AD-A255 5
/I 'NI!II’IH!IHII

NAVSWC TR 91-588

ENGINEERING OF MASSIVELY INTERCONNECTED
COMPUTER SYSTEMS

BY MICHAELJENKINS CHARLES YEH STEVEN HOWELL

UNDERWATER SYSTEMS DEPARTMENT

1 OCTOBER 1991

Approved for public release; distribution is unlimited.

NAVAL SURFACE WARFARE CENTER

Dahigren, Virginia 22448-5000 @ Silver Spring, Maryland 20903-5000

DEFENSE TECHNICAL INFORMATION CENTER

HAARAIN

Ny
S
™

92 9 15 060

NAVSWC TR 91-588

ENGINEERING OF MASSIVELY INTERCONNECTED
COMPUTER SYSTEMS

BY MICHAEL JENKINS CHARLES YEH STEVEN HOWELL
UNDERWATER SYSTEMS DEPARTMENT

1 OCTOBER 1991

DTIC QUALITY INBPECTED 3

Approved for public release; distribution is unlimited.

- Aceséslon For
= .. T
~teal
>ryt Ta

NAVAL SURFACE WARFARE CENTER
Dahlgren, Virginia 22448-5000 ® Silver Spring, Maryland 20903-5000 -

NAVSWC TR 91-588

FOREWORD

This report provides an analysis of the design of communication
intensive systems. It presents background information on resources used in
such a design, and discusses research conducted in this field as presented in
the literature. It also describes the current status of on-going research in
this area.

This work was performed at Naval Surface Warfare Center (NAVSWC), under
the Massively Interconnected Processor Prototype Task, within the Systems
Design Synthesis Technology Project (RS34P11) of the Engineering of Complex
Systems (ECS) Technology Program. The work is sponsored by the Office of
Naval Technology (Code ONT-22). The goal of the Massively Interconnected
Processor Prototype Task is to improve current ad hoc design methods. This
will be done through development and augmentation of techniques for designing
and implementing communication intensive systems through careful and
predictable evaluation of algorithmic and architectural alternatives.

The authors wish to thank their sponsor, the Office of Naval Technology,
especially Cmdr. Jane Van Fossen, USN (Ret.) and Elizabeth Wald. We
appreciate the efforts of Phil Hwang, Harold Szu, and all who helped to refine
the Massively Interconnected Processor Prototype Task. We also thank those
who helped to edit this report, especially our technical writer, Adrien
Meskin.

Approved

O] (et

C. A. KALIVRETENOS, Deputy Head
Underwater Systems Department

i/ii

NAVSWC TR 91-588

ABSTRACT

This document provides an analysis of design elements whose
implementation involves algorithmic tasks and hardware resources which must
handle large amounts of data or which otherwise present communication (data
flow) impasses to the timely (or functional) fulfillment of a design. It
proposes a methodology for evaluating candidate resources and selecting those
which reduce communication complexity and meet system requirements. The
techniques of this methodology should integrate with other steps in the design
process so that necessary information is not ignored or lost. They should
also be easily automated, since the number of combinations involved may be
intractable if attempted by hand. As an indication of future research, it
presents background information on resources used in the design of such
systems and addresses the implications of introducing physical constraints on
these design elements.

iii/iv

NAVSWC TR 91-588

CONTENTS

Chapter

1

2

3

4

INTRODUCTION
1.1 BACKGROUND .
1.2 PROBLEM
1.3 APPROACH .

PARALLEL ALGORITHM CHARACTERIZATION .

2.1 THE NATURE OF PARALLELISM

2.1.1 FUNCTIONAL PARALLELISM .

2.1.2 DATA PARALLELISM . .
2.2 CHARACTERISTICS OF PARALLEL ALGORITHMS .
2.2.1 OPERATIONS .

2.2.2 DATA .

2.2.3 CONTROL

2.3 TECHNIQUES FOR ALGORITHM CLASSIFICATION

2.3.1 CHARACTERIZATION OF EXISTING ALGORITHMS

APPLICATION DOMAIN GROUPING

2.3.2 CHARACTERIZATION OF ALGORITHMS IN

DEVELOPMENT

2.3.3 ALGORITHM SPECIFICATION

COMMUNICATION NETWORK CHARACTERIZATION .
3.1 CHARACTERISTICS OF INTERCONNECTION NETWORKS

3.2

3.1.
3.
3

-

WWwWwthgwwwww

1
1
1
1
1
ARA
2
2
2

WMo~ OW; S

1

.2
.3

NODE ADDRESS .o
INTERCONNECTION TYPE .
INTERCONNECTION FUNCTIONS/ROUTING
ALGORITHMS . . .
CONTENTION/ARBITRATION SCHEMES .
BANDWIDTH .
EMULATION . .
PARTITIONABILITY/SCALABILITY .
FAULT TOLERANCE

LEL ARCHITECTURE TAXONOMIES

FLYNN'S TAXONOMY .
FENG’S CLASSIFICATION . .
OTHER TAXONOMIES/SURVEYS .

IMPLEMENTATION TRADE-OFF

4.1

4.2
4.3
4.4

CASE

I:
CASE 1II:
CASE III:
METRICS

FIXED NETWORK AND VARIABLE ALGORITHM

FIXED ALGORITHM AND VARIABLE NETWORK .
BOTH VARIABLE NETWORK AND ALGORITHM .

a2
k
[1]

=
1
W

NN RNNDNDNDNDNDND
[[
W PWWN s

N
'
w

NN
[[
~N o

wWwww
1 1 []) 1
-

'
o~ oYW PWN

WWwWwiwwiwwlu ww
[l '

S
'
R NN ==

NAVSWC TR 91-588

CONTENTS (Cont.)

Chapter

5 MASSIVELY INTERCONNECTED MODEL DESIGN ELEMENTS
5.1 PROCESSING ELEMENTS
5.2 MEMORY MODEL . .
5.3 INTERCONNECTION NETWORKS .
5.3.1 FULLY CONNECTED
5.3.2 STATICALLY CONNECTED .
5.3.3 DYNAMICALLY CONNECTED

6 CONCLUSIONS AND RECOMMENDATIONS
REFERENCES .
BIBLIOGRAPHY .

DISTRIBUTION .

ILLUSTRATIONS

Figure

1-1 PATH TO HARDWARE IMPLEMENTATION

1-2 APPROACH TO MASSIVELY INTERCONNECTED DESIGN
2-1 TYPES OF PARALLELISM . . .
3-1 ARCHITECTURES WITH STATIC INTERCONNECTIONS .
3-2 ARCHITECTURES WITH DYNAMIC INTERCONNECTIONS
4-1 CHOICE LIMITATIONS AFFECT TRADE-OFFS .

TABLES

Table

2-1 TIME STEPS FOR QUADRATIC SOLUTION

vi

8-1

(L)

NAVSWC TR 91-588

CHAPTER 1

INTRODUCTION

This document describes a research effort under the Engineering of
Complex Systems (ECS) Technology Block at the Naval Surface Warfare Center
(NAVSWC). It provides an analysis of design elements whose implementation
involves algorithmic tasks and hardware resources which must handle large
amounts of data or which otherwise present communication (data flow) impasses
to the timely (or functional) fulfillment of a design. It proposes a
methodology for evaluating candidate resources and selecting those which
reduce communication complexity and meet system requirements. The techniques
of this methodology should integrate with other steps in the design process so
that necessary information is not ignored or lost. They should also be easily
automated, since the number of combinations involved may be intractable if
attempted by hand.

Some sections of this document represent the intended structure of
future research in this task. Background information has been provided for
design resources and metrics to show the direction of the work, and to provide
motivation for the foundation of the first chapters. These sections will be
updated and expanded in later versions of this paper.

