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Abstract

We report on three years' research into artificial neural networks supported by the Air Force
Ofice of Scientific Research under AFOSR grant 88-0240 from 1988 to 1991.
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1 Introduction

In this final report, we will discuss three years' research supported by the Air Force Office of Scientific
Research under AFOSR grant 88-0240 from 1988 to 1991. The discussion will be from the instrumental

point of view of current and future research, represented by the successful renewal proposal [1] (of which
this report is a summary), rather than from a historical point of view.

Much of our research has been based on the premise is that mathematical methods and notation

associated with constrained optimization should be used to specify a neural net, which can then be
compiled to diverse implementations. But where do we get such a compiler? And what are the details

of this mathematical notation? We have made substantial progress on these research questions:

1. We have developed mathematical methods that can transform one algebraic NN description into
another, more implementable one. These developments were attained by serious work in the
applied mathematics of neural nets. They can form the basis of a neural compiler because they
address most of the major NN compilation and implementation issues. But they do not yet suffice.

2. We have been accumulating the research in a neural simulator. It can be expanded into a semi-
automatic compiler: a neural net design and implementation environment based on mathematical
methods.

3. We have developed a mathematical notation (not yet a formal language) for describing complex

problem domains in terms of constrained optimization problems. The optimization problems
can be solved by neural nets as described in point 1. Our notation involves objective functions,

L-system grammars, and maps between such objects.

The design and implementaion method outlined in these assertions is illustrated in Figure 1. We
will outline our achievements in each of these areas of research, and their relationship to a larger plan of

future work on the use of symbolic algebra in implementing neural networks, in the next section. The
final section and the appendices will provide an entrance to more detailed expositions of the work.

2 Summary of Research Progress

2.1 Algebraic Transformations

Assertion I. We have developed mathematical methods that can transform one algebraic NN description

into another, more implementable one. These developments were attained by serious work in the applied

mathematics of neural nets. They could form the basis of a neural compiler because they address most

of the major NN compilation and implementation issues. But they do not yet suffice.
In [21 (included as an Appendix) we first introduced a catalog of fixedpoint-preserving transforma-

tions that could be applied to neural net objective functions, so as to reduce their cost or increase their

implementability in some technology. The catalog is shown here as equation 1. This catalog is intended

ultimately to provide the same kind of cookbook approach to neural net design that a table of integrals

2



Problem-modelling

Hand-design . Grammar, r Learning
(expressive g. recursive)

SObjective Function, ECV (mathematical)

Neural Network, T
(Implementable)

Figure 1: A neural network design methodology. Solid arrows constitute the recommended procedure.
The arrow from F to E may be realized by approximations from statistical physics, such as Mean Field
Theory. The circular arrow represents fixed-point preserving transformations of objective functions.

provides to integration: the intellectual work is not magically eliminated, but it is considerably reduced
through the distilled widsom of generations of previous researchers. The simplest example discussed in

[2] (using Rule 1.1) explains the then-standard trick for reducing a winner-take-all network from O(N 2 )
connections to O(N); that method has been used in a variety of analog neural networks chips including

a stereopsis chip by Delbruck and Mead. This and several other cataloged algebraic transformation
patterns could be shown to be Legendre transformations; others weren't of this class, but still preseved

fixed points. All could be applied mechanically once the decision to use them was taken.

The limitations of the first catalog of transformations were clear: they applied to optimization-based
("Hopfield") nets and couldn't smooth out rough objective functions. So learning, convergence speed
and global optimization were all questionable. Nevertheless they gave the neural net designer some

remarkable capabilities.
Technology-Specific Tricks. For example special neural transfer functions, such as log and expo-

nential, are available in CMOS [3]. Transformations could be used to shift the corresponding nonlinearity

from a single variable to an entire expression in an objective function, greatly expanding the range of

implementable objectives. Also the wiring complexity of circuits other than the winner-take-all net
could be greatly reduced by introducing (semi-automatically) new linear interneurons that compute
reusable expressions. Graph-matching networks were a subtle example, potentially central to high-level

vision.

3



1.1 X 2  - x _-102
2 2

1.2 XY -- X(a-r)+Y(f-w)- 1 a 2  +1 r2  W

1.3 XY - 1 Xor-r) + Y(a+ r)-_ - 2 +!2

2.1 fX f(u)du -- Xo - f7 f-'(u)du (f an invertable function)

2.2 ex  - (X + 1)a - 0' loga

2.3 IXI log IXI -- IXI(a + 1) - e

2.4 log XI - XC - log Jul
2.5 I I'+P -+ (p -1, 0).

3.1 fX du [fY dvg(u, v)] (u) - Xor - Yr + f' dv [f' dug(u, v)] '(v)

(If function inverses exist.)

3.2 YF(X) - -Xo- + Yr + o-F-1(r) (If ((F')-1)' exists.)

3.3 Y fX f(u)du -- XYo - Y f O duf-'(u) (If (f-1)' exists.) (1)

3.4 X/Y - Xo- Yr+r/o"

4.1 min,, X --* E, Xc-, + C(EZ ac - 1)A - 2 + 0(cra)

(Large C, and high-gain hysteresis-free
barrier function 0 which confines o, to (0, 1).)

4.2 max,, XX,- - C(E O - 1)A + CA2 - Za S(c)
(Same conditions.)

4.3 riH IX. I - 2,(,,,a -IXaIa +,,er.)+-(1 -Iog,).

5.1 trXYT  - trX(__-r)T+trY( a -w )T

1 tr o' T + 1tr rr T +- tr wwT

(All matrices, possibly sparse.)

6.1 E[v] - L =Jlql dt (K[irlv, q] + dl), 6L/,.(t)= 0

(OK/v, = 0 4 v = 0)
6.2 E[v] - k [q] = E(E/viv'i + kcost[q]

4

Table of Algebraic Transformations. These transformati.ns preserve fixed points of objectives, or summands
thereof. X and Y are any algebraic expressions, containing any number of variables.



Parallel Computer Implementation. Furthermore, linear interneurons could be introduced

between two previously connected neurons x and y:

E.,V= xy - k E~= X(C- 7)- Y(Oi- W)-ao2 +-17r +-w 2 . (2)2 2 2

This innocuous-looking transformation has great consequences, for the linear interneuron a can be

interpreted as the wire connecting up two different modules in a partitioned hardware implementation

(e.g. two chips or two CPU'. in a parallel computer). This interneuron can relax according an entirely

different speed schedule from the other neurons, allowing a communication channel to be modelled. In

fact the physical wire carrying o may even be multiplexed with other connections between the same

two modules. We have performed preliminary experiments [4] in which this transformation was used

to split uip a large neural net across 2 to 8 processors of an Encore Multimax running Linda, in which

the observed substantial speedup resulted solely from our ability to vary the relative speed of the a

interneurons. In other words, this transformation allowed a neural net parallelization on a coarse-
grained MIMD machine which would otherwise not have worked. (We will propose to continue this

investigation.)

Controllable Dynamics. Also in the first catalog was a highly nontrivial transformation that

replaces the objective function itself with a Lagrangian that governs the entire state space trajectory,

including the dynamics, of a neural net, while still forcing convergence to locally optimal states according

to the original objective. The central problem was to preserve the Lagrangian formalism as much as

possible while allowing convergence to a fixed point; we did this by replacing the conventional functional

derivative with a variant called the "greedy functional derivative".

Virtual Neurons and Attention. The aforementioned algebraic transformation from objective to

Lagrangian can be used to model virtual neurons and connections and to optimize the kind of hardware

multiplexing done in the Bell Labs ANNA chip, which is inevitable for any implementation in which a

large network is mapped to a smaller but flexible circuit by using physical neurons to simulate different

virtual neurons at different times. More generally the Lagrangian approach provides a "computational

attention mechanism" for optimally choosing the most important part of an optimization problem to

work on next. In [5] we applied this method to derive several kinds of attention windows for a two-

dimensional surface reconstruction network, including sliding, jumping and rolling windows of attention.

A combination of rolling and jumping is expected to be the most effective here; the investigation

continues.

Multiscale Acceleration. Since the first catalog of transformations was published we have de-

veloped others. The question of convergence speed was addressed first, with the publication [6] of a

multiscale acceleration technique for optimization neural nets. It is a generalization of the standard

highly effective multigrid algorithm for solving partial differential equations, systems of ODEs, or just

systems of linear equations. It requires very few assumptions on the neural network to be applied, and it

may be viewed as a transformation which turns one fine-scale objective function into a set of compatible

neural net objective functions at different scales, including the original one at the finest scale.

5
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Figure 2: A rolling window of attention.

Communication Cost. Communication cost has been addressed by the development of a special-

purpose message-routing network for Content Addressable Memories and other models of recognition in
which the closest memory according to some metric is to be retrieved. Once again it may be viewed as an

algebraic transformation, though on a very special form of objective function. This algorithm was put

in its current form by Professor Bhatt at Yale, an expert on communication in parallel computers, and
we are currently implementing it on a Connection Machine. The empirical timing results are consistent
with the theoretical performance: simultaneously matching N inputs to N memories takes O(Nlog N)

wires and O(log 2 N) time steps of a communication-bound feed-forward algorithm. We propose to
continue this work. More generally, message routing and other standard communication problems arise
for any sufficiently large or complex neural network implementation, but in an especially advantageous
form since problem-specific knowledge may be used to improve low-level communication performance.

There is no guarantee that biological networks use a general-purpose message router even if for reasons
of algorithmic efficiency they must perform analogous functions.

Learning. Learning and especially learning in feed-forward nets has received remarkably short
shrift in our research so far, since it was not on the main line of technical development. However we
have known for two years that an algorithm extremely close to Pineda's recurrent backpropagation can
be derived by transforming the standard squared-error objective function for learning. The difference

is only in the dynamics; the set of fixed points is the same as Pineda's. Also feed-forward networks
have a trivial objective function themselves [7], and hence can be handled this way. Since nobody needs
another derivation of backpropagation, this method is of interest only insofar as it can be automated to
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Figure 3: Deterministic annealing. (a) Objective function at c = .0364 (very little smoothing). (b)
Objective function at a = .300. Smoothed; the minimum of this function provides a good starting point
for minimizing (a).

derive new implementations of learning neural nets automatically, under all the constraints of limited
hardware, communication and flexibility that have already been discussed. But in addition to these
transformational considerations, we have a far more important suggestion for how to make substantial
progress in learning. It involves the grammatical derivation of neural nets which will be introduced in
section 2.3.

Global Optimization. Effective approximations to global optimization via neural nets look con-
siderably more tractable since the recent flurry of research in deterministic annealing methods [8, 9, 10],
none of which we were responsible for. These methods smooth a bumpy objective function and are
often clearly automatable as objective function transformations, in which some of the constraints in a
constrained optimization problem can be imposed exactly rather than by penalty terms. An interesting
variety of new neural net transfer functions and dynamical systems result, and we continually find more
by working on neural networks for computer vision [11]. Another approach to removing local minima
will be described in the next section.

One example of the smoothing effect of deterministic annealing is our registration network for line-
segment images [2, 121, in which the objective is a bumpy function of a global dispacement Ax. The
objective and a smoothed version are shown in figure 3.

Summary of Algebraic Transformations. The algebraic transformations above are far from a

complete set that would suffice for a mathematical compiler, since some are still under development and



we have not yet tried very many target architectures or input neural nets, and since we have not yet

fully autGmated the procedure. Also there is an opportunity, demonstrated by the log and exponential

transformations available for analog CMOS, to build a Library of technology-specific tricks to minimize

implementation costs in important target technologies. But the transformations we studied do show

that most of the main engineering issues that generate hardware diversity and that a compiler would

have to resolve in translating objective functions to neural net implementations fall within the purview

of algebraic transformations.

2.2 Software Engineering

Assertion 2. We have been accumulating the research in a neural simulator. It could be expanded into a

semi-automatic compiler: a neural net desigr. and implementation environment based on mathematical

methods.

Algebraic Data Stucture. Our present simulator is based on the algebra of objective functions.

The data structure holding the neural net is itself regarded (and implemented) as a large objective

function in which synapses are monomial summands. Constraints can be added to the net via quadratic

penalty functions (e.g. expanded out to make many new synapses on existing neurons) or lagrange'

multiplier neurons [13]. Optimization methods such as gradient descent, conjugate gradient, deter-

ministic annealing and multiscale methods are packaged as "optimizers" which could be applied to a

variety of optimization problems, both in learning and running a network. In this way optimization is

modularized.

Class Libraries. Likewise "container classes" and a neuron indexing scheme modularize our data

structure code, and the use of InterViews (a C++ interface to X-windows) modularizes a graphical user

interface. We are experimenting with parallel implementations using Linda, a portable programming

language extension. This is currently done with "fragment" objects which implement a kind of domain

decomposition for neural nets. We have used the simulator mostly for problems in high-level vision,

a rich domain of considerable interest in its own right. The simulator is in C++ and benefits from

object-oriented design; in particular the "simulator" is not so much a single program as it is a reusable

class library for neural simulation. It is possible that in the future we will also do object-oriented

programming in CLOS (the Common Lisp Object System) or even Mathematica for symbolic algebra

manipulation.

Towards a Compiler. In order to expand this software into a semi-automatic compiler it would be

necessary to make it a bit more like a computer algebra system: more interactive and with more syntactic

forms recognized. Indeed the compiler probably should be prototyped within an existing computer

algebra system such as Mathematica. For example here is transformation Rule 1.1, -X - X -

superficially translated into Mathematica:

(* Initialize the list of reversed neurons *)

ReversedNeurons {}



(* We have to remove protection from the Power function so that we

can attach a new transformation. The transformation will only

be used when the expression x is more complex than a single number

or variable. *)

Unprotect [Power]

x_-2 := QuadraticTransform[x] /; !AtomQ[x]

Protect [Power]

(* A new symbol is created with Unique and added to the list of reversed

neurons. The final line is the transformed expression. *)

QuadraticTransform [xI := Block[{usim = Unique ["sigma"]},

AppendTo [ReversedNeurons, usim];

2 x usim - usim-2]

and here is a simple example of its use:

In[1]:= <<rulel.l.m

In[2]:= (xy)-2 (* x+y can be transformed *)

2

Out[2] = -sigmal + 2 sigmal (x + y)

The resulting expression could then be exported to a neural simulator or other implementation code. For

the full compiler system, graphical tools analogous to standard circuit design tools would be included.

For example each valid transformation rule could have its own pop-up window by which a human user
could direct or modulate its application. Such interfaces have become far easier to construct in the last

few years due to tools like InterViews and its interactive builder of user interfaces, IBuild. Gradually

one could develop even greater automation, in which the choice of transformation rule and its locus of

action is also automated.
Software Summary The purpose of such software engineering is not to develop a product but

to demonstrate the feasability of a new kind of software tool for neural networks, based on serious

mathematical methods which can be encapsulated as algebraic transformations, and to support research

into both neural net design and implementation.
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2.3 Mathematical Notation for Complex Problem Domains

Assertion 3. We have developed a mathematical notation (not yet a formal language) for describing
complex problem domains in terms of constrained optimization problems. The optimization problems
can be solved by neural nets as described in Assertion 1. Our notation involves objective functions,

L-system grammars, and maps between such objects.

How to Compose Diverse Objective Functions? So far we have described the research situation
and opportunities as if it were always not only possible but even easy to formulate neural net applications
as constrained optimization problems. Unfortunately our experience is that it is generally possible but

not trivial to get relatively compact problem specifications this way. We now perceive a need for a coarser
level of structure - a symbolic and expressive programming language - which can "compose" or glue
together many individual objective functions and algebraic constraints describing different aspects of a

problem into a single modular problem description. Yet we do not want to give up the unique advantages
(learning, circuit implementation) that neural nets gained by leaving traditional programming languages
behind. Recognizzng and resolving this conflict is a major result of our research of the past few years.

