
AD-A255 464 AfGSR, ..

OHIO Dynamical Properties of
OHIO Josephson Junctions Arrays
UNIVERSITY

C. A. Ebner and C. Jayaprakash
Department of Physics

SEP 141992 FI

AU

Air Force Office of Scientific Research
Boiling Air Force Base, D.C. 20332-6448

Grant No. AFOSR-89-0527
Final Report

July 1992

92-250880 1!11 11lllllllliII



; FoPm A00'OV"REPORT DOCUMENTATION PAGE O N A70"1"

'k 10141 Wirt" '0, this coam,0 at onfrM ws , "maelt ha" s erteomonw. ,ftiv o i the re..wn. .oA llwtO . ua*,'iisq hs e alm do"
gasem ale ina th.,ae data nodded, and cmaitenq and t1WE .Ol a t 1f 40~moIIkis. Send comwf"fuogardinq this w#"E etsat* or a"t ever amw of ta

ea1et,== G mnr eoe inluin ,u14 "M~ for fedwatihisi aura"f. to Watliqton 'tdalf V art Sma. 04mire tfrAWI Foe a 490 12sis ftt
o01wl ai4tw. S#ite 1104. Aifltt V 1 U2103 4-01. and tothe offll of msni dfil l ft $ldqft. Pl )W W11Asdlaltw €On Pefroef(e4lU41XI, We ., DC 10ZO,

I. AGENCY USE ONY (Leave nk) lEPOa T RK OAT 3. REPORT TYPE AND DATES COVIIIgEa
Final Report 15 Sep 89-14 Sep 91

4L Tit AND SUSU S. FUNODNG NUMsERS

DYNAMICAL PROPERTIES OF JOSEPHSON JUNCTION
ARRAYS AFSOR-89-0527

. AUTOIR(S)

Professors Ebner and Jayaprakash

7. PtRFORMING OBGANIZATION NAMI(S) AND A 'SS(I[S) . PERlOIIMING ORIGANIZATION
RElPORT NUMBER

Dept of Physics

Ohio State University
Columbus, OH 43210

9. SPONSOING/MONITORING AGENCY NAME(S) AND AOORESS(ES) 0. PONSIN / MONING

AFOSR/NE 
AGECY REPORT NUMen

Bldg 410
Bolling AFB DC 20332-6448
Harold Weinstock 2306/Cl

11. SUPPUMENTARY NOTES

Il2 TIBUION/AVAILJTY STATEMENT 121 OISTRIUT" COO

UNLIMITED

il ABSTRACT (Mdmmum 200 wom)I

Current and recent work in our group on Josephson junction arrasy has
been focused on two particular types of dynamical states, namely
chaotic states and "chain" states. In the following we summarize
briefly the issues addressed and the significant results obtained for
each type of state.

Ia. susi'r TIMMS IS. NMUR Of PAGES

16. PRICE cOw"

?. SEC~URITY CASSIICATION 1. sE~CURITY CLASSIFICATON IS. SECURIT C.ASSWIFICAT. IO N 0flASTMCT

OF REP OT OP THIS PAGE OF ABSTRACT

UNCLASS UNCLASS UNCLASS UL
NSN 7Soc-GI4-$,00 Standlard Fom Z99 (Sr". -491

'-0crOW WV ANIV Ste. Z39-,0



T H , Dynamical Properties of
OHIO Josephson Junctions Arrays
SAJJ
UNIVERSITY

C. A. Ebner and C. Jayaprakash
Department of Physics

X-, c -

Air Force Office of Scientific Research
Boiling Air Force Base, D.C. 20332-6448 .

Grant No. AFOSR-89-0527 ,
Final Report
RF Project No. 767834/722826

MITIC QUALITY NIPU D

July 1992



FINAL REPORT FOR GRANT NO:
AFOSR-89-0527

C. Ebner and C. Jayaprakash
Department of Physics
Ohio State University
Columbus OH 43210

Current and recent work in our group on Josephson junction arrays has
been focused on two particular types of dynamical states, namely chaotic
states and "chain" states. In the following we summarize briefly the issues
addressed and the significant results obtained for each type of state.

CHAIN STATES

The dynamical states to which we have given the name chain states are
at once both simple and subtle. The simplicity, plus the fact that this
type of state is the stable one in capacitive arrays for a broad range of
junction parameters and input currents, suggests that they could be play an
important role in devices based on Josephson-junction arrays. The subtlety
makes these states interesting as examples of nonlinear phenomena in their
own right.

The simplicity of the chain states lies in their general properties and
makes them easy to characterize. They have the property that, given uni-
form input currents along two opposite edges of a square array, array as in
Fig. 1 of the accompanying reprint of our publication [11, the current passes
directly through the junctions along the line of the input currents, the z di-
rection in the figure. There are no currents at all in the junctions which lie
in the transverse, or y, direction. Further, the superconducting phase differ-
ence Oi(t) across any longitudinal junction i, meaning one which lies along
the line of the input current, has a time dependence which is independent
of the junction, aside from a translation in time. That is, Oi(t) = Oo(t - Ti).
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Further, i is the same for junctions separated from one another in the
transverse directions. And finally, the same function o(t - 'r) describes the I
phase difference in a single junction if it has the same parameters and is
driven with the same input currents as in the array. The function 0 (t) is
quasiperiodic in time as opposed to being periodic or chaotic. These obser-
vations follow from study of the Poincar6 plots of the various junctions in
question or of their power spectra.

It is easy to show from analytic study of the equations of motion for
the array using the RSJ model, cf. Eq. (13) of the print, that a state of the
sort just described is a solution if ri = nio0 where n is an integer and To is
the period of the rf input current. What is surprising, and subtle, is the I
stability of these dynamical states. For example, in numerical solutions of
the equations of motion, we find that if the array is started from a uniform
state, meaning a state with the same function 0(t) in all longitudinal junc-
tions, then in the absence of noise this state will persist for an arbitrarily
long time. If the array is started with random initial conditions, then it will
settle into a chain state with an apparently random but constant distribu- I
tion of r's, i.e., of n's. In effect, the basin of attraction of any given chain
state is rather small, so that it is extremely unlikely the array will wind up
in a given chain state when started from some arbitrary initial conditions; I
at the same time, the array apparently always winds up in some chain state.

