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Abstract

The Markov chain simulation method has been successfully used in many problems,
including some that arise in Bayesian statistics. We give a self-contained proof of the
convergence of this method in general state spaces under conditions that are easy to
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1 Introduction

Let 7r be a probability distribution on a measurable space (X, B), and suppose that we are
interested in estimating characteristics of it such as ir(E) or f fdr where E E B and f is
a bounded measurable function. Even when 7r is fully specified one may have to resort to
methods like Monte Carlo simulation methods, especially when 7r is not computationally
tractable. For this one uses the available huge literature on generation of random variables
from an explicitly or implicitly described probability distribution r. Generally these meth-
ods require X to be the real line or require that 7r have special features, such as a structure
in terms of independent real valued random variables. When one cannot generate random
variables with distribution 7r one has to be satisfied with looking for a sequence of random
variables X 1, X 2 ,... whose distributions converge to 7r and using X, with a large index n
as an observation from 7r. An example is the classical Markov chain simulation method,
which can be described as follows.

Let P(x, A) be a transition probability function with the property that it has stationary
distribution 7r, i.e.

7r(C) = J P(x, C)ir(dx) for all C E B.

We fix a starting point x0 , generate an observation X1 from P(xo, .), generate ahA observation
X 2 from P(X 1 , .), etc. This generates the Markov chain xo = Xo, X 1,X2,.... Let Pn(x,.)
denote the distribution of Xn when the chain is started at x. If we can show that

sup IP"(x, C) - 7r(C)I -- 0 for all x E X,
GEL3

then by running the chain sufficiently long, we succeed in generating an observation X,
with distribution approximately 7r. Then, we may estimate 7r for example by generating G
such chains in parallel, obtaining independent observations XOn,... ,X(G), or by running
one (or a few) very long chains. In Section 3 we make some remarks on the advantages and
disadvantages of these two methods.

The Metropolis algorithm and its variants produce Markov transition functions satisfy-
ing (1.1). This algorithm was originally developed for estimating certain distributions and
expectations arising in statistical physics, but can also be used in Bayesian analysis; see
Tierney (1991) for a review.

However, in the usual problems of Bayesian statistics, the most commonly used Markov
chain is one that is used to estimate the unknown joint distribution 7r = rx(,) ....X(P) of
the (possibly vector-valued) random variables (X( 1),...,X(P)) by updating the coordi-
nates one at a time, as follows. We suppose that we know the conditional distributions
7x(q)I{X(.) joi), i = 1, .. . , p or at least that we are able to generate observations from these
conditional distributions. If X, = (XW),...,X(P)) is the current state, the next state

"+1 7 M+(1 ,. ) of the Markov chain is formed as follows. Generate X( 1 I from

rx('){x ( .,X ,X A'~ )), then from (rX(2)I{X(j)jA2)(+1)
and so on until X(P) is generated from rx(p)1ix(,)jP)(.X(+) 1),.••,X(,1) .) If P is the

transition function that produces Xm+1 from Xm, then it is easy to see that P satisfies (1.1).
This method is reminiscent of the simulation method described in Geman and Geman

(1984). In that paper, p, the number of coordinate indices in the vector (X('),.. X(P)),



is usually of the order of N x N where N = 256 or higher. They assume that these indices
form a graph with a meaningful neighborhood structure and that 7r is a Gibbs distribution,
so that the conditional distributions 7rX(i)l{X() ji, i = 1,... ,p depend on much fewer that
p- I coordinates. They also assume that each random variable Xi takes only a finite number
k of values and that 7r gives positive mass to all possible kN2 values. Geman and Geman
(1984) appeal to the ergodic theorem on Markov chains with a finite state space and prove
that this simulation method works. They prove other interesting results on how this can
be extended when a temperature parameter T (that can be incorporated into 7r) is allowed
to vary. This may be the reason why the method described in the previous paragraph
has come to be known as the Gibbs sampler. We consider this to be a misnomer, because
no Gibbs distribution nor any graph with a nontrivial neighborhood structure supporting
a Gibbs distribution is involved in this method; we will refer to it simply as successive
substitution sampling.

We note that this algorithm depends on 7r only through the conditional distributions
77X(')I{X() jLi)" Perhaps the first thought that comes to mind when considering this method
is to ask whether or not, in general, these conditionals determine the joint distribution 7r.
The answer is that in general they do not; we give an example in Remark 3 of Section 2.2.
A necessary consequence of convergence of successive substitution sampling is that the joint
distribution is determined by the conditionals. It is therefore clear that any theorem giving
conditions guaranteeing convergence also gives, indirectly, conditions which guarantee that
the conditionals determine the joint distribution 7r.

We now give a very brief description of how this method is useful in some Bayesian
problems. We suppose that the parameter 0 has some prior distribution, that we observe a
data point Y whose conditional distribution given 0 is £(Y 10), and that we wish to obtain

( I Y), the conditional distribution of 0 given Y. It is often the case that if we consider
an (unobservable) auxiliary random variable Z, then the distribution 7re,z = C (0, Z I Y) has
the property that relz (= C(9 I Y, Z)) and rzlo (= C (Z I Y, 0)) are easy to calculate. Typical
examples are missing and censored data problems. If we have a conjugate family of prior
distributions on 0, then we may take Z to be the missing or the censored observations,
so that 7reaZ is easy to calculate. Successive substitution sampling then gives a random
observation with distribution (approximately) 1(0, Z I Y), and retaining the first coordinate
gives an observation with distribution (approximately) equal to 12(0 I Y).

Another application arises when the parameter 0 is high dimensional, and we are in a
nonconjugate situation. Let us write 0 = (01,... , 0k), so that what we wish to obtain is
7e ..... ek. Direct calculation of the posterior will involve the evaluation of a k-dimensional
integral, which may be difficult to accomplish. On the other hand, application of the
successive substitution sampling algorithm involves the generation of one-dimensional ran-
dom variables from If , joi}, which is available in closed form, except for a normalizing
constant. There exist very efficient algorithms for doing this; see Zaman (1992).

Let us now return to the Markov chain simulation method. Let P be a transition
probability function on the measurable space (X,B), i.e. P is a function on X x B such
that for each x E X, P(x, .) is a probability measure on (X, 8), and for each C E B, P(., C)
is a measurable function on (X,B). Let X0 , XI,... be a Markov chain with transition
probability function P, i.e. P(X, E C IX,,_1 = x) = P(x, C), for n = 1, 2,.... If Xo E x,
we will say that the Markov chain starts at x and for any event C, P(C I X 0 = x) will be
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denoted by P,(C). Similarly, for any bounded measurable function f defined on the Markov
chain, E(fIXo = x) will be denoted by E,(f). Let Pn(x,C) = P(X, E CIXo = x).
Suppose that 7r is a probability measure on (X, B) and is a stationary probability measure
for the Markov chain, i.e. it satisfies (1.1).

When SUPCE1I P"(X, C) - 7r(C)j -- 0 (supCEos1 Ej '= Pj(X, C) - r(C)J -- 0) for a
set of starting points x which has probability 1 with respect to the stationary measure
7r, we will say that the Markov chain is ergodic (mean ergodic). The objective of this
paper is to give theorems, whose conditions are very simple to check, and which guarantee
ergodicity or mean ergodicity. (These are the minimum conditions required for success
of Markov chain simulation method. Once such conditions are established, it is useful to
also make a statement on the rate of convergence, if this is possible.) Before stating these
theorems, we will need a few definitions concerning Markov chains. For any set C E B,
let Nn(C) = E=1 I(Xm E C) and N(C) = J:'=I I(X, E C) be the number of visits
to C by time n and the total number of visits to C, respectively. The expectations of
An(C) and N(C), when the chain starts at x, are given by G (x, C) = E'=I P m (x, C) and
G(x, C) = E' I P m (x, C), respectively. Define T(C) = inf{n : n > 0, Xn E C} to be the
first time the chain hits C, after time 0. Note that Px(T(C) < oo) > 0 is equivalent to
G(x, C) > 0.

