

Proof:

L(jw) 0 W.

means that
(K-,(w), K2(W)) E ..

and it follows that (39) and (34) both hold. 03

Now, we can state the main result of this section by assuming w: ., t loss of

any generality that wg < w.

THEOREM 4.3 Let L.(jw) be the loop transfer function of the nominal plant

•.. The compensator G = . stabilizes the whole interval plant family and satisfies

the disturbance rejection specification given in (34) if.

(i) L.(jw) satisfies the Nyqust stability criterion

(ii) for each frequency w E [0, w, L,(jw} • 9.,.
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(iii) for•each frequency w E (4, w.), L(jw) 0 EL.

(iv) for each frequency u C [(, o), L(jw) IL.. 0

Remark: Note that in the above formulation of the disturbance rejection problem

some conservativeness is introduced through the bound developed in (34). This

simplification is utilized here mainly for deriving an explicit form the forbidden

regions. Moreover such simplification may provide a reasonable answer to the exis-

team question as was discussed previously in section HL

IV.3 The General QFT Synthesis Problenu

The goal of the general QFT synthesis problem is to determine an admissible pair

of strictly proper, rational and preferably stable transfer functions (G(s), F(s) in the

classic two degree of freedom arngement shown in Fig. 2 such that the following

conditions are satisfied and the bandwidth of the compensator G is minimized.

1. T(j, p) Iis stable Vp C E.

2. M ,aX# IT(s,p) - T(s,p.)I Sr(a), V3

3. may,* IT,j(s,p) 1 5: ), V V

where •r(s) and r(s) are the prespecified QFT performance reqrdrements and Ty4

is a transfer function from a disturbance to the output.

The above design requirements can be converted into a sensitivity constrained

optimization problem as follows. First note that we can write

T(s,p) - T(j,p.) P(s,p) - P(s, po)
T(O,p.) (1 + G(s)P(s,p))

Denoting T.(s) = T(s,p.) and S(a,p) = • with L(s,p) = G(s)P(s,p) we get

MaX IT(s, p) - T.(.9)1 mnax T.sSJ P (, - POs, P.) ,V.9
pet petP(-9,p-)
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and the tracking constraint reduces to:

max IS(W,p)IS 1 spo 6TW) = 6,(w), VW e [0, 0oo.
pet Peg T.(W) (Pa;P(..

The disturbance rejection requirements can also be reduced (see Nwokah et al.

(1992J for details) to a constraint of the form IS(jw,p)l < id(w) leading to the

following sufficient condition. The QFT specificatioas will be satisied if

maxlJS(j&,,p)l _<. min fWt bdw) we [0, cc]

Now notice that Td(jw, p) defined in section 4.3 above is the same as the sensi-

tivity function S(jw,p) and the QFT performance requirements reduce exactly to

the same problem which can be solved using theorem 4.3.

V. EXAMPLES

In order to illustrate the above results, we consider the following two examples.

Example 1. Let the uncertain plant be:

p1E2 +PN S 2

where

;hEll 2], p2 f2 31, M[-1 0).

Thus we have

P.(s,p)=p1 +2  +P+p3, PA(,,p)= 1, Q.(3)= +1.5, Qi =2,

It follows from a simple computation that:

w2 +1 w

2 ~ 29
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- 2

A•.= -(3 2+ 1) + j.

The criterion function K(M) here is:

w + w2 +- +2.25 24

4

£.Ujw) -- (3w2 + 1 -SWj)(1.5 +wj)

The plots of K(w) and L.(jw) shown in Fig. 3 confrm that P(sp) is

stabilized by G(a).

Example 2. Now we apply theorem 4.2 to the same system for the purpose of

illustrating synthesis. From a simple computation , we have
A(w) 1-(w2 + 1)(3W2 + 1) W2

A ( 30, = . .1)2..+ 250., -5W,(,,, + 1) -,,(3W2 + 1)'

1 & -(W2 ,+1)2 (

(3w +1) 2 + 2w3 -5.(32+1)2"

It is easy to see that w 3-1 0]

In this case we can set

=- = 20.

Several forbidden regions obtained for frequencies w = 0,0.1,1,5,20, are shown in
Fig. 4. Theoretically, although an infinite number of forbidden regions must be
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sketched, in practice a finite number can be chosen as was done in this exmmple.

The next step is to loop shape a suitable nominal loop transfer function. Since the

nominal plant
P, 2

-. 3S2 + 5_ 1

has one unstable pole the synthesized loop transfer function must encircle the point

(-1,0) once and should not penetrate the corresponding forbidden region at the

chosen frequencies. The compensator 1 will work as was shown in the first

example. In a real design situation one must evaluate the compensator chosen, by

invoking theorem 4.1. This last step will especially be important if only a small

number of frequencies were considered to generate the forbidden regions.

VI. CONCLUSION

A necessary and sufficient theorem was given for robust stabilization of a general

family of interval plants. Also given were three necessary conditions for robust

stabilization when the plant family is dense and when it is not. A sufficiency theorem

based on the Nevanlinna-Pi•k interpolation theory was given for the existence of

a stabilizing controller for an uncertain plant family. Also developed in the paper

are some simple criteria for solving the QFT problem when the plant family is

characterized as an interval family with fixed zeros and uncertain poles. As a key

contribution of this paper we have formalized mathematically and in fact justified

a number of claims made in the QFT methodology. We have also provided some

simple sufficiency conditions for determining Whether a QFT controller exists. Our

current research is aimed at determining more sharply stated existence results. In

any event we believe the existence results given here to be the first of its kind.
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Quantitative Design of a Class of Nonlinear
Systems with Parameter Uncertainty

S. Oldak*, C. Baril* and P.O. Gutman*

Abstract

This paper considers the case in which a linear time invariant (LTI) but un-
certain plant suffers from nonlinearities y = n(z) which can be expressed as
y = K.x + 7(z), Iji(z)f < M, with Kn a possibly uncertain scalar. This cov-
ers a large and very important class of noulinearities encountered in practice such
as friction, backlash, dead zone and quantization.

Quantitative design techniques are presented for this class for the satisfaction of
specifications in the frequency domain. Special attention is paid to the avoidance
of limit cycles using describing function theory, although the design method is also
amenable of application using other stability criteria such as the circle criteria.
Numerical examples are developed illustrating the design procedure.

"Lowdermilk Faculty of Agricultural Engineering, Technion- Israel Institute of Technology, T -rnion
City, Haifa 32000, Israel
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1 Introduction

In Quantitative Feedback Theory (QFT) or the Horowitz method, there are three
quantitative design techniques for the practical design of feedback control systems with
nonlinear uncertain plants [Horowitz 1991]. In the first one [Horowitz 1976], it has been
shown that the uncertain nonlinear plant ,w can be replaced for design purposes by a
linear time invariant (LTI) set of equivalent plants with respect to a set A = {a} of
acceptable system responses. Then, the system can be designed as done in the case of
uTI plants with parameter uncertainty.

In the second approach [Horowitz 1982], the uncertain nonlinear plant is substituted
by an uncertain LTI set of plants with a set ordisturhb.nccs at its input. The resulting
disturbance set is generally a function of the specified set of acceptable outputs A =
{a}. It was shown that these techniques can be applied to a hlrge class of plants,
and that LTI compensation results in the system output c E A despite parameter
uncertainty in wo.

The third technique achieves satisfactory performance for LTI plants suffering
from amplitude saturation [Horowitz 19831 and from amplitude and rate satura-
tion [Horowitz 1984]. A special case is treated when the LTI plant is unstable
[Horowitz and Liao 1986].

This paper presents a fourth technique, applicable to a special class of sys-
tems. In this group all the elements of the plant aze assumed to be LTI, pos-
sibly uncertain, but suffering from the liabilities of a finite number of nonlinear-
ities y = n(x) which can be expressed as y = K,,x + rq(x), 17(x)W :_ M, with
K,, a possibly uncertain scalar. Many of the most common nonlinearities are in-
cluded in this class, such as Coulomb friction, backlash, dead zone and quantiza-
tion. The characteristics of some of them are illustrated in figure 1. The effects
of these nonlinearities have been studied in the last four decades with special ded-
ication [Oldenburger 1956,Brandenburg et al. 1986,Brandenburg, Schafer 1989], since
they appear in any servomechanism such as a robot or a machine tool, and they can
seriously impair their performance. However the main emphasis has been on the avoid-
ance of limit cycles, and not on specified performance. Moreover it was assumed that
all the parameters of the plant are perfectly known, which is not a practical assumption.

In the technique presented in this paper these limitations are overcome. For a
large class of problems quantitative design allows the satisfaction of frequency domain
specifications despite parameter uncertainty and the presence of nonlinearities. The
technique also leads a transparent way of understanding why in some cases limit cycles
cannot be avoided and/or arbitrary specifications cannot be achieved. Design examples
are given illustrating the design procedure.
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2 The Design Procedure

Assume that the plant is composed of LTI elements with possibly uncertain parameters,
and one nonlinearity of the form y = n(x.) = Kgx + ti(x), 1I7(x)I < M. A good
estimate of the effect of this nonlinear element on the system output can be obtained
substituting it with K,,, and adding at its output a "worst case" disturbance. The
obtained model is illustrated in figure 2. This approximation has been used for a long
time [Aizermani 1963.Peschon 1965,Netushil 1987], but only for analysis; here it will
be employed for synthesis.

The effect of any disturbance d(t) on the closed loop system output is given by

cd(t) = 0 cý(T)d(t - T)dT

where c6(t) represents the system output when the disturbance is an impulse. By the
construction of the model of figure 2, it is known that Id(t)l < M, so assuming that
the final design will be stable, an upper bound of its effect can be found:

JCd(t)I = 110c6(r)d(t - r)drl _< It Jc;(r)t Id(t- r)l dr

< M Jc6((r)dr (1)

Note that this bound is valid even when the system is in a limit cycle mode [Peschon 19651.

Upper bound (1) indicates that the "worst effect" of any nonlinearity, in the spec-
ified class, is determined by the system impulse disturbance response. Note that after
all the nonlinearities have been substituted using the model of figure 2, and subject to
limit cycle avoidance, the design problem becomes that of an uncertain LTI plant with
distiurbances for which QFT has available design techniques. In the design examples
of the following sections it will be shown how the disturbance problems are obtained
in a heuristic way from bound (1). This can be done considering a specific time do-
main model for c6(t) and translating to frequency domain. QFT will not be reviewed
here since several surveys with a thorough description can be found in the literature
[Horowitz, Sidi 1972,Horowitz 1991,Dazzo, Houpis 1988,Gutman et al. 19881.

2.1 Example 1

The system of this example is shown in figure 3 embedded in a two degrees of free-
dom structure. This system can represent a single loop servomechanism in which
an electrical or hydraulic motor drives a load through a gear traiin with backlash
[BraridesIbi..rg et al. 1986,Brandenburg, Schafer 1989,Thomas 19561. Notie that back-
lash is equivalent to a deadzone in the compliant gear train.
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The objective of the design is to control 0.m despite backlash and plant parameter
uncertainty. In this example

1 1 1

er =- P, =(... . P2A= (2)S~s(J~s + B ..) s(Jis + BI)

with
Km E 0.041[1, 1.21; K, E 4.8[0.85, 1]; B,, E0.0032[1,20]

BA E 0.00275[0.4, 11; J, = 0.0015; J.. = 63.9 x 10'

and b 0.2 is the backlash or equivalent deadzone parameter.

The design equations are found substituting the backlash block in figure 3 with the
model in figure 2. This gives M = b = 0.2, antI K,, = 1. With I given in figure 3, the

open loop transmission is defined as

L=GP

with p=m0 _ K,,Pi
X P " (3)

The effects of the equivalent disturbance and the command input are considered sep-

arately. The system output for a command input 0,,f is

()n=FLE),,€ = Te,,t (4)
em= 1+L

where T is defined as the closed loop command impulse response of the system. Spec-
ifications on T hence take the form

a(w) : IT(iw)i < b(w)

such as those shown in figure 4 with dotted lines for this example. These specifica-

tions can be obtained by the translation of corresponding ones in the time domain
[Horowitz 1991,Dazzo, Houpis 1988,Gutman et al. 1988]. The corresponding require-

ment on L(s) is

'& log 1 (5) •

The system output for a disturbance D(s) is given by

DW
em(s) = 7- = ZD (6).+ L

with W = Thus for the disturbance effect, the frequency domain specifica-

tions are of the form
I W

IZ~iw + - j~(w) 5 <bd(W)(7
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In this example
W KiP1

I + KI(P, + P2)

To obtain bd(w) consider expression (6). In order to get small steady state values
of ti.a nonlinearity effect, at low frequencies IL(jw)l > 1 so

e, W K.

D GP GKm(1 + KiP 2 )

A Bode plot of "! shows that -m suffers from a resonance peak unless G is capable ofP D
eliminating it. Figure 5 shows the resulting Bode plot of equation (6) when a "smooth"
G is used in the design. In practice it is not aesirable to cancel the resonance peak,
since this cannot be done exactly, and a very small drift in G might result in abrupt
phase and magnitude changes in L(s). The presence of the resonance peak means that
the disturbance step response of the closed loop system will be of a very oscillatory
but damped nature. A reasonable approximation of this behavior is

8,.(t) = c4(t) •, Ke•-'t sinwot

where c, denotes the closed loop step disturbance response, then we choose

bd(w) = wo(81,w -(jw + a)' + I 7()

Specifications must be set on the maximum effect of the nonlinearity on the system
output. In this example Icd(t)l < 0.1 = MU is chosen as the specification, with
U = fO jc6(r)j dr, and M = b. Since M = 0.2, U < 0.5 is sought for all t. Since
it is known that the resonance will occur approxirhately at wo = 53 rad/sec, this
value is used in equation (8), and from figure 4, a = 5 rad/sec is chosen, since this is
approximately the required bandwidth of the closed loop system. Finally K, = 0.07
is found from simulations of (8) in such a way that U = 0.5 is satisfied by model (8).
The resulting bd(w) is plotted in figure 5.

Limit cycles will be regarded as undesirable in this paper, so the system will
be examined to determine wether they can be avoided. The describing function
method can be used for this purpose [Gelb, Vander Velde 19681. Although this tech-
nique is only approximate and has some failures, valuable rcsicits can be obtained
in many servomechanisms if there is enough low pass filR•. ': . the system linear
parts [Brandenburg et al. 1986,Brandenburg, Schafer 19891. o .2irnatively other sta-
bility criteria such as the circle criteria can be used as discussed in section 4. To
determine when limit cycle solutions can be avoided, substitut he deadzone nonlin-
earity by its sinusoidal describing function No and compute the ope.n loop transmission.
To avoid limit cycles it is required that (see figure 3) [Gelb, VAnder Velde 1968]

K, P,
L, = GP,, = G1 . 1 3 -1(9)

-4+N6 h
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where the subscript n is used to indicate that describing function is being used. This
same requirement could have been obtained computing the loop transmission around
the nonlinearity.

It can be seen, e.g. in the Nichols chart, that requirement (9) is equivalent to
demand

I +- koo (10)
1+Ln

which can easily be imposed by obtaining templates of P", and using these to get
bounds. This is done similarly as is done for relative stability requirements such as

L 1_"r db (1
1+Li

which must also be imposed. - = 3 db will be used in this example. Note that to
obtain the template of P,,, No is considered as an uncertain parameter varying over
all its possible values. For deadzone [Gelb, Vander Velde 1968] 0 < No < 1. It is
convenient at this point to choose a nominal point such that Ln. = LI, and the design
of the loop transmission can be carried out on a single chart. This is accomplished here
having N% = 1 at the nominal, and an arbitrary set of nonlinear model parameters.
Note that the nominal point can be chosen outside the actual ranges of parameters,
so this procedure is general even if L and L, have no common point. We arbitrarily
chose K,,,. = 0.041, K1. = 4.08, B,,,- = 0.0032 and B1. = 0.0011. Figure 6 shows sorae
of the resulting templates of P,.

From here on, the design proceeds as in usual QFT design. Only the most dominant
bounds, shown in figure 7, on Lo given by constraints (5), (7), (10) and (11) are
considered.

The next step is to design an L0 that satisfies these bounds. This is done with
special care in this example since, aside from the resonance already found, P has one
antiresonance. This antiresonance cannot be eliminated exactly by compensator G for
the same reasons given above for the resonance, so a "smooth" G is designed with the
peaks of P0 appearing in L0 in figure 7.

G = 23000(1 + s/3000)(1 + s/2.5 x 10')(1 + s12.5 x 10' + s2/(2.5 x 104)2)2

Note from equation (6) that at low frequencies (IL(jw)l > 1), IZ(jw)l --* 0 as w -. 0
even when G(s) is of type zero, and for this reason an integrator was not added to the
compensator. The prefilter is designed accordingly

F=
(1 + s/10)(1 + 1.4s/5 + .2/25)

The resulting values of IT(jw)I for several design parameters are simulated in fig-
ure 4 using equation (4) and with K,, = 1 substituting the nonlinearity. Similarly
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IZ(jw)l from equation (6) is shown in figure 5. The values of U(t) = fo Ics(r)l dr are

shown in figure 8 for different plant parameter combinations. Finally the system is
simulated in time domain with the dead zone in place. The step responses, shown in

figure 9, are satisfactory. When the nonlinearity is substituted by the model of figure 2,
and the equivalent disturbance has a non zero steady state value, linear analysis gives

that 08 has a non zero steady state value. As seen in figure 9 this is also the case in
the simulations. It can also be observed from these simulations that the effect of the

nonlinearity is hardly noticed at the system output 0,. The main reason is that since

G does not eliminate the resonance-antiresonance pair of the plant, the loop trans-

mission L in figure 7 is designed with more gain than demanded by the specifications
for a wide frequency range so that the system-cau be stabilized. This overdesign can

also be observed in figure 5 where the specification is oversatisfied for most of the fre-

quency range. Another reason is that upper bound (1) is conservative tending to some

overdesign.

2.2 Example 2

In this example we consider the same plant as in Example 1, but in figure 3 we assume

that the measurement feedback is obtained from 01 instead of 0e. We now show that

limit cycles cannot be avoided. For this compute

p,, = t +NoKtP2

-I 1+ P1Np' 1--
1+NoKIP2

with N 0 the describing function of deadzone. Since for deadzone 0 < No < 1 the
template of P,, grows to -cc db as No -ý 0. Bounds satisfying constraint (10), will
consequently delimits a reagion which includes the -180° liae for ILI < I in the NichoLs
chart. Consequently any practical design of L0 , with an excess of more than two poles

over zeros, must cross these bounds and limit cycles must be sustained. A similar but
more obscure treatment to this case was given in [Thomas 19561.

