
AD-A255 434 -'

VANTAGE
A Frame-Based Geometric Modeling System

Programmer/User's Manual V2.0

B. Kumar, J.C. Robert, R. Hoffman, K. Ikeuchi, T. Kanade

CNIU-RI-TR-91-31

The Robotics Institute
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

December 1991

DTTO
E. L.=-,

S SEP 0 992 , 4i

© 1992 Carnegie Mellon University

- , z"-l'; 1t

00

DOCUMENTATON Form Approved
O OB No. 0704-0188

PuniOII rego~g burdlen for fls c tiOect~ Of trifoimation is estimlated to average I ur oer ,e rse. including the time for revieW§ng instructions. searching exiting tlata sources.
gat~ernqandmantanin te dtaneeded. and con'odieting and reviemng tte collection of informatton Send comments regarding this burden estimate or AnY other Aspect of this

coilet of informatioo.
,

fl(ull g suggestion s for reducing this burden to Washington -tesociuarters Services. Directorate t nformation Ocierations and Reoort i. v2 iS Jefeson
Oavu ,ghinav.Suite l204.Atlinqton .VA 22202-4302. and to th Otfe of i%&lMaagement and Bu get. Paoerwori Reduction Project (0704-018),was.ngton. DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

IDecember 1991 technical _____________

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

VANTAGE, A Frame-Based Geometric Modeling System
Programmer/User's Manual V2.0

6. AUTHOR(S)

B. Kumar, J.C. Robert, R. Hoffman, K. Ikeuchi, T. Kanade

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) B. PERFORMING ORGANIZATION

REPORT NUMBER

The Robotics Institute
Carnegie Mellon University CMU-RI-TR-91-31
Pittsburgh, PA 15213

9. SPONSORING, MONITORING AGENCY NAME(S) AND AODRESS(ES) 10. SPONSORINGiMONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release;
Distribution unlimited

13. ABSTRACT VaxmumniCOworas)
Geometric modeling systems allow users to create, store, and manipulate models of

three-dimensional (3-D) solid objects. these geometric modeling systems have found many
applications in CAD/CAM and robotics areas. Graphic display capability which rivals photographic
techniques allows realistic visualization of design and simulation. Capabilities to compute spatial and
physical properties of objects, such as mass property calculation and static interference check, are used
in the design and analysis of mechanical parts and assembly. Output from the geometric modelers can
be used for automatic programming of NC machines and robots.

These geometric modeling systems are powerful in many application domains, but have severe
limitations to be used for tasks such as model-based computer vision. Among others, (1) there is no
explicit symbolic representation of the two-dimensional information obtained by the projection of the
3-D model. The output image displayed on the screen is a set of pixel intensity values, with no
knowledge of the logical grouping of points, lines and polygons. Also, the relationship between 3-D
and 2-D information is not maintained properly. (2) Most of the current 3-D geometric modeling
systems are designed with a closed architecture, with a minimum of documentation describing the
internal data structures. Moreover, some of the data structures are packed into bit-fields, making
understanding and modification difficult. (3) They run as stand-alone interactive systems and cannot

14. iUBJECT TERMS 15. NUMBER OF PAGES
75 pp

16. PRICE CODE

17. SECURITY CLASSiFICATION 18. SECURITY CLASSIFICATION 1g. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT unlimited OF THIS PAGAiitd OF ABSTRAIQIited unlimitedunliite _._

13 cont'd.

easily be interfaced to other programs.
To address these shortcomings, we have developed the VANTAGE geometric modeling system.

VANTAGE uses a consistent object space representation in both the 3-D and 2-D domains, which
makes it suitable for computer vision and other advanced robotics applications. Its open
architecture design allows for easy modification and interface to other software. This paper
discusses the design goals and methodology for the VANTAGE geometric modeler.

Table of Contents

1. Introduction 1

2. Terminology 2

3. VANTAGE - Concepts and Design 3

3.1. Motivations for Developing VANTAGE 3
3.2. Open Architecture 4
3.3. Lisp and frame-based Representation 4
3.4. Solid and Boundary Representation 5
3.5. Relations Between 2-D and 3-D 6
3.6. Organization 7

3.6.1. Solid Definition 7
3.6.2. 3-D Boundary Representation 8
3.6.3. 3-D Face Properties 10
3.6.4. 3-D Scene 10
3.6.5. 2-D Image 11
3.6.6. 2-D Property Regions 12

4. Invoking the system 13

5. CSG Definition of a Solid 14

5.1. Primitives 14
5.2. Rigid-Motion 15

5.2.1. Moving a solid 15
5.2.2. Defining a transformation 16

5.3. Boolean Operations 17
5.4. Mirror Operation 18
5.5. Redefining and Deleting solids 18
5.6. Information on the CSG-Tree 19

6. Boundary Representation 20

7. Sensors 22

8. Scene and 3-D Properties 24

8.1. Scene 24

ii

8.2. 3-D Properties 24

9. Image and 2-D Properties 26

9.1. Image 26
9.2. 2-D Properties 27

10. Miscellaneous Functions and Variables 28

10.1. Functions dealing with Boundary representation 28
10.2. Mathematical functions 29
10.3. Display functions 30

Appendix A. Primitive Solids 35

Appendix B. Examples 38

Appendix C. Standard Frames 42

Appendix D. Framekit+ functions 67

D. 1. Frames 67
D.2. Frame creation 68
D.3. Update Functions 69
D.4. Access Functions 71
D.5. Miscellaneous Functions and Variables 71

Index 73

iii

List of Figures
Figure 3-1: Open Architecture of VANTAGE 4
Figure 3-2: Organization of VANTAGE 7
Figure 3-3: CSG-Tree 8
Figure 3-4: Winged-edge representation and assuciated frame 9
Figure 3-5: Grouping and Merging Operations 9
Figure 3-6: 3-D Face Properties for a Light-source 10
Figure 3-7: Projection of a 3-D scene, and regions of the resulting image 11
Figure 3-8: Property regions associated to a light-source 12
Figure B-i: Image iI, plain and with shadows (after window-zooming) 41
Figure B-2: 11 property-regions projected on il 41
Figure C-1: Winged-edge representation 51

Acce-io: For

D I;(,'

By

U;-0

Di",17

iv

List of Tables
Table 3-1: Relation between 3-D and 2-D level 6
Table 3-2: Light-source/Sensor 12

Abstract

Geometric modeling systems allow users to create, store, and manipulate models of three-
dimensional (3-D) solid objects. These geometric modeling systems have found many applications
in CAD/CAM and robotics areas. Graphic display capability which rivals photographic techniques
allows realistic visualization of design and simulation. Capabilities to compute spatial and physical
properties of objects, such as mass property calculation and static interference check, are used in the
design and analysis of mechanicaf parts and assembly. Output from the geometric modelers can be
used for automatic programming of NC machines and robots.

These geometric modeling systems are powerful in many application domains, but have severe
limitations to be used for tasks such as model-based computer vision. Among others,

1. There is no explicit symbolic representation of the two-dimensional (2-D) information
obtained by the projection of the 3-D model. The output image displayed on the
screen is a set of pixel intensity values, with no knowledge of the logical grouping of
points, lines and polygons. Also, the relationship between 3-D and 2-D information is
not maintained properly.

2. Most of the current 3-D geometric modeling systems are designed with a closed ar-
chitecture, with a minimum of documentation describing the intemal data structures.
Moreover, some of the data structures are packed into bit-fields, making understand-
ing and modification difficult.

3. They run as stand-alone interactive systems and cannot easily be interfaced to other
programs.

To address these shortcomings, we have developed the VANTAGE geometric modeling system.
VANTAGE uses a consistent object space representation in both the 3-D and 2-D domains, which
makes it suitable for computer vision and other advanced robotics applications. Its open architec-
ture design allows for easy modification and interface to other software. This paper discusses the
design goals and methodology for the VANTAGE geometric modeler.

1. Introduction

Geometric modeling systems allow users to create, store, and manipulate models of three-

dimensional (3-D) solid objects. These geometric modeling systems have found many applications

in CAD/CAM and robotics areas. Although powerful in many application domains, there are some

limitations of these geometric modeling systems, which make them difficult to be used for tasks

such as model-based computer vision. Among others,
1. There is no explicit symbolic representation of the two-dimensional (2-D) information

obtained by the projection of the 3-D model. The image data is a set of pixel intensity
values, with no knowledge of the logical grouping of points, lines and polygons.

2. They are designed with a closed architecture, with a minimum of documentation
describing the internal data structures. Worse, some of the data structures are packed
into bit-fields, making understanding and modification difficult.

3. They run as stand-alone iteractive systems and cannot easily be interfaced to other
programs.

To address these shortcomings, we have developed the VANTAGE geometric modeling system.

VANTAGE uses a consistent object space representation in both the 3-D and 2-D domains, which

makes it suitable for computer vision and other advanced robotics applications . Its open architec-

ture design allows for easy modification and interface to other software. The problems involving

model based vision are the main driving force behind this work and VANTAGE has applications in

computer vision and advanced robotics research.

The current version of VANTAGE is reasonably debugged and has decent graphic routines and user

interface. This manual covers the following areas:

" General concepts and terminology
" Overview of design and implementation
" Primitive solids and coordinate transformations
" Operations on solids
" 3-D boundary representation
* Light-sources, cameras
" Scenes and 3-D properties
" Images and 2-D properties

VANTAGE is currently supported on SUN running Lucid Common Lisp or Allegro Common Lisp.

Most of the code is portable to other lisp environments except for the graphic and user-interface

routines. VANTAGE can also run under X-Window system. Please direct all enquires to

vantage@cs.cmu.edu.

2

2. Terminology

* Primitives: The basic solids provided by the system. They can be
defined by giving required dimensions. The primitives
are cube, cone, truncated-cone, cylinder, sphere,
2.5prism, 2.5cone, triangular-prism and right-angle-
prism.

" Boolean Operations: The operations allowed on the solids to move, modify
or create a resulting solid. The operations defined are
union, intersection and difference.

" CSG-Defmition: The definition of solids is stored in the form of a tree
structure. The leaf nodes are either primitives or nil. A
parent node corresponds to a boolean operation applied
to its corresponding children nodes. When creating the
boundary representation for a particular node, the
boundary representation for all the children of the node
is also created recursively.

" Boundary representation: A solid is represented as a collection of faces, a face as
a collection of edges, and an edge is defined by its two
end vertices. The vertices are defined by their x, y and
z coordinates. Topological information is included in
the form of winged-edge representation.

" Winged-edge representation: A way of defining the topological relationship. There
are eight slots for each edge which define the two end
vertices (P-vertex, N-vertex), four neighboring edges
(PCW, PCCW, NCW, NCCW) and two adjacent-faces
(P-face, N-face).

" 3D-hierarchical structure: In the boundary representation the cylindrical, conical
and spherical faces are approximated by a finite num-
ber (user specified) of planar faces. After any se-
quence of boolean operations the faces derived from a
same primitive surface are grouped so that they can be
treated as a single entity. Also there is provision to
group faces that are tangent to each other across a
common edge.

3

3. VANTAGE - Concepts and Design

3.1. Motivations for Developing VANTAGE

Currently available geometric modeling systems have critical limitations to be used in applications

which require flexible, explicit, and user-specified access, attachment, and modification of the in-

formation within the systems. For example, developing a model-ba-zd vision system based on an

object model requires analyzing how the object features, such as faces, edges, etc., will appear as

the camera positions vary. However, though the graphic display of the object generates beautiful

"images", usually no explicit symbolic representations of the two-dimensional information are com-

puted in the projection of a 3-D object model. The graphical output image is a set of pixel intensity

or color values, with no Knowledge of tl'c logical grouping of points, lines, and polygons, or

pointers to the original object features. Humans can interpret the image, but the explicit infor-

mat'on that a vision program may require is not available.

