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ELECTROMAGNETIC SCATTERING FROM RADIALLY OR AXIALLY
INHOMOGENEOUS OBJECTS

Ahmed A. Kishk
Department of Electrical Engineering

University of Mississippi
University MS 38677

Mohamed Abouzahra
Massachusetts Institute of Technology

Lincoln Laboratory
Lexington, MA 02173

ABSTRACT

A computer program based on the method of moments approach is developed to compute

electromagnetic scattering from axisymmetric objects. The object may consist of N linear

isotropic homogeneous regions. These regions may be arranged axially and/or radially with the

axis of symmetry. Surface integral equations (SIE) formulation, E-PMCHW, is used to

formulate the problem. Other formulations can easily be incorporated in the computer code.

Bistatic and monostatic Radar Cross Sections (RCS) for several benchmark geometries are

computed. The computed results are verified by comparison with measured and exact calculated

results. In some cases the self-consistency method is used to perform the verification. The

measured and calculated data presented in this paper are expected to serve as benchmarks for

other researchers in the field.

1 INTRODUCTION

The study of electromagnetic scattering from composite materials has become of interest

to many engineering societies. For example, in biomedicine modeling of human bodies and

tissues requires very complex composite objects. With the relative increase in the complexity

of the objects of interest, numerical solutions become necessary to study the electromagnetic

characteristics of these objects. Various numerical methods can be used to solve such problems

I This work was sponsored by the Department of the Air Force. The views expressed are those of the
authors and do not reflect the official policy or position of the US Government.
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[1-6], however, each method has limitations.

The method of moments has been proven to be efficient in solving Surface Integral

Equations (SIE). The SIE formulation is most suitable for objects made of linearly isotropic

homogeneous materials. For inhomogeneous objects, other formulations may be used, such as

the Volume Integral Equations (VIE) or Partial Differential Equations (PDE) formulations.

However, if the inhomogeneity of the material is simple, the use of SIE may be preferred,

because the matrix size will be smaller using SIE than the matrices that can be obtained from

other formulations.

In this paper, the SIE formulation is used to assess the problem of electromagnetic

scattering from bodies of revolution made of multihomogeneous regions. The present

formulation is similar to the one given in [1]. The method of moments is used to solve the SIE.

The resulting matrix system is a buildup of the basic Z and Y matrix obtained for conducting

or dielectric bodies of revolution [7-81. The computer program that has been developed to

compute the bistatic or monostatic Radar Cross Sections (RCS) is tested and verified, and several

examples are selected to show the accuracy of this program in predicting RCS. Only one

formulation is discussed; however, the program has been written to implement easily other

surface formulations, such as those reported in [9]. Also, the program is written to efficiently

fill the matrix. The properties of symmetry in reference to the impedance and admittance

matrices that are used to build the final matrix are implemented. All the numerical results

presented in this paper are obtained by the same program (MRBOR) to show its flexibility and

generality.

II DEVELOPMENT OF THE SIE

a. Statement of the Problem:

In this section, the concept of the equivalence principle is used to derive the SIE

formulation for composite scatterers with N homogeneous regions. The geometry and notations

for such a scatterer are given in Fig. 1. The whole space is divided into N +I homogeneous

regions with permittivities Ei and permeabilities /, i = 0, 1, 2, ... , N. Lossy materials are

considered by allowing p, i = 1, 2, ..., N to be complex. Some homogeneous regions are

considered to be perfect conductors. The region Vi is surrounded by a closed surface S, and

recognized by the inward normal unit vector n. The surface interface between regions Vi and

5



V is SW i d j. Thus, Si is the set of all interface surfaces Sip, where j represents all region

numbers interfacing with region V1. Note that S i is the same surface as Sji; however, the

normal unit vectors ni and nj are in opposite directions to each other on Sij.

VO  FO-00 S02

no Sol1V S12t 1 2 'F-2 t2 V2 S2
8/ 1n291 S2i

Sl i Sli niV i  V3

nN VNSN3 i

EN,AN - n3
SON S03

Fig. 1. General geometry of an object consisting of N regions.

b.SIE Formulation:

The total fields in each homogeneous region are denoted by Ei and H, i = 0, 1, 2,

N for the electric and magnetic fields, respectively. If Vi is a perfectly conducting region, the

fields are equal to zero. In the free-space region Vo, the total fields (En, H0 ) are the summation

of the incident and scattered fields (Einc + Esc, H inc + HSC). From Maxwell's equations and

the equivalence principle, one can express the field in each region in terms of unknown electric-

and magnetic-equivalent surface currents. In this paper, the sources of excitation are considered

to be due to a plane wave in the free space region; therefore, the fields at any observation point

r in the free space can be expressed as [1] (these expressions are given here for convenience)

0(r) E(r) = Einc - LoJ0 (r/) + KM0 (r(r) ~s xsoor) 1

O(r)Ho(r) = HInc K0 J0(r
l) (1/7o) Lo M0 (r) (2)Xo 0 so M( l  2

and
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i I I

0(r) Ei(r) =L' J(r + KS Mi(r/) (3)Si J~/ s

0(r) H1(r) = -Ks, Ji(r) (1/qi) LS Mi(r') (4)

in the region Vi, where i = 1, 2, ... N. Time variation of e1I t is implied and suppressed

throughout. The electric- and magnetic-surface currents along the boundaries are

J= ni × Hix on Si (5)M i = -n i × Ei I

In these equations, lii =) ir'Eir , Ej = E0 Eir, l IL Q0iAr, Eir and A.ir are the relative

permittivity and permeability in the region Vi, and 70 is the intrinsic impedance of the free

space. The operators Lis and Kis are defined as

LSC i(r') Jwji fsi [C (6)

KSCi (r') = C i (rx) x V 4bi dS' (7)

where Ci(r 1) represents the currents Ji or M i. For r = r', the operators are interpreted as

Cauchy principal-value integrals. 4P, is the Green's function of unbounded region, which can

be represented as

4P (r - r ) = e j ki r - rl/Ir - r/1 (8)

where k, is the wave number of the region i, which is equal to w In Equations (1) to

(4) the value of 0(r) is constant, depending on the position of r as

I for r E Vi
O(r) 1/2 for r fS, (9)

0 elsewhere
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Applying the boundary conditions on each Sij yields a set of coupled integral equations

for the unknown electric and magnetic currents on these surfaces. On the dielectric interfaces,

the tangential fields are continuous. Thus,

Eiltan = Ejitan on S i (10)

n, x Hi = n i x Hi on Si (11)

On the conductor interfaces, the tangential electric fields vanish, yielding

Ei Itan = 0 on Sij (conductor surfaces) (12)

Substituting Equations (1) to (4) into (10) to (12), one obtains

[ 0inorj =01 (13)

i ~~K i -L + j M ta inc on Si
i I s i MI Si s tan i or j =0

2 2
ni X [KSJ i + (1/rq.) LsMi] - ni × [JX + 1/- 2 L j Mj]

( }(14)
0 i norj =0

= 1 n x Hinc i orj = 0 on Si

0 i norj =0[ (15)
[LS ,J M a Mnc on S

K[LIs i  [ E'an i orj =O0

To enable the reader to have better understanding of Equations (13) to (15) (which yield

a coupled system of integral equations), a specific example will be considered. Consider a

scatterer consisting of two dielectric regions attached to a perfectly conducting body, all in free

space, as shown in Fig. 2. The boundary conditions in integral forms are
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V0

so2 2

S l F ,A 1 1SIn

[L 5OJo - KS Mo - LS IJ1 + KS1 Mi It.. Etan on1 Sol (16)

no [Kc J0  I (1Ic Lo MO] - nlo X [K J1 + (1/77) LS M] (17

nox Hinc on SoI

where

JO (JOI, Jo2, Jo3)
J1 (-Jo1 , J12, J13) (18)

MO (MOI, M 02)

MI (-M0 1 , M12)



[L Jo - K0 MO - L2 J2 + K2 M 2 It.. =-tan on S02  (19)

o so S., ta
0 2 OM 2 2) L 2] (0

n o x [K o J O + ( L O no  [K SJ 2 + (1/72) L M21

=n o X H in c  on S02

where

J2 = (-J 0 2 , J 1 2 , J23 (21)
M 2 = (-M 0 2 , -M 1 2 )

[L O Jo - 0 MO ]tan = n on S03  (22)

212.inc (3

[L' JI K-I M, LS, J 2 + KS2 M 2 ]Lan Eta on S12 (23)[L t J 1 -, S, -tan St

1 2 L 1  2 2 2 Mn I x [ Sl J1 + (1ho) LM ] -M il X [K J2 + (1/72) L , M2] (24)

n, H inc on S1 2

I inc (5

[Ls J1 - KsI MI ]tan =Etan o 13 (25)

[L, J2 - K2, M 2 tan = Etan oil S2 3  (26)

These are nine vectorial equations in nine vectorial unknowns. The unknowns are the

electric- and magnetic-surface currents Jol, J0 2 , J0 3 , J 12, J 13 , J23, MOl, M02, and M12. The

integral equations are reduced to matrix equations using the method of moments by using

triangle testing and triangle expansion functions [8].
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The above surface integral equations are applied to rotationally-symmetric bodies. The

reduction of the integral equations to matrix equations involving unknown surface currents

follows a well-known procedure [9]. After the necessary manipulations of the method of

moments, the general matrix takes the form

[ T ]n [I]n = [V]n (27)

where T is a square matrix, representing a combination of impedance and admittance

submatrices that are given in [9]; In is a column matrix for the unknown expansion coefficients

of the unknown current components J and M; and Vn is the excitation column matrix. Once the

matrix is solved, the induced currents on all surface interfaces can be determined. Scattered far

fields can be determined from the induced currents on the outer surfaces.

III RESULTS AND DISCUSSION

a. Bistatic RCS:

In this section the bistatic RCS is computed numerically. The numerical results are

verified by comparison with analytical and supplemental numerical results.

Dielectric sphere: First, to verify the numerical results of objects made of more than one

homogeneous region, the example of a sphere geometry is considered. The series solution for

a dielectric sphere [10] having E= 4-j0.5, Ar= 2-j0.25, and ka=3 is obtained and compared

with the numerical solution of the same object when it is divided into three homogeneous regions

of the same material type. The results obtained from both solutions must be identical, because

physically both cases represent the same object. The agreement between the two solutions is

excellent, as shown in Fig. 3. Several spherical objects have been considered, such as the

coated sphere and the multilayered sphere; however, their results have been omitted for brevity.
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20
E-plane (Mie)

-- E-plane Z L

10 ...... H-plane (Mie) 0
--- H-plane 63

S0-
e2 62

-20

-30 , , ,
0 60 120 180

(0
Fig. 3. Bistatic RCS of dielectric sphere divided into three regions of the same materials,

E r=4-j0.5, /Ar=2-j0.25, and ks=3.

Dielectric toroid: Another geometry, of a 62

dielectric toroid, is considered, as shown in Fig.4a. El

The numerical solution is obtained, once, when the

circular cross section is divided into six regions, all c4 5% / .

of which have the same type of material. This --------------------- .._--

numerical solution is compared with the numerical

solution of the same object when it is treated as one d

region. The agreement between both solutions is w
excellent, as shown in Fig.4b. When each region is

filled with different homogeneous materials, the Fig. 4a. Toroid cross section divided
into six homogeneous regions.

computed bistatic RCS is shown in Fig. 5. Notice

that the scattering level has increased in the whole bistatic range.
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30 - E-plane (6r.)

-plane (1r.)
20 .... H-plane (6r.)

H-plane (Or.)

10

S 0

~-10

-20

0 30 60 90 120 150 180

00

Fig. 4b. Bistatic RCS of the toroid when all regions have the same materials,
fr=4J05, Ar=2-j0.25, ka=3, kb=4.4.

30
-E-plane

20 -- H-plane

10
MN

- 10

-20

-30

-40
0 60 120 180

00o

Fig. 5. Bistatic RCS of the toroid with, Erl =3-j3, E-r2=2J 2 , Er 3
410i 5 , fr 4 =6 j 6 ,

Er5 =5-j5, Er 6 =4 -4, and /Ar=2-jO.25 in all regions.
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Loaded conducting bicone: To examine the numerical solution performance of objects

made of dielectric and conductors, the case of a biconical conducting object is selected. The

numerical solution of this object and the conducting bicone is compared with the numerical

solution of a conducting bicone surrounded by an artificial dielectric material of free-space

permittivity and permeability, as shown in Fig. 6. In this example, the bicone is illuminated by

a plane wave of normal incidence (0=900). Therefore, the number of the azimuthal modes that

is used to obtain the bistatic RCS is eleven, n=0,... +5; for the axial incident cases the

required modes are +1. Figure 6 shows the excellent agreement between the two solutions.

Also shown is the symmetry around 0=900. In this example, the H-plane shows a zero-back

and forward-scattering, and the E-plane shows its maximum values at these directions. When

the free-space part of this object is filled with homogeneous materials of r = 4, the RCS is

computed as shown in Fig. 7. The sidelobes of the scattered H-plane patteren disappear, and

the forward scattering for the E-plane pattern becomes higher than the back-scattering.

z z

-15 "°

-30

c",.. -45E-plane (c.)
I -- E-plane (dd)

... ..... H-plane (c.)
-75 H-piane (rid)

-90
-180 -120 -60 0 60 120 180

eo

Fig. 6. Bistatic RCS of a conducting bicone, ka=3, Er= 1., Pr=1 I
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z

15

-45

-60 II

-10 ,'2 -6 "0 2 8

II II

-- 4 II II
iI II

F. 7- E-plane wi-60 I I
S -- H-plane

f'
-75

, I 1 , I I p , * . . I ,

-180 -120 -60 0 60 120 180
00

Fig. 7. Bistatic RCS of the bicone when E%=4.,/t= 1.

b. Monostatic RCS:

In the above examples, the bistatic RCS were considered. Next monostatic RCS are also

verified numerically and experimentally.

Half-conducting sphere: The first example is the perfectly-conducting dielectric

hemisphere. For numerical verification, the dielectric is considered as a free space. The

monostatic RCS is compared with the numerical solution of a conducting hemisphere, as shown

in Fig. 8. This figure indicates excellent agreement between both solutions in the whole 0

range. When the free-space part is replaced by materials of r=2-jO.5, and I1r=3-j0.5, the

monostatic RCS is computed as shown in Fig. 9. The effect of the presence of dielectric materials

15



10

5 

0

f -- z

-10
" E-plane (c)

-15 -- E-plane (c/d)
...... H-plane (c)

H-plane (cld)

-20 I . .
0 30 60 90 120 150 180

0o

Fig. 8. Monostatic RCS of a conducting hemisphere compared with the scattering from
a conducting hemisphere-air hemisphere object, ka=3.

5
- E-plane

-- H-plane
0

N

-5

Cq -10

t)\ L

-15

-20

-25
0 30 60 90 120 150 180

90

Fig. 9. Monostatic RCS of a conducting hemisphere-dielectric hemisphere object,
ka=3, E=2-jO.5, /Ar=3-jO.5.
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is different from the free space. This difference is clear in the backscattering data for ranges

of 0<90, which is the dielectric side. Significant reduction of the backscattering level is

observed. When Er= 1, the effect of the flat surface and the sharp edges obviously contributed

to the high backscattering levels.

Round-tip cone: In this section, new numerical results are presented and verified with

measurements, which have been collected at the RCS Range of Group 95 at Lincoln Laboratory.