Grammars Can Compose Objectives. Our solution comes from the world of L-systems, parallel
grammars originally introduced by Lindenmayer [14, 15] to describe plant growth. We introduce gram-
mars (see Box 1) whose production rules are each governed by a Boltzmann probability distribution
(i.e. by an algebraic objective function) which specifies when and how the rule may fire. Ordinary
L-systems are attractive for physically-based computation because they can directly nidel highly par-
allel dynamical systems and, with just one rule, fractal growth processes. L-systems augmented with
objective functions inherit, for each grammar rule, all of the power of constrained optimization we have
advertised and exploited in vision. A grammar with many rules can correctly compose many diverse
objective functions and create one organized problem specification. We have detailed a number of appli-
cations of such objective function grammars to vision in [12], including the transformational derivation
of neural nets as in equation 1. Generally, one could say that these applications demonstrate the use
of grammars in stating and solving visual pattern recognition problems. This is especially true where
other neural methods fail: in making use of regularities which are abstract and remote from the pixel
level. Another application of connectionist grammars, to the modelling of biological development, is
described in [16].

Grammars support systems integration. One of the main sources of hardware diversity in
artificial neural network design is the way in which a neural net is to be integrated with the rest of
a computer system. Algebraic transformations were proposed for connecting up different hardware

modules in section 2.1. At the software level, almost all software architectures will be far more easily
integrated with a grammar than with a neural net, since computer languages of all sizes are fundamental
in computer science and practice. In connectionist grammars we have a natural way to mix grammars
with neural nets, which we think will support the integration of neural nets into generic computer
systems.

Learning in Grammars. Connectionist grammars raise a fundamental new opportunity in learn-
ing. The reason is that machine learning, including neural net learning, is fundamentally dominated by

10



Box 1. Connectionist Grammars.

Consider an object with a hierarchical decomposition into parts, with internal degrees of .'Leedom
describing the relative positions of the parts. For randOTn dot features, the resulting images will
generally be clusters of dots with unpredictable jitter of both the dot and the cluster positions.
A model of such an object is given by this grammar:

model o root - instance of model a at x
locations

Eo(x) 1 1lxI2

jittered cluster :, instance(a, x) - {cluster(a, c, x,)}
locations

El({x__) = Ix -x - u', where <u' >,= 0
jittered dot

lti os r2 cluster(a, c, x,) - {dot(c, m, xcm)}locations
E2 ({xcm)) = m X - Ux- u 2 , where <u'm >m,0

scramble F' {dot(c, m, x,)} {imagedot(xi =Zcm PcmiXcm)1
all dots

E3({x 2}) = -ogl (x, - Pm,,iXcn)
where P,,i I A Pm,i 1

which is illustrate( ,t'ow:

1,1 1,2 1.1 1,2

0 1,3 o 1.4 1.3 o 1,4 0
a -- ,o, .

instance 00 0 0 0 0

2 3 2,* 3,*

(unordered dots)

The corresponding probability distribution is:

Pr3(0,X,{x},{x,}) ( (v c, 2N

permutation

PC -(1 C 2-2

where C is the number of clusters and N/C is the number of dots in each cluster. From this

expression, one can derive a neural net to recognize which model is present in the final image.

11



issues of representation: what are the input and output representations, and what kinds of internal rep-

resentations can the learner actually create? Yet grammars offer representational flexibility approaching
to that of conventional symbolic programming languages, in a quantitative and probabilistic context

that makes scoring functions continuous and makes gradient-descent training possible. In other words,

the best features of Al languages (flexible representation) and neural net parameterizations (learning
and generalization) are combined to make a mathematical object (the connectionist grammar) for which

both the human designer and the learning dynamics can deeply influence and vary the representations

used.

Our proposed methods for learning a grammar have been spelled out in the last section of [12],
from which we now quote. "Three possible methods for leaining a grammar are suggested here. They

all assume that learning the grammar can be expressed as tuning its parameters, as is the case for
unstructured neural networks. First, the kind of grammar we have been studying could be augmented

with an initial set of 'metagrammar' rules, which randomly choose the parameters of the permanent

models and then generate many images by the usual grammar. The task of inferring the permanent
models' parameters is just another Bayesian inference problem, stretched out over many images. Second,

one could minimize the Kullback information [17] between the probability distributions of an unknown

grammar, images from which the perceiver sees, and a parameterized grammar. This algorithm would be
similar to the 'Boltzmann machine' for neural network learning [18]. Finally one could look for clusters

in model space by defining a distance 'metric' D between images and mathematically projecting it back
though the grammar." (There follows a general-purpose candidate D.) We propose to continue in these

directions, which may not all be very different from each other.

Variable-Binding. A standard problem in appying neural nets to symbolic reasoning, as might be

required in high-level vision or in language processing, is their limited ability to bind varibles within a

local context. Such limitations on the expressiveness of neural nets are burdensome for programming

or designing neural nets. We showed one optimization-based way to overcome these limitations in
[19], where we translate a simple frame-based language and its valid deductions into a neural network

architecture closely related to our graph-matching architecture for high-level vision nets [20].

Maps Between Grammars. A connectionist grammar is built out of objective functions and would
therefore lie above optimization in a conventional layered-system diagram of the modelling language we

are discussing. Likewise we now suggest a further level of abstraction beyond grammars: maps between

grammars, for example the map by which one grammar is optimized to approximate another one which

differs in number of rules or other properties. (Figure 4 is the corresponding layered-system diagram.)

Other important maps between grammars could be defined, but this level of abstraction is beyond the

grasp of our research so far.

Programming Language Research. In this section, in contrast to section 2.1, we have mainly
discussed programming language issues rather than prospects for new mathematical methods. In a

research program to develop mathematical methods, why is this necessary? The answer is that our
proposed language for stating and solving application problems with neural nets must be both imple-

mentable and adequately expressive, as must any other computer language. Both criteria substantially

12



Maps Between Gramimars

Connectionist Grammars

Objective Functions

Real Variables, Graphs, Algebra ...

Figure 4: Components of a layered modelling language.

constrain the language, and in th'is way the expressiveness considerations typical of programming lan-

guage research come to influence what implementation questions arise - i.e. what problems we will be

called upon to solve with new mathematical methods.

Of course there also exist less well developed and nonquantitative branches of mathematics - such as

logic and category theory - which pertain directly to the expressiveness constraints on a programming

language. It is likely that connectionist grammars will develop in this direction to some extent.

13



3 Abstracts of works supported by AFOSR-88-0240

Eric Mjolsness and Willard L. Miranker, "A Lagrangian Approach to Fixed Points", Neural Information
Processing Systems 3:

We present a new way to derive dissipative, optimizing dynamics from the Lagrangian formulation
of mechanics. It can be used to obtain both standard and novel neural net dynamics for optimization
problems. To demonstrate this we derive standard descent dynamics as well as nonstandard variants
that introduce a computational attention mechanism.

Eric Mjolsness, Anand Rangarajan, and Charles Garrett, "A Neural Net for Reconstruction of
Multiple Curves with a Visual Grammar", 1991 International Joint Conference on Neural Networks,
Seattle:

We derive a neural net for reconstructing a set of curves from ungrouped dot locations. The net-
work performs Bayesian inference on a visual grammer, which serves as probabilistic model of the image

formation process, by means of quadratic matching objective function.

Eric Mjolsness, "Bayesian Inference on Visual Grammars by Neural Nets that Optimize", Technical

Report YALEU/DCS/TR854, May 1991:
We exhibit a systematic way to derive neural nets for vision problems. It involves formulating a

vision problem as Bayesian inference or decision on a comprehensive model of the visual domain given
by a probabilistic grammar. A key feature of this grammar is the way in which it eliminates model
information, such as object labels, as it produces an image; correspondance problems and other noise
removal tasks result. The neural nets that arise most directly are generalized assignment networks.
Also there are transformations which naturally yield improved algorithms such as correlation matching
in scale space and the Frameville neural nets for high-level vision. Networks derived this way generally
have objective functions with spurious local minima; such minima may commonly be avoided by dy-
namics that include deterministic annealing, for example recent improvements to Mean Field Theory
dynamics. The grammatical method of neural net design allows domain knowledge to enter from all
levels of the grammar, including "abstract" levels remote from the final image data, and may permit
new kinds of learning as well.

Eric Mjolsness and Charles Garrett, "Algebraic Transformations of Objective Functions", Neural
Networks, vol.3, pp 651-669, 1990:

Many neural networks can be derived as optimization dynamics for suitable objective functions. We
show that such networks can be designed by repeated transformations of one objective into another
with the same fixpoints. We exhibit a collection of algebraic transformations which reduce network
cost and increase the set of objective functions that are neurally implementable. The transformations
include simplification of products of expressions, functions of one or two expressions, and sparse ma-
trix products (all of which may be interpreted as Legendre transformations); also the minimum and
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maximum of a set of expressions. These transformations introduce new interneurons which force the

network to seek a saddle point rather than a minimum. Other transformations allow control of the

network dynamics, by reconciling the Lagrangian formalism with the need for fixpoints. We apply

the transformations to simplify a number of structured neural networks, beginning with the standard

reduction of the winner-take-all network from O(N 2 ) connections to O(N). Also susceptible are inex-

act graph-matching, random dot matching, convolutions and coordinate transformations, and sorting.

Simulations show that fixpoint-preserving transformations may be applied repeatedly and elaborately,
and the example networks still robustly converge.

Eric Mjolsness, Charles Garrett, and Willard L. Miranker, "Multiscale Optimization in Neural Nets",

IEEE Transactions on Neural Networks, vol. 2, no. 2, March 1991:

One way to speed up convergence in a large optimization problem is to introduce a smaller, approxi-

mate version of the problem at a coarser scale and to alternate between relaxation steps for the fine-scale

and the coarse-scale problems. We exhibit such an optimization method for neural networks governed

by quite general objective functions. At the coarse scale there is a smaller approximating neural net

which, like the original net, is nonlinear and has a nonquadratic objective function. The transitions and

information flow from fine to coarse scale and back do not disrupt the optimization, and the user need

only specify a partition of the original fine-scale variables. Thus the method can be applied easily to

many problems and networks. We show positive experimental results including cost comparisons.

P. Anandan, Stanley Letovsky, and Eric MjoIsness, "Connectionist Variable-Binding By Optimiza-

tion", August 1989 Cognitive Science conference proceedings.

Symbolic Al systems based on logical or frame languages can easily perform inferences that are still
beyond the capabilities of most connectionist networks. This paper presents a strategy for implement-

ing in connectionist networks the basic mechanisms of variable binding, dynamic frame allocation and

equality that underlie mnay of the types of inferences commonly handled by frame systems, including
inheritance, subsumption and abductive inference. The paper describes a scheme for translating frame

definitions in a simple frame language into objective functions whose minima correspond to partial de-

ductive closures of the legal inferences. The resulting constrained optimization problem can be viewed

as a specification for a connectionist network.

Eric Mjolsness David H. Sharp and John Reinitz, "A Connectionist Model of Development", Journal
of Theoretical Biology, v 152, pp. 429-453, 1991:

We present a phenomenological modeling framework for development. Our purpose is to provide a
systematic method for discovering and expressing correlations in experimental data on gene expression

and other developmental processes. The modeling framework is based on a connectionist or "neural

net" dynamics for biochemical regulators, coupled to "grammatical rules" which describe certain fea-

tures of the birth, growth, and death of cells, synapses and other biological entities. We outline how

spatial geometry can be included, although this part of the model is not complete, As an example of
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the application of our results to a specific biological system, we show in detail how to derive a rigorously

testable model of the network of segmentation genes operating in the blastoderm of Drosophila. To fur-
ther illustrate our methods, we sketch how they could be applied to two other important developmental

processes: cell cycle control and cell-cell induction. We also present a simple biochemical model leading
to our assumed connectionist dynamics which shows that the dynamics used is at least compatible with
known chemical mechanisms.
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A Appendix: Mathematica Code for Algebraic Transformations

Following the example of section 2.2, we present some more extensive Mathematica code (by C. Garrett)
which uses symbolic algebra to implement the objective function transformations of [2] (included as

Appendix B). This code is the start of the front-end portion of a neural network compiler.
The C++ back end has also been started but obviously it would be too long to include as an

appendix. To make the present appendix self-contained, we demonstrate the syntax appropriate for
optimizing the objective functions entirely within Mathematica, as well as that for using the much more
efficient back end.

File "nemesis-examples"

A Description of Nemesis for Mathematica

7 / 28 / 92

The Nemesis.m package contains Mathematica code for constructing and

transforming objective functions. We will describe how the code works,

focusing on several examples. The description will break down into 3
major parts, index domains, objective function transformations,
and how to run networks.

Index Domains

An index domain is a set of values that an index may have. For our

purposes, an index domain will be either an interval, or a disjoint

union or cross product of 2 other domains. Here are some examples of
valid and invalid index domains, in Mathematica-ese, and English.

IndexDomain[l, 5] A single index with values from 1 to 5, inclusive.

IndexDomain[-2, n] A single index with values from -2 to n.

DisjointUnionCIndexDomain[O, 10], IndexDomain[20, 30]]
A single index with values from 0 to 10 and from 20 to

30.
DisjointUnion[IndexDomain[l, 5), IndexDomain[l, 5))

A single index which takes on values from 1 to 5 twice.

CrossProductDomain[IndexDomain[l, 5), IndexDomain[l, 4))

A two part index which takes on values from {1, 1} to

{5, 4).

If these function names seem too long, remember that you can use Mathematica

to equate shorter names to these, for instance CPD = CrossProductDomain.
We use long names simply to be unambiguous.
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That accounts for the representation of index domains, but how are they

used? The functions SumOver and TableOf interpret the index domains. For

example SumOver can break down a complicated index domain into a sum

over intervals like this:

In[4] := BIGD = CrossProductDomainEDisjointUnion[IndexDomain[1, 5],
IndexDomain[11, 15]],

DisjointUnionEIndexDomain[6, 10],
IndexDomain [16, 20]]]

In[5]:= SumOver[x[i][j], {i, j, BIGD}]

Out[S]= SumOver(x[i]Ej], {i, 1, 5}, {j, 6, 10}] +

> SumOverExEi]Ej], {i, 1, 5}, {j, 16, 20}] +

> SumOver[x[i]Ej], {i, 11, 15}, {j, 6, 10}] +

> SumOverEx[i][j], {i, 11, 15}, {j, 16, 20}]

Here you can see that the domain BIGD has 4 separate parts, each of which

has 2 dimensions, and the SumOver function breaks the domain down into
its separate parts.

Objective Function Transformations

Objective function transformations take a part of an expression and
replace with a new expression that shares the same fixed points, but have
fewer multiplications. In the process we introduce new variables, which
may act to minimize or maximize the objective function. The transformations

are invoked by applying one of the transform functions to an objective,

like this:

In[2] := SquareTransform(SumOver[x[i], {i, 5}-2]

2
Out[2] = -sigmal + 2 sigmal SumOver[x[i], {i, S}]

In[3 := MultiplyTransform[(a + b) (c + d)]

2 2
omegal sigma2

Out[3 = ------- --------- (c + d) (-omegal + sigma2) +
2 2
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2
taul

> (a + b) (sigma2 - taul) +-

2

The new variables always have unique names, so that they do not conflict

with other variables in the objective function. Also the names of the

variables are placed into lists called ReversedNeurons and FastNeurons,

so that you can tell the optimizers which way to move them.