A similar argument can be used to show that limit cycles cannot be avoided with
linear feedback compensators when the feedback measarement is obtained from both
Ot and 0m in a cascaded configuration. This suggests the possibility that only nonlinear
feedback compensation might be able to deal with limit cycle avoidance in this setting.

2.3 Example 3

In this example we consider a similar system as above, only that now backlash is

negligible and the main nonlinear effects are a result of dry friction (modelled as an
ideal relay) as shown in figure 10. The block diagram of fig-ire 10 is a reTresentation of
the laboratory prototype of figure 11. This is a position servomechanism where a DC
current controlled motor drives a flexible arm. The ensemble is placed c.t a moving
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platform which oscillates at an angular velocity O0 producing a disturbance torque
acting via the shaft friction. The motor bearings and additional bearings along the
shaft produce the friction torque. Two measurement sensors are needed to obtain the
position of the shaft with respect to a fixed reference (one for the shaft and the other
for the platform positions), and two potentiometers were used here. Note that this is
not a command input problem as in Examples 1 and 2, but a regulator problem where
the objective is to set an upper bound of the effect of the disturbance 60 on the system
output (motor shaft position) 8,,,.

Transfer functions P1 and P2 are defined as in (2) and P in (3) only that now the
parameter ranges are

K,, E 0.041[1, 1.2]; K1 E 4.8[0.85, 1]; B. E 0.0032[0.01, 0.3]
BA E 0.00275(0.1, 0.3]; J1 = 0.0015; J, = 63.9 x 10-s

The maximum friction parameter value (maximum saturation level of the ideal relay)
is Fd = 10.

Note that the viscous friction parameter Bm is very small, so in figure 10, x1(t) +
z2 (t) r z1(t) for reasonable 1j0J. Therefore it will be assumed that the external distur-
bance 60 acts exclusively on the nonlinearity input. When we replace the friction block
by the model of figure 2 we have here (see figure 1d) K,, = 0 and {d(t)I • F, = 10.
The transfer function from the equivalent disturbance to the system output is

'z ' s)= , 1+L

with W= D9 0 = and L = -GP. = 1

The time domain specifications ,iUre 1I.(t)I _< 11Fd at all t, and when d(t) is a step
"the signal should be under 0.25% of the step amplitude for t > 2sec with zero steady
state error when t -+ o. The translation of these specifications to frequency domain is
done observing that when w -- 0, IL(jw)I > 1 and Z(jw) %t :'i". So if G has enough
bandwidth a non-oscillatory time domain response can be specified. The zero steady
state error requirement imposes an integrator in G which will appear as a zero at the
origin at low frequencies in Z. The settling time requirement suggests a term of the
form e- 3 't. Then at low frequencies we have that IZ(jU) Kos with K' a constant.
When w - oo, Z(jw) P W =4 - and it is observed that _ < +/ K , with

Kn iKmI.. ./30)
another constant. From these considerations loct

bd(W) = Ks (12)
) (1 + s/3)(1 + s/300)2 =j_

To determine a suitable value for K, we now take into account constraint (1), and
numerically we find the value that makes U = f7' lc(r)fI)d7- < 11. In this example we
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found that K. = 2 satisfies with the equality sign. Then the frequency specification in
this example is that IZ(jw)l < bd(w), shown in figure 12.

To study limit cycle avoidance, the nonlinearity is substituted by its sinusoidal
describing function. For the ideal relay 0 < No < 0o [Gelb, Vander Velde 19681. The
associated plant is

P" K.Pm

1+ Kh P2

where = 1
s(l + Jns + An + No)

The condition for limit cycle avoidance is L-% = GPn # -1, but instead of using
requirement (10) here the more conservative

L+ < 20db

is imposed. Figure 13 shows the resulting bounds on L0 for the avoidance of limit cycles
together with the final design. It is seen that there are no special problems in avoiding
these bounds. The nominal point used is K, 0 = 0.041, K1, = 4.8, B,, = 0.00096 and
Bt, = 0.000825, -IV% = 1.

A relative stability requirement (11) must also be imposed on Lo. -y = 6db is used
here. The Nichols chart bounds imposed by this specification and (12) are shown in
figure 14 where also L 0 is shaped to satisfy the constraints. The resulting compensator
is

G(s) = 12(s/1.15 + 1)(s/10 + 1)(s/100 + 1)(s'/280' + 1.4s/280 + 1)(s2/3002 + 1.4s/300 + 1)

s(s/50 + 1)(s2/56.6" - 0.01s/56.6 + 1)(s2/2602 + 0.6s/260 + 1)(s 2 /280 2 + 0.7s/280 + 1)

The magnitude Bode plots of the closed loop system are shown in figure 12. Fig-
ure 15 shows the time domain responses of the experimental prototype for an oscillatory

60. Compensator G(s) is implemented digitally in a PC-XT computer with a Metrabyte
A/D-D/A converter. The translation to z domain was done using a ramp invariant
discretization [Hanselmann 1987] with

30.37z8 - 46.52z 7 + 4.109z6 + 18.25z' - 7.261z' + 1.245z' - 0.053Z2 + 0.0054z - 0.0015
z8 - 2.47z? + 3.153z6 - 2.475z5 + 0.9903z4 - 0.236z3 + 0.042z2 - 0.0045z + 0.0003

The sampling frequency is 50Hz and the software is written in Turbo Pascal. A pre-
sampling filter is also hardware added between the prototype and the computer

1

s2/1502 + 1.4s/150 + 1

Figure 15 also shows the simulated responses. It is seen that there is good agreement
between the theoretical and the practical results, and that they both oversatisfy the
time domain specification with j0,,,(t)I < 40 < 110, the reason being that there is
overdesign at various frequencies in figures 12 and 14.
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3 Multiple Nonlinearities

The case of multiple nonlinearities in the plant is treated identically as before [Peschon 1965].
We assume that all the elements of the plant are LTI except fur m nonlinearities
S= K.,z,+ i7 <(xi), Ih(xi)l :5 M,, i = 1... r.

Describing function theory can also be used in this case, when there is enough LTI
low pass filtering between each of the nonlinearities [Gelb, Vander Velde 19681. Now
the possibly complex amplitudes of the describing functions of each nonlinearity are
interrelated by their interconnections with the LTI elements. Thus it is possible to
find templates of P, and bounds B(w) due to requirement (10). The dependence of
the describing function values on each other rxight make this procedure difficult. One
simplification is to consider each nonlinearity as an independent uncertain parame-
ter (see [Brandenburg, Schafer 1989] for example), which will however result in more
uncertainty in the template of P, than inherently needed.

The effect of each nonlinearity on the system output must be specified Icd,(t)l
and translated to frequency domain giving specifications bd,(W), i = 1,... rn, with the
sensitivity requirements obtained by substituting each nonlinearity with the model
of figure 2. Only the most dominant constraints are considered on a Nichols chart,
otherwise the procedure is as in the single nonlinearity case.

4 Use of the circle criterion

The circle criterion [Hsu, Meyer 1968] can also be used for assuring that the final
design is free from limit cycle solutions. Its advantage is that is exact, as opposed to
the describing function method which is approximate. For simplicity, only the most
general nonlinearity case wil be considered here, including time varying and hysteresis
elements, and only one nonlinearity is allowed in the system. Extensions can be done
to more restrictive classes which will result in less stringent stability bounds. In any
case, the circle criteria, being a suffcient condition on stability, is more demanding
than the describing function method.

Let x(t) and y(t) be the input and the output of the nonlinearity respectively. For
the application of the circle criteria, it will be demanded that

a< )< b
-X(t)

for all t, with 0 < a < b < oo. Note that this class excludes nonlinearities such as the
backlash hysteresis from figure le. An additional restriction is that when b = co, every
bounded x(t) results in y(t) bounded.

Denote L,(s) as the linear loop transmission around the nonlinearity. L,(s) is
assumed to be stable, otherwise see [Hsu, Meyer 19681.
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The circle criterion states that a sufficient condition for the avoidance of limit cycles
is that 'L (s) I ib+ al

_ _______ <b- (13)
2+-Lt (s)

which can be easily checked in the Nichols chart when L = L,(s), using the templates
of P.

In the more general case, when L : L,(s) (i.e. it is not possible to write L, = GL'(s)
with L' independent of G), a computer program can be set to find bounds on G(s), by
means of a nonlinear search procedure. These bounds define regions in the logaritlunic
gain-phase plane where condition (13) is satisfied. Then, bounds obtained for the
nomrinal loop transmission Lo = GPo can als6"be translated to bounds on G(S) = -O

Compensator G(s) is shaped directly using the most dominant bounds.

Note that the circle criteria is also a sufficient condition for square integrable (L2)
stability if the inputs belong to the L 2 class (Atherton 19841.

Conclusions

This paper has presented a quantitative design procedure for a very important class
of nonlinearities. Its main contribution is that it provides a novel way to translate the
effect of these nonlinearities on the system output to frequency domain. Thanks to
QFT which provides pointwise design in the frequency domain, it has been shown how
this technique can lead to the transparent design of a loop transmission and preifiter
that satisfy specifications and avoid limit cycle solutions. Worth emphasizing are its
simplicity, and its wide application to many practical problems.

The main disadvantage of this method is that the disturbance bound bd used for
the design is conservative. This is because the rate of variation of the equivalent dis-
turbance in the nonlinearity model is not taken into account in the design. Another
important limitation is that when describing function is used for limit cycle determi-
nation, although the design procedure is simplified, there are doubts about the validity
of the analysis. The circle criterion can be used instead, but in general, the design
becomes more complicated and the system bandwidth may increase.

It was shown in various practical examples that the introduced method can give
valuable insight and good results.
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Name n(x) Knx 17W

/~//

a) Preload

b) Dead Zone

//

c) Quantization Z/

d) Dry Friction

e) Backlash

9 Figure 1 Some members of the class of nonlinearities y n(z) = Kx + 17(T),

117(x)1 . M.
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D(s)

X ~ Y + Y

e Figure 2 Model obtained from a noiilineanty y n(z) =Knx + q,(4 117(x) 1•:
M. ab) are exact representations of the nonlinearity. c) Approximate model of
the nonlinearity, notd that Id(t)I <_ M.

Plant

OF I-Iý K. A
7~I F 1  O+K P2

* Figure 3 Closed loop system of Example 1.
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Toleiarces on command input and resulting design

0
"'" "'°;.** .... ............... •. ............................. .......................

-5- b(w)

-10

- -15

-20

-25- IT(iw)I

-301 L ito-' 100 101 1A02 l03

W (rad/sec)

* Figure 4 Closed loop tolerances a(w) _< fT(jw)l < b(w) and resulting design for
Example 1.

Tolerances on disturbance and resulting design
0

-20

"-30
bd(w)

-50

-60

-70 IZ(Jw)l

-80

-90
100 10' 102 103 10' 105

w' (rad/sec)

* Figure 5 Closed loop tolerances on the maximum nonlinearity effect on the system
output, IZ(jw)l < fod(w) and resulting design for Example 1.
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* Figure 6 Some templates of P,, as a function of frequency [rad/sec] in Example 1
for the avoidance of limit cycles. The frequency is marked next to the templates,
the nominal point denoted with *
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* Figure 7 Nichols chart with the most dominant bounds and design of Lo for
Example 1.

Case A'., K, T B, ] B,
0 0.041 4.08 0.0032 0.0011
1 0 .0 4 1 4 .8 0 . 003 1 Oa 

.. 
00B

2 0.0"192 4.08 0,0032 0.0011
3 0.U492 4.8 0.0032 3.00275
4 0.041 4.08 0.064 0.0011
S 0.0492 4.08 0.06 0.0011

1 0.0,192 4.08 0.061 0.00275
7 0.0492 ,4.8 o.364 0.0C275

4.3 U = .l• r)l dr.

a.3.

13"

* Figure 8 Resulting Values of U(t) = ft c(r)I di- for different plant parameter
combinations. 559
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Nq Nonlinear Step Respe.

8.5

1.3 1

* Figure 9 Step responses of the system of Example 1.

ZI X

t B.

Figure 10 Block diagram of a 2-mass system with dry friction. The block in the

upper part of the diagram is the model used for disturbance attenuation design.
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Figure 11 DC motor position servo prototype of Example 3.
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9 Figure 12 Closed loop frequency domain specification and magnitude Bode plot
of IZ(jw)I in Example 3.
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e Figure 14 Nichols Chart with stability and disturbance attenuation bounds for

the design of Lo in Example 3.
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e Figure 15 Experimental and simulated time domain responses of the laboratory

DC position servo system.
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THE LOOP GAIN-PHASE SHAPING DESIGN PROGRAMS*

F. N. Bailey+
C.-H. Hui++
A. Punyko÷

1. INTRODUCTION

The Loop Gain-Phase Shaping Design Programs (LGPSDP) are a series of programs for
computer aided design of SISO control systems using the method of loop gain-phase shaping
(LGPS) developed by L Horowitz, et. al. [1,2]. At present the LGPSDP series includes programs
for 1) generating process uncertainty templates (TEMP21 and TEMP30), 2) generating gain
performnance boundaries (PBOUND20), 3) generating phase performance boundaries
(TBOUND10), 4) generating stability boundaries (SBOUND11) and 5) fitting a rational function
to given gain-phase boundaries (LOOP20). All of these programs were developed at the
Department of Electrical Engineering of the University of Minnesota.

The LGPSDP programs are graphics oriented with the user entering data on a graphics
display appropriate to the problem and obtaining results as graphics displays of templates,
boundaries, etc. Programs in the LGPSDP series use file formats that are. Matlab compatible so
that further processing or display in the Matlab environment is easily accomplished.

All programs in the LGPSDP series runs under DOS on IBM PC/AT and PS/2 or
compatible computers with Enhanced Graphic Adapter (EGA) or Video Graphics Array (VGA)
graphics. Since some of the algorithms are computation intensive, a math coprocessor (80x87) is
strongly recommended.

2. THE TEMPLATE PROGRAMS (TEMP21 and TEMP30)

The Template Programs allows the user to generate and save process uncertainty templates
describing gain-phase variations of process transfer functions having uncertain coefficients.
Generated templates are saved in the .TPL format for use in the Gain or Phase Performance
Boundary Programs (PBOUND20 or TBOUND10).

Conceptually, the process uncertainty template Q(co) describes, at frequency co, the gain and
phase variations that occurs in a transfer function due to specified parameter uncertainty. Given a
transfer function

Y bi(a)si

P(s;a) = i (1)

". aj(a)si
j

with the parameter vector ze AcR and nominal parameter values ao, the template Q(cw) describes a
region in the N-plane (Nichols plot) or C-plane (Nyquist plot) occupied by the complex values of
P(j(o;a) as a varies in A. The template nominal point q is the value Poco;ao). For a detailed
discussion of templates and their computation see [3].

Thibs work was supported in pan by a grant from The US-Spain Joint Committee for Scientific and Technological
Cooperation under Project No. CCB 8504018
* Deparmaent of Electrical Engineering, University of Minnesota. 200 Union St. SE, Minneapolis, MN, 55455 USA

"TIII- DSP Control Group, 4600 Pentagon Pk. Suite 100. Edina, MN. 55435 USA
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2.1 PROGRAM OPERATION
The Template Program requires the input of a process model in the transfer function form

"shown in (1). Uncertain coefficients in the numerator and denominator polynomial must be
expressed as affine functions of a set of parameters al,ct2,...aq whose nominal values and ranges
of variation are specified by the user.

At the beginning the user is asked to choose a procedure for entering the parametric transfer
function (1). This function can be entered from a file (with a .TRF exte: sion) or defined at the
keyboard using a built-in transfer function entry subroutine. User defined transfer functions can be
saved and saved transfer functions c". be edited after entry. They are stored in a user specified file
name with a .TRF extension. Next the user is asked to supply a template frequency and other data
appropriate to the problem.

For each user specified frequency o, the program generates points on the boundary of the
template Q(o). This template boundary can be displayed in either the N-plane (Nichols format) or
the C-plane (Nyquist format).

"2.2 ALGORITHMS
The TEMP21 program uses a special fast algorithm described in [4]. While this algorithm

is very fast it assume~s that parameter vacations in the numerator are independent of those in the
demoninator. In some cases this is acceptable while in others it leads to considerable over
estimation of template size. The TEMP30 program uses another algorithm described in [51 that
circumvents this assumption at the price of additional complexity and template generatioia time.

2.3 COMMENTS AND LIMITATIONS
Both of the template pi ograms described above have the following limitations (for further

detail see [3]):

a. Uncertainty in polynomial coefficients can only be specified as affine functions of the
"uncertain parameters. More complex relations must be reduced to this form.

b. Parameter variation ranges may not cross zero.
c. The transfer function may not have poles or zeros at the user specified template

frequencies for any parameter values in the specified ranges. (If poles or zeros are
detected at template frequencies, a warning is given and the resulting template may be
unreliable.)

3. THE GAIN PERFORMANCE BOUNDARY PROGRAM

The Gain Performance Boundary Program allows the user to generate and save gain
performance boundaries using process uncertainty templates and closed loop system gain
performance specifications. The templates must be LGPSDP files in the .TPL format generated by
TEM?21, TEMP30 or equivalent programs. Generated boundaries carn be saved in the .PBD
format for use in the fitting program LOOP20.

Conceptually, a gain performance boundary describes a region (in the N-plane or C-plane)
that the nominal open loop gain function Lo(jOc) must avoid to meet closed loop gain performance
specifications. A gain performance boundary is obtained by moving a process uncertainty template
over the M-contours (closed loop gain contours) of a Nichols Chart. Given a template Q(co), with
its nominal point q located at the N-plane point (g,o), there is an associated total closed loop gain
variation 81M(g,o) (as indicated by the M-contours) over the entire template. Given a closed hop

- gain performanc.e specification 8T(ca), the gain performance set Bgp(O)) represents the set of all
location of the template [as indicated by the (g,o) location of its nominal point q] such that
-M>T(o•). The gain perfomance boundary aBpg(wo) is the boundary of this set.
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3.1 PROGRAM OPERATION
The program initially requests the file name of a template. Here the user may enter a

complete template LGPSDP file name or ask for a display of all .TPL files in the current directory.
The program then asks for the desireu• value of the closed loop gain performance specification ST.