The first geometry that is considered is the partially coated, perfectly conducting round-tip cone,

shown in Fig. 10. The first case that has been considered is the one that corresponds to a

homogeneous coating; in other words, the materials in both coating regions are the same. The

monostatic RCS are shown in Fig. 11 for both 00 polarization (left) and 44 polarization (right),

respectively. When the coating on the second region is removed, the second region is then

equivalent to free-space permittivity. The monostatic RCS is computed and compared with the

measurements as shown in Fig. 12 for 00 polarization and 0, polarization, respectively. Figure

13 show the monostatic RCS of both polarizations when second region is filled with materials

of fr= 2 .6 0. In the above three cases, excellent agreement is obtained between the measured

data and the computed data.

t

b a

_ _ - L M

All dimensions in ) 0 (free space wavelength)

L - 1.978, b = 0.2328, a = 0.0424, t = 0.0847 c = 0.86

case Erl r2

1 2.05 2.05
2 2.05 1.00
3 2.05 2.60

Fig. 10. Geometry of a partially coated, perfectly conducting round-tip cone.
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-10

-20

__ -30

~-40

-60 -00 (measured) v p (measured)
---- 00(computed) - --- (p(computed)

-70 1 1 I I , I

0 60 120 1800 60 120 180

0)0 eo0
Fig. 11. Computed and measured monostatic RCS of easel in Fig. 10.

-10

-20

~-30 -

1 -40

-50 * -00 (measured) i pp (measured)

... 00 (computed) p ... )p (computed)

-60 1 1 I .- I , I , I

0 60 120 1800 60 120 180

(0()

Fig. 12. Computed and measured monostatic RCS of case2 in Fig. 10.



-10

-20

-30
Ca)

U -40

[- 00 (measured) - pq (measured)
-50 ------ 00 (computed) ...... (p (computed)

-60 A , I

0 60 120 1800 60 120 180

00 e o

Fig. 13. Computed and measured monostatic RCS of case3 in Fig. 10.

4 L _ ___

Fig. 14. Geometry of a perfectly-conducting cylinder partially coated with two
dielectric layers
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Finite cylinders: Another geometry, double layered coating of a finite conducting

cylinder, is considered. Figure 14 shows the geometry of the cylinder. The values of the

parameters of Fig. 14 are given in Table I for three cases. All the measurements in this section

have been performed at 4GHz. Figure 15 (left) shows the comparison between the computed

and measured data of the monostatic RCS for 00 polarization of casel in Table I. In this case

only one layer is considered.

Table I. Parameters of Figure 14

case a(cm) L(cm) t1(cm) Ed t2 (cm) Er2

1 3.0 27.94 0.1528 35.2-j28.68 - -

2 3.0 27.94 0.1528 35.2-j28.68 0.68 1.757-j 1.569

3 2.814 21.59 0.988 2.05 0.1528 35.2-j 2 8.68

The measured data of tkk polarization are not available, however, the computed data are shown

in Fig. 15 (right). The monostatic RCS of the second case in Table I of the two layered coating

is shown in Fig. 16. Again, only the measurements of the 00 polarization are available. In the

last case, the first layer is a high loss material of large permittivity and the second one is high

loss of small permittivity. In the third example of Table I, the first layer is made of a lossless

material of small permittivity; the second layer is made of high-loss high-permittivity materials.

The monostatic RCS is shown in Fig. 17 for the 00 and 04 polarization, respectively. The last

three cases represent large objects. The agreement between the measured and computed data

is satisfactory. In general, the above results show accuracy of the measurements within a wide

dynamic range of sensitivity.
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Fig. 15. Computed and measured monostatic RCS of casel in Table I.
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Fig. 16. Computed and measured monostatic RCS of case2 in Table I.
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Fig. 17. Computed and measured monostatic RCS of case3 in Table I.

IV CONCLUSION

In this paper, a computer program has been developed to compute the electromagnetic

scattering from axisymmetric objects. The method of moments is used to solve the surface-

integral equations formulation (E-PMCHW). A number of objects has been analyzed by this

program. Each object consisted of arbitrarily arranged homogeneous regions. Both bistatic and

monostatic RCS data were presented. The computed data were verified either numerically or

experimentally and excellent agreement was demonstrated.
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Abstract

In the microwave case the physical optics (PO) method is frequently used for
the analysis of complex structures which are modeled by flat plates of trian-
gular or quadrangular shape. The study of the radar cross section (RCS) of an
isolated panel, however, reveals deviations from experimental results which
are due to edge diffraction effects not considered by PO. In order to correct
the PO-field by an additive field term, the equivalent fringe currents (EC)
of Michaeli have been used to derive the backscattering matrix of an isolated
edge. By adding the matrices of the individual edges to the PO-matrix the RCS
of a square flat plate with zero and finite thickness is analysed and the
result is compared with measurements. The efficiency of the method is demon-
strated for objects modeled by a higher number of panels and edges, namely a
cylinder and a double dihedral. All computations were performed with the com-
puter code SIG5 of the Institute.

1. Introduction

Since several years, the computer program SIG5 is applied in the Institute
for Radio Frequency Technology for the prediction of the RCS of structures
which are complicated in shape and large compared to the wavelength. SIG5,
based on PO, is capable of analysing perfectly and imperfectly conducting
structures, including double reflections. The targets are modeled by panels
of triangular and quadrangular shape, see Fig. 1.1. The hidden surface pro-
blem inherent with PO is solved by an exact construction of the shadow boun-
dary for each panel, whose size is only limited by the admissible deviation
between the true surface and the model surface. SIG5 is organized in a very
similar way to the computer code RECOTA, developed by the Boeing Aerospace
Company, Seattle [1]. SIG5 has been successfully tested for a series of per-
fectly conducting basic structures such as a sphere, cylinder, cube, circular
disk and a double dihedral [2-4]. Also, more complex bodies like a periscope
structure have been analysed with promising results [5].

Fig. 1.1
Panel model of an air-
plane for the applica-
tion of PO.
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Despite the good results which are generally available with PO, there are
special cases (certain structures, specific pattern cuts, selected polari-
zations) where deviations of practical significance between computational and
experimental results are observed. They frequently can be explained by the
feature of PO to treat the influence of an edge only as the geometrical boun-
dary of a panel thus neglecting physical edge diffraction effects.

The choice of a theory which takes into account edge diffraction effects is
influenced by the following viewpoints:

a) Since SIG5 is a very comprehensive computer code each extension should
cause a minimum of changes. Therefore, theories are preferred which are
able to correct the PO-solution by an additive term.

b) In computing the RCS of large and complex objects modeled by numerous pa-
nels the computer effort increases considerably. Therefore, theories which
need a high computer effort are not favoured.

c) Since edges of arbitrary length, wedge angle and orientation in space oc-
cur in the target model, the theory should not present a solution for a
specific panel, rather, the diffracted field of an isolated edge must be
described by the specific edge parameters alone.

Bearing these points in mind, only asymptotic theories come into question,
which either describe the difference between the total wedge diffracted field
and the PO-field directly [6,7] or which evaluate fringe currents flowing
along the edge and generating the same differenr Keld by evaluating the ra-
diation integral over the length of the edge [8, 9].

In this paper, the second theory is followed. Here the fringe currents given
in [9] are preferred, since they are valid for arbitrary aspects of observa-
tion. On the basis of these currents, tne backscqttering matrix for an isola-
ted edge is derived.

In the following section the theoretical background is discussed. In section
3, the theory is applied for the RCS-analysis of a panel. In section 4, the
results for a cylinder and a double dihedral are presented. Section 5, final-
ly, summarizes some conclusions on the basis of the preceeding analysis.

2. Theoretical Background

The results of the theories used in the computer code SIG5 are expressed by
the backscattering matrix

tll t12]

(2.1) [T] =: t l t 2

which relates the cartesian components of the scattered field 2, to those of
the incident field E.:

(2.2) = [T]
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The propagation direction of the scattered field is given by the z-axis
(observer fixed coordinate system). From the complex elements ti9 of the
scattering matrix the polarization dependent RCS is computed:

(2.3) ai = lim (4xr 2 tij t.j),r-4

where r is the distance between the radar observer and the test object. The
RCS referred to 1 square meter and expressed in decibels yields the quantity
dBsm, which is used in this paper to compare theoretical and experimental re-
sults for the selected transmitting/receiving polarizations.

The total scattering matrix [T] of a complex body can be thought to be compo-
sed of a matrix [Tp'] which is the sum of the scattering matrices based on PO
of the individual N panels and the scattering matrix [Tf] which sums up the
scattering matrices of the M edges of all panels:

N M
(2.4) [T] = [TP °] + [Tf] , [TP ° ] = [TP °] , [Tf ] = [Tf]

n m

The PO-scattering matrix of an individual panel of zero thickness and perfect
conductivity is readily evaluated using the radiation integral

-9 k e - j k r 
Z e jk-s-r' f

(2.5) 4n r f J,
FP

and introducing the surface current

(2.6) UF(7) =2nx(- ,( e)Ee/Z e-jker'' oilluminated I parts of

to = on the shadowed the panel.

The geometrical parameters r, r', e, s, F. and n are explained in Fig. 2.1,
while the electric parameters are given by X = wavelength, k = 2n/k = wave
number, Z = wave impedance of the propagation medium, Pe = p. ;, + Py gy =
unit polarization vector and Ee = magnitude of the incident electric field.

Fig. 2.1
Geometrical scheme for the
interpretation of the ra-
diation integral.
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The evaluation of the radiation integral for the backscattered (e = --) field
in the observer fixed cartesian coordinate system and the comparison with
(2.2) results in the following backscattering matrix:

Ik -jrf eJ~z dx'dy i i
(2.7) [TP°] = 2 e l r ej2kz' d dy' [l

Fp

For a panel of polygonal shape the phase integral can be solved analytically.
Details of the integration are given in [4] for panels of triangular and
quadrangular shape which are used in the computer program SIG5 to model the
target.

Normalizing the scattering matrix to e-jkr/r, the matrix appears purely ima-
ginary. Independent of the orientation of the panel, no differences between
xx-polarization and yy-polarization nor any cross-polarization are predicted
by PO. This, however, is only true if the panel is perfectly conducting and
no double or multiple interactions can occur between pairs or a higher number
of panels.

The electric and magnetic fringe currents of Michaeli [91 can be written in a
very compact way using the coefficients Df, Df, Dfm (these symbols are propo-
sed by Knott [10]):

j2Eet j2Het
(2.8) If(VeIs;ieIs) Dm(Ve, is;Pe,s) f "

kZsin 2 e ksin 2 De

j2ZHet
(2.9) Mf(Ye,Wis4 3 4s) ksinesin s Dmi(Ve,Ws, e,Is)

Eet ='e or Het = d'le is the component of the incident electric or
magnetic field parallel to the edge with unit tangent vector f. The geo-
metrical parameters Ve, Ws, Pe, Os and n are explained in Fig. 2.2. The
formulas for Df, Df and D.m are given in the appendix for the backscatte-
ring case (We 

= Ys, Ps -
3
e).

plane of
incidenceplane of 

e
diffraction

Fig. 2.2
Wedge geometry.

t
face I

n n face
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Before choosing the fringe currents of Michaeli, it was necessary to relate
this theory to other theories, which, in principle, could be used to solve
edge diffraction problems observing the viewpoints given in the introduction.

Though there are several papers [10 - 15] dealing with the relationships be-
tween asymptotic diffraction theories, it is useful to summarize the results
with the aid of a few statements. Thereby the output of the different theo-
ries are given in the form of currents. For mathematical details see [15].

The fringe currents of Michaeli can be written in the following way:

(2.8a) If  = It  - Ip °

(2.9a). Mf = Mt - MP °

where It, Mt are the equivalent electric and magnetic total currents, respon-
sible for the total wedge diffracted field while IP' and MP° are the equiva-
lent PO-components responsible for the PO-field of the wedge. The expressions
derived by Michaeli are obtained by asymptotic end-point evaluation of the
fringe current radiation integral over the ray coordinate measured along the
diffracted ray grazing the surface of the local wedge. The resulting expres-
sions are finite for all aspects of illumination and observation, except for
the special case where the direction of observation is the continuation of a
glancing incident ray coming from outside the wedge. This situation occurs
only in forward scattering.

Choosing the coordinate for the radiation integral in a traditional way nor-
mal to the edge, expressions for the fringe currents are obtained [16] which
display infinities for certain combinations of observation and incidence di-
rections. These fringe currents are identical to those which can be evaluated
[15] from the fringe diffracted fields of Mitzner [7]. Now adapting the frin-
ge currents to the cone of diffracted rays one would expect that these would
be identical to those which can be derived from the fringe field expressions
of Ufimtsev [6] and which are used in [1]. This is the case for the electric
total current, for the magnetic total and PO-current but in general not for
the electric PO-current.

The total currents are identical to the filamentary currents of Keller's
GTD-field [17], represented by Knott and Senior in a compact manner [18] and
denoted as equivalent currents by Ryan and Peters [19] who applied the con-
cept to compute the edge diffracted field in caustic regions. Evaluating the
equivalent currents of the GTD for vertical incidence (0e = 90°) on a half-
plane (n = 2) one receives the filamentary currents of the diffracted field
derived by Sommerfeld (201.

The differense in the electric PO-currents is given by a coupling term be-
tween the incident electric field, being perpendicular to the plane of inci-
dence, and the PO-field having a component parallel to the plane of diffrac-
tion. This coupling term is not taken into account by the theory of Ufimtsev
as was pointed out in [14]. Only in the case that both faces of the wedge are
illuminated by the incident wave does the coupling term become identical to
zero [15] and the fringe currents extracted from the theory of Ufimtsev
become identical to the fringe currents of Michaeli.
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Introducing now the fringe currents (2.8) and (2.9) in the radiation integral
over a filamentary current with length L

=0 2 r. (Z If ( ' ) (- X (5X× )) + Mf (r' ) ( x× )) e dl'

L

one arrives at the backscattering matrix

(2.11) [Tf] = e jkr e j2k-.7' dl' x
2n r f

L

[f [ 2 + Df t D (Df Df) t, ty + Dm 2

XtL -D)tty- Dem t ty t+Dem t x tyJL(Df - Df ) tx ty Df t2 Df t2 + f t2 + f t

The geometrical parameters are explained in Fig. 2.3.

Fig. 2.3
Geometrical sketch to evaluate
the radiation integral.

As in the case of the PO-scattering matrix the phase integral can be solved
analytically. Introducing the mid-point vector rM of the edge one obtains

r 2k-7' sin(kLt,) ej2krMz
(2.12) e dl' = L kLt,

L

with t, = -cosoe.

Normalizing the backscattering matrix [T1] by e-jkr/r it appears purely
real. In general differences between HH- and VV-polarization are predicted.
Also, since [Tf] is asymmetric, differences between HV- and VH-polariza-
tion are predicted which is not correct for monostatic scattering processes.
This is due to corner diffraction effects which arise with an edge of finite
length and which are not considered in the theory. Symmetry is observed for
the special case of normal wave incidence (Ie = 900). Further, if the contour
of a panel is a smooth curve, the matrix [Tf ] would be symmetric.

For the discussions in the next section, some properties of the coefficients
Df, Df, Dm are needed, which are summarized in the following. Fig. 2.4 shows
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the coefficients for normal incidence (0e = 901) and a half-plane (n 2) de-
pending on the angle ye- In Fig. 2.5 the coefficients for a step (n = 1.5)
are represented where Dem is identical to zero. In both cases, mirror sym-
metries for each coefficient become relevant about V, = 1800 for the half-
plane and We = 1350 for the step. Further symmetries, now radial symmetries,
occur for the half-plane between coefficient Df and Df about We = 900 and
We = 2700.

