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1.0 INTRODUCTION

Scale models are commonly used in experimental investigations. At ordnance velocities,
scaled projectiles and targets are generally used to limit the cost of experiments. At higher velocities,
since gun systems are kinetic-energy limited, smaller projectile masses must be used to obtain the
higher velocities.

Many scaling studies have shown good correlation between the response of the model and
the prototype. However, much folklore exists concerning the lack of scaling, and this often leads
to a high level of skepticism concerning the validity of scaled experiments. A variety of reasons
may exist for the lack of correlation between subscale and full scale tests. These reasons could
include improper scale modeling analysis, lack of understanding or neglect of important parameters,
failure to construct models properly, failure to test under the proper ("scaled") conditions, lack of
attention to material selection, etc. In addition, there can be terms in the model analysis that cannot
be held constant between the model and the prototype. These items, acting along or in concert,
could result in dissimilar responses.

Strain rate is a term that cannot be kept constant between a replica-scaled model and the
prototype in penetration problems. We have used numerical simulations to quantify the expected
magnitude of strain-rate effects on the response of penetration into semi-infinite and finite-thickness
steel targets impacted by tungsten long-rod projectiles at a typical ordnance velocity of 1.5 km/s.
In addition to quantifying strain-rate effects, we also compare and contrast the penetration time
histories of semi-infinite and finite-thickness targets.
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2.0 MODEL ANALYSIS

2.1 Model Parameters

The analysis begins with the selection of the important terms for the problem. Figure 1 depicts
an idealized impact condition; we have elected to examine normal impact for the purposes of this
study. The impact velocity and the geometry define the initial impact conditions. If the target is
sufficiently thick, there will be no perforation and the measure of ballistic performance is the depth
of penetration. Otherwise, the target plate is perforated, and the remnant projectile is characterized
by some residual mass and velocity.

V

Figure 1. Depiction of Initial Conditions for the Impact Model

Table I lists the projectile and target parameters. Typical units are shown for each parameter,
along with the fundamental units of mass (M), length (L), time (,), and temperature (0). Some of
these parameters are also shown on Fig. 1, which depicts the geometry. The projectile is considered
to be a constant diameter long rod with a hemispherical nose. The geometrical terms necessary to
describe it are the diameter and the length. The density and impact velocity describe the inertial
properties. The constitutive behavior is characterized by the flow stress and equivalent plastic strain
of the projectile material. The specific heat is a measure of the ability to absorb heat. Also listed
in Table 1 are the target parameters. The target is considered to be homogeneous and of uniform
thickness. The constitutive parameters for the target plates are similar to those of the projectile,
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with the exception of the addition of fracture toughness. Fracture toughness was included as a

descriptor that might help account for failure characteristics of the rear of the target during

perforation. The subscripts "p" and "e" in Table 1 refer to the projectile and target, respectively.

The response parameters that generally are of interest are listed in Table 2; some of these
parameters are shown in Fig. 2. The left-hand figure provides a schematic for a semi-infinite target,
and the right-hand figure depicts a finite-thickness target. Most of these response parameters can

be measured directly in experiments, and thus they provide a means for comparing and evaluating

the similarity of the different scale model sizes. These parameters include the residual length,
velocity, and mass of the projectile. For the semi-infinite target, the residual velocity is not

appropriate; instead, the depth of penetration is the parameter of merit. Strain rate and temperature
are generally not measured directly, but are used to help understand the dynamic conditions that
occur in models of different sizes. The time appears as a response variable since many of the

parameters can be functions of time.

LfLV

H _

(a) Semi-Infinite Target (b) Finite-Thickness Target

Figure 2. Impact Model: Response

2.2 Pi Terms

The parameters shown in Tables I and 2 can be formed into nondimensional terms, referred

to as Pi terms, by applying the Buckingham Pi Theorem [1]. The methodology is rather

straightforward and will not be described here. One set of Pi terms is shown in Table 3. They are

grouped into major categories, such as geometric and material characterizations, and terms that
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Table 1. Projectile and Target Parameters

lParameter•• •! Deci ........