Of course, in any real array, there are sources of noise, such as finite
temperature effects, and it is of some importance to address the question I
of stability of the chain states under these circumstances. From our work,
it is clear that a chain state with a fixed set of n's is not stable in that
a burst of noise will change the relative time shift of the various junctions U
in the longitudinal chain. However, the array as a whole will return to a
chain state with a different set of n's if the noise is removed. If the noise
is not removed, the system will remain close to a chain state in the sense I
that the currents in the transverse junctions will typically be about the size
of the noise currents while the currents in the longitudinal junctions will
retain much of the character they had in the absence of the noise as can be U
ascertained by study of the individual junctions' power spectra. However,
the relative time shifts of the phases of the junctions in a chain will change
continually in a random fashion. I

The global properties of the arrays ,such as I-V characteristics also merit
some discussion, especially when there is noise present. The noise and the
fact that many junctions contribute to the global properties have the effect I
of causing the long-time state of the system to show very little dependence
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on the initial state. Moreover, the voltage across the array mimics closely
the input current in that if the input is I& + I,, sin(wot), then the output
voltage is of the form V& + Vq sin(wot + a), i.e., it is ohmic aside from a
time shift. That is rather remarkable because the response of an individual
junction is definitely not linear as may be seen from the power spectra of
the junctions in the absence of noise in the chain state, cf. fig. 4(b) of
Ref 1. Typically, there are two incommensurate frequencies of response
which show up clearly along with their differences, harmonics, etc., leading
to aperiodic (quasiperiodic) behavior of individual junctions. The effect of
having many junctions in a chain contributing to the array voltage, with
random relative time shifts, is to remove, in the limit of large arrays, the
contributions from frequencies other than the driving frequency. That is, if
one looks at the Fourier decomposition of the voltage across the array, it
shows, aside from a certain amount of background noise, a large peak at the
driving frequency w, while the other peaks, so evident in the spectrum of a
single junction, are much reduced, apparently varying as 1/N, where N is
the linear size of the array in the z direction. Consequently, a large noisy
(finite temperature) array may be expected to produce faithfully essentially
ohmic behavior with a large voltage signal (proportional to N) at the same
frequency as the applied ?f field even though the response of individual
junctions is dramatically different.

SPA TIO TEMPORALLY CHAOTIC STATES

Over the past few years it has been known that a harmonically driven
single capacitive Josephson Junction exhibits chaotic behavior. Within the
Resistively Shunted Junction (RSJ) model a square array of these junctions
is known to exhibit variety of dynamical states including chaotic states when
harmonically driven by uniform input currents.

We have studied in a recent preprint[2] aspects of spatiotemporal chaos
in Josephson Junction arrays and discussed the dynamical behavior of both
spatially averaged ( collective ) and local quantities in the chaotic states.

One of us (C.J) in a collaborative effort a few years ago [3] has argued
heuristically in the context of coupled lattice models that collectively chaotic
states, e.g., ones in which some fourier component is chaotic, do not occur
generically in systems with short ranged interactions in the presence of ex-
ternal noise ( e.g. Langevin noise ). We have confirmed numerically that
collectively chaotic states do not occur in JJA described by the the RSJ
model in agreement with the heuristic argument. It should be noted that
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the RSJ model is different from the coupled lattice map models studied ear-
lier in that current conservation allows instantaneous response of the entire I
system to local perturbations. The route to chaos is similar to that of a
single junction ( analysis of the dynamical behavior near transition regions
is complicated). In the chaotic states spatial averages of the quantities such
as voltage difference and josephson currents along parallel or perpendicular
direction of the input current do not exhibit chaotic bebhkvior in the large
system size limit. (See Fig. 1) These variables are periodic in time with a I
period set by the external driving currents (ifsin(wt)). The spread in the
voltage scales like 1/(N(L))11 2, where N(L) = L(L - 1) is the number of
junctions along the direction of the input current in a L x L lattice. Sim- I
ilar behavior is seen for other spatially averaged quantities. In the chaotic
states the largest Lyapunov exponent A(L) has an asymptotic value A0 for
large L. For small L the system behaves like a linear array of junctions with i
zero transverse currents and the value of A is close to the value for a single
junction The largest Lyapunov exponent is shown as a function of the size
of the system in Fig.1. The cross over from small to large system behavior I
indicates a length f, which is of the order of the length obtained from the
small r decay of the correlation function G(r) that we have also computed.

Second, we have studied the probability distribution functions (PDF) for I
the local voltage variables and find that they have exponential tails in the
chaotic states. Such probability distributions for local variables are observed
in fluid systems [4]. A model Fokker-Planck equation has been proposed as $
a plausible mechanism for these exponential tails [5]. We have shown that
the observed exponential tails of PDF can be understood by a similar model
that describes the mixing of the local voltage variable in the presence of
the supercurrent fluctuations. In Fig.2 we show the probability distribution
function for the voltage fluctuations of a transverse (y dir) junction in the
chaotic state. The data convincingly shows the presence of the exponential a
tails in the PDF. In contrast the PDF for local voltage variable fluctuations
in a periodic state with external noise ( a $ 0 ) is gaussian ( see Fig.2b ).
This can be shown by linearizing (2) around the periodic state and writing I
the equation of motion for a local voltage variable in the form of a Langevin
equation. 3
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1 Figure captions

Fig.1. Largest Lyapunov exponent as a function of the size of the system for
id = 0.69,i,! = 1.154,#, = 4.0, and w = 0.1 x 2r. Notice that it increases
for small L and approaches an asymptotic value for large L.

Fig.2. a) Probability distribution for the fluctuations in the voltage of a
transverse junction for the same parameters as in Fig.1. b) shows the PDF
for the same variable in a uniform nonchaotic state in the presence of noise.
The parameters are i& = 0.4,/if = 1.0,S% = 4.0, and w = 0.1 x 2,. Noise
value (a:) = 0.1
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We have studied the dynamics of regular two-dimensional Josephson-junction ai rays subjected tc clv -
tromagnetic radiation at frequencies comparable to the individual junction's characteristic frequency.

The junctions are described using the resistively-shunted-junction model including capacitance with the

plasma frequency also comparable to the characteristic frequency. The dynamical behavior fails into

several different general classes, namely, periodic, quasiperiodic, and chaotic, depending on the particu-

lar characteristics of the junctions, the input currents, and the amplitude and frequency of the radiation.

Detailed examples of each of these types of behavior are given. Current-voltage characteristics are ex-

amined and related to the dynamical behav-.or and the junction's properties. The effect of finite tempera-

tures, included by means of a Langevin noise current, is also discussed, as is the stability of various types
of dynamical states.