Fig. 2.6 shows the coefficients Df, Df and D'm for We = 2700 and a half-plane
now dependent of the angle 0e. One also finds symmetries, namely mirror-
symmetry for Df and Df and radial-symmetry for Dfm about Oe = 900 . These sym-
metries occur for all We const.
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Fig. 2.4 Fig. 2.5
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3. Analysis of the RCS of a Square Test Panel by the PO- and EC-Method

Studies similar to the ones reported here were performed by Ross [21], Sikta,
Burnside, Chu and Peters [221, Balanis, Griesser and Marsland [23], Volakis
and Ricoy [243, Pelosi, Tiberio, Puccini and Maci [253, Ivrissimtzis and Mar-
hefka [263. Ross applied the GTD up to triple diffraction to compute the RCS
of rectangular flat plates. Sikta et al. used a modified equivalent current
concept based on GTD and a corner diffraction analysis to study the RCS of
flat plate structures such as a square flat plate, a finlike plate and a
disc. Balanis et al. used GTD up to third order diffraction for principal
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plane and EC-currents of Michaeli for off-principal plane backscattering of
plates. The angular spectrum method along with the generalized matrix formu-
lation were employed for the diffraction analyses of a thick perfectly con-
ducting half-plane by Volakis and Ricoy. Pelosi et al. applied GTD to calcu-
late the RCS of a square plate. Ivrissimtzis and Marhefka used a uniform
ray approximation including higher order terms for the analysis of polyhedral
structures.

The procedure presented in the previous section is not limited to the simple

structure of a flat plate as will be demonstrated in the next section. How-
ever, in this section the scattering from a square test plate is investigated
in great detail to estimate the efficiency and the limits of application of
the chosen method.

The square test panel is analysed at a frequency of 16.66 GHz which results
in a wavelength of 17.995 mm. The edge length is 91.4 mm (5.08 X) and the
thickness is 0.8 mm (0.044 X). In order to have an independent external accu-
racy check for the following computations, the test panel was chosen to be
equal to one of the panels investigated by Ross [21]. The panel is defined in
the observer-fixed coordinate system, see Fig. 3.1. The rotations around the
x, y and z-axis are defined by the angles 9x, Vy, 9z. An incident wave with
electric field vector parallel to the x-axis is designated as horizontally
polarized while a field vector parallel to the y-axis describes a vertically
polarized field, if the object is rotated around the y-axis for instance.

Eex
x

t3edge 3 '

Y -
edge 4 3 e 3 Y Y

y t2
de4 Tedge 2

edgeN g

Fig. 3.1 Orientation of the panel in the observer-fixed coordinate system
and numbering of the edges for a panel with zero thickness.

Fig. 3.2 resp. Fig. 3.3 shows the experimental RCS-result for horizontal
resp. vertical polarization and for the principal plane (9x=0, v y= Pz=0).
For a = 00 one has normal incidence, for a = 900 the panel is seen under gra-
zing incidence. The PO-result for a panel with zero thickness, which is
usually compared with experimental results, is shown in Fig. 3.4. The maximum
RCS-value amounts to 4.33 dBsm.
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Fig. 3.4 Fig. 3.5
PO-result for the test panel PO-result for the test panel
with zero thickness. with thickness 0.044 1.

Besides the smoothing of the deep nulls of the PO-result, the sidelobe peaks
far from the mainlobe are significantly higher in the experiment than in the
theory. At grazing incidence a deep null of -- dB is predicted from theory.
In the experiment this null occurs only for horizontal polarization, while
for vertical polarization a level of about -27 dB under the main lobe peak
can be observed. In view of the experimental results the theoretical results
need improvement.

However, it must be emphasized, that for the experiment a panel with a thic-
kness of 0.044 X was used while for the theory the panel was assumed with
zero thickness. Thus far the comparison is a little unfair. If one models the
flat plate with the same thickness as was used for the experiment, then it
consists of six faces. Each of them can contribute to the total scattered
field if it is illuminated by the incident field. The result is presented in
Fig. 3.5. One can see that the deep nulls are filled up, that the peaks of
the distant sidelobes are higher than in the case of zero thickness, and
that, at grazing incidence, an RCS on the order of -41 dB under the peak is
predicted compared to -- dB for the zero thickness panel and the -27 dB of
the experiment.
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In the following the influence of the edges is considered. First the panel
with zero thickness is analysed.

Edges 2 and 4 make an angle 0e = 900 with the incident ray independent from
py, see Fig. 3.1, while 0e of edges 1 and 3 varies with 0e = 900 + (y. From
Eq. (2.11) and Eq. (2.12), one can expect an oscillating behaviour of the RCS
of edges 1 and 3 and a monotonic function for edges 2 and 4 with respect to
the rotation angle py. For rotation angles 00 < py < 1800, edge 2 is nearer
to the radar observer than edge 4, therefore, it is sometimes called the lea-
ding edge while edge 4 is the trailing edge.

First the influence of edges I and 3 on the RCS computed by PO is considered.
The scattering matrix of edge 1 is given by

1 e - kr sin(kLsinPy) [D' Dfm1

(1)I 1t2L L'(3.1) [T7] - 2t r kLsin y 10

with arguments W, 90°, e = 900 + py for Df, Df and Dfm. For edge 3 the
following formula is obtained:

3 s ekr sin(kLsin(PY) [Df Df
(3.2) ITf] = 2,t r Lsinr7- r ~kLsing 0 DL

with We = 90', Pe = 90' - py.

We can make the following observations:

1. Both scattering matrices are purely real, after normalizing by the fac-
tor e-jkr/r.

2. The maximum value is reached for py = 00 (the incident ray hits the
plate normally). The maximum value amounts to about -32 dBsm which is ab-
out -36 dB under the PO-value. This means that the peak value computed by
the PO-method is negligibly influenced by the diffraction effects of ed-
ges I and 3. Since, further, the RCS decreases with increasing angle Py

in an oscillating manner, both edges have practically no influence on the
PO-result.

3. Since mirror symmetries for De and Dm hold, see Fig. 2.6, the copolar

scattered fields of each edge are equal in amplitude and phase.

4. Both matrices indicate a cross-polarization term and, therefore, are
asymmetric. Since, however, for the edge coefficient Dfm a radial symme-
try, see Fig. 2.6, holds, the sum matrix [T, 3 ] = [Tf] + [Tf] is sym-
metric and is given by

rf e-r LF
(3.3) [T' 3] : 1 e--- L kLsinuy L

with arguments ye = 2700, e = 900 - qy. The sum matrix predicts diffe-
rences between horizontal and vertical polarization. However, this effect
has practically no influence on the final result.

33



Fig. 3.6 shows the RCS of edge 1 and 3 for horizontal polarization and Fig.
3.7 for vertical polarization. Fig. 3.8 shows the sum RCS of edges 1 and 3
for horizontal polarization. For vertical polarization only negligible diffe-
rences exist.
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Fig. 3.6 Fig. 3.7
RCS of edge 1 resp. edge 3 for RCS of edge 1 resp. edge 3 for
horizontal polarization, vertical polarization.
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-30 .-
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Fig. 3.8
RCS of edges 1 and 3,
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- 80 ..... . . .__0 '5 30 45 60 75 90
ASPECT 4NGLE (deg) -_-

Contrary to edges 1 and 3, edges 2 and 4 generate contributions of signifi-
cant practical interest. Bearing in mind that Dfm (D3e = 901) = 0, one obtains
for edge 2

(3 4)[] 1 e-fkr" L L ejka s i n y  II 0]
[2i 2n~ r 0ip DfJ

The arguments of the edge coefficients are Ve = 2700 - (py, e = 90' For
edge 4, we get for the parameters 'e 2700 + Ty, e = 90'

(3.5) [Tf] = L e kr L e- jkasin(py DI 00]
4 2n rDJ

The following observations can be made:
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1. After normalization both scattering matrices appear to be complex.

2. The RCS contributions of both matrices vary monotonically with respect to
the rotation angle and are significant compared to the PO-solution.

3. The individual RCS contributions are different from each other and show
differences for horizontal and vertical polarization.

4. For horizontal polarization, the contribution of edge 4 dominates, while,
for vertical polarization, the contribution of edge 2 dominates.

5. Since symmetry, see Fig. 2.4, is given, the RCS of edge 2 for horizon-
tal (vertical) polarization is identical to the RCS of edge 4 for ver-
tical (horizontal) polarization. For the sum matrix one obtains

(3.6) [ L 21. L cos(kasinpy) (Dm-D[f )[ 2,4 2n r rn e 0 -1

e- 2 jr L sin(kasin(PY) (Df+Of ) 10

0 1

where the edge coefficie:-its have the arguments We = 270 - (py, Be 900.

The individual RCS concrioution of edges 2 and 4 is represented in Fig. 3.9
and Fig. 3.10. The ur RCS of edges 2 and 4 is given in Fig. 3.11.
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Fig. 3.9 Fig. 3.10
RCS of edge 2 (leading edge) for hori- RCS of edge 2 for vertical polari-
zontal polarization and of edge 4 (trai- zation and of edge 4 for horizon-
ling edge) for vertical polarization. tal polarization.
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Fig. 3.12 finally shows the P0-result plus the contribution of all four edges
which is identical for horizontal and vertical polarization. One can confirm
excellent agreement with the experimental results for vertical polariza-
tion. It is, however, unsatisfactory that the theoretical solution doesn't
indicate any polarization dependence.

10

- - Fig. 3.12
-20 - - RCS of the test panel with

zero thickness for horizon-
-30 tal and vertical polariza-

_40 tion computed by PO- and EC-
method.

-50
0 15 30 45 60 75 90

ASPECT ANGLE (deg) -- -

Mathematically this can be explained by discussing the scattering matrix
[T2,4]. The imaginary part has identical elements for horizontal and ver-
tical polarization. The real part has elements of equal magnitude but opposi-
te sign, so that, with the additive correction of the purely imaginary PO-so-
lution, the matrix behaves like -a-jb for horizontal and +a-jb for vertical
polarization. This means that the final RCS result (PO-solution + EC-solu-
tion) presents identical values for horizontal and vertical polarization.
This is not in agreement with measurements. Physically the effect is ex-
plained by the fact that the theory used does not take into account second
and higher order diffraction effects. For horizontal polarization, the
fields associated with double diffraction e.g. are 4 kL greater than the cor-
responding vertical polarization contribution [21]. Polarization dependent
effects, however, are predicted by the theory for other diagram cuts, other
panel shapes (e.g. triangle) or other wedge angles.

The latter is demonstrated for a flat plate with dimensions of the square pa-
nel, however, with the same thickness, namely 0.044 X, as in the experiment.
This plate is modeled now by 6 panels and 12 edges (n = 1.5). Without discus-
sion if it is allowed to use the theory for close adjacent edges the result
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Fig. 3.13 Fig. 3.14
RCS of the test panel with 0.044 X RCS of the test panel with 0.044 X
thickness for horizontal polarization, thickness for vertical polarization.
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of the computations is presented in Fig. 3.13 and Fig. 3.14. For horizontal
polarization, the discrepancies between theory and experiment have become mi-
nor, but the deep null for grazing incidence again is not predicted by the
theory.

If the plate is rotated around the z-axis by an angle of wz = 450 a diagonal
cut can be achieved by a following rotation with gy. The theoretical results
are presented in Figs. 3.15 and 3.16. Again no cross-polarization occurs
which is in agreement with symmetrical properties. The experimental results
are presented in Figs. 3.17 and 3.18. Since the RCS-values drop very quickly
down to levels of about -40 dB under the mainlobe it is not very meaningful
to discuss minor deviations between experimental and theoretical results.
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-50 - -50
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ASPECT ANGLE (deg) ASPECT ANGLE (deg) ---

Fig. 3.15 Fig. 3.16
Theoretical RCS of the test panel Theoretical RCS of the test panel
for a diagonal cut, horizontal pola- for a diagonal cut, vertical pola-
rization. rization.
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Fig. 3.17 Fig. 3.18
Experimental RCS of the test panel Experimental RCS of the test panel
for a diagonal cut, horizontal po- for a diagonal cut, vertical pola-
larization. rization.

Finally, the RCS has been computed for a cut where the rotation axis makes an
angle of Pz = 300 with the main axis (150 with the diagonal) of the plate. In
this case no symmetry occurs and the theory predicts cross-polarization. Be-
cause of the asymmetry in the scattering matrix, the cross-polarization HV,
see Fig. 3.19, is slightly different from the cross-polarization VH, see Fig.
3.20. No experiments could be carried out at this time in our institute; see
however [271.

37



10 ---- 10 .. .. ..--.. ..to. .... .. ..

0 0

-30 -30

300 -50
0 15 30 45 60 75 90 0 i5 30 45 60 75 90

ASPECT ANGLE (deg) A(
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for a 30°-cut, HV-polarization. for a 300-cut, VH-polarization.

This section is closed with simple formulas derived from the above matrices

to estimate the effect of a single edge in relation to the RCS peak value of

a panel computed by PO. The panel may be of arbitrary polygonal structure
with size A. The edge under consideration has the length L, is hit normally

by the incident wave and is rotated around the y-axis by the angle (Py (this
is just the situation of edge 2 in Fig. 3.1). Relating the magnitude of the

elements of the scattering matrix given by Eq. (3.4) to the peak value of the

PO-scattering matrix, one obtains for horizontal polarization

L IDII
(3.7) rHH = 20 log kA

and for vertical polarization

L IDeI
(3.8) rvv = 20 log kA

The arguments of Df, Df are We = 2700 - (y, Pe = 900.

Using the values for Df and Df given in Fig. 2.4 for a half-plane (n = 2) and
in Fig. 2.5 for a step (n = 1.5), the following table may be established

choosing the test panel of this section as an example.

(Py 00 450 900 1350 1800 2250 2700

half- rHH [dB] -36.1 -40.8 - -40.8 -36.1 -33.1 -30.1
plane
(n=2) rw [dB] -36.1 -33.1 -30.1 -33.1 -36.1 -40.8 -

step rHH [dB] -32.3 -36.8 -44.5 -42.8 -44.5 -36.8 -32.3
(n=l .5) rvv [dB] -J -40.3 -34.8 -35.4 -34.8 -40.3 -W

Table 3.1 Level of edge diffraction effects related to the PO-peak value for
the square test panel with edge length L=5.08 X.
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4. Application of the EC-Method for a Circular Cylinder and a Double Dihedral

4.1 Circular Cylinder

The test cylinder has a length of 5 X and a diameter of 1 X. The wave length
is 1128 mm. The broadside RCS amounts to 20 dBsm and the front face RCS to
9.9 dBsm. The cylinder is rotated around an axis vertically to its own axis.
Theoretical results for the smooth cylinder based on PTD are published toget-
her with experimental results by Ufimtsev in [6]. The circumference of the
cylinder was modeled (see Fig. 4.1) by 14 rectangular panels with dimensions
5 X x 0.22 X. The deviation from the true cylinder surface was about X/80.
Each of the front faces was modeled with 14 triangles. In the geometrical mo-
del artificial edges (n = 1.29) arise between the rectangular panels. The na-
tural circular edges (n = 1.5) between the cylinder circumference and the
front faces are approximated by straight lines of length 0.22 X. Both types
of edges are treated in the same way by the theory.

20

15

I 10 - - - - _

-5

0 10 20 30 40 50 60 70 80 90
ASPECT ANGLE (deg)

Fig. 4.1 Fig. 4.2
Panel model of the test cylinder. RCS of the clinder modeled by

panels, PO-solution.