Chapter 2 addresses the classification of algorithms through
characteristics which completely describe their nature and which can be
related to implementation strategies. A similar treatment is given for
interconnection networks in Chapter 3. These characterizations are used in
Chapter 4 to examine trade-offs and evaluate the effectiveness of combinations
of implementation pairs. This chapter also explains the metrics used for
evaluation. Chapter 5 specifies a mechanism for describing commercial and
custom massively interconnected model (MIM) components in a format that is
acceptable to a toolset which would aid in simulation and evaluation of
implementation alternatives.

1.1 BACKGROUND

Ever increasing demands are made on Navy systems. Examples of these
demands include greater functionality, faster processing, more capacity,
better reliability and survivability. This is partially a reaction to the
environment in which the users find themselves, and to the lure of performance
and capability provided by insertion of leading-edge technology.

The development of these systems for use in Navy applications is
hindered by two growing forces: complexity in the scope of the system itself
and complexity in the technologies which are used to implement it. This
applies to both new development thrusts and upgraded plans for older systems.

1-1

NAVSWC TR 91-588

These complexities cannot be accommodated by standard design techniques.
New complexities require new ways of thinking about design components and
their integration.

1.2 PROBLEM

No matter how careful the designers intend to be, current methods for
producing designs of large, complex systems are one-shot processes. Hardware
resources are usually chosen first on the basis of "standard" machines or what
is most readily available. This leaves the solution of many performance
problems to "clever programmers" who can exploit (often undocumented) aspects
of the hardware to meet the required function and throughput. Upgrading
functionality or performance may then be impossible, since the original issues
of system layout and partitioning were never adequately dealt with; therefore,
the effects of new functions or resources would be indeterminate.

One response to the problem of large system complexity has been to
design relatively non-complex systems and integrate them. Another response is
to use current design methods and resources which employ advanced technology
and architectural elements. Either way, the problem of distributed function
and control must be dealt with.

During the design process, problems arise when it is discovered that
certain functions that are critical to system operation exceed the capability
of proposed resources. These problems largely fall into two categories:
computation load and communication complexity. Computation load (i.e., how
much processing there is to do) is measured by counting the instructions
required to execute the solution on a generalized processor. It is addressed
by such remedies as novel (and usually more powerful) processor architectures
and balancing task loads among several processors. Communication complexity!
is a measure of the performance overhead imposed on interprocess communication
due to the processor interconnection network. This cost can be harder to
address, since the symptoms may not show up in the small test cases typically
used to shake-down a system.

The sources of communication complexity are various. Some reasons are

* the intercomnection network (ICN) of a system (or more likely, a
subsystem) is an ill match for the dataflow of the algorithm to be
implemented;

* the actual data load overwhelms the network (presumably designed for
a lesser load);

* the network is used for a purpose for which it was not originally
intended (such as when requirements change after implementation or when
an architecture is imposed on the designer for reasons of cost,
compatibility, or reliability).

The problem of communication complexity is not solved by faster
components. In fact, faster components may actually exacerbate the problem by
making more data available when the network is already congested! Most
computers in use today are based on the Von Neumann processor architecture or

1-2

NAVSWC TR 91-588

some variant of it. As applications for these computers start to reach the
capacity of their processing capabilities, more power is sought from faster
technology. A close study of the workings of the processor show that this is
not an adequate solution. In particular, serial execution of serially
supplied instructions on serially supplied data creates bottlenecks which more
powerful components can assuage but not overcome. It becomes clear that new
processor architectures are needed.

In addition to processor technology, many new architectures have been
proposed for parallel processing.? These propose both better communication
resource technology and network topology. As in the case of faster
processors, this will be at most a quick fix. Most new architectures are
created for a specific application; it is not clear that the network may be
reused for other applications, or the trade-offs required are so severe that
implementation on a serial architecture may yield better results. Also,
descriptions of algorithms assume that data is processed as it is produced;
delays caused by routing or distance will slow down a system no matter how
fast that system can process. An algorithm which displays exponential
parallelism will not show promised improvement on a network in which
interprocessor communication is linear.

1.3 APPROACH

The approach taken for the work by the Massively Interconnected
Processor Prototype (MIPP) Task of the Systems Design Synthesis Technology
Project (RS34Pl1.4) is to develop a comprehensive methodology for the design
of massively interconnected systems. This project is part of the Engineering
of Complex Systems Technology Block sponsored by the Office of Naval
Technology. These techniques used in this methodology will be incorporated
into the system development procedures which are being defined as the result
of this Block. It will use information supplied by the Requirements
Specification and Traceability Task and the Real-Time Systems Design Capture
and Analysis Task. The process described by these techniques will complement
those of the Design Structure Allocation and Optimization Task, which examines
computation load on a processor network at a more abstract system description
level. The data generated by use of the techniques of these tasks will be
enhanced by the results of the System Modeling Technology Task.

In a more immediate sense, the data generated by use of these techniques
will be in a form that can be turned into practical designs (see Figure 1-1).
Algorithms will be described so that their implementation will suit the
conditions of the particular system design. Realistic architectures will be
described so that they may be quickly tested and implemented. This may be in
the form of a commercial-off-the-shelf (COTS) machine of the desired
architecture, a custom machine built of COTS components, or a machine
specified in a hardware description language and completely custom-built from
plans that are generated by a silicon compiler.

The first step in these techniques is characterizing both the candidate
algorithms for implementation of the desired function, and the resources by
which they may be implemented (see Figure 1-2). From this, workable solutions
may be determined which are based on requirements and constraints. There have
been efforts made to characterize the components of distributed algorithms and

1-3

—

NAVSWC TR 91-588

resources.>'* These include studies of interconnection networks and

production of parallelizing compilers. Some efforts are quite complete and
well represented in the literature; others are less well represented. In any
case, there is no description of a consistent methodology for examining the
trade-offs of using certain resources to implement certain algorithms, or
determining where the break-even point occurs when deciding to use custom
designs over off-the-shelf ones. The approach of this research effort is to
pull together the characterizations already done, fill in the gaps, and show

how these can be used to accomplish the design of a massively interconnected
system.

ECS

TASK 4 MIPP

INFLUENCE OF L11, L12 GUIDELINES

!V ARCHITECTURE VHDL SILICON

i COMPILER
l EVALUATION { LIBRARY

[CcoTS FOUNDRY

HWPATH. M

FIGURE 1-1. PATH TO HARDWARE IMPLEMENTATION

This research will result in a method for the development of those
portions of systems whose data handling requirements (as opposed to
performance requirements) are the driving factor in algorithm selection and
resource management. It will enable systems engineers to examine the
algorithmic and architectural options for their design, make explicit the
trade-offs which are involved in meeting the requirements, and make
recommendations in the selection of resources. Attributes of the problem
(problem size, data volume, data structure, and throughput requirements) will
be used to determine appropriate distributed algorithms and processor network
topologies. The latter information will come from a component library
(database) of distributed system design paradigms/resources. A mapping can
then be done between the algorithm(s) and resource network to determine the
effect of communication complexity. The method will produce explicit

1-4

NAVSWC TR 91-588

information concerning the viability of the mapping, alternate design
strategies, and issues involved.