I. INTRODUCTION used for its analysis, and the quantities studied; Sec. III is
devoted to presentation of the numerical results while

The dynamical behavior of Josephson-junction arrays Sec. IV is given to a linear stability analysis of certain
has been studied in considerable detail, both experimen- dynamical modes; a discussion and summary compose
tally'- and theoretically. 5 -10 Emphasis in recent Sec. V.
theoretical work has centered on the dynamics in the
presence of an applied static magnetic field and in the
limit of zero-junction capacitance so that the junctions II. MODEL AND METHODS OF ANALYSIS

are overdamped. An exception, and the work most close- We describe a Josephson junction using the resistively-
ly related to our research, is Ref. 10 in which the types of Wh escie aJ) 14

shunted-junction (RSJ) model including the junction ca-
dynamical stateres array of junctions with capacitanced pacitance and noise. The essence of this model is that the

In this paper we present some results from an extensive current through a junction between two superconductors
and coth ui g aper we p nthe results fr a xt e is written as a sum of several kinds of currents in parallel.

and continuing study of' the dynamics of regular two-

dimensional Josephson-junction arrays on a square lattice These include a displacement current ID through a ca-

in the presence of an incident electromagnetic (rf) field pacitance C; a normal or quasiparticle current Iv

and applied dc bias currents. A finite junction capaci- through a resistance R; a supercurrent (the Josephson

tance is included. Our intention is to give a broad survey current) IS; and a fluctuation or noise current IF . Thus,

of the possible behaviors of the arrays; more detailed ex- the total current in thejunction is

ploration of particular types of states will be given sepa- =ID+ +N (1)
rately. Our study is motivated, in part, by the possibili-
ty"'' of constructing detectors or generators of mi- The displacement and normal currents may be ex-
crowave radiation from arrays. A second, more theoreti- pressed in terms of the voltage V across the junction,
cal, motivation is the possibility of observing dynamical =cdV
e.g., chaotic and quasiperiodic, behavior of an unusual ID C-
sort in these nonlinear, rontinuous time, coupled systems.

We focus on the character of the locally stable modes of and (2)
oscillation given different input currents and incident rf V
fields for arrays with various characteristic parameters. Iv = -

Numerous similar investigations have been performed for R

a single capacitive Josephson junction. 12' 13 Also, for use The supercurrent is expressed as a function of the super-
as detectors, an important measure of the response of the conducting phase difference (b across the junction
system is the mean voltage across the array and its varia-
tion with changes in the rf field incident radiation. Con- Is= =lsinb , (3)

sequently, we also present typical I-V curves for the ar- where I is the critical current. Further, the relation be-
rays and relate the characteristics of these curves to the tween the voltage and phase is
dynamical states.

Section 11 of the paper contains descriptions of the V h i d6b (4)
model employed for the array, the numerical methods 2e dt

45 4774 cj 1992 The American Physical Society
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Finite temperatures can be introduced by means of 1F phases of the superconducting order parameters on the
which is taken to be a Langevin noise current represent- individual nodes. We assume a uniform array, meaning
ing random quasiparticle currents tunneling through the that all junctions have the same parameters W,., o., and
Junction. This current is given the properties I. The equation for the current in the junction between

( F(1)) =0 neighboring nodes k and I is
d2Ok d2'ot ,,rB 1/ / _do

and (5) ikt- d d +f/2 -/ "d

IF~t+ ",F~t 2k 8(" +dr(O d72  Id'r dr(9

where the brackets ( ... ) denote an ensemble average; We further assume the nodes are sufficiently small that
T is the temperature and k is Boltzmann's constant. the phase of a node is spatially uniform and that charging ICombining these relations and dividing by the critical effects on a node are negligible so that the sum of the

current, one finds that the current in the junction can be currents entering a given node is zero. This condition
written as determines how the equations of motion of the various

I CA d2  + junctions are coupled,

C-[ =  dt2  2eRI dt i kl--(')k (10)

(6) where the sum is over those neighbors I of k which are

where iF -t'/Ic . Notice that, from Eq. (5), coupled to it by junctions, and (i, )k is the input current,in units of Ic, to the kth node from external sources.
iF( + t')iF(t) -Or(t') (7) Equations (9) and (10) are the equations of motion for

the array. Given some initial conditions on the phases
with or= 2kT/RIC. and their time derivatives, a set of input currents, and a

Introduce the junction's characteristic frequency formulation of the fluctuation currents, they present a
0 = 2eRI / and plasma frequency o _= V2eIc/CA; well-defined dynamical problem involving the solution of I
also, introduce a dimension-free time r=opt. Then the a set of coupled, second-order, ordinary, nonlinear
current may be written as differential equations. They may be expressed in matrix

d2b + +(8 form 15 as

_r II= -dr + id r ,(8) [1

where , /_= p). Equation (8) is the basic equation t - d r
of motion for the RSJ model of a capacitive junction. dd

Given an array of junctions meeting at a set of super- where G is a matrix and 0, sinO, iF, and i, represent, re-
conducting nodes k, one can write the RSJ equation for spectively, vectors comprising the k', sink'S, (i,)k'S,
an individual junction in terms of the difference of the and (i )k'S. The elements of G are I

nk if I =k and nk is the number of junctions entering node k,
Gk1= I if k:*I and k and I are joined by a junction, (12)

0 otherwise

For any given G, the inverse can be obtained numerically. 1/2 d
There is however, one technical point that should be dr 6 dr
mentioned. If there are N nodes, then there are N equa-

tions. The matrix G for this set of equations possesses no This form is more amenable to efficient numerical solu-
inverse, a fact that can be related to overall current con- tion than the original one.
servation, meaning that the net current entering the array We turn now to the inclusion of incident electromag-
must he zero, and to the fact that the system is invariant netic fields. A static applied magnetic induction and in-
under a shift of the phases of all of the nodes. We can ar- cident electromagnetic radiation may be described by
hitrarily set the phase of one node equal to a constant, means of vector potentials A, and Af. The coupling to Ithereby reducing the number of independent variables the array is introduced by replacing the phase difference

and the number of equations by one. The matrix G for in the Josephson current Ok - 1 with 4
ik -$t- A (k,l),

the remaining N - I equations possesses an inverse which where
I easy to compute. Given this matrix, we recast the 2 I
cquations of motion as .4 (k,l)=

-P fdl A, (14)
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(D, is the flux quantum hc/2e. In the case of the radia- il(M)
tion field, we are interested in microwave frequencies.
The corresponding wavelength, or distance over which

the vector potential varies appreciably, is on the order of
a centimeter. We will suppose that this is much larger
than the size of the array and so shall approximate the 10(3)

vector potential at all points on the array by that at its .... .
center, in effect making the dipole approximation. Thus, (.3) (2j) (3,3) (W)

we employ, for a monochromatic wave of frequency ,
such as may be obtained in a resonant cavity, I(2) -

Art=Asnot 0 i(~T 1)(1,2) (2,2) (32 (142)Aft t) = AosinoJ, t = Aosinfl, "r  (15)...

where 3, =(to, IoP )2. For this case, Y ism.

.4 (k,1) = 2A0-(rk -r). (16)
'x

Given an ordered array such that the nodes are on the FIG. 1. Schematic diagram of a N XM array. The nodes are
sites of a regular lattice, and with junctions only between represented by discs with the i and j values of a node shown in
nearest-neighbor sites, the A (k,l) are the same for all parentheses. The junctions are represented by solid lines. Input
junctions oriented in a particular direction. currents are also shown.