The set A E B is said to be accessible if

P,(T(A) < oo) > 0 for all x E X.

Let p be a probability measure on (X, B). The Markov chain is said to be p-irreducible if
every set A with p(A) > 0 is accessible. The set A is said to be recurrent if

P,(T(A) < oo) = 1 for all x E X.

For the case where the a-field B is separable, there is a very useful equivalent definition
of p-irreducibility of a Markov chain. In this case, we can deduce from Theorem 2.1 of
Orey (1971), on the existence of "C-sets", that p-irreducibility of a Markov chain implies
that there exist a set A E B with p(A) > 0, an integer no, and a number c > 0 satisfying

P (T(A) < oo) > 0 for all x E X, (1.2)

and

x E A, C C A imply P" 0 (x, C) >_ cp(C). (1.3)
Let pA(C) p(CA) This is well defined because p(A) > 0. The set function PA is ap(A)
probability measure satisfying pA(A) = 1. Note that (1.2) simply states that A is an
accessible set and this condition does not make reference to the probability measure p.
Condition (1.3) states that uniformly in x E A, the no-step transition probabilities from
x into subsets of A are bounded below by c times p. That (1.2) and (1.3) imply PA-
irreducibility is, of course, immediate. This alternative definition of pA-irreducibility, which
applies to nonseparable a-fields as well, will be usually much easier to verify in Markov
chain simulation problems. By replacing p by PA, we can also assume with no loss of
generality that p is a probability measure with p(A) = 1 when verifying Condition (1.3).

For any subset M of the positive integers, g.c.d.(M) will denote the greatest common
divisor of the integers in M.
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The main results of this paper are the following two theorems, which are stated for
general Markov chains. They give sufficient conditions for the Markov chain simulation
method to be successful.

Theorem 1 Suppose that the Markov chain {X } with transition function P(x, C) has
an invariant probability measure 7r, i.e. (1.1) holds. Suppose that there is a set A E B, a
probability measure p with p(A) = 1, a constant e > 0, and an integer no >_ 1 such that

Sr{x: P,(T(A) < oo) > 0} = 1, (1.4)
and

P" Cx,.) >p(.) for each x E A. (1.5)

Suppose further that

g.c.d.{m > 1: there is an . > 0 such that Pm (x,.) > cp() for each x E A} = 1.
(1.6)

Then there is a set Do such that

r(Do) = 1 and sup lPn(X, C) - 7r(C)I 0 0 for each X E Do. (1.7)
CEO

Theorem 2 Suppose that the Markov chain {Xn} with transition function P(x, C) satis-
fies conditions (1.1), (1.4) and (1.5). Then

sup I-- E Pm 0+"(x, C) - 7r(C)I -. 0 as m --- oo for [Tr]-almost all x, (1.8)

and hence

supI -E P(x,c)- r(c) -- 0 as n-- oo for 17r]-almost all x. (1.9)

Let f(x) be a measurable function on (X, B) such that f 7r(dy)If(y) < o. Then

P41 "-f(X) Jr(dy)f(y)} = 1 for [H]-almost all x (1.10)
n l

and
1E Ef(f(Xj))- r(dy)f (y) = 1 for [7r]-almost all x. (1.11)
n =fIl

Variants of these theorems form a main core of interest in the Markov chain literature.
However, most of this literature makes strong assumptions such as the existence of a recur-
rent set A and proves the existence of a stationary probability measure before establishing
(1.7) and (1.8). Theorems 1 and 2 exploit the existence of a stationary probability measure,
which is given to us "for free" in the Markov chain simulation method, and establish the
ergodicity or mean ergodicity under minimal and easily verifiable assumptions. For exam-
ple, we have already noted that in the context of the Markov chain simulation method, we
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really need to check only (1.4), (1.5), and (1.6). To show (1.4) in most cases one will es-
tablish that P,(T(A) < oo) > 0 for all x. Condition (1.6) is usually called the aperiodicity
condition and is automatically satisfied if (1.5) holds with no = 1. We also indicate the
critical points in the proof where one can use additional information to obtain results on
the rate of the convergence.

There is a long history on ergodic theorems for Markov chains. For the case where X is
a finite space, it has long been known that if there is an integer k and a point y E X such
that minXEa, Pk(x, {y}) > f > 0, then (1.7) holds at an exponential rate; see for instance
p. 173 of Doob (1953). Other sufficient conditions for ergodicity are known for the case
where X is a countable space. See e.g. Theorems 1.2 and 1.3 of Chapter 3 of Karlin and
Taylor (1975).

In interesting problems, including those that arise in Bayesian statistics, the state space
X generally is not countable. Early results on ergodicity of Markov chains on general state
spaces used a condition known as the Doeblin condition; see Hypothesis (D') on p. 197 of
Doob (1953), which can be stated in an equivalent way as follows. There is a probability
measure 0 on (X, B), an integer k, and an f > 0 such that

pk(x, C) > CO(C) for all x E X and for all C E B.

This is a very strong condition. It implies that there exists a stationary probability measure
to which the Markov chain converges at a geometric rate, from any starting point.

Theorem 3 Suppose that the Markov chain satisfies the Doeblin condition. Then there
exists a unique invariant probability measure 7r such that for all n

sup lP(X, C)- r(C)l < (1 _ f)(n/k)- 1 for all x E X.
C

A proof of this theorem may be found on p. 197 of Doob (1953). The Doeblin condition,
though easy to state, is very strong and rarely holds in the problems that appear in the
class of applications we are considering. We note that it is equivalent to the conditions
of Theorem 1, with the set A of Theorem 1 replaced by X. In its absence, one has to
to impose the obvious conditions of irreducibility and aperiodicity and some other extra
conditions, often times recurrence, to obtain ergodicity. Standard references in this area are
Orey (1971), Revuz (1975) and Nummelin (1984). An exposition suitable for our purposes
can be found in Athreya and Ney (1978). Theorem 4.1 of that paper may be stated as
follows.

Theorem 4 Suppose that there is a set A E B, a probability measure p concentrated on
A, and an c with 0 < f < 1 such that

P,(T(A) < oo) = 1 for all x E X,

and
P(x, C) >_ ep(C) for all x E A and all C E B.

Suppose further that there is an invariant probability measure 7r. Then

sup I P(x,C) -7r(C)I -- 0 for all x E X.
CEO
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This theorem establishes ergodicity under the assumption of the existence of a stationary
probability measure but also makes the strong assumption of the existence of a recurrent
set A. It is always difficult to check that a set A is recurrent. Our main results, Theorems 1
and 2, weaken this recurrence condition to just the accessibility of the set A from [r]-almost
all starting points x. We believe that this makes it routine to check the conditions of our
theorem in Markov chain simulation problems.

Tierney (1991) gives sufficient conditions for convergence of Markov chains to their
stationary distribution. The main part of his Theorem 1 may be stated as follows.

Theorem 5 Suppose that the chain has invariant probability measure 7r. Assume that the
chain is r-irreducible and aperiodic. Then (1.7) holds.

The main difference between Theorems 1 and 5 is that in Theorem 1 the probability measure
with respect to which irreducibility needs to be verified is not restricted to be the stationary
measure. This distinction is more than cosmetic. To check r-irreducibility, one has to
check that a certain condition holds for all sets which have positive probability under the
stationary distribution. For certain Markov chain simulation problems in which the state
space is very complicated, it is difficult or impossible to even identify these sets, since it
is difficult to get a handle on the unknown ir. An example of such a situation arose in
the context of Bayesian nonparametrics in Doss (1991), where the state space was the set
of all distribution functions. In that paper, the author was not able to get enough of a
handle on 7r to identify those sets to which it gives positive probability. On the other hand,
a convenient choice of p made it possible to check p-irreducibility through the equivalent
Conditions (1.4) and (1.5).