D projectile diameter (M) L

L projectile length (M) L

pp projectile density (kg/m) M/0
UP projectile flow stress (Pa) M/9L

equivalent plastic strain of (-)
projectile

cP projectile specific heat (J/kg-K) L2/0o
p, target density (kg/rn) M/L?
a, target flow stress (Pa) MWTL
Sequivalent plastic strain of (-)

target

C target specific heat (J/kg-K) L2/90
T target thickness (M) L

K, target fracture toughness (Pa4•m') M/eLln

V impact velocity (m/s) L_ _

Table 2. Response Parameters

Typical Fundamental
Parameter Description Units..... Units

P penetration depth (M) L

H hole diameter in target (m) L
11 projectile residual velocity (m/s) L/A

L, projectile residual length (m) L

M, projectile residual mass (kg) M

OP projectile temperature (K) 0

9, target temperature (K) 0

i strain rate sgm 1/1

time (s)
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contain response parameters. In Table 3, we have elected to represent the constitutive strength of
each material as the product of the flow stress times the equivalent plastic strain (are, or cr),
which can be viewed as representative of the ability of the material to absorb energy in the form
elastic-plastic work. These Pi terms do not represent a unique set; other Pi terms may be formed
through combination (multiplying, dividing, raising to a power) of existing terms.

Table 3. Pi Terms for Penetration Problem

Geometric' Material Chariacterization-" Response.

n, = LID 93 = a./or, 79 = V,/V

n= TID R4 = V2pt/i 0. 7o = L,I/L

S= K, IP,'TN1 I = MIpDD3

7E = Pp/P, 7t12 = HRD

7 = C13 = P/L

R8 = E, 7C14 = lDIV

i716 = pIcO,/D,,

7C17 = pcpOp/op%

8 = /Op

2.3 Similarity and Geometric Scale Factor

The Pi terms shown in Table 3 represent ratios or balances of the parameters involved in the

problem. By the principles of similitude modeling, when the values of the geometric and material
characterization terms are kept invariant between two different experiments, the experiments will

display "similar" response. In other words, the values of the response Pi terms will be equal between

the experiments. It is important to realize that the magnitude of each individual parameter does not

have to be equal, but rather the magnitude of the Pi terms must be equal. The practical advantage

of these Pi terms is in the ability of one scale size to produce response data applicable to other sizes.

For example, the material characterization Pi terms serve to balance stress, mass, or energy between

different scale experiments. The Pi term [pp V2Ia,e7 I represents a balance between the kinetic energy

of the projectile and the strain energy absorbed by the target; the term [pp/p,] serves as a measure

of the density (inertia) mismatch between the target and the projectile. The Pi term [pcO,/a,;]
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represents the ratio of internal (thermal) energy to plastic work. Plastic work increases the bulk
temperature of the material, which can lead to thermal softening. Since there is little time for heat
conduction, thermal conductivity effects have been ignored in this analysis.

There are several ways to satisfy the requirements imposed by the Pi terms to develop a model
of a physical system (referred to as the prototype). The approach used in this effort, and generally
the most common approach, is to develop a replica model. A replica model is one in which the
same materials are used in the model as the prototype, with the only difference being geometric
size. The model is constructed so as to mimic the arrangement of the prototype, with corresponding
materials at corresponding locations. The model is said to be homologous (corresponding, but not
necessarily equal) to the prototype.

The size of a replica model relative to the prototype is described by the geometric scale factor,
denoted by X. The X in this work will represent subscale sizes, such as 1/10. By fixing the geometric
scale factor, the values of all the other parameters in the model can be determined in terms of X by
using the Pi terms of Table 3. For example, to maintain the value of the Pi term LID equal in a
model and prototype, both the length (L) and the diameter (D) of the model have to be sized such
that they are X times the prototype values. This will be true of all linear geometric quantities in the
model. The Pi term [pp V2/a,e, ] is used to determine the appropriate impact velocity for the subscale
model experiment. Since we are assuming a replica model, both pp and (a•,) are equal in model
and prototype. Thus, keeping [ppV 2/a,j I invariant requires the same velocity in the model as for
the prototype. Following a similar procedure for all the Pi terms develops a model law. A model
law is a set of scale factors for all parameters involved in the model analysis that satisfy the
requirements imposed by the Pi terms. Table 4 provides the scale factors for the parameters involved
in this model analysis.

