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Abstract

Position determination for a mobile robot is an important part of autonomous navigation. In many cases, dead
reckoning is insufficient because it leads to large inaccuracies over time. Beacon- and landmark-based estimators
require the emplacement of beacons and the presence of natural or man-made structure respectively in the
environment. In this paper we present a new algorithm for efficiently computing accurate position estimates based on
a radially-scanning laser rangefinder that requires minimal structure in the enx ,onment. The algorithm employs a
connected set of short line segments to approximate the shape of any environment and can easily be constructed by
the rangefinder itself. We describe techniques for efficiently managing the environment map, matching the sensor
data to the map, and computing the robot's position. We present accuracy and runtime results for our implementation.
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1.0 Introduction

Determining the location of a robot relative to an absolute coordinate frame is one of the most important issues in the
autonomous navigation problem. In a two dimensional space, the location of a mobile robot can be represented by a
triplet (t., ty, 0) known as the robot pose. A mobile coordinate system (Robot Frame) attached to the robot can be con-
sidered such that (tx, ty) represents the translation (position) of the Robot Frame with respect to an absolute coordi-
nate system (World Frame) and 0 represents its orientation (heading) (Figure 1).

y y X

S 0

tx X

FIGURE 1. World Frame and Robot Frame

The simplest approach in estimating the robot pose (position and orientation) is provided by the dead reckoning sys-
tem, in which both position and orientation are given by counting the revolutions of the wheels [ 17]. The advantage
of dead reckoning is that it is simple and inexpensive. However, assuming even very small errors, as the robot moves
from one place to another, the uncertainty about its pose grows.

In order to reduce this uncertainty registration with the environment is required. Different approaches have been pro-
posed. A significant number use landmark recognition, either extracting relevant natural features (corners, objects,
etc.) using a camera [8, 12] or identifying prelocated beacons using both a camera [9] and an optical scanner [20].
The major disadvantages of the first are the poor accuracy as well as the need for a suitable environment. Major draw-
backs of beacon-based navigation are that the beacons must be placed within range and must be appropriately config-
ured in the robot work space.

An alternate approach consists of the comparison of dense range data to model data. Since both accuracy and robust-
ness in a position estimator depend on the amount of data used in the comparison, this approach presents some impor-
tant advantages over the two above mentioned.

The matching problem between two sets of data can be formulated in two different ways: feature-based and iconic. In
the feature-based method, a set of features is extracted from the sensed data (such as line segments, corners, etc.) and
then matched against the corresponding features in the model. Shaffer et al. [1] using a laser scanner rangefinder and
Crowley [5] and Drumheller [14] using range from a rotating sonar, proposed a feature-based approach for a 2-D
environment. Krotkov [ 11] used a single CCD camera to extract angles to vertical edges within the scene and then
determine the robot pose by establishing their correspondence in a 2-D map.

In contrast, the iconic method works directly on the raw sensed data, minimizing the discrepancy between it and the
model. Hebert et al. [13] formulated an iconic method to compare two elevation maps acquired from a 3-D laser
rangefinder. Moravec and Elfes [4, 18] proposed a technique to match two maps represented by occupancy grids. The
occupancy grid models the environment using a spatial grid of cells, where each cell has a probability value assigned
to it representing the likelihood that the cell is occupied. Finally, Cox [2] used an infrared laser rangefinder to get a 2-
D radial representation of the environment which is matched against a line segment map.
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In this paper, we present a new iconic approach for estimating the pose of a mobile robot equipped with a radial laser
rangefinder. Unlike prior approaches, our method can be used in environments with only a minimal amount of struc-
ture, provided enough is present to disambiguate the robot's pose. Our map consists of a possibly large number of
short line segments, perhaps constructed by the rangefinder itself, to approximately represent any environment shape.
This representation introduces problems in map indexing and error minimization which are addressed to insure that
accurate estimates can be computed quickly.