Because of the special character of A (k, 1) in the dipole
approximation, a change of variables can be made to re- tions of motion. For an applied rf field, and in the dipole
move all reference to the vector potential from the teims approximation, we choose
representing the Josephson currents. Define

2fAf-= A 0(cosa + sina )sin(fl1,/2r) , (19)
c' -c +27r Ao-rksin(fl /2 r) .(17)

(=(ks n (Do . a is the angle between A- in the x-y plane and the x

In terms of this variable, the current in a junction be- direction. Then, from Eq. (16),

tween nodes k, I may be written, with a shift in the origin Arn(i,j;i + l,j)'-- Aocosasin(fll"/2r) (20)
of the time variable, as -D o

d2 6b dc' +0b 1/2 d6b' d6b and
i~' dr 2  dr 2  ~ 1  dr dr fa(1d d -' d d 7A n(iQ ;i~J + 1 )= 2 ra A sina sin(31 /2 ) .(21)

(sin F)+iFo

2Ao'rk, -r, 0 sin(/ 2i) (18) When the transformation Eq. (17) is made to the vai-
) +f3, n . ables 6', we find that this vector potential is equivalent to

an ac input current along the edges of the array given by

An applied uniform static magnetic induction B, can 2rAOa cosa .
be included by adding a simple vector potential, e.g., irf(l.J )= o fl 3fl+,6-sin(3Y2 '
A,= (B, Xr)/2. Then the A(k,)'s will depend on the 0

positions of the sites (k,l) and a transformation of the =-inf(N,j)=i, sin(Ol / 2r) (22)
phases will not result in simplification of the equations of
motion. and

In the work described in Sec. lII, we employ M XM ar- 2rAOa sina 0
rays on a square lattice, as shown schematically in Fig. 1, in(i, I) - °  V"/r +orc isin(l2r)
with a distance a between nodes. For definiteness, let the
array lie in the z =0 plane with the x direction along the -irfi,M)=iYsin(,1T/r) . (23)
side of the lattice of length Na and the Y direction along t
the side of length Ma. We identify a node with two in- These equations serve to define iI and in,. Note that
dices { i,j . where i = 1,2 ,.... ,N and j = 1, 2 ...... V. We both of these contributions apply at the corners of the ar-

apply input currents along the opposite edges i = I and ray.
i -N. These currents may be functions of j. Total The total input current to the array we take as the rf

current conservation is implemented by extracting the currents irf of Eqs. (22) and (23) and dc currents i, intro-
same total current from one edge as is injected at the op- duced in Eq. (10). Hence, the "external" currents appear-
posite edge. Along the two lateral edges of the array, ing in the equations of motion, Eq. (11) or Eq. (13), be-
given by j = I to j =M, we allow no current to enter or come
leave the system. (24)

Because of the orientation of the array, only the x and t -i+f
v c,)rnponents of the vector potential will enter the equa- when h is replaced by ('.
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III. CALCULATIONS AND RESULTS A. Zero temperature: iF 0 0

Our numerical procedure is to integrate Eq. (13) using We describe the rf field in terms of the equivalent input
a fourth-order Runge-Kutta method. This general tech- currents i,. As stated earlier, we suppose that i, =0,
nique, but without including the junctions' capacitance, meaning that the array is oriented with the x direction
has been used by numerous other workers 6- 9 to solve for parallel to the vector potential, or the electric field, of the
the behavior of arrays. The step size in time is typically incident radiation. Finally, for the most part, we take the I
chosen to be around 0.02 of the smallest of the three dc input current in the nodes (1,j) to be uniform along
periods 27r/ow,, 21r/w,, and 2rr/o,. Smaller step sizes are the y direction (independent of j) and given by the single
frequently employed to check the accuracy of the results. number i . Then the parameters of the system in the ab-
Runs lasting anywhere from 10 to several thousand such sence of noise are ie, i , 3, and t,. For various sets of I
periods are generally sufficient to determine the character these parameters we solve for the motion starting from
of the asymptotic behavior of the array and to obtain reli- random initial conditions.
ably such properties as phase-space trajectories and For many parameter sets, the junctions' motions I
Fourier transforms of the voltage or supercurrent across decouple in the sense that, at long enough times, there
individual junctions or the entire array. The array size are no currents in any junctions oriented along the y, or
used in calculations is routinely 8 X 8, but arrays of size, transverse direction. Thus, there are simply independent
e.g., 32 X 32 or 16 X 64 have been analyzed to examine lines of current along the x, or longitudinal direction. I
specific features and to check for size dependence. The For this type of motion, one need not study a two-
properties discussed in this paper tend to be quite insensi- dimensional array to determine the dynamical properties.
tive to the size once it is 8 X 8 or larger. In practice, we The shapes and locations of the regions in parameter I
measure times in units of the period of the applied rf space where decoupled states appear are usually rather ir-
field, that is, we employ the time variable regular. For example, Fig. 2(a) shows points on a grid in

i,-i, space where the motion did not decouple in corn- 3
,, 1t. (25) puter runs for times up to 2 0 00fr/wo, with 0, =1 and

2,r /3, = 1. In these runs, i, and i, were set equal to multi-
ples of 0.05 from 0.0 and 2.0 and the system was started

Also, we express time derivatives using this unit of time, from a random configuration of 6's and ii "s. It should be U
defining emphasized that, for some of the points at which the

motion did not decouple in our runs, it would have
d _ 2(26) decoupled if we had run a (much) longer time. Also, the l
dr, w, dt amount of time necessary for the system to settle into a

decoupled state depends, in some cases quite strongly, on
Similarly, frequencies are measured in units of w,. the initial conditions. Indeed, there are instances, as in

There are numerous parameters entering the equations the case of a single junction," 3 where the character of the I
of motion. These include /3., /3,, A0, o,, and the various long-time state depends on the initial conditions because
dc input currents. We have focused attention on the re- there are numerous locally stable states of motion. This
gime where the three frequencies are comparable (,6, - I behavior tends to be especially true, not surprisingly, if l
and /3, - I ) and where the dc input currents and effective the parameters are such that the system is close to a U
rf input current are comparable to the critical current, boundary between regions of predominantly coupled and
t - I and i,, - I; A,, is taken parallel to the x direction so predominantly decoupled states. Hence, the figure
that i, =0. We first studied the dynamical behavior in should be interpreted as meaning that, where there is a I
the absence of noise currents (T =0) and then added point, the system is likely to remain in a coupled state for
noise to determine whether any significant changes in the a long time if started with random initial conditions;
dynamical states occur over and above simple fluctua- there may be, but need not be, one or more locally stable
tions superposed on the T=0 motion. In the following decoupled states for the same parameters. Similarly, I
we first present representative results with applied dc where there is no point in the figure, that means the sys-
currents and effective rf currents at zero temperature tem is likely to remain in a decoupled state at long times,
1 -01 with no static applied field. We then address the although there may be locally stable coupled states. U

effect of finite temperatures. The regions where the motion decouples depend
We have evaluated and analyzed both detailed and glo- strongly on /3, and /3,. General trends are somewhat

;al dynamical properties of arrays. These include the elusive. One might expect that, if/3, I so that (o, - (, I
time-dependent supercurrents and normal currents, or then the long-time dynamical state is more likely to be I
•ltages, in individual junctions and their time averages; decoupled if o, is either much larger or much smaller

trne-dependent voltages across the entire array and their than the other frequencies, i.e.. 3, >> I or /3, << I. This
rm,: averages vielding I-V characteristics); and the expectation is borne out to some extent. For example, us- U