Rarely do the built-in functions of a geometric modeling system satisfy all the representational and

computational capabilities that a user needs for his own new application. Theoretically, writing or

modifying a few modules to access and manipulate the information hidden in the system or adding

a few representational capabilities to the existing ones will bring about the required capabilities. In

practice, however, such modifications and additions are very difficult and painful, if not impossible.

Most systems are designed with a closed architecture, with a minimum of documentation describing

the internal data structures. Wore, due to their implementation in such languages as Fortran, many

of the data structures are packed into bit-fields, making understanding and modification above a

certain level of sophistication impractical.

Recognizing these limitations of currently available geometric modeling systems, we have decided

to develop a new flexible gcometric modeler, VANTAGE, so that

" Both 3-D ard 2-D information of objects can be explicitly represented by symbolic
data structures.

" A user can easily modify the system, add new capabilities, and interface his programs
to it.

Our primary application of VANTAGE will be in the area of model-based computer vision, but we

expect the flexibility and modifiability of VANTAGE will allow it to be used as a tool for many other

4

advanced robotics applications.

3.2. Open Architecture

Many existing modelers act as a black box for the application programs and discourage sharing

data. The approach we take emphasizes direct interacion between the modeling system and the

application program. The collection of all data items, such as surface, edge, camera, light-source,

etc., describing objects and their relationships form the geometric database. The geometric engine,

consisting of both the system-defined and user-defined functions, can access and manipulate it.

This implies that all the system and application programs are at the same level of hierarchy in terms

of accessing information, with minimal distinction between them. Figure 3-1 illustrates _'ie open

architecture.

IGeometric Dataf

Graphics Sse plctoUtility Functions ~
Routines \fl0,S/ Progam>,

Figure 3-1: Open Architecture of VANTAGE

3.3. Lisp and frame-based Representation

VANTAGE avoids complex and I'.terogeneous data structures. All data in VANTAGE aT represented

in a standardized manner by the use of frames. Frames are analogous to schema or concepts as

defined in other knowledge representation languages. A frame is composed of slots, facets and

fillers. For example, a frame structure defining a face may look like:

(BOTTOM-I ACE
(is-a

(value 3-D-face))
(area

(value 140)
(if-added (update-max-area-face)))

(face-of

(value my-cube))
(edge-list

(value edge-a edge-b edge-c edge-d)))

In this example, BOTTOM-FACE is the name of the frame. The slots are used to represent various

attributes of a frame, such as is-a, area, face-of, and edge-list. A slot can have multiple facets such

as value and if-added. 3-D-face, 140, update-max-area-face are fillers defining contents of dif-

ferent facets.

Frames are like record structures in conventional programming languages, but have much more

flexibility and features. Frames, slots, facets, and fillers can be added or erased at any time. Frames

also provide a mechanism to automatically select and execute procedures and functions attached to

a frame depending on the operation performed on a particular slot. These functions are called

demons. In the above example, update-max-area-face is a demon which is fired automatically to

update, if necessary, the variable maximum-area-face when a value for the slot area is added. The

frame structure is omnipresent throughout the system. The flexibility of frames provides an effec-

tive means to allow smooth interface to user supplied programs.

VANTAGE is implemented in the COMMON LISP language. LISP combines symbolic processing with

features from traditional computing. By writing VANTAGE in LISP, it inherits all the merits of the

LISP language such as interaction, incremental building, symbolic representation etc. We believe

that VANTAGE will have successful applications in the A.I. world.

3.4. Solid and Boundary Representation

We have selected the Constructive Solid Geometry approach for representing the shapes of objects

in VANTAGE . VANTAGE provides basic solid primitives like cube, cylinder, etc. The user creates

new solids by making boolean operations (union, difference and intersection) on these primitives.

A 3-D boundary representation of each object is maintained within the system. This contains lists

of faces, edges and vertices. Vertices contain their respective coordinate values, and edges join

these vertices. The faces are planzr polyhedra and represented by a collection of connected edges.

The neighborhood information o;" topology relates the edges, faces and vertices of the solid. This

information in VANTAGE is stored in the form of winged-edge representation. An edge has two end

vertices, four neighboring edges and two faces defining a strict relationship.

6

3.5. Relations Between 2-D and 3-D

A model-based vision system attempts to recognize objects in images by matching features in the

image with those expected from the model of the scene. Many current geometric modelers are

good at synthesizing images of a scene with a given viewing position and lighting condition. It is,

however, very difficult to extract symbolic representations of expected appearances of the object so

that they can be used in designing recognition strategies. One of the VANTAGE design goals is to

provide a capability to explicitly represent the relationships between 3-D information (such as

shape, surface, and lighting) in the scene and 2-D information (such as visibility, shadow, and

projected shape) in the image.

For a particular viewing condition, the 3-D faces are projected on the viewing plane and the visible

portion of the projections result in 2-D face-regions. These 2-D face-regions are a collection of 2-D

arcs and the 2-D arcs connect 2-D joints. The hierarchy of 2-D face-regions, 2-D arcs and 2-D

joints is the same as faces, edges and vertices at the 3-D level.

Image formation in general is dictated by the physical properties of the considered surfaces. A 3-D

face contains some slots for representing various properties like color, surface-roughness, shadows,

etc. They are uIassified accorang to the cause. For example, a particular 3-D face can have

shadows due to different light sources such as light-source-a and light-source-b. All these shadow

conditions interact to produce the final image. The 3-D face properties are projected on the 2-D

regions, which are divided into property-regions.

3-D level 2-D level

3-D face 2-D region

3-D edge 2-D arc

3-D vertex 2-D joint

3-D property 2-D property-region

Table 3-1: Relation between 3-D and 2-D level

Table 3-1 explains the relation between the two levels. The information at the 2-D and 3-D levels

have a correspondence and can be referenced back and forth. In addition, VANTAGE maintains

topological information not only at the 3-D level but also at the 2-D level.

7

3.6. Organization

Figure 3-2 shows the overall organization of VANTAGE.

USERINPUT J

__. ~ ~2-..._D

CSG 3-D Bounary.2- 2-D Boundar

3-D Bac-Dr

Pro ject Ryie

3-D
Pi~

Figure 3-2: Organization of VANTAGE

1. The user creates a solid by applying operations on primitives solids. The definition of
the solid is stored in a Constructive Solid Geometry (CSG) Tree.

2. The 3-D boundary representation of the solid is generated from the CSG tree in the
3D geometric database. The face properties (e.g. color, shadow, and visibility) are
also maintained in the 3D geometric database.

3. The user defines a 3-D Scene that contains a collection of solids, environmental con-
ditions (e.g. lighting conditions), and a viewing condition.

4. The 3-D scene is projected to generate a 2-D Image, for which VANTAGE creates a
complete explicit representation (2-D boundary representation and 2-D Properties),
which contains geometric and topological information for all visible regions, as well
as back-pointers to the 3-D boundary representation in the 2D geometric database.

The subsequent sections detail the different parts of the system.

3.6.1. Solid Definition

In Constructive Solid Geometry, an object is generated by applying successive operations (union,

intersection, difference, move, mirror) on a set of primitive solids (cube, cylinder, cone, sphere). A

CSG tree represents internally this CSG definition. A leaf node of a CSG tree defines a primitive

solid. An intermediate node specifies an operation to be performed on its descendants, and cor-

responds to the solid resulting from the operation. Figure 3-3 shows an example of a CSG tree.

8

Diference

Union Block

Union Move

Block Cylinder

Figure 3-3: CSG-Tree

3.6.2.3-D Boundary Representation

A 3-D boundary representation of each object is maintained within the system. It consists of a four

level hierarchy of frames: body, face, edge, and vertex. A body is made of faces, a face is defined

by its edges, and an edge has two end vertices. Each element contains some geometric properties

(coordinates of the vertices, equations of the faces, position of the body in space). In addition,

VANTAGE maintains a complete representation of topological relationships in the form of a winged-

edge representation that lists the end vertices, neighboring edges and faces of every edge (see figure

3-4).

Although VANTAGE includes non-polyhedral primitives such as cylinders and cones, all non-planar

surfaces (cylindrical, conical or spherical surfaces) are approximated by a finite number of planar

faces. In the same way, all curv-s are represented by a collection of linear edges. The number of

planar faces used to represent a non-planar surface is entered by the user.

VANTAGE stores the exact geometric definition of each surface and curve as a separate frame.

VANTAGE also maintains a pointer from every planar face that approximates a non-planar surface to

the corresponding surface, and similarly from the approximating edges to the corresponding curves.

9

EDGE-AB
is-a 3-D-edge C Face-1 D
3-D-body my-cube a
P-vertex vertex-A PCW Pccw
N-vertex vertex-B
P-face face-I P. =
N-face face-2 A N ex
PCW edge-CA NCCW N-Face NCW
NCCW edge-AF NCW0or
NCW edge-EB F Face-2
PCCW edge-BD

Figure 3-4: Winged-edge representation and associated frame

The surface/curve frames are used for grouping faces/edges that approximate the same

surface/curve. Also, any operation that requires the exact geometric definition of surfaces and

curves (e.g. generation of parametric equations) can be performed using the surface and curve

frames.

Group_

Merge

Figure 3-5: Grouping and Merging Operations

VANTAGE builds two more levels of representation based on surface properties. Figure 3-5 il-

lustrates the grouping and merging operations for this purpose. First, using references to the sur-

face frames, VANTAGE can group a set of adjacent planar faces that approximate the same curved

surface into a curved face frame. Similarly, connected linear edges that approximate the same

curve are also grouped into a curved edge frame. Second, faces that are tangent across an edge, that

is, Cl continuous, are also merged into one. Since detecting the Cl continuity is sometimes am-

biguous due to the finite precision of floating point calculation, VANTAGE provides an interactive

graphic interface that allows the user to select any pair of adjacent faces he desires to merge.

10

Importantly, the topological relationships of grouped and merged surfaces are also maintained in a

winged-edge representation. This feature is very useful for computer vision applications, where a

continuous surface must often be treated as a single surface.

3.6.3. 3-D Face Properties

Property descriptions of the faces of solids can be attached to the 3-D boundary representation.

There are two types of face properties:

9 Physical properties inherent to the solid itself (e.g. color, texture).

* Properties that result from the environment of the solid (e.g. cast shadow for a given
light-source). These properties are computed at the time of projection.

. . .t . . .

light-sourc=-

Figure 3-6: 3-D Face Properties for a Light-source

Figure 3-6 illustrates the 3-D property representations in the case of color and shadow. These

divisions due to different properties are stored in the property frame of the 3-D faces. They are also

classified according to the cause. For example, a particular 3-D face can have shadows due to

different light-sources such as light-source-a and light-source-b.

3.6.4.3-D Scene

A 3-D scene is a portion of the world for which we can create an image. It is composed of:

" A collection of solids

" A selection of physical properties of the solids (e.g. color).

" A set of environmental conditions, that can include:
- A set of light-sources (one or several).

11

A sensor, which is used to generate a 2-D image of the scene (e.g. a camera).

Each scene condition (e.g. a light-source) is defined as a separate frame containing all necessary

information: location, color of light, point/extended light-source, sensor characteristics, etc.

3.6.5. 2-D Image

The 2-D representation of a 3-D scene is an explicit symbolic representation of the image that is

obtained by projecting the scene using the specified sensor (see Figure 3-7). VANTAGE provides a

capability to explicitly represent the relationships between 3-D information (such as shape, surface,

and lighting) in the scene and 2-D information (such as visibility, shadow, and projected shape) in

the image. For a particular viewing condition, the 3-D faces are projected on the viewing plane and

the visible portion of the projections result in 2-D face-regions. These 2-D face-regions are a

collection of 2-D arcs and the 2-D arcs connect 2-D joints. The hierarchy of 2-D face-regions, 2-D

arcs and 2-D joints is the same as faces, edges and vertices at the 3-D level.

camera

2-D Image

Face-Regions

3-D Scene '::

Figure 3-7: Projection of a 3-D scene, and regions of the resulting image

The algorithm to project a scene from 3-D to 2-D in addition generates all topological relationships

among the face-regions (projections of the 3-D faces) of the image something similar to that of the

3-D level.