2.0 Problem statement

The position estimation problem consists of two parts: sensor to map data correspondence and error minimization.
Correspondence is the task of determining which map data point gave rise to each sensor data point. Once the corre-
spondence is computed, error minimization is the task of computing a robot pose that minimizes the error (e.g., dis-
tance) between the actual location of each map data point and the sensor's estimate of its location. In this section we
formalize these two parts.

Let A be a set of sensed data points taken from a certain robot position, and B be a set of either sensed data extracted
from a different position or a set of data describing a world map. The matching problem for position estimation can
be stated as how to determine the best mapping of A onto B, in other words, how to compute the transformation T
which minimizes an appropriate error function:

E = 0 (T(A),B) (EQ 1)

Consider a world map M described by a set of data M = {MI, M2,. ... Mml expressed in an absolute coordinate sys-
tem (World Frame) and sensed data S = {S1, S2,....Sn,) where Si is expressed in a local coordinate system attached to
the mobile robot (Robot Frame). Then, the robot position estimation consists of solving the minimization problem:

minT E = (T(S),M) (EQ 2)

In this paper we are concerned with scanned data taken from two-dimensional world maps. A convenient way to
describe these maps is by means of a set M = L= {L, L2, ... Lm} where Lj represents the line segment between the
"left" point (aj, bj) and the "right" point (ajr , bjr) in the World Frame (see Figure 2). This line segment lies on the line
given in an implicit normalized form by:

AX+BjY+Cj = 0 (EQ 3)

., . . (ri bF

AjX+BjY+Cj = 0

FIGURE 2 Different distances to consider for each line segment

In the iconic approach presented in this paper, the sensed data consists of points taken from a radial laser scanner.
These points are referred to as either sensed points or scanned points.
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Now, let 9t be the binary relation between the finite sets S and L

9RcSxL (EQ 4)

This relation can be represented by means of the nxm correspondence matrix R with elements given by:

rij = 1 if the point Si is a measurement of segment Lj

rij = 0 otherwise

Determining this matrix R is equivalent to solving the correspondence problem formulated as determining which line
segment Lj from the model L gave rise to the image point Si M pi= (xi,yi)T. Obviously, because one point can corre-
spond to only one line segment, each of the rows of R will contain just one value "1".

A reasonable criterion for constructing the matrix R is the minimum Euclidean distance (this will be emphasized in
the next section). Thus, let D be the nxm distance matrix whose elements dj are the distances between the sensed
point Pi = (Xi,Yi)T and the line segment Lj defined as follows:

dij = do if (a°,,b oj) is an ele nent of Li

dij = min(dr, d1) otherwise

where (see Figure 2):

o = IAjXi + BjY i + CAl (EQ 5)
2 21/2

where (A2 +B2 ) 1=

dij ( Xi - ar) 2 + ,Y -br 2 ) / (Q6
l 2 12 1/2

di=( (Xi -aj) + (Y-bI) ) (EQ 7)

and

Fx 0cs -sineL sino cosojYj (EQ 8)

Equation 8 defines the transformation between a point Pi in the World Frame and a point pi in the Robot Frame given
by (t,,tr,) (see Figure 1).

From the matrices D and R it is possible to obtain the error vector between the sensed points and the corresponding
line segments:

e = (e...e.)T = diag(DxR )  (EQ 9)

It should be noted that e is a function of the transformation defined in Equation 8. Then, the parameter to minimize

can be expressed as:

I = e ty, ) (EQ 10)

The iconic position estimation problem consists of the computation of (t,tO) to solve:
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min(,,t ,e) I (EQ 11)

In practice, the matrix R is derived from D by:

rik= 1 if dk < dj for all j

rik = 0 otherwise

Moreover, R is a "dynamic matrix" in the sense that it is updated after each iteration of the optimization algorithm to
solve Equation 11. A similar approach was used by Cox [2].

Although the approach presented here to compute R is deterministic, this formulation enables one to treat the corre-
spondence problem in a probabilistic way. In this formulation, the elements rij of the matrix R would no longer be
either 1 or 0 but would express the probability that the point Pi corresponds to the segment line Li.