Another application of Theorem 1 in the area of Bayesian nonparametrics appears in
Escobar and West (1991).

We point out that Tierney (1991) does not give a detailed definition of aperiodicity,
but refers the reader to Chapter 2.4 of Nummelin (1984) where an implicit definition of
the period of a Markov chain is given. In the present paper, aperiodicity as constructively
defined in (1.6), is extremely easy to check: If the no appearing in (1.5) is 1, then (1.6) is
automatic.

Results which give not only convergence of the Markov chain to its stationary distri-
bution but also convergence at a geometric rate are obviously extremely desirable. Such
results are given in Theorem 1 of Schervish and Carlin (1990) and in Proposition 1 of
Tierney (1991). It is, however, important to keep in mind that checking conditions that
ensure convergence at a geometric rate is usually an order of magnitude more difficult than
checking the conditions needed for simple convergence, for example Theorems 1 and 5 in
the present paper. This is because in cases where the dimension of the state space of the
Markov chain is very high, it is usually extremely difficult to check the integrability condi-
tions needed. This situation arises in Bayesian nonparametrics for example; see Doss (1991)
for an illustration.

In addition, the Markov chain may converge but not at a geometric rate. This can
happen even in very simple situations. An illustration is provided in the example below,
which is due to T. Sellke. Let U be a random variable on R with distribution v which we
take to be the standard Cauchy distribution. Let the conditional distribution of V given
U be the Beta distribution with parameters 2 and 2, shif~d so that it is centered at U,
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and let X = (U, V). If we start successive substitution sampling at Xo = (0, 0), then it is
easy to see that U1 must be in the interval (-1, 1), and in fact, the value of U can change
by at most one unit at each iteration. Thus, the distribution of U, is concentrated in the
interval (-n, n). In particular,

sup IPUE C I Uo = 0) - v.(C)I : v{(-oo, -n) U (n, oo)} -s (2)1
CEB rn

so that the rate of convergence cannot be geometric. The distribution v could have been
taken to be any distribution whose tails are "thicker than those of the exponential distri-
bution", and in fact, we can make the rate of convergence arbitrarily slow by taking the
tails of v to be sufficiently thick.

It is not difficult to see that if we select the starting point at random from a bounded
density concentrated in a neighborhood of the origin, then this example provides a simple
counterexample to Theorem 3 of Tanner and Wong (1987), which asserts convergence at a
geometric rate.

This paper is organized as follows. Section 2 gives the proofs of Theorems 1 and 2 and
also states and proves a theorem that gives, under additional conditions, convergence at a
geometric rate. Section 3 discusses briefly some issues to consider when deciding how to
use the output of the Markov chain to estimate r and functionals of 7r.

2 Ergodic Theorems for Markov Chains on General
State Spaces

The proofs of Theorems 1 and 2 rest on the familiar technique of regenerative events in
a Markov chain. See for instance Athreya and Ney (1978). In Section 2.1, we prove
Proposition 1 in which we assume that the set A is a singleton a, so that p is the degenerate
probability measure on {a}. We also assume that the singleton a is an aperiodic state, a
condition which is stated more fully as Condition (C) in Proposition 1 below. Under these
simplified assumptions we establish the ergodicity of the Markov chain.

In Section 2.2 we establish Theorem 1 as follows. In Proposition 2 we show that, when
no = 1, under the conditions of Theorem 1, a general Markov chain can be reduced to one
satisfying the above simplified assumptions of Proposition 1. This is done by enlarging
the state space with an extra point A and extending the Markov chain to the enlarged
space. We then show that this singleton set {A} satisfies the simplified assumptions of
Proposition 1. From this it follows that the extended chain is ergodic. After this step we
deduce that the original chain is also ergodic. Finally, we show how the condition no = 1
can be discarded under the aperiodicity condition (1.6).

In Section 2.3 we prove Theorem 2 which asserts convergence of averages of transition
functions and averages of functions of the Markov chain, without the aperiodicity assump-
tion (1.6). The key step in the proof is to recognize that the Markov chain observed at time
points which are multiples of no is an embedded Markov chain satisfying the conditions of
Proposition 2 and with a stationary probability distribution r0 which is the restriction of 7r

to the set A 0 defined by (2.30). In the Markov chain literature, mean ergodicity is usually
obtained as an elementary consequence of ergodicity in the aperiodic case and the existence
of a well-defined period and cyclically moving disjoint subclasses. Our proof circumvents,

7



in a way which we believe is new, the need for well-defined periodicity and cyclically moving
disjoint subclasses.

2.1 State Spaces with a Distinguished Point

Fix a point a in X'. For convenience, we will refer to this point as the distinguished point.
We will often write just a for the singleton set {a}. The number of visits to a, N,({a})
and N({a}), will be denoted simply by N, and N, respectively. The first time the chain
visits a after time 0, namely T({a}), will be denoted simply by T. Let

Co {x:P(T < )=}=x - :P(T = oo)=0} (2.1)

and
AO = {x: P,(T < oo) > 0} (2.2)

be the set of all states x from which a can be reached with probability 1 and the set of all
states from which a is accessible, respectively.

Definition 1 The state a is said to be transient if PQ(T < oo) < 1 and recurrent if
P.,(T < oo) = 1. The state a is said to be positive recurrent if E,(T) < oo.

Proposition 1 Suppose that the transition function P(x, C) satisfies the following condi-
tions:
(A) 7r is a stationary probability measure for P.

(B) r{x: P(T < oo) > 0} = 1.

Then

r(Go) = 1 and sup Pi(X, C) - 7r(C) -0 for each x E Co. (2.3)
Csnj=O

Suppose in addition that

(C) g.c.d.{n : Pn(a,a) > 0} = 1.

Then
sup lPn(x, C)- r(C)l - 0 for each x E Co. (2.4)
CE13

The proof of this proposition is given after the remark following the proof of Lemma 3.

Lemma 1 If Conditions (A) and (B) of Proposition 1 hold, then r(a) > 0 and a is positive
recurrent.

Proof We first establish that r(a) > 0. From Condition (A) it follows that r(a) =
f r (dx)P'(x, a) for n = 1,2,..., and hence

n7r(a) = f (dx)Gn(x, c) (2.5)

for all n. The Monotone Convergence Theorem and Condition (B) imply that

limn7r(a) = Jr(dx)G(x,a) > 0, (2.6)

8



and hence r(a) > 0.
Let the Markov chain start at some x E X. Let T1 = T and Tk = inf{n : n >

Tk- 1, X,, = a} for k = 2,3,..., with the usual convention that the infimum of the empty
set is oo. If N < oo then only finitely many Tk's are finite. If N = co then all the
Tk's are finite. In the latter case, the Markov chain starts afresh from a at time Tk, and
hence Tk - Tklj, k = 2, 3,... are independent and identically distributed with distribution
H where H(n) = PQ(T < n). These facts, the Strong Law of Large Numbers and the
inequality

N,, < N, < N, (2.7)

TN + 1 --n - TN,

imply that

Nn ET)I(N = o) (2.8)
n T

with probability 1 under P for each x E X.
From the Bounded Convergence Theorem, it follows that

-G,,(x, a) = E( ))P(N = co) for each x E X.n2 E. (T)P (  = .

Divide both sides of (2.5) by n, take limits and compare with the above. By using the
fact that 7r is a probability measure and applying the Bounded Convergence Theorem, we
obtain _ 1 /t

7r (a) Er(dx)Px(N = cc). (2.9)
E.(T)

Since r,(a) > 0, it follows that f 7r(dx)P,(N = oo) > 0 and E ,(T) < cc, and hence a is
positive recurrent. K

The arguments leading to the conclusion r(a) > 0 in the above lemma, which were
based on (2.5) and (2.6), and did not use the full force of Condition (B). The following
corollary records that fact and will be used later in this paper.