-rtizuration and motions of vortices. Also, in the case ing the same grid as employed to obtain Fig. 2(a) we
0, chaotic states, the character of the chaos and its onset found a small number-about 25-of coupled states at
h.i'e been studied in some detail. In this paper we do not long times with 13, =4 and with either /3, =25 or 0,= -L,
,ttcuss the motion of the vortices or the properties of the In these two cases the locations of the coupled states are
-- ,.tic states, distributed quite differently. For/3, = 25 they are widely I
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spread in i, but all close to i, =0.7, whereas for/f, = 6 , current is not important and the system is overdamped,
they are dispersed at relatively large i, and small i, im- then too the dynamical state will be decoupled. Then, as
plying that there is no simple rule for the probable loca- fl, increases, more coupled states can be expected. For
tions of coupled or decoupled states. example, in Fig. 2(b), we show the regions of coupled

Another trend we have found is the following: if the states for fi c = 1 and 6, = 25. In contrast to the results for
capacitance, or f, is small, so that the displacement the same f, and fi =4, we find a large region where cou-

pled states appear at long times. For further contrast, we
2.0 . . . . . show in Fig. 2(c) the behavior for 3c=4 and ,=t1r 2 /25

.. which demonstrates that the distribution of coupled
..... states can be quite complex.

To summarize, all cases shown give decoupled states if

the input currents i and i,, are small compared to unity
and also if i, is significantly larger than unity. Our gen-

.. ".. :"eral findings are that, when started from some random
.0- .. configuration, the arrays show long-time behavior in

r.::' which the currents either travel straight through the ar-
L :: ray, so-called decoupled states, or travel in irregular

.paths so that there are sizable currents in the transverse

junctions, so-called coupled states. If fle, fi, ie, and i,
are of order unity, it is difficult to predict, in general,

00 ..- . . - which type of behavior will be observed in the absence of
00 0.5 1.0 5 20 detailed numerical study of that particular case. Howev-

er, in some instances the behavior is already determined
2.0  . from knowledge of the dynamics of a single junction hav-

I:.ing the same o, and op and driven with the same input
currents. For example, if the single junction shows

.5 " chaotic behavior, so will the array and a coupled state
will result.

It is worth commenting on the behavior should the in-

0- :.:put currents i,(j) not be independent of j, which is likely
to be the case for a real tray. We have done studies with
the individual currents i,(j) varied by random amounts
i,(j) relative to a given mean value leo, employing 8i (j)

0.5 as large as 0.5. Then the currents in the array cannot ful-

Ib) ly decouple into a set of parallel line currents. Rather,

J states which would be decoupled for uniform inputs tend
00 0.5 0 1.5 2.0 to show transverse currents on the order of the variation

&i,(j) at the edges where the input and output take place;
these transverse currents decay toward the center of the

2.0.. array. We find this to be the case even for large 8ie(j),
:: relative to the distance from a boundary between the

.... ::" decoupled and coupled dynamical states, indicating that
ISV. ....... : ..... the qualitative response of the array is quite stable

against nonuniformities in the inputs. An example is pro-
vided by arrays corresponding to Fig. 2(c) with i, = 1.0.

2.0 "::: " using io= 0.32, which is less than 0.02 above a region of
1.0 . "coupled dynamical states, we find that, even with varia-

:.. tions of the individual input currents as large as 0.5, the
dynamics remains effectively decoupled and periodic with

5 "the transverse currents becoming small in the center of
"" the array; for an 8 X 8 array, these currents are alreadyf, smaller at the center than at the edges by an Order of

magnitude. We have studied this effect by computing the
0 €5 1 1 5 .mean value of the absolute current through transverse

junctions in larger arrays and find that it decreases ex-

FIG. 2. Points on a grid with spacing 0.05 in the space of i. ponentially with the distance from the end (i = I ) of the
and i,, at whtch coupled long-time dynamical states are found array. For an array with M =8, the decay length is on
for (a) 13, =fl, - I, Ib) 13, I and f3, -25, and Ic) f3, =4 and the order of 21 junction spacings. This length is, some-
3. , /25. Arrays measuring 8 X 8 were used to obtain these what surprisingly, quite insensitive to f3l, )3,. i,.,, or i,T. It
results as well as those in all of the figures that follow, is, in fact, a size effect and is proportional to the array
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width M. Hence, our conclusion is that, for a sufficiently of single junctions and we refer to the dynamical state as I
long (large-N) array, the global character of the long-time a "single-junction" state; it is also known 16 as a phase-
stable state is quite insensitive to nonuniformities in the locked state. In the latter case, the supercurrents and
dc bias current; rather, it depends, very sensitively, on voltages in different junctions in the line are the same, but
the total input current. they are shifted in time relative to one another. We have

We give next a more detailed description of the charac- given the name "chain states" to dynamical states of this
ter of the different possible types of dynamical states, kind; they are also found in one-dimensional arrays
coupled and decoupled, including representative exam- where they are known16 as antiphase solutions. Note, I
pies of each kind of behavior. The decoupled states, by however, that the existence of such states in two-
current conservation, must be such that the currents in dimensional arrays is, at first sight, quite remarkable; in
all of the longitudinal junctions are the same at all times. spite of the fact that the phase differences across two ad-
If one looks separately at the supercurrent and normal jacent junctions in a longitudinal chain do not vary with
current or voltage, however, one finds that in some in- time in the same way, no current or phase difference is
stances these are the same in all junctions in the line at a produced across any transverse junction.
given time and in other instances they are not. In the For the single-junction or phase-locked states, we find,
former case, the array is simply a coherent superposition for all parameter sets investigated, that the period is

..0. .. ,,.I-I
1 L

I 2oi~ I I

1I, -- I I
I II

0 2

"" - I
0 2 4 6

lol
In- -- - -n-. -

)0

I G .. For a si ngle-junc tion state at 13 4. fl, r ,/2 5. i_, 1. 0, and i,. 0. 4, we show for a longitudinal junction (a) the super-
u Irrt:nt as a function of -., (h) the power spectru~m of ', and c) the phase-space trajectory 4 ' vs (6'). All longitudinal junctions areI

,' .i.rt n this sta!t.