The gain performance boandar. aBpg(Co) is located by a search procedure similar to the
manual procedure described in [2]. For a fixed phase location Oi of the template nominal point q,
the total closed loop gain variation over the template Q(o), with nominal point located at (g,01), is
SM(g,o1). The search for the intersection of the boundary aBpg (co) with the N-plane. set € =
involves finding the roots g*(i) of the nonlinear relation

8M(g,0) - ST(o) = 0 . (2)

* For each Oi, the roots g*(4i) of (2) define points of the boundary DBpg(o)) lying on the line 0 = i
Thus the N-plane curve g*(ý), for 4e [-180*,180*], describes the entire boundary in the (g,o)-plane.
Typically there is only one root for each 0, but multiple roots are possible as aBpg(o) can be
multiple valued along 7ines of constant 0.

To begin a boudary search the user selects "Search a Phase Range" in the program menu.
The user is then asked "o eater data which specifies the search parameters. Search results are
plotted in a Nichols . Searches can be varied and repeated as desired. A sequence of search
results can be combined to reveal the entire gain performance boundary.

A -,Feful tool in guiding searches is the Cross Section Plot. A cross section plot is a plot of
the magnitude SM(g,o) vs. g for a fixed 0. A line of magnitude ST is also plotted on the cross
section plot. By noting intersections of the SM(go) curve with the ST line one can readily locate all
points on aBp,'(co) at the specified value of 0 and thus easily identify multiple valued regions in the
boundary.

3.2 ALGORITHM
The program uses a modified bisection algorithm to find the roots g* of (2). The algorithm

iterates on g until 8M(g,0)-ST(ca) < .- When possible, convergence of the algorithm is accelerated
by using extrapolation over 0 to obtain an initial estimate of g*. The iteration convergence
parameter e is initially set to 0.01 but can be changed by the user. Smaller valuev of e lead to
smoother boundaries at the cost of longer execution times.

3.3 COMMENTS AND LIMITATIONS
The gain performance boundary program does not automatically find boundaries: it

provides a tool for user directed boundary search. The user should be aware of the following
limitatiors:

a. Each search finds only one branch of a boundary. If the boundary is multiple valued
then additional searches must be used to find other branches. This may require careful
starting of the search near the area of interest, small phase steps, small gain steps and/or
adjustment of the convergence parameter.

b. The algorithm searches only the boundary of the template to find SM. For large
templates located so that the point (OdB,-180*) is inside the template this can produce
incorrect results.

c. Since the M-contours become very large in the vicinity of the (OdB,-180') point, the
search algorithm or the cross section generation algorithm may produce strange results
when the template boundary is near this point.

d. Since the M-contours are compressed in the region where g << 0dB, the value of the
convergence parameter may have to be reduced to obtain accurate results in this region.
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4. THE PHASE PERFORMANCE BOUNDARY PROGRAM

The Phase Performance Boundary Program allows the user to generate and save phase
performance boundaries using process uncertainty templates and closed loop system phase
performance specifications. (Phase performance robustness is important in robust multi-axis
coordinated motion. For additional details see [6].) The templates must be in the .TPL format
generated by the TEMP21 or TEMP30 programs. Generated boundaries can be saved in the .TBD
format for use in the fitting program LOOP20.

Conceptually, a phase performance boundary describes a legion (in the N-plane or C-plane)
that the nominal open loop gain function L0(jco) must avoid t6 meet closed loop phase performance
specification. A phase performance boundary is obtained by moving a process unceitainty template
over the P-contours (closed loop phase contours) of a Nichols Chart. Given a template Q(w), with
its nominal point q located at the N-plane point (g,ý), there is an associated total closed loop phase
variation SP(g,o) (as indicated by the P-contours) over the entire Lemplate. Given a closed loop
phase performance specification 80(co), the phase performance set Bpp(co) represents the set of all
locations of the template (as indicated by the (g&,) location of its nominal point q] such that
8P_>8(co). The phase perfomance boundary aBp(o)) is the bounidary of this set.

4.1 PROGRAM OPERATION
The operation of the phase performance boundary program is essentially identical to the

operation of the gain performance boundary program described above. The program initially
requests the name of a template file and the closed loop phase ptrformance specification 80. The
search for the phase performance boundary is carried out as indicated in the discussion of the gain
performance boundary program.

5. THE STABILITY BOUNDARY PROGRAM (SBOUND11)

The Stability Boundary Program allows the user to generate and save high frequency
stability b( undaries using process uncertainty information. Generated boundaries can be saved in
the .SBD :brmat for use in ,he fitting program LOOP20.

Conceptually, a stability set Bs(co) describes a region (in the N-plane or the C-plane) that
"the nominal loop gain function L0(jco) must avoid to obtain prescribed stability or relative stabiiity
specifications. The stability boundary DBs(co) is the boundary of this set. Here we are limited to
generation of high frequency stability boundaries - those most commonly of interest in application.

Two types of high frequency stability boundaries are generated by SBOUNDI 1:
(1) parametric uncertainty stability boundaries based on M-contour specifications of relative
stability with high frequency process uncertainty template offsets (gain only) and (2) mixed
uncertainty stability boundaries based on M-contour specifications of relative stability with
frequency dependent mixed uncertainty offsets (gain and phase). For a discussion of (2) see [7].

5.1 PIOGRAM OPERATION
The progiam initially displays a Nichols Plot showing several M-conlours and then

requests a user chnice of one of the two types of stab/,'_y boundaries.
If the first type is selected the user must specify relative stability by selecting an M-contour

and then specify the gain variation parameters of the relevant high frequency parametric uncertainty
template. No frequency inforration is required.

If the second type is selected the user must enter the frequency, select an M-ccntour
specifying relative stability and then specify the gain and phase dimensions of the mixed
uncertainty template. This process can be repeated at several frequencies.

In both cases the resulting user generated stability boundaries can be displayed in the N-
plane or the C-plane.
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6. THE LOOP GAIN PROGRAM

The Loop Gain Program allows the user to generate nominal loop gain functions L0(jCo)
meeting given robust performance and robust stability specifications using performance boundaries
and stability boundaries generated with PBOUND20, TBOUND1O and SBOUNDl1. The
performance boundaries must be in the .PBD format generated by the PBOUND20 program or the
.TBD format generated by the TBOUND10 program. The stability boundaries must be in the
.SBD format generated by the SBOUNDI I program. Gain vs. frequency and phase vs. frequency
data (Bode plot format) describing the chosen nominal loop gain function can be saved in a .LGN
file for further processing.

Conceptually, a nominal loop gain function is obtained by fitting a rational function to
constraints given by:

1) the desired system type (type 0,l,etc.) and. for type 0 systems, the loop gain at w = 0,
2) performance and stability boundaries obtained from specifications and process

uncertainty templates,
3) the required high frequency phase (determined by the loop pole excess).

Given these constraints the Loop Gain Program provides a graphical environment for finding
feasible nominal loop gain functions with minimum bandwidth.

6.1 PROGRAM OPERATION
The program begins by asking the user to enter data describing the problem design

constraints (i.e.. performance and stability boundaries). The user entered performance and sability
boundaries are then displayed in a Nichols Plot (N-plane) Window of the LOOP20 Workspace
and the Main Menu is presented. A Scratch Window is available to the right of the Nichols Plot
Window for the entry of gain/frequency data describing trial loop gain functions.

The basic loop gain-phase shaping design procedure involves an iteration of the following
two design steps:

1) the user enters new gain/frequency data or edits existing gain/frequency data in the
Scratch Window, and

2) the programs computes and plots the associated gain-phase plot (over the displayed
performance and stabilty boundaries) in the Nichols Plot Window.

To accomplish this second step the program interpolates additional gain-frequency points between
the entered data points and then computes the minimum phase, phase/frequency data using the
Bode integral [8].

Thru iteration of this man-machine editing/plotting cycle the user can "learn" how to fit a
minimum bandwidth loop gain function to the problem performance and stability boundary
constraints.

The LOOP20 Workspace
.Tiae Nichols Window is used to display boundaries, trial loop gain functions and user

defined transl,'.r functions in standard Nichols format. Displayed boundaries are marked by their
frequencies when appropriate. When gain-phase plots of trial loop gain functions are displayed,
small crosses are used to relate specific gain-frequency points in the Scratch Window to those on
the associated' gai.-phase plot.

ThP Scratch Window displays gain-frequency data points entered by the user. Gain is
indicatw.u using the gain scale inherited from the Nichols Window while frequency is explicitly
juarked next to each data point. To facilitate editing and learning in the design process the user can
store and display three uniquely colored columns of gain-frequency data in the Scratch Window.
The gain-phase plots associated with these columns can be simultaneously displayed and identified
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by color. Several gain/frequency data editing commands (e.g., interpolate points, block move in
gain or frequency, slope change) are provided to facilitate the shaping of a loop gain function to fit
the constraints.

6.2 ALGORITHMS
The generation of the gain-phase plot from the gain-frequency data is a three step operation.

First the gain-frequency data is extrapolated on each end for 1.5 decades using the initial and final
slopes. Second, five additional points are interpolated between each point in the gain/frequency data
set using a third order spline. Finally, the minimum phase, phase-frequency data is calculated using
the Bode integral theorem (a Hilbert transform) which relates the minimum phase of a rational
function to the gain frequency data. The specific form of the Bode integal used is given in [8].

6.3 COMMENTS AND LIMITATIONS
Understanding the use of the various LOOP20 editing functions requires some careful

thinking about the relations between gain and (minimum) phase in a rational function. As a start the
user should note the that when the slope of the gain-frequency plot is constant the minimum phase
is constant and has a value of 4.5m degrees, where m is the slope of the gain-frequency plot in
dB/decade.

7. AN EXAMPLE - DC MOTOR WITH UNCERTAIN LOAD

The following example (extracted from [9]) illustrates the application of the the above CAD
tools to a simple robust control system design problem.

Problem Statement
The goal here is the design of a robust controller for a speed control system where the load

on the motor can vary over a wide range of values.

Process Model
A DC motor with an inertial load JL car. be modelled by the transfe: function

1L((s) - 2(3)
P( :=e(s) (LJm+LJL)s2 + (RJm+RJL)S + Km(

where oL is the motor shaft speed and e is the motor armature voltage. Reasonable parameter
values for this transfer function are (in SI units):

L = 2.2E-3 Km =0.2
R = 0.4 Jm = 1.4E-3

We will assume that the load moment of inertia JL varies in the interval J = [.0 54m,0 OJmi and take
JL = J. as the nominal value. That is, we define a = JL and take cto = Jm.
Performance Spg fiatJ n

The performance goal of interest here is to have the motor shaft speed WL track a speed
reference signal r. Typical frequency domain specifications for the closed loop tracking transfer
function T(s) =L(s)!r(s) are given below.
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7

0 ±0.05 dB for wg 10 rps
0 ±0.2dB for 10<(:5100rps

T = 20 ±2.*0 dB for co = 300 rps (4)
-40 ±20 dB for (o > 104 rps

We will require that these closed loop performance specifications be met for all JL in the interval J.

Stability Specifications
For simplicity, we have chosen the relative stability specification by specifying a gain-phase

margin region corresponding to the 5dB M-contour on the Nichols Chart. This corresponds to a
gain margin of about 4 dB and phase margin of about 35°. In addition, we require that this gain-
phase margin should be robust with respect to variations of JL in the interval J.

Additional Specifications
For disturbance rejection we will require the Lo(Jo) be type 1 (i.e., one pole at s = 0). We

will also assume that the compensator has a one pole excess [giving an overall pole excess of three
in the nominal loop gain function Loooj)].

The LGPS Solution
We begin the LGPS solution by plotting the process uncertainty templates Q(()) for P(S;JL)

at several frequencies. These templates are shown in Fig. 1. Note that since P(S;JL) has only one
independent parameter these templates are one-dimensional. In addition, since P(S;JL) has
independent parameter variations in numerator and denominator and these variations are affine in
the uncertain parameter JL [see (3)], then the templates obtained with TEMP21 are exact 13].
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Fig. I Process Uncertainty Templates Q(n) for o = 0.3, 3.0, 30, 300, and 3000.
(Template nominal point locations am indicated by a "+".)

The second step in the LGPS design process is to compute and plot the performance and
stability boundaries at appropriated frequencies. Performance boundaries are obtained by entering
the templates plus the ST specification given in (4) in the performance boundary program
(PBOUND20). The resulting performance boundaries are shown in Fig. 2.
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Fig. 2 Performance and Stability Boundaiies
(Frequercies Marked on the Boundaries)

The relevant high frequency stability boundary is obtained by combining the stability
specification (i.e., the 5dB M-contour) with the high frequency process uncertainty template
(co = 3000 in Fig. 1) in the stability boundary program (SBOUND1 1). This boundary is the closed
region encircling the (-1800,OdB) point shown in Fig. 2. (The use of the high frequency stability
boundary is based on the assumption that the process uncertainty template has become a vertical
line at frequencies where the gain-phase plot of the nominal loop gain function Lo(ju) is passing
near the stability boundary. It can be seen in Fig. 3 that this assumption is indeed justified. In
general more complex stability boundaries may be required.) Note that the periormance boundary
for w = 3000 lies entirely inside tlh: stability boundary and is thus irrelevant to fu.iher LGFS design
steps.

The fourth step is to fit a minimum bandwidth loop gain function to the performance and
stability boundaries using the loop gain fitting program LOOP20. Assuming one excess pole in
the compensator [i.e., arg(Lo) goes to -2700 as oa goes to **] we fit a nominal loop gain function to
the performance and stability boundaries as shown in Fig. 3.

At this point we have the frequency response description of a rational Lo(Joo) that satisfies
the design constraints. That is, at each of the specified frequencies (0i, the nominal loop gain
function Lo(J•i) satisfies the constraint implied by its respective performance boundary aBp(ai). A
traditional Bode plot description of LoOc) is shown in Fig. 4.
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Development of an Analog MIMO QFT CAD Package
by

Richard R. Sating, I. M. Horowitz, C. FL Houpis
Air Force Institute of Technology

1 Overview of Mutivariable Coantr Problem
A CAD package is developed as a design tool for applying the Quantitative Feedback Theory (QFT) design

technique to multivariable control systems involving uncertain continuous time MIMO plants which are free from
outside disturbances. A MIMO uncertain square plant Pe with m inputs and m outputs is to be controlled by use of
a diagonal compensator Gj and a diagonal prefilter F in the feedback stnicture shown in Fig. 1 such that the closed
loop system meets stability and performance specifications.

A flight control system is utilized to illustrate this MIMO QFT CAD package. The plant model P to be
controlled is in general constituted by four component parts. A block diagram showing the placement of the aircraft
plant model PCoN-r, the actuator dynamics TAcr, the sensor dynamics TsEr•s, and the sensor gain matrix WsEN.s is
shown in Fig. 2. The plant P of dimension mx/ is, in general, not square. Since QFT requires a square plant then
the square mxrn plant Pe is fmied front the non-square mx! plant P by use of the b'an weighting matrix W as shown
in the block diagram in Fig. 3.
2 hnpmaiai ofthe M1,IMOe Q'T CADIck,-,ge [(]

Several platforms are considc-ed for use in implementing the MIMO QFT CAD package, including Matlab,
MATRIXx, Control-C, Matheirriica, Macwyma, and the 'C' language. Mathematica is chosen as the platform for
the CAD package due to its high numeric precision and symbolic capability. Additional features include the
interactive front end. porability, and cost. The shortfall in execution speed associated with interpreted execution is
remedied by exportinE computationally demanding tasks to 'C' subroutines, while the absence of control tools is
addressed by developing ae needed resources.
3 LoPiing Pa tEa (seebk)kl inFig.5)

The plant models may b- entered manuirlly or if they are available on a disk they can be loaded directly, that
is, automated loading of each aircraft plant -,. trix PcoNr is implemented to eliminate the need for manual data entry.
Once !oaded, transfer function elements of PcoN'r can be listed in factored form or plotted on a Bode plot.

Often, each plant model l'as associated with it a unique set of parameters. The CAD package allows the
designer to define a set of parameters associated wit'i the plant models. For an aircraft model, the set of parameters
may include vehicle altitude, Mach number, and angle of attack. The designer may then specify the values of these
parameters along with a comment to be stored along with each plant model loaded.
4 Acuator and Sensor Models (see block 2 in FigS)

Dynamics of each actuator TAcr,(s) and sensor TsENqs(s) used to control the plant is defined by a deterministic
LTI transfer function. The block diagram in Fig. 2 illustrates the use of actuators and sensors.
5 Sw=rGainMatrix (sw bksi3inFig.5)

In some instances, a subset of plant outputs or a linear combination of plant outputs are to be controlled. In
these cases, the designer can specify the appropriate sensor gain matrix WsEis. An entry is accepted for each matrix
element, in the fcrmat of a coefficient form or factored form polynomial, where the coefficients, poles, zeros, and
gain can be constants or a function of plant parameter values defined when the plant models are loaded, Constants
may be used as elements of WSENS by using transfer functions with no poles or zeros but with the desired gains.
6 VWightingMatrix (see blccks 4,5, and 6 in Fig, 5)

A block diagram illustrating the insertion of the weighting matrix W to form BP is shown in Fig. 3. The
elements of W are defined by the designer in the same marner is for WsE~s. When the plant matrix is not a square
matrix of desired dimensions, the weighting matrix W is selected to achieve a square mxm effective plant Pe. When
more plant inputs are available than required for control purposes, the weighting matrix provides additional degrees
of freedom in the blending of plant inputs used to control the system. In these cases it is desirable that the selected
W yield minimum-phase effective plants (qii)t for all Plant cases 1 = 1, ... J. The Binet-Cauchy Theorem is applied
to determine whether a minimum-phase P, is achievable. In some multivariable control problems, the degree of
uncertainty in the system to be conrroll-zi may render impossible a successful design. Thus for some of these cases.
gain scheduling may be utilized to z.fect a QFT design.