Corollary 1 Let 7r satisfy (A) of Proposition 1 and let E E B be such that

7 G(x,E) > 0}) > 0.

Then r(E) > 0.

The fact that a is positive recurrent gives us a way of obtaining an explicit form for a
finite stationary measure v and show that it must be a multiple of 7r.

Lemma 2 Let a be recurrent. Let

v(C) = E,,(Z : I(Xj E C)) E P,(X,, E C, T > n) (2.10)
j=o nO

be the expected number of visits to C between consecutive visits to a, beginning from
a. Then v is a stationary measure for P(.,.) with v(X) = 0, and is unique up to a
multiplicative constant; more precisely,

V(.) = P(x,.)v(dx),

9



and if v' is any other stationary measure with v'(Xo) = 0, then

V'(c) = v'(c)v(C) for all C E B.

The measure v also has the property

V(CO) =0.

Suppose that Conditions (A) and (B) of Proposition 1 hold, so that a is positive recurrent
and ir is a stationary probability measure for P(., .) with 7r(Xo) = 0. Then

v(X) = E,(T) < oo

and
7()=V(C)Ir(C) - E(T)

is the unique stationary probability measure with 7r(Co) = 1.

Proof Since ZT-, I(X" = a) = 1 we have v(a) = 1 = Pa(T < oo). To show that
v(C ) = 0, notice that for all n

0 =P,(T = oo) = E,(P(T = oo I X,X 2 ,...,Xn))= E,,(Px,(T = oo)I(T > n)).

From this it follows that

0 = P,{Px,,(T = oo)I(T > n) > 0} = P{X E C , T > n}

for each n. From the definition of v in (2.10) it now follows that v(Co) = 0. We now show
that v is a stationary measure. Let f(x) be a bounded measurable function on (X,B).
Then

v(dx)f(x) = ZEc,(f (Xn)I(T >n))
n=O

= f(cr) + E (E,,(f(Xn)I(T > n - 1)) - Ea(f(X,,)I(T = n)))

= f(a) + .Ec (E (f(X,)I(T > n - 1)) Xo X, 7 ... ,Xn_,
n=1

- E E.(f (X)I(T = n))
n=1

= f(a) - f(a)P. (T < o) + Z E.(Ex. ,(f(X.))I(T > n - 1))
n=1

ZE. P(X,,dy)f(Y)I(T > n- 1))
n=

E Z E.4 P(X,,dy)f(y)I(T > n))
n=O

IEX(IEX v(dx)P(x, dy)) f (y).

10



where the fourth equality in the above follows from the Markov property. This shows that
v is a stationary measure.

Let V' be any other stationary measure for P(., .) satisfying v'(Xo) = 0. Fix C E B.
Then for C such that a V C,

V'(C) = fv'(dx)P(x,C)

= v'(k)P. (Xi E C) + Lt/- (dx)P(X E C)

SV'(cx)P.(Xi E C) + j1 j v'(dy)P(ydx)P.(X E C)

= V'(a)Po(Xi E C) + J v'(dY)P,,(X 2 E C, T> 1)

n

v'(a) E Pc(Xm E C, T> m- 1)+fV(dy)Py(X+i E C, T> n)
m=1

1

> ,'(a) ZP(Xn EC, T > m- 1)
M=1

n
> v'() Pa(Xm E C, T > m)

m=1

for each n. In the last line above we used the fact that {Xm E C, T > m- 1} =

{Xm E C, T > m}, since a 0 C. Thus V(C) _> v'(a)v(C) for all C since v(a) = 1. Let
A(C) = v'(C) - v'(a)v(C). Then A is a stationary nonnegative measure and A(a) = 0 since
v(a) = 1. Thus

0 = A(a) Gn(X, c,)A(dx) G(x, a)A(dx)

by the Monotone Convergence Theorem. Therefore 0 = A(Xo) since the integrand above,
G(x, A), is positive for all x E X0 in view of Condition (B). This proves that

v'(C) = vz(a)V(C), (2.11)

which shows that v is the unique stationary measure satisfying v(Xoc) = 0, up to a multi-
plicative constant.

We now assume that a is positive recurrent. Since T-1 I(Xn E X) = T, we have
v(X) = E ,(T) < oo. Let ir be a stationary probability measure satisfying 7r(X ) = 0.
From (2.11), we have the equality

7r(C) = 7r(a)v(C).

From the earlier part of this proof it now follows that 7r is the unique stationary probability
measure. 0

One can consider general measurable functions f(x) with f if(y)[7r(dy) < oo, instead
of I(x = a) as was done in Lemmas I and 2. By reworking inequalities (2.7) and (2.8),
showing that the end effects can be ignored and by using the law of large numbers for
averages of i.i.d. random variables, we can obtain the following corollary.

11



Corollary 2 Let Conditions (A) and (B) of Proposition 1 hold. Let f(x) be a measurable
function with f if(y)I7r(dy) < oo. Let

A, = {x: s, f(X1 ) f f()d7r(x)} ,}

Then
7r(Af) = 1

and
E-- (f(X)) Jr(dx)f(x) for [r]-almost all x.

1 j=1

Proof Using the definitions of the hitting times {Tk} of a defined in Lemma 1, define

min(n,T,) Tr+1 Tr+1 n

U = E f(X 3 ), V,= E f(Xj), V*= E If(XjI and W= E f(Xj).
j=1 j=T,+1 j=T+l j=TN,+I

From the simple bounds

TI

IUI S L If(Xj) and IWI < V ,:< max v
j=l - -5 .+

and the fact that for each x E Co, under P, V1, V2 ,... are i.i.d. random variables with mean
E.(T) f f(x)7r(dx), and E.(T) < 0o, we get P=(U/n -- 0) = P,(W/n - 0) = 1. Thus,

1 n U Nn 1 Na
- f(X)= n + - V1. + - f- (x)7r(dx)

n3 . n n nj=l 2 n gr ='I

as n --+ oo for [Hr]-almost all x.

To get the convergence assertions (2.3) and (2.4) of Proposition 1 we need the following
lemma from renewal theory.

Lemma 3 Let {p,,, n = 0, 1,.. .} be a probability distribution with Po = 0 and let

' = En=, p,, < oo. Let {7i, i = 1, 2,.. . be a sequence of i.i.d. random variables with distri-
bution{p,}. Let So = 0, Sk =_ =j 7j for n > 1. Define {p )I n = 1,2,..., k = 1,2,...recursively by p(l) -,, p~ --- ,-_

rb o<j<n P Pn-j= P(Sk = n). For n =0,1,..., define

rn, = EPv~n (2.12.)
k=O

Then

(a) r, is the unique solution of the so-called renewal equations

ro = 1, r. = rn-jpj, n = 1,2 ....

Furthermore,

12



(b) o-Z -Or~i "- -  a s n --' oo"

If the additional condition g.c.d.{n : pn > 0} = 1 holds, then

(c) rn -- as n -- oo.

Proof It is easy to establish (a) by direct verification. To prove Part (b), we note that
E'=0 rj = F 'oP(Sk :_ n) = E(N(n)) where N(n) = sup{k: Sk _ n}. By the Strong Law
of Large Numbers and the inequalities

SN(n) < n <

it follows that
N(n) 1

- w.p. 1.
n IL

Part (c) is the well known discrete renewal theorem for which there are many proofs
in standard texts, some of which are purely analytic (see, e.g. Chapter XIII.10 in Feller
(1950)) and others are probabilistic (see e.g. Chapter 2 of Hoel, Port, and Stone (1972)).
0

Remark 1 The tail behavior of the probability distribution {p,} affects the rate of con-
vergence of Irn - -. Here is an example of a result on rates of convergence. The following
are equivalent:

E exp(nto) p,, < oo for some to > 0. (2.13)

exp(nto) Jrn - rn+1j < oo for some to > 0. (2.14)

r- l = o(pn). (2.15)

When these conditions hold, it can be asserted that exp (-to) < p < 1. Similarly, if
n'p,n < 00 for some p > 0 then it is known that there is a 0 with 0 < 0 < p such that

Irn -11= 0(n-0).