12

3.6.6. 2-D Property Regions

Different lighting conditions interact to produce the final image. To compute whether a face is

illuminated by a light-source or shadowed, we take advantage of the correspondence between a

light-source and a sensor, as shown in table 3-2. When projecting a scene using a light-source as

viewpoint, the 2-D regions obtained represent the illuminated/cast-shadowed parts of the scene.

These 2-D regions are back-projected on the 3-D faces of the solids, and stored as the 3-D face

properties associated with the light-source. These 3-D face properties are projected on the 2-D

face-regions , which are divided into property-regions.

Shading Visibility

illuminated visible

cast-shadowed occluded

self-shadowed back-face

Table 3-2: Light-source/Sensor

"Painted" Image Face-Regions

Property-Regions

Figure 3-8: Property regions associated to a light-source

Figure 3-8 explains the property-regions, which are 2-D face properties of the 2-D face regions.

13

4. Invoking the system

The Lisp system should be invoked first. VANTAGE currently runs under LUCID and ALLEGRO com-

mon lisp environments. Then load the file "/usr/vantage/vantage-init.lisp". This will initialize the

VANTAGE system.

> (load "/usr/vantage/vantage-init.lisp")

VANTAGE SOLID MODELING SYSTEM V1.0

VISTON AND AUTONOMOUS SYSTEMS CENTER
THE ROBOTICS INSTITUTE

Loading Subsystem - Framekit
- Solids
- Windows
- Utilities

Here you go
Send Comments and Bug reports to vantage@cs.cmu.edu

At the end it will open up a new graphic screen called "LISP-Screen". Inside there will be a default

window named "vantage window". By clicking the left mouse button inside the window, a pop-up-

menu interface can be invoked. Users interested in creating other widows on the Lisp screen are

encouraged to go through the Chapter 12 of the "SUN Common Lisp User's Manual" titled "WIN-

DOW TOOL KIT".

14

5. CSG Definition of a Solid

The creation of a CSG-node is performed by the macro csgnode. This macro allows the creation of

primitive solids or the creation of solids by applying boolean operations on existing solids.

The following macro creates a solid:

(csgnode solid-name type parameters)

where type can be either a primitive-type (e.g. cube, cylinder, etc.), or an operation (e.g. union,

move, etc.). The csgnode command can also take optional arguments that are defined below.

5.1. Primitives

They are defined by the macro:

(CSGNODE solid-name primitive-type parameters &key (trans *identity*)) macro

or the function:

(CSGNODE* solid-name primitive-type parameters &key (trans *identity*)) function

CSGNODE* is like CSGNODE, except that it evaluates its arguments.

primitive-type is one of the following types:

cube cylinder cone trunczted-cone sphere iso-prism

right-angle-prism 2.5-prism 2.5-cone

or their abbreviated forms:

cu cub cy cyl co con tru sp sph iso rt 2 .5 p 2.5c

parameters is a list of numbers and depends on the primitive type.
* cube (x-length y-length z-length)
" cylinder (radius height number-of-app-faces)
" cone (radius height number-of-app-faces)
" truncated-cone (bottom radius top-radius height number-of-app-faces)
" sphere (radius approximation-number)

15

" iso-prism (base side height)
" right-angle-prism (side] side2 height)
" 2.5-prism (height (x1 y1) (x2 y2) (") "")

" 2.5-cone (height (xpe1 Yapex) (xl yl) (x2 y2) (..) ...)

trans is an optional parameter that defaults to the identity transformation. It specifies the rigid-

motion attached to the node. It can be one of the following:

" name : name of an already defined rigid-motion.
" list of six float-numbers (x y z roll pitch yaw): the system will generate a motion matrix

and will give a new name for it. The angles roll, pitch, and yaw can be entered in
degrees or radians depending on the current value of the variable *angle-mode* (see
page 29).

" list (name x y z roll pitch yaw): same as above but the given name is assigned.

See Appendix A for an example of each primitive.

5.2. Rigid-Motion

5.2.1. Moving a solid

(CSGNODE solid-name move solid &key (trans *identity*) (fast NIL)) macro

Defines a new solid obtained by applying to an existing solid the transformation specified by trans.

trans is as defined in the previous section.

fast specifies whether the boundary representation of the child nodes should be destructively af-

fected or not, when generating the boundary representation for the specified node. fast takes one of

the following values:
" NIL: the boundary representation of the child nodes will be copied and not destructed

when generating the boundary representation of the specified node.
" T: the boundary representation of the child nodes will be destructed when generating

the boundary representatio.i of the specified node. They will not be copied, therefore
saving computation time.

" all: all nodes" below" the specified node in the CSG-tree will have theirfast flag set to
T. Only the boundary representation of the specified node will remain.

(CSGNODE* solid-name move solid &key (trans *identity*) (fast NIL) function

CSGNODE* is like CSGNODE, except that it evaluates its arguments.

(MOVE-CSG-NODE node-name trans) macro

16

Moves an existing solid by applying to it the rigid-motion transformation specified by trans. The

user is asked to confirm the move command when a boundary-representation exists for the node or

when the node has parent nodes. If the user chooses to move the node anyway, the boundary-

representations of the node and its possible parents are deleted. Note that from now on, the parents

of the moved node will take into account the new location of the node.

(MOVE-CSG-NODE* node-name trans) function

MOVE-CSG-NODE* is like MOVE-CSG-NODE, except that it evaluates its arguments.

5.2.2. Defining a transformation

A rigid-motion can be defined at the time it is used, as explained above, or using one of the

following functions:

(MK-MOTION-MATRIX (name x y z roll pitch yaw)) function

x, y, z define the position of the new origin, and roll, pitch, yaw define the ro ,ions to perform

about the initial z, y and x axis. 11 name is absent a system-generated name will be assigned.

(MK-ROTATION &key (name nil) (py '(0 0 0)) (axis-angle nil) (center '(0 0 0))) macro

Creates a rotation transformation, defimed by the center of rotation, and either the roll, pitch and

yaw coefficients, or the rotation axis vector plus the rotation angle. If name is absent a system-

generated name will be assigned.

(MK-ROTATION* &key (name nil) (rpy '(0 0 0)) (axis-angle nil) (center '(0 0 0))) function

MK-ROTATION* is like MK-ROTATION, except that it evaluates its arguments.

(MK-TRANSLATION &key (name nil) (xyz '(0 0 0))) macro

Creates a translation transformation, defined by the translation vector. If name is absent a system-

generated name will be assigned.

(MK-TRANSLATION* &ke2, (name nil) (xyz '(0 0 0))) function

MK-TRANSLATION* is like MK-TRANSLATION, except that it evaluates its arguments.

17

(MK-COMBINED-TRANSFORMATION &key (name NIL) (trans-list nil)) macto

Creates a transformation resulting from several successive transformations. trans-list is the list of

transformations to combine. The matrix of the new transformation is the product, from left to right,

of the matrices of the transformations of trans-list. If name is absent, a system-generated name will

be assigned.

(MK-COMBINED-TRANSFORMATION* &key (name NIL) (trans-list nil)) function

MK-COMBINED-TRANSFOROATION* is like MK-COMBINED-TRANSFORMATION, ex-

cept that it evaluates its argumeits.

5.3. Boolean Operations

Complex solids are created by applying boolean operations on other solids.

(CSGNODE solid-name boolean-operation solids &key (trans *identity*) (fast NIL)) macro

A new solid is generated by applying the specified operation to the specified solid(s), and then by

transforming the resulting solid by the specified rigid-motion.

boolean operation is one of the following operations:

union difference intersection inverse

or their abbreviated form:

un uni di dif int inv

solids is a list of two solids, except for the inverse operation, in which case it is just one solid.

trans is specified as explained in the previous section.

fast is explained in the previous section.

(CSGNODE* solid-name boo'ean-operation solids &key (trans *identity*) (fast NIL)) function

CSGNODE* is like CSGNODE, except that it evaluates its arguments.

Example:

The following commands create the nodes that appear in the CSG-tree of Figure 3-3.

18

> (csgnode bl cu (500 300 111.5) :trans (0 -68.1 49.25 0 0 0))
B1
> (csgnode b2 cyl (129 450 10) :trans (-130 6.9 6.5 0 0 -90))
B2
> (csgnode D3 mov b2 :trans (260 0 0 0 0 0))
B3
> (csgnode b4 cu (3000 3000 100) :trans (0 0 155 0 0 0))
B4
> (csgnode b5 uni (bl b2))
B5
> (csgnode b6 uni (b5 b3))
B6
> (csgnode bodyl dif (b6 b4) :fast ill)
BODY1

5.4. Mirror Operation

This operation creates the symmetric solid of a specified solid relatively to a specified plane.

(CSGNODE solid-name mirror parameters &key (trans *identity*) (fast NIL)) macro

parameters is a list (solid normal-x normal-y normal-z distance) specifying the solid and the

mirror-plane. The plane is defined by the x,y,z coordinates of its normal vector, and by its or-

thogonal distance to the origin.

(CSGNODE* solid-name mirror parameters &key (trans *identity*) (fast NIL)) function

CSGNODE* is like CSGNODE, except that it evaluats its arguments.

5.5. Redefining and Deleting solids

The definition of a node can be changed or deleted. If the affected node has ancestor nodes, then

they are all affected as well. When defining a solid using csgnode, if the specified name is already

used, then VANTAGE asks if it should use another name or replace the existing solid by the new one.

(DELETE-CSG-NODE node-name) macro

Deletes the node node-name and its boundary-reprcsentation (if it exists). Also deletes the parent

csg-nodes of the node (if any), after confirmation from the user.

19

(DELETE-CSG-NODE* node-name) function

DELETE-CSG-NODE* is like DELETE-CSG-NODE, except that it evaluates its argument.

5.6. Information on the CSG-Tree

The CSG-Tree specifies how the solids are created, and stores all the node operations in a tree

structure. Each node will correspond to a 3D-solid. The leaf nodes are primitive solids. The other

nodes are obtained by applying a. operation on its child nodes.

(CSG-TREE) function

Prints out information on the existing CSG-nodes.

(DESCRIBE-CSG-NODE node-name) macro

Prints out all the operations involved in the creation of the solid corresponding to node-name.

(DESCRIBE-CSG-NODE* node-name) function

DESCRIBE-CSG-NODE* is like DESCRIBE-CSG-NODE, except that it evaluates its arguments.

(DESCRIBE-CSG-NODES) function

Calls the function describe-csg-node for all the nodes.

20

6. Boundary Representation

This chapter describes the functions that generate the boundary-representation of a solid.

(BOUN-REP node-name) macro

Creates a complete 3d boundary-representation for the solid defined by the node. This represen-

tation consists of frames that repre-sent the vertices, the edges, the faces, and the body (the name of

the body-frame is node-namez (with suffix 'z')). If a boundary-representation already exists for the

node, nothing is done.

A boundary-representation is generated for all nodes starting with the leaf-nodes (primitive solids)

and going up the csg-tree until the specified node. All intermediate nodes that do not have a

boundary-representation yet get one in the process, except those whose parent-node has the fast

flag on, which get only a temporary boundary-representation that is destructively modified in the

process and deleted. If a node already has a boundary representation, the existing representation is

used for that node and VANTAGE does not generate a boundary-representation for the node and its

.Juid-nodes.

(BOUN-REP* node-name) function

BOUN-REP* is like BOUN-REP, except that it evaluates its arguments.

(3D-STRUCTURE node-name) macro

It has the same effect as boun-rep, but in addition the solid gets a 3D-Hierarchical structure

(grouping of faces approximating a same primitive surface...). If a boundary-representation already

exists for the node, only the grouping of faces and edges is performed. If the grouping operations

have also already been done, the function does not do anything.

(3D-STRUCTURE* node-name) function

3D-STRUCTURE* is like 3D-STRUCTURE, except that it evaluates its arguments.