For each plant ('il,&e 1. 0we weightinig matrix and wrnsir gain matrix, whuw Oct ments maiy be. tuixt"ivik 4f plibnt
paraineters. are evaluated using the plAnt paramtder values a-,xwled with the plant noth1l

W S = W sparanis, parain,1 parm.") (1)

..WS(parantgI paM2. pararnip) (2)

Each effxtive plant is then formed from its comrponent parts:

P= ij I = P1 W = (WS1IiNS, -TSENS -PCON " IACT )'WI (3)

When Pe, is formed. a ccnmnmt denominator (P*,)j is factored out of each py yielding the expresibiti:

(4)

and where the elements of the matrix (P..)l are pdlyncinuals in factored form.
The effective plant matrix P ,, must be full rank and have diagomal elements which have the same sign fhr all

ilant cases as t-+x'. The CAD package allows the sign of the in diAgonal plants to b,- examiwed for the J plant

cases a, &)-4- in table form. The CAD package al&o) allows the designer to list the determinant to P,. (mie plant case
at a time. A ncn-zern determinant is indicative of full rank. The numerator faLtors o the determinant, which are
zercos o the qq (see Sec. 8), are examined ai, well. Thus, these determinants determine the minimum, or non-mia-
mum-phase character of the effective plunts. If any PE, is unacceptable based on the above critena, the weighting
matrix can be revised, Pt,, recomputed, ;,nd the tests applied once again.

8 Inverseol Pc (see bkxlks 9 and 10 in Fig. 5)
The polynomial matrix inverse is performed using the Maftmatica Inverse function:

I adjPe=1P)1=P1 _" 5
P'=detP~e= • =Pe"P.()

The effective plants are then formed by inverting the elements pv:
adjPe -qij} = 

(6)

The Q matnx elements become the effective plants of the MISO loops. By the principle of superpcsition, each
MISO loop transmission consists of both a tracking and a disturbance component. When using a 6iagonat prefilter,
only the diagonal MISO lo•ps have a transfer function component due to tracking:

t = tr, + td, (7)

Off-diagonal IcxpAs. with fij = 0 and i haj. have a transfer function comuponent due to disturbance only:

tij = t% where i *j (8)
Expressions fho tracking and disturbance transfer function components of the (ij) MISO loop are given:

(di)t (qii)i (dij)t (qd)i (10)

+ gtq,,)i I + (L~t

where the index Ispecifies one of the J LTI plants, ie., 1= 1,2 . J, and where L= giq,1.
The disturbance input, a function of all other controlied outputs,.can be expressed by the equation:

m
d~=-X •-~ (I1)

qik
k=1. kxi

The Q matrix elenerts, are then tested to verify that th1 cýinditvi 4" diagonal donimance is atisfied. Ifdia¶..dal
dominancc huids f,, 4LI plant cases, then a QFT Methixi I design can he attemptl. (therwise. a QFF '3ethod 2



(imnrod method dpesig mii he attempted If the results oi this teat are not satisfactory, then the choice Of
wigting mains tan he mo# feld. amd the Q matx rncuiputed.

Addithalal h•ss fir examiunig the eflettive plants qu, •f the Q matrix pet include a HBoe plot function and a

Uanster I f toVIi ud,1play itifwsiine The iXde phi fiv a Q matrix element can he displayed for a specified plant

CW Iw 6f A11 J plaAt .aSWI 14,Vetwt1T7h1 Ikil pli fix the s-t cf 1 plant Cases is useful for displaying the variation

int elt c4v pl4n to ,I %imisuii i an aid in arlecting trmplate frequencies. Also, the CAD package allows the Q
Mtank tranget funitom o knmiknln to he diqllaye•d fto ired form for Any selected plant case.

To ffthute the ,irdew 4 thr Q mniuii trntser furtuinms the package performs autormatic ca..cellation, cancelling
twaly erwoaL.I piwe ,r i poinr hasnd (n a ur •swpeitid rutio (i the distance between the pole-zero pair to the

dtance tf the men trom the (ingin in huh the nghl-half and left-half plane.

9 ktWR Nf d (We hk LU I I aid 14 in F••, 5_!
The imn•wed methid. also-known as QFT Method 2, takes into account any correlation between the uncertainty

n fth desigid MISO ksand•the next row u fMl SO loops for ,vhch a design is to be attempted. The standard
qiprouaI of QFT Method I assumers wnt cae conditions and does not take this design information into account.

te imrrrwed mestid t, -,rem the denyvtion of t.e effective q plant transfer function for the next channel to

be 6-*gned, r. for a 2W2 system in which the compensator fcr channel I has been designed and L, is known:

Q22., a ; I'+L.) where - P 2P21 (12)

I -i'i: * Li PtI P22

The mnprwed method CAD routines currently address a 2x2 MIMO problem only.

10 Tr s (%wliu15inlmFt,5)
The CAD package rtequr•es the designer to specify the template frequencies for which the templates are gener-

ated Te wet of templates, one for each template frequency. are then generated to represent the uncertainty in the

effecarre prAnt q.. and a chad of templates is displayed.
A plant template outlines the range of uncertainty in the frequency domain on the NC ofa plant transfer function

for a peailc frequency, The template for u) = fo is krmed by first plotting the frequency domain transmission at

w a m for each af the J plant cases, thene nclosing the set of plant points with an outlinr. The outline is analagous

to a rniher bind stretched rrxind a sed of nais representing the template pointi.

II Chr= cNcsnminPlant (webkx16inFig,5)
The CAD package allows the designer to display a plot of numbered plant cases for a user specified template

frequency. The designer chootes the nominal plant hum the "_ of J effective plants. A chart of templates is then
displayed with the selected nominal point emnphasized. While any plant case can be chosen, it is an accepted practice
to elem, whenever poiibie. a plaor4 cas which exists at the lower left corner for all frequencies for which the
templates ai cttamed If the aoce of nominal plant is not satisfactory, another choice may be selected.

Once a nominal plaot case is chosen, the templates are shifted such tnat the nominal point of each template is
located a (0 deg. 0 db) (n the NC. This can he done because only the location of the plants pokits relative to e•ach
other on t tt-.plate is of nmportace when generating bounds. The template can then be shifted on the NC such
duat the 1v.nmina plant is at a desired location by adding the coordinates of the desired location to the coordinates of
all ,'..,n pmrnts. In this way, the template can he converunently placed at any desired location on the NC.

12 Spx2tm (wexe!i l mFgS)
12.1 Stability Specifcations

A sabhlity margin is specified for each row ci MISO kxips. The stability margin may be specified in terms of

the gain margin g., the phase margin angle f, or the corresponding ML contour. Any of these three specifications

hbe detcrrned from any d t (uhers. Only the ML contour stability specification is.stored in memory.

12.2 Performance Specifications
FR.Uency doninm performance specifications are defined in the form of LMI transfer functions.
Ra the diagaW MISO kxops upper and lower bounds are specified:

so S It•,. 5.N, fo r I= 1,2,_.j (13)

Rr the off-diagonal MWSO It v)ps an upper Nound is specified:

It,j .• , fcr I= 1,2,...J (14)



12.3 Gamma Bound Specifications
The improved method requires the derivation of the effective q plant transfer function, ie. Eq. (12). By proper

design of the compensator gi, new RI-P poles will not be introduced in q22e. By requiring the magnitude of the
denominator of Eq. (12) be larger than a small value k, sign changes in the denominator are prevented and new RHP
poles are not introduce,':

k s I I - 12+L I (15)
For the case in which g2 is designed first, the requirement on channel 2 is:

k < 11-Pi2+L21 (16)
A unique minimum value k is specified by the designer for each of the m channels.

13 BwindsoutheNC(seebkr.kl7inFig.5)
For a given row i of MISO loops, for a template frequency Co = a, several bounds may be included in the set

plotted on the NC. These bounds include a stability bound, a tracking bound, a disturbance bound for each
off-diagonal MISO loop, and a gamma bound when using the improved method. This set of bounds can be replaced
by a single composite bound before beginning a design.
13.1 Stabiity Bounds

A stability bound is plotted for each template. The stability bounds constrain the maximum closed-loop trans-
mission with unity gain prefilter to have a bounded magnitude:

+ gi(qii)/ l(7

The bound is plotted for a given frequency by plotting the path of the nominal point while traversing the ML
contour with the template generated for that frequency. The software must be able to determine the point of tangency
on the outline of the template and the location of the template, when tangent at that point, as the ML contour is
traversed. To accomplish this task, an equation is derived which gives the NC magnitude M to which a template
point at the NC phase angle p must be shifted to be in contact with the ML contour. The use of this equation to
plot points on the stability bound is then discussed.

For a given test point on the outline of the template, located at a given angle q) on the NC, an equation is derived
for the NC magnitude M at which this point is in contact with the ML contour. The derivation begins with the
requirement that the magnitude of the closed loop transmission be equal to the magnitude Mm associated with the

ML contour for the open loop transmission L where Mm = I 0 Mr/2° and where ML is given in Decibels:

Mm- (18)

Taking the magnitude of the numerator and denominator, with L = M eiP and solving for M yields:

M -cosOP) _ Vcos2(P) - (I -2 -( M) (19)
(1 -_ M2)

Next, the range of angles of the ML contour over which real solutions for M exist is derived. This range is then
used to determine the range of angle- c-er which the stability bound exists. The angle range of the ML contour is:

9M.m -< tp < M (20)
Where:

+PM Co =CS +o- ' i - M2V-360* (21a)

•PMm,, =-cos-I - M ) (21b)
To plot a pair of points on :.e stability bound, the template is placed on t!ýe NC with the nominal point located

at the NC phase angle at which the bound point is to be plotted. To locate the point of tangency above the ML
contour, the outline of the template is searched by applying Eq. (19). The point on the template which requires the
highest template placement on the NC to bring the template into contact with the ML contour is the point of tangency.
The location of the nominal point when the template is in contact with and above- the MI ccntour at the point of
tangency will be a point on the upper portion of the stability bound contour. To locate the point of tangency be!ow
the ML contour, the template border is searcht;d again. The point on the template border whwic requires the lowest
template placement og the NC to bring the template into contact with the M_ ;ontour is the point of tangency. The



location of the nominal point when the template is in contact with and below the ML contour at the point Ci taIgency
will be a point on the lower portion of the stability bound contour. The above procedure is carned out with the
template nominal positioned at a set of angles over which the stability bound exists to generate the points uued to
plot the stabilty bound.
132 Disturbance Bounds

Disturbance bounds are plotted for each template, one for each off-diagonal MISO loop in the row of MISO
loops for which the compensator is to be designed. Each disturbance bound is generated bamed on the constraint:

tij = Edij"I ] < bij for i*j (22)

Where the disturbance is a function of all other controlled outputs:
M
i tkj (3)qik

The specifications dictate that dij is less than an upper bound for each plant case I in the set of J plants:
M

(dj6. k lbjl (24)
klikll

k,. ICAi
The most extreme upper bound on dij for all the I plant cases is then:

IdijLmax = [( j nax)1I, over (25)

Based on Eqs. (22) and (25) a lower bound can be placed on I I + L- I
l+ lljax l iil (26)

lbijl

By substituting 14=- Eq. (26) can be transformed such that the bound is plotted on the inverse NC:
m N rl (27) \1 +m biil ldijlm

Simplifying by using the symbol MD to designate the inverse NC constant magnitude contour:
< MD where MD o ldij (28)

In general, MD is different for different plant cases since qij is different for different plant case-. From this point
forward the inverse NC constant magnitude contour will be referred to as the MD contour. An equation is derived
which gives the NC magnitude to which a template point located at tho NC phase angle go must be shifted to be in
contact with the specified MD contour. The equation is then used to plot points on the disturbance bound.

The derivation begins with the requirement on m:

M1 5- MD (9
Taking the magnitude of the left-hand-side, with m = Min ej' at a = and solving for Mi,, yields:

Minv = (30)(1 -Mb•)

This requirement applies to m = (giqf)-', not to I, = giqi, as desired. By making the substitution

M= Min and (p --p,. the solution is now written to apply to Li, where Li = Mei'.
For the case of MD < 1, one solution exists for a given value of qp on the NC, corresponding to the single point

of contact, at that angle, with the MD contour which runs across the NC:

M =(i-M2) for MD< 1 (31)-cosP)•+-2 2

A disturbance bound generated using an MD contour with MD < I is an open bound contour running across
the entire angle range of the NC.



V% V the (&We 414 M I two 4ulitlW l it ower a himied range (4 angles (in the NC:

M .(I M or MI>I (32)
t o,44q V '." (V Mit)

1111% (A.' 1%, .Airai'o. t ht p(fi of A dut itis obtained *hen using '1. (19) to phlo stahility bounds. The
dclti'v,,vi ti the tange (I xt~hc fIo wtuih ther hdutiors exist is then canied out:

. "(33)

€,,.," .'"t •]-[;'T;) t•°(34a)

1 7 M'17 (34b)

A dJiturhan¢e N'n d  tieroaed using an MI) contour, with Mt) > 1, is a ckied contour on the NC. For the

caiw (4 Mj) - I a snall value can tv added to MD allowing it to be handled as it MD > 1.
To plt a pinmt on the disturttare ,ound, the template is placed on the NC with the nomiinal point at the NC

angle al whk-h the hound point is to he phlted. The template outline is then searched to l(xate the point which
results in the mint rIrsiktive biund point! using the same algorithm used to plot stability bounds. For MD > I two
sean he, u.sing K1. (t2) are iinplcnented. detmcinnig the most restrictive upper and lower disturbance ioncd points
at the NC aigl" al -hlih the N iind points are nhtted. Foi MD < I one search using Eq. (31) is implemented to
dk'tvlnicc th" ITI't rcarwtio'C hbound iphint id the NC awgle at which b'ound point is phlted. T'he quantity MD is
re evAluated basd oni q, 1for ea-h templaie ri'Ailt exainired by the sear.h routine to take into account cor-elation

btit-wecn the right hand-side and left- nd d sieof Eq, (27) due to correlation t.,tween qi, and m = Li-t among the J
plAnt cases. UNlig the aNdre proxedure the bound is plotted across the range of angles fcr which it exists.
1131 GAnmma HBtinds

Gainmna houn• s are genctated baed (in FA. (35), for each template, where the conmpensator for row j is to be
deigirvd at'cr the e riipensttir for row i of the MISO loops. It is desired that the magnitude of the denominator of
the .-1tec+cve plant qýý, crak'ulated using the improved method, not be smaller than a specified minimum value
despite plant urcertainty:

II ±Iq.% %1 > k (35)
l-iaaiiii OtS) is used to derive the equations used to ploi gamma bounds on L.o. It is shown that for

I 1 1-'ykl f there exists a range ol angles , • • i in whch a range of transmission magnitudes

M.i,) -ý M . Mb(it) are rA a&ceptable wlefe 14 Me+. For this casw a clsd gamma bound exists orn the NC

over a limited range of anglcs. It is also shown that for I I-,fij I < k a iange of magnitudes 0 5 M S MNi) are not

aeceptable at any given pv where I1, Me'l, For this case an open gamma bound runs across the length of the NC.

A~swming for a moment that y,, is fixed. the range limits of the trarnsmission magnitude Ma(w) and Mb(4t) are

denved in terms o( the trarisninonon pha-.'e angle w beginning with the inequality:

I -I - ,+ 14 k (36)

TPhc Nind ir L, for (a = exists where the inequality is about to be violated:

I -7, +L, 1 k (37)

Suh'rI0Uti.%V I - ayý t( 4 jttt and 1. M ad solving for M yields two solutions for M, the range limits
Mso' .ihd Mgq¢):

M,€ .. [,: (+)+a nO) .f]acs+) [ ll~•l-(2 I 2 (38a)
Wv - ki~l co~a (12 .ýin~p(1 s-In(9)] - (t t

M[(') f-it cfO)S( ) + (12 si'i(4p)j + Nri'la cos(Q) + a2 si :(.)] -. (a1 X - (38b)

S'ilutions exist for angles at which the descrtminant is ncvi-negativ."

l(t CoC) + ('2 s if.),-("t 2 + 02 - k 0 (39)
S-ý-c thfs trn eAnlkta NualX% cannot he sivved for q), an iterative search is used to determine the range

. e.'o;.. br 'Ahich sýCiiins for M.(p) and MbQ) exi-t when I I-'Ti I > k.



Initially, it is assumed that gamma is fixed. To plot a point on the gamma bound, the template is placed on the
NC with the nominal point at the NC angle at which the bound point is to be plotted. The template outline is then
searched to locate the point which results in the most restrictive bound point using the same algorithm used to plot
stability bounds. For I--j I> k two searches are implemented using Eq. (38a) and (38b) to determine the upper

and lower bound points at each NC angle for which the closed gamma bound contour is plotted. For I 1-4fj I< k
one search is implemented using Eq. (38b) to determine the upper bound point at each NC angle for which the bound
is plotted. Using the above procedure the gamma bound is plotted across the range of angles for which it exists.

An additional consideration which must be taken into account is the fact that a different ga'mma exists for each
plant case. This variation is handled by the CAD package by generating a gamma bound for each value of gamma,
one for each of the J plant cases. The value of gamma is held constant when generating each gamma bound. A
composite bound is then formed from the set of J gamma bounds. (composite bounds are discussed in Sec. 13.5)
13.4 Tracking Bounds

Tracking bounds are used to insure that the variation in closed loop frequency domain transmission tij of the

diagonal MISO loop does not exceed the variation SR permitted by the performance specs. The variation in the
closed loop transmission of the diagonal MISO loop results from both uncertainty in the response due to tracking
and from the presence of the disturbance input:

N = t+(4+)
where tn and td. are given by Eqs. (9) and (10).