See e.g. Asmussen (1987) or Stone (1965).

Proof of Proposition 1 Let D be the collection of all measurable functions f on (X, B)
with sup, If(y)l < 1. Let f E D. Then for any x E X,

n

E.(f(X.)) = E.(f(X,,)I(T > n)) + E__PX(T = k)E.(f(Xnk)), n=0,1,.... (2.16)
k=O

Let t, = E,(f(X,)), an = E.,(f(Xn)I(T > n)) and pn = PQ(T = n), n = 0,1 .... Note
that vn and an also depend on the function f while pn does not. Putting x = a in (2.16)
we get the important identity

vn = an + , PkVn-k. (2.17)
k=O
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It is not difficult to check that v,, = o akr..-k is the unique solution to (2.17) where r,
is as defined in (2.12). Thus

I n 1 n 1 n0 Rn-k
- Vj = - E akrj-k - E akRn-k = ak I(k < n)
Sj=O 2 j=O k-0 2 k=O k=O n

where R = Zj70 rj. Also,

1 ~ ~~ F(1 f (Xj)) _fd

0 0- E a j = f d i r- = E (T) E(T

Thus for f E D,

j-Zvj- fd7rj _ akl I(k < n) -

n .=O k=O nY

Z0akI-Ik
< 251a1 1+ q-(5 a1) su R- 1

* 2 E P.(T > j) + (E(T)) sup
j=m n-m<k<n n

for any positive integer m. Note that for fixed m, SUPn-m<k<n I A- -1 + 0 as n - oo from
Part (b) of Lemma 3, and m Pa(T > j) -- 0 as m -- o, since ce is positive recurrent.
By first fixing m and letting n - oo, and then letting m -- oo, we get

n

E vj - I fdr I -' 0 uniformly in f as n -* 0o. (2.18)
n =,

Let X E Co. Let w,, = E.(f(Xn)), bn = E.(f(X,)I(T > n)) and gn = P,(T = n).
Note that for a fixed x, b,, --+ 0 as 2 -+ oc, uniformly in f and that g, is a probability
sequence which does not depend on f. Using equation (2.16) once again, we see that w,
satisfies the equation

n
Wn=bn+jgkv,-k, n =0,1 .... (2.19)

k=O

Using (2.18), we conclude that

1 n n 1 n-k
wj 1  b + E ng-E vJ --+f fd7r

1 j=0 n j-0 k=O j=O

uniformly in f as 2 -+ oo. This establishes (2.3) of Proposition 1.
We now use Condition (C). Under this assumption, g.c.d.{n : P"(a,a) > 0} = 1, and

thus g.c.d.{n : Pn > 0} = 1; see for instance see the lemma on p. 29 of Chung (1967). Thus,
from Part (c) of Lemma 3 we have r, -- 1. Repeating the arguments leading to (2.18) and
(2.19) with this stronger result on rn, we see that vn - f f d2 and W,, - f fdp uniformly
in f E D. This proves conclusion (2.4) and completes the proof of Proposition 1.
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2.2 Proof of Theorem 1 for General Markov Chains

We will now establish Theorem I under the condition that the no appearing in (1.5) is 1.
This is stated as Proposition 2 below, and though it is technically weaker, its proof contains
the heart of the arguments needed to establish Theorem 1.

Proposition 2 Suppose that A E B and let p be a probability measure on (X, B) with
p(A) = 1. Suppose that the transition function P(x, C) of the Markov chain {X,,} satisfies
(1.1), (1.4), and (1.5) where the no appearing in (1.5) is equal to 1. Then there is a set Do
such that

r(Do)= and supIP'(x,C)-7r(C)I - 0 for each x E Do. (2.20)
CE8

Proof The proof consists of adding a point A to X, defining a transition function on the
enlarged space and appealing to Proposition 1.

Consider the space (X, 1), where X = X U {A} and S is the smallest a-field containing
B and {A}. Let 6 = E/2, and define the transition probability function P(x, C) on (,X, 13)
by

b P(z,C) ifxEX\A, CEB
P(x,C)= - (x,C) - cp(C) if zEA, CEB

fC i) = , Cif xEA, C={A} (2.21)
1fAp(dz)P(z, C) if x =A, C E

Also, define the probability measure Ii on (,X, B) by
-7r(C)-*'p(C)r(A) if CEB (2.22)

) - = r(A) if C = {A}

We will now show that the transition probability function P(x, C) together with * and the
distinguished point A satisfy Conditions (A), (B), and (C) of Proposition 1.

If x E A then P(x,A) = c* > 0, so that G(x,A) > 0. If x E X\A, we have
G(x, A) > fA G(x, dy)P(y, A) > c*G(x, A) > 0 in view of (1.4). Finally P(A, A) = c* > 0.
This verifies both Conditions (A) and (C) of Proposition 1.

Next, for C E 8, we have

Jr (dx)P (X, C) =J(7r(dx) - eCp(dx)7r(A))P(x, C) + c-7r(A) J, p(dx)P(x, C)

= J ,r(dx)P(x, C)

- J7r (dx) (P(x, C) - ep(C)I(x E A))

= r(C) - FEp(C)lr(A)

= 1(c).

When C = {A}, we have

J *(dx)P(x, A) = J (ir (dx) - E'p(dx)7r (A)) (f-*I (x E A)) + f r(A) Jp(dx) f-1I(x E A)
= ir(A)
= 7r(A).
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This verifies Condition (B) of Proposition 1.
Thus Proposition 1 implies that there exists a set Do E 8 such that

ir(D0 ) = 1 and sup IP' (x, C) - fi(C)- 0 for each x E Do. (2.23)
CEOb

To translate (2.23) as a result for P'(x, C) we define a function v(x, C) on X x B by

,c [ C I(x E C) ifxEX
p(C) if x = A

We may view v(x, C) as a transition function from R into X. The following lemma shows

how one can go from Pn(x, C) to Pn(x, C) and back. The proof of Proposition 2 is continued

after Lemma 5.

Lemma 4 The transition functions P(x, C), P(x, C) and v(x, C) and the probability mea-

sures 7r and fr are related as follows:

P(x, C) = P (x, dy)v(y, C) for x E X, C E B, (2.24)

P(x, C) = J v(x, dy)P(y, C) for x E X, C E B3, (2.25)

p(X,PC) = JP(x, dy)v(y,C) for X E X, C E B, (2.26)

and r(C) = f r(dx)v(x, C) for C E B. (2.27)

Proof These are proved by direct verification. For x E X, C E B, we have

J P(x, dy)v(y, C) = P(x, dy)I(y E C) + e*I(x E A)p(C)

- P(z, C) - cI(x E A)p(C) + E*I(x E A)p(C)

= P(x,C ).

Similarly, for x E X, C E B, we get

v(x, dy)P(y, C)xE X
= f p(dy)P(y,C) = P(A,C) if x = A

We prove (2.26) by induction on n. For n = 1, this is just (2.24). Assume that (2.26) has

been proved for n - 1.
For x E X, C E B, we have

I' P'(x, dy)v(y, C) = P-I(x, dz)P(z, dy)v(y, C)

= f.,.,,,X Pn- (x, dz)v(z, dw)P(w, dy)v(y, C)

= LEfwEX P'-I(x, dz)v(z, dw)P(w, C)

= fWEX Pn-(x,dw)P(w,C)

= P" ( 1, C),
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where the second inequality follows from (2.25), the third follows from (2.24), and the
fourth from the induction step.

Finally, for C E B, we notice that

Jr (dx) v(x, C) = J (7r(dz) - Cr(A)p(dx))v(x, C) + e*r(A)p(C) = r(C).

This completes the proof of the lemma.

The next lemma shows that ir dominates p.