(3D node-name) macro

Merges connected faces that are specified by the user. The new faces that are created are at the

21

top-level in the hierarchy of faces (see Figure 3-5). If a boundary-representation has not been

generated yet, boun-rep is first called.

This main application of this function is to merge connected faces that have a continuous normal

across the connecting edge. Since VANTAGE approximates all the higher order surfaces by planar

polyhedra it is impossible to automatically detect those edges across which the merge should take

place. So it requires interaction from the user through mouse input.

For merging some faces, some small faces may have to be created at the boundary of a surface, due

to the approximation of the surface. Such configurations are first detected, and the user is asked to

confirm any modification. Then the user can enter the faces he wants to merge. Any selected face is

then considered as an approximated face and grouped with its neighbors to create the parent faces.

(3D* node-name) function

3D* is like 3D, except that it evaluates its arguments.

The boundary-representation of a node can be deleted using:

(DELETE-BOUN-REP node-name) macro

Deletes the boundary-representation of the node node-name (if it exists), with all its vertices, edges,

faces.

(DELETE-BOUN-REP* node-name) function

DELETE-BOUN-REP* is like DELETE-BOUN-REP, except that it evaluates its argument.

22

7. Sensors

The definition of sensor applies to cameras and light-sources. In can also include combinations of

cameras and light-sources (sensor-components) using AND and OR operations.

(CAMERA name location key (target '(0 0 0)) (focal nil) (limit-angle nil)) macro

Creates a camera that is positioned at location (= (x y z)) and that points toward target, with the

specified focal-length.

limit-angle is the maximum angle (in degrees) between the normal of a face and the viewing direc-

tion, for which the face is visible. The default NIL value for limit-angle corresponds to a limit-angle

of 90 degrees.

(CAMERA* name location key (target '(0 0 0)) (focal nil) (limit-angle NIL)) function

CAMERA* is like CAMERA, except that it evaluates its arguments.

(LIGHT-SOURCE name location key (target '(0 0 0)) (focal nil) (limit-angle NIL)) macro

Creates a light-source that is positioned at location (= (x y z)) and that points toward target, with the

specified focal-length.

limit-angle is the maximum angle (in degrees) between the normal of a face and the lighting direc-

tion, for which the face is lit. The default NIL value for limit-angle corresponds to a limit-angle of

90 degrees.

(LIGHT-SOURCE* name location key (target '(0 0 0)) (focal nil) (limit-angle NIL)) function

LIGHT-SOURCE* is like LIGHT-SOURCE, except that it evaluates its arguments.

(MAKE-SENSOR-COMPONENT name type params key (focal NIL) (limit-angle NIL)) function

Creates a camera or a light-source with the given parameters.

type is either camera or light.

parameters is a list of six numbers describing x, y, z, roll, pitch and yaw. The camera points

towards the negative z-axis given by the camera-coordinate system defined by the parameters.

focal specifies the focal distance of the perspective projection, or, when equal to NIL, characterizes

an orthographic projection.

23

limit-angle is the maximum angle (in degrees) between the normal of a face and the projection

direction, for which the face is lt. The default NIL value for limit-angle corresponds to a limit-

angle of 90 degrees.

(ROTATE-CAMERA-AROUND-AXIS camera angle) macro

Rotates a camera around its viewing direction. The angle unit is given by *angle-mode*.

(ROTATE-CAMERA-AROUND-AXIS* camera angle) function

ROTATE-CAMERA-AROUND-AXIS* is like ROTATE-CAMERA-AROUND-AXIS, except that

it evaluates its arguments.

24

8. Scene and 3-D Properties

8.1. Scene

The following functions define a 3-D scene. The environmental properties applied to the scene

(lighting conditions) are added to the definition of the scene at the time of calculation of the 3-D

property regions of the scene for given light-sources (see section 8.2 and the IMAGE function, page

26)

(SCENE name csg-node-list) macro

Defines a 3d-scene by a list of csg-nodes. A boundary-representation of all the bodies of the scene

should exist before creating the scene.

(SCENE* name 3d-body-list) function

SCENE* is like SCENE, except that it evaluates its arguments.

8.2. 3-D Properties

(PROJECT-AND-BACK-PROJECT scene sensor optional (merge-shadows T)) macro

Generates the 3-D properties of the specified scene for a given sensor (camera or light-source). A

process of projection and back-projection is performed, as explained in paragraph 3.6.6, page 12.

When the sensor is a camera, the regions generated on the 3-D faces of the scene are the visible,

occluded, or back-oriented areas of the scene for the given camera. For a light-source, the il-

luminated, cast-shadowed and self-shadowed areas of the scene are obtained (see table 3-2). The

names of the properties, which are also the names of the slots of the property-list frames of the

faces (see the definition of a property-list frame, page 60), are built as in the following example: if

the name of the sensor (camera or light) is Si, the properties will be called visible-SI,

occluded-Si, back-S1. The property frames (see page 61) are automatically created or updated.

merge-shadows specifies whether the cast-shadowed regions corresponding to different occluding

faces should be merged or not before back-projection to the faces of the scene (MERGE-LIGHT-

PROPERTIES does the same merging operations, but after back-projecting to the scene).

25

(PROJECT-AND-BACK-PROJECT* scene sensor) function

PROJECT-AND-BACK-PROJECT* is like PROJECT-AND-BACK-PROJECT, except that it

evaluates its arguments.

(MERGE-LIGHT-PROPERTIES scene light-source) macro

The property regions, obtained in a scene for a light-source using the previous function, are com-

puted by a face-to-face technique, and therefore the occluded areas are split into regions charac-

terized by the face that occludes them (the occluding face considered is the closest one to the

sensor).

PROJECT-AND-BACK-PROJECT (see above) and IMAGE (see page 26) allow the user either to

merge these split regions for each face before back-projecting them, or to back-project the split

regions directly. In the latter case, the user can perform the merging operations later, using

MERGE-LIGHT-PROPERTIES. This function makes the union, on every face of the scene, of the

split occluded regions for the light-source, in order to get the full consolidated occluded (cast-

shadowed) area. The old split regions are saved as a new property under a new name (for a

light-source LI, the name is split-occluded-Li), and the new merged property-regions take their

previous name (occluded-Li).

An example is showed in page 40

(MERGE-LIGHT-PROPERTIES* scene light-source) function

MERGE-LIGHT-PROPERTIES* is like MERGE-LIGHT-PROPERTIES, except that it evaluates

its arguments.

26

9. Image and 2-D Properties

9.1. Image

Given a 3-D scene and a sensor (camera), a 2-D image can be generated. The 2-D image consists of

2-D regions, arcs and joints. See paragraph 3.6.5, page 11, for a definition of a 2-D image, and page

62 for a description of a 2-D image frame.

(IMAGE scene camera key (lights NIL) (image-name NIL) (merge-shadows T)) macro

Generates a 2-D image for the given scene, using the given camera. If no image-name is given for

the image, a name is automatically generated (e.g. image-1209). The complete 2-D representation

of the image is computed, including regions, arcs, joints, winged-edge relations and back pointers

to 3-D elements.

The generation of 3-D properties (back-face, shadow, illuminated) for the specified lights (if not

NIL) is also performed (as with the PROJECT-AND-BACK-PROJECT function, page 24).

merge-shadows specifies whether the cast-shadowed regions corresponding to different occluding

faces should be merged or not before back-projection to the faces of the scene.

(IMAGE* scene camera key (lights NIL) (image-name 'image)) function

IMAGE* is like IMAGE, except that it evaluates its arguments.

An image can be deleted using:

(DELETE-IMAGE image-name) macro

Deletes the image image-name, N4 ith all its joints, arcs, regions.

(DELETE-IMAGE* image-name) function

DELETE-IMAGE* is like DELETE-IMAGE, except that it evaluates its argument.

27

9.2. 2-D Properties

(PAINT-PROPERTY-ON-IMAGE image-name property-name) macro

Projects the 3-D areas corresponding to the property property-name onto the 2-D regions of the

image image-name. The property regions are first transformed using the camera that generated the

image, then clipped by the regions of the image. The 2-D properties are stored in the property-list

frames of the regions with the slot name image-name (see page 60: the format of a property-list

frame is identical in 2-D and 3-D). The property frames (see page 61) are automatically updated.

(PAINT-PROPERTY-ON-IMAGE* image-name property-name) function

PAINT-PROPERTY-ON-IMAGE* is like PAINT-PROPERTY-ON-IMAGE, except that it

evaluates its arguments.

28

10. Miscellaneous Functions and Variables

10.1. Functions dealing with Boundary representation

(PREVIOUS-EDGE edge face) function

Returns the edge that comes before edge on face.

(NEXT-EDGE edge face) function

Returns the edge that comes after edge on face.

(GET-VERTEX-LIST face) function

Returns the list of vertices of face. (The vertices are not ordered).

(GET-ORDERED-VERTICES face) function

Returns the ordered list of vertices of the outer boundary of face.

(GET-ALL-ORDERED-VERTICES face) function

Returns a list that contains the ordered lists of vertices of the boundaries of face (outer boundary

and hole boundaries).

(NEIGHBOR-FACES face) function

Returns the list of faces that have at least in edge in common withface.

(FACEL-EDGEL-OF-VERTEX vertex) function

Returns a list that contains the list of edges that have vertex as an end and the list of faces that have

vertex as a vertex.

(EDGE-LIST-OF-VERTEX vertex) function

Returns the list of edges that have vertex as an end.

29

10.2. Mathematical functions

(DEG) function

Sets the *angle-mode* variable to deg.

(RAD) function

Sets the *angle-mode* variable to rad.

ANGLE-MODE variable

Determines the unit (deg or rad) for the angles.

(SAVE-ANGLE-MODE) function

Saves the current *angle-node*. To be used in conjunction with the restore-angle-mode function.

(RESTORE-ANGLE-MODE) function

Sets the *angle-mode* to the value it had when calling save-angle-mode.

(DEG-TO-RAD deg-angle) function

Returns the value in radians of an angle in degrees.

(CROSS-PRODUCT vector1 vector2) function

Returns the cross-product vector of vectorl and vector2.

(DOT-PRODUCT vectorl vector2) function

Returns the dot-product of vectorl and vector2.

(LENGTH-OF-VECTOR vector) function

Returns the length (norm) of vector

(NORM-OF-VECTOR vector) function

30

Divides vector by its norm. Returns the normalized vector.

(ANGLE-BETWEEN-VECTORS vector] vector2 direction) function

Returns the angle in radians between vectorl and vector2. The vector direction determines the sign

of the angle.

(POINT-LINE-DISTANCE xyz line-xyz-1 line-xyz-2) function

Returns the orthogonal distance between a point and a line given by the coordinates of two points.

(HOMO-PROD &rest transf-matrices) function

Returns the matrix obtained by making the matrix-product of the specified transformation matrices.

10.3. Display functions

vantage-window is the default window where all the display actions take place. It has an active

region attached to it. When the LEFT mouse button is clicked any where inside the

vantage-window, the pop-up-menu system is invoked. (Figure 8).

Selection of an item will result in one the following:
" It will fire a particular function.

Ex: "Erase-Screen" will clear the vantage-window.

* Further pop-up-menus will show up.

Ex: "choose-body" will list all the solids defined and the chosen value will become the
default for the display system.

" It may ask for some input values.

Ex: "show-corres-frame" iisplays the following message. (Figure 9)

Please respond by clicking:

Complete description of the frame = Left-mouse-button

Only the Name = Middle-mouse-button

31

DISPLAY-CAMERA frame

Name of the frame that defines the camera used for display of a 3-D object. It is defined like any

other camera in vantage, and can be redefined at will. Its defa':!t definition is created by the

command:

(camera* 'display-camera '(3000 30000 3000)) which defines an orthogonal projection from

the point (3000 3000 3000) pointing to the origin (0 0 0).

(DRAW-BODY body-name) function

Draws the specified body on the vantage-window. The body-name stiould correspond :o the bour'd-

ary representation.

(DRAW-FACE face-name) function

Draws the specified face on the vantage-window.