In[4):= ReversedNeurons

Out[4]- (sigmal, sigma2}

In[5]:= FastNeurons

Out[5]= {taul, omegal}

Running Networks (within Mathematica)

We have written some optimizers which do not require any backend.

They are defined in the file Descent.m. The next section

is a brief demonstration of how you can use these optimizers.

First, we start up Mathematica, and read in the package Descent.m.

Nemesis.m will automatically be loaded when we read in Descent.m.

In[1]:= <<Descent.m

Descent.m defines two functions, GradDesc and SaddlePoint. GradDesc

takes an objective function as its argument. It gives each variable

in the objective a random initial value, and then performs gradient

descent to find a local minimum of the objective. Here is a simple

example:

In[2]:= GradDesc[a-2]
{0.21235}
{0.208103}
(0.203941}

. many lines of output are skipped here )

(0.0038888}
{0.00381102}
(0. 0037348}

Out[2] = (a -> 0.0037348}

GradDesc has driven the variable 'a' close to its minimum value of 0.

Remember that if you run the same network, you will see a slightly different
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result due to the random initial conditions. The final output of GradDesc is

a rule which you may use to replace the symbol 'a' by its nearly optimal

value. In order to calculate the value of the objective function, you can say:

In[31:= a-2 /. OutC21

Out [3J= 0.0000139487

Now let's try a more complicated objective function which is defined

in Nemesis.m. Here is the definition of Match.

************ code from Nemesis.m *******

Matchx_, m-, n-1 :=

SumOver[(SumOver[x[i][j], {j, n}) - 1)-2, {i, m}] +
SumOver[(SumOverx[i1[j], {i, m}] - 1)-2, {j, n}] +

SumOver[x[i] [j (1 - x~i][j]), {i, m}, {j, n}] +

SumOverPotentialEx[i]Ej]], {i, m}, {j, n}]

************ end of code ****************

Match returns an objective function which implements soft

winner-take-all constraints on the rows and columns of a rectangular

matrix. We can pass this directly to the GradDesc function. Since

this network is fairly large, we will let it run for 500 steps.

In[6]:= GradDesc[MatchEM, 5, 5], 500]
(0.282214, 0.268753, 0.212327, 0.231943, 0.274453, 0.279035, 0.146517,

> 0.256717, 0.196147, 0.137234, 0.231377, 0.225728, 0.246399, 0.225022,

> 0.105801, 0.213226, 0.278814, 0.15593, 0.235356, 0.275095, 0.295193,

> 0.1642, 0.27119, 0.219052, 0.146877}

( many steps removed )

{0.0424614, 0.0471485, 0.0439794, 0.040272, 0.866579, 0.0424675, 0.0471054,

> 0.868152, 0.039981, 0.043376, 0.0391433, 0.0425031, 0.0399867, 0.916185,

> 0.0400393, 0.045329, 0.832142, 0.04626, 0.0421782, 0.0469582, 0.884906,

> 0.0447747, 0.0422182, 0.0390809, 0.0423163}

Out[6]= M)[1[1] -> 0.0424614, M11[2) -> 0.0471485, ME1[3] -> 0.0439794,

> MNl]E4 -> 0.040272, M[1][5 -> 0.866579, M[2][1) -> 0.0424675,
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> M[2][22 -> 0.0471054, M[2][3] -> 0.868152, M[2][4] -> 0.039981,

> M[2][52 -> 0.043376, M[3][12 -> 0.0391433, M[3][21 -> 0.0425031,

> M[3] [32 -> 0.0399867, M[3] [42 -> 0.916185, M[3] [5] -> 0.0400393,

> M[4] [I] -> 0.045329, M[4][22 -> 0.832142, M[4][32 -> 0.04626,

> M[4][42 -> 0.0421782, ME4][52 -> 0.0469582, M[5][I2 -> 0.884906,

> M[5] [2) -> 0.0447747, M[5] [32 -> 0.0422182, ME5][4] -> 0.0390809,

> M[5][5] -> 0.0423163}

The final answer is close to a permutation network. You can see the

structure more clearly by printing out a table of M's in MatrixForm.

In[7]:= MatrixForm[Table[M[i] [j], {i, 5}, {j, 5}] /. Out[6]]

Out[7]//MatrixForm= 0.0424614 0.0471485 0.0439794 0.040272 0.866579

0.0424675 0.0471054 0.868152 0.039981 0.043376

0.0391433 0.0425031 0.0399867 0.916185 0.0400393

0.045329 0.832142 0.04626 0.0421782 0.0469582

0.884906 0.0447747 0.0422182 0.0390809 0.0423163

Now, we will try using an objective function transformation

on the Match network. As a first step, let's look at the structure

of the expression generated by Match[M, 5, 52.

In[9]:= func= Match[M, 5, 52

2

Out[9]= SumOver[(-1 + SumOver[M[i[j], {i, 5}) , {j, 5}2 +

2
> SumOver[(-1 + Sum~ver[M[i][j], {j, 5}]) , 5} +

> SumOver[Potential[M[i][j]], {i, 5}, {j, 5}] +

> SumOver[(1 - M[i][j]) M[i][j], {i, 5}, {j, 5}3

We can use the function SquareTransform to produce a new objective function

with terms of the form x^2 transformed into 2 x sigma - simga-2.
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InE11]:= func = SquareTransformEfunc]

2
Out[11]= SumOverE-sigmal[j] + 2 sigmal[j] (-1 + SumOver[M[i]Ej], {i, 5}]),

2
> {j, 5}] + SumOverL-sigma2[i] +

> 2 sigma2[i] (-1 + SumOverEMEi Ej], {j, 5}]), (i, 51] +

> SumOverEO.1 (-Abs[-0.5 + M[i]Ej]] - 0.5 Log[0.5 - AbsE-C.S + MEi]Ej]]]),

> {i, 5}, {j, S}] + SumOverE(1 - MEiEj]) Mi] Ej], {i, 5}, {j, 5}]

In this objective function, sigmalEj] governs the column constraints,

and sigma2Ei] governs the row constraints. Since the new sigma neurons act
to maximize the objective function, we cannot use the same GradDesc
optimizer which sends all neurons downhill. Instead we use the optimizer

SaddlePoint, and pass it a list of the reversed neurons. Conveniently,

the SquareTransform function appends the names of all the new reversed

neurons it creates to the list ReversedNeurons.

In[12]:= SaddlePoint [func, ReversedNeurons, 500)
{0.112055, 0.287099, 0.235514, 0.23606, 0.129563, 0.110942, 0.282688,

> 0.16964, 0.175481, 0.175472, 0.259398, 0.170251, 0.282214, 0.268753,

> 0.206656, 0.279856, 0.106098, 0.282597, 0.21139, 0.232409, 0.26157,

> 0.135819, 0.10515, 0.21158, 0.104505, 0.199769, 0.105801, 0.225568,

> 0.165773, 0.141062, 0.2621, 0.152875, 0.289367, 0.245156, 0.26151}

( many steps removed )

{0.0404085, 0.0404085, 0.0452528, 0.881893, 0.0404189, 0.0374939, 0.919705,

> 0.0408759, 0.0403384, 0.0375015, 0.0408049, 0.0408049, 0.875959,

> 0.0453532, 0.0408156, 0.0375015, 0.0375015, 0.0408868, 0.0403486,

> 0.919624, 0.919705, 0.0374939, 0.0408758, 0.0403384, 0.0375015, 0.076609,

> 0.0766089, 0.0343611, 0.0401126, 0.076517, 0.0398592, 0.076615,

> 0.0345962, 0.0765232, 0.07661521

Out[12]= {M1J[l] -> 0.0404085, MK(][2] -> 0.0404085, M[][3] -> 0.0452528,

> MEl][4] -> 0.881893, M[l][5] -> 0.0404189, ME2]El] -> 0.0374939,
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> M2] 2] -> 0.919705, M[2]£3] -> 0.0408759, M[2] [4] -> 0.0403384,

> H[2][6] -> 0.0375015, M[3][1] -> 0.0408049, M[3][2] -> 0.0408049,

> M[3] £3] -> 0.875959, MC3] [4] -> 0.0453532, M[3] [5] -> 0.0408156,

> M[4][1] -> 0.0375015, M[4][2] -> 0.0375015, M[4]£3] -> 0.0408868,

> M[4]£4] -> 0.0403486, M[4][5] -> 0.919624, M[5][£] -> 0.919705,

> M[S] £2] -> 0.0374939, M[5] [3] -> 0.0408758, M[5] [4] -> 0.0403384,

> M[S][] -> 0.0375015, sigmalCl] -> 0.076609, sigmal[2j -> 0.0766089,

> sigmal[3] -> 0.0343611, sigmal[4] -> 0.0401126, sigmal15] -> 0.076517,

> sigma2[1] -> 0.0398592, sigma2[2] -> 0.076615, sigma2[3] -> 0.0345962,

> sigma2[4] -> 0.0765232, sigma2[S] -> 0.0766152}

IIn[13]:= MatrixForm£Table[M[i][j], {i, 5}, {j, 5}] /. Out[12]]

Out[13]//MatrixForm= 0.0404085 0.0404085 0.0452528 0.881893 0.0404189

0.0374939 0.919705 0.0408759 0.0403384 0.0375015

0.0408049 0.0408049 0.875959 0.0453532 0.0408156

0.0375015 0.0375015 0.0408868 0.0403486 0.919624

0.919705 0.0374939 0.0408758 0.0403384 0.0375015

This answer is also a good permutation matrix.

Running Networks (with the back end)

In order to use the C++ back end, you must install the routines which

are in the file MathTree. These routines allow you to describe networks

and optimizers, define reversed or fast neurons, initialize neuron

values, and finally run networks.

In[14]:= Install["Mat)'Tree"]

Out[141= LinkObject[MathTree, 1, 1]

We will continue with the peimutation matrix example network that we used

above, and this time we will write the objective function using an index
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domain. The new function is called MatchDomain.

In[31]:= MatchDomainEx_, id_] :-
SumOverC(SumOver[x[i][j], {j, Dimension[2, id]}] - 0-2,

{i, DimensionEl, id]}] +
SumOver[(SumOver[x[iJ[j], {i, Dimension[l, idJ}] - 0-2,

{j, Dimension[2, id]}] +
SumOverEx[i]Ej] (1 - x[i][j]), {i, j, id}] +

SumOverEPotential x[i]Ej]], {i, j, id}]

This function will take an index domain with 2 dimensions, and impose
winner-take-all constraints along each dimension. Now let's define

an index domain and call MatchDomain to see what the objective function

will look like.

In[32]:= CPD = CrossProductDomain[IndexDomainEl, 5], IndexDomain[1, 5]]

Out [32]= CrossProductDomain[IndexDomain[1, 5], IndexDomain[1, S]]

In[33]:= MatchDomainEM, CPD]

2

Out[33]= SumOver[(-1 + SumOverEMEi][j], {i, 1, 5}]) , {j, 1, 5}] +

2
> SumOver[(-1 + SumOver[MEi] [j, {j, 1, 5}]) , {i, 1, 5}] +

> SumOver[PotentialE[M i] [j]], {i, 1, 5}, {j, 1, 5}3 +

> SumOver[(1 - M~i]Ej]) MEi]Ej], {i, 1, 5}, {j, 1. 5}]

We now communicate the objective function to the back end program with the

function SetUpNet, and choose a line minimization optimizer with

SetUpOptimizer.

In[34]:= SetUpNet [MatchDomain [M, CPD]]

Variable M:
0.088342 0.113757 0.027181 0.094360 0.036566

0.194903 0.111318 0.085666 0.111402 0.103520
0.039403 0.137246 0.015866 0.092842 0.034000

0.024054 0.035861 0.139221 0.090609 0.033407
0.037842 0.016067 0.087616 0.051261 0.122438

Out [341= I

In[35]:= SetUpOptimizer lm]
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Using line minimizer

Out[35]= I

Now we are ready to run the network with RunNet.

In[36]:= RunNet[]
Variable M :
0.179168 0.202559 0.130800 0.179705 0.137766

0.267729 0.175160 0.154529 0.172607 0.175494

0.138263 0.231581 0.138975 0.182257 0.140355
0.131180 0.132569 0.239219 0.179584 0.139649
0.137620 0.133204 0.185878 0.142404 0.224744

energy = 4.084525

( many steps of output removed )

energy = 1.384581

Variable M:
0.011132 0.011135 0.011132 0.985656 0.011132

0.985724 0.011134 0.011131 0.011133 0.011131
0.011129 0.985723 0.011129 0.011132 0.011129
0.011131 0.011134 0.985724 0.011133 0.011131

0.011131 0.011134 0.011131 0.011133 0.985724

Out[36T = {M[1][1] -> 0.0111322, M[13[2) -> 0.0111351, M[11[3] -> 0.0111322,

> M[11[4] -> 0.98b656, M[11[5] -> 0.0111322, M[2][1] -> 0.985724,

> M[21(2] -> 0.0111339, M[21 [3] -> 0.0111306, N[2 [41 -> 0.0111333,

> M[2][51 -> 0.0111306, M[31[11 -> 0.0111288, M[31[21 -> 0.985723,

> M[31(3] -> 0.0111288, M[3][41 -> 0.0111316, M[31[5] -> 0.0111288,

> M[4](11 -> 0.0111306, M[41[2] -> 0.0111339, M[43] -> 0.985724,

> M[4141 -> 0.0111333, M[4151 -> 0.0111306, MS]11 -> 0.0111306,

> M(5 [2] -> 0.0111339, M451(3] -> 0.0111306, M(5][41 -> 0.0111333,

> 1[5] 5] -> 0.9857241

The answer is a permutation matrix, as we expectea. And now just to
complete the demonstration, we will run the permutation matrix network with

reversed neurons.
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In[37]: fuxnc =SquareTransorm [Mat chlomain [M, CPDJ]

2
Out[37>= SumnQver[-sigmalCjJ +

>2 sigmal~j] (-I + SumOver[M~i[j], {i, 1, 5).)), {j, 1, 5).) +

2
> Sum~vert-sigma2CiJ + 2 sigma2Ci] (-1 + SuiuOver[M~i] (j], (j, 1., 5}J),

> {i, 1, 5)] + SumOver [Potential[EM[i] [ill, (i, 1, 5)., {j, 1, 5).) +

> SumOverE(I - H~i[j)) M~i)j], {i, 1, 5)., {j, 1, .5).