METHODS DEMONSTRATION
CHARACTERIZATION DEVELOPMENT OF USEFULNESS
CHARACTERIZE MAPPING
MIM TECHNIQUES
PROTOTYPE
CHARACTERIZE COMPONENT
ARCHITECTURES LIBRARY

DEFINE FORMAL PARAMETERS THAT ALLOW EVALUATION OF MIM
COMMUNICATION AND PERFORMANCE PARAMETERS

DEVELOP FORMAL TECHNIQUES THAT OUTLINE A SYSTEMATIC MAPPING FROM
ALGORITHMS TO ARCHITECTURES USING COMPONENT LIBRARY

CREATE PROTOTYPE THAT EMBODIES DESIGN TECHNIQUES AND USE RESULTS
TO REFINE PROCESS

TASKC ALLoEN

FIGURE 1-2. APPROACH TO MASSIVELY INTERCONNECTED DESIGN

NAVSWC TR 91-588

CHAPTER 2

PARALLEL ALGORITHM CHARACTERIZATION

An algorithm is a rule or a step-by-step procedure for solving a
problem. Since this is two levels of abstraction away from implementation
(specification and coding follow), it should be easier to manipulate t..an an
interconnection network when trying to find an appropriate ma*ch. It also
follows that the characterization is more abstract and harder to quantify.
Execution of the algorithms selected for solving the problem of massively
interconnected systems introduces complexity when required to process high
data volumes and rates, or +hen they have highly interdependent control
mechanisms. These constraints dictate the trade-offs that must be made on
other non-orthogonal attributes. The identification of these parallel
algorithm characteristics and their possible value sets is the “irst step in
creating an intermediate description for comparison to processoxr topologies.
It is then useful to create categories of algorithms so that a relative
comparison ca:l. L2 made between similar ones, and new ones can be compared as
well. This will also aid in building experience in matching algerithms to
networks.

2.1 THE NATURE OF PARALLELISM

Parallelism is the ability of two or more parts of an algorithm to be
accomplished simultaneously. It is inherent in the problem to be solved and
the tasks required for a solution. Although it can be recognized in an
algorithm which has already been specified, exploitation of parallelism can be
made easier when parallel implementaticn is intended from the start. There
are two basic types of parallelism that can be recognized in an algorithm,
depending on the types of functions to be performed and the data to be
manipulated: functional parallelism and data parallelism.

2.1.1 Functional Parallelism

Functional parallelism is found in algorithms which consist of several
completely different tasks. The tasks are related to each other by the fact
that they contribute to the common function. Completion of one is, however,
not necessarily a prerequisite for execution or completion of the other. A
simple example is the second degree quadratic equation. For a polynomial of
the form ax? + bx + ¢ = 0, this is stated as:

x = —b t yb* - dac

2a

(2-1)

2-1

NAVSWC TR 91-588

Table 2-1 shows the number of time steps required to solve this equation
for one root. In the table, t; is the result of the operation carried out in
the ith time step, and t; ; is the jth parallel operation in the ith time
step. Since binary arithmetic operators are independent, then all operations
for which there are two operands ready can be performed at once (unary
operations can always be performed at any time).

TABLE 2-1. TIME STEPS FOR QUADRATIC SOLUTION

Time Step Sequential Parallel
Execution Execution

t, - (b) -(b), (a)*(e), (b)%, (2)*(a)
t, (a) * (c) (4) * (ty5)
t; (4) * (ty) (ty3) - (t2)
t, (b)? J (t3)
tg (ty) - (t3) (ty.1) * ()
tg J (t5) (ts) / (t1.4)
€, (ty) £ (t5)
ty (2) * (a)
tg (t7> / (ta)

1f carried out sequentially, the computation would take nine steps.
Four operations are independant and may be carried out on the first time step.
If independent functions are performed simultaneously, the result is obtained
after only six steps. The difference is the measure of functional
parallelism.

These types of tasks are usually independent and exhibit high cohesion.
Tasks which are not independent may create problems on a common network. When
several tasks operate on the same data set, tokens or keys must be passed.
When synchronization is necessary, then control information must be
transmitted. Problems arise when this traffic is more cumbersome than the
needed processing.

2.1.2 Data Parallelism

Some algorithms operate on large amounts of data, such as those which
process sensor data. Frequently, the data can be partitioned into sets, and
the same algorithm can be used on each set (see Figure 2-1). The results of
these sets then either comprise the answer, or some post-processing can be
done on the reduced data to produce the desired outcome. The data set is said
to exhibit data parallelism. This type of parallelism is frequently exploited
in algorithms which manipulate matrixes, since under many operations they may
be independently partitioned. This sort of parallelism does not present
problems unless its implementation causes the data to be poorly partitioned,
or there are synchronization requirements. The degree of parallelism is
determined by the number of independent sets into which the data can be
divided.

2-2

NAVSWC TR 91-588

Task 1 Task 2 Task 3
[Common Data Set |
Process A
Task 1 Task 1 Task 1
Data Set 1
Process B

Parallelism: Functional (Process A), and
Data (Process B)

FIGURE 2-1. TYPES OF PARALLELISM

2.2 CHARACTERISTICS OF PARALLEL ALGORITHMS

Parallel algorithms may be loosely characterized according to how they
exhibit parallelism. It may appear in many aspects, including the operations
involved, the data used, or the control overhead required for process creation
and message setup.

2.2.1 Operations

The set of operations to be performed in completing an algorithm depends
on the level of abstraction at which development takes place. The operations
of the set may be small and related, such as the binary arithmetic operations
needed for the quadratic equation above (Equation (2-1)). They may also be
large and diverse, such as all of the operations which go into creating a
display. The operations required for algorithm development will influence the
cohesiveness of the tasks which make up the implementation. (Cohesion is a
description of how the tasks in a process are related.) Small operations
which are functionally related reduce the number of memory references and
require less synchronization. Large operations which contain non-related
functions will produce interdependencies and references across data spaces.
This attribute, at an instruction level, may determine the regularity ‘of the
network implementation. It will have an impact on where data may flow, and
which data paths are likely to be overloaded. The smaller and more regular

2-3

_—

NAVSWC TR 91-588

the operations, the more regular and tightly connected the network is likely
to be.

2.2.2 Data

The characteristics which have the most impact on communication
requirements in a network are those which relate to the data that the network
transmits. Data granularity and dependency are two examples of this.

2.2.2.1 Data Granularity. Data granularity refers to the size and
uniformity of a data element. A data element is the smallest piece or set of
data on which an operation can perform. Data elements which represent one
data point (a single scalar) or a set of highly related data points (an array
of data representing the value of one point over time) are considered to be of
small granularity, since the communication to transport them and the
processing to transform them is quick and regular. Data elements which
represent a set of loosely or arbitrarily related data points (a "record" or
"frame"” of data) will require more care in handling. In processing, one or
more items of the record may be required, but in general the entire element
must be requested and be received in its entirety before it can be
transformed. This places performance constraints on the network, which may
have to wait for all parts of a large data element to become available to form
packets, or maintain a dynamic connection for a long time.

2.2.2.2 Data Dependency. Data dependency, or data coupling, refers to
the relation of data elements to each other and to the operations performed on
them. They may have a regular arrangement, as in a matrix. They may have a
sequential relationship, such as intermediate results, where the results of
one operation become the operands for a second. Inputs may be represented by
a string of similar data with irregular arrivals, requiring irregular
scheduling of the operations to handle them. While low data coupling is
generally desirable in software design, dependencies inherent in an algorithm
or data structure may be easily handled by an appropriate network
architecture. The regularity of the dependency will be reflected in the
regularity of the network which can be used to implement the algorithm.

2.2.3 Control

Control information is another component of communication demand on a
network. An algorithm may require configuration information or sequencing
information to be passed from process to process, or from a master process to
subordinate processes. This is due to the method used to distribute and
manage execution of the tasks.

On a process level, this characteristic will show up as a pattern of
process creations and terminations. If this pattern is static, then it may be
determined before implementation and it will be easier to implement the known
operations in hardware. If it is dynamic, then creation and scheduling of
processes will be another task of the network. This will add control
information on the communication channels, which may be broadcast or may have
to be transferred to individual processes. Real-time applications will want
static patterns, but priority schemes demand dynamic ones.