A portion of the permitted variation SR of the total response tiN is therefore allocated to the transmission due to

disturbance td. resulting in a reduced range of variation 8R' for the transmission due to tracking t,. Because the
relationship between tri and td is additive, the permitted variat'on is represented in terms of magnitude rather than
log magnitude when allocating for disturbance:

AT, = I( •120) (41)

A~rri = 10(8R'/20) (42)

By allocating the portion 2 rTd to disturbance, the permitted variation in closed loop transmission is reduced to

AT,', as shown in Fig. 4.
The permitted closed loop variation in tracking is now: (43)

ATP' = ATr2Td, 

(43)

The performance tolerances for the closed loop transmission tri then become:

aii' = aii + Tkd (44)

bii = bNi - Tk (45)

And the requirement on the closed loop transmission becomes:
aij' <- 1 to -< bii' (46)

With this disturbance allocation the method d:scussed in Sec. 13.2 can be used to determine the point on the

disturbance bound on Li at a given frequency. From Eq. (26) the constraint on Li for bij = -d. is:

I1 +1.4l > Idiilmax liil (47)
lfrd,.I

with k46lua1 defined by Eq. (25) % ith i j.
The constraint on Li used to determine a point on the tracking bound is:

Lm(TR,) - Lm(TRm) < 8R' (48)

where 8R=' Lm(ATr,') = Lm(Arr,-27Td,) and where the transmission with unity gain prefilter TR is:
TR= (49)

I +L,
The CAD package uses an iterative search to determine the value of m, for which Eqs. (47) and (49) place the

same restriction on Li; this is the value of Td. for which the least restrictive composite bound point on Li will be
generated. Because points on the the disturbance bound are identical to those on the allocated tracking bound for
the value of Td thus chosen, only points on the tracking bound are plotted on the NC. In general the value of Td.



is unique at each ( a, ta and Iti eich phase angle qp at which the bound ;--)int is pl. 4hiC Oncle a ,A(l'ae it ;J. is
available at a given pha, ingle 4p. 8k' C•n itx caikulled atnd a Ix it Ihc lt, I i • g IV1 'ii.:a I" pl, *I C1ea

To phlt a point oin the nickkini , houind, the temnplate fir ( -(a) - , is. ph e'd (it the NC with the inaow'll l[•aýIt

located at the NC angle p at ,•,hiih the Nxiund IXsII is to he phwlted. 111ch Iti| ila4tc 1% then 1t11acd uap or doiAan as
needed until the difference between the largest (IR•,,_) and smallel ('Tk,,) Llo-d hi 'p tr,)n,,'x,,xn'x 'T• as deter,

mined by the template outline, is equal to hka in D•eaitvls:
Lm(TR-,,,) - Lm(TR,,_) -• 8R' (00)

The position of the nominal point %,hen Eq. (50) is satiwfied is the point on the tracking huund. '•o generate
the entire bound, this procedure is repeated for the range of angles (It the NC, using a unique rT,, at each phase angle.

By constrainaing L1 to be above the bound, the actual variation in tii will be less than h.
13.5 Composite Bounds

A set of composite bounds is formed based on any or all of the tracking. stability. disturbance, and gamrma
bounds. The composite bound for a given frequency is f rmed by retaining the most restrictive portion of the bounds
for the given frequency for which the composite bound is Ikr=e. The procedure uso ncrate the contmpiite
bound hides the line segment of any bound whose endpoints lie entirely within the fotbidd. rtmgiots of any other
bounds. For a tracking bound, which is a single contour rurning across the NC, the forbidden region is the area on
the NC below the bound. For a stability bound, the forbidden region is the region enclo,,cd by the bound on the NC.
Disturbance and gamma bounds likewise have forbidden regions associated with them. A line segpneit included Y,
the composite bound may extend iil'o a forbidden region, resulting in rough breaks at the points of intersection. This
is the price paid for the simplicity of this method of generating a composite bound.
14 Ccintpesar Der.ign (see block 18 in Fig, 5)

The compensator is designed to satisfy design specifications for the entire row of MISO loops in which the
compensator is used. Since Li. = giqiio is the same for all MISO loops in a given row, bounds for all MISO
loops are plotted together on the NC. The compensator design is therefore performed for an entire row of MISO
loops using a single design iteration based on composite bo'unds plotted on the NC,

The CAD package makes a Bode plot, a Nichols plot with bounds, and a factored form l.,ting of 1 = &qi.
available to the designer. On both plots, the bound frequencies are marked on the loop transmission using colored
markers. On the NC, all bounds are plotted in color to match the color of the markers on the loop transmission.
The designer must be sure the colored markers do not violate bounds of matching color. The Bole plot must be
used to read off the frequencies associated with the colored markers, when used in place of frequency labels on the
NC. The Bode plot is also useful for noting the frequency associated with features of interest on L.o.

The CAD package allows the open loop transmission to be shaped by adding, deleting, or modifying the Poles
and zeros of the compensator ard by allowing adjustment of the gain. After any change to the oles and zeros, the
gain is automatically adjusted such that the loop transmission is relatively unaffected at frequencies much less than
that associated with the modified pole or zero. This allows the designer to "bend" the loop transmission on the NC
at successively higher frequencies until an acceptable loop shape is obtained. An updated !isting. in factored form.
of the compensator poles, zeros, and gain is displayed after any of these changes is made. Bcth real and complex
poles and zeros mav be added to the compensator. Cormplex poles and zeros are dizplayed as a natural frequency
and a zeta. The designer can add complex poles and zeros in the form displayed or as complex numbers.

The designer may terminate the loop shaping process by saving the compensator or may abort the design
changes before returning to the CAD package menu system. If saved, the compensator can be further modified by
again executing the "Dc,•gn Compensator" option. In addition, the designer may save the NC or the Bode plot to a
postscript file at any time. Once the designer has obtained a satisfactory compensator design, and the design has
been saved. then the prefilter can be desigiied.
15 Prefilter D.:sjii (sm block 19 in Fig. 5)

The proper design of the compensator guarantees that the variation in closed loop transmission due to uncer-
tainty for tii is acceptable, but does not guarantee that the transmission is within the upper and lower performance
tolerances a~i and bit. The prefilter is therefore required to shift the closed loop transmission tii such that it satisflzs
the upper and lower performance tolerances.

The prefilter design begins with the determination of TR_ and TRy. the maximum and minimum closed loop
transmission due to tracking TR with unity gain prefilter, repectively, at each template frequency m using Eq. (49).



These quantities are ot.;ined at each ( by placig the template for (i on the NC with the ntimial point at the

klcation of 1.. = gq,. for M = W., The search subroutine u.cd fir generating the tracking hound4 is then use:d to

scarch the perineter c(. the template fir the miaxirmum and mminimm closed lotj) transmrisslvis Trk_ and Tat.

As is the case for traking lbonds crtl the NC. a po'rtion o the pernmited range (i variation 4 t,, is allocated to

the disturbance. With the ccwmrn•piaor design ini hand, the maximum transmission due to disturbance k4_..l is

determined by maximus tFgq. (lO) over the plat cases J .l2..... J where fj= 1 and (di})V d.jl,.. frornmE4.

(25) with = j. Because the phase of td. is unknown, the most extreme case is assumed, the maximum and
miuimum limits on the range ( vanation of t,, must each he made more restnctwve by the magnitude ci the
disturbance, as dilutrated m Fig. 4. The toierances on tt, become:

u' ,-, bw- k4.,.1 (a)

Aii = + ft•1,l (51b)
Finally, the filter bounds on the nominal tr, are computed as follows:

Lm( bi' ) - Li( Tit) (52a)
Lin( k.' ) - Lmn( TRI (52b)

These upper and lower bounds cover only the range of frequencies covered by the templates. The CAD package
extends thi. frequency range one decade higher and one decade lower based on the values uf TR. and TR,

obtained by minimizing or maximizing TR over the plant cases. Templates on the NC are not used to compute these
values since no templates are generated in the frequency range into which the bounds are to be extended.

Once the bounds are plotted on the Bode plot. a prefilter is synthesi;zd such that the Bode plot lies between

these two bounds and satisfies tii(s) = I in the limit as s-*O. Once the design is complete, the designer may either
save or abort changes made to the prefilter. If the design is saved, the design prctess can he continued on yet another

row o M1SO lcops, until all ccmApensadors and prefilters have been designed.

16 SimuLion (ebkxk2l inFig.5)
The CAD package provides two tests to verify that the completed MIMO design meets the stability and

performance specifications for the I plant cases. The first test allown the designer to verify that the stability

specifications have been satisfied by plotting an array cf the I open lop MISO ixop transmissions (Lt) = gi (q6)1

fcra given row of MISO loops i for all plant cases 1=1,2. along wih the ML contour. If noopen loop

transmission violates the MIL contour, then the stability specifications are satisfied for row i 4 the MISO loops.
The second test allows the designer to verify by inspction that performance specifications placed on the closed

koop system have been met over the frequency range of interest by plotting an mxm array of Bode magnitude plots,
r',e Bode plot for each element tij of the closed loop transf,:r function matrix T. For each diagonal tii,. J Bode
magnitude plots are plotted along with the performance bounds aii and bli. For each off-diagonal tij. I Bode magni-

tude plots are plotted acong with the performance bound bij. The mxm closed loop transfer function matrix T, whose

elements tii are the traivsmiss;ions pjt-ted on the Bode plots, is formed for the J plant cases based on the equation:
I _G j-' PG F (53)

where I is the identity matrix, and P, F, and 0 are the mxrm plant matrix, diagonal prefilter matrix, and diagonal

compensator matrix, respectively.
For the third test, the completed design is saved to a MATRIXx readable file and a System-Build model created.

The designer can then insert nonlinear dynamics such as saturation and hysteresis. The model is then simulated to
verify that the time domain figures of ment specifications are ;atisfied.

17 Simmny
An analog MJMO QFT CA) package has been developed based on, MKhematica which automates the design

procedure, including problem setup, ec•ivalent plan! frornation, compens.aor and pref;!;er design, and design vali-

dation for mx"n M1M\ ysyrems. Routines have been added to perform an improved metihod design for 2x2 systems.

This CAD package_ is }emng extended to handle ana!, g or discrete systems 'id 3x3 improved method designs.

18 Rdfx'Tm-es

Ili Sating, Richard R.. Deve;opmenr -14 an Analc- MNMCO QFT CAD Package. MS St chnwl of EnL'ineer-
ing. Air Force Institute or Technology (AU). Whght-Pater.sn AFB OH, June 19Y2.
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MULTIPLE INPUT SINGLE OUTPUT QFT
CAD USER MANUAL

ODED YANIV

Abstract
This user manual describes how to use a user friendly CAD program to find feedback struc.

tures for a maltiple-input single-output (MWSO) linear time- invariant plant. The CAD program
is based on the Horowitz frequency domain design method for uncertain feedback systems (2]
that appeam in the literature under the name Quantitative Feedback Theory (QFT). Te pack-
age includes discrete and continuous design, loop shape invirounment, optimization option and
linear and nnlinear simulations. A mouse can be used for all design options.

1 Introduction

The design proces, fot both analog and digital control systems, follows the following steps:
(1) The designer defines the plant (usually a set of possible plants), output performance tol-
erances due to tracking input and/or disturbances, and margin performance (an option that
transfer the plant into Z-Domain is included); (2) The package translates the data of step (1)
into bounds; (3) A user friendly environment to perform Loop Shaping to satisy the bounds
is executed (discrete and continuous options are included); (4) The designer defines an opti-
mination criterion and gets an optimal solution; (5) Prefilter design; (6) Closed loop simulations
including choice of the nonlinear elements: saturation of the plant input and its dead zone,
stiction and friction, choice of where the input is (tracking, plant input plant output and sensor
output) choice of the input (step, sine square wave and an input from a file; and (7) Cloned loop
analysi

In Section 2 the MISO problems which the package solves are defined. Section 2 shows some
figures for several examples.

This user friendly package is an excellent environment for control engineers a. well as con-
trol students. After a short practice an engineer can find an optimal practical control law to
a problem containing sampling time, delays, plant uncertainty etc. and can easily study their
effect on the solution. Students who like to practice the QFT technique can use this package
to quickly learn about loop shaping in continuous and discrete domains. nonminimum phase
systems, sampling time and its effect on the solution, uncertainty and its effect on the controller
bandwidth, gain scheduling and any plant parameter scheduling and its effect on the controller
bandwidth, closed loop performance and its effect on the controller bandwidth and tradeoff
among all these parameters.

The package uses the same notations which appears in the text book of D'Azzo and Houpis 1)].

"Faculty of Engineering, E.E.-Systems, Tel-Aviv University, Tel-Aviv 69 978, Israel
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2 The Problems That The Package Solves

QFT is an engineering design tool devoted to practical design of feedback control systems. It
is based on the assumption that feedback is needed only because of plant and/ot disturbance
uncertainty, which then klds to the following problerw There is given an open loop set of
plants V = {P) and a set of acceptable plant tracking input output relations TR. Also there
is given a set of acceptable disturbance input output relations TD. The problem is to And a
linear time invariant controller and prefilter of Fig. 1.1 such that: The transfer function from the
prefilter input to the plant output (Y/R) is a member of the acceptable set Tt, and the transf
function from the disturbance D, (D2) to the plant output Y/DI (Y/DA) is a member of the
acceptable set T1v for all P E P. In the next sections these problems are defined quantitatively

R Y

Figure 1: Schematic representation of a MISO feedback system

as implemented in the CAD package.

2.1 For Tracking Specification

There is given a sct P = {•P), j = 1,...,J, where J is the number of linear time invariant
SISO plant&. The plant is embedded in a two dogree-of-freedom feedback structure described
schematically in Fig. 1.2. The closed loop system, from input R to output Y is plant sensitive.

R S F ---- PE

Figure 2: Schematic representation of a tracking feedback structure

There are given bounds on this sensitivity in the form of two functions of the frequency w,
Fu(w) and BL(w). The modelling of a desired Bu and BL for a specified problem is discussed
in (1, sections 21.4 and 12,21. See %n example in Fig. 1.3. The problem is to find the controller
G and prefilter F of Fig. 1.2 suci thaL the closed loop transfer function.



I +GPJ

""S" "O < IT X,(Jf)Ior BU M (2)

the d""amhow t e - I + Oj pios& constraint:
IZ +GP)I, ie>• ,. I11(+GPI)I _<l/. (3)

md the wmersint bm the closed loop damping ratio [1 section 21.1lJ
GP1I-, GP-I< (4)

I1 + GP:

woboe a 5 1 i . chscmn parameter. The greater r is, the smaLler the steady state sinumoidal error
fa a atd aiusaoidal input (1, See. 912). The gain margin sand phase margin - (ass definition
in [1, Sec. 8.151 including Log maniqtude and phase diagram and polar pkoM o(GP showing the
pai =pma & ad phase margn 7 for open loop stable as well ae open loop unstable systems [1,
fI 1.40]) we related to a as follows: The gain margin a is (1 - z)" and the phase margin is

10W - 2cos'(*/2). For example a 0.5 gives 8B gain margin and 30* phase marin, which
ge by equation 3

I1 + GPI >2-: (5)

The parameter y' limits the marimum value of tGP,/I + GPI. For a second order system it
als determines th minimum damping [1 section 9.3$

2.2 For Disturbance Rejection SpeciAcations DI and D2

Ther is given a at P of lar time invariant single-input single output plants. The plant is
embedded in a ingle degree-of-mfredom feedback structure described schematically in Fig. 1.4.
There i given an upper bound IMD(iw)l on the magnitude of the utrol ratio from the di-
turbance input DI (D3) to the plant output To, (Tp,). See a typical example in Fig. 1.5. The
problem is to find a controller G such that one o( the following two options for disturbance
rejection specicatuos ia satified:
Option I

P

satisfies, for al P fi P)
ITD,(jw,)I _ I-WDUW•)I (7)

Option 3

T01 (j) = 1 + GP (8)

atidM for al P e P1 ITD.UW)I < I.•VoUW)I()

In both options the distance from the -1 + Oj point constraint mould satisfy:

I1+GPIz (10)



-,ý- M

~i

and the consaint on the clsed loop damping ratio [I section 21.11]

GP -

where z < I is a chosen parameter which replaces the gain and phase margin, see equation 3.
Guidelines for calculating JMD(jw)I are given in [1 section 12.8]. y 2! 1 limits the mamum
value d IGPi /I + GPI 1. For a second order system it also determines the minimum damping.
For guidelines on choosing y, see (1 section 9.3]

2.3 For Both Disturbance and Tracking Specifications
The problem described now is an integration of the two problems given in the two previous
sections. There is given a set P = (Pj } of linear time invariant MISO plants. The plant is
embedded in a two degree-of-freedom feedback structure described schematically in Fig. 1.6.
The closed loop system, from input R to output Y is plant sensitive. There are given bounds
on this sensitivity in the form of two functions of w, BU(w) and BL(w), see Fig. 1.3. Similarly
there is given an upper bound on the transfer function from the disturbance input to the plant
output in the form of a function IMo(jw)j, see Fig. 1.5. The problem is to find the controller G
and prefilter F of Fig. 1.6 such that the closed loop satisfies the following t•ee conditions for
all PE P:
Condition 1: This condition is for tracking specifications. The transfer function from the
prefilter input to the plant output.

TR(jw) = GPF (12)

should saty:
BL(w) :5 ITR(jw)l _5 Bu(w) (13)

Condition 2: This condition is for disturbance rejection specifications. Two options exists.

"* Option 1: The transfer function from the disturbance input to the plant output TD,

T, U) - -G- -(14)

satisfies:
17T, (w)I 5 IMD(jw)l (15)

"* Option 2: The tranfer function from the disturbance input to the plant output TD,

1
TDU-) = I + I'GP (16)

satisfies:
ITD,(M1:5 • IMD(jM#) (17)

Condition 3: The distance from the -1 + 0j point constraint z < 1

I1 + GPI z (18)



and the costaint an the cloed loop damping ratio [I section 21.111

GP.I + GP• _

where z < I i a chosen paranmet,_- which replaces the gain and phase margin, see equation 3,
and y > 1 limits the maximum value of IGPj/I + GPJ1. For a second order system it also
determine@ the minimum damping. Guidelines for choosing y, see [1 section 9.31
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Figure 3: Typical closed loop trackinrg specifications
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Figure 4: A disturbance rejection feedbar.k structure
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Figure 6: Schematic representation of a MISO feedback system



3 Examples
The Wilbe fre. (17-01) shows th loop ,hap. *ovimem..t with sal its options which includes
cuyMP OWt ftedlnh th. op"g and dosed loop vauss. Bode plot o( tho maximum &ad mianium
Umd yUsugk fhucm* and on* option o( the munulath•or.
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Abstract

The use of Quantitative Feedback Theory (QFT) has developed from a number
of design and synthesis perspectives in order to achieve robust stability, robast
tracking and robust gain ýnd phase margins. Various models include multiple-
input single-output (MISO) and multiple-input multiple-output (MIMO) feed-
back systems with continuous and discrete controllers. QFT's potentiel in solving
real-world control problems requires extensive computer-aided design (CAD) fa-
cilities. Such a capability is required since considerable nvmerical and symbolic
manipulation is employed in developing a robust controller for systems with plant
parameter uncertainties and additive disturbances.

The objective of this paper is to discuss the general development of a computer-
aided control system design (CACSD) package with emphasis on a QFT tool box.
The design and implementation of such a software system is approached from an
object-orientei point-of-view for ease of software maintenance and expansion.