InE38]: SetUpNet~func)

Variable sigma2:

-0.2331S1 0.275137 -1.456376 -0.112794 -1.268687

Variable M:
0.194903 0.111318 0.085666 0.111402 0.103520

0.039403 0.137246 0.015866 0.092842 0.034000
0.024054 0.035861 0.139221 0.090609 0.033407

0.037842 0.016067 0.087616 0.051261 0.122438

0.155670 0.026563 0.064878 0.161136 0.069341

Variable sigmal:

0.558585 1.640131 -0.606858 -0.872527 -1.816334

Out [38>= 1

In[39]: SetUp~ptimizerElm]

Using line minimizer

0ut(39]= 1

InC401: SetUpReversedNeuronsEReversedNeurons]

Out [40>= 1

In[41):= RunNet~j
Variable sigma2:

-0.393191 -0.680643 -0.676848 -0.684777 -0.522411

Variable M:

0.710856 0.678656 0.593971 0.537001 0.640001
0.758736 0.942796 0.947946 0.738820 0.839069
0.807958 0.8599S2 0.890754 0.733150 0.837591
0.764348 0.999758 0.825588 0.710739 0.895874
0.748781 0.769826 0.676887 0.713906 0.704011
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Variable sigmal:

-0.548127 -0.672945 -0.606754 -0.492750 -0.637294

energy = -33.651328

( after many steps )

energy = 1.384579

Variable sigma2:

0.029720 0.029719 0.029244 0.029719 0.029719

Variable M:
0.011176 0.011173 0.011176 0.011176 0.985732

0.011176 0.011174 0.985732 0.011176 0.011176

0.011173 0.985541 0.011173 0.011173 0.011173
0.985732 0.011174 0.011176 0.011176 0.011176
0.011176 0.011174 0.011176 0.985732 0.011176

Variable sigmal:

0.029719 0.029243 0.029719 0.029719 0.029719

Out[41l= {sigma2[1] -> 0.02972, sigma2[2] -> 0.0297189,

> sigma2[3] -> 0.0292441, sigma2[4] -> 0.0297189, sigma2[5] -> 0.0297189,

> MCI] [11 -> 0.0111758, M[1][2] -> 0.0111735, MEI]C3] -> 0.0111758,

> H[13[4] -> 0.0111758, M[EI[5] -> 0.985732, M[21[1] -> 0.0111759,

> M[2][2) -> 0.0111736, M[2][3] -> 0.985732, M[23[4) -> 0.0111759,

> ME2![S) -> 0.0111759, M[31[1 -> 0.0111735, M[3][2) -> 0.985541,

> ME3][3) -> 0.0111735, M[3][4] -> 0.0111735, M[3)E5] -> 0.0111735,

> ME4][1" -> 0.985732, M[4[2] -> 0.0111736, M[4][3] -> 0.0111759,

> M[41[4] -> 0.0111759, M[4J[5) -> 0.0111759, MSi[1) -> 0.0111759,

> M[S[2] -> 0.0111736, M[5)[3) -> 0.0111759, M[5][4] -> 0.985732,

> M[5)[SJ -> 0.0111759, sigmalEl] -> 0.0297194, sigmal[2 -> 0.0292435,

> sigmal[3] -> 0.0297194, sigmal[4] -> 0.0297194, sigmal[S] -> 0.0297194}
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File "Nemesis.m"

WTA::usage =

"WTAEx, P.] returns a complete objective function for a winner

take all net, involving variables x [l] through x [n]

Match: :usage =
"Match~x, m, n] returns a complete objective function for a
permutation matrix, involving variables x[1] [] through xm] En] ."

SquareTransform: :usage =

"SquareTransform~e] returns a copy of e, except that the terms
of the form x-2 are replaced by 2 x sigma - sigma-2."

MultiplyTransform: :usage =

"MultiplyTransformEel returns a copy of e, except that the terms
of the form x y are replaced by x (sigma - tau) + y (sigma - omega)

+ 1/2 (-sigma-2 + tau-2 + omega-2)."

MultiplyTransform2: :usage =

"MultiplyTransform2[e] returns a copy of e, except that the terms
of the form x y are replaced by 1/2 x (sigma - tau) + 1/2 y (sigma + tau)
+ 1/4 (-sigma-2 + tau-2)."

ExponentialTransform: :usage =

"ExponentialTransform e] returns a copy of e, except that the terms
of the form Exp[x] are replaced by (x + 1) sigma + sigma Log[sigma] ."

XLogXTransform: :usage =
"XLogXTransform[e] returns a copy of e, except that the terms
of the form Abs[x] Log[Abs[x]] are replaced by Abs[x] sigma -
Exp sigma]."

LogXTransform: :usage =

"LogXTransform[e] returns a copy of e, except that the terms
of the form LogCAbs~x]] are replaced by x sigma - LogEAbs[sigma]]."

AbsPowerTransform: :usage =

"AbsPowerTransform e] returns a copy of e, except that the terms
of the form Abs Ex] p/p are replaced by x sigma -
Abs[sigma] (p/(p-1)) ((p-l)/p)."

SumOver::usage =

"SumOver~e, {i, n}, {j, m}, ...] represents a sum over expression
e, with summation indices i, j, ... just like the built in Sum
function. The difference is that Mathematica will not try to
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expand SumOver the way it expands Sum."

Tablef::usage =

"TableOf[e, {i, n}, {j, m}, ...] represents a list of expressions

e, with indices i, j, ... just like the built in Table function.

The difference is that Mathematica will not try to expand TableOf

the way it expands Table."

IndexDomain: :usage =

"IndexDomain[l, h] is is a domain in which an index can take on

values 1, 1+1, 1+2, ..., h."

DisjointUnion: :usage =

"The DisjointUnion of 2, IndexDomains is a domain which

contains all of the index values from each domain, and repeats

those values which occur in more than both domains."

CrossProductDomain: :usage =

"The CrossProductDomain of 2 IndexDomains is a domain which

contains one index value for each possible combination of index values

in the original domains."

ReversedNeurons: :usage =

"The list ReversedNeurons contains the neurons introduced by objective

function transformations which act to maximize the objective."

FastNeurons: :usage =

"The list FastNeurons contains the neurons introduced by objective

function transformations which act to minimize the objective."

(* Some basic objective functions *)

WTA[x_, n_] :=

(Sumver[x[i), {i, n}] - )2 +

SumOver(x[i] (I - xCi), {i, n}] +

SumOver[PotentialExCiJ, 0, 1], fi, n}]

Match[x_, m-, n_] :=

SumOver[(SumOver[x[i][j], {j, n}] - 1)-2, {i, m}] +

SumOver[(SumOver[x[i][j], {i, m}] - )2, {j, n}] +

SumOver[x[i][j) (1 - x[i][j]), {i, m}, {j, n})] +

SumOver[PotentialEx[i][j], {i, m}, {j, n}]

(* Objective function transformations *)

(* Notice the square transform only applies to non-Atomic expressions.
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Each transformation rule will be responsible for adding the neurons

it creates to the lists ReversedNeurons or FastNeurons. *

ReversedNeurons ={

FastNeurons = *}

(FreeIndices Cx] returns the indices in expression x which are not

bound by any SumOver expression in x itself. )

FreelndicesSunOver~x.., {i-, id-A})
Complement CFreelndices Cx). {i})

FreelndicesSunOverl... (i_, j-.Integer, id-1.})

Complemen~t Freelndices Cx), {i}

Free Indi ce sSumOverx_, {i_, j_, id-1))

Complement [Freelndices[x). ,{i, j})

Freelndices[SumOver~x-, {L-, j-, k-., id--}))

Complement CFreelndices~x) , {i, j, k})

Freelndices[SumOver~x-, {i-, j-., k-, l-., id__..)]

Complement [Freelndices~x) , {i, j, k, 1})

FreelndicesC(Plus Ex-, y-1)

Union [FreeIndices Cx) , FreeIndices [y])

Freelnd ices [Times[x_, Y-1):

Union [Freelndices NI), FreeIndices Cy))I

Freelndices Poer Cx_, Y-1):

Union (Freelndices [x), FreeIndices Cy))

Freelndices[Log~x-j)

FreeIndices Cx)

FreelndicesCExp~x-j)

FreeIndices Cx)

FreeIndices CAbs [x-2

FreeIndices Cx)

FreeIndices CPotential cxJ)

FreeIndices Cx)

FreeIndices Cr2

Block C{,
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If [NumberQ[x) I I Head~x] = Symbol, Return[{}), 0];

IfCflead~xC[1l)] == Symbol, ReturnCUnionCFreelndicesCHead[xJJ,

fxC1iJ]})], 0];
FreeIndices [Head Cx))

I

Addlndices~s-, li-j

BlockC{},

If ELengthtli] = 0, Return~s], 0];

Addlndices~sC liEEl] 1, Restthi)]

I

SquareTransformP~ule =Power~x-., 2] :>

BlockCfsig = Uniquet["sigma], fi = Free Indices [xJ},

AppendTo[ReversedNeurons, sig);

2 x Addlndices~sig, fi] -

Addlndices~sig, fi]-2] /; !AtomQEx)

SquareTransf arme- :=.

e /. SquareTransformRuile

(The mul~tiplication transformation will only be applied when neither of

the two expressions are simply numbers, and when neither contains any

reversed neurons. The transformation introduces 3 new neurons, sigma,

tau and omega.*)

MultiplyTransform~ule =Times~x_, y-.. :>

Block Esigma = Unique ["sigma"), tau =Unique ["tau],

omega =Unique Pomega'1 , fi =Freelndices~x)},

AppendTo[ReversedNeurons, sigma];

AppendTo [FastNeurons, tau];

AppendToEFastleurons, omega];

x (Addlndices~sigma, fi] - Addlndices~tau, fi)) +

y (Addlndices [sigma, fi) - Addlndices [omega, fi)) -

Addlndices [sigma, fiP-2/2 + Addlndices~tau, fiP-2I2 +

Addlndices [omega, fiV-2/2] /;

FreefteversedQ[x) kk FreaReversedQ~y] kk !NuiuberQ[x) kk !NumberQ~y]

(FreeReversedQ returns True if the expression x does not contain any of

the symbols on the list ReversedNeurons. It returns False otherwise *

FreeReversedQ~x-i := Block[{i},
For [i1l, i<=Length [Rev ers edleuronsJ , i++, If[FreeQ Cx,

Reversedleurons ([ill] , , Return [False]]];

Return [True))

MultiplyTransform~e-.:
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e /. HultiplyTransformRule

(* The second multiplication transformation just introduces 2 new variables. *

MultiplyTransformRule2 = Times~x-, y-J :>

Block [sigma = Unique[("sigma"]), tau = Unique [tau"] ,

f= Freelndices[x),

AppendTo[ReversedNeurons, sigma);

AppendTo[(FastNeurons, tau]);

x (Addlndices [sigma, f ii - Addlndices[tau, fl)/2 +

y (Addlndices [sigma, I il + Addlndices[tau, fil/

- Addlndices [sigma, fi]-2/4 + Addlndices~tau, fi]-2/4) I
FreeReversedQ[x) kk FreefteversedQ[y] && !NumberQ[x] kk !NumberQ[y]

MultiplyTransform2[- :e)

e /. MultiplyTransformRule

ExponentialTransformRule =Power[E, x-I

Block(fsigma =Unique ("sigma"), fi =FreeIndices~xl

AppendTo[ReversedNeurons, sigma];

(x + 1) Addlndices[sigma, fil -

Addlndices [sigma, fi] Log EAddlndices [sigma, fill]

Exponent ialTransform[e-i -=

e /. ExponentialTransformRule

XLogXTransform.Rule =Abs [x-i Log [Abs [x-i) :>

Block[{sigma = Unique[("sigma"], fi =Freelndices[x)},

AppendTo[Reversedleurons, sigma) ;

Abs~x) Addlndices [sigma, fil - Exp[Addlndices [sigma, fi))-

XLogXTransform[ei :=

e /. XLogXTransformRule

LogXTransform.Rule = LogEAbs~xi)l :>

Block [sigma = Unique ["sigma"]), fi = Freelndices[x)},

AppendTo [Fast Neurons, sigma) ;

x Addlndices [sigma, fil - LogEAbsE[Addlndices [sigma, fil]]

LogXransform~e-i:

e /. LogXTransformRule

AbsPowerTransform.Rule =Abs [xi -p-./p- :>

Block [(sigma =Unique ["sigma"]), fi =FreeIndices~xl

AppendTo [Fast Neurons, sigma);

x Addlndices~sigma, fij -

Abs [Addlndices (sigma, fi))(p/Cp-1)) C(p-i)/p)) /; FreeReversedQ[x)
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AbsPowerTransform Ce-..
e /. AbsPowerTransformRule

(* Index domain notation *)

Parts [IndexDomain[l-, h-i] := 1

Parts [CrossProductDomain[l-, r-1j: Parts[l] * Parts[r]

Parts (DisjointUnion[1-, r-1j: Parts~l] + Parts~r]

Size [Indexoomain[l-, h-i] := I
Size[(CrossProductDomainl. [1, r-1 := Size~l] + Size[r]

Size [DisjointUnion[l_, r-J := I1[Size[lJ = Size~r], Size~l), 0]

Dimension~n-, IndexDomain~l-, h-i] := Ifn =1, IndexDomain[l, h], 0]

DimensionEn_, CrossProductDomainEl-, r-11

If [n <= Size~l] , Dimension~n, 1] , DimensionEn - Size~l] , r]j

Dimension~n-, DisjointUnion~l., r-J :=

DisjointUnion [Dimension [n, 1] , Dimension~n, r11

Starttpart-, size-., IndexDomain~l-, h-1] If (part =21 kk size 1, 1, 0]

Finish[part., size_, IndexDomaintl-, hi] : If [part I2 && size 221, h, 0]

Startpart-, size-., CrossProductDomain[l-, r-1 :

If [size <= SizeEl], Start [Floor[C(part- 1) /Parts~r]] + 1, size, 1],

Start [Mod Upart - 1), Parts[r]] + 1, size -Size~l], r11

Finishpart., size_, CrossProductDomain[l-, r-1

If [size <= Size~l], Finish[(Floor [(par-t-1) /Parts~r]] + 1, size, 1],

Finish [Mod (part - 1), Parts~r]] + 1, size -Size~l], r]]

If [part <2 Parts1l1, Start [part, size, 1],
Start [part - Parts~l], size, r11

Finish~part., size_, DisjointUnion~l., r-i]

If [part <= Parts [1], Finish[part, size, 1],

Finish~part - Parts[l], size, r]]

DomainQ~id-i := Head~id] ==IndexDomain IIHead~id] = CrossProductDomain I
Head~id] ==DisjointUnion

Sum~ver[t_, {i-., IndexDomaini.., h_]] Sumover~f, {i, 1, h}]

SuinOver~f.., {i-, id_. /; DomainQ~id]}] :Module[{p},

ReplacePart [Table [Sam~ver ff, {i, Start[p, 1, id], Finishfp, 1, id] 1],
(p, Parts(id]}], Plus, 0]]
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SumOver~f-, {i-., j-, id-~ /; DomainQ~id]}] :=ModuleE~p},

ReplacePart [Table [SumOverE[f, {i, Start[p, 1, id], Finish~p, 1, id)},

{j. Start~p, 2, id], Finish~p, 2, id)}],

(p, Parts~idl), Plus, 0))

SumOver~t.., {i. j-., k-., id_. /; DomainQ~id)}] := oduleEfp},

ReplacePart [TableE[SumOverCf , {i, Start~p, 1, id], Finish~p, 1, id]},

{j, Start~p, 2, id], Finish~p, 2, id]},

(k, Startfp, 3, id], Finish~p, 3, id]}],

(p, Paxts~id]}), Plus, 0)]

SumOver~t.., {L., j-, k-., l-, id-. /; DomainQ~id]}] :=HoduleEfp},

ReplacePartE[TableE[Sum~ver [f, {i, Start~p, 1, id], Finish~p, 1, id)},

{j, StartEp, 2, id], Finish~p, 2, id]),

{k, Start~p, 3, id], Finish~p, 3, id]},

(1, Start~p, 4, id], Finish~p, 4, id]}],

{p, Parts~id)}), Plus, 0])

Table~lft.., {i., IndexDomainEl-, h-.J)] Table0f[f, {i, 1, h}]

Table0f~t.., {i-., id-. /; DomainQ~id]}) HoduleE~p},

ReplacePartE[TableE[TableOf Ef, {i, Start~p, 1, id], Finish~p, 1, id]}],

{p, Parts~idl), Plus, 0])

Table~f~f-., {i-., j-, id-. /; DomainQEidl) :=HoduleE~p},

ReplacePartE[TableE[Table~f [f, {i, StartEp, 1, id], Finish~p, 1, id]},

(j, Start~p, 2, id], Finish~p, 2, id],

(p, Parts~id]}], Plus, 0]]

Table~f~t., {i-., j-., k-., id-. /; DomainQ~id)}) : ModuleE~p},

ReplacePaxtE[TableE[Table~ Ef , {i, Start~p, 1, id], Finishtp, 1, id]),

{j, Start~p, 2, id], Finish~p, 2, id)},

(k, Start~p, 3, id], Finish~p, 3, ADj],

(p, Parts~id]), Plus, 0]]

Table~f~f-, {i_., j_, k-, 1l-, id-. /; DoniainQ~id]}) :=odule[(p},

ReplacePart [Table (TableOf Et, (i, Start~p, 1, id], Finish~p, 1, id]},

(j, Staxt~p, 2, id], Finish~p, 2, id]},

(k, Start~p, 3, id], Finish~p, 3, All},

{l, Start~p, 4, id], Finish~p, 4, id])],

(p, Paxts~id]}], Plus, 0)]
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File "Descent.m"

(Descent.m isn't needed in the presence of the back end.)