Lemma 5 Let C E B. Then

*(C) = 0 implies that p(C) 0 0. (2.28)

Proof From the careful choice of c" = E/2 used to define P(x, C) in definition (2.21), we
have

P(x, C) = P(x, C) - f'p(C) > c'p(C) whenever x E A and C E B. (2.29)

Applying Lemma 2 to the Markov chain {X, B, P(.,-)} which has a stationary distri-
bution #(.) we get, for any C E B,

S(C) = 1T)E /((I(k,, E C)I(Ta > n)
E& "T) n=O -

1 0
=_ E,(Ta)Ea (E (I((,, E C)I(i, > n- 1)I(X, E A)))

"n=O

E&(T ) \n=

00

E "(?E( _ (I(TA > n - 1)I(X 1 E A)P(X E C i

-Ea (Ta) n=1T ), n=_- A)))

I f*~(T)&P(C)EA(Z(I(T& > n)I(Xn E A)))

= ep(C)ir(A)

= e'p(C)7r(A)(1 - E'p(A)).

The equality in the third line follows from the fact that {Xn E C, T,& > n - 1} =

{n E C, T& > n}, since A V C, and the inequality in the fourth line follows from (2.29).
Now since A is recurrent for the chain {X, 3, P(., .)}, we have #(A) = -*7r(A) > 0, and this
proves (2.28). 0

Completion of the proof of Proposition 2 Let Do =/Do - A. From (2.23), (2.26),
and (2.27), we have fr(Do) = 1, and

sup IPn(X, C)- r(C)l = suplf P"(X, dy)v(y,C)-J t(dy)v(y, C)I --, 0 for each x E Do.
CE13 CEB r "
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This means that
ir(X - Do) = (X- Do) = 0.

From Lemma 5, it follows that
p(X - Do) = 0.

Now, from the definition of 1(.) in (2.22),

r(X - Do) = - Do) + ep(X - Do)7r(A) = 0.

This completes the proof that 7r(Do) = 1 and

sup I P(x, C) - 7r(C) -,0 for all x E Do.
CEL

We now drop the condition no = 1 and prove Theorem 1.

Proof of Theorem I Let M = {m: there is an f.. > 0 such that inf P(x,.) > fp()}.xEA

Then g.c.d.(M) = 1. Fix an m E M. From a standard result on g.c.d.'s of sets of positive
integers (see e.g. Problem 2 on p. 77 of Karlin and Taylor (1975)), there is an integer L
such that M will contain all integers larger than L. This together with Condition (1.4)
shows that Zk>1 pkr(x, A) > 0 for each x E X. This means that the Markov chain viewed
only at times which are multiples of m satisfies (1.4) and (1.5) with no = 1. Thus from
Proposition 2 there is a set Do such that r(Do) = 1, and for any m E M,

supIP (x,C)- 7r(C)t 0 for x E Do as k - oo.
CEL'

Next, there is a finite subcollection mI,m 2,...,m, E M and integers a,a 2,. .. ,a, such
that _,< _, aim, = 1. This is generally established during the proof of the standard

fact on the g.c.d. of sets of integers quoted above (see e.g. Problem 2 on p 77 of Karlin
and Taylor (1975)). Permute the indices if necessary and assume that a, > 0,..., a, >
0, -a,+, = b,+l > 0,...,-ar = b, > 0, so that N- M = 1 where N = "l<i<, aimi and
M = E,<i<r bimi > 0. Any positive integer K can be written as K = k(M 2 + N) + r where
0 < r < AP- + N and k > 0. Writing r = r(N - M) we have

K = N(k + r) + M(kM - r) =(k + r) E aimi + (kM- r) 1 bimi.
l<i<s B<i<r

Note that kM - r > 0 when k > 4M. When K -- oo, the integer k defined above
tends to oo, as do the multipliers k + r and kM - r. Since for [r]-almost every x
we have supceOlPkm(X,C) - 7r(C)I -- 0 as k -+ oo for i = 1,2,...r, it follows that
If Pk"i(x,dy)fk(y) - f f(y)7r(dy)j - 0 for i = 1,2,...,r if fk(y) --+ f(y) for [7r]-almost

every y. Therefore, as K - oo

sup IPK(x,C) - 7r(C)I =

CEO

sup f /P(k+r) (x, dy )p(k+),2,2 (yl, dy 2 ).., pkM-?)b (y 7_,C) - r(C)j 0.
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Remark 2 The proof above also establishes the following slight extension of Theorem 1.

Theorem 1' Suppose that 7r is a stationary probability measure for a Markov chain with
transition function P(x, .). Let M' be the set of all integers m > 1 such that there exist
m > 0, Am E B, and a probability measure pm with p(Am) = I such that

7rx: Px(T(Am) < oo) > 0} = 1,

P m(x,)_>mp,() for each x E Am

and
pkm(x Am) > 0 for [r]-almost every x.

k>1

Then the conclusion (1.7) of Theorem 1 holds if g.c.d.(M') = 1.

2.3 Proof of Theorem 2 for General Markov Chains

As mentioned earlier, the key to the proof of Theorem 2 is to recognize an embedded
Markov chain which satisfies the conditions of Theorem 1. The proof of Theorem 2 is
completed after Lemma 9.

Let Y; = Xmn, rn = 0,1,... and put Q(x,C) = Pno(x,C) for x E X and C E B. The
subsequence {Y, Y,...} is a Markov chain with transition probability function Q(x,C)
and we will call it the embedded Markov chain. Define

A, = X: E_ P m 'n-r(x,A) > 0 ,r = 0,1,...,no. (2.30)
M=1

Since pno (x, A) _ c for all x E A, one can also define A, by

Ar = Ix : E Pmnk-"(x,A) > 0 for any k > 1.

i.e. A, is the set of all points from which A is accessible at time points which are of the
form inno - r for all large rn and Ao is the set of all points from which A is accessible in
the embedded Markov chain.

Lemma 6 below shows that the embedded Markov chain satisfies the conditions of
Theorem 1 with the restriction of 7r to Ao as its stationary probability measure.

Lemma 6 Under the conditions of Theorem 2,

7r(Ao) > 0.

Let
7ro(C) -,(C n Ao)

r (Ao)

The embedded Markov chain {Yo, Y,...} satisfies the conditions (1.4) and (1.5) of Theo-
rem 1 with ro as a stationary probability measure and with the no appearing in (1.5) equal
to 1.
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Proof Condition (1.1) states that r({x : P (T(A) < oo) > 0}) = 1. Just the fact that
this probability is positive and condition (1.4) allow us to use Corollary 1 to conclude that
7r(A) > 0. Condition (1.5) implies that A C Ao. Thus 7r(Ao) > 0 and hence 7ro is a well
defined probability measure. Clearly,

r(C) J7r(dx)Q(x,C) for all C E B, (2.31)

7ro(Ao) = 1 (2.32)

and
Q(x,.) f ep(.) for all x E A. (2.33)

Notice that

QM~,A=fQ~~d) Q(yA) = QX1 dy) ,j Qm (y, A).
2<m< o 1<co 0 Q1<m<0

Hence Q(x, Ao) > 0 implies that X 2 <m<w Qm (x, A) > 0, i.e. x E Ao. In other words,

x 0 Ao implies that Q(x, Ao) = 0. (2.34)

From (2.31) and (2.34) we have the equality

7r(Ao) = J r(dx)Q(x, Ao) = ff(dx)Q(x, Ao)

which implies that Q(x, Ao) = 1 for [7r]-almost all x E Ao. Hence

f 7ro(dx)Q(x, C) = (1 f 7r(dx)Q(X, C) = 1 x 7r(dx)Q(x, C n Ao) = ro(C).' r(Ao) Ao r(740)
(2.35)

Equations (2.35), (2.32) and (2.33) establish the lemma.