2-4

NAVSWC TR 91-588

Control is generally exercised on the algorithm when it is implemented.
The way in which the algorithm is specified or implemented may contribute to
the communication burden required of the control processes set up by the
system and therefore on the network. This attribute is difficult to quantify.
In general, it can be reduced by careful partitioning of problems and data
sets, and of their allocation to appropriate resources. Indeed, proper
selection of tasks and resources is the point of this research.

2.3 TECHNIQUES FOR ALGORITHM CLASSIFICATION

The above characteristics can be used to classify algorithms and put
them into groups that will emphasize their similarities. This will make the
job of network selection easier by using prior experience with related
algorithms. Since an algorithm may be characterized at many stages during its
development, classifications exist at many levels. It will help the designer
in the long run to identify traits in the earliest stage at which they become
apparent. This will positively influence the network architecture selection.
There are many perspectives from which to view the development process, and
each will provide insights into the nature of the algorithm. It is not
important that the views (and characterizations thereof) look the same; in
fact, differences help to examine the nature of the problem, and thus explore
the solution space.

2.3.1 Characterization of Existing Algorithms: Application Domain Grouping

There are, of course, many algorithms already documented. It may be
preferrable to use one which is already specified to save time or maintain
compatibility. If not specified, one way to begin characterization of an
algorithm is to examine the application domain into which it falls. The
application domain is defined by similarity of function and operating
environment.

2.3.1.1 Digital Signal Processing. Algorithms in this area tend to
have functional parallelism, process level operations, data dependency and
coarse data granularity. The signals for processing usually originate from
different sensor platforms, and thus require different sets of process level
operations for processing. Examples of these algorithms are digital filters
and fast Fourier transforms.

2.3.1.2 Image Processing. Algorithms tend to have data parallelism,
instruction level operations, low data dependency and fine data granularity.
The images to be processed are decomposed into many small regions of variable
size. Uniform operations are applied to each pixel with the result used as
input to immediate neighbors. An example is edge detection.

2.3.1.3 Symbolic Processing. These algorithms tend to be characterized
by data parallelism, process level operations, high data dependency, and
medium data granularity. Symbolic processing is required by most artificial
intelligence applications, such as pattern matching.

2.3.1.4 Graphics Processing. This domain is complex, including both
manipulation of geometric objects and translation to a display image.

2-5

NAVSWC TR 91-588

Geometric manipulation algorithms tend to have functional parallelism, process
level operations, data dependency and coarse data granularity. Examples are
scaling, rotation, and translation of objects.

2.3.2 Characterization of Algorithms in Development

Characteristics of algorithms can be defined at stages in the
development process. Some characteristics will be determined by the method
used for development; others may need to be decided on in order to proceed.
Development starts with a plan for attacking a problem, which leads to a
logical model of the algorithm. Finally, the algorithm is formally specified,
and consequentially implemented.

2.3.2.1 Logical Model of Algorithm. A logical model of an algorithm is
the result of an analysis of the function to be performed. It is the formal
approach to the solution of a problem.

2.3.2.1.1 SEQUENTIAL MODEL. A sequential model of approach is
appropriate when there is no more than one thing to do per time step. It may
also be imposed by a hardware constraint (i.e., only one processor may be
allocated to the algorithm due to cost or hardware failure). While this
obviates the need for an interconnection network (and thus our consideration),
it is useful to note the costs of uniprocessor execution during development of
a parallel algorithm. This gives a baseline for measuring the improvement of
the parallel system. It also helps in estimating the effects of hardware
failure.

2.3.2.1.2 PARALLEL MODEL. A parallel model of approach is appropriate
when, at any time step, more than one thing can be accomplished. Note that
since time dependencies always exist, elements of the sequential case are
included here.

Sequential Requirements. It is occasionally necessary to impose restrictions
on the sequence of the performance of functions that may otherwise be
performed in parallel. This may be in order to ensure "correct" operation or
to fulfill a higher level requirement, such as safety. For example, a missile
may be armed at the same time it is fired. In the interests of avoiding damage
to the ship and crew, it may be desirable to delay arming until the missile is
well clear of the ship.

Divide-and-Conquer. Divide-and-conquer approaches address those problems for
which the data set or process set (task) can be broken up into several fairly
independent portions. The communication in this case can be of two types.
The first is pre- and post-processing management of processes. This is
central control information from a master processor, or handshaking
information from processors with distributed control. The second is the
transmission of intermediate answers (perhaps as operands for a higher level
function) or the aggregation of results to a central processor. 7This type of
approach is considered massively interconnected if control requirements are
numerous, or if the computations are small and the data set is large. In such
an environment, it is possible for the synchronization of the management and
aggregation of data to consume more time than that of the processing.

2-6

- T/

NAVSWC TR 91-588

Systolic. Systolic (and pipelined) approaches are relevant to a specific
class of problems with rigidly defined instruction and data relationships. In
these problems, the transformations performed on data are simple, few in
number, and can be applied rhythmically. The data flow itself is directed;
that is, the data structure is regular and elements of that structure are used
in a regular sequence of operations. The symmetry of this approach is so
rigid that a network of hexagonally interconnected processors is called a
"systolic array." This type of approach is also suitable for arrays of other
degree (connections per node) and dimension.

2.3.3 Algorithm Specification

Once a model of the algorithm has been constructed, it must be specified
in some formal manner such that it may be implemented. There are several
means for this specification, and each will reveal (or impose) characteristics
of the final implementation.

2.3.3.1 Sequential Specification. An algorithm may be specified by a
standard sequential specification method. A ubiquitous example of this is the
flowchart. Others include Nassi-Shneiderman diagrams and program description
language (PDL). These are the specification methods that are used for current
sequential high-level language compilers. They match the sequential flow of
the languages so well that elements of the intended coding language are often
used (generally recognized as bad design practice). These are usually
implemented using a library of functions prepared for the hardware. The
parallelism may not be obvious and frequently depends on the libraries used.
While these expressions may be logically rigorous, they do not lend themselves
to parallel computer implementation.

2.3.3.2 Functional Language. A functional language is used to express
the object transformations necessary to describe an application. It consists
of objects, definitions, and functions. Functions are defined and then
applied to objects to create new objects, or combined to create complex
functions. Sequence is not implied by order of expressions. Control
constructs are not used. This ensures that any expressions whose operands are
known may be resolved simultaneously.

2.3.3.3 Vector Notation. Algorithms may be expressed in a mathematical
notation where the operands represent vector quantities. These expressions
represent data which may be processed in parallel. 1In addition, expressions
which are not interdependent may also be resolved simultaneously.

2-7

NAVSWC TR 91-588

CHAPTER 3

COMMUNICATION NETWORK CHARACTERIZATION

In order to accurately assess the usefulness of a particular
interconnection network for a given application, it is necessary to precisely
describe the network. The description should focus on those aspects of the
network which address the problem at hand, in this case, the problem of
communication intensive systems. To this end, the general characteristics of
interconnections will be explored, and a useful taxonomy of architectures will
be described that will help the designer to make educated predictions about
the network'’s usefulness for a particular type of application.

3.1 CHARACTERISTICS OF INTERCONNECTION NETWORKS

Many architectures have been proposed for division of the computation
involved in the execution of parallel algorithms. Some are general groupings
of processors with communication paths to collect results; others are
carefully thought out arrangements whose data paths match that of the
algorithm for which they were specifically designed. The following represents
characteristics of these architectures and investigates their usefulness for
communication intensive applications.