(DRAW-EDGE edge-name) ",nction

Draws the specified edge on the vantage-window.

(DRAW-VERTEX vertex-name radius) function

Draws the specified vertex on the vantage-window.

(SHADE-FACEface-name) function

Shades the given face depending on the face normal.

(SHADE-POLYGON ink &rest lists) function

Shades a region given by the set -)f lists of vertices. The first one correspond to the)uter boundary

and the remaining ones are the holes.

(VERTEX-MATCH x-position y-position &optional close) function

Returns the nearest displayed vertex on the vantage-window with respect to the given x and y

positions. The current position of the mouse is stored in *mouse-x* and *mouse-y*. If more than

one vertex is encountered within the range given by close, it will return one of them.

32

(EDGE-MATCH x-position y-position &optional close) function

Returns the nearest displayed edge on the vantage-window with respect to the given x -'id y posi-

tions. If more than one edge is encountered within the range given by close, it will return one of

them.

(FACE-MATCH edgel edge2) fun, io

Returns the name of a face that has both edge] and edge2 as edges.

(FLASH-FACE face-name) function

Highlights or erases the existing highlight on the specified face. This is a very useful debugging

tool. Multiple calls to flash-face results in a blinking effect.

(FLASH-EDGE edge-name &optional width) function

Highlights or erases the existing highlight on Lhe specified edge. This s a very useful debugging

tool. Multiple calls to flash-edge results in a blinking effect.

(DRAW-IMAGE image-name) function

Draws the specified 2d-image on the vantage-window.

(DRAW-REGION region-name) function

Draws the specified 2d-region on the vantage-window.

(DRAW-ARC arc-name) function

Draws the specified 2d-arc on he vantage-window.

(DRAW-JOINT joint-name radius) function

Draws the specified 2d-joint on the vantage-window.

(SHOW-AXIS &optional length) function

Draws the current x, y and z axis on the screen.

33

CURRENT-BODY variable

Name of the last body that has been selected on the choose-body menu.

CURRENT-IMAGE variable

Name of the last image that has been selected on the choose-image menu.

(FIT-SCREEN &optional solid-name *current-body*) macro

Adjusts the display size so that the specified body is entirely inside the window.

(FIT-SCREEN* &optional solid-name *current-body*) function

FIT-SCREEN* is like FIT-SCREEN, except that it evaluates its argument.

(IMAGE-FIT-SCREEN &optional image-name *current-image*) macro

Adjusts the display size so that the specified image is entirely inside the window.

(IMAGE-FIT-SCREEN* &optional image-name *current-image*) function

IMAGE-FIT-SCREEN* is like IMAGE-FIT-SCREEN, except that it evaluates its argument.

(WINDOW-ZOOM) function

Redisplays the portion of the wirdow selected by two successive middle-mouse-button clicks. The

selected region will be enlarged to fit the vantage-window.

ZOOMF variable

Controls the scale of the image.

(ZOOM x) function

Changes the scaling factor of the display (variable *zoomf*). The current value is multiplied by x.

The value of x should be greater than 0.

DASH-LEVEL variable

Controls the length of the line segments used to draw dashed lines.

34

(DASH x) function

Changes the *dash-level* variable. The current value is multiplied by x. The value of x should be

greater than 0.

SHADE-LENGTH variable

Controls the vertical distance between two dots used for shading.

(SHADEL x) function

Changes the *shade-length* variable. The current value is multiplied by x. The value of x should

be greater than 0.

SHADE-WIDTH variable

Controls the horizontal distance between two dots used for shading.

(SHADEW x) function

Changes the *shade-width* variable. The current value is multiplied by x. The value of x should be

greater than 0.

(DISPLAY-SCENE scene sensor) macro

Displays the scene scene as seen from the sensor sensor, with hidden parts hidden. Just paints

polygons from back to front.

(DISPLAY-SCENE* scene sensor) function

DISPLAY-SCENE* is like DISPLAY-SCENE, except that it evaluates its arguments.

(DISPLAY-PROPERTY image property-name) macro

Displays and shades the property-regions of image for the property property-name.

(DISPLAY-PROPERTY* image property-name) function

DISPLAY-PROPERTY* is like DISPLAY-PROPERTY, except that it evaluates its arguments.

35

Appendix A

Primitive Solids

(csgnode primitive-i cub (100 200 150))

(csgnode primitive-2 cyl (50 200 7))

I surface z

-2 curves

(csgnode primitive-3 con (50 150 7))

-I surface

-I curve

36

(csgnode primitive-4 tru (100 50 150 7))

-1I surface

- 2 curves
z

(csgnode prirnitive-5 sph (80 5))

- I surface

xV

(csgnode primitive-6 iso (100 200 150))

xz

37

(csgnode primitive-7 rt (100 50 150))

z

(csgnode primitive-B 2.5p (150
(-20 -50) (50 -30)
(10 25) (30 80) (-25 70)))

z

(csgnode primitive-9 2.5c (150
(0 -70) (-20 -50) (50 -30)
(10 25) (30 80) (-25 70)))

z

38

Appendix B
Examples

This first example shows a lisp file which, when loaded, performs the following operations:

" generation of the CSG tree of an object (body]) from primitives

* creation of a boundary-representation of the object from the CSG tree

* display of the solid on the screen

" definition of a scene containing the object

" definition of a camera

" generation of an image of the scene using the camera

" display of the image on the screen

;; Save current angle unit (degrees or radians)
(save-angle-mode)

;; Set angle unit to degrees
(setq *angle-mode* 'deg)

;; Define csg representation for bodyl
(csgnode* 'bl 'cu '(500 300 111.5) :trans '(0 -68.1 49.25 0 0 0))
(csgnode* 'b2 'cyl '(120 450 10) :trans '(-130 6.9 6.5 0 0 -90))
(csgnode* 'b3 'mov 'b2 :trans ' (260 0 0 0 0 0))
(csgnode* 'b4 'cu ' (3000 3000 100) :trans ' (0 0 155 0 0 0))
(csgnode* 'b5 'uni ' (bl b2))
(csgnode* 'b6 'uni ' (b5 b3))
(csgnode* 'bodyl 'dif ' (b6 b4) :fast 'all)

;; Set the angle unit to its previous value
(restore-angle-mode)

;; Generate boundary representation for bodyl (called bodylz)
(boun-rep* 'bodyl)

;; Compute scaling and translation factors so that bodyl fits on
;; the display window, and draw bodyl. The camera is the current
;; "display-camera", which has a default definition, but which can be
;; redefined
(fit-screen* 'bodyl)

;; Define 3d scene
(scene* 'my-scene ' (bodyl))

;; Define a camera
(camera* 'caml ' (2000 1000 500) :focal 5)

;; Generate 2D description
(image* 'my-scene 'caml :image-name 'my-image)

;; Compute scaling and translation factors so that my-image fits on
the display window, and draw my-image

(image-fit-screen* 'my-image)

39

This second example shows an interactive session in which operations similar to the ones of the

previous example are performed, plus the following operations:

" definition of a light-source

" generation of the 3D properties of the scene for the light-source

" generation of the 2D prope-ties of the image by projection of the 3D properties of the
scene

* display of the 2D property regions

Figures B-1 and B-2 show the resulting image and the property-regions associated with the light-

source.

40

> (csgnode al cu (100 100 100))
Al
> (csgnode a2 cu (80 80 200))
A2
> (csgnode a3 cu (80 200 80))
A3
> (csgnode a4 cu (200 80 80))
A4
> (csgnode a5 dif (al a2))
A5
> (csgnode a6 dif (a5 a3))
A6
> (csgnode a7 dif (a6 a4) :fast all)
A7
> (csgnode ground cu (1000 1000 10) :trans (0 0 -100 0 0 0))
GROUND
> (boun-rep a7)
A7
> (boun-rep ground)
GROUND
> (scene sl (a7 ground))
Sl
> (camera cl (300 -200 450) :focal 1)
Ci
> (light-source 11 (-200 300 450) :focal 1)
Li
> (image sl cl :lights (11) :image-name il :merge-shadows nil)
Ii
> (image-fit-screen il)
Ii
> (paint-property-on-image il back-li)
BACK-Li
> (paint-property-on-image il occluded-li)
OCCLUDED-Li
> (paint-property-on-image il visible-li)
VISIBLE-Li
> (merge-light-properties sl 11)
Li
> (paint-property-on-image il occluded-li)
OCCLUDED-Li
> (display-property il back-li)
BACK-Li
> (display-property il split-occluded-li)
SPLIT-OCCLUDED-Li
> (display-property il occluded-li)
OCCLUDED-Li
> (display-property il visible-li)
VISIBLE-Li

41

Figure B-i: Image i 1, plain and with shadows (after window-zooming)

back-11 split-occluded-Il occluded-Il visible-Il

Figure B-2: 11 property- regions projected on i I

42

Appendix C
Standard Frames

The next pages give the definition of the frames used in VANTAGE. For each type of frame, the

corresponding slots are listed, along with a brief description of each. Optional slots are marked with

a 'i"

43

CSG-NODE

Description: Representation of a CSG-node.

Frame:

(CSG-NODE-NAME
(is-a)
(class)
(type)
(parameters)
(rigid-motion)
(node-used-by-list)
(boundary-rep)
(group-approximate)
(merge)

* (node-left)
* (node-right)
* (fast)
* (surface-list)
* (curve-list))

Slots:

is-a
Value: csg-node.

class
Value: either primitive, or operation.
Specifies whether the node is a leaf-node (primitive solid) or results from an
operation performed on its child node(s).

type
Value: either a primitive type (e.g. cube. cylinder, cyl, etc.) or an operation
name (e.g. union, dif, move, mir, etc.).
This slot specifies the type of primitive or the type of operation the node cor-
responds to.

parameters
Value: List of float numbers.
For a primitive solid, the parameters that define it.

rigid-motion
Value: motion-matrix.
Defines the coordinate system attached to the node.

node-used-by-list
Value: list of csg-nodes.
The list contains the csg-nodes that are defined using the current node, i.e. the
parent nodes of the node in the csg-tree.

boundary-rep
Value: 3d-body.
Inverse: body-csg-node.
Points to the boundary-representation of the body defined by the node.

44

group-approximate
Value: T.
Is T when the grouping of the approximated faces and edges has been done.

merge
Value: T.
Is T when some faces have been merged.

node-left
Value: CSG-NODE.
For a solid that results from an operation, the left child of the node.

node-right
Value: CSG-NODE.
For a solid that results from an operation, the right child of the node.

fast
Value: T.
When it is T, then the boundary representation of the child nodes of the node
will not be copied/saved before performing on them the operation that will
create the bou-dary representation of the node.

surface-list
Value: list of surfaces.
List of the non-planar surfaces contained in the body.

curve-list
Value: list of curves.
List of the non-linear curves contained in the body.

45

3D-BODY

Description: Representation of a solid or body.

Frame:

(3D-BODY-NAME
(is-a)
(body-csg-node)
(body-rigid-motion)
(body-face-list)
(body-edge-list)
(body-vertex-list)
(body-cfg-list)

* (body-app-grouped-faces)
* (body-app-grouped-edges)
* (body-merged-faces))

Slots:

is-a
Value: 3d-body.

body-csg-node
Value: csg-node.
Inverse: boundary-rep
Points to the csg-node that defines the body.

body-rigid-motion
Value: motior.-matrix.
The transformation gives the location of the current body-coordinates frame in
the world-coordinates.

body-face-list
Value: list of 3d-faces.
Inverse: face-body.
Lists all the faces of the body.

body-edge-list
Value: list of 3d-edges.
Inverse: edge-body.
Lists all the edges of the body.

body-vertex-list
Value: list of 3d-vertices.
Inverse: vertex-body.
Lists all the vertices of the body.

body-cfg-list
Value: list of ists of 3d-faces.
Lists all the ciosed groups of connected faces (cfg) of the body.

body-app-grouped- faces
Value: list of 3d-faces.
Lists all the faces of the body that have been obtained by grouping a set of

46

connected faces that approximate a same surfac.

body-app-grouped-edges
Value: list of 3d-edg,'s.
Lists all the edges of the body that have been obtained by grouping a set of
connected edges that approximate a same curve.

body-merged-faces
Value: list of 3d-faces.
Lists all the faces of the body that have been obtained by merging connected
faces.