The PO-solution, insensitive to polarization, is presented in Fig. 4.2. The
results of the experiment and of the PTD-theory for horizontal and vertical
polarization are given in Fig. 4.3. The broadside peak of the theoretical
curves, however, should not exceed 20 dBsm. The pictures of Fig. 4.4, finally
present the results of the procedure outlined in this paper. For this special
cut they should be identical to the results of Ufimtsev. This is the case
except for the difference at broadside incidence and some deviations of mi-
nor practical interest.
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4.2 Double Dihedral

A double dihedral constructed on the basis of a cube with additional shado-
wing surfaces, see Fig. 4.5, is rotated in an unconventional way as shown by
Fig. 4.6. For a = 0' the edges of the double dihedral make an angle of 450
with the axis of rotation. The purpose was to generate a strong depolarized
backscattered field. Previous PO-results are published for the main cut in [2]
and for the diagonal cut within a restricted range of aspect angles in [4].

/ -500 -
b j

250

Fig. 4.5
Cube with additional shado-

5245---- wing faces forming a double
50 dihedral, dimensions in mm.

2250

axis of
rotation

Q: 00 C= 150  C= 300 C= 45 0

Fig. 4.6 Geometry and axis of rotation.

Figs. 4.7, 4.8 and 4.9 present the results for VH-polarization of experiment,
of PO including double reflection and of PO + EC for the full range of aspect
angles and a frequency of 15.5 GHz (X = 19.4 mm). The measurements had to be
arranged with great care since a wide dynamic range was needed. In addition,
the exact positioning of the double dihedral according Fig. 4.6 caused major
problems.

The structure of the pattern around 0' is well represented by PO alone but
the decrease is too rapid .aith increasing aspect angles. In addition, the
spikes at -2350, -1800, -1250, -550 and +55° are not predicted by PO. This,
however, is the case when the EC-field is added to the PO-field. The spikes,
therefore, are due to edge diffraction only.
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5. Conclusion

The PO-method is frequently applied with good success to predict the RCS of
large and complicated structures modeled by a collection of quadrangular and
triangular panels. However, there are certain situations (specific structu-
res, pattern cuts, polarizations) for which a correction of the PO-field by
an edge diffracted field is required.

In this paper the concept of equivalent currents (EC) is applied. The fringe
currents of Michaeli are used to derive the scattering matrix of an isolated
edge with arbitrary length and orientation in an observer fixed coordinate
system. The relationship of the method to other theories which are concerned
with edge diffraction are summarized by some statements. The theory is ap-
plied for the analysis of a square flat plate, of a cylinder and of a double
dihedral. All theoretical results are compared with measurements.

The square flat plate with edge length 5.08 X is analysed in great detail.
The results for the principal plane pattern are in excellent agreement for
vertical polarization, independent of whether the plate was assumed with zero
thickness or with 0.044 X thickness (as used for the measurements). For hori-
zontal polarization the agreement is unsatisfactory. In the case of zero
thickness beyond that identical results for vertical and horizontal polari-
zation are obtained. These effects are due to second order diffraction ef-
fects neglected in the EC-theory. This means that further effort is required
if one is interested in the improvement of RCS calculations of an isolated
plate.

The method is further applied for a cylinder with length 5 X and diameter
1 X. The circumference was modeled by 14 rectangular panels, thus introducing
artificial edges. Each of the front faces consisted of 14 triangular panels,
thus modeling a circular edge by short straight edges. The RCS-results of the
EC-method are in good agreement with those of the PTD-method and experiment,
both applied for a smooth cylinder.

Finally the concept is used for a double dihedral which was positioned in
such a way that strong depolarizations could occur during rotation. Also in
this case the correction of the PO-field by the fringe current field was very
efficient. The calculated RCS-values are again in good agreement with experi-
mental results.

So one can conclude that the implementation of the presented procedure in a
computer program would be efficient enough to treat edge diffraction effects
with sufficient accuracy under practical viewpoints.
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Appendix

The coefficients De, Df, Dfm of the backscattering matrix are given by the
theory of Michaeli 19]. For more details see also [15].
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The coefficients D2 , DPO result from Dl, DPI by the following transforma-
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Application of Parallel Processing
to a Surface Patch / Wire Junction EFIE Code

L. C. Russell, J. W. Rockway
Naval Ocean Systems Center
San Diego, California 92152

ABSTRACT
A surface patch / wire junction EFIE method of moment algorithm, JUNCTION, developed

by the University of Houston has been implemented in a transputer based parallel processing
environment installed in a personal computer. This paper addresses transputer hardware and
software options, the JUNCTION algorithm, techniques for parallelizing matrix analysis algo-
rithms, and performance results. The transputer array was found to provide a flexible, low-cost,
high performance desktop computing environment for method of moment analysis.

1.0 INTRODUCTION
This paper presents the application of parallel processing techniques to an existing compu-

tational electromagnetic (CEM) code. The goal was to demonstrate that high performance com-
puting (HPC) can improve the utility and efficiency of computational techniques used in
electromagnetic ship analysis [Li, 1988]. The parallel processing platform was an array of four
transputers on a board inside an IBM-compatible PC. The transputers were run using the ParaSoft
EXPRESS operating environment [ParaSoft, 1990]. This operating environment was chosen to
allow portability of the code to other HPC platforms and minimize the number of required pro-
gramming changes to the CEM code. The selected CEM code was the method of moment (MoM)
algorithm JUNCTION developed by the University of Houston [Hwu et al, 1988; Wilton et al,
19881.

2.0 PARALLEL PROCESSING

The concept of parallel processing has been around for a long time but only recently was its
utility generally recognized. By 1986 more than a dozen companies were either selling or in the
process of building parallel processors [Tazelaar, 1988].

2.1 Transputer hardware

The hardware platform chosen was an array of four transputers on a motherboard which could
be installed inside a PC. This decision was based on the low cost, ease of use, and flexibility of a
transputer based system. Transputer systems provide an inexpensive entry into the world of parallel
processing. For this entry level application a decision was made to purchase only four floating
point transputer modules (TRAMs) each with one Megabyte of external RAM. These size 1 TRAMs
are an industry standard and provide sufficient memory for most applications at a reasonable cost
and in a compact package. The T800 transputer used has a peak performance of 1.5 Mflops.

2.2 Transputer Software

There are several different ways to program an array of transputers. Each method has
trade-offs in portability, performance, and ease of use. The parallel language, Occam, was developed
concurrently with the transputer. Parallel versions of high level languages such as Fortran, C, Pascal,
and Modula 2 can be obtained. The parallel operating environment EXPRESS (ParaSoft Corpo-
ration) is available for transputer systems.
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2.2.1 Occam

There are a number of advantages to using Occam for programming a transputer system.
Since Occam was developed simultaneously with the transputer, it is one of the few languages
designed for concurrency. Occam has the performance and efficiency of assembly language. Occam
can be used as a harness to link modules written in other industry standard languages. Its other
features include: well implemented timing capabilities, straightforward control of process sche-
duling, and a high level of structure.

The main disadvantage to using Occam is that programs written in Occam are not portable
to other parallel computers. Existing codes written in other languages need to be completely recoded.
Occam works only with the transputer. Other disadvantages are that Occam does not support many
features of other high level languages (no recursion or dynamic memory allocation), use of it requires
learning a new language, and Occam may not be supported in the future. In the trade-off space
(portability versus performance versus ease of use) Occam scores high only in performance.

2.2.2 High Level Languages

The advantage of using a parallel version of a high level language such as Fortran, C, Pascal,
or Modula 2 is that one can use a language with which one is already familiar. All that is required
is to learn the parallel extensions. Existing sequential code can be ported over.

There are, however, a number of disadvantages to using a parallel version of a high level
language. Programming an array of transputers requires the user to develop both a host program
and a node program. The host program runs on the host processor and handles I/O calls and manages
the other processors. The node program runs on all the other processors and does the bulk of the
computations. The user is required to maintain two programs instead of the usual one program.
This can make program development and maintenance somewhat complex. Performing 1/0, making
system calls, and measuring timing can be very difficult. Debuggers for parallel versions of high
level languages are starting to appear, but they are not widely available. Debugging parallel pro-
grams is very difficult. In addition tc all this, parallel versions of high level languages do not offer
the performance that one can get from Occam.

2.2.3 ParaSoft EXPRESS

Parallel operating environments such as ParaSoft's EXPRESS allow the user the convenience
of using a familiar high level language while mitigating some of the disadvantages to parallel high
level languages which were mentioned in the previous section. EXPRESS is based on the CUBIX
programming model which was developed at CalTech. EXPRESS is available for both Fortran and
C. There is no need to develop both a host and node program. Instead only one program (which
runs on all processors) needs to be developed and maintained. EXPRESS does not include a compiler
so one of the parallel high level language compilers mentioned above is still needed to compile and
link the code. During linking the EXPRESS library is linked into the user's source code. The
EXPRESS library provides simple Fortran or C language function calls to handle I/O and system
calls. EXPRESS also provides timing capabilities, a source level debugger, and a performance
monitor. The number of processors being used does not have to be hardwired into the code. Instead
this is specified at runtime by a switch in the run command. In addition, EXPRESS is available for
a wide variety of parallel machines, not just the transputer. Currently EXPRESS is available for:
the multi-headed IBM 3090 (AIX) and the multi-headed CRAY (UNICOS) mainframes; the Intel
iPSC 2 and iPSC 860; the nCUBE 1 and 2; PC, MAC, and SUN hosts for transputers; and the IBM
RS/6000, Silicon Graphics, and SUN workstations. All this leads to very portable source code.
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The only significant disadvantage to EXPRESS is that it possibly degrades system per-
formance to some extent. However, this disadvantage is more than offset by the advantage of having
portable code. For these reasons EXPRESS by ParaSoft was chosen for the operating environment.
Portability was the key feature since the ultimate goal of this effort was to run the code on a high
performance computer. The language chosen was Fortran since this is the principal language of
the JUNCTION method of moments code. For obvious reasons, it was desirable to make as few
changes to the existing code as possible.

3.0 The JUNCTION METHOD OF MOMENTS CODE
The JUNCTION computer code invokes the method of moments to solve a coupled electric

field integral equation (EFIE) for the currents induced on an arbitrary configuration of perfectly
conducting bodies and wires [Wilton et al, 1989]. There are three principal advantages to the
JUNCTION formulation. First, the EFIE formulation for the surfaces of bodies, in contrast to the
magnetic field integral equation (MFIE), applies to open bodies. Second, JUNCTION allows voltage
and load conditions to be easily specified at terminals defined on the structure. Third, the triangular
patches of JUNCTION are the simplest planar surfaces which can be used to model arbitrary surfaces
and boundaries, and triangular patches permit patch densities to be varied locally so as to model a
rapidly varying current distribution.

The method of moments is a numerical procedure for solving field integral equations [Har-
rington, 1968]. Basis functions are chosen to represent the unknown currents. Testing functions
are chosen to enforce the integral equation on the surface of the conducting structure. With the
choice of basis and testing functions a matrix approximating the integral equation is derived. In
JUNCTION a system of N linear equations results, where N = NB + Nw + N.

[ZBB] [Z8WI [Z8N] [11 [E ]'[IZWB] [ZWW"" [ZWlj [ = [Ewl
[ZJB] [Z'JW  [ZJ~' [J]J [E]J

where Z is the impedance matrix, I is the current vector, and E is the excitation vector. The
superscripts are B for body elements, W for wire elements, and J for junctions between wires and
bodies. The analytical expressions for each of the individual submatrices are different. Solution
of the linear system of equations yields the set of unknown coefficients used in the representation
of the surface, wire, and junction currents. Once these currents are known, the scattered field or
any other electromagnetic quantity of interest may be determined.

4.0 IMPLEMENTATION OF SEQUENTIAL PROGRAM
The first step in parallelizing an existing program is to verify the sequential version of the

program. This is done by running the program on a serial computer. Once this has been successfully
done, the next step is to get the program to run on a single processor on the parallel computer. This
is necessary to eliminate any problems caused by compiler differences between the serial compiler
and the parallel compiler and also to "check out" the hardware. Only after this has been completed
can the parallelization of the program be considered.
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JUNCTION was broken into four separate programs: DATGN, GEOMETRY, CURRENT,
and FIELD. DATGN creates input data set files. GEOMETRY calculates the geometrical
parameters. CURRENT computes the currents and impedance. FIELD computes charges, near
fields, far fields, radar cross sections, and power gain. The computationally intensive programs are
CURRENT and FIELD. This paper is concerned with the parallelizing of CURRENT.

From a computational standpoint CURRENT consists of filling the impedance matrix and
the excitation vector, and then solving for the current vector. The current vector gives the currents
on the bodies. wires and junctions. The methods used are standard matrix manipulation techniques.
Once the matrix is filled, Gaussian elimination is performed using LU decomposition with partial
pivoting to factor the matrix. Finally, the current vector is solved for by using backward and forward
substitution. The library subroutines used are the LINPACK routines CGEFA and CGESL
(Dongarra et al, 19791. CGEFA factors a general complex matrix. CGESL solves a complex matrix
equation using the output from CGEFA.

5.0 PARALLEL MATRIX FACTOR AND SOLVE

5.1 Parallel LINPACK

When this effort was initiated, general parallel versions of the LINPACK subroutines were
not available. This is because parallel subroutines are by their nature very machine specific and
one of the goals of the LINPACK project was for the subroutines to be machine independent.

On sequential computers the number of computations required to factor a matrix into a product
of triangular matrices is of the order (n3) where n is the dimension of the matrix. In comparison,
the number of computations required for the triangular solution are of the order (n2). Because of
this, unless multiple solutions are required, most effort has focused on optimizing the factorization
algorithm.

On parallel computers good efficiency is more difficult to obtain for matrix solving compared
to matrix factoring. This is because much more interprocessor communication is required during
solving. Solving is inherently a finer grain process than factoring. Various parallel algorithms have
been proposed. Each one has its advantages and disadvantages which are dependent on the number
of processors being used, the size of the problem being solved, and the relative cost of communication
and computation.

The matrix columns were distributed onto the processors using an interleaving technique
known as column wrap mapping. Column wrap mapping has good load balancing properties and
gives excellent performance when doing LU decomposition.

Intel Corporation provided the source code for Intel's parallel versions of DGEFA and DGESL
from LINPACK. DGEFA and DGESL are double precision non-complex versions of CGEFA and
CGESL, respectively. Included were two different matrix solving routines: a cyclic version and a
wavefront version of DGESL. The differences between these versions are described below. These
routines were all developed for Intel's iPSC parallel computer so a number of modifications were
needed to implement them under EXPRESS on the transputer array. The matrix factoring routine
was straightforward to parallelize and provided very high efficiencies.

The difficult problem was the solution of the lower triangular linear system

Lx =b,
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where L is a lower triangular matrix of order n, b is a known vector of dimension n, and x is the
unknown solution vector of dimension n. The sequential version of LINPACK solves this by
forward substitution using the following doubly nested loop:

forj = I ton
xj = bjlLjj

for i =j+l to n
bi = bi -xA

There are a number of ways to parallelize this problem on a distributed memory parallel
computer. Several algorithms have been developed. Two of the most popular are the wavefront
algorithm and the cyclic algorithm [Heath et al, 19881. These algorithms assume the matrix is
column wrap mapped onto the processors.

The wavefront algorithm breaks the updating of b into segments and pipelines the segments
through the processors in a wavefront fashion. The n-vector z is used to accumulate the updates of
b so that the components of b remain distributed among the processors. The size of the circulated
segments is an adjustable parameter that controls the granularity of the algorithm and therefore
affects performance. The optimal value of the segment size depends on the characteristics of the
hardware.