3.1.1 Node Address

When discussing communication in interconnection networks, the
capability of the processor is usually considered an external property. Only
those features of the processor that describe the interface to the network
(e.g., the amount and rate of data pumped into the system) are considered.
The processors can be replaced by a node address that will uniquely identify
its position in the network. These addresses are often expressed in binary
form, with each digit representing one connection to the node (in a multi-
dimensional system). Then, any communication on the network is a
transformation of addresses, as shown in the section on interconnection
functions (Section 3.1.3).

3.1.2 Interconnection Type

The interconnections between nodes can be either static or dynamic. A
connection is static if the node addresses at each end are always the same
(see Figure 3-1). A node with static connections may only directly
communicate tu those nodes at the other end of the counnection; information
meant for other nodes must be routed through these. The extreme example of
this is a fully interconnected network; i.e., a one-to-one connection between

3-1

NAVSWC TR 91-588

each pair of nodes. The node addresses in this case need never change, since
the connection is asked to service only one set of nodes.

d e

Static Network Topologles: (a) Fully Connected, (b) Hypercube,
(c) Systolic Array, (d) 2-D Mesh, (¢) Cube-connected Cycles

FIGURE 3-1. ARCHITECTURES WITH STATIC INTERCONNECTIONS

A connection is dynamic if the addresses at each end can change over
time (see Figure 3-2). This is accomplished through a switching element. The
switching element can connect any one of its inputs to any one of its outputs
at one time. The switches may be set by a controller before communication
begins, or this control may be distributed so that each switch examines the
information passing through it to determine a proper setting. The extreme
example of this connection is a bus. Only one connection is supplied for the
entire set of nodes. Two addresses are selected (through proper setting of
switches) for communication on the connection at any one time; the others must
wait.

3.1.3 Interconnection Functions/Routing Algorithms

In studying interconnection networks, it is useful to think of the
network as "processing" the information traffic, as the processor processes
the data. The network imposes a function on the traffic passing through it.
An interconnection function® is a transformation on a node address which
results in the address of one other node to which information can be directly
sent (i.e., in one pass through the network). A number of interconnection
functions may be required to completely describe all of the direct connectioms
of a network. For example, the interconnection function for a binary cube is

3-2

NAVSWC TR 91-588

cube; [byy -+ b; .. byl = (byy .. B; ... byl

1
where [byg; ... b; ... byl is a node address. This says that a node in a
binary cube is directly connected to any node whose address differs by one
binary bit. The connections of a binary cube are completely described by N
cube; functions, where N is the number of dimensions.

out #H owmw

Dynamic Network Topologies: (a) Switching Network
with exploded view of switching slement (both states),
(b) Crossbar Switch Network, (c) Buss Connected Processors

FIGURE 3-2. ARCHITECTURES WITH DYNAMIC INTERCONNECTIONS

A routing algorithm is a set of the steps that indicate how information
is to pass from one node to another in a network. It is usually an operation
on the terminal node addresses, regardless of any intervening nodes. The
routing algorithm for the binary cube is as follows:

To send data from node X to node Y, perform a logical XOR on the
addresses. The data must be passed once in each direction
(dimension) for which there is a 1 in the result. No required
order of passes is implied by bit position.

Notice that this routing algorithm is accomplished by repeated application of
the interconnection function, once for each bit position containing a 1.

3.1.4 Contention/Arbitration Schemes

A network which provides less than one-to-one bidirectional connections
for each pair of nodes has the potential for contention. The method used to
arbitrate this contention may have an effect on the way information is
processed by the system overall. There are several ways of dealing with
contention. If the effects are known and manageable, then contention may be
allowed to exist. An example of this is a situation in which there are two
sets of sending and receiving node pairs, one at each extreme end of a long
backplane (bus); the transmissions are complete before the wavefronts which
carry the information collide. If this is not acceptable (as is usually the
case), traffic must be explicitly regulated.

The most common arbitration schemes are based on token passing. In a
token passing scheme, permission to use communication links is granted to one
node. That node may set up a circuit to another node, put a packet of
messages on the network, or broadcast information to all nodes, depending on
the communication protocol. The token is then passed to another node. If the

3-3

NAVSWC TR 91-588

scheme is first come, first served, the next node which has made a request
will get the token. Another scheme is round-robin, where the next node in a
predetermined line-up (perhaps by node address) will receive the token,
passing it on immediately if it has no communication to transact. While the
scheme tries to make sure that all messages are passed in a reasonable amount
of time, it is not always desirable to be fair. Some applications (such as
real-time) require that communication paths be open between certain nodes
regardless of the needs of others. Note that these schemes are automatic;
that is, the token is passed based on a queue of which all nodes can be made
aware. This allows for more distributed control and requires no
synchronization of the network.

If some communication is identified as critical, then the arbitration
scheme must allow for preemption. For instance, data from all sensors will be
processed while surveilling. When a detection is suspected, only data from
that direction and frequency range will be of interest. Communication of
other data will be of secondary importance. A controlling process is needed
to watch for such conditions, suspend other processes, transfer complete use
of the network to the critical process, and determine when the critical time
has passed or if any other communication is to be allowed during the critical
period.

3.1.5 Bandwidth

Bandwidth is a measure of capacity. A network'’s bandwidth is the number
of transmissions it can perform at once. More connections mean more
bandwidth. The bandwidth of a less than fully connected network will depend
heavily on both the protocol used to send information, and the nature of the
information. A reconfigurable network is one which allows an existing
communication circuit to be rerouted if another request for a connection is
received, and it is determined that there is a configuration which will
accommodate both requests. This network (both the topology and protocol) will
perform better than one which forces subsequent requests to wait. On the
other hand, long "conversations" between nodes are more efficient if not
constantly interrupted. A network which bundles many short messages together
and maintains a connection is likely to have a higher bandwidth than one which
is constantly trying to make and break connections.

The bandwidth of each connection is also of interest and will influence
the network bandwidth. The physics of the implementation technology will
impose limits on the rate at which data can be transmitted. Typical coaxial
cable data rates are 10 megabits per second; fiber optic cables give ten times
that performance. While this is irrelevant to simultaneous requests, it is
extremely important in that the network spends less time in a busy state while
nodes (processors and memories of ever increasing speed and capacity) create
higher demands.

3.1.6 Emulation

Emulation is the ability of one network to perform the function of
another. This is usually done through a repeated application of the
interconnection function of the first in a particular sequence that

3-4

NAVSWC TR 91-588

accomplishes the interconnection function of the second. For example, the
function of a linear network

l:

can be emulated by the binary cube function by applying it to bit positions
starting from the least significant, up to and including the first position
which contains a zero.

Emulation is best when the desired interconnection function can be
realized at no additional cost. 1If a direct connection on the desired
topology is emulated through a connection which contains a node (and possibly
a store-and-forward) on the actual machine, then additional costs are
incurred. These costs must be quantified and analyzed to determine whether
they are acceptable for the required response.

An example of the importance of the ability of one network to emulate
another is when one network must be used to implement two applications with
dissimilar data flow requirements. This situation may arise through
constraints of cost or space. If one application’s data flow does not match
the actual network topology, then the actual network may be required to
emulate another, more suitable topology.

3.1.7 Partitionability/Scalability

It may be useful to divide a network into subnetworks of the same
topology. Examples of a need for this are logical task partitioning or
multiple user demands. This is not a problem for mesh architectures, where
node addresses can be reassigned, and interconnection functions applied so as
to only transmit data within the subnet. It might present problems for a
switching network, where the ability to create a set of connections may depend
on the whole network being available at a given time. To ensure
partitionability, the designer must be sure that the routing algorithm of the
whole applies to the part, and that each node in the subnet can be reached by
proper application of the interconnection function to another node in the
subnet.