I
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equal to the period of rf field or to some integral multiple single junction 7 with the same parameters, except, of
of it. As an example of this type of behavior, we present course, the chaotic states involve a singlc junction.
in Fig. 3(a) the supercurrent, Fig. 3(b) the Fourier trans- As an example of a chain state, we present in Fig. 4(a)
form or power spectrum of 4 , and Fig. 3(c) the phase- the supercurrent, Fig. 4(b) the power spectrum of 0 ', and
space trajectory b' versus sino' for a longitudinal junc- Fig. 4(c) the phase-space trajectory for a longitu -1nal
tion in an array with P,=4, i,=iw2/25, i,=0.4, and junction in the interior of an array with #,c=4,
i, = i.0; cf., Fig. 2(c). There is no mistaking the simple P, =r 2 /25, i, = 1.8, and i,. = 1.0. Insofar as we can tell,
periodic character of the motion with a period of 21r/,. the motion is not precisely periodic. If it is periodic, the
If one increases i,, leaving other parameters the same, period is much larger than the period of the driving field.
period doubling is observed at i,=0.59, and again at This is a characteristic property of chain states in gen-
0.64; there is further period doubling followed by the on- eral. The power spectrum shows large apparently sharp
set of chaotic behavior-and a coupled dynamical peaks at frequencies u/a1r, equal to 1.704, 2.704, etc.; the
state -around i, =0.66. Similarly, if one decreases i ,4 a widths of these peaks are smaller than the resolution of
coupled dynamical state is found to appear by the time i our calculation. There are smaller sharp peaks at integral
has reached 0.30. Much the same behavior appears in a values of w/w,. Finally, there are much smaller peaks at,

1.0'

(b)

, 1
0.5 "

0.0
"<

- o 5 - , ' I
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- l ) . . I, , , . . . . i t : 1 . . I
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I

-I.0 -l '..''' .L .:'::.:.
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-I), 0 1". " - .5

',n

FIG. 4. For a chain state at fl, 4. fl, -.r/25, i4, 1.0, and i = 1. 8, we show for the longitudinal junction between nodes (4.4) and
5,41 'a) the supercurrent as a function of r_, (b the power spectrum of di'. and (c) the phase-space trajectory. The last of these, as

vAeII a% all phase-space trajectories in the following figures, is discrete, the points being at intervals of the step size used when integrat-
mnl the equm11ions of moi on,
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e.g., (1-0.704), (1+2X0.704), and I!+3X0.704), that the supercurrents or normal currents in diff'erent
which suggests that there are two basic frequencies of junctions along a longitudinal chain are the same but
motion, one of which is certainly w, and the other of shifted in time from one another. We have found, by U
which is around 0.704w,. The system generates frequen- starting the system with judiciously chosen initial condi-
cy components which are various linear combinations of tions, that locally stable dynamical states are obtained in
these basic frequencies. If the two frequencies are incom- which this time shift is a multiple of the driving period
mensurate, then the motion is not truly periodic. Similar 27r/a,. We conjecture that all locally stable chain states [
behavior is observed for other chain states; that is, the have this property but have not been able to verify our
power spectrum has sharp peaks at integral values of conjecture in the case of dynamical states obtained from
(10, and also at one or more sets of additional frequen- random initial conditions. In any event, the basin of at-
cies displaced from the former set by fixed amounts traction for any given chain state is small in that the time
which do not appear, in general, to be commensurate shifts of the different junctions depends sensitively on the
with the driving frequency o,. Furthermore, as the junc- initial conditions. The basic motion of any given junc-
tions' parameters and input currents are varied, the tion, however, does not. Also, an individual chain state is [
second basic frequency also varies, apparently smoothly. typically easily disrupted with a small perturbation to the

As stated above, a general feature of the chain states is system in that the time shifts change as a result of such a

1.0 *l~'F

05- / , I

-~ (3 b)

c i -

( a) i "

0.0 0.2 0.4 06 U 8) I

* (Ills N~
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01 ) s i lS -1141 11 4

F10 5 For a quasaperiodic coupled state at /3, 1, ,= 25, i,, =0.5, and i, 1.25, we show (a) the supercurrent as a function of r,
the Ionvtudinal junction between nodes '4.41 and (5.4i. (bi the power spectrum of r,' in the same junction. (c) the phase-space tra-
- ,r f,r this junctin. and idi the phas-space trajecory for the transverse junction between nodes (4,4) and (4,5).
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FIG.(). For a chaotic state at 0 4,1,=n-2/25, i, 1.0, and ii, = 0.69, we show (a) the supercurrent as a function of 7, in the lon-gitudinal junction between nodes (4.4) and (5,4), (b) the power spectrum of iii in the same junction, (c) the phase-space trajectory forthk junction, (d) the power spectrum of the neighboring transverse junction between nodes (4,4) and (5,4), and (e) the phase-space tra-

jectory for that transverse junction.
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perturbation. Further properties of these states, such as no plateaus for i larger than about 1.5, although this is a
their stability, will be addressed in a separate publication, region where the dynamical states are decoupled. These

As for the coupled states, we have examined the states are, however, chain states rather than single- U
motions for many different parameter sets and have seen junction states. Floquet analysis, similar to that done in
just three qualitatively different types of long-time behav- Ref. 10, demonstrates that the single-junction states are
ior, these being periodic, quasiperiodic, and chaotic. The unstable here. As a rule, chain states correspond to re- I
first of these have periods which are integral multiples of gions where the voltage varies with i. Figure 7(b) shows,
2rr/w,. For example, at #,=4, B,=ir2 /25, i,=1.235, for contrast, the l-V curve for a single junction with the
and i, = 1.0, there is a coupled periodic state with period same parameters as used for Fig. 7(a). The structure of
5(21/rw,). These periodic states also have, in general, the curve is similar but with more pronounced voltage I
some spatial periodicity which is typically two junction variations. Also, of course, the voltage is seven times
spacings. In any given state this pattern may be repeated larger for the array.
throughout the array or may be only local with different These I-Vecurves may be contrasted with what is found

periodic (in space) states present in different parts of the if the capacitance is zero, op-, --- c. In that case, there is a
array. Finally, the coupled periodic state tend not to be sequence of wide, evenly spaced voltage plateaus for
very robust, meaning that they usually have relatively currents up through and well beyond what is shown in
small basins of attraction and are not found for most sets
of initial conditions. Rather, in those places where these
states can appear, there is usually a more robust periodic ..
decoupled state. - I

An example of a coupled quasiperiodic state is provid- 10
ed by an array with 6l,=, P,=25, i,=1.25, and
i,, =0.5. Figure 5(a) shows the supercurrent in a typical •
longitudinal junction in the interior of the array; Fig. 5(b) 8
displays the power spectrum of 4' for the same junction; .,
and Figs. 5(c) and 5(d) present, respectively, the phase- -
space trajectories for this junction and for an adjacent z
transverse junction. In addition to peaks at integral mul- F ,+ -

tiples of the driving frequency, there is a pronounced 4
peak at a frequency close to, but not precisely equal to,
.o, = o, = 0. 2wo,. Further, there are smaller peaks at har- [.
monics of this one's frequency. These peaks are narrower - I
than the resolution of our Fourier transform. As was the -

case for the chain states, the motion appears to be quasi- -'
0.0.periodic rather than truly periodic. 0 .0. . ........ 2.0