Define
7r,(C) = AG ro(dx)P(x,C)

for r = 1,2,...,no - 1 and

r(C) =- " 7r,.(C).
nO r=O

Note that rr is the distribution of Xr when Yo = Xo has initial distribution 7ro. The next
lemma shows that averages of the transition functions of the embedded chain converge to
*(C) for [ ro]-almost all x.

Lemma 7 Define

Bo = {x :x E Ao, sup IP'm '(X, C) - ,ro(C)I -- 0 as m -- oo}. (2.36)
CES

Under the conditions of Theorem 2

7ro(Bo) = 1. (2.37)
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Moreover for each x E Bo,

suppmIo+'(x,C) - 7, (C)l 0 as m -+ o for r = 0,1,...,no -1, (2.38)
CEO

and hence 1 -I
sup - P"l°+(=,C) - r(C)1 -* 0 as m --* oo. (2.39)
CEO O r=0

Proof From Lemma 6 the embedded Markov chain satisfies the conditions of Theorem 1
with the no appearing in (1.5) equal to 1. From Proposition 2 it follows that

sup Ip "(x,C)- 7o(C)L- 0 as m -- oo
CEO

for (iro]-almost all x. This establishes (2.37). For r = 0, 1,... , no - 1 and x E Bo,

sup rPnno+r(X, C)- r(C)l = SUpJ(P"m(x, dy) - ro(dy))Pr(y, C)I
CEO3 CEO (P (X

_ sup IP 0 (x,D) - 7ro(D) --+ 0
DES

as rn - oo establishing (2.38). <>
The next lemma shows that the conclusions of the previous lemma hold [#]-almost

everywhere.

Lemma 8 Under the conditions of Theorem 2,

7r,(A,) = 1 for r =,...,no -1

and (2.39) holds for [f]-almost all x.

Proof Consider the original Markov chain Xo,X 1,.... Let E E B and let iro(E) = 1.
Then

Ix r 1 (d)PO(,E = J.EX lEAo ro (dy) P(y, dx) Pno (x, E)
= LAfo (dy)Pno(yE)

= 7ro(E) = 1

and hence P' -'(x,E) = 1 for [7r,]-almost all x. In particular we take E = B0 and rewrite
the conclusion as w(B 1 ) = 1 where the sets B, are defined by

B, = {x :P'O-(x, Bo) = 1}, r = 1,2,...,no - 1.

Let x E B 1. Then
E P" ,-)(xA) - Pl-'(xdY) E p(m-)no (y,A) > 0

m>2 0 m>2
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and hence x E A 1 . Thus B1 C A,. Similarly, 7,(B,.) = 1 and B, C A, for all r. Notice
that for x E B1

sup IPmno+r+n-(x,C) - 7r,.(C)I S j sup IPmn°+,(y,C) - rr(C)P"-(x,dy)
CEO IVEX CEB

- J SUp IP"r°+"(Y, C)- 7Tr(C)IP"°-I (x, dy)
fEB0 CEO

From (2.38) it follows that

sup JPm'n+r+n0-I(X, C) - 7r,(C)j -l 0 for [7r,]-almost all x as m -+ oo. (2.40)
CEB

As a consequence,
S I1 ,o-I mor1o IX

sup H ZE Prnl+"+fo- 1 (xC) - *(C)I 0 for [ril-almost all x as m --, oo. (2.41)
CEO no0 r----

Now

sup l p(m+l)no+r(XC).os 
1 no-I

-_ E - supp o° EC)
CEO nO r=o CEO no r=O

+1 P' S+no-i(_, C) - pmno+°o-l(x, C)j'no CEBII

and as m -+ 0 this converges to 0 for [7ri]-almost all x, from (2.40) and (2.41). A similar
argument shows that (2.39) holds for [7r,]-almost all x and all r and hence for [*]-almost
all x.

We now establish that 7r = ir by using the full force of condition (1.4).

Lemma 9 Under the conditions of Theorem 2, r is the restriction of ir to A,, for r =
1,2,...,no - I and

7r = fr.

Proof We have already shown that 7r,(A,) = 1, r = 1,2,... ,no - 1. We will now show
that Ao,... , A,,o- 1 act like cyclically moving subsets in the sense that

x E Ac implies that P(x, A,) = 0.

Suppose that P(x, A1 ) > 0. Then

> P m n°(xA) -J P(x, dy) Z pmno-l(y, A) >0,
AO,

which implies that x E Ao. Thus x E Ac implies that P(x, A 1 ) = 0. Now for C E B,

r, (C) = rI(CfnA , )

1 f 7r(dx)P(x, C n A,)o (Ao) A,

7 1 J 7r(dx)P(x, C n A,),ro(Ao)

n7r(Cn A 1 )

r(Ao)
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Since .I(A,) = 1, this implies that 7r(Al) = r(Ao) and that ,1 is the restriction of r, to A,.
A similar conclusion holds for 7rr for other values of r.

We now use the full force of Condition (1.4) which can be restated as 7r(U'- )= 1.
This together with the fact that 7rr is the restriction of 7r to Ar, r = 0, 1,... ,no - 1 implies
that the probability measures 7r and fr are absolutely continuous with respect to each other.
From this observation and Lemma 8, for any C E B,

Hmn.,o(X,C)= 1 E P'(C) --* (C)
inn0

for []-almost all x. Now,

7r(C)= xr(dx)Hm,,no(X,C) - Jir(dx)i(C) = fr(C).

This shows that 7r = f.

We now complete the proof of Theorem 2
Proof of Theorem 2 It is clear that Lemmas 8 and 9 establish conclusions (1.8) and
(1.9) of Theorem 2. Let f(x) be a measurable function satisfying f If(x) Iir(dx) < oo. From
a slight extension of Corollary 2 as applied to the embedded Markov chain for the averages
of f(-) over the whole chain, we obtain

7ro(Bf) = 1

where

Bf {x: P' -f.(X) f(x)(dx) as n -- 0 =1.

From the argument at the beginning of the proof of Lemma 8 we have Pno-'(x, Bf) = 1
for wi-almost all x. The definition of B1 is such that if Pfl-1(x,Bf) = 1 then x E B1 .
Hence 7r(Bf) = 1, and similarly ir,(BI) = 1 for r = 2,3,.... This together with the
fact that fr = 7 establishes (1.10). Conclusion (1.11) follows from (1.10) and the uniform
integrability of I F_'=I f(Xj) under P for [7r-almost all x. 0

2.4 Rates of Convergence and Remarks
The proof of the convergence of Pn(x,.) to r(.) rested mainly Parts (b) and (c) of Lemma 3.
We can translate the equivalence of (2.14) and (2.15) stated in Remark 1 following the proof
of Lemma 3 to results on geometric convergence in the ergodic theorem for Markov chains.
We will state such a result and give a brief proof.

Theorem 6 Suppose that the conditions of Proposition 2 hold and there is a to > 0 such
that

F exp (nto) J IP"(x, A) - P"+(x, A)lp(dx) < oo. (2.42)

Then there is a set Do with wr(Do) = 1, such that for each x E Do, there is a 0 with
exp(-to) < /3 < 1 and a K < oo such that

sup IP"(x,C) - 7r(C) I < o'.
CEO

The constants # and K can depend on x.

23



We remark that if in Proposition 2 the set A can be taken to be the whole space X,
then the series (2.42) converges automatically. In this case, Theorem 6 asserts geometric
convergence, which is qualitatively the same result as that given by Theorem 3 (it does not
give the explicit constant given in Theorem 3, however).

To prove Theorem 6, we will need the following lemma.

Lemma 10 For each positive integer n,

p,,(AC) = j p(dx)P 1 (Xdy)P(y,C) for C EB (2.43)

and
P"(A, A ) = f *I p(dx)pn-I(x,A). (2.44)

The lemma is proved by induction on n. For n = 1, (2.43) is the same as definition (2.21)
of P(x, C). The induction step is carried out by direct calculation. Equation (2.44) follows
from (2.43) and (2.21).