Part I of the paper discusses the concept of object-oriented software design
and programming. Part II deals with applying this discipline to the creation of a
general CACSD package. Part III deals specifically with the development of the
associated QFT CAD toolbox.



PART I: Object-Oriented Software Design and Programming

In the software development process, the objective is to develop a high level design and then to decompose
this design into lower level modules until reaching the primitive level (implementation/coding. Two software
design appi-aches to decomposition are functional and object-oriented design (OOD). Most packages today
ate modular and are written using functional programming techniques. A functional pogr*m is a collection
of tasks which the computer program sequentially executes, operating on data in the way each line instructs.
Tasks are usually modularised into functional procedures (subroutines). Operations are processed through a
hierarchical structure of procedures until the program is completed. An object-oriented (00) program is also
modular except the modules are objects instead of procedures. Objects contain both data and procedures
that operate on that data. 00 programs are not sequential in nature but are event-driven. An event is,
for example, a user selecting a command from a menu object. TIe menu object contains an event-handler
that sends appropriate messages to the other objects in tne program instructing them as to what function
the use" has asked to be performed. Each object operales on its own data in order to achieve that function.
Thus, the main difference between 00 programs and functional programs can be viewed u nouns doing
verbs (objects responding to messages) insteed of verbs actin, on nouns (sequential statements performing
functions on stored data).

This part of the paper explains what is involved in applying OOD conce 's. Section 1 gives a firm

basis in definitions of terms used in the OOD process. Section 2 describes the OOD process. Section 3
introduces the specific 00 environment of Borland Turbo Pascal 6.0 Turbo Vision[l] (the 00 programming
language used in this CACSD implementation). Sections 4 and 5 give the advantages and disadvantages
of OOD over functional design. And finally Section 6 presents a summary of benefits in using OOD for
reliability, maintenance and user interface within currently evolving engineering software packages, such as
ICECAP-PC[2, 3).

1 Terminology

In order to understand OOD, the reader needs a comprehensive understanding of thr terms used in the OOD
process[4, 5]. This section is a dictionary and discussion of the terms used in this paper.

1.1 Abstract Data Types

Examples of data types can include integers, characters, and boolean variables along with their associated
operations. A raore fo-mal method of defining data types is the concept of abstract data types (ADT). By
formal definition, an ADT is a tkree-tuple, (D, F, A), where D represents the domains of the data type, F the
functions (services, procedures, methods or functions) on the data type, and A is a set of axioms (first-order
predicate calculus) that encode the desired semantics of the operations[6]. An ADT is an encapsulated data
structure with its associated functions. An explicit enumeration of the axioms is usually not included since
testing is employed to validate the functions. The ADT state by definition is the vajue of the data structure
variablp.- The ADT data and functions provide the interface to the user and their implementation is not
visible (interface). The invisibility of an ADT's state and the separation of its interface component from its
implementation are the distinguishing features xhich separate an ADT from a simple data type such as an
integer The ADT provides the fundamental basis for the 00 concept of an object and a class.

1.2 Object

All computer programs operate on structured data sets. Typical data structures are stacks, queues, arrays
and records. An object is a entity that contains both attributes and services that operate on the attributes.
In CACSD 00 development, a typical object may be a matrix, polynomial or transfer function with its.-
associated procedures for manipulation (eigenvalues, roots, time response, etc.).
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An object is implemented in a computer program by three main parts: its attributes, an event handler,
and services. The attributes are the data types the object maintains and is stored in the computer's memory
under the object's name. The event handler -A a listing of messages to which the o'.ject can respond and
the cervices the object should enact if the corresponding message is received. The servces are executable
procedures that operate on the object's attributes and send messages to other objects. Their counterpart in
functional programming would be subroutines.

1.3 Class

A cass is a higher level of abstraction than an object, that is, a set of objects can share the common
structure and common behavior of a class. A clams is defined u a collection (set) of services and a collection
of attributes. The class must also have a name. The clas interface consists of psblic (visible) elements,
pnvste (invisible) elements, and protected (visible only to subclasses) elemen:s. When the attributes and
services can be accessed by other objects, they are visible outside the object. If they c€n not be accessed by
another object, then the attributes and services are defined as inviaible, i.e., information Aiding. In selecting a
class, the criteria includes reusability, complexity (time and space), and attributes. This definition represents
the general ADT concept as previously presented in ftims of data and functions (services).

An object is by definition an isatu n tir, n or instance of a class. The object has all the attributes and
services of its clam. The object state, which only changes through invocation of the services, consists of the
associated attribute values or instance variables. Although each object has its own unique state, the services
are identical in all objects instantiated from the same class. So while a class defines services and attributes,
classes do not contain any real data until they are instantiated eistence as an object. Objects from the
same clam, therefore, share the same services but not the same instantiated variables! A class is a template
for an object. An object is an instance of an ADT with the added property of method inheritance.

Class inheritance is a relationship among classes whereby ore class shares the structure and behavior
delined in one or more other classes. Under instantiation, unique ,4%ta variables are created for the object,
but the class services are used for the object services. The inst• .tiated object can also have its own unique
services or modify the ones it inherits.

An inheritance hierarchy of classes is a tree structure that pc raits any class in the tree to inherit and
operate using any service or attributes in a class higher in the tree. The utility of this inheritance is that
once a class has been fully written and te".'d, it never needs to b, modified again. These same capabilities
can be used by future objects by simply declaring them to be ini.antiations of the first object's class. This
vastly simplifies the process of software development and maintenance using OOD.

Inheritance defines the structure and capabilities of a class while instantiation defines lines of ownership
and control of actual data. The two concepts are quite different and understanding this difference is key to
understanding object-oriented analysis, design and programming.

1.4 Object-Oriented Analyuis (OOA), Design (OOD) & Programming (OOP)

OOA is an 00 approach to problem requirements definitioni7]. OOA attempts to identify the classes and
objects that model the application context. Domain analysis attempts to identify the classe and objects
that are common to all applications within a specified domain such as CACSD. Partitioning of classes in
this process can be quite difficult in general. Approaches to partitioning include categoriuation, clustering
and prototyping. Categoriation of group entities is based upon properties or characteristics that form a
predefined category. Cluitering refers to grouping entities according to some high level description such s
name. Pr•o•lyping refers to the predefining of a prototypical type for a class of objects. Other objects are
members of that class if they resemble this type.

OOD is a design methodology using OOA decomposition. The OOD process consists of identifying the
classes and objects from the OOA level of abstraction, identifying in detail the attributes and sor vices of each
class and object, identifying in more detail the relationships between objects, defining message connections



(event handlers), and implementing object modules. There is in general no unique optimal OOD in any
given application.

OOP is a programming technique coding collections of objects. Evaluation of implemented objects
(or classes) can be done using standard programming discipline metrics such as object coupling, cohesion,
sufficiency, completeness and primitiveness. Coupling refers to the relationships between objects, cohesion
refers to the relationship between internal object constructs. Suffiiency and completeness refer te the object
having enough of all possible behaviors so as to be useful. Primitivenes refers to when a desired program
behavior can be implemented by not accessing invisible structures of an object. The chosen computer
language should have the proper 00 constructs of classes and objects. Examples include Ada, C++,
Smualtalk and TurboVision which vary in their 00 constructs.

OOD notation can be expressed in a wet of hierarchical graphs: class diagrams, state transition diagrams
and object diagrams. Although not enumerated here, specific icons can be associated with the characteristics
of each diagram[4]. A class diagram presents each class and its relationship with other classes. The dynamic
behavior of the clam is represented by a state transition diwajm which portrays the transition from state to
state as caused by an event handler as well as the actions resulting from a state change. The object diagram
presents each object and its relationship to others. Since objects are created and destroyed during program
execution, the object diagram represents the dynamics of the object. Object diagrams are prototypical
clnssi, cations. By construction, class and object diagram development document the logical design of the
system.

2 OOD Process

This section presents a practical approach to applying the OOD process to software development. OOD allows
the software engineer to take advantage of three important software design concepts: abstraction, information
hiding, and modularity. The process of OOD begins with OOA. First, a paragraph is written in plain English
language that describes the objective of the computer program. Classes/objects are extracted from the
paragraph by underlining the nouns in the sentences. Attributes of objects are extracted by underlining the
adjectives of the sentence and grouping them with their associated objects (nouns they modify). Services
are identified by underlining all the verbs, verb phrases, and predicates in the sentences. Attributes of the
services are found by underlining all the adverbs and grouping them with their associated services (verbs
they modify)(71. Each grouping of attributes and services is identified using catagorisation, clustering or
prototying.

A modified methodology[TJ involves the following steps:

I Define the problem to be solved
2 Decompose the problem into classes/objects
3 Determine each object's required attributes
4 Determine each object's required services
5 Determine interfaces between attributes and services
6 Determine a parent-child hierarchy related to the attributes and services (classes/objects)
7 Determine inheritance relationships related to attributes and services (classes)
8 Create a user-interface object (message connections/event handlers)
g Create each object

The first four steps are achieved as in the OOA phase. There exist many techniques for iteratively
applying these four steps further down levels of abstraction until finally arriving at the primitive level. At
this lowest level the objects required to solve the problem are obvious, as are the services they need to
perform, and the associated attributes they need to use.

Step 5. determining interfaces between objects and services, is done by determining how each object
depends on the others. From this it can be determined what messages each object needs to send to the other
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objects. Event-handling routines are designed for each object, so they can perform the desired services when
the mesange is received.

The next two steps (6 & 7) are related and display one of the advantages of OOP at the implementation
level. The objects that have services and attributes in common are grouped into classes. These classes can be
completely separate from one another, or they may have common attributes or common services. Whenever
possible, blocks of code should not be repeated, so if the claises have common attributes and services, then
these common attributes and services are grouped into a class of their own, and the original classes are made
children of that new class. This class may not make sense as an object in itself and there may never be an
object who is a direct instantiation of it, but its children would have "tighter code" since they have this
"library' of ready-made services to use.

Step 8 creates an interface object which can serve as the system interface between the human user and
the internal objects. This interfi•ce object contains the overall event-handling service as well as most of the
file and screen I/O.

The final step is to pick a particular language and implement the design in code[8]. The next section
describes such a language.

3 Borland Turbo Vision

BorlandTU provides an excellent pre-defined object library in its Turbo Vision[l] package available with
Turbo Pascal V 6.0 and Turbo C++. The Turbo Vision object library provides a predefined framework to
develop 00 windowing applications and 00 interfaces including:

1. Multiple, resiseable, overlapping 00 windows
(handy for viewing the same function on multiple planes such as s, s and w)

2. Mouse support
3. Drop-down menus and dialogue boxes for user input
4. Buttons, scroll bars, check boxes and radio buttons
5. Standardised event handling for keyboard and mouse events

Experience with Turbo Vision has shown that while it presents an intense learning curve, time spent
learning it is worthwhile. One word of caution: if the decision is made to build an application with Turbo
Vision, the entire project should be built using Turbo Vision objects and standards. Attempting to mix
standard functional code with Turbo Vision objects can create memory conflicts. Another point to note
is that Turbo Vision programs are not portable between platforms; Turbo Vision programs are limited to
MS-DOS computers.

Turbo Vision consists of a class diagram (PART II, Table 1) of predefined clasr types that provide a
beaic user interface. The term 'family tree" is used to indicate the inheritance lines of each class.

The root clans of Turbo Vision is TObject. TObject has no ancestors and is extremely limited function-
ally. It has a constructor (Constructor INIT), a destructor (Destructor DONE), and a service (Procedure
FREE) that disposes of the instantiated class (object) and frees its memory. TObject has six child classes,
among whom is TView. TView is of primary importance because its children provide the user interface.

TView is the parent to all classes which can write to the screen. The Turbo Vision standard is that all
screen writes be accomplished via the TView.Draw service. While it is possible to use the standard Pascal
write and writeln statements, it violates the Turbo Vision standard and their use is strongly discouraged. The
writeln and readln statements employed for user input are replaced by dialogue boxes which are descendants
of TView. TView has another important property; it is the lowest class on the tree that is capable of
message transmission and reception. Thus, any class that needs to communicate with other classes should
be a descendant of TView whether or not they are visible to the user on the screen. All the "workhorse" type
classes in Turbo Vision are made descendants of TView. For example, a matrix object, a polynomial object, or
a transfer function object should all be instantiations of TView descendants. TView has several descendants,



such as TApplication, TDialog, TDesktop, TMenuBer, and TStatusLine. The following discussion is limited
to these classes as they are of primary importrnce. For further information, the Borland Turbo Vision
Guide(l] that comes with Turbo Pascal V 6.0 is highly recommended.

The focal point of any Turbo Vision program is alwavs an instantiation of TApplication which the
programmer must define. Furthermore, there should be only one TApplication object for any given program.
This object owns via instantiation all other objects, handles all message dispatching, communicates directly
with the main menu, manages idle times, and processes computer errors.

Descendants of TDialog provide pop-up dialogue boxes for user input. Dialogue boxes contain radio
buttons, check boxes, list boxes, and input lines. Radio buttons are input devices that allow the user to
choose only one item among a palette of options. Check boss, are input devices that allow the user to choose
any combination of items among a palette of options. List boes provide a list of items to choose from,
such as files on disk or directories. Input lines provide text entry of a string variables. Each of these (radio
buttons, check boxes, list boxes and input lines) are descendants of TView. Each can be instantiated into a
descendant of a TDialog object. Many fine examples are given in the Turbo Vision Guidefl].

Other dasses are TDesktop, TMenuBar, and TStatusLine. TDesktop is simply the background view
upon which all other visible views appear. TMenuBar is the menu bar object that displays and controls drop
down menus. TStatnsLine provides a bottom frame to display and control shortcut keystrokes and other
useful information such as remaining heap sise.

Event Handling is always a big design concern in OOP. In Turbo Vision, all events are represented via
a TEvent type record. TEvent is a record that identifies the type of event that has occurred. While, all
events are not commands, alU commands are events. For example, the movement of a mouse pointer is not a
command; however, it is an event. All Turbo Vision classes have event handlers to process TEvent records;
however, the descendant of TApplication is the highest level for all event-handling.

Turbo Vision provides several tools to relieve the software engineer of many mundane chores of interface
design while allowing all the benefits of programming in a typical high-level language. Execution speed,
numerical precision, and mathematical algorithms are all designed with far greater control and efficiency
than could ever be attained by developing our own language interpretor like commercial control system
packages often do. Once the initial obstacle of learning OOD, OOP and the Turbo Vision toolbox are
mastered, building applications becomes quick and effective.

4 Advantages of OOP

The following opinions were formed from specific experiences afr.r modifying and debugging the functional
version of ICECAP-PC (a CACSD package) and then having translated it into 00 code. While the expe-
riences discussed here are based upon a specific package, they can certainly (based on discussion found in
current literature of similar design projects) be generalised.

File I/0 Abstraction: A typical danger spot in fi nctional programm'ng is opening a data file in one
section of the code and then closing it (or forgetting to close it, or hitting some conditional branching
statement that bypasses its dosing) in some later section of code. In OOP, a database-type object is
used which is the only object in the program that can get and save data from files. Therefore, only one
OPEN/CLOSE command pair is used for the entire program.

User I/0 Abstraction: An advantage of the user interface object is that it abstracts the programmer from
having to worry about any user I/O durirg the writing of the mathematical code, etc. One object deals with
user requests and translates the requests into event messages to be sent to the "workhorse" objects. Likewise,
the same object returns the workhorse answers to the user in some screen format. Thus the workhorse object
need only contain code for the algorithms to convert the input into the correct output.

Object Abstraction: The software engineer can design at the highest level of abstraction listing the upper
level tasks that need to be done to solve the problem assuming that some object can do each task. Then
one moves down one level of abstraction and takes each task and decomposes down into subtasks assuming
some object (or service) can do each subtask. This is done down to the primitive/coding level. Debugging is



"decomposed the sameo way. The software engineer looks at the input and output of the highest level object.
Ifit is wrong, the input and output of each of the objects in the next level down is examined. Only the object
with na incorrect input/output pair must be further decomposed. Because each object is thus self-contained,
it makes maintenance very simple.

$14411v Cede: After the main classes in the program are fully defined in terms of what attributes and
srvies they need, inheritance is used to decrease the tisc of the code. A Library class can be defined that
becomes the parent of all the main workhorse classes. This Library dca contains all the services that the
workhorse clauses bold in common. This means that each of the separate classes are smaller because they

ema globally aems the services they inherited from their parent Library. Library might contain services to
decipher user textual input, to work with data Iles, and other general purpose type services. The dames
could als be made smaller by the creation of a math library clas. This clam might contain services to do
common mathematical functions.

P,!ductswtl: Became the object library from Borland Turbo Vision was available, productivity was
found to be much higher than would be typically expected in software development. The Juwctional version
of ICECAP-PC was not complete in the human factors engineering area because only so much time could
be devoted to meanning systems and output screen formatting and context sensitive help screens. Using the
professionally paaged clam library of Turbo Vision, the software engineer is able to focus almost completely
on CACSD a&*orithms and let the commercial package take care of user 1/0. Because of this, the authors
have been able to work on expanding ICECAP- PC's CACSD toolboxes beyond that which could otherwise
have been accomplished. Furthermore, later researchers should be able to go even farther mince the overhead
of porting the ICECAP-PC subroutines into an 00 environment has already been accomplished.

Rehai&WI.: OOP disciplines produce more reliable code due to modular debugging and use cif existing
objects that have been debugged through years of use. In the came of ICECAP-PC, the benefits of two worlds
have been inherited . At the upper level, the program has its I/O based on a commercially produced and
tested package (Turbo Vision). At the primitive level, the object services are based on the basic control
system algorithms from ICECAP-PC (developed since 1977 and used by a large student body). After the
00 program had been tested at all levels of abstraction, new objects could be added to the existing reliable
code with a high degree of confidence in the reliability of the CACSD package as a whole.

Masinainability: The same OOP disciplines produce more maintainable code due to the self-sufficiency
of objects. Proper OOP techniques avoid the use of global variables and low functional independence which
often plagues functional program modules. If each object is compiled (relatively) separately and it responds
with expected output responses to test inputs, then it does not display the undesirable dependence qualities
of low cohesion or high cuuplih with some other object.

This paper claims that following proper OOP disciplines results in highly cohesive code, because each
object is functionally bound to operate on its data alone. Of course, while objects higher on the parent-child
tree own more data, they sti1 perform only one higher level function. The higher level object is made up
of smaller objects who are each functionally bound to operate on their more specific piece of the data. This
iecurses down through the object tree until the primitive level is reached. At this lowest level, very cohesive
services (subroutines) are written.