47

3D-FACE

Description: Representation of a face of a body.

Frame:

(3D-FACE-NAME
(is-a)
(face-body)
(face-type)
(face-geometry)
(out-boun-list)
(hole-boun-list)

* (face-surface)
* (face-class)
* (face-parent)
* (face-subdivision)
* (face-children)
* (face-properties)
* (app-grouped-out-boun-list)
* (app-grouped-hole-boun-list))

Slots:

is-a
Value: 3d-face.

face-body
Value: 3d-body.
Inverse: body-face-list.
Points to the 3d-body that contains the face.

face-type
Value: either plane, cyl, sph, con
Gives the type of the surface that contains the face.

face-geometry
Value: list of parameters.
For a planar face, lists the coordinates of the normal vector of the face and the
orthogonal distance between the face and the origin.

out-boun-list
Value: list of lists of 3d-edges.
Lists the outer boundaries of the face. For a p: 'nar face, there is only one outer-
boundary.

hole-boun-list
Value: list of lists of 3d-edges.
Lists the boundaries of the holes of the face.

face-surface
Value: surface.
Points to the surface that contains the face.

48

face-class
Value: either global, app, or merge.
Indicates whether and how this face was combined with other faces to generate
a parent face. A global face has no parent face. An app face has a parent face
obtained by grouping a set of connected faces that approximate a same surface.
A merge face has a parent face obtained by merging a set of connected faces.

face-parent
Value: 3d-face.
Inverse: face-children.
Points to the parent face of this face.

face-subdivision
Value: either merge or app.
Indicates whether and how this face is divided into children faces. It is app if
the face was obtained by grouping a set of connected faces that approximate a
same surface. It is merge if the face was obtained by merging a set of con-
nected faces.

face-children
Value: list of 3d-faces.
Inverse: face-parent.
Points to the list of faces that generated this face.

face-properties
Value: property-list.
Points to the frame that lists the properties of the face.

app-grouped-out-boun-list
Value: list of lists of 3d-edges.
Lists the outer boundaries of the face, replacing every set of connected ap-
proximated edges by their parent edge.

app-grouped-hole-boun-list
Value: list of lists of 3d-edges.
Lists the boundaries of the holes of the face, replacing every set of connected
approximated edges by their parent edge.

49

3D-EDGE

Description: Representation of an edge of a body.

Frame:

(3D-EDGE-NAME
(is-a)
(edge-body)
(edge-type)
(p-face)
(n-face)
(pew)
(nccw)
(pccw)
(ncw)
(p-vertex)
(n-vertex)

* (edge-curve)
* (edge-kind)
* (edge-class)
* (edge-parent)
* (edge-subdivision)
* (edge-children)
* (app-grouped-p-face)
* (app-grouped-n-face)
* (app-grouped-pcw)
* (app-grouped-nccw)
* (app-grouped-pccw)
* (app-grouped-ncw))

Slots:

is-a
Value: 3d-edge.

edge-body
Value: 3d-body.
Inverse: body-edge-list.
Points to the 3d body that contains the edge.

edge-type
Value: either line, cir, or any combination of 2 surfaces chosen among plane,
cyl, con, sph (e.g. plane-cyl, con-con, cyl-sph, etc).
Gives the type of the curve that contains the edge, or the types of the 2 surfaces
whose intersection contains the edge.

p-face
Value: 3d-face.
Points to the p-face in the winged-edge representation of this edge.

n-face
Value: 3d-face.
Points to the n-face in the winged-edge representation of this edge.

50

pcw
Value: 3d-edge.
Points to the pcw-edge in the winged-edge representation of this edge.

nccw
Value: 3d-edge.
Points to the nccw-edge in the winged-edge representation of this edge.

pccw
Value: 3d-edge.
Points to the pccw-edge in the winged-edge representation of this edge.

new
Value: 3d-edge.
Points to the ncw-edge in the winged-edge representation of this edge.

p-vertex
Value: 3d-vertex.
Points to the p-vertex in the winged-edge representation of this edge.

n-vertex
Value: 3d-vertex.
Points to the n-vertex in the winged-edge representation of this edge.

edge-curve
Value: curve.
Points to the curve that contains the edge.

edge-kind
Value: aux.
aux indicates that the edge is an auxiliary edge which divides a curved surface
into auxiliary planar surfaces for the purpose of approximation.

edge-class
Value: either global or app.
Indicates whether this face was combined with other faces to generate a parent
face. A global edge has no parent edge. An app face has a parent face obtained
by grouping a set of connected faces that approximate a same curve.

edge-parent
Value: 3d-edge.
Inverse: edge-children.
Points to the parent edge of this edge.

edge-subdivision
Value: app.
This slot indicates whether this edge is divided into children edges. It is app if
the edge was obtained by grouping a set of connected edges that approximate a
same curve.

edge-children
Value: list of 3d-edges.
Inverse: edge-parent.
Points to the list of edges that generated this edge.

app-grouped-p-face
Value: 3d-face.
Parent-face o- the p-face of the edge.

app-grouped-n-face
Value: 3d-face.
Parent-face of the n-face of the edge.

51

app-grouped-pcw
Value: 3d-edge.
Parent-edge of the pcw-edge of the edge.

app-grouped-nccw
Value: 3d-edge.
Parent-edge of the nccw-edge of the edge.

app-grouped-pccw
Value: 3d-edge.
Parent-edge of the pccw-edge of the edge.

app-grouped-ncw
Value: 3d-edge.
Parent-edge of the ncw-edge of the edge.

PCw P-Face A
PCCw

NCCW NCW

Fiur0- N-Face rpst i

Figure C-1: Winged-edge representation

52

3D-VERTEX

Description: Representation of a vertex of a body.

Frame:

(3D-VERTEX-NAME
(is-a)
(vertex-body)
(one-of-the-edges)
(xyz-values)

* (display-xy))

Slots:

is-a
Value: 3d-vertex.

vertex-body
Value: 3d-body.
Inverse: body-vertex-list.
Points to the 3d body that contains the vertex.

one-of-the-edges
Value: 3d-edge.
Points to one of the 3d edges that have this point as an end point.

xyz-values
Value: list of three float numbers.
Gives the list (x-coordinate, y-coordinate, z-coordinate) of the vertex with
respect to the body coordinates.

display-xy
Value: list of two integers.
Gives the coordinates of the vertex with respect to the screen coordinates.

53

MOTION-MATRIX

Description: Representation of a motion matrix.

Frame:

(MOTION-MATRIX-NAME
(is-a)
(matrix-name)
(first-row)
(second-row)
(third-row))

Slots:

is-a
Value: motion-matrix.

matrix-name
Value: array (3 4) of float numbers.
Points to the matrix, defined by the make-array function.

first-row
Value: list of 4 float numbers.
Lists the elements of the first row of the matrix.

second-row
Value: list of 4 float numbers.
Lists the elements of the second row of the matrix.

third-row
Value: list of 4 float numbers.
Lists the elements of the third row of the matrix.

54

SURFACEl

Description: Definition of a surface.

Frame:

(SURFACE-NAME
(is-a)
(type)
(parameters)
(rigid-motion))

or:

(SURFACE-NAME
(is-a)
(type)
(move)
(rigid-motion))

or:

(SURFACE-NAME
(is-a)
(type)
(mirror)
(mirror-plane)
(rigid-motion))

Slots:

is-a
Value: surface.

type
Value: either cyl, con, or sph.
Geometric type of the surface.

parameters
Value: list of float numbers defining the surface.
The list contains the radius for a cylinder and a sphere, and a radius and a
height for a cone.

rigid-motion
Value: motion-matrix.
The motion-matrix gives either the position of the surface in the world coor-
dinates frame, or, when the move or mirror slot exists, the transformation to
apply to the specified surface.

move
Value: surfac2.
If specified, indicates that the surface is obtained by applying the specified
rigid-motion to the specified surface.

55

mirror
Value: surface.
If specified, indicates that the surface is obtained by applying the specified
mirror operation to the specified surface, and then by applying the specified
rigid-motion.

mirror-plane
Value: list of 4 float numbers.
Defines the mirror plane by listing the coordinates of its normal vector and the
orthogonal distance between the plane and the origin.

56

CURVE

Description: Definition of a curve

Frame:

(CURVE-NAME
(is-a)
(type)
(parameters)
(rigid-motion)
(inter))

or:

(CURVE-NAME
(is-a)
(type)
(move)
(rigid-motion))

or:

(CURVE-NAME
(is-a)
(type)
(mirror)
(mirror-plane)
(rigid-motion))

Slots:

is-a
Value: curve.

type
Value: either cir or any combination of 2 surfaces chosen among plane, cyl,
con, sph (e.g. plane-cyl, con-con, cyl-sph, etc).
Gives the type of the curve, or the types of the 2 surfaces whose intersection
generate the curve.

parameters
Value: list of float numbers defining the curve.
When the type of the curve is cir, it lists the radius and elevation (z-coordinate)
of the curve.

rigid-motion
Value: motion-matrix.
The motion-matrix gives either the position of the curve in the world coor-
dinates frame, or, when the move or mirror slot exists, the transformation to
apply to the specified curve.

move
Value: curve.

57

If specified, indicates that the curve is obtained by applying the specified rigid-
motion to the specified curve.

mirror
Value: curve.
If specified, indicates that the curve is obtained by applying the specified mirror
operation to -he specified curve, and then by applying the specified rigid-
motion.

mirror-plane
Value: list of 4 float numbers.
Defines the mirror plane by listing the coordinates of its normal vector and the
orthogonal distance between the plane and the origin.

inter
Value: list containing 2 surfaces or one surface and one plane.
Points to the 2 surfaces whose intersection defines the curve. If one surface is a
plane, it is specified by a list containing the coordinates of its normal vector and
the orthogonai distance between the plane and the origin.

58

3D-SCENE

Description: Definition of a 3d scene.

Frame:

(3D-SCENE-NAME
(is-a)
(csg-node-list)
(light-list)
(x-rnax)
(y-max)
(z-m ax)
(x-min)
(y-min)
(z-m in))

Slots:

is-a
Value: 3d-scene.

csg-node-list
Value:, list of csg-nodes.
Lists the bodies that are in the scene.

light-list
Value: list of sensors.
Lists the lig'tt-sources that have been used in the scene.

x-max, y-max, z-mnax, x-mnin, y-min, z-min
Value: float numbers.
Maximum and minimum x, y, z coordinates of the scene.

59

SENSORJ

Description: Definition of a sensor.

Frame:

(SENSOR-NAME
(is-a)
(type)
(parameters)
(rigid-motion)

* (focal-length)
* (limit-angle))

Slots:

is-a
Value: sensor.

type
Value: either camera or light.

rigid-motion
Value: rigid-motion Defines the frame of coordinates of the sensor. The z-axis
of this frame is the "viewing" direction, pointing from the object to the sensor.

parameters
Value: list of 6 float numbers.
Lists the parameters (x y z roll pitch yaw) that define the frame of coordinates
of the sensor.

focal
Value: float number.
Focal-length of the sensor. Gives the distance between the projection-plane and
the sensor. For a light-source, no specified focal-length means a parallel light-
source, whereas a specified focal-length corresponds to a perspective light-
source.

limit-angle
Value: float number, or NIL.
Maximum angle (in degrees) between the normal of a face and the projection
direction, for which the face is visible. NIL corresponds to a limit-angle of 90
degrees.

60

PROPERTY-LISTI

Description: Representation of properties for a particular 3D face or 2D region.