The wavefront algorithm is written in pseudo-code as:

forj E mycols
for k = 1 to # segments

receive segment
if k- then

x= (b, - zj)/L,
segment = segment - {z, }

for zi e segment
Z. = z. + xAL-J

if IsegmentI > 0 then
send segment to processor map(i + 1)

The cyclic algorithm is similar to the wavefront algorithm in that they both send a segment
z between processors. However, the cyclic algorithm circulates a single segment of the fixed size
p- 1, where p is the number of processors. The name cyclic comes from the segment cycling through
all other processors before returning to a given processor. The updates computed by the processor
while the segment is circulating elsewhere are stored in the vector t. The cyclic algorithm is written
in pseudo-code as:

forj e mycols
receive segment
x = (bj - z -tj)L

segment = segment - {z,}

for zi e segment

zi = z, + ti + xL 0

zi - _P " tj+ _, + xILI ,_,j
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segment = segment u{zj.P_ }
send segment to processor map(j+l)
for i =j + p to n

ti = t + XiLi

Theoretical analysis shows that the cyclic algorithm performs best on a small number of
processors whereas the wavefront algorithm performs best on a large number of processors.

5.2 Implementation of parallel LINPACK under EXPRESS

A number of modifications were needed to the Intel parallel LINPACK routines in order to
implement them on the transputer array operating under ParaSoft EXPRESS. These modifications
fell into three categories:

1. converting double precision variables to complex variables,
2. using complex LINPACK routines instead of the equivalent double precision

LINPACK routines,

3. using EXPRESS communication functions/routines instead of iPSC communi-
cation functions/routines.

5.3 Results

Performance measurements were made of both the parallel matrix factor routine and the two
parallel matrix solve routines. Timings were made using one, two, three and four processors. The
timing measurements were converted to the standard performance measurement parameters,
speed-up and efficiency. Speed-up is the ratio of the execution time of the algorithm on a single
processor to the execution time of the parallel algorithm on the n processors. Efficiency is the
speed-up divided by n and expressed as percent.

Due to memory limitations, examples with more than 200 unknowns could not be run on a
single transputer. Several sample problems were developed to test out the parallel factor and solve
routines. The four sample problems had the following number of unknowns: 104, 116, 155, and
189.

5.3.1 Factor

Figure 5-1 shows the timing results on the parallel version of CGEFA for the four sample
problems. Figure 5-2 shows speed-up and figure 5-3 shows efficiency. The important issue is that
as the number of unknowns increases the parallel matrix factoring routine becomes more efficient.
This is expected since small problems do not achieve good load balancing and cannot benefit greatly
from parallel computation. An efficiency of over 90% is considered very good.
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Figure 5- 1. Timing for parallel matrix factoring routine.
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Figure 5-3. Efficiency achieved for parallel matrix factoring routine.

5.3.2 Solve

The performance of the two parallel matrix solve routines were measured for all the example
problems. The results are shown here for the largest problem, the one with 189 unknowns. Table
5-1 shows the results for the cyclic algorithm.

Table 5-1. Performance results for cyclic algorithm for 189 unknowns.

Number of Time, Speedup Efficiency
Processors seconds

1 0.621 1.00 100%

2 0.367 1.69 84.5%

3 0.257 2.42 80.7%

4 0.207 3.00 75.0%

The performance results for the wavefront algorithm are complicated by the presence of the
adjustable segment size parameter. This segment size parameter can range from I to the number
of unknowns. Table 5-2 shows the optimal performance segment size and time. The optimal
performance segment size is a function of the number of processors (as well as the number of
unknowns). In addition, by comparing the timing results for the wavefront algorithm with the results
for the cyclic algorithm it can be seen that even with the optimum segment size the performance
for the wavefront algorithm is much worse than the cyclic algorithm. For these two reasons the
wavefront algorithm was rejected for use on the size of problem which could be run on the four
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processor transputer array. However, it must be noted that the performance results could turn out
to be very different on a high performance computer with many more processors running larger
problems.

Table 5-2. Performance results for wavefront algorithm for 189 unknowns.

Number of Optimal Time,

Processors segment size seconds

1 95 0.741

2 72 0.555

3 34 0.448

4 24 0.380

6.0 PARALLEL MATRIX FILLING
Developing a highly efficient general routine for parallel matrix filling was much more dif-

ficult in comparison to the work required to parallelize the matrix factor and solve routines. This
was due to several reasons: the large variety of problem geometries being solved, shared calculations
between matrix columns, memory limitations, and concurrent filling of the excitation vector.

6.1 Sequential matrix filling

In JUNCTION the columns of the matrix correspond to source points on the structure. The
rows of the matrix correspond to observation points on the structure. The body columns/rows come
before the wire columns/rows, but otherwise the ordering of the columns/rows depends on how the
problem was specified in the input data portion of the code. The junction points are scattered within
the wire portion of the matrix. Wire columns correspond to nodes on the wires whereas body
columns correspond to sides of triangular patches on the surfaces. A junction is a node on a wire,
hence its location is in the wire portion of the matrix.

6.2 Column mapping techniques
There are a wide variety of techniques which can be used to map the columns of the matrix

onto the processors. A column wrap mapping technique was used for matrix factoring and solving
as described in the previous chapter.

It quickly became apparent that column wrap mapping was not necessarily the best method
to use for parallelizing the matrix filling portion of the code. Adjacent columns of the matrix are
often associated with each other. For bodies adjacent columns are usually either on the same face
or on an attached face. For wires adjacent columns often refer to nodes which are joined by the
same segment. In JUNCTION calculations are made with respect to faces and segments, not edges
and nodes. This avoids duplication of work in a serial computation. Alternative methods for
mapping the columns onto the processors were needed. (Note: mapping the rows onto the pro-
cessors, instead of the columns, was never considered since matrix factoring required the columns
to be already mapped onto the processors).
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Alternative mapping techniques were devised and evaluated. The techniques and performance
results are described below in the section on structural dependencies. It was found that using a
different mapping technique to fill the matrix did not compromise the output from matrix solving.
The only effect was to scramble the output vector. The output vector is easily and rapidly
unscrambled at the end of the matrix solve routines. Unscrambling the output vector at the end is
much faster than unscrambling the matrix before the matrix factor routine, since much less inter-
processor communication is required for the former.

6.3 Structural dependencies
The performance of the parallel matrix filling algorithm was found to be very dependent on

the structure being analyzed. The first types of problems analyzed were for homogeneous structures.
Homogeneous structures are defined as having either all body elements or all wire elements. Next,
heterogeneous structures were evaluated. Heterogeneous structures are defined as having a mixture
of body, wire, and junction elements.

6.3.1 Homogeneous structures

Six types of structures were considered: straight wires, cylinders, plates, cones, disks, or
spheres. The performance of the parallel matrix filling routines was evaluated for l-omogeneous
problems made up of each of these types of structures. Two column mapping techniques were
compared for each structure type. The two techniques used were column wrap mapping and column
block mapping. Column wrap mapping consists of interleaving the columns onto the processors.
It is described in detail in Section 6.2. Column block mapping consists of distributing the columns
onto the processors using contiguous blocks of columns rather than individual columns. As an
example, if 4 processors were being used to fill a matrix with 100 columns, using column block
mapping would mean that the first processor would fill the first 25 columns, the second processor
would fill the second 25 columns, and so on.

Four sample problems were developed for each structure type. The number of unknowns
ranged from 40 to 200. Each sample problem was run on both a single transputer and four transputers.
Measurements were made of both matrix filling time and matrix solving time for both column wrap
mapping and column block mapping.

Table 6-3 shows the measured times and calculated efficiencies for matrix filling for the
different structures using wrap and block mapping.

For a single processor it is seen that an all wire homogeneous matrix takes longer to fill than
an all body homogeneous matrix of the same size. On average an all wire matrix took about 38%
longer to fill than the same size all body matrix. Improvements are being been made in JUNCTION
to improve the speed of calculation for wires. The cylinder, plate, cone, disk and sphere matrices
all took about the same time to fill a given size matrix.

When the sample problems were run on four processors, distinct structural dependencies
emerged for filling times and efficiencies. It is important to note that column block mapping always
performed better than column wrap mapping. Column block mapping filling efficiencies were
almost always greater than 70%, whereas column wrap mapping filling efficiencies were always
between 40 and 60%. It is also interesting to note that the different structures performed differently
in filling efficiencies. For column wrap mapping wires performed best followed by plates, cones,
spheres, disks, and, then, cylinders. For column block mapping wires again performed best followed
by cylinders, plates, cones, spheres, and, then, disks. These results are due to the nature of the
physical connectivity of the various structures and how their elements are distributed to the columns
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Table 6-3. Matrix filling times/efficiencies for various structures.

Structure Number of 1 Processor 4 Processors

Type Unknowns Wrap Mapping Block Mapping

TIME,sec TIME EFFIC TIME EFFIC

WIRE 47 7.38 3.32 55.6% 1.97 93.7%
97 30.78 14.06 54.7% 8.08 95.2%
147 70.51 31.54 55.9% 17.95 98.2%
197 126.06 56.91 55.4% 32.22 97.8%

CYLINDER 56 8.56 4.97 43.1% 2.80 76.4%
104 27.04 15.78 42.8% 7.94 85.1%
152 55.95 32.69 42.8% 15.68 89.2%
200 95.17 55.62 42.8% 25.99 91.5%

PLATE 40 5.12 2.66 48.1% 1.66 77.1%
96 25.11 12.69 49.5% 7.88 79.7%
133 45.7 25.95 44.0% 14.01 81.5%
176 76.87 39.15 49.1% 21.92 87.7%

CONE 52 7.15 4.08 43.8% 2.54 70.4%
100 24.09 13.88 43.4% 7.36 81.8%
155 55.85 29.12 47.9% 16.56 84.3%
200 90.52 46.58 48.6% 25.31 89.4%

DISK 49 6.60 3.77 43.8% 2.77 59.6%
98 25.19 13.7 46.0% 10.42 60.4%
150 55.65 29.84 46.6% 20.05 69.4%
200 97.01 53.12 45.7% 34.33 70.6%

SPHERE 60 9.06 4.82 47.0% 3.23 70.1%
90 19.75 10.65 46.4% 6.85 72.1%
168 66.56 37.98 43.8% 20.27 82.1%
198 91.84 47.99 47.8% 28.96 79.3%

of the matrix. Again, in JUNCTION calculations are made with respect to faces and segments. To
avoid duplication of computation on the processors it is advantageous to have all the edge com-
putations for a given face to be on the same processor. For a wire both nodes of a given segment
should be on the same processor.

Table 6-4 shows the measured times and calculated efficiency for matrix factoring and solving
for the different structures.

In matrix factoring and solving there are no structural dependencies. It should also be noted
that as the number of unknowns increases, the factoring and solving efficiencies increase. For 200
unknowns factoring and solving efficiency is greater than 95% percent. Matrix filling efficiency
also increases as the number of unknowns increases.
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Table 6-4. Matrix factor and solve times/efficiency for various structures.

Structure Number of 1 Processor 4 Processors

Type Unknowns TIME,sec TIME EFFIC

WIRE 47 0.66 0.22 75.0%
97 5.34 1.48 90.2%
147 18.09 4.81 94.0%
197 42.94 11.19 95.9%

CYLINDER 56 1.13 0.35 80.7%
104 6.70 1.81 92.5%
152 20.22 5.34 94.7%
200 45.36 11.79 96.2%

PLATE 40 0.42 0.15 70.0%
96 5.12 1.44 88.9%
133 13.35 3.58 93.2%
176 30.55 8.04 95.0%

CONE 52 0.92 0.29 79.3%
100 5.97 1.63 91.6%
155 21.45 5.63 95.2%
200 45.41 11.79 96.3%

DISK 49 0.78 0.25 78.0%
98 5.60 1.54 90.9%
150 19.48 5.11 95.3%
200 45.32 11.78 96.2%

SPHERE 60 1.37 0.41 83.5%
90 4.38 1.21 90.5%
168 27.10 7.11 95.3%
198 44.02 11.41 96.5%

6.3.2 Heterogeneous structures

The heterogeneous structures that were evaluated consisted mostly of square plates with
numerous attached wires. This allowed the evaluation of matrices with various numbers of body,
wire, and junction columns.

After evaluating a large number of heterogeneous problems a number of observations were
made. These observations are summarized below:

" The junction columns are scattered within the wire portion of the matrix. The
distribution of the junction columns depends on how the problem is initially spe-
cified. Fortunately, it is fairly straightforward to convert from junction number to
matrix column number.

" A junction can connect to between one and six faces on a body. A quirk of
JUNCTION is that the code will only recognize a maximum of one junction attached
to a given face.
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" To achieve maximum efficiency the filling of a junction column should be done by
the same processor which is filling the columns associated with the faces to which
the junction is attached, since a large part of the calculations are in common. The
problem is that the associated body columns are sometimes scattered all through
the matrix.

* The time to fill a matrix is a function of many factors including: relative/absolute
number of wire, body and junction unknowns; number of separate wires; number
of segments on each wire; locations of wires and junctions relative to a body; number
of faces connected to each junction.

" Developing a general method for balancing the work load and achieving optimum
efficiency for a heterogeneous problem is very complicated, even for the simple
problems studied involving a single plate with various attached wires. If the choice
is between block and wrap mapping, block mapping gives better results. (For the
problems studied, block mapping was 62 - 93% efficient, whereas wrap mapping
was 41 - 52% efficient).

Based on the above observations a decision was made to implement two additional column mapping
techniques. Both techniques are modifications of the standard block mapping technique.

The first technique is called random mapping. Random mapping is block mapping with one
twist: instead of the junction columns staying grouped with the wire columns, the junction columns
are filled by the processors which are filling the body columns of the matrix. The columns are
redistributed to keep a balanced number of columns on each processor. As an example, suppose a
matrix has 50 body columns, 50 wire columns, and 6 junctions, and the problem is being run on 4
processors. Under standard column block mapping the first 25 body columns would be filled by
the first processor, the second 25 body columns would be filled by the second processor, the first
25 wire columns would be filled by the third processor, and the second 25 wire columns would be
filled by the fourth processor. The junction columns, being wire columns also, would be distributed
on the third and fourth processors. Under random mapping the six junction columns would first
be distributed to the first two processors in the following manner: junction 1 column to first pro-
cessor, junction 2 column to second processor, junction 3 column to first processor, junction 4
column to second processor, and so on. The first and second processors would each have 3 junction
columns. Block processing would then be used to distribute the body and remaining wire columns,
so that each processor would finish up with 25 total columns as before.

The second technique is called 1st order mapping. This is similar to the random mapping
described above except now the junction columns are assigned to the body processors using
knowledge of which processor will be calculating the majority of columns associated with the faces
to which that junction is attached. This could potentially cause more junction columns to end up
on one of the body processors than another, but the improvement in performance could be significant.

An analysis of matrix filling efficiency was run on four processors for the problem of a square
plate with 8 wires attached to it. The problem involved 96 body unknowns, 96 wire unknowns,
and 8 junctions. The four different column mapping techniques were used. The results are shown
in table 6-5.

The results show that random mapping only gives a slight improvement over block mapping,
but 1 st order mapping gives a significant improvement over block mapping.
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Table 6-5. Efficiencies of various mapping techniques.

Mapping Technique Efficiency

WRAP 40.5%

BLOCK 61.8%

RANDOM 63.9%

1 ST ORDER 76.9%

7.0 RESULTS AND CONCLUSIONS

7.1 Performance Comparisons

Comparisons were run for the micro-Vax, a single transputer, the four transputer array, and
the Convex Model C-220. The Convex is a mini-supercomputer which can do some automatic
vectorization.

Sample data sets were generated for both bodies and wires. Eight body data sets were generated
with 104, 152, 200, 248, 296, 356, 404, and 452 unknowns. Eight wire data sets were generated
with 47, 97, 147, 197, 247, 297, 347, and 397 unknowns. For each data set and each hardware
platform timing measurements were made for both matrix filling and matrix factoring and solving.
On the four transputer array the data sets were run using both column wrap mapping and column
block mapping. On the Convex measurements were made of both CPU time and actual elapsed
time. At the time the measurements were made there were 13 other users on the Convex and elapsed
time averaged about 3.5 times longer than CPU time. This should be kept in mind when making
comparisons between the various hardware platforms. Results are shown in tables 7-1 through 7-4.