A clear contrast to Fig. 5 is shown by Fig. 6 where we
plot in Fig. 6(a) the supercurrent in a longitudinal junc-
tion, Fig. 6(b) the power spectrum of ii' in that junction,
Fig. 6(c) the phase-space trajectory for the same junction,
Fig. 61d) the power spectrum of a neighboring transverse ,
junction, and Fig. bte) the phase-space trajectory for that

transverse junction, in an array with f, =4, /, = i 2 /25,

., =0.69, and i, =1.0. This is a chaotic state as is

demonstrated by the power spectrum and the phase-space
trajectories. The power spectrum also shows sharp peaks _ U
at harmonics of the drivir. frequency; these are absent -"

from the power spectrum for a transverse junction. 0 X
For applications, one is interested not so much in the -

behavior of individual junctions in the array, but rather
in global properties, in particular, the current-voltage
characteristics. In Fig. 7 (a) we display the time-averaged 04 I
mean voltage across an 8 X8 array as a function of i,..
rhe parameters for this system are ). = 4. J3,=2 /25. ih,

S md +.. = 1.0. The curve shows a number of voltage pla-

"!aUs or Shapiro steps where the mean voltage is indepen- 0Sm .. ,
!cnt of the input current. In these regions the dynamical
,tates are the decoupled states with single-junction be-
hwo'ior; compare Fig. 2(c). There is a wide plateau for FIG. 7. Forf, =4,0, = irn/25, and i,, =1.0, we show the I-V

I 'i_ - 0.65 and smaller ones in other regions includ- curves for (a) an 8 X 8 array and (b) a single junction. The volt-
f many at small i, as in the case of a single junction,' ages on corresponding plateaus are seven times larger for the ar-
-hich are two narrow to appear in the figure. There are ra% than for the single junction.
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the figures. Hence, we can conclude that the addition of That is, it is not inconceivable that in some of these cases
capacitance to the junctions in this instance suppresses the array would exhibit long-time periodic or quasi-

the higher Shapiro steps, at least for the dynamical be- periodic behavior were we able to follow it long enough.

havior at the times which we investigated. At the same Consider as an example junctions with 6, =4,,6, =i"/25,
time, the edges of the remaining steps tended to become and i, = 1.0. For i, between 0.07 and 0.13, there is a re-

sharper with the addition of the capacitance, reflecting gion, corresponding to the voltage plateau in Fig. 7(b),

the fact that the presence of capacitance does not, in gen- where the single junction is periodic. At many values of

erai, result in an overall degradation of the steps, as has ie in this range we found, for 8 X 8 arrays, chaotic rather

been demonstrated also by others. ' 2 18 In the present ex- than periodic behavior starting from randomly selected
ample, as described above, there is just one wide plateau initial states.
remaining with a number of narrower ones which do not
necessarily occur at voltages that are integral multiples or B. Effects of noise
simple fractions of the voltage of the wide one (which is
at the same voltage as the first step produced by an array The addition of noise currents to the system provides a
with negligible capacitance). means by which it may escape from one locally stable

In the regions between plateaus, where the voltage typ-
ically increases with i , the dynamical state is either a
chain state or a coupled state. Specifically, at relatively i.0 .0 .

large ii,i 1.5 and above, it is the chain state that is
present while for i, in the region below about 1.0, there
are chaotic states. Thus there is a simple correspondence 0.5 -

of decoupled, periodic dynamical states with the voltage "-I
plateaus and either coupled states or aperiodic decoupled I
states with the regions where the voltage changes with in- 0.0
put current. Similar statements apply in this case of a 0.

single junction; there are periodic states on the voltage 0'

plateaus and either chaotic or quasiperiodic states else-
where. -0.5

We have studied the transition from periodic to chaot- L
ic behavior in some detail. As an example, we cite the A

transitions as one moves from the large plateau in Fig. -I.0 -a
7(a) either upward or downward in i, into chaotic re- I
gimes. In the former case, there is a sequence of period

doubling transitions with increasing i, until chaotic be-
havior sets in around i, =0.66, a standard route to chaos. -L5 -1.0 -0.5 0.0 0.5 1.0 1.5

The behavior for decreasing i, is not the same. In this sin 0'

case we find no period doubling. Rather, the power spec-
trum, which is necessarily initially a set of perfectly sharp 0.06
peaks at integral multiples of w,, evolves by developing
widths in the peaks accompanied by the gradual appear- o4-
ance of a noisy background at all frequencies. Hence. • ""
two quite different routes to chaos appear in this one ex- L
ample. 0.0.

It is appropriate to compare the behavior of the array
with that of a single junction having the same charac- o0o-
teristics. In many respects the two are comparable. That .
is. the single junction also displays periodic, quasiperiod- 7 :-. .

ic. and chaotic behavior. Of course, with a single junc- - "
tion one cannot observe coupled as opposed to decoupled " "
dynamical states. Roughly speaking, the regimes where -04"

the array shows coupled chaotic states are also ones
where the single junction is chaotic; where the array -0.06L (b)
displays periodic behavior, the single junction is also
periodic with the same period, and where the array shows -00 .0.1

aperiodic but decoupled behavior, the single junction is -0.15 -0.10 -0.05 0(00 0.05 0.10 0.15

als , aperiodic. It is. howe%er, sometimes difficult to sin0"
make a detailed comparison. As a rule, if the single junc-
tion is chaotic then the array is; there are some regions FIG. 8. The phase-space trajectory for (a) the iongitudinal
where the array is apparently chaotic but the single june- junction between nodes (4,4) and (5.4) and (b) the transverse
tc-ii i- not. This observation may be a consequence of the current in the junction between nodes (4,4) and (4,5), for f, =4.
inite itimes we jrc able to follow the motions of the array. 13, + /25,, = 1.0. i. =0. 32. and 'i., < 0.4.
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dynamical state to another. Further, the characters of ular, the chain states which maintain their basic charac-
various types of states must change somewhat; ter, described above, in the presence of the noise.
specifically, the decoupled states are no longer truly
decoupled because fluctuating currents must appear in IV. STABILITY ANALYSIS
the transverse junctions. In addition, periodic states are From Sec. II, the condition of current conservation at
no longer truly periodic because of the noise. The most node k may be expressed as, for iF= 0 , i
interesting question associated with the presence of noise
is whether states are destabilized by it. + #- 1 --.

One well-known' 9 consequence of the noise is that the k (I- d+ 0'd _w )

edges of the platevv.s in the current-voltage plot become I Uk) dr I
rounded. Small plateaus are lost altogether. Purely +sin('k - 0)+i;(k)=0. (27)
periodic states become quasiperiodic in that the power I
spectrum still has sharp peaks with some background In the following, we shall specify a node using indices i
present. The phase-space trajectories demonstrate the as in Sec. II, O (r)--0'(i,j;r).
quasiperiodic behavior very vividly; Fig. 8, which may be We begin by considering the stability of the single-
compared with Fig. 3(c), is for 6 =4, 6, =v/25, junction states. These are characterized by a single-phase
i,,=1.0, and ief=0.32, with the rather large noise unction 00(-r). If we let the phases of the individual

current ° It_(t) 1 <0.4. Even this large fluctuating current nodes in the single-junction state be designated as
is not sufficient to disrupt the basic periodic state; notice, 4,;(i,j ;r), then these are related by
however, that in the absence of noise, if ie were reduced 4,o(i,j;r)- -(i',j';r)=(i -i')Oo(r) . (28)
to 0.30, a reduction of just 0.02, a chaotic state would re-
sult. The periodic unperturbed state is evidently quite To test this mode's stability, we write 0'(i,j;r) as
robust against noise, even as it is robust against nonuni- 4,(i,j;r)=4,o(i,j;r)+¢(i,j;r) (29) U
form input currents.