It is useful and often necessary at other times to enlarge networks
through the addition of nodes and connections according to the existing
interconnection scheme. For adding nodes to an array, this is no problem.
Since the degree of connection is two, and each node is connected only to the
preceding and following node, both physical and communication complexity are
kept to a minimum. For more exotic architectures, scaling up may mean the
addition of whole dimensions (enlargement of a 64 node binary cube by one
dimension requires another 64 nodes and 448 extra connections!).

3.1.8 Fault Tolerance

Designers who seek to take advantage of distributed processing networks
expect not only increased performance, but that critical tasks can continue to

3-5

NAVSWC TR 91-588

be processed in the event of node failure. This also applies to the
interconnections. It is important to know what the impact will be should a
connection cease to function for whatever reason. For each node, this
includes a list of reachable nodes, an estimate of increased transmission
time, and reconfiguration information.

3.2 PARALLEL ARCHITECTURE TAXONOMIES

Several taxonomies of parallel architectures are documented in the
literature. These are created either to serve as an academic aid or to assist
researchers in classifying new architectures and recognizing
similarities/differences in the groups. A taxonomy will be used in this work
to help make explicit characteristic considerations and to ensure that the
complete field of architectures (the architectural design space) is covered.
It will reflect previous work so that consistency with current thinking may be
maintained.

3.2.1 Flynn's_ Taxonomy

The taxonomy most widely used in computer literature was described by
Michael Flynn in 1972.% It classifies computer architectures according to the
number of instruction and data streams that are simultaneously present.
Specifically, it defines four classes:

Single Instruction stream, Single Data stream (SISD):

This class is the omnipresent uniprocessor Von Neumann machine.

Examples are the Intel 80486 and Motorola 68040. Although crucial to so
many (now) everyday tasks, it is the "Von Neumann bottleneck"
(sequential, single-step instruction and memory fetching) that parallel
architectures seek to overcome.

Single Instruction stream, Multiple Data stream (SIMD):

In this category, all processors in the system execute the same
instruction at the same time on different data. One variation is the
ability to disable some processors, or partition a large network into
several smaller ones. Examples are Cray computers (pipelined vector
processors) and the Warp machine (systolic array).

Multiple Instruction stream, Single Data stream (MISD):

Although some functional languages would support this type of execution
with the ability to perform several functions on the same datum, there
are currently no architectures of this type extant; it is generally
thought to be not useful.

Multiple Instruction stream, Multiple Data stream (MIMD):

This class includes loosely- and tightly-coupled multiprocessor
networks. Each processor executes its own set of instructions on its
own data set. Each processor executes according to its own clock, and
data is passed either through memory or buffers. Examples might be
hypercubes and meshes.

3-6

NAVSWC TR 91-588

While this taxonomy is quite useful in general discussion, it is very
broad and does not address the growing number of hyLrid and singular
architectures, nor can it consider new distinctions between, and uses for, old
topologies.

3.2.2 Feng's Classification

In 1981, Tse-yun Feng produced a survey of interconnection networks.’
His description was based on four properties or elements. Each element had
two major values for classification. The elements were operation mode,
control strategy, switching method, and n~twork topology. These are described
below.

Operation mode of communication can be either synchronous or
asynchronous. The operation mode depends largely on the type of
data and type of processing to be done by the network. 1In a
message-passing binary cube, where independent tasks are carried
out by the nodes, communication will be asynchronous. 1In a
systolic array, where the direction and timing of the information
flow identifies its purpose (for example, whether it is an Input,
intermediate, or output value), communication is synchronous.

Control strategy describes the management of switching elements
(or package routing). This can be controlled through a central
management scheme, from which binary masks are applied to
determine status (crossed or not) of switches, or communication is
uni-directional and lock-step (as in a systolic array).
Alternatively, distributed control allows each switch (or
connection) to determine its disposition as it passes the
information at its input. Important characteristics are

interconnection function and partitionability/scalability.

Switching method describes the nature of data transmission. This
can either be done by establishing a permanent or non-permanent
physical path prior to data stream transmission (circuit
switching), or by bundling messages together and including routing
information in a header so that the path may be determined en
route (packet switching). This reflects the interconnection type,
routing algorithm, and bandwidth characteristics.

Network topology describes the internodal connections. Direct
connections between nodes are either static, or can be built and
broken. The first level classification of this element is
identical to the Intercomnnection Type characteristic (Section
3.1.2). Lower level classifications include spacial dimension
(i.e., one or three dimensional meshes), layers (i.e., one or
three layer switching netwoirks), and hybrids. This element is
often best described by a graph or formula, such as those in
Figures 3-1 and 3-2.

This survey provides the most useful classification for this discussion,
because it uses the connections to differentiate the architectures rather than
the positions and types of processors. Some of the distinctions are not

3-7

NAVSWC TR 91-588

inherent to the architecture of the network, but can be selected according to
need. For instance, a two dimensional mesh network may be run in synchronous
or asynchronous mode.

3.2.3 Other Taxonomies/Surveys

Since Flynn published his taxonomy, many new ideas for multiprocessor
and multicomputer architectures have arisen. Consequently, there have been
several attempts at general classifications which claim to include these new
architectures.?8® These classify architectures based on differences in the
processor type, memory allocation scheme, and data flow imposed by the system.
Most refer to both Flynn’s and Feng’s work. Skillicorn’s classification in
1988% was quite comprehensive in an attempt to define species from original
and unique criteria while remaining consistent with Flynn. It included a
description of how the processors might be connected (i.e., 1-1, 1-n, n-n).
The major implication was which processors might converse with which others,
not about the connections themselves.

These classifications are useful, but most do not address such issues as
communication intensity, communication contention (in terms of appropriate
protocols, or scalability. Feng's elements show the most promise of being
able to effectively describe these network attributes.

3-8

NAVSWC TR 91-588

CHAPTER 4

IMPLEMENTATION TRADE-OFF

When a system is ready for implementation issues to be introduced,
constraints are made on the number and types of resources which are available
for realization. These include timing, weight, space, heat, cost,
reliability, and standards. These constraints are not independent, and may
interact to create an implementation environment which is quite restrictive.
The designer will find it necessary to trade off advantages of one design
attribute for another. Three situations will be considered here: fixed
network and variable algorithm; fixed algorithm and variable network; and both
variable network and algorithm (see Figure 4-1).

|

= ST
&

|

l
I

=l
70

T
a4

i

l
|

!]ll‘

Casell
Casel

19

i

Il
G-0O
-

|

|l
|

&

FIGURE 4-1. CHOICE LIMITATIONS AFFECT TRADE-OFFS

Wi
\l

Case lll

4.1 CASE I: FIXED NETWORK AND VARIABLE ALGORITHM
Often, in the Navy and the commercial sector, the type of network to be
used in the development of a system is imposed by others. This may occur due

to non-functional requirements, for reasons of prior practice, convenience,

4-1

NAVSWC TR 91-588

savings, or for other reasons. This situation is likely to lead to a non-
optimal design, and may or may not make the job easier, depending on the
flexibility of the imposed network and the diversity of algorithms to be
implemented.

Since the network is given, it may be precisely described according to
the characteristics in Chapter 3 of this report. The algorithms which are
suitable for the desired function and the given network can then be identified
and their characteristics examined. These characteristics will be used to
identify feasible, and eventually preferable, implementation alternatives.
Particular attention should be paid at this stage to the need for network
emulation. Simulation and other comparison techniques are used to evaluate
the combinations and make clear the trade-offs involved. The techniques for
evaluation of this case are the subject of further work in this research
effort.

4.2 CASE II: FIXED ALGORITHM AND VARIABLE NETWORK

This situation is less common, usually arising from more natural causes
than the previous case. It may happen that there is only one acceptable
algorithm which will produce the desired result.