One of the main issues when solving the matching problem is the hi h cost involved in computing the nxm matrix D.
In Section 3 we present a more efficient approach to determine DxR avoiding the entire computation of the matrix
D.

3.0 Iconic Position Estimation

In this section, the two subproblems (correspondence and minimization) of the iconic position estimation problem are
described. Because the world map is represented in an absolute coordinate system (World Frame) and the sensed data
is represented in a mobile coordinate system attached to the robot (Robot Frame) a common representation for both
must be considered. This can be accomplished by using Equation 8 with a first estimate of the robot pose (t , Ey 0)
provided by the dead reckoning system (Figure 4).

Once the line segments from the map and scanned points are represented in the same coordinate system, it is possible
to search for the segment/point correspondence pairs.

FIGURE 3. Two levels of resolution in the map

To establish such a correspondence all of the segments from the map could be checked against every range point in
order to compute the matrix D (O(nxm)). In a sensor such as Cyclone Range Finder, which will be described later, one
thousand scanned points would have to be matched against a model of hundreds of line segments (which could be
built by the robot itself). To avoid this extremely expensive procedure, we propose a two-tier map representation
(Figure 3):

1.- CdimaVr array of grid cells in which every cell is labeled either occupied, if it contains at least one line segment, or
empty, if it contains no segments (see Figure 3). Elfes and Moravec used a similar approach for sonar navigation in
their occupancygrid[4, 18].
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2.-Line mac collection of segments inside each of the occupied cells considered for correspondence.

Thus, the correspondence of sensed points to the model segments is accomplished in two steps. First, a set of cells is
selected for each of the scanned points. Second, only those segments inside these cells are checked for correspon-
dence (Figure 4). By using this representation, the number of segments to be checked decreases considerably, drasti-
cally reducing the matching time.

The grid size must be selected according to the characteristics of the particular application. One cell for the whole
map is inefficient because it requires all of the line segments to be examined for each sensed point (no improvement
at all). A very large number of cells is also inefficient because it requires a large number of empty cells to be checked.
We have determined that the appropriate size of the grid is a function of a variety of parameters (number of line seg-
ments in the model, type of environment, initial error, etc.) and therefore an empirical method is propostd for choos-
ing it.

SENSED PONT (xi, yi)

DEAD RECKON-NG
POSE (Xdr. Ydr, x) Transformation

to World Frame

Select set of cells SIDE R

{Cii}

Select closestsegment k from
set I{cii}

function ej

FIGURE 4. Matcher structure

3.1 Hierarchical iconic matching

In this section, we formulate iconic matching for the two-tier map. Considering that candidate cells must be selected

within which to search for the corresponding line segment, let U be a binary nxc matrix defined as follows:

Uik = 1 if cell k is selected for the scanned point i

uik = 0 otherwise

Let V be a binary cxm matrix defined as follows:

vkJ = 1 if the lj segment lies in cell k ( lI r c. * 0 )
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vkj = 0 otherwise

Consider the nxm matrix W given by the product UxV. The elements w'ij are given by:

W i = UikVkJ

k=1

Consider the matrix W defined as follows:

wij = I if w'i > 0
wii = 0 if wVii = 0

Thus, a generic element wij from the matrix W indicates whether the segment lIj lies in any of the cells selected for the
point Pi or not, and therefore if the distance between Ij and Pi must be computed or not.

For a given point Pi, assuming both U and V have been obtained, the number of distances to be computed reduces
from m to m' i , where:

m

=i _wii (EQ 12)

j=1

Although the matrix U must be calculated for each computed estimate, the matrix V is computed just once, when the
map is built.

Notice that in the extreme case given above in which the number of cells considered for the czt map (c) is very high (c
>> m), the computation of matrix U (nxc) could become more expensive that the straightfoi ward approach of comput-
ing matrix D (O(nxm)). In the following section we methodology to obtain the matrix U is presented.

3.2 Cell selection

After the scanned points have been transformed to the World Frame, a set of occupied cells must be selected for each
of them (Figure 4). Due to errors in both dead reckoning and the sensor, in a significant number of cases, the points Pi
are located in empty cells. We analyze these errors in more detail below.