In the same way, following proper OOP disciplines results in low coupling between objects, because
each object is again functionally bound to operate on its data alone. High external and common coupling
is avoided by only having a single object which is able to access the central data file. Furthermore, high
content coupling is rendered almost impossible in OOP because it is not possible (without trying very hard)
to branch into a service located in another object or into a service located inside the same object. However,
in order to save some code, the use of limited control coupling (using global flags to control how some objects
respond) has been found to be useful. In the strictest sense, using these global flags do break the rules of
OOP.



5 Disadvantages of OOP

Only two disadvantages with using OOP have been experienced, neither of which are directly related to
OOP itself. The first can be attribruted to learning a new programming language and learning a new way of
thinking about algorithms to solve problems. The second can be attributed to the decision to operate within
an MS-DOS environment.

Any time a new programming syntax must be adopted, there is a learning curve that must be overcome.
With 00P this is doubly true, because not only must the syntax of Turbo Vision, or sorn-t other 00
language package, be learned, but the software engineer's thinking process must chanige. Humans9 typically
think in functional terms. Therefore, the transition into OOP is not as -intuitively easy as using functional
programming techniques.

Any time code in developed within the MS-DOS environment, limitations are placed on how much
memory room is available for use by the program. A stack cannot be larger than 64K, variable declarations
cannot be larger than CMIK, and the compiled program and heap space (dynamic variable space) cannot
exceed 640K. The 640K barrier can be overcome in Turbo Pascal by breaking the compiled code into overlay
units, but even then each unit crnnot be larger than 64K and must be able to be compiled to some extent
separately from the other units. These memory restrictions place some limit on how closely one can follow
the generally accepted rules of 00P.

Ideally, the objects required to solve the current problem should all be allowed to remain in memory at
once. Due to heap limitations, several large objects cannot be instantiated in the heap at once. This forces
the use of common data coupling or temnporal and pr'ocedural cohesion in order not to lose data when one
object's data memory locations must be released for use by the next object. The solution is to keep compiled
object code as small as possible. Also the sise of code inherited from an object's parents must be monitored.
If an object's local code is 64K, but it inherits 30K of services from its parent, then it is too large to be used
as a Turbo Pascal overlay unit. Because of this tradeoff between heap sise and object size, it has been found
necessary to break the rules of 00P by using compiled units that are not objects, but are 'global procedure
libraries".

Use of these global variables, control flags, and procedures is done very cautiously and only when ab-
solutely necessary. Eventually, as more clever ways of defining the objects in ICECAP-PC are found, this
"fast-prototyping" answer is to be replaced with more reliable and proper 00 code.

6 Summary of Object-Oriented Approach

Object-oriented design and programming has grown to a standard practice because of various benefits over
functional design and programming. Such advantages include the reuse of existing software components, inure
maintainable systems, reduction of developmental risk, and use of OOP language constructs. Disadvantages
include the higher cost of development and possible performance degradation due to message passing, the
multi-layer abstraction, hierarchy of classes, and associated memory and execution overhrad.

The 00 approach generally results in smaller systems because of reusable subsystems and thus the 00
system are more admeaniable to providing an economic framework for evolution. The original ICECAP-
PC was developed using the functional design approach as were its predecessors. The new 00 version of
ICECAP-PC provides for better reliability, maintenance and user interface.

As has been introduced in this part of the paper and is further discussed in Part U1, it has been found that
OOP seems to offer new opportunities in the design of engineering packages. Specifically it has been found
that a commercially packaged object toolkit like Borland's Turbo Vision abstracts the software engineer
from the concerns of nspr interface and allows concentration on the mathematical algorithms and instruction
within the CACSD package.



PART Miz An Object-Oriented CAD Environment

CACSD software dev--lupment is an inherently complex process because of (1) the multitude of math-
ematical cperations and capabilities required and (2) the variety of requirements posed by the end users
(control students and control engineers).

Relatively new, and growing rapidly, is the use of object-oriented design (OOD) and programming (OOP)
techniques as presented in PART I. While the software engineering community has embraced this technique
with open arms, other engineerug disciplines, control systems engineering inclusive, have been slow to adopt
this technology. The purpose of Part II is to discuss the object-oriented ICECAP-PC Release 10 project
now underway at the Air Force Institute of Technology.

1 Scope of Effort

Since 1977, graduate students [9, 10, 11, 12, 13, 14, 15, 16] at the Air Force Institute of Technology
(AFIT), have contributed to the development of the Interactive Control Engineering Computer Analysis
Package (ICECAP) program. In 1985, ICECAP-PC[17], a Pascal version of the mo.inframe program using
structured and functional design techniques was tailored to the personal computer. This Pascal version of
ICECAP-PC has gone through various design revisions with current research involving the object-oriented
(00) redesign using the interface definition of Turbo Vision[l]. ICECAP-PC is a public domain CACSD
tool targeted for educational use. This is not meant to imply deficient capabilities. Rather, every effort is
made to ensure that ICECAP-PC Release 10 is mathematically correct, rich in capability, and both easy and
quick to use from a user's perspective. The purpose is simply to challenge the state-of-the-art in CACSD
software design. The new ICECAP-PC is easier to use, more accurate, faster, leaner, more capable, and
more robust than prior versions.

2 Design Goals
The first priority is to provide a CACSD environment to perform basic control system analysis functions
such as polynomial and matrix manipulations, and time and frequency domain analysis with a user-friendly
interface including graphical presentations, help, and macro facilities. These exist already in the current
functional version of ICECAP-PC. In addition to improvinig these, the following are to be provided:

"* A context sensitive help facility.
"* A 'systems build" capability to design a control system graphically in block diagram form.
"* An improved user programmable macro language.
"* An improved root finding capability.
"* A nonlinear simulation capability.
" An improved MISO and MIMO QFT toolbox (continuous and discrete systems)
"* An improved report generating facility.
"• A Database Metadata Dictionary

Providing a new user interface using proven human factors engineering (HFE) concepts is also a tcp
priority. This interface should be both intuitive and powerful to satisfy both the novice that normally uses
menus as currently employed in ICECAP-PC and the professional who wants direct access to the underlying
algorithms. This interface includes single-stroke menu selection, MatLab/MatrixX type data input with
direct entry of complex numbers, one-stroke shortcut keys to circumvent novitiate menu levels, and a macro
facility for system programming.



2.1 CASE Environment

Besides OOP, another new technology revolutionising the software design process is computer-aided software
engineering (CASE). CASE provides an integrated set of tools which increases productivity and empowers
the production of more reliable and more maintainable code. The desire for ICECAP-PC to inherit all the
benefits of CASE was tue basis for using the Turbo Pascal 8.0 Turbo Vision 00 environment. The Turbo
Pascal 6.0 Compiler, Profiler, Debugger, Make, and Touch tools provide limited CASE environment. The
Turbo Vision tools force the 00 discipline upon the code. Thus the claim is made that OOD coupled with
an integrated programming environment like Turbo Pascal 8.0 is, indeed, a CASE environment[S].

The advantages of developing ICECAP-PC in a CASE environment have been extensive. Most of these
advantages have already been discussed in Part I of this paper: better file I/O handling, better user I/O,
better code design, better debugging, smaller code size, increased prodnctivity, more reliable code, and more
easily maintainable code. One of the largest benefits of the newest CASE environments is the concept of
automatic code generation. The user describes the desired flowchart of functions, and the CASE tool writes
reliable code. Turbo Vision offers a similar capability in the form of precompiled libraries of objects. It has
been said that 80% of code development is spent on user interface overhead, but Turbo Vision already has
all the mouse support and menuing system support and windowing support any CACSD package requires.

2.2 Interface

The Interface for ICECAP-PC is a menu-driven, mouse-supported interactive system. Simple drop-down
window menus form the main command interface and replace the command line and menu system of the
previous version. All drop-down menus are activated using the mouse or single keystrokes. The user enters
the data in a MatLab/MatrixX style input line. Furthermore, the input line has a history buffer and all
prior entries can be recalled and edited. While general commands are processed with drop-down menus, the
user interacts with dialog boxes to provide specific instructions. Mathematical operations also use dialog
boxes. Hot keys add additional speed to the command entry process.

The main menu consists of only three levels at its deepest point. The user does not have to descend
through several levels of menus to get to the desired function. The 'Tools" menu option replaces the main
menu with the specified toolbox main menu. The QFT toolbox and its menu are discussed in Part M of
this paper.

3 ICECAP-PC Structure

ICECAP-PC has ten predeflined matrices, ten predefined polynomials, and ten predefined transfer functions.
All matrices, polynomials and transfer functions share a common data type and are located in a sinole disk
file.

While other data types are used for program control, using a unified data structure was found to provide
enough similarity between matrices, polynomials and transfer functions to make them children of the same
parent, thus greatly saving program code sise and memory.

The following paragraphs describe, the classes used to implement ICECAP-PC. The relationship of the
ICECAP-PC classes are explained to be children of classes in Turbo Vision. Table 1 shows the class
structure of ICECAP-PC. All ICECAP specific classes are denoted with an asterisk.

TIceMain, a child of TApplication, is the main program class. The main job of TlceMain is to process
events from the main menu, from shortcut keys and messages from other classes. Additionally, it processes
background tasks, such as updating the screen buffer and the heap viewer, during idle periods. IceMain is
the instantiation of TIceMain and owns all other classes through instantiation.

TViewlnterior is an important class that owns all the I/O devices. It owns the view screen and is the
sole class in ICECAP-PC that is allowed to write to it.

TLibrary is the parent class to TMacro, TMatrix, TTransFunc, and TQFT. By defining this service in
TLibrary and making TMatrix, TTransFunc, TMacro and TQFt children of TLibrary, the Parseline service



Table 1: Complete Famly j•e Structure of ICECAP-PC

is istherited by all four clases, thus reducig the overall cede size. TLibrary has two other services that
merit mention, specifically the oily two services in ICECAP-PC that axe allowed to access data on disk are
TLibrary.Retrievel~ata and TLibrary.Storel~ata. This prevents the common error of leaving data files open
thus making the program, vulnerable to a crash. These two services open the file, read/write the data, close
the fie and aend the variable to the caller.

Children of TLibrary wce Thlacro, TMatrix, TTransFunc, and TQFt. TM•-cro provides the macro
lanuag capability for ICECAP-PC. TMatrix is the class responsible for all matrix operations. T'itansFunc:
is the da responsible for all transfer function and polynomial operations. TQFT is the clas responsible
f the QFT implementation.

As is discussed in Part I of this paper, the most difficult step in OOD is defining the objects. When
the viewpoint of the lowest level of abstraction is taken, it would seem logical to the strictest 00 designer
that eac~h polynomial an-d matrix and transfer function should be an object. Then when the user asks for
a frequency response of the open loop transfer function (OLTF), the OLTF object would draw a frequency
response of itself on the Pereen. However, when the viewpoint of the 00 software engineer is taken, it
becomes move logical to think of some nebulous transfer function object that owns each of the individual
transfer function data records. When the user asks for two transfer functions to be added together, the
transfer function object services car out the task. How could two objects add themselves to each other?
There would have to be some owning object who could simultaneously access both their individual data
records. The ICECAP-PC data structure has been designed using the latter implementation viewpoint.

Using the idea of not having each polynomial or matrix be its own object and having an overall Polynomial
and Matrix object, these parental objects are called Toolboxes. The current toolboxes within ICECAP-
PC are the trnmsfer function/polynomial toolbox, the matrix toolbox, the macro toolbox, the nonlinear
toolbox, the "ystem build toolbox, the database toolbox, thae digital signal processing (DSP) toolbox, and
the Quantitative Feedback Theory (QFT) toolbox. Each toolbox can be :.bought of as a major divisiont of
the program which the user would use to solve a given problem. The functiou.s of each of the toolboxes are
described briefly. Other toolboxes are in development.

The tmnsfer fuctionipolyn~oinal toolboz within ICECAP-PC provides the basic building block mathe-
maticL,] algorithms necessary to design control systems using conventional (as opposed to modern) control
techniques. The toolbox is composed of objects of one class called TTransFunc. This class contains a~ll



the services required to manipulate polynomials and transfer functions (ratio of polynomials). There are
polynomial services sutch as adding, subtracting, multiplying, definir, modifying, etc. There are transfer
functions services for forming closed loop transfer functions, finding time equations, taking partial fraction
expansions, and transforming into state matrices, etc.

The matrix toolbox within ICECAP-PC provides the basic building block mathematical algorithms nec-
essary to design control systems using modern (as opposed to conventional) control techniques. The toolbox
is composed of objects of one elmss called TMatrix. This class contains all the services required to manipulate
matrices. There are basic matrix services such as adding, subtracting, multiplying and advanced services
such as eigenvalues, controllability, oberwability, etc.

The macro toolbox within ICECAP-PC provides a batch language which allows automatic performance
of program operation. The toolbox is composed of objects of one class called TMacro. This class contains
all the services required to edit macro files, translate macro files into program input commands, and provide
user interface during macro file execution.

The nonlinear toolbez within ICECAP-PC provides the capability for nonlinear simulation of system
transfer functions. The toolbox is composed of objects of one clasn called TNonLinear. This class contains
all the services required for nonlinear simulation modeling. The services include support for both semi-
automatic and interactive linearization of nonlinear systems.

The sytem buid toolbox within ICECAP-PC provides the ability to construct system transfer functions
from icon representations of gains, filters, nonlinearities, time delays, frequency response, etc. The toolbox
is composed of objects of one class called TSysBuild. This class contains all the services needed for the
graphical user interface as well as program control to generate the necessary commands to lenerate the
transfer function described by the icon representation.

The database tooiboz within ICECAP-PC provides all the data storage and retrieval functions as well as
data interrelation functions. The toolbox is composed of objects of one class called TDataBase. This class
contains all the services required to control data flow between the program and disk files. It also contains
the lams level applications which maintain relational information tables between data items known as the
Database Metadata Dictionary.

The DSP oolboaz within ICECAP-PC provides a no-frills ability to perform some limited digital signal
processing (DSP) technology demonstrations. The toolbox is composed of objects of one class called TDSP.
This clan contains all the services required to do convolutions, fourier transforms, complex phaser rotation,
and signal aliasing.

Graphical representation of time/frequency data is provided by the Graphics toolboz using the Graphics
elm. User modification of matrix/polynomial objects within the Graphics object, requires an interactive
interface such as function keys, cursor controls, or a mouse. Implementation of th. interactive environment
involves the mapping of a graphical object into memory, and enabling the image to be moved by cursor control
without conflicting with other graphical objects. Within each interactive g.aphic display environment, the
user is able to drag an image across the screen. When this image moves, it does not disturb the pixels
underneath the image.

The QFT toolbor within ICECAP-PC provides the basic building block mathematical algorithms nec-
essary to design control systems using QFT control techniques. The toolbox is composed of objects of one
clas called TQFT. This class contains all the services required to define tracking and disturbance specifi-
cations, enter plant variations to manipulate transfer function matrices, enter disturbance models, generate
plant templates, generate bounds, design a nominal loop transmission, generate a controller, design a filter,
simulate responses, and generate a compreh.,nsive report.

4 Testing and Validation

Perhaps the most important aspect of a CACSD package to the engineering z ler is its ability to give correct
answers. While ICECAP-PC can in no way claim the level of testing and validation done on a commercial
package, certain disciplines have been strictly adhered to during the code development. ICECAP-PC has



been tested and validated throughout the coding stage using black box testing, white box testing, and its
macro language toolbox.

Black box testing is the process of looking at the CACSD package as a black box which accepts inputs
and produces outputs. The tester does not care how the package arrived at the outputs, as long as they
are the correct outputs for the inputs given. As each service was created within ICECAP-PC, a page of all
possible input patterns was constructed as well. When the service was completely coded, each input was
applied to it and the output was checked for correctness.

White box testing is the process of looking at the internal algorithms within the CACSD package. The
tester provides an input to a service or object and then traces through the program code one step at a time
examining all the variable states and how they are affected as the algorithm progresses toward the output.
During white box testing the code is tested for both robustness and efficiency (in terms of memory use,
execution time, and other machine-oriented parameters).

The macro language facility within ICECAP-PC is used to its fullest during the testing phase especially
during black box testing. The pages and pages of test conditions are programmed into macro files which are
available with the ICECAP-PC sc..:ce code. This saves the tester much time during the many iterations
of running examples, fLdinS .r-ors, correcti-g the code, and rerunning the same examples until they run
correctly. This also guar,.t-ts correct and repeatable inputs to the program during testing.

5 Object-Oriented CAD Summary

The new ICFCAP-FC has benefited greatly from the use of 00 technology. OOP has made the use of
memory more efficient in both the heap space and the stack. The user interface has been improved in both
ease of issuing commands =.td context sensitive help and error messages for the commands. Furthermore, the
forced modularity discipline of the object structure has produced more reliable, efficient, and maintainable
code.

As in any CACSD package, successful design depends on clean, efficient, ar'.4 mathematically correct
numerical methodology. ThIs it is incumbent on the CACSD designer to carefully choose the algorithm, and
to seek ways to improve tGe accuracy of the math foundation. One of the principle goals of the ICECAP-PC
project is to take a careful look at the underlying math routines and find ways to improve them.

Taken as a whole, the 00 ICECAP-PC is a much sturdier base upon which to develop the QFT CAD
toolbox described in Part IMI of this paper.



Part III: An Object-Oriented QFT CAD Environment

Quantitative Feedback Theory (QFT) quanti•atively formulates various factors in the form of sets (a)
T,,i = {TR} of acceptable conmmand or tracking input-output relations (b) T o = {Tu) of acceptable distur-
bance input-output relations and (c) a set P = {P} of possible plants. The object is to guarantee that
the realised control ratio TR = Y/R is a member of TR and Tn = Y/D is a member of Tv, for all P in P.
That is, various bounds are specified a priori for acceptable p, -formance in regard to each transfer function
relationship 18, 19, 20, 21, 22].

QFT methods have been developed for both linear and nonlinear, time-invariant and time-varying,
continuous and sampled-data, uncertain multiple-input single-output (MISO) and multiple-input multiple-
output (MIMO) plants, as well as for output and internal variable feedback models and distributed systems.