This situation is similar to Case I but reversed. There should be no
problem with network emulation unless there is no network suited to the
algorithm in the first place. The techniques for evaluation of this case are
the subject of further work in this research effort.

4.3 CASE III: BOTH VARIABLE NETWORK AND ALGORITHM

This is the most desirable situation, although it is the most
complicated of the three. This case gives the designer the flexibility (and
also the responsibility) to examine all possible combinations of networks and
algorithms which will produce the desired function according to
specifications. The ability to automate the techniques described herein will
permit good combinations to be identified so that they may be examined in a
timely manner.

Any network or algorithm to be considered for implementation should be
characterized as described in previous chapters. This will allow simulation
and other experimentation to be performed to examine trade-offs and select an
optimal solution. Note that there may be more than one equally desirable
solution, or that the best solution (according to some criterium) may not be
the preferred one for various reasons. The techniques for evaluation of this
case are the subject of further work in this research effort.

4.4 METRICS
The techniques used for evaluation of the above cases will be based on

metrics which provide a quantitative basis for decision-making. Many metrics
have been used to measure the computational performance of multi-processor

4-2

NAVSWC TR 91-588

computer systems. They are based on a model of a processor network, denoted
by the following traits:

p: number of processors or network nodes
Tp: time to execute on p processors
n: size of problem (usu. order of magnitude of data)

The metrics used arel®

SPEEDUP (S, =T; / T,);
EFFICIENCY (E, = S, / p); and
USEFUL PROCESS POINT (U, = smallest n so that T, <= T,.,).
Similar metrics can be found for evaluating the implementation of a
certain algorithm on a certain network according to the characteristics of
each and the dynamics of the pair. The enumeration and description of these
metrics are the subject of further work in this research effort.

4-3

NAVSWC TR 91-588

CHAPTER 5

MASSIVELY INTERCONNECTED MODEL DESIGN ELEMENTS

The implementation design of a network is accomplished through a
selection of components which fulfill the required functions and behaviors.
As older technologies are improved and new technologies become available, it
is important to keep track of specifications of these components so that the
entire range of options for performance and compatibility is kept open. This
can be done through a library of elements which encapsulates the functional
and behavioral information in an interface (see Figure 1-2). The interface
can be used to examine the relationships between components as they would in
an actual implementation.

5.1 PROCESSING ELEMENTS

The processor is an external entity to the study of an interconnection
network. There are, however, qualities of the processor’s interface to the
network which are important to the network designer. Some of these are the
amount and rate of data put on the network, the types of control that a
processor may exercise over the network, and delays and loading associated
with the creation, transmission, and reception of messages.

5.2 MEMORY MODEL

Processor networks are generally arranged with two types of memory
models: shared or distributed. Like the processors themselves, the memory
modules are considered external entities and are not included in consideration
of the interconnection network. The type of memory will influence the type of
communication introduced to the system and the amount of contention that is
likely. When data is passed from one processor to another, distributed memory
models demand that a line of communication be open between the processors;
i.e., they are simultaneously active. Shared memory models, on the other
hand, pass data through memory. If both processors are simultaneously active,
blocking will occur. Since blocking affects accessibility of the
communication links, this is of concern to the designer.

5.3 INTERCONNECTION NETWORKS

The interconnection network is the most interesting MIM design element,
since it (with the communication protocol) determines the function and
performance of the communication system. Two basic types of networks -are
mentioned, fully connected and statically connected.

5-1

NAVSWC TR 91-588

5.3.1 Fully Connected

Basic elements of fully connected networks (besides point-to-point
connections) are the buss and the crossbar switch.

5.3.2 Statically Connected

The basic element of a statically connected network is the connection
itself. The elements may differ in terms of technological capability. Also,
many static configurations are regular; therefore compound elements may be
built up (i.e., an n-by-n section of a mesh).

5.3.3 Dynamically Connected

The basic element of a dynamically connected network is the switching
element.

5-2

NAVSWC TR 91-588

CHAPTER 6

CONCLUSIONS AND RECOMMENDATIONS

The intent of this research is to provide systems designers with a set
of techniques which will allow them to evaluate the usefulness of a particular
massively interconnected algorithm on a particular interconnection network, or
to design a new one if necessary. The specific work described in this interim
report is the characterization of these algorithms and networks to determine
the attributes which will be useful in this evaluation. The attributes found
have been discussed in terms of the stress put on a network, on the one hand,
and the capacity and capability provided on the other.

The attributes shown can be compared in such a way as to produce
quantitative and qualitative metrics. These metrics will account for the
influence of constraints and requirements, and will allow the designer to
determine an efficient (if not optimal) solution.

6-1

10.

NAVSWC TR 91-588

REFERENCES

Hossfeld, F. "Parallel Algorithms: The Impact of Communication
Complexity," Colloquia Mathematica Societatis, Janos Bolyai, 1984.

Stone, H., High-Performance Computer Architecture, Addison-Wesley,
Reading, MA, 1987.

Jamieson, L.H., et al., The Characteristics of Parallel Algorithms, The
MIT Press, Cambridge, MA, 1987.

Skillicorn, D.B., "Architecture-Independent Parallel Computation," IEEE
Computer, Vol. 23, No. 12, Dec 1990, pp. 38-51.

Siegel, H.J., Interconnection Networks for Large-Scale Parallel
Processing, D.C. Heath and Co., 1985.

Flynn, M., "Some Computer Organizations and Their Effectiveness," IEEE
Transactions on Computers, C-21, No. 9, Sep 1972, pp. 948-960.

Feng, T., "A Survey of Interconnection Networks," IEEE Computer, Dec
1981, pp. 12-27.

Duncan, R., "A Survey of Parallel Computer Architectures," I1EEE
Computer, Feb 1990, pp. 5-16.

Skillicorn, D.B., "A Taxonomy for Computer Architectures," I1EEE
Computer, Vol. 21, No. 11, Dec 1988, pp. 46-57.

Finkel, R.A., "Large-Grain Parallelism - Three Case Studies," The
Charateristics of Parallel Algorithms, Jamieson, L., Ed., MIT Press,
1987.

7-1

NAVSWC TR 91-588

BIBLIOGRAPHY

Almasi, G.D. and Gottlieb, A., Highly Parallel Computing, Benjamin/Cummings
Publishing Co., 1989.

Bell, G., "The Future of High Performance Computers in Science and
Engineering," Comm. ACM, Vol. 32, No. 9, Sep 1989, pp. 1,091-1,101.

Bertsekas, D. and Tsitsiklis, J.N., Parallel and Distributed Computation:
Numerical Methods, Prentice-Hall, Englewood Cliffs, NJ, 1989.

Davis,L., Handbook of Cenetic Algorithm, Van Nostrand Reinhold, 1991.

Denning, P.J. and Tichy, W.F., "Highly Parallel Computation," Science, Nov
1990, pp. 1217-1222.

Duncan, R., "A Survey of Parallel Computer Architectures," IEEE Computer, Feb
1990, pp. 5-16.

Feng, T., "A Survey of Interconnection Networks," I1EEE Computer, Dec 1981, pp.
12-27.

Finkel, R.A., "Large-Grain Parallelism - Three Case Studies," The
Charateristics of Parallel Algorithms, Jamieson, L., Ed., MIT Press, 1987.

Flynn, M., "Some Computer Organizations and Their Effectiveness," IEEE
Transactions on Computers, C-21, No. 9, Sep 1972, pp. 948-960.

Germain, C., et al., "An Interconnection Network and a Routing Scheme for a
Massively Parallel Message-Passing Multicomputer," The 3rd Symposium on the
Frontiers of Massively Parallel Computation, IEEE Computer Soc., Oct 1990, pp.
368-371.

Gibbons, A. and Rytter, W., Efficient Parallel Algorithms, Cambridge
University Press, 1988.