3.2.1 Dead Reckoning errors

Dead reckoning is intrinsically vulnerable to bad calibration, imperfect wheel contact, upsetting events, etc. Thus, a
bounded confidence region in which the actual location is likely to be found is used. This region is assumed to be a
circle of radius 8, proportional to the traversed distance. This uncertainty in the robot position propagates in such a
way that an identical uncertainty region centered at the sensed point can be considered (Figure 5a).

In a similar way, the heading error is assumed to be bounded by -E, degrees. This error is also considered to be pro-
portional to the traversed distance. Notice that the effect of this error over the uncertainty region depends on the
range--the bigger the range the larger the uncertainty region (Figure 5b).



11

Y Y
(a) X (b)

QUncertainty in robot position

) Uncertainty in scanned point

FIGURE 5. Uncertainties in the sensed data due to dead reckoning error pose (A) Uncertainty region caused by the
position error (B) Dead reckonina position an orientation error simultaneously

3.2.2 Sensor errors

Se:asor errors arise for the following reasons:

- fhe range provided by the laser rangefinder is noisy as well as truncated by the resolution of the sensor.

- The angular position eiven by the decoder has some inaccuracy.

Thus, the two errors to be considered are range error and orientation error. Although they can be modeled as a Gaussian
distribution, both of them are modeled here as bounded errors, as were dead reckoning errors. Their maximum and
minimum values define a new region of uncertainty to be added to the one arising from the dead reckoning errors.
Figure 6a shows a region defined by two errors parameters 5S and eswhose values were obtained from the sensor cali-
bration experiments [15]. This region does not increase with the distance traversed by the robot. On the other hand,
although it depends on the ranbe value, it is not as significant as the dead ieckoning error (s << e,).

Figure 6b shows the final region after considering both dead reckoning and sensor errors. Notice that the sensed point
location is not necessarily along the scanning ray but inside an uncertainty region.

(a) (b)X

FIGURE 6 . {a) Uncertainty in the sensed data due to the sensor errors (b) Uncertainty regio" caused by dead
reckoning and sensor errors
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3.2.3 Cells Selection algorithm

The algorithm to select the cells takes into account the above mentioned uncertainty regions. Each time the cell which
includes the scanned point is labeled empty a search for a nearby occupied cell is performed (Figure 7). The searching
area is selected to be coincident with the uncertainty region given by the sensor and dead reckoning errors (Figure
6b).

If no a priori information is available, the matcher assumes the closest occupied cells are the best ones in terms of
confidence. A distance function based on 8-connectivity has been used. The search radiates out from the cell contain-
ing the sensed point until the cell containing the nearest line segment is found. For all the cells located at the same
distance, only those both occupied and inside the uncertainty region are examined for the closest line segment within
them (Figure 7).

UNCERTAI "rY
REGION

SCANNED

~~7"

El empty cell

0 occupied cell but not selected

Q selected cell

FIGURE 7. Cells to be considered when the original cell is empty

There is no guarantee that every time the scanned point lies in an occupied cell, the closest line segment is within it.
Figure 8b shows a simple example of this case. The scanned point should be assigned to the segment labeled "],"
rather than segment "li". The matcher rectifies this problem by including the neighbor occupied cells as candidates to
search for the nearest line segment.

The location of previous scanned points with respect to their respective target line segments could be used to decide
which cells are more likely to contain the target line segment. This approach has not been implemented so far, but it
could have a considerable impact on the efficiency of the algorithm.