<<Nemesis .m

GradDesc::usage =
"GradDesc[f] minimizes the objective function f. The optimizer performs
gradient descent with a fixed step size for 200 steps."

SaddlePoint: :usage =
"SaddlePoint[f, {rl, r2, r3, ...}] finds a saddle point of the objective
function f by minimizing it with respect to all variables except ri,
r2, r3, etc. The optimizer performs gradient descent/ascent with a

fixed step size for 200 steps."

ExtractSymbols [x_1 -

BlockE{n = Length[x), i},

If[n 0 &k Head[x] Symbol, Return[x], 0];

If [n == 0 && HeadEx] '= Symbol, Return[{}3, 0);

If [n == 1, Return[ElimFunc x]1, 01;
Union[ Flatten[ Table[ ExtractSymbolsE x[Ei)] 1, {i, n}J I ]

]

ElimFunc[x_:
BlockE{},

If[Head[x] Abs, Return[{}], 0];
IfCHead x]= Exp, Return[{}], 0];
If[Head[x] == Log, ReturnE{}], 0);
If [Head Ex] == Tanh, Return {}], 0];
x

]

max = 1

min 0

gain 50

range := 0.6 * (max - min)

avg := 0.5 * (max + min)

TransferEx_] := gain*x / (1 + Abs [gain*x/range]) + avg

InvTransfer[y_] := (y- avg)/ (gain*(l - Abs[(y - avg)/range]))

Potential~x_] := 10 range*(-range*Log [range - Abs [x-avg]] - Abs [x-avg] )/gain
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Abs' :=Sign

GradDesc~fj: InternalGradlescEl I SumOver -> Sum]

Gradflesc~f.., nsteps-j: InterxaiGradflesc~f I.SumOver ->Sium, nsteps]

InternalGradflesc[ EL, nsteps.] :

BlockE(i, j, args ExtractSymbols~f],

len, table, rules ={(, dxs},

len = Length~argsl;

table =TableE[0.1 + 0. 2 Random D], {i, len});

Print [table) ;

ForEil, i<=leii, i++,

dxs~ij = D~f, argsECi]]];

AppendTo~rules, argsE[i]] -> tableE~i]] I

For~j=O, j<nsteps, j++,

For~il, i<=len, i++,
tableECi)) = table[[i]] -0.01 (dxs~i] I rules);

ruiesE~i]) argsE~i)] tableEEi))

Print j);
Print [table)

rules

FindReverse'.E all-, rev..

FlattenE MapE Function[ FindNameE #1, rev] I], all] I

FindName~x-., names-] :

If EMatchName~x, names], x,{}

MatchName Er.., names-] :

If [Nat chQ (Bead Er), Symbol],

MemberQEnames, x], Hat chiame [Head Cx), names]]

SaddlePoint~f_, revnamesI :

InternalSaddlePoint~f /. t )SumOver ->Sum, revnames)

SaddlePoint~f-, revnames_ nsteps..)

InternalSaddlePoint~f /. - SumOver ->Sum, revnames, nstepsJ

InternalSaddlePoint~f-, revnames., nsteps-j:

Block[(i, j, args =ExtractSymbols~f], revargs, len, revlen,

table, rules },dxs, drrs},
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revai-gs = FindReversed[args, revnames];

args =Complement Cargs, revargsj;

len Length[args];

revlen LengthLrevargs];

table =Table[0.1 + 0.2 RandomO, {i, len + revlen}J;

Print [table];

For[i=1, i<=len, i++,

dxsti) = DC!, args[[i]]];

AppendTo~rules, args[[i]J -> table[[i]2 2
3;
For~il. i<=revlen, i++,

dxrs~ij = DC!, revargsC~i];

AppendTo~rules, revargsEAiJ -> tableE[i+len]]2

For~j0O, j<nsteps, j++,
For~ilI, i<=len, i++,

tableEi]] tableCCi]] 0.01 (dxs~i] /. rules);

rulesECi]) args[Ci]] - tableCIi]]

2;
For~i1l, i<=revlen, i++,

table[[i+len]] = table[[i+len]] + 0.1 (dxrs[.J I rules);

rules[Ci+lenJ] = revargsE~i]] -> table[Ci+len]]

I
Print EjJ;
Print [table];

2;
rules

I
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B Appendix: Algebraic Transformations of Objective Functions
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ORIGINAL CONTRIBUTION

Algebraic Transformations of Objective Functions

ERIC MJOLSNESS AND CHARLES GARRETT

Yale University

(Received 27 March 1989; revised and accepted 31 January 1990)

Abstract-Many neural networks can be derived as optimization dynamics for suitable objective functions. We
show that such networks can be designed by repeated transformations of one objective into another with the
same fixpoints. We exhibit a collection of algebraic transformations which reduce network cost and increase the
set of objective functions that are neurally implementable. The transformations include simplification of products
of expressions, functions of one or two expressions, and sparse matrix products (all of which may oe i, rerpreted
as Legendre transformations); also the minimum and maximum of a set of expressions. These tran4&rr, 'ations
introduce new interneurons which force the network to seek a saddle point rather than a minimum. Other
transformations allow control of the network dynamics, by reconciling the Lagrangian formalism with the need
for fixpoints. We apply the transformations to simplify a number of structured neural networks, beginning with
the standard reduction of the winner-take-all network from O(N2) connections to O(N). Also susceptible are
inexact graph-matching, random dot matching, convolutions and coordinate transformations, and sorting. Sim-
ulations show that fixpoint-preserving transformations may be applied repeatedly and elaborateiy, and the
example networks still robustiy converge.

Keywords-Objective function, Structured neural network, Analog circuit, Transformation of objective, Fix-
point-preserving transformation, Lagrangian dynamics, Graph-matching neural net. Winner-take-all neural
net.

1. INTRODUCTION This procedure is direct but has drawbacks. For

Objective functions have become important in the example it considers only the goal of the computation
s etudy o f ur ticiaoneurale newor , fort theira y and not the cost for attaining the goal or the pathstudy of artificial neural networks, for their ability take inZigs.Te;eutn era escnb

to concisely describe a network and the dynamics of
its neurons and connections. For neurons with ob- quite expensive in their number of connections, and

jective -function dynamics, the now standard proce- for some objectives the associated local update rule
durtie-funi, 1684;nam ie &ow Tanr 1985;Koch, has an algebraic form unsuitable for direct imple-dure (Hopfield, 1984; Hopfied & Tank, 1985; Koch, menrtation as a neural network.
Marroquin & Yuille, 1986) is to formulate an objec- in this paper we show how to modify the standard
tive function (called the "objective" in what follows) procedure by interpolating an extra step: after the
which expresses the goal of the desired computation, objective is formulated, it can be algebraically ma-
then to derive a local update rule (often a simple nipulated in a way which preserves its meaning but
application of steepest descent) which will optimize improves the resulting circuits (e.g., by decreasing
the dynamic variables, in this case the artificial an- some measure of their cost). Then the improved cir-
alog neurons. The update rule should ultimately con-
verge to a fixpoint which minimizes the objective and cit is der from the mdg e d oet o e itwill be clear from the algebra alone that some savings
should be interpretable as the dynamics of a circuit. in number of connections will occur, or that a pre-

viously nonimplementable objective has been trans-

Acknowledgments: We wish to acknowlede discussions with formed to a form (e.g., single-neuron potentials plus
P. Anandan, Christian Darken, Wojtek Furmansky, Gene Gindi, polynomial interactions (Hopfield, 1984)) whose
Drew McDermott. Willard Miranker, John Platt. PetarSimic, and minimization may be directly implemented as an an-
Joachim Utans. alog circuit in a given technology. And one inter-

This work was supported in part by AFOSR grant AFOSR- esting class of transformations can establish detailed
83-0240, 83-0240.control over the state-space trajectory followed dur-

Requests for reprints should be sent to Eric Mjolsness, Yale c

Computer Science Department, P.O. Box 2158 Yale Station. New ing optimization.
Haven, CT 06520. We do not require that the algebraic manipulation
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be done automatically; we just ask whether and how 1.1. Reversed Linear Neurons in the

it can be done. Our answer is in the form of a short, WTA Network
nonexhaustive list of very general transformations Consider the ordinary winner-ake-all analog neural
which can be performed on summands of an objec- network. Following (Hopfield & Tank, 1985), such
tive, provided they are of the requisite algebraic a network can be obtained from the objective
form, without altering the fixpoints of the resulting
network. Many of these transformations introduce a c
relatively small number of new neurons which change E'(v) = U, - 1 + c h,U, + (
the local minima of the original objective into saddle ( 0,
points of the new one, and whose dynamical behavior
is to seek saddle points. It also seems likely that many where (Hopfield, 1984; Grossberg, 1988)
useful and general algebraic transformations await
discovery. (v,) = J dx g-1(x), (2)

Although we use the terminology appropriate to
the optimization of objectives for dynamic neurons using steepest-descent dynamics
with fixed connections, much of the theory may apply
also to "learning" considered as the optimization of (3)
dynamic connections in an unstructured net (e.g., or Hopfield-style dynamics
Rumelhart, Hinton & Williams, 1986b) or of some
smaller set of parameters which indirectly determine = -aE/0o,, v, = g(u,). (4)
the connections in a structured net (Mjolsness, Sharp The resulting connection matrix is
& Alpert, 1989b).

In the remainder of this section, we will introduce = -
the ideas by rederiving a well-known network sim- which implies global connectivity among the neu-
plification: that of the winner-take-all (WTA) net- rons: if there are N neurons, there are N' connec-
work from O(N) to O(N) connections. Section 2 tions. It is well known that the winner-take-all circuit
develops the theory of our algebraic transformations, requires only O(N) connections if one introduces a
including the reduction of: squares and products of linear neuron a whose value is always 1i vi. It is not
expressions; a broad class of functions of one and so well known that this can be done entirely within
two expressions; the minimum and maximum of a the objective function, as follows:
set of expressions; and certain matrix forms which ( )
retain their sparseness as they are reduced. Impli- .,,(v) = C , - 1a - a
cations for circuit design are discussed, and a major
unsolved problem related to the handling of sparse + c, ' hv, + O €(U,),. (5)
matrices is stated. Further algebraic transformations ,
(section 2.7) allow control of the temporal aspects where the steepest-descent dynamics, for example,
of the optimization process, by modifying the usual is modified to become
Lagrangian formalism (which uses variational cal-
culus to derive time-reversible dynamics) to accom- = -

modate the need for fixpoints in neural network dy- = -a:au (specialize to r, 1) (6)
namics. All the fixpoint-preserving transfor-
mations are cataloged in section 2.8. In section 3, = +r. aa (r,,> 0)
some of the transformations are exercised in de-
sign examples. Experimental results are available =cr,(-a + vi -)
for a graph-matching network, a random-dot-
matching network, and an approximate sorting net- = 0 if a = v, - 1. (7)
work which involves a series of fixpoint-preserving
transformations. For all these networks, approach But if a = 1, u, - 1 then one can calculate that 8EI
to a fixpoint is guaranteed if the minimizing neu- au; = aYdui; thus eqns (1) and (5) have the same
rons operate at a much slower time scale than the fixpoints. The connectivity implied by counting the
maximizing neurons, but experimentally such con- monomials in eqn (5) is C(N) connections, the min-
vergence is also observed when the two time scales imum possible for this problem.
are close; the advantage of the latter mode of op- Note that the a linear neuron actually behaves so
eration is that it requires much less time for a net- as to increase the objective E(V, a), while the u
work to converge. Finally, a discussion follows in neurons act to decrease it; a may be called a reversed
section 4. neuron. Reversed neurons introduce a new element



of competition into a network, indeed, two-person reversed neuron like a in the winner-take-all network
zero-sum games are usually modelled using objec- Is
tives which one player increases and the other de-
creases (von Neumann and Mor-genstern, 1953). So C. = X
in this network, and in the others we will introduce. (9)
minimization is replaced with finding a saddle point where g(x) =

and the problem becomes hyperbolic. This follows that is, linear reversed neurons have linear transfer
immediately from the sign of : in (5), which elim- functions with negative gain. Thus in circuit language
inates all local minima. Fortunately there are hy- they are just inverters, which happen to occur in a
perbolic versions of such efficient optimization network with an objective function and to act so as
procedures as the conjugate gradient method; Leun- to increase E. Lagrange multiplier neurons, on the
berger (Luenberger, 1984) gives two examples. other hand, have no potential term and are not in-

For finite r,, a is a delayed version of the sum verters. It is also worth noting that Lagrange mul-
E, v, - I and although the network dynamics are tipiier neurons work best in conjunction with an
different from eqn (3), the fixed point is the same. additional penalty term h(-U)-/2 (where h('f) = 0 is
Alternativety, the rate parameter r, may be adjusted the constraint) and the penalty term can be efficiently
to make a move at a different time scale from the implemented using one reversed neuron per con-
rest of the neurons. As r, approaches infinity, a be- straint, as we will see.
comes an irrinitely fast neuron whose value is always If in addition to being reversed, a neuron is also

a- ' v - infinitely fast, then it may be necessary to restrict its
connectivity in order to efficiently simulate or im-

and the other neurons see an effective objective plement the network. One possible design rule is to
entirely prohibit connections between infinitely fast

_,.(v. a(v)) = E,.(v) (8) neurons; this prevents one from having to solve a
system of linear equations in order to update a setso that their dynamics become identical to that of of infinitely fast neurons. We will not generally as-

the original fully connected winner-take-all network, sume that reversed neurons are infinitely fast.
which is guaranteed to approach a fixpoint since
dE,dt < 0 and E-,, is bounded below. There are
very efficient serial and parallel implementations for 2THEORY
networks with r, , which update the infinitely
fast neuron whenever its ordinary neighbors change; The reversed linear neuron is applicable in many
this is a standard trick in neural network and Monte circumstances beyond the winner-take-all network.
Carlo physics simulations. When it is applied to sim- We can begin to see its generality by considering
plify the simulation of the W-TA equations of motion, objectives of the form
we arrive at the standard WTA trick.