Goldberg, D.E., Genetic Algorithms in Search, QOptimization and Machine
Learning, Addison-Wesley, 1989.

Hack, J.J., "On the Promise of General-Purpose Parallel Computing," Parallel
Computing, Vol. 10, No. 3, 1989, pp. 273.

Hearne, J. and Jusak, D., "How to Use Up Processors,” The 3rd Symposium on the

Frontiers of Massively Parallel Computation, IEEE Computer Soc., Oct 1990, pp.
515-518. :

Hoare, C.A.R., Communicating Sequential Processes, Prentice-Hall, 1985,
8-1

NAVSWC TR 91-588

Hossfeld, F. "Parallel Algorithms: The Impact of Communication Complexity,”
Colloquia Mathematica Societatis, Janos Bolyai, 1984,

Hwang, K. and Briggs, F.A., Computer Architecture and Parallel Processing,
McGraw-Hill, Hightstown, NJ, 1984,

Jamieson, L.H., et al., The Characteristics of Parallel Algorithms, The MIT
Press, Cambridge, MA, 1987.

Karp, A., "Programming for Parallelism," I1EEE Computer, Vol. 20, No. 5, May
1987, pp. 43-57.

Kirkpatrick, S., et al. "Optimization by Simulated Annealing," Science, Vol.
220, 1983, pp. 671-680.

Lipovski, G. and Malek, M., Parallel Computing, John Wiley & Sons, 1987.
Mou, Z.G., "Divacon: A Parallel Language for Scientific Computing Based on

Divide-and-Conquer,®™ The 3rd Symposium on the Frontiers of Massively Parallel
Computation, IEEE Computer Soc., Oct 1990, pp. 451-461.

Pancake, C.M. and Bergmark, D.B., "Do Parallel Languages Respond to the Needs
of Scientific Programmers?," IEEE Computer, Vol. 23, No. 12, Dec 1990, pp. 13-
23.

Reed, D.A. and Fujimoto, R.M., Multicomputer Networks: Message-Based Parallel
Processing, The MIT Press, Cambridge, MA, 1987.

Siegel, H.J., Interconnection Networks for large-Scale Parallel Processing,
D.C. Heath and Co., 1985.

Skillicorn, D.B., "A Taxonomy for Computer Architecturcs," I1EEE Computer, Vol.
21, No. 11, Dec 1988, pp. 46-57.

Skillicorn, D.B., "Architecture-Independent Parallel Computation,"” IEEE
Computer, Vol. 23, No. 12, Dec 1990, pp. 38-51.

Soucek, B. and Soucek, M., Neural and Massively Parallel Computers: The Sixth
Generation, John Wiley & Sons, New York, NY, 1988.

Stone, H., High-Performance Computer Architecture, Addison-Wesley, Reading,
MA, 1987.

Ward, S.A., and Halstead, R.H., Computation Structures, The MIT Press,
Cambridge, MA, 1990.

8-2

NAVSWC TR 91-588

DISTRIBUTION

Copies

Defense Technical
Information Center
Cameron Station
Alexandria, VA 22314 12

Library of Congress
Attn: Gift and Exchange Division 4
Washington, DC 20540

Office of Naval Technology
Attn: Code 227

(Elizabeth Wald)

(Cmdr. Gracie Thompson)
800 N. Quincy Street
Arlington, VA 22217-5000

-

Center for Naval Analyses

4401 Ford Avenue

P.0O. Box 16268

Alexandria, VA 22302-0268 2

Naval Postgraduate School
Attn: Code EC/LE

(Chin-Hwa Lee) 1
Monterey, CA 93943

Research Triangle Institute

Attn: Geoffrey Frank 1
P.0. Box 12194

Research Triangle Park, NC

27709-2194
Advanced Technology & Research Corp.
Attn: Adrien J. Meskin 5
George Stathopoulos 1

14900 Sweitzer Lane
Laurel, MD 20707

(1)

Copies

Internal Distribution:

D4
E231
E232

E342 (GIDEP)

FO1
GO7 (F.
G42 (C.
K02
Kl4 (D.
K52 (W.
N15 (M.
N30 (H.
N35 (M.
N35 (F.
Ra44 (E.
R44 (H.
U

U02
U042
U10
v20
U23 (W.
U23 (J.
U23 (P.
U25
U25 (D.
U25 (E.
u3o
U3l (R.
U33
U302 (Pp.
U33 (D.
U33 (M.
U33 (N.
U33 (S.
U33 (M.
U33 (T.
U33 (cC.
U33 (T.
U33 (H.
U33 (M.
U40

Moore)
Yeh)

Clark)

Farr)

Wilson)

Crisp) 1
Masters)

Riedl)

Cohen)

Szu,

Dence)
Hormer)
Winters)

Bergstein)
Hein)

Scalzo)

Hwang) 2
Choi)
Edwards)
Hoang)
Howell)
Jenkins)
Moore)
Nguyen)
Park)
Roth)
Trinh)

—
P et o et e e O O b i O et e e b e e e b el b et et e e e e e O b b e b e W N

REPORT DOCUMENTATION PAGE AR S A

Fubin reporting burden 1o thes collection ot Information 1s estimated to averaye 1 hour per response. induding the time for reviewing instructions, searching exnting data
soufivy gathering and maintaining the dats needed. and completing and reviewing the collection of information Send comments regarding this burden estimate or any other
aspect of this cotlecion ot intormation. induding suggestions tor reducing this burden, 1o Washington Headquarters Services. Directorate for intormation Operations and
Reports, 1215 Jettersan Davis Fighway, Suite 1204, Arhington, VA 222024302, and to the Otfice of Management and Budget, Paperwork Reduction Project (0704-0188).
Washington. UC 20503

1. AGENCY USE ONLY (Leave blank) | 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
1 October 1991
8. TITLE AND SUBTITLE S. FUNDING NUMBERS
Engineering of Massively Interconnected Computer Systems
PE -0602234N
PR -RS34Pt1
6. AUTHOR(S
) TA - Task 4
Michael Jenkins, Charles Yeh, and Steven Howell
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER
Naval Surface Warfare Center (Code U33)
10901 New Hampshire Avenue NAVSWC TR 91-588
Silver Spring, MI) 20903-5000
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
AGENCY REPORT NUMBER
11. SUPPLEMENTARY NOTES
12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution is unlimited.

13. ABSTRACT (Maximum 200 words)

This document provides an analysis of design elements whose implementation involves algorithmic
tasks and hardware resources which must handle large amounts of data or which otherwise present
communication (date flow) impasses to the timely (or functional) fulfillment of a design. It proposes a
methodology for evaluating candidate resources and selecting those which reduce communication
complexity and meet system requirements. The techniques of this methodology should integrate with
other steps in the design process so that necessary information is not ignored or lost. They should also be
casily automated, since the number of combinations involved may be intractable if attempted by hand. As
an indication of future research, it presents background information on resources used in the design of
such systems and addresses the implications of introducing physical constraints on these design elements.

14. SUBJECT TERMS [15. NUMBER OF PAGES
Massively Interconnected Computer Systems; Parallel and Distributed Systems; 39
Massive Network Communication; Algorithm and Network Architectures 16. PRICE CODE

17. SECURITY CLASSIFICATION | 18. SECURITY CLASSIFICATION | 19. SECURITY CLASSIFICATION [20. LIMITATION OF
REPORT ABSTRACT ABSTRACT

OF OF THIS PAGE Of
UNCLASSIFIED UNCLASSIFIED UNCILASSIFIED SAR
TN 7S30.07-280 5500 Ttandard Form 298 (Rev 2.B9)

Prescribed by ANSI Std 23918
298 102