Table 7-1. Time to fill all-body matrix, seconds.

Number COMPUTER PLATFORM

of Micro-Vax I Xputer 4 Xputer CONVEX

Unknowns Wrap Map Block Map CPU Elapsed

104 73.7 26.6 16.7 8.8 5.1 20
152 151.7 55.0 33.4 16.5 10.7 26
200 257.5 93.8 56.1 26.6 18.3 69
248 394.0 85.4 39.7 27.9 105
296 555.9 120.1 54.9 39.4 145
356 801.6 172.8 78.0 56.9 201
404 1027.8 221.4 99.1 73.1 260
452 1282.3 276.1 122.9 91.4 329
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Table 7-2. Time to factor & solve all-body matrix, seconds.

Number COMPUTER PLATFORM

of Micro-Vax I Xputer 4 Xputer CONVEX

Unknowns Wrap Map Block Map CPU Elapsed

104 15.1 6.7 1.8 1.8 0.5 2
152 45.5 20.2 5.3 5.3 1.3 4
200 101.8 42.7 11.7 11.8 2.8 7
248 191.9 21.9 22.1 5.1 32
296 323.7 36.9 37.1 8.5 30
356 559.9 63.6 63.9 14.5 55
404 814.3 92.5 92.8 21.0 79
452 1137.2 129.0 129.4 29.1 102

Table 7-3. Time to fill all-wire matrix, seconds.

Number COMPUTER PLATFORM

of Micro-Vax I Xputer 4 Xputer CONVEX

Unknowns Wrap Map Block Map CPU Elapsed

47 19.1 7.3 3.3 2.0 0.9 1
97 78.9 30.6 14.0 8.0 3.6 9

147 180.5 70.1 31.4 17.9 8.3 23
197 322.4 125.4 56.7 32.0 14.9 54
247 505.3 88.0 49.6 23.4 112
297 729.3 127.8 71.9 33.8 154
347 993.7 173.1 97.2 46.0 166
397 1302.1 227.8 127.8 60.2 172

The results show that the micro-Vax fills a wire matrix 32% slower than it fills a body matrix
of the same size. Using column wrap mapping the four transputers fill a wire matrix 8% slower
than they do a body matrix. In contrast, the Convex fills a wire matrix 15% faster than it does a
body matrix! This may be due to the Convex's automatic vectorizing abilities. For comparison, a
single transputer fills a wire matrix 36% slower than it fills a body matrix. The 8% figure for the
four transputers can be accounted for by the fact that the wire filling efficiency (55%) is about 28%
greater than the body filling efficiency (40%) for these problems and 28+8=36. The conclusion
here is that for the JUNCTION code, sequentially speaking, wire filling takes about one third longer
than body filling.

Some of the comparison data is displayed graphically in figures 7-1 through 7-3. The data
is for an all-body matrix. The figures show comparisons between the four transputer array, the
Convex (CPU time), and projected results for a sixteen transputer array. A four transputer array
with 1 Megabyte of RAM per node can solve problems with up to 450 unknowns. With a sixteen
transputer array problems with more than 900 unknowns could be solved.
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Table 7-4. Time to factor & solve all-wire matrix, seconds.

Number COMPUTER PLATFORM

of Micro-Vax 1 Xputer 4 Xputer CONVEX

Unknowns Wrap Map Block Map CPU Elapsed

47 1.6 0.7 0.2 0.2 0.1 0
97 12.3 5.3 1.5 1.5 0.4 1

147 41.2 18.1 4.8 4.8 1.2 5
197 97.4 42.9 11.1 11.1 2.7 10
247 189.9 21.5 21.5 5.0 26
297 327.8 37.0 37.0 8.6 35
347 520.2 58.6 58.6 13.4 39
397 776.0 87.4 87.4 19.8 57

The plots show that a sixteen transputer array would perform better than the Convex for filling
the matrix and almost as good as the Convex for factoring and solving the matrix (Note: a sixteen
transputer array, including the motherboard, would cost about $15K). However, no attempt was
made to improve the vectorization of JUNCTION for a more efficient computation on the Convex.
It is envisioned that considerable improvement could be made in the Convex times for factoring
and solving of the matrix.
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Figure 7- 1. Matrix filling time comparisons, block mapping.
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7.2 Observations

In the course of this effort a number of observations were made regarding transputers, ParaSoft
EXPRESS, and parallel processing in general:

• A transputer array is an inexpensive, flexible parallel processing platform. An
array of four transputer modules, each with 1 Megabyte of RAM, plus the PC
motherboard cost less than $5K. The transputer array is very flexible since the
number of processors can be easily expanded (just plug more modules in the sockets)
and any Fortran or C code which runs on the PC can be modified to run on the
transputer array.

" ParaSoft EXPRESS has been of great utility. Without EXPRESS it would have
been very difficult to make the progress that was made in parallelizing the code. In
addition, major modifications to the existing code would have been required, if not
a complete rewriting of the code. EXPRESS will allow the porting of the code to
another computer platform to be much more direct.

• Running an existing program on one transputer is very straightforward using
EXPRESS. By adding just a few lines of code, then recompiling using the parallel
compiler, and linking the object files to EXPRESS, an executable module which
runs on a single transputer can be created for virtually any Fortran program which
runs on the PC.

" The effort required to parallelize a code is algorithm dependent. Some algorithms
can be parallelizedjust by adding a couple of lines of code. Other algorithms require
extensive restructuring. Still other algorithms are not suited for implementation on
a parallel computer and must be left as sequential code. It is not always obvious
beforehand which algorithms will be efficient to parallelize and which won't.

" The optimal parallel code can be dependent on the numberand type of processors
as well as the size of the problem being solved. This was shown to be the case with
the matrix solve algorithms. Two algorithms were tested: a cyclic implementation
and a wavefront implementation. Although the cyclic implementation outper-
formed the wavefront implementation for the 4-transputer array, the literature
suggests that the wavefront implementation will be the best performer for a
massively parallel computing platform solving larger problems.

8.0 THE FUTURE

The state-of-the-art technology in the area of parallel processing changes monthly both for
hardware platforms and software tools. The transputers used for this effort will soon be outdated,
replaced by faster and more flexible processing units [Pountain, 1990]. New features are contin-
uously being added to EXPRESS to make it more powerful and adaptable.

8.1 Future Hardware
The big news in the world of transputers is the development of the T9000. This next generation

processor is being developed by the same company, INMOS, which did the original pioneering
work on the development of the transputer [INMOS, 1988]. According to the manufacturer the key
features of the T9000 are "a high performance pipelined superscalar processor and major support
for multiprocessing applications. Peak performance will be more than 150 MIPS and 20 MFLOPS,
representing a major advance in parallel computing and high speed communications.. .The design
goals for T9000 were to enhance the transputer's position as the premier multiprocessing micro-
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processor, and to establish a new standard in single processor performance, while maintaining
compatibility with existing transputer products." Of course, there will be some delay between the
release of the T9000 and the development of compatible motherboards and software.

8.2 Future Software

A great deal of effort is going into developing programming software for parallel computing
environments. This software includes parallel compilers, debuggers, performance analysis tools,
visualization tools, dynamic load balancing tools, and automatic parallelization tools. Most of the
presently existing software in these areas are very crude.

ParaSoft is in the process of improving EXPRESS. New tools which are being added include
VTOOL, ASPAR, and EXDIST. VTOOL will allow memory access visualization. ASPAR pro-
vides automatic parallelization of sequential C programs. EXDIST will provide dynamic load
balancing. ParaSoft's ultimate goal is to run EXPRESS within a heterogeneous parallel processing
environment - known as a "meta" computer. A "meta" computer is made up of a number of
architecturally different computers which are networked together and perform as a single entity.
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A RECURSIVE TECHNIQUE TO AVOID ARITHMETIC OVERFLOW

AND UNDERFLOW WHEN COMPUTING SLOWLY CONVERGENT

EIGENFUNCTION TYPE EXPANSIONS

Gary A. Somers and Benedikt A. Munk
The Ohio State University ElectroScience Laboratory

Department of Electrical Engineering
Columbus, Ohio 43212

Abstract

Eigenfunction expansions for fields scattered by large structures are generally very
slowly convergent. The summation often consists of two factors where one factor
approaches zero and the other factor grows in magnitude without bound as the sum-
mation index increases. Each term of the expansion is bounded; however, due to the
extreme magnitude of the individual factors, computational overflow and underflow
errors can limit the number of terms that can be computed in the summation thereby
forcing the summation to be terminated before it has converged. In this paper an
exact technique that circumvents these problems is presented. An auxiliary function
is introduced which is proportional to the original factor with its asymptotic behavior
factored out. When these auxiliary functions are introduced into the summation, we
are left with the task of numerically summing products of well behaved factors. A
recursion relationship is developed for computing this auxiliary function.

1 Introduction

When solving for the fields scattered by canonical geometries, the exact solution is often
available in eigenfunction form. The eigenfunction form is a viable representation for the
fields providing that some characteristic dimension of the structure is "small" with respect
to the wavelength, otherwise, the eigenfunction expansion is very slowly convergent and
additionally can exhibit the following computational difficulty. These pathological eigen-
function expansions are in the form of infinite summations of products and quotients. Each
term of the summation is well-behaved, however, the magnitude of the individual factors
and/or divisors become either too small or too large to handle on the computer result-
ing in overflow/overflow errors. Ideally, one should find an alternate representation of the
series that is more quickly convergent using a technique such as Watson's transformation
[Tyras, 1969]. For many geometries the topology of the characteristic plane may be too
complicated to perform the necessary function theoretic manipulations. Therefore, one may
be forced to sum the slowly convergent series.
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The overflow/underflow problem can be alleviated by implementing an auxiliary function
that is proportional to the original pathological function with the asymptotic behavior
factored out. These auxiliary functions can be calculated "exactly" from new recursion
relationships which are derived from the recursion relationship of the original function. In
Section 2, the development of these auxiliary functions and the corresponding recursive
techniques will be presented. Section 3 contains an example of the plane wave scattering
by a circular cylinder using the techniques developed in this paper and Section 4 contains
some concluding remarks. Throughout this paper an ejwt time dependence is assumed and
suppressed.

2 Analytic Formulation

Symbolically, an eigenfunction expansion often has the form

= _Cn S. (x) Ln(x), (1)
n

where C,, is a well-behaved constant, S,(x) is a factor that becomes increasingly small as n
grows,

S-(x) 0, (2)

and L,(x) is a factor that grows without bound with increasing n,
L,,(X) n-w) 0 , ( 3 )

such that the product, S,(x)L,,(x), is bounded and the sum E CS, b(x)L, (x) is convergent.

2.1 Computation by Recursion

Recursion relationships are very convenient, and arc a common way to calculate the S,,(x)
and L,,(x) functions. Typically, the functions that, arise in eigenfunction solutions to elec-
tromagnetic problems satisfy a three term recursion relationship which can be expressed as
follows:

A(n, x) y,,(,) + B(n, x) y+i (x) + C(n,.x) y,,_ (x) = 0. (4)

For a fixed value of x, the recursion relation can be treated as a difference equation in n.. A
three term difference equation has 2 independent solutions [Press, et al., 1988], i.e:

,(.) = {l?,(x), (x)}. (5)

So t he general solution to the recursion relation is:

y,,(x) = a I :(x) + /3 Q,,(x) (6)
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where a and/ are constants that need to be determined by physical considerations.
Miller's algorithm [Press, et al., 1988) is a commonly used technique to generate the

sequence (P,,(x)} or IQ,,(x)}. The algorithm begins by arbitrarily choosing two successive
values to substitute into the recursion relationship which is used to generate the entire
sequence. For example, let

yo(x) = Co(x) and yj (x) = C, (x), (7)

which when substituted into Equation (6) yields:

Co (x) a o Po (x) + J3 Qo (x), (8)
e, (z) a P, P(x) + 3 QI(x). (9)

Since P,,(x) and Q,,(x) are known to be independent, then by Equations (8)-(9) the values
of ct and f are determined uniquely, hence y,,(x) is well-defined. Note that y.,(x) contains
components of both solutions, { P (x), Q,(x)}, providing that the choice of Co(x) and CI (x)
axe not proportional to either Po(x) and PI (x), respectively or Qo(x) and Q (x), respectively.

-1

A0Q

c ~~~f PoQ oP o 0. (10)

Pi Q1 Ca P1 Q1

At this point it is necessary to examine the stability of the desired solution. Stability
refers to the relative rate of growth of the magnitude of the desired solution relative to the
non-desired solution. Let's examine the common circumstance where IP,a(x)l increases as n
increases agori ecress as n increases as shown in Figure 1. It is clear that since our
solution, y(x), contains components of both P,,(x) and QyC(x), then if we consider larger
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and larger values of n, Qn(x) will be less and less significant compared to P,,(x), therefore:

yn(x) - a Pn(x); n - oo. (11)

Under these circumstances, P,,(x) is said to be stable recursing up (in n). Similarly we
could have arbitrarily chosen values for yn(x) for two large successive values of n, and then
recursed down thereby recovering the solution for Qn(x). In this case Q, (x) is said to be
stable recursing down. Mathematically,

y,,(x) ,.- 3Q.(x); n---oo. (12)

This process generates a sequence proportional to the desired Pn(x) and Q,,(x) sequences.
P,,(x) or Qn(x) can be recovered by multiplying the entire sequence {a P.(x)} or {/,Q,(x)}
by or , respectively, a or 3 can be determined by calculating one value of {Pn(x)} or
{Q,(x)} and comparing it to the corresponding value of {a P,,(x)} or f,3Q,,(x)} which was
calculated by recursion. An alternative is to use a normalization relationship of the form:

E P(x) or E n Q,(x) = 1. (13)
n n

In the introduction of Abramowitz and Stegun [1972, p. XIII], there is a listing of many
functions and their direction of recursive stability, and in the various chapters corresponding
to the functions of interest, normalization relations of the form in Equation (13) can be
found.

An alternative to Miller's algorithm can be applied if two successive values of the solution
are known. If the desired solution contains only one component of the two independent
solutions {P,(x), Q,(x)}, then it is necessary to recurse in the direction of recursive stability.
Ideally, the direction of recursion should not matter, however, due to round off error in the
computer, the undesired solution will be present and eventually grow to a significant value
relative to the desired component of the solution.

As mentioned previously, the magnitude of the individual functions which we need to
calculate can be either too large or too small for the computer to handle. This is why we
introduce the auxiliary functions in Section 2.2.

2.2 The Auxiliary Functions

Since S,,(x) and L,,(x) are computed separately, before the sum converges individually they
can become either too small or too large to calculate (due to computer limitations). To
remove this upper bound limitation on the index of the summation, n, we first note the
asymptotic behavior of S,,(x) and Ln(x).

S,(x) oc 0',,(x), n-o, (14)

and,

L,(x) xc A,,(x), n,--oc. (15)
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Introduce the auxiliary functions AS(x) and AL(x) which are defined for an appropriate
interval over n by the following expressions:

Sn(x) = AS(x) o,(x), (16)

and,

L,(x) = AL(x) A(x). (17)

Since the auxiliary functions are equal to the original pathological functions with the asymp-
totic behavior factored out, the auxiliary functions remain well-behaved for all n and are
therefore computationally preferable over the original S,(x) and Ln(x) functions. These
expressions (Equations (16) and (17)) for Sn(x) and L,(x) can be substituted into the
eigenfunction expansion, Equation (1), yielding:

= _CnAS(x)an(x)AL(x)An(x), (18)
n

or,

= Cn(x)A(x)AL(X), (19)
n

where,

C'(x) = Can(x) An(x). (20)

The expression for C(x) can usually be significantly simplified which eliminates the ne-
cessity to compute the extremely small and extremely large values for an(x) and An(x),
respectively as n -- 00.