Frame:

(PROPERTY-LIST-NAME
(is-a)
(property-i)
(property-2)

Slots:

is-a
Value: property-list.

property-], property-2, etc.
Each slot represents a different property specified by the name of the slot.
Value: list of polygons, where a polygon is a list of boundaries (outer, then
hole(s)), and where a boundary is a list of vertices (each one represented by a
list containing its x and y coordinates (in 2-D), or x, y and z coordinates (3-D)),
orT.
Defines the region(s) of the face where the property applies. If T, the property
applies to the whole face

61

PR(OPERTY

Description: Each property frame has a name that is the name of a property (e.g. occluded-LI), and

lists the 3-D faces and the 2-D regions that have that property.

Frame:

(PROPERTY-NAME
(is-a)
(3d-faces)
(2d-regions))

Slots:

is-a
Value: property.

3d-faces
Value: list of faces (in one or several scene(s)) that have the property.

2d-regions
Value: list of regions (in one or several image(s)) that have the property.

62

2D-IMAGE

Description: Definition of a 2d-image.

Frame:

(2D-IMAGE-NAME
(is-a)
(image-3d-scene)
(image-camera)
(image-light-source-list)
(image-region-list)
(image-arc-list)
(image-joint-list)
(image-bounding-box))

Slots:
is-a

Value: 2d-image.

image-3d-scene
Value: 3d-scene.
Specifies the 3d scene that is projected on the image.

image-camera
Value: sensor.
Specifies the camera that is used to generate the image.

image-region-list
Value: list of 2d-regions.
Inverse: region-image.
Lists all the regions of the image that result from the projection of a 3d-face.

image-arc-list
Value: list of 2d-arcs.
Inverse: arc-image.
Lists all the arcs (line-segments) of the image.

image-joint-list
Value: list of 2d-joints.
Inverse: joint-image.
Lists all the joints (vertices) of the image.

image-bounding-box
Value: list of 4 float numbers.
Lists the minimum and maximum coordinates of the image (x-min y-min x-max
y-max).

63

2D-REGION

Description: Representation of a region of a 2d-image

Frame:

(2D-REGION-NAME
(is-a)
(region-image)
(3d-face)
(region-bounding-box)
(region-out-boun-list)
(region-hole-boun-list)

* (region-properties))

Slots:

is-a
Value: 2d-region.

region-image
Value: 2d-image.
Inverse: image-region-list.
Points to the 2d-image that contains the region.

3d-face
Value: 3d-face.
Points to the 3d-face that generated the region.

region-bounding-box
Value: list of 4 float numbers.
Lists the minimum and maximum coordinates of the region on the image (x-min
y-min x-max y-max).

region-out-boun-list
Value: list of 2d-arcs.
Lists the outer boundary of the region.

region-hole-boun-list
Value: list of lists of 2d-arcs.
Lists the boundaries of the holes of the region.

region-properties
Value: property-list.
Points to the frame that lists the properties of the region.

64

2D-ARC

Description: Representation of an arc of a 2d-image.

Frame:

(2D-ARC-NAME
(is-a)
(arc-image)
(3d-edge)
(p-joint)
(n-joint)
(p-region)
(n-region)
(pcw)
(nccw)
(pccw)
(ncw))

Slots:
is-a

Value: 2d-arc.

arc-image
Value: 2d-image.
Inverse: image-arc-list.
Points to the 2d image that contains the arc.

3d-edge
Value: 3d-edge.
Points to the 3d-edge that generated the arc.

p-joint
Value: 2d-joint.
Points to the p-joint in the winged-edge representation of this arc.

n-joint
Value: 2d-joint.
Points to the n-joint in the winged-edge representation of this arc.

p-region
Value: 2d-region.
Points to the p-region in the winged-edge representation of this arc.

n-region
Value: 2d-region.
Points to the n-region in the winged-edge representation of this arc.

pcw
Value: 2d-arc.
Points to the pcw-arc in the winged-edge representation of this arc.

nccw
Value: 2d-arc.
Points to the nccw-arc in the winged-edge representation of this arc.

65

pccw
Value: 2d-arc.
Points to the pccw-arc in the winged-edge representation of this arc.

new
Value: 2d-arc.
Points to the ncw-arc in the winged-edge representation of this arc.

66

2D-JOINT

Description: Representation of a joint of an image.

Frame:

(2D-JOINT-NAME
(is-a)
(joint-image)
(x)
(y)

* (3d-vertex-list)
* (display-xy))

Slots:

is-a
Value: 2d-joint.

joint-image
Value: 2d-image.
Inverse: image-joint-list.
Specifies the 2d-image that contains the joint.

x
Value: float number.
Gives the x-coordinate of the joint with respect to the camera coordinates.

y
Value: float number.
Gives the y-coordinate of the joint with respect to the camera coordinates.

3d-vertex-list
Value: list of 3d-vertices.
Specifies the 3d-vertex or 3d-vertices that generated the jc int.

display-xy
Value: list of two integers.
Gives the coordinates of the joint with respect to the screen coordinates.

67

Appendix D
Framekit+ functions

FRAMEKIT is a frame-based knowledge representation, written in COMMON LISP, that provides the

basic mechanisms of frames, inheritance, demons and views. It has been developed by Center for

Machine Translation, Carnegie Mellon University. This section explains briefly some of the impor-

tant and heavily used FRAMEKIT functions. This is by no means a complete description.

[Warning::Some of the key word arguments to the functions and the like are omitted here.]

The users are advised to go through the separate document titled "The FRAMEKIT User's

Guide".

D.1. Frames

A frame is a multi-level data structure, much like a record structure in traditional programming

languages, that is used to store information used by COMMON LISP programs. A large collection of

frames is sometimes called a knowledge base. Because frames also support demons and inheritance

they are particularly useful for representing the knowledge in AI programs.

Frames are abstract data types comprised of slots, facets, views and fillers. Each frame can have

any number of slots . Each slot can have any number of facets , and each facet can have any number

of views and each view can have any number of fillers . Frames differ from traditional record

structures in that slots, facets and views can be allocated and removed at run time. There are some

facets that are pre-defined by FRAMEKIT to handle demons and inheritance.

The general structure of a frame is as follows.

(Fy. ameName
(SlotName (VALUF (VIEW list-of-values)

(VIEW list-of-values))
(IF-ADDED demon-list)
(IF-NEEDED demon-list)
(IF-ERASED demon-list)
(IF-ACCESSED demon-list)
(RESTRICTIONS predicate-list)
(DEFAULT list-of-values)

(user-defined)
(..

(SlotName)

68

Please refer to FRAMEKIT manual for the complete syntax.

D.2. Frame creation

(CREATE-FRAME frame) functiun

The argument to CREATE-FRAME must be a symbol. The symbol is checked to see if a frame of

that name already exists; if not, a new frame is created and added to *FRAME-LIST*. The frame

name is returned if the creation took place, otherwise NIL is returned.

(CREATE-SLOTframe slot) function

If the frame already exists, CREATE-SLOT checks to see if the slot is already present; if not, a new

slot is created. If the frame doesn't exist, it will either automatically create the frame or print a

warning message. The slot name is returned if a new slot is created; otherwise NIL is returned.

(CREATE-FACETframe sot facet) function

If the frame and slot already exist, CREATE-FACET checks to see if the facet is already present; if

not, a new facet is created. If either tne frame or the slot doesn't exist, it will either automatically

create them or print a warning message. The facet name is returned if a new facet is created;

otherwise NIL is returned.

Examples:

> (create-frame 'dog)
> (create-slot 'dog 'weight)
> (create-facet 'tiger 'weight 'value)
> (create-facet 'cat 'race 'if-needed)

(MAKE-FRAMEframe-name &restfullframe) macro

MAKE-FRAME is a macro for defining frames in a file or at the isp top-level. The first argument

is interpreted as the name of the frame to create; the rest of the arguments are interpreted as fully-

specified slot definitions. The frame name is returned. For example:

> (make-frame my-frame
(slotl (facetl (viewl filler-listl)

(view2 filler-list2))

69

(facet2 (view3 filler-list2)))
(slot2 (facet3 (view4 filler-list3))

(facet4 (viewl filler-list4))))

my-frame

Any number of slots may be defined, each with any number of facets. Each facet may contain any

number of views, each with any number of fillers.

(MAKE-FRAME* frame-name fullframe) function

MAKE-FRAME* is like MAKE-FRAME, except that it evaluates it arguments, and the slot defini-

tions must be specified as a single list.

(MK-FRAME frame-name &restfullframe) macro

MK-FRAME is another macro for defining frames in a file or at the Lisp top-level; unlike MAKE-

FRAME, MK-FRAME accepts slot definitions in abbreviated form:

(mk-frame my-frame2
(slotl value-listl)
(slot2 value-list2)

(slotn value-listn))

Each filler is placed in the COMMON view of the VALUE facet of the specified slot.

(MK-FRA ME* frame-name &restfullframe) function

MK-FRAME* is like MK-FRAME, except that it evaluates it arguments, and the slot definitions

must be specified as a single list.

D.3. Update Functions

(ADD-VALUEframe slot filler) function

Adds a filler to the VALUE facet in the specified slot, unless that filler already exists.

(ADD-VALUES frame slot filler- list) function

ADD-VALUES is just like ADD-VALUE, except that it accepts a list of fillers to add to the

70

VALUE facet all at once.

(ADD-FILLER frame slot facet filler) function

Similar to ADD-VALUE but operates on the specified facet instead of the VALUE facet.

(ADD-FILLERS frame slot facet filler-list) function

Similar to ADD-VALUES but operates on the specified facet instead of the VALUE facet.

(ERASE-VALUES frame slot) function

Erases all the fillers of the VALUE facet of the specified slot.

(ERASE-FILLER frame slot facet filler) function

Removes the given filler from the specified facet of the slot.

(ERASE-FACET frame slot facet) function

Deletes the named FACET from the named SLOT of the frame.

(ERASE-SLOT frame slot) function

The given SLOT is removed from the frame. If the slot is a relation, the inverse link will be erased

in the corresponding frame.

(ERASE-FRAME frame) function

The frame is erased, by erasing slots one by one (thus eliminating any inverse links and then

erasing the frame itself). Returns nil.

(ERASE-FRAMESframe-lisi) function

ERASE-FRAME is applied on each element of the frame-list.

(REPLACE-VALUE frame slot filler) function

A composition of ERASE-VALUES and ADD-VALUE. Erases the VALUE facet fillers for the

specified view, and adds the given filler to the VALUE facet.

71

(REPLACE-FILLER frame slot facet filler) function

A composition of ERASE-FILLER and ADD-FILLER. Erases the facet fillers and adds the given

filler to that facet.

Examples:

> (add-filler 'edgel23 'pcw 'value 'edge86)
> (add-value 'dog 'color 'white)
> (replace-value 'dog 'color 'brown)
> (erase-values 'dog 'color)
> (erase-facet 'dog 'race 'if-needed)
> (erase-slot 'edgel23 'pcw)
> (erase-frame 'dog)

D.4. Access Functions

(GET-VALUES frame slot) function

Returns a list of fillers of the VALUE facet in the specified slot.

(GET-FILLERSframe-name slot facet) function

Returns a list of fillers of the specified facet.

(SLOT-NAMES frame) function

Returns a list containing the names of the slots in the specified frame.

(FACET-NAMES frame slot) function

Returns a list containing the names of the facets in the specified slot.

D.5. Miscellaneous Functiens and Variables

(FRAME-Pframe) function

Returns the frame name if it exists otherwise nil.

FRAME-LIST variable

72

When FRAMEKIT creates a frame, its name is added to *FRAME-LIST*. When a frame is erased,

it is removed from *FRAME-LIST*. The order of the frames in *FRAME-LIST* indicates from

left to right the order in which they were created.

FKTRACE variable

If *FKTRACE* is non-NIL, FRAMEKIT will print trace information concerning each FRAMEKIT

action that is evaluated. Although this results in a lot of output, it is useful for debugging purposes,

since operations that are not always evident to the user like demon invocation and automatic

structure creation) become visible when tracing is enabled. Initial value is NIL.