Proof of Theorem 6 Use the construction of the Markov chain on the enlarged space
t as in the proof of Proposition 2. Let fP(A, A) be the probability that the Markov
chain X, starting at A reaches A for the first time at time n. Identify pn in Lemma 3
and Remark 1 with fn(A, A). This is what was done in the ',.oof of Proposition 2 in an
indirect fashion while appealing to Proposition 1. It is easy to see that the r" appearing in
Lemma 3 and Remark 1 is Pn(A, A). From (2.44), Condition (2.14) reduces to Condition
(2.42). Theorem 6 now follows from Remark 1 on rates of convergence.

Remark 3 In Section 1, we described how to form a transition function from the two
conditional distributions 7rx, 1x2 and 7rx 2 1x, obtained from a bivariate distribution 7r. We
mentioned that for a Markov chain with such a transition function to converge in distri-
bution to r, it is necessary that 7rx 1lx2 and 7rx 21x, determine 7r. Some researchers have
pondered over the question of when do the conditional distributions determine the joint
distribution. Besag (1974) noted that uniqueness is guaranteed if the distributions are
discrete and the support of 7r is a permutation invariant set. Theorem 1 gives a sufficient
condition for uniqueness in the general case.

One can give a simple nondegenerate example to show that in general, the two condi-
tional distributions do not determine the joint distribution. Let X1 have a density function
p(x) such that

E p(m+r)=cr<oo foreach rE[0,1).
-oo<m<oo

The density function p(x) = 1 exp (-Ix1), for instance, satisfies this condition. Let 7rx 2Ix,
be the distribution that puts masses

and 1/2 at x,+1 (2.45)
1/2 at x,-1.
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This determines the other conditional distribution 7rxlx 2 . This puts masses

P(X2 + 1)

and P(X2 + 1) + p(X2 - 1) (2.46)
p(x2 - 1) (.6

p(X2 + 1) + p(X2 -1) atX2

It can be seen that the two conditional distributions (2.46) and (2.45) do not uniquely deter-
mine a joint distribution for (X1 , X 2). Fix r E [0, 1) and consider the discrete distribution
p, on the points m+ r, m = ... ,-1,0,1,... defined by pr(m+r) = -Lp(m+r). Let Y(r)
be distributed according to Pr, and let the conditional distribution of Y2(r) given Y 1(r) be
the distribution defined in (2.45). It is easy to see that distribution of Y(r) given Y2(r) is
that given in (2.46), and the joint distribution of (Yi(r), Y2(r)) has the same conditional
distributions as (X 1,X 2 ).

It is even possible to find joint distributions with continuous marginals for which the
conditionals are given by (2.46) and (2.45). Let f(r) be any probability density on [0, 1).
Let R have density function f(r) and put (Z 1 , Z2 ) = (YI(R), Y2 (R)). Clearly the conditional
distributions of (Z 1 , Z2 ) are as in (2.46) and (2.45). The marginal distribution function of
Z1 is given by

P(Z :_ x) fjo (z pr(m + r))f(r)dr = J P(Y)f(Y- [Y])dy
1 ,I) in m+ ,.< x 0 0 c -[v]

A similar expression can be written down for the distribution function of Z2 . Notice that
Z1 and Z 2 have density functions.

3 Remarks on the Sampling Plan

In Section 1 we mentioned that there are a number of ways of using the Markov chain to
estimate ir or some aspect of 7r. One can generate G independent chains, each of length n,
and retain the last observation from each chain, obtaining a sample X,], X[,..., X,
of independent variables. At another extreme, one can generate a very long sample
XO, XI, X 2 1,. . ., Xn, and use I X2,..., Xc,,, which form a nearly i.i.d. sequence from
7r. This is at approximately the same cost in CPU time. (Clearly intermediate solutions
are possible). If the objective is to estimate an expectation f f(x)r(dx), then there is no
reason to discard the intermediate values from a long chain, and one can use

n(G-1) f(Xi). (3.1)
n(G 1)i=n+l

The almost sure convergence of (3.1) follows from Theorem 2 under the assumption
f f(x)7r(dx) < oo (note that we do not need the aperiodicity condition (1.6)). Thus, from
the point of view of estimating a particular expectation f f(x)7r(dx) or probability it is
clear that the optimal way of using the Markov chain is to use (3.1), and so it is natural to
ask why one should bother to prove results such as (1.7). In the Bayesian framework, there
is another aspect that must be considered, which is that generally, in the exploratory stage,
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one is interested in calculating posterior distributions and densities for a large number of
prior distributions. It will usually not be feasible to run a separate Markov chain for each
prior of interest (the time needed is on the order of several minutes for each prior). Instead,
one will want to get a sequence of random variables X 1,..., X, distributed according to the
posterior distribution with respect to some fixed prior, and then use that same sequence
to estimate the posterior with respect to many other priors. (We discuss how this may be
done in the next paragraph.) The important point here is that if there are a large num-
ber of priors involved, then the manipulations of the sequence X 1,...,X, to produce the
posterior for each prior must be done very quickly. This restricts the size of r, and so one
will generally want the sequence Xl,..., X, to be independent. This precludes running a
very long chain and taking sample averages as in (3.1). Instead, one will want to generate
independent chains and retain the last random variable in each chain or take a long chain
and retain only random variables at equally spaced intervals.

We now discuss in more detail how one might use one sequence X1,..., X, to calculate
posteriors with respect to many priors. We depart from the notation of the paper and switch
to the notation usually used in Bayesian analysis. Suppose that Vh is a family of priors for
the parameter 0. Here, h lies in some interval and we think of it as a hyperparameter for
the prior. Suppose that we are in the dominated case, i.e. there is a likelihood function
Ix(O), where X now represents the data.

Let VhX be the posterior distribution of 0 when the prior is Vh. We know that vh,x is
dominated by Vh and

d F x(0) = Ch(X)IX(O),
dVh

where Ch(X) is a normalizing constant.
Consider the case where we can generate observations 01, 02,..., 0, from 'ox and there-

fore estimate f f(O)dvox O) by (1/r) Er=1 f(0j). We will indicate now how we can obtain
estimates of f f(O)dvh,x(0) for h 0 0.

Suppose that Vh is dominated by vo. Then it is clear that vh,x is dominated by vo,x
and

dvX Ch (X) dVh(d ,_(0) - (X) (0
dv ,x co(X)dvo

since the likelihood 1x(O) cancels. We may write

J f(9)dV,,X(0) 0)d' (9)dvox(0) = Ch(X)Jf() v 0 dv , ()dvo~x o(X) v

Substituting f(0) - 1 in the above we can obtain the constant ch(X) and write
CO (X)

/~~~~ fOdh()= f f(O) d,. (O)duo,x (0)
Jf f( ,(()dvox(0)

Thus, we may estimate f f(O)dVhX(0) by

f(Oi)Wh,i where Whi = ( "

26d,, (9.)
i 1 d v g o '
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This is the well-known "ratio estimate" in importance sampling theory. The key here is its
calculation requires only knowledge of the ratio d",X up to a multiplicative constant. Seedvo,x

Hastings (1970).
Now in some Bayesian problems, for instance problems with missing or censored data,

the likelihood function 1x(0) is either extremely difficult or impossible to calculate. (An
example of this arises in Doss (1991).) The fact that this likelihood cancels means that
the estimation of the expectation under the prior v. requires only the recomputation of r
weights, and this can be done very fast.

It will often be the case that we wish to consider not just one function, but rather
a family of functions. As a simple example, if we wish to estimate the entire posterior
distribution of 0, then in effect we wish to consider ft(O) = 1(0 < t) for a fine grid of values
of t. On a Sparcstation 1, for r = 50 we have been able to do the computations fast enough
to dynamically display the estimates of the posterior distributions f 1(0 < t)dvh,X(O) as h
varies, using the program Lisp-Stat described in Tierney (1991). For larger values of r it
was necessary to precompute these estimates.
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