2.4 Replica Model Issues

The assumption of a replica model and the model law presented in Table 4 contain some
inherent issues that may lead to distortions in the ability of subscale models to reproduce full-scale
results. For the model to reproduce the prototype response, all Pi terms must remain invariant.
Sometimes, the model law results in conflicting requirements on the Pi terms, thereby making it
impossible to keep all Pi terms invariant simultaneously. Then the question becomes: How much
distortion results between the responses of the prototype and model because of Pi term(s) not being
invariant? Several issues are discussed below.

The assumption of a replica model requires that the subscale models have the same material
properties, e.g., density and strength, as the prototype. This is trivial for the density, but may be
difficult for strength for two reasons. The first is that manufacturing processes will lead to different
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Table 4. Model Law for Replica Model

Parameter Scale Factor

Geometric Lengths
Strength (;. e) 1.0
Velocity 1.0
Fracture toughness
Density 1.0
Mass V
Pressure 1.0
Stress 1.0
Temperature 1.0
Strain Rate 1/X
Time X

strengths for different thicknesses of plates of the same material. Generally, thinner plates are

stronger due to increased amounts of cold working or other manufacturing processes. A similar

condition may occur for the projectiles. This discrepancy can be overcome through careful selection

and manufacturing of the projectile and target pieces. For example, all target plates can be cut from
the same stock items, ,viti care taken to insure that the target centerline corresponds for all tests.

The second issue related to strength involves the effects of strain rate. The model law in
Table 4 indicates that the strain rate in a subscale model will be higher than that in a larger prototype:

For X = 1/10, the following relationship exists between the strain rates for the model and
prototype:

F-M~ = 10•P,•,,p

Pi term 14 [.D/V] maintains the same value for model and prototype, as required, when the strain

rate increases in the model. The important point is not that the strain rate increases, but tile effect

this may have upon the model response. It is known that some materials exhibit increased strength
as strain rate increases. Thus, the subscale target and projectile may exhibit greater resistance to

plastic flow than the larger prototype. Pi terms that depend upon the flow stress-Pi terms 3, 4,

5, 16, and 17-will be distortec.. The objective of this study is to quantify the effect of these

distortions.
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Another material property issue that results from the model law in Table 4 is the scaling of
fracture toughness. The replica model law states that the fracture toughness should decrease as the

size is made smaller, whereas for most materials, measured values of fracture toughness increase
for smaller specimens. Thus, there is the potential for failure processes not being similar in the
model and the prototype. The focus of this study, however, is on strain-rate effects.

In general, it is reasonable to state that if the response is weakly dependent on some parameter,

then a distortion in the associated Pi terms will probably not appreciably affect the response.

Conversely, if the target and projectile response is strongly dependent upon a parameter that cannot

remain invariant, then this could cause nonscaling of results.
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3.0 INVESTIGATION OF STRAIN-RATE EFFECT

3.1 Analysis Methodology

The three-dimensional Eulerian wave propagation computer program, CTH [2], was used to

perform the numerical experiments to investigate the magnitude of strain-rate effects. The 2-D

cylindrically symmetric option was used for the computations. CTH uses a van Leer algorithm for
second-order accurate advection that has been generalized to account for a non-uniform and finite

grid, and multiple materials. Further, CTH has an advanced material interface algorithm for the

treatment of mixed cells [2]. Also, CTH has been modified to account for more realistic constitutive

treatment of material response by allowing the flow stress to be functions of strain and strain

rate [3-4].