To make the algorithm robust against outliers, incompleteness of the model, presence of extraneous objects, etc., a
progression of increasingly better position estimates is computed (see Section 3.4). The uncertainty region is reduced
along the progression. This approach is based on the fact that the uncertainty due to the error in sensor location
decreases as the position estimate improves. However, the uncertainty region due to the sensor errors does not vary.
In practice, this is accomplished by weighting the parameters 5r and e, between 0 and 1.
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CELL POINT

N i: .........................I

(a) I

FIGURE 8 (a) Line segments considered for a particular cell when the original cell is occupied (b) Wrong
assignment of the segment to the scanned point

3.3 Segment correspondence

To determine which line segment inside the assigned cells to match to the scanned point, a minimum distance crite-
rion is used (Figure 8a). This assumption is valid as long as the displacement between sensed data and model is small
enough. This assumption limits the robot traversed distance between consecutive position estimates. However, since
after each iteration the point/line-segment pairs are updated, the limitation can be relaxed somewhat (Figure 9).

Given a scanned point Pi= (Xi, Yo, three different distances for each line segment are computed (Figure 2). They are
given by Equations 5, 6 and 7. The smallest distance to the line segments inside the selected cells determines which
line segment lj is to be matched to Pi.

WORLD MAP --- {SENSED DATA
Line Segments Points

Array of paired
ead eckopoint/segment

=One iteration

MNMATON

Estimated
pose:
(t. t )

FIGURE 9. Block diagram of the iconic position estimator

3.4 Minimization

After the matched pairs have been computed, the estimate is computed by minimizing the following:



14

min (ee) = mi ( e (EQ 13)

where ei=ei(t,, ty, 0) is given in Section 2 by Equation 11.

Although the rotation 0 makes this optimization problem non-linear, a closed-form solution exists. The Schonemann
approach treats the rotation elements as unknowns and applies Lagrange multipliers to force the rotation matrix to be
orthogonal [16]. However, we have opted for a iterative algorithm (Gauss-Newton) to support the future modelling of
Gaussian uncertainty in the sensor and robot data. Such modelling requires nonscalar weights on the error. No closed-
form solution is known to exist for the minimization. In this method the equation to be solved is:

e+J d = 0 (EQ 14)

where e is the error vector given by Equation 10, d is the difference vector between the transformation parameters on
successive iterations, and J is the Jacobian:

Del Del Del

at. aty DO

J = . ... ... (EQ 15)

ae. ae. ae,
at,, ly DO-

Notice that Equation 14 is overdetermined for n>3. Then we use the pseudoinverse of the Jacobian to find a least

square fit of d:

d =-(JTJ)lJTe (EQ 16)

Equation 16 is solved iteratively for the displacement vector d until the absolute value of its elements is less than
some tolerance. On each iteration, the correspondence between sensor and model data is recomputed to reduce the
effects of outliers and mismatches. We have empirically determined that iterating more than once between correspon-
dence updates yields no additional accuracy to the final estimate, thus our approach is functionally equivalent to the
closed-form solution with updating.

This method has a quadratic convergence and is less sensitive than the conventional Newton method to the starting
point and the conditioning of the Jacobian. However, for this algorithm to converge to a correct solution, it must be
guaranteed that the initial orientation error is less than 90deg, well within the accuracy of dead reckoning.

4.0 Application

In this section, we describe the mobile robot and the sensor used in this application as well as the implementation and
results.
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FIGURE 10 The Locomotion Emulator

4.1 The Locomotion Emulator

The Locomotion Emulator (LE) is a mobile robot that was developed at the CMU Field Robotics Center (FRC) as a
testbed for development of mobile robotic systems (Figure 10). It is a powerful all-wheel steer, all-wheel drive base
with a rotating payload platform. A more complete description can be found in Fitzpatrick and Ladd [3].

4.2 Cyclone

The Cyclone laser range scanner (Figure 11) was also developed at the CMU Field Robotics Center to acquire fast,
precise scans of range data over long distances (up to 50m). The sensor, developed by Radartechnik & Elektrooptik
[7], consists of a pulsed Gallium Arsenide infrared laser transmitter/receiver pair, aimed vertically upward. A mirror
in the upper part of the scanner rotates about the vertical axis and deflects the laser beam so that it emerges parallel to
the ground, creating a two dimensional map of 360 degrees field of view. The resolution of the range measurements is
set to be 10cm and the accuracy is T20cm. The angular resolution depends upon the resolution of the encoder that is
used on the tower motor which is currently programmed to acquire 1000 range readings per revolution [6].