Moody (Moody, 1989) independently discovered E(v) = E,,(v) + (ci2)X-(v),
an objective function equivalent to (5) and first sim-
ulated its delayed Hopfield-styie equations of motion where E, and X are any algebraic expressions, and
(see (4)). But he remained unaware that the a neuron c is a constant of eithersign. This may be transformed
acts to maximize rather than minimize the objective, to
driving the system to a saddle point. Platt and Barr
(1988, 1987) performed constrained optimization (in- k(v, a) = E, - cXa - (cI2)c-
cluding multiple WTA constraints) by using a subset
of neurons that explicitly increase the objective, and and if X is a polynomial. this represents a reduction
hence a network that seeks saddle points rather than in the number and order of the monomials that occur
local minima. Indeed reversed neurons are a gen- in E. The transformation technique used here is sim-
eralization of their analog Lagrange multiplier neu- pie to state: find squared expressions (c!2)X: as sum-
rons, which were found earlier in a non-neural mands in the objective function, and replace them
context by Arrow (1958). with cXc - (c12)a2. Here c must be a constant and

Both reversed neurons and Lagrange multiplier a is a new linear interneuron, reversed if c is positive.
neurons act to maximize an objective which other Most. but not all. of our reversed linear interneurons
neurons act to minimize. The difference is that La- will be introduced this way. The transformation may
grange multiplier neurons must appear linearly in the be abbreviated as
objective. General reversed neurons can have self-
interactions; in particular, the potential of a linear -- Xa - l4a. (10)



654 E. Mjolsness and C. Garrert

We employ the steepest-ascent-descent dynamics into a third-order objective. Similar transformations
on the neural networks or analog circuits are well
known. But it is easier to do theoretical work with

- oE,/dv, - coraXlav,, the objective, and by transforming the objective first.
= (r,!c)E iYaa and then translating to a neural net, one can obtain
= r,(X - a), novel third-order neural nets.

We may expand a high-order polynomial objective
which, at a fixpoint, has X = a and aE,)Iau, - cXaX/ into monomials, each of which corresponds to one
aui = aE/au = 0. Likewise a fixpoint of E can be connection or "synapse" of the associated neural net-
extended, by setting a = X, to a fixpoint of E. So work. We may reduce the order of an entire objective
fixpoints are preserved by the transformation (10). by reducing the order of each monomial. Consider,
The argument also works if some of the u, are already then, a single fourth-order monomial:
reversed neurons, so that &i =8kav,.

As an example of the transformation (10), one E,.,(x, v, z, ,) = -Txyzw, (14)
can robustly implement a constraint h( ) = 0 using which by (12) may be transformed to
both a penalty term ch/2 and a Lagrange multiplier E,,,(x. y, :. w, a, r, w) = T[xy(r - a)
neuron A. The objective becomes

E...(v, a, ) cah(v) - c/2 + h(v). ()a - r - w. (15)
Here a. r, and co are linear neurons with gain lIT.

The order-reducing transformation is illustrated in
2.1. Products and Order Reduction network language in Figure 1.

From the transformation (10) we may deduce two The same technique may be used to recursively
others, which are applicable whenever a summand transform a monomial of any order m to a sum or
of an objective is a product XY of expressions X and third-order monomials, plus potentials for the new
Y. Such products are common and can be expensive; linear interneurons. The resulting number of new
for example if X and Y are each sums of N variables, monomias and interneurons is <O(rn(log rn)2) if the
then expanding their product out into monomial in- reduction is done in a balanced way and if expres-
teractions gives N2 connections. But only O(N) con- sions like X(a - r) are not expanded out to Xa -
nections are needed if one uses the transformation Xr during the reduction.

Another order-reduction transformation, supe-
XY = !(X + Y)2 - JXZ - nY rior in some circumstances, will be developed in sec-

- (X +")a - Xr - YoW tion 2.4.
- j: + Ar: + .Iw'

X(a - r) + Y(a - co) 2.2. Reducing F(X)

- a + + . (12) Often an objective function includes a fairly general

Here a is a reversed linear neuron, and r and co are nonlinear function F of an entire expression X. This
ordinary linear neurons. If all three linear interneu-
tons are infinitely fast, which is easy to stimulate
since they are not directly connected, then the trans-
formation does not change the dynamics of the rest
of the variables in the network. Otherwise, the dy- X
namics and the basins of attraction change, but the Y
network fixed points remain the same.

This transformation may be simplified,' to

XY = 4[(X + y)- - (X - Y):2 1.
-- -- (X + Y )a - J(X - Y )r - l a +1 X . w"

.z=y * Lw

= X(7 - r) + .Y(G + r) - 41 + 4-. (13) Y X -Zz

Compared to eqn (12), this transformation results in
the same number of monomial interactions and one FIGURE 1. Order reduction. Arbitrary fourth- to third-order
less neuron, which may be useful on occasion. reduction, using linear interneurons. Open circles: original

Reversed neurons allow one to transform a high- neurons. Open squares: ordinary linear interneurons. Closed
order polynomial objective, monomial by monomia, squares: reversed linear interneurons. Dots: connections,

with strengths as indicated. Equilibrium values of the inter-
neurons are indicated. After the transformation, neuron w
receives input xyz + zaw from the left and a compensating

'As pointed out to us by P. Anandan. input of -z 1 w from the right.



may be much more difficult and costly to implement exponential transfer function would lead to F(X) =

directly than either a low-order polynomial or a sin- exp X. It might be possible to characterize a oartic-
gle-neuron potential function Q,(u,), because the ular technology by a list of the basic forms of objec-
F(XY) nonlinearity involves an interaction of many tives it makes available, with their respective costs
variables. But for some functions F, such an algebraic and restrictions, and to compile general networks
form is still neurally implementable by means of into the desired forms by using a catalog of algebraic
transformations: transformations.

Equation (16) generally may be used to transform
f f(u) du -- Xc - f'(u) du (f invertable). a term F(X) in an objective by transferring the non-

linearity due to F from F(X) to the single-neuron
(16) potential 0(a) = fa f- (u) du. By transferring the

Note that X no longer appears inside the function nonlinearity from an interaction term (i.e., a sum-

F = f f. The validity of this transformation (eqn mand of the objective which involves several dynam-
(16)) may be proven by noting that the optimal value ical variables) to a single-neuron potential term, one

of c is f(X), and then either integrating by parts the cannot only decrease the cost of implementing a net-

expression work which uses gradient methods for optimiza-
tion, but one can transform unimplementable objec-

f(X f-'(u) du = of'(v) du. tives into implementable ones. For example, one
f fXmight regard the class of multivariable polynomials

or else differentiating both pre- and post-transfor- as the "implementable" interactions in a certain tech-
mation objectives with respect to X. nology (Rumelhart, Hinton & McClelland, 1986a).

In this way one can treat functions exp X, (In this case the word "interaction" is usually re-
iXlogiX, log1X, and JXVP of arbitrary algebraic served for a multivariable monomial, out of which
expressions X: polynomials are built by addition of objectives.)

Then one might use eqn (16) to reduce other, far
ex -  (X + i)a - a log a, more general interaction objectives to the imple-

JX~log!X - JXJ(a + 1) - e', mentable form.

logIXJ - Xc - iogIa, (17) Of course the required potential q(c) may itself

I be "unimplementable", but approximati-g its gra-

I+ . UP dient with a small circuit is likely to be far more
(1 +ptractable than approximating VF(X) because 0, un-
(p L -. 0). like F, is a function of just one dynamic variable.

An approximation of b '(a) might be formulated as
Thus, neural nets may be constructed from some

highly nonpolynomial objectives. -() $(a) = c

The interneurons may still be reversed, but are
no longer linear, in this kind of transformation. The

where each 0(a) is regarded as an implementablepotential 0(c') per-mits a possible efficiency tech-

nique. The dynamics of eqn (4) is expected to be self-interaction and c. are adjustable coefficients.

more efficient than eqn (3), since it may be viewed
as a quasi-Newton method which takes into account
the potential but not the interaction part of a neural 2.3. Reducing F(X): Examples
net objective (as shown by J. Utans, 1989). A related

update scheme for the a reversed interneuron is We exhibit two examples of the objective function
transformation of eqn (16), with dynamics (18). First

a = f(s), s r, aEiaa = r, (X - s), consider the toy problem of optimizing

u, = g, (u,), t , -aE(v. c)/au,, E(x) = ( e).

which is an alternative to direct steepest-ascent-de- One of the exponentials may be taken to be the
scent. This dynamics has the distinct advantage of a potential of a neuron whose transfer function is ex-
simple interpretation in terms of analog electrical ponential; such a transfer function is implementable
circuits (Hopfield, 1984). For example, F(X) = in many technologies and, like the logarithmic trans-
X(log X - 1) requires a special neuron whose trans- fer function, might be part of a standard component
fer function is logarithmic. This can be provided, library for analog neural nets. Adding the other ex-
approximately and within a mildly restricted domain ponential would however require a special modifi-
of the input values, in analog VLSI (Sivilotti, Ma- cation to this transfer function, and their sum might
howald & Mead, 1987). Similarly F(X) = log X not be in the standard component library. So let us
would require a transfer function f(s) = I/s, and an move the second exponential nonlinearity to another
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neuron whose transfer function is logarithmic: objective is

E(xa) = e- xa - alog a + a, E[v) = Y Au, + F D,,v,-

whence the dynamics (18) become
+ L /g. (large g.),

s=o ",= r(1 - (19) where dF(x)idx = f(n) - max(O, -x) penalizes
s = log u, t r,(a - ui). violations of the inequality constraints and proved to

The evolution of this two-neuron network is shown be electronically implementable. Transforming ac-
in Figure 2, along with a contour map of the saddle- cording to (16) we get
shaped objective E_ Note that for quick descent,
r, = r, is preferred. Despite the saddle point, and El]= A,u+ a,j D,,,8,)
despite the potential numerical sensitivity of expo-
nential and logarithmic transfer functions, the net- f (s) ds +
work functions well.

A second example is the linear programming net- and equation of motion
work of (Tank & Hopfield, 1986) which can also
be interpreted as an application of transformation a,.= AS, -

(16) with r, - - in the dynamics of eqn (18). The f (20)
linear programming problem is to minimize A • v(/
subject to a set of constraints Di v > B,. Their V, = gou. ,,= r. -u, -A,- D,,

3-

2-

-0.4 -0.2 0.4 0.6 0.8

FIGURE 2. Exponential and logarithmic neurons. The minimum of el + e-1 occurs at the saddle point of e' - x- a loga + a, whose contours are plotted here. Also various two-neuron trajectories to the saddle point are shown, in which x or amoves more slowly than the fastest Implementable time scale, assumed to be r = 1. (a) r, = 1, r. = .1, (b) r, = 1, r, = .3,(c) r, = 1, r, = 1, (d) r, = .3, r, = 1, (e) r, = .1, r, = 1. Dots occur every 10 time constants, so (c) gives quickest convergence.



This network approaches a saddle point rather than (which implies (22)) and
a minimum, but the r, version,

- ( Y f(u) du- - XYa - Y f du f-'(u) (24)

Dv -2assuming f = F' is invertable and f = (F')-' is

is exactly the network dynamics of eqn (17) of differentiable.
(Tank & Hopfield, 1986). Monomial order reduction can sometimes be ac-

complished more cheaply using x log y interactions
than third-order ones. If vi are all restricted to be

2.4. Interacting Expressions: Reducing G(X, Y) positive, then

Until now we have attempted to reduce all interac-
tions to the forms xy and xyz, but those may not be fl u, = exp log u,
the only cost-effective few-variable interactions al-
lowed by a given physical technology. If others area lo ,+1 a00a (5
allowed, then there are one-step transformations for a \ log u + 1 - a log a (25)
a class of functions of two arbitrary expressions G(X, = a- log u, + a(1 - log a).
Y). In this way the set of objectives with known low-
cost neural implementations can be expanded to in- This objective has 0(m) interactions of the new type.
cdude common algebraic forms such as XIY andXF(Y). The fixpoint value of a is Il vi at which point theXF Y .steepest-descent input to u, Is -a/ i = - , .From eqn (16) we may derive a generalization to stes-dcntipto ,s-iv= l.VIA product of expressions could be further reduced
functions of two expressions, G(X, Y): using eqn (23) and xe" interactions:

du L d g u. u) (u) (note function inverse] .IX--- -(a. - XI. +iwe')

Xo -f du du g(u, v) [by (16)] a (1 - log a). (26)

It has been pointed out to us (Simic, 1989) that
= Xa - du f du g(u, v) the transformations for F(X) and G(X. Y), and

P. 1- hence all the transformations discussed so far, can
Xa - Yr + f du du g(u, u) (U) be interpreted as Legendre transformations (Cour-

ant & Hilbert, 1962).

[by (16)].

Thus,

2.5. Min and Max

f du [ du g(u, u) (u) - Xa - Yr The minimum or maximum of a set of expressions
{X.J can be implemented using a winner-take-all net-

+ f' dv f du g(u, u) (u). (21) work in which each expression is represented by a
f I neuron a. which competes with the others and is

Of course the inverse functions must exist for this constrained to lie between 0 and 1. Indeed, 1. X,a.
transformation to be valid, and this restricts G. attains the value min. X. when the correct repre-

Taking sentative wins, and also provides inhibition to the
representatives in proportion to the values of the

g(u, u) = 1/2V" uu expressions they represent, so that the correct rep-
we can derive the transformation - YIX- Xc - resentative will win. The potential 0(a) that occurs

Yr - c/r. Rescaling Y and a by - 1, then switching in the WTA network must have only one minimum,

X for Y and a for r, this is equivalent to so that there is no hysteresis in the circuit, and must
closely approximate a square well (i.e., must have

X/Y-- Xa - Yr - r/,7 (22) high gain). Under these circumstance, we can trans-

which is linear in r but effectively nonlinear due to form
the optimization of a. ( .

From eqn (21), Appendix A derives two trans- E = m .in X, X.a' + C a . -

formations for the special form YF(X'):

_ -- + " (a.) (27)YF(X ----- -Xc + Yr + a'F"'() (23) 2-
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(where C and the gain of O are sufficiently large) 2.6. Matrices, Graphs, and Pointers
and at any fixpoint of C the derivatives of E with
resoect to all other dynamical variables will be pre- One can apply order reduction to objectives con-

taining polynomials of matrices. For dense N x N
ere matrices, a typical term like tr rl- A() contains NL

Likewise scalar monomial interactions, but this can be reduced

max X. .' Ito t(N L(log L)'). (Here tr A - trace of A =- 1,
max X. ---- - C -A,,.) To show this we need only establish the matrix

analog of transformation (12), which upon iteration
S 0(a.). (28) can reduce an Lth order matrix monomial to C (L(log

L)') third-order matrix monomials like ABC. Each

An alternate transformation for max proceeds of these involves N1 scalar monomial interactions.
through the identity Using eqn (12) (one could also use (13)), one can

reduce tr XY, where X and Y are now matrix-valued

max X, = lim X, (X. > 0). (29) expressions. This form has exactly the same gener-
'- 7 ality as tr XY r (where yT - transpose of Y).

These transformations have application in the de- tr XY r = XiY,,
sign of some standard "content addressabie memo-
ries" for which the ideal objective, which must be - (X,,(a,,- ,) + Y,,(a, - -,,)
translated to a form polynomial in its interactions,
may be taken as - . + C)) (30)

-tr X(a" - r r  1(a -wo)r
EcAM(v) = - max vY- v -h .. + r +tr r r + tr cuc.

with -1 :s u, -5 1. Using the transformation (28) This transformation preserves the sparseness of X

yields a CAM with one "2randmother neuron" (rep- and Y in the following sense: if Xii = Y, = 0 at a

resentative neuron) per memory, and a WTA net fixed point, then aii = = = 0 and the contri-

among them (closely related to a network described bution of these neurons to the gradient of the ob-
in Moody (1989)): jective is also zero.A major problem in neural network research (c.f.