The three factors in each term of Equation (19) are well-behaved for large values of
n which makes this procedure convenient for computing a slowly convergent eigenfunction
expansion.

It is common practice to extract a factor from functions that grow without bound. The
main contribution of this paper is the computation procedure for the auxiliary functions
which is presented in the next section.

2.2.1 Computation of the Auxiliary Functions by Recursion

The direction of recursive stability of an auxiliary function is the same as the function
from which it was derived, therefore Miller's algorithm can also be applied to auxiliary
functions. We begin by assuming that the recursion relationship for the original function
(Equation (4)) is known. If we are trying to calculate AL (x), the auxiliary function for L, (x),
then we simply substitute Equation (17) into the recursion relationship, Equation (4).

A,(x) A(x) Ax) + B, (x) An+I(x)A, +(x) ± C,(x) AA' n- 1(x) AnL(x) 0 (21)

In his form, the recursion relationship would experience the same overflow and under-
flow difficulties as the original function (due to the asymptotic factors An(x), An+1 (x) and
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Figure 2: Plane wave incident upon PEC circular cylinder.

A,_I(x)). It can, and must, be analytically simplified at this stage to avoid taking differ-
ences of very large numbers which is a computational faux pas. Section 3 illustrates this
procedure by presenting an example which calculates the plane wave scattering by a circular
cylinder.

3 Example: Scattering by a PEC Circular Cylinder

In this section we are presenting an example that applies the general technique outlined in
this paper to the specific problem of determining the total (incident + scattered) z-directed
electric field when a TM, plane wave is incident upon a perfect electric conducting (PEC)
circular cylinder which has its axis along the z-axis. The incident field is given by:

Ez = Eoe - kx - EoeJkPcs - E_ Z J (kp) e  (22)

where Eo is the complex amplitude and the coordinates x, p and 0 are shown in Figure 2.
The total z-directed field is given by [Harington, 1961]:

Ez = Eo0 - j-" [Jn(kp) - J)ka) H,2)(kp) ei"4 (23)

It is possible to convert this series into a more quickly converging representation, however,
this will not be done since the goal of this section is to illustrate the recursive technique
outlined in this paper by a simple example. An additional numerical difficulty which will
not be addressed in detail here, with the form of Equation (23) is that when computing
the total fields near the cylinder, p ; a, there can be a loss of significant digits. This
may be overcome by computing the cross product directly by means of rccursion relations
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[Abramouwtz and Stegun, 1972, p. 361]. Note that this problem does not occur when com-
puting the scattered fields alone.

Using the relationship that Zn, any integer order Bessel function (Jo, (, 2),
satisfies:

Z_. = (-1)nZn, (24)

we can express the total fields as:

E.= Eo [ En j-n Jn(kp) J,(ka) H ,2)(kp) cos(n), (25)n=o UHn2)( ka )

where,

En = (26)
1 2 , p - 0.

Notice that the second term in the brackets exhibits the behavior that is discussed in this
paper, namely that each individual factor grows without bound (Hn(2)), or approaches zero
(Jn), as n increases. The asymptotic behavior of the Bessel functions of the first and second
kind are given by [Abramowitz and Stegun, 1972, p. 365]:

J,,(x) .. 1 (exn = an (x), n 00, (27)

and,

Yn(X- - (e), n-- 40, (28)

and since,

Hn2)(x) Jn(X) jYn(X). (29)

Then,

(21(X) j F (eX>-
.2 7 An A(X), n 00. (30)

rn \2nl

So then the auxiliary functions are defined by:

J,(x) = I ex)"aj(x) n = 1,2,3... ,, (31)

and,

S n ( ( 2n n (x), n = 1,2,3,...,0. (32)
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All Bessel functions satisfy the same recursion relationship [Abramowitz and Stegun, 1972,

p. 365]:

z._,(X) + z.+,(x) = 2n z(

x

By comparing the asymptotic forms of Jn(x) and Y.(x), J,(x) is downward stable and Y.(x)

is upward stable [Abramowitz and Stegun, 1972, p. X1III. Since the Hankel function consists

of both J.(x) and Y.(x) and they differ in their direction of recursive stability, it is necessary

to decompose the Hankel function to determine J.(x) and Yn(x) separately.

The definitions for the auxiliary functions (Equations (31) and (32)) are indeterminate

for n = 0. For this reason, we will extract the n = 0 term of Equation (25) and begin the

sum from n = 1.
E, = Eo [Jo(ko) - Jo(ka) H.o2 )(kp)

[0 HO(2)(ka) 0

00 j n [ p n (nk- 2,n

+2Eo A j1 kp - (")f A kp)] cos(nO). (34)

Calculation of Aj(x)
The recursion relation which defines A((x) is found by substituting Equation (31) into

Equation (33). After algebraic simplification, the following form of the recursion relation is

obtained:
S \, n+1/2 3  (Iex) 2 ( n--nIn+!2A +(x) (35)

n + j n(n+2)2 \n+2J

where e is the base of the natural logarithm. This is in a form suitable for downward

recursion.
We will apply Miller's algorithm to determine a sequence denoted by AJ(x) which is

proportional to the desired AJ(x) sequence. We choose N to be larger than the maximum

number of terms expected to be summed by Al. Also, let:

Ak (x) = 1, (36)

and,

Ak+,(x) = 0. (37)

Use the recursion relationship (Equation (35)) to determine {A(x)} for i = 1,2,3,... N-1.

{ A (x)} is a sequence proportional to the desired sequence {A'(x)}. There are many ways

to normalize the sequence {Aj(x)}. Here we will use Equation (31) to determine Aj(x)

which will then be compared to A'(x) to determine the constant of proportionality, 3.

ex Aj'(x) (3)

23 -2/2-7r J I(x)4
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So then,

{AJ(x)} = A,(x); n=1,2,3,...N-M. (39)

The following table was constructed, using these procedures, to emphasize the favorable
behavior of the magnitude of the auxiliary functions compared to the magnitude of the
Bessel functions. We are showing two arguments of the auxiliary function for a wide range
of orders. This table illustrates the difficulty in computing the Bessel functions directly.
The triple asterisk indicates that this term is larger than 10", the largest number our
computer can handle.

-In .(1) AJ(1)I5)AtiC)

1 4.4005 x 10-' 0.81157 -3.2758 x 10- 1 -0.12083

2 1.1490 x 10-1 0.88200 4.6565 x 10-2 0.014297

5 2.4976 x 10- 4  0.94323 2.6114 x 10-1 0.31559

20 3.8735 x 10-25 0.98405 2.7703 x 10-11 0.73798

50 2.9060 x 10-78 0.99345 2.2942 x 10- 45  0.88306

100 8.4318 x 10
- 189  

0.99670 6.2678 x l0
- 1 9  

0.93919

200 • 0.99834 4.7600 x 10
- 296  

0.96898

500 *** 0.99927 *** 0.98737

1000 *** 0.99965 *** 0.99367

Calculation of A,,( 2) (x)
As mentioned previously, the Hankel function, H,(,2)(x), consists of Bessel functions of

the first and second kind, J,,(x) and Yn(x), respectively. J,,(x) and Yn(x) differ in their
direction of recursive stability, therefore, they must be computed separately. We note that
as a consequence of Equations (29) and (32):

2- 2 H(2 Im (XA 2 (x)} (40)

and,

Y(X2 n e{A n  (x)}. (41)

From these relationships, we determine that Im{A H(2) (x)} is stable recursing down and
that 7Ze{AH12) (x)} is stable recursing up. Substituting Equation (40) into Equation (33)
yields the following recursion relation in a suitable form for downward recursion.

1mA~~1()} 1 (2n )2 (n+ I )nl+ IA2.~ H()}-Tjn()I - Im{An+l W,1
(2 )2 (_ ) + 3 2,.

- ( )(n+ 2) m IAH(2) ,} (42)
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We can use this recursion relation along with Equation (40) with n = 1 (for normalization),
to apply Miller's algorithm.

= JA(xL (43)

The calculation of Re(A H (2) (x)} requires two starting values and the recursion relation-
ship since it is upward stable. The two starting values are obtained by substituting n = 1
and n = 2 into Equation (41).

H(21(X)!ex Yl (X), (44)RZe {A, 42 2 (44)- -

and,

Re{A 2 (x)} = 4 2(X) (45)

The recursion relation is obtained by substituting Equation (41) into Equation (33)
yielding the following recursion relationship for Ze{A H 21 (x)} in a suitable form for upward
recursion.

H(2) (X)n_- n- 1/2 H(21)

Re{An 2) (x)} = e (Re{An()}

1e 2 )-/

(n_2)2 (--) e{A'(.(x)} (46)

The following table is presented for a comparison of the Hankel function of the second
kind with its auxiliary function. We are showing two arguments of the auxiliary function
for a wide range of orders.

n H(2(1) An() (1) H,2 (5) A H (2 ) (5

Hn AHH2) n((5

I (4.4005 + j7.8121) x 10-' 1.3307- j.74960 (-3.2758 - ji.4786) . 10- 1  - 1.2594 + j2.7900

2 (0.11490 + jl.6507) x 100 1.3511 -. j0.0940 (0.46565 - j3.6766) x 10-1 -7.5237 - j0.9529

5 (0.0000 + j2.6041) X 102 1.0831 + jO.0000 (2.6114 + j4.5369) x 10-1 5.8970 - j3.3942

20 (0.0000 + j4.1140) x 1022 1.0175 + jO.0000 (0.0000 + j5.9340) x 108 1.3996 + jO.0000

50 (0.0000 + j2.1911) X 1077 1.0068 + jO.0000 (0.0000 + j2.7888) x 1042 1.1381 + jO.0000

100 (0.0000 + j3.7753) x 10185 1.0034 + jO.O000 (0.0000 + j5.0849) . 10115 1.0661 + jO.0000

200 1.0017 + jO.0000 (0.0000 + j3.3446) x 10292 1.0323 + jO.0000

500 1.0007 + j0.0000 * * * 1.0128 + jO.0000

1000 1.0003 + j0.0000 * * * 1.0064 + j0.0000
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4 Conclusion

In this paper we introduce a technique which circumvents the need to compute very large or
very small special functions that commonly appear in eigenfunction expansions. This was
accomplished by introducing a set of well-behaved auxiliary functions which are equal to the
original special function with its asymptotic behavior factored out. When the eigenfunction
expansion is expressed in terms of these auxiliary functions, the summation can be simplified
resulting in well-behaved factors in the sum. The auxiliary functions can be computed via
modified recursion formulas.

This procedure is formally exact since we are not making any approximations - only
substitutions. Typically, when calculating summations of the type addressed here without
the use of the auxiliary functions, at some point in the summation (which needs to be
determined), an asymptotic form is substituted into the expression. The procedure described
herein avoids the need to switch functional representations thereby eliminating the need to
determine the value of the index to implement the asymptotic representation.

In this paper we have restricted our development of the auxiliary functions to the extrac-
tion of the asymptotic form of the function. The procedure is not limited to this asymptotic
extraction. Any functional form that is convenient for the formulation of the problem at
hand can be extracted in a similar manner.
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'H-ORIENTED' AND 'B-ORIENTED' METHODS
IN A PROBLEM OF NONLINEAR MAGNETOSTATICS:

SOME METHODOLOGICAL REMARKS

A. Bossavit
Electricit6 de France, 1 Av. du G6n6ral de Gaulle,

92141 Clamart

ABSTRACT

Problems which depend on a small parameter in their formulation can often be studied by a perturbation
approach. Whether the perturbation is "regular" or "singular" is important in many respects. In magneto-
statics, due to some inherent duality, both kinds of perturbation may happen, depending on the chosen
formulation ("b-oriented" vs. "h-oriented" methods). Singularly perturbed problems are numerically more
difficult than regularly perturbed ones. We suggest that this might explain why, as some re, -it numerical
observations seem to suggest, b-oriented methods should give better accuracy in a specific ss of
nonlinear magnetostatic problems at high permeability.

LNTRODUCTION

This paper is a case study, which butts on a methodological question of such generality
that it seems almost preposterous to address it in written form: how should the particular-
ities of a physical problem (here, the presence of "small parameters") guide the modeler in
the selection of a numerical method? This is a basic subject, one about which everybody
has definite opinions (and even, sometimes, strong feelings), but also an elusive one,
difficult to treat in a comprehensive way. (This is why there are relatively so few books or
paper collections devoted to mathematical modelling, like e.g., [ 1, 2, 3, 6, 7, 9, 11, 13, 15,
221. Why most of them seem so remote from the kind of mathematical modelling we do is
a puzzling question.)

One might say that, after all, this is quite normal. Why should "tricks of the trade" be
honored with formal dissertations? But a moment of reflection will show that some of the
most powerful of such tricks deserve to be thus treated, that they are, and that it is
eventually beneficial for all those concerned. Take Fourier analysis, for instance. On one
level, it is an efficient dimensionality-reduction device, which helps replace the numerical
solution of a fully three-dimensional problem with a series of simpler ones, in one or two
dimensions. On another level, it is the practical and usable by-product of a majestic
mathematical theory: harmonic analysis [ 12, 171. Is this a coincidence? Probably not.
The development of the theory was stirred by the efficiency of what was at the time a
modelling trick, the use of trigonometric series in the study of heat transfer, and it has
payed back largely, as far as mathematical modelling is concerned. This is the classical
example of a practical modelling tool-a trade trick-backed by a strong mathematical
theory, and of the dialectics of their historical development. Other examples will come to
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mind (the "least squares" trick in relation with control and identification theory, some
aspects of Geometrical Diffraction Theory, some statistical tests...).

The small parameter issue (an instance of which will be presented in a moment) might
deserve such a status. Here there is, no doubt, a trick: use dimensional analysis to expose
"small parameters", identify the corresponding terms in the equations, drop them. There
is also a grandiose theory, or rather, theories: asymptotic analysis, perturbation theory.
But the theory appears incomplete, it lacks unity, and the trick itself is far from being
fail-safe: when your equation is - e u" + u = f, or - u" + e u = f, should you drop the
c-term, or not? (Think of F as related, for instance, with the skin-depth.) The answer to
this particular question is known, but lots of similar ones are still to be addressed. Here is a
rich field of study, full of prospects for both intellectually stimulating mathematical
theories and usable practical recipes.

Yet, case studies may prove more effective than comprehensive studies of large
scope, at this stage. One such study comes from the experience of a small
electromagnetism community (the "TEAM workshop", [22, 231) whose emphasis is on
low-frequency and static situations. The test-case, described below in general terms, is a
non-linear magnetostatics problem on which the same observation has been made by
several independent investigators: numerical methods based on the use of the vector
potential tend to perform better than those using a scalar potential. This calls for an
explanation, which is the theme of the present paper. In short, there are two "small
parameters" in this problem, the ratio of the airgap to some characteristic length, and the
ratio of permeabilities in the air and in the iron. Their interplay results in the possibility
of formulating the problem as a perturbation with respect to some similar, much simpler
problem. This is a standard idea. What is new here is that, due to some symmetry inherent
in Maxwell equations, there are two ways to do this, based respectively on the use of the
scalar and of the vector potential, and that the nature of the perturbation is not the same for
both: it's "regular" perturbation in the former case, "singular" perturbation in the latter.
An attempt is made to link these facts with the numerical observations.

Similar situations where two small parameters are "competing", each one driving the
problem toward different limits, seem to be common to other areas of electromagnetics,
for example, skin effect, current flow around a crack, and even (for higher frequencies)
surface impedance.