It has been our experience that the effects of the truncation due to the resolution of the scanner and the non-linear
behavior of the range measurement along different operating target distances must be considered to obtain accurate
results in any position estimation algorithm [15]. Rather than using the standard 10cm range resolution and T20cm
accuracy numbers mentioned above, we considered the Cyclone scanner's range offset1 , truncation and angular accu-
racy characterization obtained in a separate study [15].

1. The range offset is a function which describes the difference between the measured range value and the true distance to the tar-
get.
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FIGURE 11 The Cyclone laser rangefinder

4.3 Experimental results

The iconic position estimation algorithm presented in this paper was tested at the highbay area of the FRC. Figure 12
shows the line segment model that was used as world map in this application. The corridor is about 6m wide and 20m
long. The solid line segments denote walls which were constructed from wood partitions. We picked this configura-
tion because its simplicity and reliability in being surveyed. The dotted line represents the path that the LE was
instructed to follow. It consists of a symmetrical trajectory 19m long. The LE, initially positioned at the beginning of
the path, was moved by steps of Im. At each of these positions, the position estimator was executed and the robot
pose was surveyed using a theodohte. Figure 13 shows the sensed data taken by the Cyclone at the 7th step. Notice
that a considerable number of points from the scanner corresponds to objects that are not included in the model of
Figure 12.

The estimator was programed to use two different representations of the model. In the first one, the model was repre-
sented by 8 long line segments shown in Figure 12. In the second, each of these line segments was split into a number
of small segments 10cm long, providing a model with almost 400 line segments. The parameter values used were: Sr
= 5cm and e, = 5deg for the LE (5% of the step size) and 8, = 10cm and E, = 0.7deg for the Cyclone. The grid size was
0.6x0.6m2.

As expected the computed error (surveyed minus estimate) for the two representations was the same at the 20 posi-
tions along the path (Figure 14). The maximum position error was 3.6cm, and the average position error was 1.99cm.
The maximum heading error was 1.8deg and the average was 0.73deg. These results are significant given the resolu-
tion (10cm) and accuracy (20cm) of the scanner.

Another important result is the run times. The estimator was run on a Sun Sparc Station 1 with a math coprocessor.
For the 8 line segment representation the approximate run times were 0.37sec for the preprocessing (computation of
the cedl map), 0.27sec for the minimization and 1.76 for the segment correspondence, giving a total cycle time of 2sec.
For the 400 line segment representation, run times were 12.9sec for the preprocessing, 0.29sec for the minimization
and 3.22 for the segment correspondence, giving 3.5sec of total cycle time. Note that by multiplying the number of
line segments by a factor of 50, the preprocessing time increases considerably, however the matching time is
increased only by a factor of 1.75.

In the event that the uncertainty regions for the sensed points can be approximated by circles centered on the points,
the segment correspondence can be computed rapidly using a numerical Voronoi diagram. This approximation
worked well for our highbay experiments [19].
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5.0 Conclusions

In this paper a two dimensional iconic based approach for position estimation is presented. By considering two reso-
lution levels in the map, a two-stage method is proposed to solve the point/line-segment correspondence. Further-
more, the uncertainty due to errors in both dead reckoning pose and sensed data are considered in order to bound the
searching area. This approach drastically reduces the computation time when the map is given by a high number of
line segments (e.g. map built by the robot itself). This algorithm was implemented and tested using a 2-D radial laser
scanner mounted on a omnidirectional robot, showing for the first time an explicit quantification of the accuracy of an
iconic position estimator. The estimator has shown to be robust to incompleteness of the model and spurious data, and
provides a highly accurate estimate of the robot position and orientation for many-line environments.
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Future work includes the comparison of this method with a feature-based position estimation method by considering
different metrics as accuracy, robustness, starting point dependency, etc. and the development of a more complete
navigation system including map building capability and a Gaussian uncertainty model for both the sensor and the
robot motion.
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