FKWARN variable

If *FKWARN* is non-NIL, FRAMEKIT will inform the user about warning conditi-ns that are

non-fatal, but require some user notification (e.g., trying to add a filler to a facet whet at filler is

already present). Initial value is nil.

!FRAME, !SLOT, !FACET and !FILLER are the special variables which store the current frame,

slot, facet and filler respectively at the time a demon mechanism is invoked. They can be used by

the functions fired at that moment.

73

Index

ANGI.E-MODE Variable 29 Cube primitive 14

CURRENT-BODY Variable 33 CURVE Frame 56
CURRENT-IMAGE Variable 33 Curve
DASH-LEVEL Variable 33 Approximation 8
FKTRACE Variable 72 CYLINDER primitive 14
FKWARN Variable 72
FRAME-LIST Variable 71 DASH Function 34
SHADE-LENGTH Variable 34 DEG Function 29
SHADE-WIDTH Variable 34 DEG-TO-RAD Function 29
ZOOMF Variable 33 Degree 29

DELETE-BOUN-REP Macro 21
2-D Property 27 DELETE-BOUN-REP* Function 21
2.5-CONEprimitive 14 DELETE-CSG-NODE Macro 18
2.5-PRISM primitive 14 DELETE-CSG-NODE* Function 19
2D-ARC Frame 64 DELETE-IMAGE Macro 26
2D-IMAGE Frame 62 DELETE-IMAGE* Function 26
2D-JOINT Frame 66 DESCRIBE-CSG-NODE Macro 19
2D-REGION Frame 63 DESCRIBE-CSG-NODE* Function 19

DESCRIBE-CSG-NODES Function 19
3-D Property 24 Display
3D Macro 20 DISPLAY-CAMERA 31
3D'Function 21 DISPLAY-CAMFRA Frame 31
3D-BODY Frame 45 DISPLAY-PROPERTY Macro 34
3D-EDGE Frame 49 DISPLAY-PROPERTY* Function 34
3D-FACE Frame 47 DISPLAY-SCENE Macro 34
3D-Hierardiical Structure DSPLAY-SCENE* Function 34

Definition 2 DOT-PRODUCT Function 29
3D-SCENE Frame 58 DRAW-ARC Function 32
3D-STRUCTURE Macro 20 DRAW-BODY Function 31
3D-STRUCTURE* Function 20 DRAW-EDGE Function 31
3D-VERTEX Frame 52 DRAW-FACE Function 31

DRAW-IMAGE Function 32
ADD-FILLER Function 70 DRAW-JOINT Function 32
ADD-FILLERS Function 70 DRAW-REGION Function 32
ADD-VALUE Function 69 DRAW-VERTEX Function 31
ADD-VALUES Function 69
Angle 15,29 EDGE-LIST-OF-VERTEX Function 28
ANGLE-BETWEEN-VECTORS Function 30 EDGE-MATCH Function 32

ERASE-FACET Function 70
Boolean Operation ER ASE-FILLER Function 70

Definition 2 ERASE-FRAME Function 70
BOUN-REP Macro 20 ERASE-FRAMES Function 70
BOUN-REP' Function 20 ERASE-SLOT Function 70
Boundary Representation ERASE-VALUES Function 70

Definition 2
FACE-MATCH Functi, 32

CAMERA Macro 22 FACEL-EDGEI.-OF-VERTEX Function 28
Camera 22 Facet 67

DISPLAY-CAMERA 31 FACET-NAMES Function 71
Frame 59 Filler 67
Rotate 23 FIT-SCREEN lacro 33

CAMERA* Function 22 FIT-SCREEN* Function 33
CONE primitive 14 FLASH-EDGE Function 32
CREATE-FACET Function 68 FLASH-FACE Function 32
CREATE-FRAME Function 68 Frame 67
CREATE-SLOT Function 68 2D-ARC 64
CROSS-PRODUCT Function 29 2D-IMAGE 62
CSG-Defition 2D-JOINT 66

Definition 2 2D-REGION 63
CSG-NODE Frame 43 3D-BODY 45
CSG-TREE Function 19 3D-EDGE 49
CSGNODE Macro 14, 15, 17, 18 3D-FACE 47
CSGNODE* Function 14, 15, 17, 18 3D-SCENE 58

74

3D-VERTEX 52 SCENE* 24
CSG-NODE 43 SHADE-FACE 31
CURVE 56 SHADE-POLYGON 31
MOTION-MATRIX 53 SHADEL 34
PROPERTY 61 SHADEW 34
PROPERTY-LIST 60 SHOW-AXIS 32
SENSOR 59 VERTEX-MATCH 31
SURFACE 54 WINDOW-ZOOM 33

FRAME-P Function 71 ZOOM 33
Function Function Framekit

3D* 21 ADD-FILLER 70
3D-STRUCTURE* 20 ADD-FILLERS 70
ANGLE-BETWEEN-VECTORS 30 ADD-VALUE 69
BOUN-REP* 20 ADD-VALUES 69
CAMERA* 22 CREATE-FACET 68
CROSS-PRODUCT 29 CREATE-FRAME 68
CSG-TREE 19 CREATE-SLOT 68
CSGNODE* 14, 15, 17.18 ERASE-FACET 70
DASH 34 ERASE-FILLER 70
DEG 29 ERASE-FRAME 70
DEG-TO-RAD 29 ERASE-FRAMES 70
DELETE-BOUN-REP* 21 ERASE-SLOT 70
DELETE-CSG-NCDE* 19 ERASE-VALUES 70
DELETE-IMAGE* 26 FACET-NAMES 71
DESCRIBE-CSG-NODE* 19 FRAME-P 71
LE>SCRIBE-CSG-NODES 19 GET-FILLERS 71
DISPLAY-PROPERTY* 34 GET-VALUES 71
DISPLAY-SCENE* 34 MAKE-FRAME 68
DOT-PRODUCT 29 MAKE-FRAME* 69
DRAW-ARC 32 MK-FRAME 69
DRAW-BODY 31 MK-FRAME* 69
DRAW-EDGE 31 REPLACE-FILLER 71
DRAW-FACE 31 REPLACE-VALUE 70
DRAW-IMAGE 32 SLOT-NAMES 71
DRAW-JOINT 32
DRAW-REGION 32 GET-ALL-ORDERED-VERTICES Function 28
DRAW-VERTEX 31 GET-FILLERS Function 71
EDGE-LIST-OF-VERTEX 28 GET-ORDERED-VERTICES Function 28
EDGE-MATCH 32 GET-VALUES Function 71
FACE-MATCH 32 GET-VERTEX-LIST Function 28
FACEL-EDGEL-OF-VERTEX 28
FIT-SCREEN* 33 HOMO-PROD Function 30
FLASH-EDGE 32
FLASH-FACE 32 IMAGE macro 26
GET-ALL-ORDERED-VERTICES 28 Image 26
GET-ORDERED-VERTICES 28 IMAGE* Fvmction 26
GET-VERTEX-LIST 28 IMAGE-FIT-SCREEN Macro 33
HOMO-PROD 30 IMAGE-FIT-SCREEN* Function 33
IMAGE" 26 ISO-PRISM primit.ve 14
IMAGE-FIT-SCREEN* 33
LENGTH OF-VECTOR 29 LE,NCTH-OF-VECTOR Function 29
LIGHT-SOURCE0 22 LIGHT-SOURCE Macro 22
MAKE-SENSOR-COMPONENT 22 Light-source 22
MFRGE-LIGHT-PROPERTIES* 25 Frame 59
MK-COMBINED-TRANSFOR- IATION* 17 LIGHT-SOURCE* Function 22
MK-MOTION-MATRIX 16
MK-ROTATION* 16 Macro
MK-TRANSLATION* 16 3D 20
MOVE-CSG-NODE* 16 3D-STRUCTLURE 25
NEIGHBOR-FACES 28 BOUN-REP 20
NEXT-EDGE 28 CAMERA 22
NORM-OF-VECTOR 29 CSGNODE 14, 15, 17, 18
PAINT-PROPERTY-ON IMAGE* 27 DELETE-BOUN-REP 21
POINT-LINE-DISTAN% • 30 DELETE-CSG-NODE 18
PREVIOUS-EDGE 28 DELETE-IMAGE 26
?ROJFCT-AND-BACK-PROJECT* 25 DESCRIBE-CSG-NODE 19
RAD 29 DISPLAY-PROPERTY 34
RESrORE "'GLE-MODE 29 DISPLAY-SCENE 34
ROTATE-CAMERA-AROUND-AXIS* 23 FIT-SCRr:EN 33
SAVE-ANGLE-MODE 29 LMAGE 26

75

IMAGE-FIT-SCREEN 33 SCENE* Function 24
LIGHT-SOURCE 22 SENSOR Frame 59
MERGE-LIGHT-PROPERTIES 25 SHADE-FACE Function 31
MK-COMBINED-TRANSFORMATION 17 SHADE-POLYGON Function 31
MK-ROTATION 16 SHADEL Function 34
MK-TRANSLATION 16 SHADEW Function 34
MOVE-CSG-NODE 15 SHOW-AXIS Function 32
PAINT-PROPERTY-ON-IMAGE 27 Slot 67
PROJECT-AND-BACK-PROJECT 24 SLOT-NAMES Function 71
ROTATE-CAMERA-AROUND-AXIS 23 SPHERE primitive 14
SCENE 24 SURFACE Frame 54

MAKE-FRAME Function 68 Surface
MAKE-FRAME* Function 69 Approximation 8
MAKE-SENSOR-COMPONENT Function 22
MERGE-LIGHT-PROPERTIES Macro 25 TRUNCATED-CONE primitive 14
MERGE-LIGHT-PROPERTIES* Function 25
MK-COMBINED-TRANSFORMATION Macro 17 Variable
MK-COMBINED-TRANSFORMATION* Function *ANGLE-MODE* 29

17 *CURRENT-BODY* 33
MK-FRAME Function 69 *CURRENT-IMAGE* 33
MK-FRAME* Function 69 *DASH-LEVEL* 33
MK-MOTION-MATRIX Function 16 *SHADE-LENGTH* 34
MK-ROTATION Macro 16 *SHADE-WIDTH* 34
MK-ROTATION* Function 16 *ZOOMF* 33
MK-TRANSLATION Macro 16 Variable Framekit
MK-TRANSLATION* Function 16 *FKTRACE* 72
MOTION-MATRIX Frame 53 *FKWAR.N* 72
MOVE-CSG-NODE Macro 15 *FRAME-LIST* 71
MOVE-CSG-NODE* Function 16 VERTEX-MATCH Function 31

View 67
NEIGHBOR-FACES Function 28
NEXT-EDGE Function 28 WLNDOW-ZOOM Function 33
NORM-OF-VECTOR Function 29 Winged Edge Representation

Definition 2
PAINT-PROPERTY-ON-IMAGE Macro 27
PAINT-PROPERTY-ON-IMAGE* Function 27 ZOOM Function 33
POINT-LINE-DISTANCE Function 30
PREVIOUS-EDGE Function 28
Primitive

2.5-CONE 14
2.5-PRISM 14
CONE 14
CUBE 14
CYLINDER 14
Definition 2
Example 35
ISO-PRISM 14
RIGHT-ANGLE-PRISM 14
SPHERE 14
TRUNCATED-CONE 14

PROJECT-AND-BACK-PROJECT Macro 24
PROJECT-AND-BACK-PROJECT* Function 25
Display 34
PROPERTY Frame 61
PROPERTY-LIST Frame 60

RAD Function 29
Radian 29
REPLACE-FILLER Function 71
REPLACE-VALUE Function 70
RESTORE-ANGLE-MODE Function 29
RIGHT-ANGLE-PRISM primitive 14
ROTATE-CAMERA-AROUND-AXIS Macro 23
ROTATE-CAMERA-AROUND-AXIS* Function 23

SAVF-ANGLE-MODE Function 29
SCENE Macro 24
Scene 24
Display 34
Scene Frame 58