'H-ORIENTED' AND 'B-ORIENTED' METHODS IN MAGNETOSTATICS

We shall consider the following general situation (Fig. 1): a coil C (sustaining a
given, permanent, current-density jg), and a ferromagnetic piece M. The whole space is
E, and A = E - C - M is the air-region. A non-linear behavior law b = F(h) is given (no
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hysteresis). For the present discussion, we assume a F such that vectors b(x) and h(x)
are collinear at all points x in M, and that b(x) vanishes if h(x) does. One is requested
to compute the fields b and h. The relevant equations are

(1) curlh=j' in E, b=F(h), divb=0 in E.

M M

M M M

U I I

Figure 1. A typical problem (left). Definition of surface 7. and domain M, to be
used in the sequel (right).

We are only interested here in comparing the accuracy achievable with various
methods, not in things like the computing time, the number of steps in iterative
procedures, etc. So we may consider a linear problem with the same solution as (1),
namely

(2) curlh=j g in E, b= h, divb=0 in E,

where p is the function x --- Ib(x)lh(x)l, as computed from the actual solution I b, h).
Whatever can be said about the merits of various methods as regards (2) will thus be
relevant to (1).

The ratio [t(x)/K, is a feature of the solution (and as such, it depends on the imposed
current j1). It is usually high (about 2000, typically), but tends to decrease when the
driving current j9 is increased (saturation phenomenon). Let us call F the average of
po/p(x) over M. We define, for all x in M, g, (x) = E p(x). Note that 111 is close to P,,
except perhaps in saturated zones. This F- is one of the small parameters alluded to in the
Introduction. It will play an important role in what follows. The other small parameter is
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the ratio d/L of the gap-width d to the average length L of the magnetic circuit M. We
shall assume that d/L, though small, is still large with respect to c thus, the reluctance of
the whole device is mainly due to the air gap. This is the assumption used in the TEAM
workshop study, and is the rule in problems of this kind. (But the assumption is a crucial
one: if the reluctance was mainly due to the iron core, this would modify our conclusions.)

Although the discussion will be limited to linear problems, we are not losing anything
significant in generality, because one can always tackle (1) by iterating on pt, Newton-
Raphson style, a linear system being solved at each step. In fact, almost all methods in
actual use in nonlinear magnetostatics seem to rely on this approach. They fall into two
main families: 'b-oriented' methods, which yield b (for instance by computing the
magnetic vector potential), and 'h-oriented' methods, which aim at h (for instance by
computing the magnetic scalar potential). For the sake of definiteness, let us formalize
this:

Definition 1. A vectorfield h [resp. b] is said "curl-conformal" [resp. "div-
conformal"] if its tangential [resp. normal] part is continuous across all suifaces in its
domain of definition.

Definition 2. A method will qualify as "h-oriented" [resp. as "b-oriented"] if it
computes h [resp. b] in such a way that its tangential [resp. normal] continuity is exactly
enforced, i.e., if it yields a curl-conformal h [resp. a div-conformal b].

Let us develop an example of b-oriented method. A tetrahedral mesh is first
designed, large enough to cover M, C, and enough of the air-region to justify neglecting
what happens outside the meshed volume. Let 9 be the set of nodes. Let kn be the
"hat-function" associated with node n (i.e., the unique continuous, piecewise affine,
function equal to 1 at node n and to 0 at all other nodes). Call IP' the set of all vector
fields of the form

(3) a= IE N an X..,

where the degrees of freedom (DoF) a. are vectors, one per node. Now look for a in
IP' such that

(4) JE - curl a. curl a'= zj.a' V a'e IP 1

(the so-called "weak form" of the equation curl(p - ' curl a) =j ). This is a linear system in
terms of the 3 x N components of the a ns (N, the number of nodes in the mesh). There
exists a solution (because div jS = 0), perhaps not unique, but anyway, all solutions will
have the same curl. (Numerical difficulties that one may encounter in solving (4) are not
our concern.) This is a b-oriented method, because it gives b = curl ", thus enforcing the
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essential requirement about the continuity of the normal component of b across all
surfaces, including the faces of the mesh. The field h = g-1 curl a fails to have the
symmetric property of continuity of its tangential part through surfaces. This is so
because the relation curl h = j1 is only weakly enforced by (4).

On the other hand, the well-known "single magnetic potential" method is h-oriented.
Its principle is to look for the field h in the form h = grad (p + h , where hg is a field that
satisfies rot h5 =j and div he = 0. (Such a field can be constructed from j by Biot-
Savart integration.) The unknown in this problem is thus the potential (p. According to
the general finite element approach, one thus has to find a function (p of the form

(5) T = 7n N n

such that

(6) J 9p (grad (p + h). grad (p' = 0

for all test-functions (p' themselves of the form (5). (This is a way to enforce the
condition div(.th) = 0, in weak form.) Here the (pus are scalar degrees of freedom. This
time h has the required tangential continuity, but b = g h fails to have normal continuity,
because div b = 0 is only weakly enforced: the method is "h-oriented".

Remark. Note that p is single-valued here. There are variants in which a similar, but
possibly multivalued magnetic potential is used [ 19], or more than one potential [ 18].
Clearly, such methods also are h-oriented.

Not all methods fall in one of the previous categories. A method can have both
orientations. But in that case the behaviour law b = l h will fail to be exactly satisfied, in
general. (This point is developed in [5].)

Now the scene is set. We shall argue as follows: "b-oriented" methods should in
general work better, because the smallness of the ratio jit/t results in a regularly
perturbed problem with such formulations, whereas "h-oriented" methods suffer from
singular behavior with respect to this same parameter. Therefore, they are more sensitive
to numerical error.

SINGULAR VS. REGULAR PERTURBATIONS

Let us first recall the difference between regular and singular perturbation, with the
help of a simple example. Suppose we have to solve the two-points boundary-value
problem
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(7) -u" + e k(x) u = f, u'(0) = 0, u(1) = 0,

for a numerically small value of E, and a given positive function k. Note that this is
equivalent to minimizing the functional Fe(v) = fl 11 (Iv,12 + Ek Iv12- 2 fv) among all
those in the set V = (v E C°[0, 1]" fl0. Iv'12 < 0 v(1) = 0), which can easily be done by
numerical methods. But instead, in order to take advantage of F's smallness, one would
rather make use of the "limit-problem", corresponding to F = 0, whose solution u0 is
obtained directly, by quadratures, without having to solve a linear system. The idea is to
expand u as uo + E u, + . . ., and to throw this into (7): again, u , can be obtained by
straightforward integration, the same way u0 was. And so on. Problem (7) is a
perturbation of a simpler one (namely, to find u such that - u" = f, u'(0) = 0, u(l) = 0),
and therefore can be solved by a cascade of similar problems. Note that uo still achieves
the minimum of some functional (namely, F0(v)) over the same set V. This is what makes
the perturbation "regular": the limit solution is solution to the limit problem, as obtained
by setting , = 0 in either (7) or its equivalent variational formulation, "minimize F,(v)
over V". Note also that u. and its first derivative both converge (in the sense of quadratic
means) to u0 and u'0 respectively.

In contrast, "singular perturbation" occurs with

(8) - c u" + k(x) u = f, u'(0) = 0, u(l) = 0.

If one wants to solve this numerically, the smallness of e imposes a small discretization
step, which is cumbersome, so making use of the limit problem seems again a good idea.
But now two things go wrong. First, the would-be "limit-problem", i.e., (7) with E = 0, or
its variational version, "minimize fl0, I1 (Ik Iv, 2- 2 f v) over V", has no solution. Next,
when one relaxes its requirements by dropping the boundary conditions, the solution u0
of the relaxed problem, "minimize over L2([0, 1])", which is uo = f, is not the limit of u,
in the above sense: only u, converges towards u0 in L2, whereas u', does not convelge to
u' 0 (Fig. 2).

Singular perturbation is thus characterized by the fact that, when passing to the limit,
the solution "escapes" from the set where it naturally lives, and while it still does converge
to something, it is in a weaker sense, and to an object which belongs to a larger universe. It
does not mean tbqt the (non-acceptable) "limit solution" u0 is useless as a stepping stone to
obtaining the true solution, u, of (8). Indeed, u0 is a term in some asymptotic expansion
of u., that can be derived via a moderately involved process called "matching asymptotic
expansions". (Some references to these things are [ 10, 14, 16, 20, 21].) Quite often, a lot
of numerical work can be avoided by such an asymptotic approach to the solution. This is
so because, from the numerical point of view, singularly perturbed problems are tougher
than regularly perturbed ones. In the case of (8) vs. (7), a glance at Fig. 2 shows why: the
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step-size has to be very small, at least in the "boundary layers" near the ends of the
interval.

U.

0

Figure 2. Solution of (7) for E small (k = 1).

PROBLEM (2) AS A PERTUBED PROBLEM

For reference, let us write weak formulations analogous to (4) and (6), as they stand
before any commitment to particular finite elements has been made. Call A (resp. (D) the
set of all square-integrable ,,c,, fields (resp. functions), with a square integrable curl
(resp. gradient), over the whole space. The weak formulations are, for the (b-oriented)
"a-method": find a, E A such that

Je Wi' curl a. curl a' = JEj9. a' V a' c A

(which can be rewritten as

(9) fE- Mpo-' curl a, . curl a' + E fM1 - ' curl a,. curl a'= JEj . a' V a' e A),

and for the (h-oriented) (p-method: find (p, c (D such that

fE t (grad p, + h8) •. grad V' = 0 Vqp' ECD

(which can be rewritten as

(10) fE- m p. (grad (p + hg). grad (p' + E-l M fmi (grad 9. + h9). grad (p'

=0 Vp 0' C-D).
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Remark. one should compare (9) with the following:

f auexu'+e kuu'=ffu' V u'e U,

which is equation (7) in weak formulation. The analogy we rely on is due to the presence
of the small parameter c in front of the second integral in both cases.

Let us now see in which way our problem (2), when formulated 4s (9) or as (10), can
be considered a "perturbation" of some simpler one. A difficulty is that there are two
small parameters in the picture: the above ratio e (- g0/g), and the ratio d/L of the
gap-width to the circuit-length. The analysis in terms of two such "competing" small
parameters is quite interesting; it leads-depending on which parameter dominates--to
very different limit models (called "significant degenerations" in [10]), which do have
meaningful interpretations within the present context. (See an application to skin-effect,
and to the concept of "surface impedance" [8], in [4].) There is no space here to justify our
main assumption that e, not d/L, is the dominant small parameter in the present case: this
would call for some lengthy dimensional analysis (whose principles, anyway, are familiar
to all readers). We cannot either dwell on the Taylor expansions in terms of e, and similar
techniques, by which models (11) and (12) below are derived: although these are familiar
and elementary mathematical tools, their application to the present case requires a heavy
apparatus of functional analysis, that seems out of place. So we shall proceed more
dogmatically: first, some notation, next a terse statement of the results, then some a
posteriori justification.

Let us call M the union of M (cf. Fig. 1) and the gap, and Z a surface congruent to
the pole surfaces, located in the middle of the gap. Enlarge space D by accepting into it
functions which are allowed to be discontinuous across I. Call T the bigger space so
obtained.

Now, the limit problems. The one in terms of the vector potential a splits into two
successive problems: find ao e A such that both conditions

I JE- Wr go- ' curl ao. curl a' = JEjI . a' V a' r A,
(11) I

I curl(jgt - ' curl a.) = 0 in

hold. The one in (p is find (po E T such that both conditions

I JE-I to(grad (po + h ) .grad q' = 0 V (p' .

(12) I
I gradq o+hs=Oin -:,
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hold. Then b = curl ao and h = grad (po + hg are the limit solutions.

Why, on physical grounds? Imagine the air gap is shrunk to X, while the ratio e=
Jio/ig, tends to zero. Then h tends to zero in the core, hence the second line of (12), and
(since its circulation is held constant) tends to infinity in the air gap, hence the eventual
discontinuity of the magnetic potential. As for b, one has div b = 0 and curl(j_ - ' b) = j 9
out of the core, and its flux lines impinge orthogonally to the surface of the core in the case
of an infinite permeability: indeed, the first line of (11) implies all that. The second line
of (11) describes what happens inside the core, and (since the tangential values of a are
now known, from solving (11), first line) constitutes a well-posed problem. (All this,
though it may not be obvious, relies on the above observation that d/L is large with
respect to F)

Remark. Neither (11) or (12) are practical ways to solve the problem, if only because of
the non-linearity: g,, of course, is not known in advance, so no useful information on the
field in the core could be obtained that way. (The stray-field thus obtained, however,
might be reasonably accurate.) We do not advocate the actual use of limit models in the
specific case of Pb. 13. We just expect to get insight-about how difficult it will be to
solve the true problem-from an examination of the limit one.0

Now it should be clear that the limit process from (9) to (11) is regular, while the one
from (10) to (12) is singular: for in the latter, there is this tendency of (P to "escape
from" space (D (towards the larger one T), while nothing similar happens to a,, which
stays in A.

The difference can be seen more concretely from what happens in the air at the
boundary of 1: a singularity of qp (actually, a jump-discontinuity), whereas a is regular
(Fig. 3). Figure 3 is two-dimensional for convenience, but what is described here is a
feature of the three-dimensional situation: the magnetic potential changes very rapidly
across the airgap (Fig. 3, right). So, if one tries to model the situation by treating the
airgap as a surface, across which (p can be discontinuous-which is precisely model
(12)-the computed (p will look as on the left part of the figure, with an obvious
singularity. Our point is that, although this limit model is not the one which is actually
solved for, the latter is sufficiently closed to it for the singular character of the limit case to
be felt, in various ways, when actually solving for (p.

The nature of the finite elements has not been a factor in this discussion. So we may
conclude that regularity (resp. singularity) pertains to the whole family of a-methods
(resp. (p-methods). Singularly perturbed problems are notoriously more difficult to solve
numerically than regularly perturbed ones. Hence the tentative conclusion: b-oriented
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methods as a whole should be considered with a favorable bias, for this particular
problem. Of course, this should not be construed as a seal of approval for any particular
b-oriented methods.

M M

Figure 3. Flux lines in the vertical symmetry plane, near the edge of the air gap,
showing the singularity of the field: left, as predicted by the limit models, right, as it
really is. The situation is nearly two-dimensional. In that case, a is a scalar, whose
isolines are precisely the flux-lines shown. Dotted lines are isovalues of (p, the
magnetic potential. Clearly, a is continuous at point P, but T is not, in the limit
model.

CONCLUSION

Let us summarize the main line of our argumententation. The problem which is
actually solved (the one with a small but non-zero c) is closed to a singular limit when
h-oriented methods are used, and to a regular limit when b-oriented methods are used. So
in the critical region (near the edges of the poles), h-oriented methods are likely to behave
in a nastier way than b-oriented ones. For instance, they may require a finer mesh if the
same precision is to be achieved. But meshes, as a rule, are not what would be desirable,
they are what computing resources allow. So we may expect, on the average, better
precision from b-oriented methods in reported numerical experiments. This seems
indeed to be the present trend, as regards this particular problem.

We have seen how an analysis of the nature of the perturbation (regular or singular)
in a small parameter problem can be used to predict the relative success of a particular
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family of numerical methods with respect to another. This was, at best, heuristics. Can the
reasoning eventually be refined into one that would yield precise, provable, statements?
Perhaps, but I tend to think efforts in this direction would be misdirected. In the present
state of the art, it seems better to view the above explanation as a route towards a
conjecture, to be confirmed or rejected on the basis of numerical experiments: that, for
these problems of non-linear magnetostatics with high relative permeability, "b-oriented
methods work better".
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