Projectile and target materials typically used in armor penetration experiments were selected

for the numerical simulations to provide a realistic quantification of the strain-rate effect. The target
was considered to be 4340 steel with a hardness of Rockwell C 30. The tungsten-alloy, long-rod

projectile was modeled with a length-to-diameter (LID) ratio of 12. The impact velocity was

1.5 km/s. The prototype projectile (full scale) had a diameter of 2.54 cm. A scale factor of 1/10
was selected for the study. The term "prototype" will be used in reference to the results for the

2.54-cm diameter projectile, and the term "model" will be used in reference to the results for the

2.54-mm diameter projectile.

Square zoning (with seven zones across the radius of the projectile) was used in the interaction
region. All geometric dimensions were exactly 1/10 smaller in the "scaled" calculation; therefore,

to achieve the same numerical resolution, the cell dimension of the computational grid was 1/10

the size of the full scale computation (that is, seven zones were used across both the full scale and

the 1/10 scale projectiles). The Courant stability criterion limits the integration time step; thus the

computational time steps also differed by a factor of ten between the two computations. The total

computation (CPU) times were virtually identical for the two scale sizes.

The constitutive response for 4340 steel was represented by the Johnson-Cook model [5]:

a, = 792[1+0.644e' 26 ] [1 +0.0141ne ][1-T 1*' 3] (I)

where a, is the von Mises effective flow stress (in MPa), 792 MPa is the quasi-static yield stress,

F, is the equivalent plastic strain, F, = k/io is the dimensionless plastic strain rate (e = 1.0 s-), and

T," is the homologous temperature. Equation (1) was used to obtain the stress-strain behavior of

4340 steel for three strain rates: 100, 10W and 105 s". There are two sets of curves shown in Fig. 3a.
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Figure 3. Constitutive Response
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The upper set depicts the effect of strain rate and work hardening only; the lower set of curves

shows both of these effects plus thermal softening, assuming that all plastic work goes into thermal
heating.

The plastic work is given by the area under the stress-strain curve. For the same plastic strain,
thermal softening is virtually unaffected by strain rate effects, particularly since it is the natural

logarithm of the strain rate that appears in Eq. (1). Therefore, the temperatures will be nearly the
same at homologous locations and time. Thus, Pi term 16 can be considered to be essentially
invariant between scale sizes; the model law, given in Table 4, indicates that the scale factor for

temperature is 1.0. (As stated earlier, it has been assumed that the time scales are sufficiently short
to preclude heat conduction effects. In problems where heat conduction is important, temperature
scaling will be distorted at homologous times.)

We have examined a number of tungsten (90-93% by weight) alloys, and the stress-strain

response can be modeled using an expression of the form [6]:

ap = 1350[(1+JPF,)+0.061n'*] (2)

In particular, the work hardening and strain rate effects are found to be "independent" in that the

strain-rate effect does not alter the slope of the strain-hardening curve. For the particular tungsten

alloy used for these exper'ments, the initial yield stress is strain-rate dependent, but there is little

work hardening (Fig. 3b), so P3 and n are zero.

3.2 Semi-Infinite Targets

Preliminary Computations: Strain-Rate Effects Set to Zero. Computations were performed

initially to insure that the computational methodology was scale independent. The projectile and

target materials were modeled considering only strain-hardening effects, i.e., the strain rate

coefficients in Eqs. (1-2) were set to zero.' Strain rate and equivalent plastic strain contours are

plotted at homologous times in Fig. 4. The results for the prototype are given in the left figure, and

the results for the model are given in the right figure. The dimensions on the lower borders of the

plots provide the spatial extent, which differs by the geometric scale factor of 10 for the two figures.

The model law summarized in Table 4 shows that time scales as the geometric scale factor;, note

that the homologous time for the model is 1/10 that of the prototype.