Comparably large noise currents also do not destroy and expand Eq. (27) in powers of 0b, keeping just linear
other types of unperturbed states. We mention, in partic- terms,

- -cosbo[2tb(i,j)-zi +l,IJ)- (i-l,iJ)]+[2(i,j)-ihi,j+l)-(i, j-l)1=0. (30)

_ I
Finally, we Fourier transform the linearized equations of dl'(r)
motion in space, making use of the fact that the nodes are = -- d
on a square lattice with spacing a, and obtain

d -,) /(;q so that--£ 13,. :t~;d) qr=
dr d 7

X I =X 2

(31) (34)

where and 3
I -cosqa )cos&,1 +-(1 - cosqa

f 2 - cosq, a - cosqa (32) x;=- 7 /2 x2 -fx,

In the single-junction mode, cos[6,1 (r)] is periodic, and or, in matrix form,

as a consequence f(q, 7) is also periodic so that Floquet x'= Ax (35) 1
theory 21 may be applied. First, note that, for 1q, < 'q ,
f q, 7) > 0 for all r. Consequently, the uniform solution where
is stable against perturbations which satisfy this condi-
ion on q. More generally. we convert the second-order x1

equation '311 to a pair of first-order equations by intro- x
ducing -

and (36)X i = 7) =0 1 71

and (33- f i7•
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We have analyzed these equations, finding, in particu- course, zause them to fluctuate around some mean prop-
lar, the two characteristic multipliers a, for a variety of erties. Similarly, random variations in the input currents
single-junction states. In all cases examined we find that do not have significant effects on the decoupled states so
the absolute values Ia, I are less than unity for any finite long as the total input current is unchanged. In the latter
q'. However, one of them is very close to unity for qy case, there are produced currents in transverse junctions
small. The implication 2' is that the periodic uniform close to the nodes where the current is injected, but these
states are (locally) asymptotically stable, although the de- die out exponentially with distance with a decay length
cay time of a perturbation can be very long. These pre- on the order of one-half of the array's transverse length.
dictions are supported by our numerical results; all The rather impressive stability of the dynamical modes
periodic uniform states that we have encountered have against thermal noise and disorder in the inputs is some-
proved to be locally stable. what surprising. It would be useful to know also whether

Next, suppose that cos[ 00 (r)] is chaotic corresponding the dynamical states are as stable when there is
to a decoupled uniform state in which each junction un- configurational disorder in the array; we intend to study
dergoes the same chaotic motion. In this case the uni- this question and report on it separately. We do not at
form solution is one in which the entire system behaves this point have an explanation for this stability. Never-
like a single junction and exhibits uniform global chaos. theless, it is encouraging in that it implies that reliable
We may argue, however, that this state is unstable with devices such as rf radiation detectors could be construct-
respect to small perturbations. Suppose a phase at one ed from junction arrays.
node is perturbed relative to its value in the uniform The coupled dynamical states are either periodic,
state. This disturbance will grow as a consequence of the quasiperiodic, or chaotic. The periodic states that we
state being a chaotic one with a positive Liapunov ex- found to be uncommon in that they have relatively small
ponent. Further, the disturbance will spread to the near- basins of attraction and do not appear very often if the
by nodes, which are coupled to the original one, and so simulation is started with random initial conditions.
will grow in spatial extent as time progresses as well as More commonly, for those parameters where these states
growing on each node where it is present; hence, the uni. can appear, a periodic decoupled state usually is the re-
form state is unstable. This conclusion is also supported suit of starting from an arbitrarily chosen configuration.
by our numerical results. All chaotic states that we have The periodic states are interesting in that they also
studied show short-ranged spatial correlations in the display spatial periodicity. As for the quasiperiodic
chaotic part of the motion. However, the chaotic fluctua- states, these behave in time rather like the chain states
tions tend to be accompanied by some underlying period- but have, in addition, currents in the transverse junctions.
ic motion with longer-ranged correlations. Finally, chaotic states are quite common; we have found

that chaos can appear by a sequence of bifurcations dur-
V. DISCUSSION AND SUMMARY ing which the array is in a single-junction state and also

by intermittency.
We have studied the dynamical states of two- The current-voltage characteristics of the array have

dimensional arrays of capacitive Josephson junctions been examined and correlated with the dynamical states.with dc bias and an applied monochromatic rf field using There are voltage plateaus where the voltage remains

the RSJ model. For wide ranges of junction parameters, constant for some range of ie or i,x. The dynamical states
we find stable or metastable solutions of several basic on these plateaus are single-junction states or periodic
types. First, the states are either coupled, meaning that coupled states. Off the plateaus one finds coupled and

there are currents in junctions perpendicular to the input chain states. The presence of capacitance in the arrays
currents, or decoupled, meaning that the input currents tends to suppress the plateaus and produce fairly smooth
pass straight through the array, producing no currents in variation of the voltage with the input currents, especial-
the transverse direction. In the latter case, the arrays ly in the region of relatively large ie (larger than about
display either single-junction (phase-locked) states or 1.5) where predominantly chain states are found. For
chain states in which the junctions in a longitudinal chain smaller *,, and with i, 1, chaotic states are not common
all behave in the same fashion but successive junctions in off the voltage plateaus. Also, in this region there are
the chain are time shifted by apparently random multi- numerous very small plateaus. Overall, the behavior of
pies of the period of the rf field. At the same time, the the I-V curves is not unlike that for a single junction with
states of parallel junctions in different chains are identical the same properties as the junctions in the array, al-
so that the system is invariant under translation in the though much of the detail of the curve for the single
transverse direction. junction is lost.

Also, both kinds of decoupled states are generally very Of the various phenomena we have found, several seem
robust in that random changes in the initial conditions do worthy of further investigation. These include the de-
not often lead to a different dynamical state at long times; tailed character of the chaos in this extended.
in the case of the chain state, such a perturbation typical- continuous-time system, the rather remarkable stability
ly produces a different chain state in that the amounts by of the various dynamical states, especially the decoupled
which different junctions are time shifted relative to each ones, to different kinds of noise and disorder, and certain
other change. Similarly, thermal noise, included by features of the chain states. Further work on these and
means of a Langevin noise current in each junction, does other aspects of the dynamics of capacitive arrays is in
not easilv destabilize these states although it does, of progress.

II
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