,(V, ) = Feldman. 1982) is to reduce the cost of networks
which manipulate graphs. Usually (Hopfield & Tank,

-C " 1 1985. 1986; Mjolsness. Gindi & Anandan. 1989a)
objectives for such problems involve dense matrices

- C.I2 + , + (u,). of neurons representing all the possible links in a
graph. But the graphs that arise in computer science

Another efficient CAM design (Gindi, Gmitro & and in computer programming usually have a rela-

Parthasarathy, 1987; Moody, 1989) may be derived tively small number of links per node, and are there-

the max expres- fore representable by sparse matrices. (If a sparse
by applying transformation (29) to matrix's entries are all zero or one, it is equivalentsion:

to a set of "pointers" in many current computer lan-
,, guages. Pointers are used ubiquitously, wherever

max IV .i IV V, (p large), some fluidity in data representation is required.)
-\V.. / Since we have just shown how to reduce a wide class

of matrix objective functions to summands of the
which we replace by a monotonic function thereof, form tr ABC while retaining sparseness, it becomes
(lip) 1, Iv • v'iP, possibly adjusting e and 0 to corn- important to reduce this form further by exploiting
pensare. (At this point one could take p = 2 to get the sparseness of the matrices involved:
a quadratic expression, and regenerate the content
addressable memory of Hopfield, 1984.) Then using trABC-*?
(17d) we find an implementable neural net objective where A, B, and C are sparse-matrix-valued dynam-
for large p: ical variables. We do not yet know how to do this

correctly.
LAW(v, ,) - V u.. - , h.... One approach to this problem is through the use

-' of codes, like the binary code. which can concisely
(P- ) a,,,,,_, + , 4,(u.). name the pair of nodes connected by each nonzero

P matrix element. Zero matrix elements are not ex-



plicitly encoded and this is the advantage of the the path:
method. A disadvantage of such codes, for objective
functions, is that the configuration space is altered d' V[*, J 6(0) v1
in such a way that new local minima may be intro- ,(t) 6(0 (i)
duced, though the old ones will be preserved. A code 3 L() -0. di' [I, v] (32)
which allows order reduction to proceed most ad-
vantageously is used in the sorting networks of sec- Since
tion 3.4.

Another approach is used by Fox and Furmansky 6L K 8E (33)

(1988). Their load-balancing network involves binary co, au, av,'
encoding, but the network evolution is divided into transformation (31) preserves fixpoints if aK/av )
a number of phases in which different classes of neu- 0 ,: i, = 0.
rons are allowed to vary while most neurons are held For example, with a suitable K one may recover
constant. The connections are different from one and improve upon steepest-ascent-descent dynamics:
phase to the next, and do not recur, so that the
network is not directly implemented in terms of a /
circuit but rather requires "virtual" neurons and con- E[v] - L[*vr, "1 = f dt s, 4,(&Jr)
nections. A virtual neural network can be provided 1

by suitable software on general-purpose computers,
or perhaps by further objective function transfor- + , (aE/a,)o), (34)
mations leading to a-real (and efficient) neural cir- 0 = 6L/60,(t) = s,0'._(&Jr)/r + dEldu,, i.e.
cuit; the latter alternative has not be achieved.

,= rg=,(-sr dEldo,),

2.7. Control of Neural Dynamics where the transfer function - 1 :- gt(x) s 1 reflects

So far we have exclusively considered steepest-as- a velocity constraint - r _5 :- r, and as usual g =
cent-descent dynamics such as eqns (3), (4), or (18), (') -'. The constants s, = l1si = -1 are used to
which allow little control over the temporal behavior determine whether a neuron attempts to minimize
of a network. Often one must design a network with or maximize E and L. If all s = 1 then dEldt :- 0
nontrivial temporal behaviors such as running longer and eqn (34) is a descent dynamics.
in exchange for less circuitry, or focussing attention Another transformation (proposed and subjected
on one part of a problem at a time. We discuss two to preliminary experiments in Mjolsness, 1987) can
algebraic transformations which can be used to in- be used to construct a new objective for the control
troduce detailed control of the dynamics with which parameters, q, through their effect on the trajectory
an objective is extremized. U(t):

One transformation, developed by one of the
authors in collaboration with W. Miranker (MjolsI -(. EI  + tq
ness & Miranker, 1990), replaces an objective E with Eav -, -[q
an associated Lagrangian functional to be extremized
in a novel way: E

S--+ E_,,[q], if all s, = 1. (35)

rt 1., lq dE\EvJ - Lfitq] = jidt Kfv, vqj + " In (Mioisness, 1987) the si = 1 version of transfor-

6L/6),(t) = 0. (31) mation (35) (but not (34)) was used to introduce a
computational "attention mechanism" for neural

Here q is a set of control parameters, and K is a nets as follows. Suppose we can only afford to sim-
cost-of-movement term independent of the problem ulate R out of N > R neurons at a time in a large
and of E. The integrand 2t = K + dEldr is called net. The R neurons can be chosen dynamically via
the Lagrangian density. Ordinarily in physics, La- control parameters qi = r E [0, 1] in eqn (34), with
grangian dynamics have a conserved total energy r, - 0 for all but R active neurons. For high-gain g.,
which prohibits convergence to fixed points. Here we have g±1(x) - sgn(x) and
the main difference is the unusual functional deriv-
ative with respect to & rather than v. This is a dE dE
"greedy" functional derivative, in which the trajec- d = -
tory is optimized from beginning to end by repeat-

edly choosing an extremal value of v) without E= g(.rq.-- LE)
considering its effect on any subsequent portion of dv, d\u, d,



660

(Whether the gain is high or not, g=1 is an odd func- neurons to be active (r, 1). When simulating a
tion so dEldr :s 0 and any dynamics for r yields a sparsely connected neural net on other underlving
descent algorithm for E.) The objective for r is hardware, this algorithm can be implemented verycheaply since most u gradients are unchanged be-

dE, A tween phases of r relaxation, and therefore the new
R - sorted order is just a minor refinement of the pre-

- R "vious one. The result is necessarily a descent algo-
rithm for E[v], with only R neurons active at any

which describes an R-winner version of a WTA net- time.
work that determines which R neurons should be
active and which N - R should be frozen.

An especially simple and cheap dynamical system 2.8. List of Transformations
for r is to keep all r, constant most of the time. but
every so often to interrupt the simulation of 6LI Let X and Y be any algebraic expressions, containing
65 = 0 and completely relax Ar]. This amounts to any number of variables. We list the following fix-
re-sorting the neurons vi according to their gradient point-preserving transformations of objectives, or
magnitudes IaE/aui, and selecting only the first R summands thereof:

1.1 jX2 --- * Xc -
1.21.2 XY - X(a r + Y(a - co) + ¢ 4 izrl + lcol

1.3 XY - !X(C -) + AY(a + r) 41a, + 1r,

2.1 fXf(u) du - Xa - f f -"(u) du (f an invertable function)

2.2 0 - (X + 1)a - a log a
2.3 XIlogJX - -XI( + 1) - e-
2.4 1og9XI - - ogio l1 1
2.5 JX O - X - 1 jai/r ' .0 .. (p -1,0).P If + 1/r

fX du [f du g(u, v) (u) Xa - Yr + f dull du g(u, v) M
3.1Ji 1) gu

(If function inverses exist.)
3.2 YF(X) - -Xa + Yr + F-'(r) (if ((F')-)' exists.)

3.3 Y f (u) du - XYc - Y f, du f -'(u) (If (f')' exists.)

3.4 XIY -*Xa - Yr + -,/a

ain. X . - -* X.o', + C a. - I ,;. - + ( )

4.1 
2

(Large C, and high-gain hysteresis-free
barrier function 0 which confines a. to (0, 1).)

4.2 max, X.* >x . - C ( a. + ." - (co.)

(Same conditions.)

4.3 1- IX.J -.. , , (ar. - IX.Icv. + w,,e'-) + o(1 - log a).

5.1 tr XY- tr X( - r) 4 tr Y(o - w)r - tr cra + Jtr Tr' + tr coo
r

(All matrices, possibly sparse.)

6.1 Elvl - L[VlqJ = JdtI\KJViv, q] + LE) R6LV,(t) =0

(aKlav = 0 * v = 0)

6.2 ElY] - [q] = (aE/au,)s, + ,[q] (s, = 1)



The variables a, :, w, and ;. are assumed not to occur which doesn't square A. If 4 is constant then there
elsewhere in the original objective. Note that each is no order reduction, since both E,.,, and ECor are
transformation may have restrictions on its appiica- second order, but there are fewer connections unless
bility, in addition to the particular form it matches. A is also dense.

We will report experiments only with transfor- An alternative objective. not using reversed neu-
mations 1.1, 1.2, 2.2, and 5.1 on this list. Experi- rons, is also available for convolutions and coordi-
ments with transformations 6.1 and 6.2 will be nate system transformations. The objective
reported in a later paper (Mjoisness & NMiranker,
1990). The rest are still theoretical. - A,(x: - b, - x) (40)

These transformations may be iterated, at the ex-
pense of creating interactions between the added is minimal with respect to x' when
variables. They can be used to reduce the nonline-
arity of the interactions in a neural network, trans- x, = ' A,ix, E ,, .. (4.
ferring such nonlinearity to single-neuron potentials
or distributing it among several simpler interactions. This type of dynamic normalization may be desira-

ble, or if A is constant and already normalized then
it does not hurt. Equation (40) also preserves any

3. DESIGN EXAMPLES sparseness of A, and does not square the matrix.

3.1. Convolutions and Coordinate Transformations

Discrete convolutions 3.2. Random Dot Matching

0, = K,,I, Here the problem begins with two inputs: a planar
pattern of n dos specified by their independent ran-

(where index subtraction is defined appropriately) dom positions x, within a unit square, and a pattern
and linear coordinate transformations of m << n dots specified by their positions y. The

y. are generated by randomly selecting m of the x
x= x, + b, dots, independently perturbing their positions by

random displacements of 1/10 the size of the square,
can both be expressed as sums of squared penalty and globally shifting all m dots by a translation vector
terms in an objective: A. The problem is to reconstruct A from {x } and {y,},

/ (by consistently matching the dots. Since the match
E_1,. = 0, - , K,I, (37) is parameterized by a few geometric parameters, this

- 'is really an image "registration" problem.
or A simple objective for this task is

cE . = , - A x b, (38) E,[A] =- exp(-Ix, - y,- A/2K2), (42)

which c > 0. (Equation (38) subsumes eqn (37).) where the search width K is to be set initially to the

Alternatively the convolution or coordinate change width of the square (1.0) and gradually decreased
could be turned into a hard constraint by using La- down to the size of the geometric noise (0.1) as the
grange multiplier neurons, but those procedures still optimization proceeds, in order to find better local

work best when a penalty term exactly like eqn (37) minima. This objective, and the gradual change in
or eqn (38) is added to the objective (Platt & Barr, K, is quite similar to that of the elastic net approach

1988; Luenberger, 1984). As they stand, these ob- to the traveling salesman problem (Durbin & Wil-
jectives expand into very expensive networks due to Ishaw, 1987). Now Eo,, may be transformed to re-

the spurious squaring of the matrix. That is because move the exponential from the interactions:
convolution kernels, which are usually constant but I
sparse, have their fanout squared; and coordinate EUO,[, ] = . Ix, - y. -A12

transformations, which are usually dense but vari- + % (log , - 1) (43)
able, have an excessive number of new (high-order) ,
interactions created when A is squared. with dynamics

Of course, eqn (38) is of the type which we know
how to transform using reversed linear neurons. We . = (11K) - , -

obtain the modified objective a

r , .- , = b-) w, - (4) -)
= [ -X 4,x,- a- X~J(39) = -(1/2K:) Ix, 1. F
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We experiment with n = 30 and m = 6. In Figure 3.3 Graph Matching and Quadratic Match
3 we have shown a contour map of E,,, which is to Consider the followin objective for inexact graph-
be minimized, along with the projection of a K = o 1 = o
.2 trajectory onto the . plane. The initial condition matching (Hopfield & Tank, 1986; c.f. von der Mals-
came from partially relaxing the net at K = .5 first, burg & Bienenstock, 1986):
where the objective is unimodal. The K .2 prob-
lem is somewhat more difficult than incrementally E1,.9,, = -cJ 7 G.dgM.'M,, + C' M.,
updating a solution in response to a small change in
K, but the network found the right answer. Forn = ,r-i' 3z'M1- 4- ' .,CS M,,(1 M.')
30 and m = 6, some random patterns of dots would -
require several large-K minima to be tracked to small
K for correct operation, but this defect of the original + dx g-'(x),
objective (42) did not arise for the case shown here ' (45)
(or 13 out of 15 other cases we examined) and is not where G and g are connection matrices (each entry
relevant to the validity of the transformation. is zero or one) for two graphs, and M, is one when

The main numerical drawback of the 180 expo- node a o for to graphs, and zero onewhe.
nential-taking neurons in this net is that small time node , of G maps to node of g, and zero otherwise.

The problem may be generalized slightly to quad-steps may be required. In using the Runge-Kutta
r7atic matching by replacing the GgMM term with

method for solving eqn (44) the stepsize had to be
At == .0003 near the starting point, even though even- G (46)

tually it could be increased to .003.

0.4'

-0. 4 -0.2 0.2 0.4

FIGURE 3. Random dot matching network. Trajectory of net evolution equations (44) projected to the Z plane, superposed
on a contour plot of Em,. K was .2. The starting point was obtained by a partial relaxation of the same net for K = .5, for
which the objective has a single local minimum, starting from 1 = (1, 1) and = . (Further relaxation at K = .5 would result
in an initial 1 even closer to the K = .2 minimum). The correct answer is . =



and altering the other constraints to reflect the fact and for the original network:

that A = B. What we have to say aoout graph match- S = 1 , = 1.0 = 1.0

ing will appiy equally well to this generalization. g"(M) 0 gC) = 1.0 go(AVTA) = 10.0 .%t = .004

The GgMM term is superficially the expensive one sweeps = 1 000
since it involves four sums. If each graph is constant. Here go(M) is the gain g'(0) of the transfer ric-
there are c)(N) nodes in each graph, and both graphs Cer g(M) is h ain g0) t tansaer fu-

have fanout f, then the number of monomial syn- ting ar ne.rns theg tr
apse isr-) We an edue ths t c N'f). lso the li near 'neurons that were introduced throughapses is e0(NYfz). We can reduce this to te(N~f). Also

if one of G or g is variable, with N nodes in the transforming E, namely c', :, and co. Also gc(WTA)
variable graph and m in the constant graph, as in the is the gain for the infinitely fast linear neurons which

"Frameville" networks o (Mjolsness et al., 1989a), were used in both reduced and control experiments

and both graphs are represented densely, then the to implement the WTA constraints; this parameter

n(N-mf) to effectively multiplies ci. sweeps is the number of it-number at synapses is reduced tram c(m)to erations at the tarward Euler method used in sim-

c(N 2m -+ Nmf). The reduction uses linear inter- eratin the otiuou upe equtinsEc
neurons, both reversed and normal: ul ating the continuous update equations. Each

iteration advanced the time coordinate by Ar.