1. The materials were modeled initially as elastic, perfectly plastic, and the results for the prototype and model
computations compared. The conclusions are identical to those of the more general case that includes strain
hardening.
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Figure 4. Strain Rate and Equivalent Plastic Strain Contours: Semi-Infinite Target

Strain rate contours are depicted to the left of the centerline, and plastic strain contours are

shown on the right in the two figures. If the model results are overlaid on the prototype results, the

contour lines overlay exactly, except that the strain rate is a factor of 10 higher for the model.

Although the strain rates are higher in the model, the total plastic strains are identical at the

homologous locations, a consequence of the fact that the time scales as the geometric scale

factor, i.e.:

e..., = (wou)M, = (ir-,,oao,, /). (X, 0,, ) = , .= (3)

where the superscript "p" is a reminder that e represents the equivalent plastic strain. These

observations are in agreement with the model law summarized in Table 4. Although the strain rates

are higher by a factor of 10 in the model than in the prototype, the stresses, depth of penetration,
etc., are not affected since the material response (constitutive) model used for these calculations is

rate independent. Comparisons were made between the velocity, pressure, and stress profiles,
velocity-time and pressure-time histories, etc., and the computational results were identical after

accounting for geometric scale and time.
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Therefore, it was concluded that the computer program does not have a rate-sensitive

numerical formulation. This might seem to be an obvious conclusion at first glance. However,

shock wave propagation computer codes use artificial viscosity as a dissipative mechanism to

dampen numerical oscillations behind shock fronts [7]. The artificial viscosity is written in terms

of a strain rate, )v/Ix, which would imply a rate-sensitive effect. However, the numerical
implementation of the artificial viscosity is such as to make it independent of the mesh size, i.e.,
the shock is smeared over 5 to 7 computational zones. Since the number of zones was kept the

same in the prototype and model computations, artificial viscosity does not affect the scaling.

Strain-Rate Dependent Modeling. Calculations were next performed with the full-up

constitutive model of Eqs. (1) and (2). The penetration (nose) and tail velocities of the projectile,

along the centerline, are shown in Fig. 5 for the prototype and model calculations. The time axis
is for the prototype calculation; the homologous times for the model calculation are a factor of 10

less. The penetration and tail velocities as a function of penetration depth are shown in Fig. 6;

similar to Fig. 5, the depth of penetration-the abscissa-is for the prototype projectile, and the
values are one-tenth for the model.

The larger strain rate in the model calculations results in both a stronger target and a stronger

projectile. However, studies have shown that the depth of penetration is very sensitive to the strength

of the target, but quite insensitive to projectile strength [6,8]. It is observed that the scaled penetrator

does not go as deep as the prototype penetrator, and because it does not go as deep, penetration is

completed slightly sooner (in comparing homologous times). The homologous total penetration

times differ by approximately 3%.

The normalized depth of penetration PIL provides a method for directly comparing scale

effects. The prototype PIL is 0.804, and the model PIL is 0.763; the normalized depth of penetration
is approximately 5% less for the model than the prototype. This is an interesting finding, with

consequences concerning penetration studies performed with replica models. A very reasonable

approximation is that the strain-rate effect is linear over the factor of 10 in scale size, since the

strain-rate effect for the depth of penetration is only 5%. The results for long-rod penetration into

semi-infinite targets are commonly displayed as normalized depth of penetration versus impact
velocity. By necessity, scaled projectiles have to be used at very high velocities since gun systems

are kinetic energy limited. Thus, if the interest is over a large velocity range, the results from

different scale sizes are often plotted on the same graph. Experimental scatter for well-controlled

experiments (at the same scale size) for tungsten-alloy projectiles impacting semi-infinite armor

steel is ±5% [6]. Geometric scale factors are generally on the order of 4 or 5. A difference in a
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scale factor of five between two projectiles would lead to only a 2.5% difference in the normalized
depths of penetration; this lies well inside experimental scatter. Thus, the computational results
here explain the general lack of observed scale dependency in depth-of-penetration studies.2