The QFT frequency-domain technique involves #,z and wi domain transformations of the specifications
and variable plants. Most of the QFT design steps have been automated in CAD packages(10, 2, 3]. Using
an 00 approach in this ICECAP-PC toolbox, the various QFT objects presented in the following discussion
are associated with various services. The 00 window interface guides the user step by step through the QFT
MISO phases (specifications, plant models, disturbance models, templates construction, loop transmission
generation, filter generation, simulation and reporting). In the MIMO QFT CAD process, transfer function
matrix manipulation is provided as discussed in the following section.

1 MIMO QFT Synthesis Approach

The QFT MIMO synthesis problem[23, 241 is converted into a number of MISO single-loop feedback problems
in which parameter uncertainty, external disturbances, and performance tolerances are derived from the
original MIMO problem. The combined solutions to these MISO single-loop problems achieve the desired
performance for the MIMO plant. The basic approach is a point-wise frequency domain MISO synthesis
technique. The state-space model representation for a LTI MIMO system is:

x(t) = Ax(t) + Bu(t) (1)

Y(t) = Cx(t) (2)

where x is an m vector, y is an n vector and u is an r vector. A, B, and C are constant matrices of the
proper dimension. The plant transfer-function matrix P(s) is defined as

P(s) = C[sI - A]-'B (3)

This plant matrix P(s) = [pi,(s)] is a member of the set P = {P(s)} of possible plant matrices which are
functions of the uncertainty in the plant parameters. The plant matrices are entered and, as appropriate,
so are the sensor and actuator matrices. If the equivalent plant matrix Pe resulting from the three matrices
is not square, a weighting matrix W can be used to form an effective square plant. An interactive dialog
provides the user with the ability to iteratively generate W.

In CACSD practice, one of three explicit methods can be used. One method is based upon the physical
modeling of various plants representing the variety of possible plants. The second includes the selection of
only a finite set of P matrices, representing the extreme boundaries of plant pole/sero uncertainty. The
third considers the variations in plant coefficients by considering a preselected number of plants to represent
the maximum variations. A convex hull is then closed around these plants to derive the minimum number
of plant models to represent the variation.

An mxm MIMO closed-loop system can be represented by three m"xm matrices, F, G, and P as shown
in FIG 1. There are m2 closed-loop system transfer functions tii(s) (transmissions) contained within its
system transmission matrix or system *racking matrix. TR(s) = {ij(s)}, relates the outputs yi(s) to the
inputs ri(s), that is, yi(s) = t,,(s)rj(a). In a quantitative problem statement there are tolerance bounds •
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oa each t.)(8), giving a set of ftt 2 acceptable regions rii(s) which are to be specIled in the design, thus
t4,(*) E r.,(s) a~nd T(s) = {r,)(s)). These regio&s can also be directly given in the frequency domain.

Based upon FIG I The following system equations can be written: y - i'x, z Gu, u = v -

V =Fr.
In these equations .2(s) i. the matrix of compensator transfer functir'as and is often simplifiecl so that it
is diagonal. F(s) is the matrix of prefilter transfer functions whi&ch may also be a diagonal matrix. 'Abe
combination of thawe equations yields a 2 degree-of-freedom feedback structure:

.V =(+ PG] 1'PGIPr(4

whtet. the system tracking control riatio relating r to y is

TR = [I+ PG]'IPGF (5)

The disturbance model is given as
TD M I+ PG]' P = {44j)

The N.IMO design objective is to determine a F and G for all plants in P such that

"* the dosed-loop control ratio of Eq. 5 is stable "stability'

"* the norm of ti (w) is bounded; ai (w) :5 liq(w) 1 < b,1 (w) for wi < wo "closed-loop performance"

"* the disturbance Eq. 6 is bounded by ao,(w), > 0 *disturbance re~jection"

2 MISO Equivalents for a MIMO System

A linear mapping from a MIMO system structure resmust in m2 MISO equivalent systems, each with
two inputs and one output. One input is designated as a 'desired' tracking input and the other as a
'disturbance' input. To develop this mapping consider the inverse of the plant matrix represented by:

ellu P12 1. i

[Puu P,2... P,ý. J

The mn2 effective plant transfer functions are formed by defining

%qd= l/pj = [detP/adiP,,] (8)

where detP reflects a minimum phase transfer function model. A Q matrix is defined as:

911 91 ... I 1 /A I/P l/P;2  -. 1 /P*I.
921 922 ... 2 92 1A /P2 ... 11A

9," q,,2 .. q,,,, I/A I/P1 I/ j

where P = fp,], P'- =pi fl/q,,J, and Q = [qq)j [1/pi'. The matrix P- is partiticned to form

P'= [p,] = f1qi,] = A + B (10)
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where A = {A.} is the diagonal part and B = {b,,} is the off-diagonal component of P'. Thus, A, =
l/q.. = p,, bi, = 0, and b,, = 1/q,, = pfor f j. Premultiplying Eq. (5) by P-'[I + PG0 yields, using
Eq. (10),

T -= [A + G]-'[GF - BTJ

Each of the m2 matrix elements on the right side of Eq. (11) can be interpreted as a MISO problem. This
Axed point mapping is described by defining Y(TR) as:

Y(Ta) = [A + G]-'[GF - BT] (12)

where G = fgi} is assamed to be diagonal and each memler of TR is from the acceptable set Ti. If this
mapping has l fixed point, i.e., TR E Ti such that Y(TR) = TR, then this TR is & solution of Eq. (II).

The control ratios for the desired tracking of the inputs by the corresponding outputs for each feedback
loop of Eq. (12) have the form

IN ( + = wii( +i )= + ,. + vc,, (13)

where wv = q,./(1 + g,,qi,) and v,, = gj,,fj. The interaction between the loops has the form

- [i] kI t 2,...,m (14)

and appeas as a 'disturbance" input in each of the feedback loops. As mentioned previous regarding the
MIMO weighting matrix, the various diagonal transfer functions can be modified as a function of the off
diagonal terms above and to their left. This results in a more complex but better model. The modeling
objective is to generate a Q with diagonal dominance. The disturbance MISO input although minimised is
still retained in the moiel.

Eq. (13) represents the control ratio of the ith MISO system. The transfer function wi,,ii relates the
"desired' ith output to the jth input ri and the transfer function wjo4j1 relates the ith output to the jth
"disturbance' input d,,. Defining the loop transmission L, for each of these loops, an additional design
nbjective can be included that states:

11 + Li(w)j 2 m,(w) for all i and all plants "stability margin performance"

For nonlinear systems a similar ploy is used in that the nonlinear components of the system equations
are modeled as disturbances. The QFT controller is designed based upon the linear component and the
bounds of the disturbances. Simulation of the controller system is then accomplished using the nonlinear
structure exp citly.

3 MISO Performance Models

To synthesise[23, 24, ' 3, 26, 61 a QFT MISO design, the model control ratio can be generated based
upon the system's performance specifications in the time domain using the individual MISO models. For a
minimum phase continuous structure of FIG 3, the MISO control ratios for tracking and for disturbance
rejection are, respectively,

F(s)G(s)P(*) F(a)L(a)
I + G(a)P(s) -I + L(s)

I(#) = (P+nt(,). () Disturbance) (16)
1 _ 1

TD() (Me--- re Diatrbaiwe



where L(s) G(s)P(s) is defined as the loop transmission. A fourth transfer function, T, can also be
defined:

T~)a G(s)P(s) =TR (s)

I + G(a)P(s) F(s)

which is used to define additional performance requirements.
FIG 2 represents the feedback structure which is generic in nature for continuous and discrete systems.

The previous equations can be modified for a discrete feedback block diagram using a multiplicative sero-
order hold (ZOH Operator). The ICECAP-PC user's manual contains QFT flowcharts for the continuous
and discrete design processes. For sampled-data systems, two QFT approaches exist. The first transfers
the sampled-data. system into the sm-domsain. From this plant with an integrated sero-order-hold structure,
the Mapping 3 = CJT* is used to transfer to the frequency domain. The standard QFT techniques are
then employed in the frequency domain (21]. The second method uses the QFT frequency domain design
techniques that have been highly dei-eloped for the s domain which can also be applied in the w domain.
The condition for this application is that the pertinent a~s and w plane modeling relationships, based on the
Tustin approximation, are valid for low sampling frequencies (19]. An example is now used to illustuate the
various phase of the QFT deasign process.
3.1 Design Example

A QFT MISO system is designed using the control system of FIG 3, with t(t) = d2(t) = a-1t) to meet the
following example time-domain specifications:

Traekciug Specifications TR
TRgJ: Second Order System with Peak Overshoot (M,,) of 1.3 and sz' ting time (t.) of 1.65
TRL: Second Order System overdamped system with a setting time (t,) of 1.65
From these two tracking specifications the appropriate values of aj(w) and bjj(w) can be determined to

bound TR. FIG 3 and 4 represent the generic time and frequency responses for the tracking specifications.
For the stability margin bounds, 11 + kLI 2t makw

Disturbance Bound Specifications
ITD 1 :5 ,(iu) = IC(tp)...I 1 0. 1 for all W
Phase Margin Angle: -y= 400
These specifications can be initially defined in the frequency domain by defining a finite set of magnitude

values vs frequency.
The examp~a second-order model is

Pj = (ka)/$(*( + a)]

whAere 2<a< 10, 1<k<5, k= 1,2,...,J

where J is the number of uncertain plants and the variation of a and k describe the region of uncertainty.
Observe that the phase margin and gain margin performance requirements can also be incorporated as

the following bound where bi S6R
IT(w)t :5 6,R(w) (9

and the tracking bound as
tTRU(W) - TRL(W)I :5 6R(W') (20)

These tracking specifications are based upon satisfying some or all of the step forcing function figures of
merit ffor underdamped (M,, tj,, t., t,, K.,) and overdamped (t.,t,4, Kin) responses for a simple second-order
system.

The upper and lower tracking MISO models are normally second order systems since the designer must
meet the given time.-domain unit-step performance specifications (Mp,, 4, i.,and t,.. This design process
is recursive. First Tpu,(jw) and TRL(IW) are determined and then the (ITRu(iw)J - ITRL(jwJ)I) difference
must increase with frequency in order to achieve a satisfactory controller. Thus Tpw(jw) and TRL(jW) are

611



modified without changing the desired performance characteristics by modifying TRL with a negative real
pole which is chosen as close to the origin as possible without affecting this original time response.

For minimum-phase plants, only the tolerance on I TR(jiwi) I need be satisfied for a satisfactory design.
For nonminimam-phtse plants, tolerances on iTR(jwi) must also be specified and satisfied in the design
process. It is desirsatle to synthesise the control ratios corresponding to the upper and lower bounds TRw
and TRL, respectively, so that bR(jwj) increases as wi increases above the 0 dB crossing frequency of TRu.
This characteristic of JR(jw,) simplifies the process of synthesising a loop transmission L.(s) = G(#)Po(s),
where P.(#) is the selected nominal plant transfer function.

The Bode plots are generated from the time responses y(t)u and YIt)L and represent the upper bound Bu
and lower bounds BL, respectively, of the specifications in the frequency domain. As mentioned previously,
the specifications can be directly defined in the frequency domain, and thus the generation of time-domain
specifications is not required.

The templates are constructed next from CAD generated plots. The BR(jv,), BD(jnV), and Bm,(jvi)

bounds and BE, BA, and BL contours are then obtained. The optimal loop transmission transfer function
L,.(w) and the prefilter F(w) are synthesised. TLe following sections present a summary of the details.

3.2 Template Generation

The siruplest QFT disturbance rejection model considered is TD(s) = Y(s)iD(s) = ap, a constant (the
maximum magnitude of the output based upon a unit step disturbance input).

To characterise the plant model variations, consider the log-magnitude (Lm) of Eq. (15):

LmmTR=LmF+Lm i-1 +L(21)

The change in TR due to the uncertainty in P is

A(LmTR) = LmTR - LmF = Lm (22)
1 + L

By the proper design of L = L. and F, this change in TR is restricted so that the actual value of Lm TR
always lies between Bu and BL. Synthesising L. requires the generation of templates. These templates for
various values of w, over a specified frequency range characterise the variation of the plant uncertainty, as
described by the J plant transfer functions. Selecting the frequency range for the templates generally requires
the selection of three frequency values, no less than an octave apart, up to approximately the -L12 dB value
of tae Bu plot. In addition, for a Type 0 plant[18] select w. = 0 and for a Type I or higher-order plants
select w, 34 0. Automatic or interactive generation of these bounds is permitted. A nominal plant is also
selected at this time. Graphical and tabular template data can be displayed for evaluation.

3.3 High-Freqeuency Boundary

The specifications on system performance in the frequency domain identify e minimum damping ratio C for
the dominant roots of the closed-loop system which becomes a bound on the value of M,,. On the Nichols
chart, this bound on Mm = ML establishes a region which must not be penetrated by the template of L(jw)
for all w. The boundary of this region is referred to as the universal high-frequency boundary (UHFB) or
the U-contour, because this becomes the dominating constraint on L(jw) as w approaches oo. Therefore,
the top portion of the M-contour on the Nichols chart, which corresponds to the value of the selected value
of ML, becomes part of the U-contour.

For a large problem class, the limiting value of the plant transfer function approaches

lim [P(jw)] K (23)
- 00



where il represents the excess of poles over sero@ of P(s). The plant template, for this problem clasn,
approaches a vertical line of length equal to

A = lim [LmP,... - LmP..,] (24)

= LmK.., - LmK.i. = VdB (25)

If the nominal plant is chosen at K = K,,.i, then the constraint M, gives a boundary which approaches the
U-contour of FIG 5.

3.4 Tracking, Disturbance and Stability Margin Bounds
The determination of the tracking BR(jwi) bounds, the disturbance BD (jiW) bounds and the stability margin
bounds are required in order t. yield the optimal composite bounds BE(jwi) on L.(jwi). The solution for
BR(ji,) requires that the actual ATR(jw.) be < 6R(jwi). Thus it is necessary to determine the resulting
constraint, or bound, BR(jw,) on L(jw,). The procedure is to pick a nominal plant P.(*) and to derive
the bounds, by use of the templates, on the resulting nominal transfer function L,(#) = G(s)Po(e). In
ICECAP-PC, the process is automated. However, the user can observe the bound generation for a specific
angle and frequency on the Nichols chart. The user can also move the templates under key/mouse input on
the Nichols chart for manual bound generation. The disturbance bounds BD(jwi) can be determined in a
similar manner[2, 3].

For CAD generation of BR(jw) and BD (•w), the above process is automated given the plant variations
with the ZOE, disturbance models, specifications and the selection of a nominal plant Po. In particular,
the minimum and maximum values of LmM for each plant template at jw, are found for a given angle
(0 > and < 21r) over the range 0 to -180 degrees (50 increments) such that their max-mn difference is
_5 6,(jw.). If a template for a specific plant becomes tangent to the Mb contour, the angle iteration stops
since entering this region would violate the TR(jwi) specifications. The process for genereting BR is iterated
for wi over the specified frequency bandwidth with values an octave apart. This is the basic technique that
was employed in the ICECAP-QFT software in 1985[10]. A modified approach(161 for finding the bounds
is to manipulate the form of TR(w) < 6,R(") from Eq. 25 into an inequality equation, vary the phase angle
0 of G(j.i) and w, over the same ranges as above along with the variations of the plant, and solve for the
max and min values of IG(jwi)I for each 9. Both algorithms essentially solve the same inequality and thus
provide an automated process for generating the bounds BR(jw,). The same process can be employed to
find the bounds for BD (jA) and any other bounds. Numerical consideration must be given to implementing
either of these techniques for sampled-data systems, especially if the computations are done in the s-plane
frequency domain f19].

The composite B,(jwi) bound for the loop transmission is composed of those portions of each respective
bound BR(JA), BD(jWi) and stability margin bound that have the largest relative values (a union of the
various bounds). To synthesise L.(jw,), it must lie on or just outside the bound Bo(jWj) for each w,. This
process of generating Bo is implemented in the QFT Toolbox.

3.5 Synthesizing a Nominal Loop Transmission
The loop shaping or synthesizing of L.(jw) is shown bsy the dashed curve in the Nichols chart of FIG

6. A point such as L.(j2) must be on or above Be(j2). Further, in order to satisfy the specifications,
L.(jw) cannot violate the U-contour. In this example a reasonable L0(jw) closely follows the U-contour'up
to w = 40 and must stay below it. Synthesizing an L0(s) which satisfies the above specifications involves
constructing a rational function (more poles than seros). L.(jw) is built up rational term-by-term (loop
shaping) to remain on or just outside the U-contour in the Nichols chart. A graphical interface is provided
for determining a rational loop transmission with minimum bandwidth. Various interactive and automated
loop-shaping processes have been proposed[27, 28]. ICECAP-PC provides a number of interactive and
automated techniques for generating Lo.
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3.6 Filter Design, Simulation and Reporting

The design of the prefilter requires the poitioning of Lm [T(jw)] within the frequency domain specifications.
The magnitude of the frequency response must lie within the bounds BE and BL. By use of straight-line
approximations F(s) is synthesised so that Lm F(jw) lies within the time domain boundaries. ICECAP-PC
provides a table and a bode plot for help in defining the MISO filter transfer function. Simulation of the
overall control system can now validate the design.

Simulation is accomplished by observing the step response (tracking) in the time domain and the fre-
quency response over the band of interest for all plant variations and disturbance bounds.For nonlinear
system simulation, nonlinear equation solvers are used in ICECAP-PC. If the resulting simulation does not
validate the design specifications, the user can return to the appropriate phase and modify the design and
continue the QFT design process.

Since the QFT process involves con'siderable computation and data processing, CACSD files are stored
for each phase and combined under program control to generate a rough text report of QFT data to which
the student or control engineer can add prose in order to generate a report.

4 Conclusions

The development of an object-oriented CACSD quantitative feedback design package requires extensive data
and symbolic manipulation. The use of computer-aided packages for performing some of these manipulations
is straight forward using tables and equations, yet the synthesis of the loop transmission Lo is still an
interactive process.

The generation of an OOD and OOP CACSD package such as ICECAP-PC permits ease of extension
and testing for such techniques as QFT. Use of this QFT 00 CAD package with graphical interfacing
promotes ease of data manipulation and permits evolution of numerous compensator designs. ICECAP-PC
is a continuing cooperative development project and available free of charge for MS/DOS environments from
the authors.
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Figure 1: QFT Feedback Structure (MIMO)

Figure 2: Discrete Feedback Structure
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Figure 5: U-Contour Figure 6: Controller Synthesis (Loop Shaping)
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