E, -c, 7 Gdg,,V=J , There is only a little parameter-tuning involved
here, concentrated on r,, At, and sweeps. The prod-

CF' uct At X max(r, r,= 1) should be held fixed to

_, g,,M, maintain constant resolution in the discrete simula-
tion o continuous update equations. But holding At

G Md~) - (Z g,), and the other parameters fixed at the quoted values,
. Vthe rate parameter r, can be varied from unity to 100

(47) without altering the network convergence time, mea-
= -, , g,,M,, sured in sweeps, by more than 30% or so: network

performance remains the same in that the same 5
- - ,g,,M,,W,, out of 6 graphs are correctly matched. This would

susgest. and other exoeriments confirm, that for low

- ( -, - - t;, - w;, r there is some room tor increasingXt and decreasing

sweeps (r = 10, At = .016, and sweeps = 300.

E, and are illustrated in Figure 4. respectively); this saves time whether time is mea-

The reduced graph-matching network works in sured in simulation sweeps or in circuit time con-

simulation, for five out of six small (N = 10 nodes) stants.

hand-designed graphs with low fanout (from 1.8 to
2.5). The sixth case is not solved by the original, 3.4 Sorting
untransformed network either. The parameters we
used were Sorting may be described in a manner very similar

to graph matching. One requires a permutation ma-

N = 10 c, = 1.0 c, = 1.0 c, = 0.5 trix M which sorts the inputs into increasing order,

gA(M) = 20 go(a) = 1.0 g(WTA) = 10.0 r, = 1 so all terms in the objective remain the same except
t= .004 sweeps = 1 000 for GgMM. The objective becomes

E = -c, . M,x. y + c: v,, -M
'I /

M, I I

U C M g'(x).

(48)

FIGURE 4. Graph matching networks. E, is a sum over the
indices a, fi, 1, and j, which are connected by neurons (line Here x: are a set of input numbers to be sorted, and

segments) in the shape of a "rectangle". This objective can are a constant set of numbers in increasing order

be transformed into & which is a sum of triangles, while (e.g., Yi= M) will become that permutation matrix
preseriing fixpoints. The triangles are obtained from the rec- wnic' maximizes the inner product of x and y ii.e.,
tangle by introducing linear interneurons along a diagonal,

as shown. Only three indices are summed over, resulting in maps the largest x, to the largest y, the next largest

a less costly network. X, tO the next largest y, and so on).
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After using the winner-take-all reduction on the all N links in the permutation matrix, indexed by k,
row and column constraints of M, this network has and encoding their starting and ending locations as
e(N2) connections and neurons. One cannot do bet- i = (ii, i,) and j = (j, i2). Then
ter without reducing the number of match neurons
X. But M is sparse at any acceptable answer, so it
may be possible to keep it sparse throughout the time kA ,,., ,

the network is running by using a different encoding
of the matrix. For example, one might encode indices subject to obvious constraints on the A's.
i, j, or both in a binary representation as would be Sbje to obviuon tri on e pSince any permutation matrix can be expressed
done in an ordinary computer program for sorting, using eqn (49), any (approximately quadratic) local
in which one commonly uses the binary represen- mini of (4 ) n (48)), fo ric M ossf
tation of pointers to represent a sparse graph Mii E minimum of E,,(M) (eqn (48)), for which M is suf-

t oficiently close to being a permutation matrix, should
{0, 1}; alternatively if M is always a permutation one be a local minimum of E (A 2), A 2 ,- A(2); but
can represent it by a one-dimensional array of binary there may be local minima with respect to A and
addresses j[i]. The resulting objectives generally still whe wol be usalein th rer M space
have \(N2) connections (monomial interactions), but w
a well-chosen matrix encoding, supplemented by Thus, making the substitution (49) into eqn (48) may

suitable reversed neurons, can drastically reduce the expand the set of fixed points, or alter it entirely if
number of connections. the original objective is not yet tuned to produce

In Appendix B it is shown that any permutation permutation matrices. By contrast, the objective
2  function transformations used heretofore have ex-matrix A of size L2 x Lcan be represented in the actly preserved the set of fixed points. We will try it

following form:
out anyway, in order to get a low-cost net, and we

M,,....= , a, r ' (49) will observe whether and how well it sorts.
kI&: The problem now is to reduce the number of mon-

• 'here i E {, .... N = L2}, i, E {1, . .V. = L}, omial interactions of O(N '2). This is easy for quad-
and i = il L + i, (i,, i,), and where two constraints ratic penalty terms corresponding to the constraints
apply to each nonsquare matrix: (50), which consist of 8N winner-take-all constraintse i each involving Nt"2 variables. The remaining inter-

, " action -c xy can be reduced in two stages: sub-
stiture M = A,4r with no reduction in connection

A=I.,,,I = costs; then substitute the t(N 3") forms for A and

(50) Thus we may replace E, = -ct 7,i Miix ,y i with

The matrix form (49) contains only 4N' 2 variables,
and is our proposed encoding of M. E,(A, A) -c , Z A,kA,x, y,

As explained in Appendix C, eqn (49) is a coarse
version of another expression for M which contains
zl(N log N) variables. That expression codes index 2 -Y,
pairs (i, j) using the "Butterfly" connection topology
that arises in the fast Fourier transform (FFT) and - ( A,kx,)- X (7 Aj]
in many other parallel algorithms. The advantage of k (
the Butterfly is that it allows one to make a gradual b, (52)
transition from one space (e.g., index i) to another -(A, A . . b) -c, (a, - b,) A,kx,
(index j). There has been little success in transform-
ing objectives based on the much less gradual binary , , (a. - b,) - ayi
or base-b encoding of i and Mjf. 2 An example similar /

to eqn (49) is the base vS code obtained by listing+ . + bi +

which may be inter-pretLed as four interacting sorting
'A partial exception is the load-balancing network o( Fox and problems, with linear interneurons fu interpolating

Furmansky (1988). in which the crucial "histogram- may be p-be x with rverneurons b an
understood as a set of reversed linear interneurons which simolifv between x and y and with reversed neurons b and b
their load-balancing objective. But the result is a virtual neural cancelling echos as in eqn (15). So far there is no
net, not a statically connected circuit, reduction in number of neurons or connections.
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If we substitute the special forms for A and A, we work:
find N = 16 c= 0.6 c2 = 6.0 c= 0

go(A) = 20 r= 1 r=3 At =.01
= -c1 |Z 7 (xAA1("Xa - bk) sweeps = 20 000

L, k N =25 c= .44 c, =6.0 c3 =0

+7-7 X AJ~,A('"A(a - b) go(A) =20 rA = ,=3 At =.01
ktll ,sweeps = 20 000

and for the O(N2 ) network:
2 N = 16 c, = 0.6 c, =6.0 c3 = 0

-C fZ ( .(. go(A) =20 At = .01 sweeps= 5 000
= _+, T, ,', ,  (a, -+Ak

' Ik N = 25 c, = .44 c2 = 6.0 c3 = 0

(,'.~) \b /21 go(A) = 20 At = .01 sweeps = 5 000

, ,I \ -..
2 

, bk.As in the graph-matching example, most of the
2 parameter-tuning was concentrated on r,, At, and

+ , A( ,y, + , A,2.,,, (a.-b,) sweeps. Here, r, is the rate parameter appearing in
,a,, }-the update equation (7), and it applies to neurons a,

\Z / b, b, a, a, r, i, co, Co. Likewise r~ applies to the update
_ 7 1ky, .1 . - " .*2(ak bk) equations for A and A. As in eqn (48), cl multiplies

the strength of the permuted inner product of x and

- az + b* + (53) yin the objective. Also c2 is the strength of the syntax

and finally
Mistakes in. 16 Elemm Sot

= 1 - , A ,1',.x.(a,,A r,,,

+ 7, A(, 2*(ak - bk)(aik, - O,;,,)

+ A( + 12- a). A,
itn*kAn~ -17*1 .**

+x A2 A Y (a , - f 2 AII,) 1
"12

- ~ i~ -------------- I
)k 2 k, 12ki 0 2 4 6

1 Size of Mistakea

- ~+ ~ ~+ fl EL~k b" 5Le~~5
k A kJamin2 f~rtSr

(54)

which has 0(N 312) neurons and connections.
In Appendix C we show how to extend this result

to a series of successively cheaper approximations of
the original sorting network, down to O(N log N)
neurons and connections.

3.5. Sorting: Experiments ............._.__--_._______-_,__.__

0 2 4 6 6 W 12 14

The 0(N " ) sorting network only sorts in an ap- size of MMAM

proximate way. The reversed neurons work correctly FIGURE 5. Histogram of placement errors. Sorting network
at finite r, which is nontrivial since they are con- with buterfly encoding, O(N") connections. (a) Size N = 16.
nected to each other, but the encoding scheme is Average and standard deviation (upper or lower half of an error
prone to trapping by local minima. We used the fol- bar) for 62 runs. (b) Size N = 25. Average and standard deviation

lowing parameter values for the O(N") sorting net- for 39 rms.
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constraints, and C3 is the strength of a term penalizing neural network, but alter the number and nature of
intermediate neuron values. ga(A) is the gain g'(0) interactions requiring physical connections between
of the transfer function g(A) for A and A, which different neurons. Some of these transformations re-
obeyed steepest-descent dynamics. The constant y quire the network to find a saddle point rather than
values are y, =  -(N - 1)/2, y, = -(N - 3)/2, a minimum of the objective, but that can be ar-
• . y.j,_ = (N - 3)/2, y, = (N - 1)/2. sweeps is ranged. Others provide control over the dynamics
the number of iterations of the forward Euer method by which an objective is extremized. A set of such
used in simulating the continuous update equations. transformations was derived, together with their con-

For input size N = 16 we find an average place- ditions of validity.
ment error of 1.4 out of 16 possible output places. Several design examples were given, along with
Eight would be random. For N = 25, which is the experimental results to show convergence with rea-
first size (with integrl VN) for which there are fewer sonable parameter values. Reduced-cost designs
neurons in the asymptotically smaller network, the were presented for convolution and linear coordinate
average placement error is 1.7 out of 25 places. The transformation. A reduced network for sorting con-
errors can be characterized by a histogram showing verged to approximately correct answers despite the
the frequency with which placement errors of dif- use of an illegitimate transformation which intro-
ferent sizes occur. (The size of a placement error is duced spurious fixpoints. This design also involved
the difference, in the permuted output vector, be- legitimate but repeated, interacting product-reduc-
tween the desired and actual positions of an ele- tion transformations. Transformed networks for
ment.) Histograms for N = 16 and N = 25 are quadratic matching and for registration of random
presented in Figure 5 and they show that small mis- dot patterns were simulated without difficulty.
takes are far more likely than large ones, and that
the frequency falls off as roughly the -2.1 (respec-
tively, -2.0) power of the size of the placement REFERENCES
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and economic behavior. Princeton, NJ: Princeton University with c
Press. with constraints

APPENDIX A. REDUCING YF(X) t, = 1 and B4) (61)
P1 qi1

The problem is to use eqn (21) to reduce expressions of the
form YF(X). We will derive two versions: the first, from stopping as illustrated by the butterfly (-) highlighted in Figure 6. Likewise
after the first step in the derivation of (21); the second, from the th column of switches has the form
carrying the transformation all the way through.

Now B , t
with...... 0 1] ~ .,,=1=~ ~. 4 ... (2

Yf 'duf(u) = jdu[ du g(u. u) (u) with Z B n 4 = I
:~~~A of.. I .. 1 (6-2).1...

Yf(X) = fr du g(u. v) (X) for I -- 1 _- n. With constraints, each of the log N layers contains
)5 NI2 bits, which is one reason that A is also needed to specify an

f du g(X. ,) = f-(XIY) (55) entire permutation matrix.

g(u. u) = (didu)f -'(uIv) The entire permutation matrix is obtained by finding all the
possible paths through the network from i toj, of which there is

= -(ui t)(f')(uIV). only one since each stage irrevocably decides one bit of j. This is
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from eqn (63),

A-fB.,*t.. 1.4 , ¢

= (iftB~ ~, i ~11(. ftk. 41 )

'12 miz ~ (66)
and as in eqn (64) one can derive the constraints

FIGURE 6. Butterfly switching networks. Any permutation of
N = 2" elements can be represented by appropriately setting = '(
the switches in a pair of back-to-back butterfly switching (-1 ,..
networks, as can be shown recursively by Induction on n. 1, by induction on k. (67)
Highlighted: one 2 x 2 permutation matrix or "butterfly",
and one path through the entire switching network. Likewise

equivalent to a conjunction of switch settings: 1- A2. = PH --x)
A , = B (63)[ 1

= \,If P.P'4..41 j t'. m i

It is easy to check that this is a permutation matrix, using the
constraints on A0~. (In what follows the terms of a product 11 do
not commute because they contain summations X that extend over = B-P.....4t
subsequent terms in the product.) I

= 1, by induction. (68)
A = A.,.t.. The constraints on AM and A are similar. Thus the constraints on

B1i imply the less restrictive constraints on AM) and A(' ), which we
= ithen adopt as the only constraints operating on A.

-[1. ,, "..'"4] This completes the proof that any permutation matrix M can
be represented by e(Nn) variables in the form of eqn (49) with

IT L ( B",4  )( constraints as in eqn (50).
.- ( n .41-41) APPENDIX C. FULL BUITERFLY NEURAL NETS

- 171 B-, The arguments of Appendix B can be generalized to yield a
I t series of reduced objectives interpolating between V(N"n) and O(N

- 1, by induction on n. (64) log N) variables, each having about the same number of connec-
tions as variables. In Appendix B the idea was to express each

Likewise index i in base v'N = 2" ', by dividing the indices p, ... p. of
is binary expansion in two groups. We may instead divide the n

Z = A , binary indices into m groups of size k, with n = kin, deriving the
base 2' expansion i = i, --- i.. (We have dealt with the special

$1-.'A -11-41 cae k) n n2)Te
7_ B'i A,==H1

= i ~B. ,.41 .. ,) (x Bgl,,. = -t~ ..c.

,- ,r 4.. --.,) - A (69)
1-(ZI= 1, by induction. (65)

as in eqn (66). The constraints on A() are, as usual,
B.2. Coarm Butterflies It ==A . 4 j (70)

A less restrictive form for A may be derived as follows. Let k which are generally less restrictive than the original constraints
be roughly n/2. Then on the butterfly switches B.

il - ... Pk, il - P., From eqn (52), our problem is to reduce
1,. , q, /,.q,., q.;EL(A) - -c , Aqx, ej (71)



(where e, is any expression) upon substituting eqn (69). Note that, upon identifying

If we take e, = e., A. = . and E(A) aE'(C,"), - - = -
then we may use induction on a to reduce

we have an induction step a -- a - 1, Va > 2. which decreases

- , L.,.-.x,...- e ,., (a 2), the number of neurons and connections in the network. By in-

(72) duction on a, one may reduce eqn (52) to:

where = - c, A"'

C.' O f A")~, (73) (uL, 1 -

Then +
'I) CO , °)2 A ) -

,~(.--.-

whence 
x , .-

X -(2 , "

+ A

-X ((a

'--. I-- "F"I-'. ' C

+

+ )21

d(- 
*1*-" t . .] (75) "( - w..

_c 7 ., , a.,

,(..- + -m ) + same, with b t o e ,

. , (74)+ .[-a'. + b2. .I,-1 , +, , b ._ (7 5 )

+ Y.Z ' "-"- u,..,,,.,..,.d Te number of variables and connections for this objective is

,.. .~~~~~~ :f.... (m ") m - n,which takes on values S a , 2 N' , 3N "' ,

+ ,t '+ ,-,. - j (74) .. N log N.
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