The positions versus time for the nose and tail of the projectile are shown in Fig. 7. As already
indicated in Fig. 6, the model projectile does not go as deep as the prototype. The instantaneous
length of the projectiles is given by the distance between the nose and the tail; the residual length

of the model projectile is greater than that of the prototype projectile by approximately 5%. A
caution here is that there is uncertainty in the results of Eulerian codes in mixed cells, and it is in

mixed cells near the end of penetration that the projectile is transitioning from eroding to rigid-body

behavior. Nevertheless, the computations are in agreement with experimental observations that

indicate the residual length of a projectile tends to increase with increased projectile strength.
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Figure 7. Centerline Penetration (Interface) and Tall Positions
versus Time: Semi-Infinite Targets

2. It is well-known, however, that PIL is sensitive to heat treating or alloying of the target material, and projectile LID.
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The above remarks apply specifically to tungsten-alloy projectiles impacting armor-type
steels. We can conclude that over a scale factor of ten, rate effects cannot typically be separated
from experimental variability. A larger effect would be observed if a more strain-rate sensitive
target material were to be used. For example, mild steels can be fairly strain-rate sensitive. Further,
because the depth of penetration is a function of target strength, a mild steel target is a more
"sensitive" gage in that the projectile will penetrate further than in a hard steel target. Strain-rate
effects would then be more noticeable.

3.3 Finite-Thickness Targets

Contrast of the Penetration Histories of Semi-infinite and Finite-Thickness Targets. The
computational study permits us to contrast the penetration history of a finite-thickness target against
that of a semi-infinite target. For this comparison, it is only necessary to examine one of the scale
sizes; we have chosen to use the full-scale results for the comparison. The target was defined to
be 7 projectile diameters thick. This target is sufficiently thick so that the projectile achieves
quasi-steady-state penetration before the rear surface of the target influences the penetration history.

Figure 8 shows the penetration and tail velocities as a function of time for both the
finite-thickness and semi-infinite targets. The penetration histories are identical until approximately
100 gIs, at which point the two penetration velocities begin to diverge (the response of the tails of
the projectile remain identical until late in the penetration process). It is instructive to examine the
plastic strain contours at various times, and in particular, at times where the penetration
velocity-versus-time curve has a noticeable change in slope. A contour plot exists for each of the
times denoted by an arrow in Fig. 8, and labeled a throughf in both Figs. 8 and 9. At 50 pts, except
for possibly some inconsequential elastic waves, the projectile "sees" a semi-infinite target.
However, at 100 ps, the rear of the target has seen 1% plastic strain, i.e., it is just starting to bulge.
Figure 10 shows the pressure versus time for both the finite-thickness and semi-infinite targets.
From Figs. 9 and 10, it is concluded that the pressure begins to decrease due to the lack of confinement
(as compared to the semi-infinite target) when the plastic zone reaches the rear surface. The
penetration velocity remains relatively constant between 100 pts and 200 Its during bulge formation
and growth. At approximately 200 pts. using the terminology of Ravid and Bodner [9], the bulge
ceases to grow radially and instead is displaced axially, referred to as bulge advancement. The
target material in the sides of the bulge continues to strain and "thin" until target perforation,
distinguished by the fact that the nose velocity becomes "flat," at approximately 335 ts. The nose
and tail of the projectile do not have the same velocity at the time of perforation since the nose has
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been encountering some resistance to penetration. It takes several longitudinal elastic wave transits

within the projectile before the velocity is equilibrated at 400 tps; this will be discussed in more

detail a little later.

The penetration and tail velocities for the semi-infinite and finite-thickness targets plotted

versus the depth of penetration are displayed in Fig. 11. Vertical lines, separated by one projectile

diameter, are drawn on the figure. Several conclusions can be drawn from this figure. The effect

of the shock phase lasts for approximately 1.5 projectile diameters (1.5 D) of penetration for the

impact conditions studied here, after which the projectile enters the quasi-steady-state penetration
phase. The fact that the target is finite affects penetration when the projectile is approximately
4.5 D (100 gs in Fig. 8) from the rear surface. The target material continues to offer resistance to

penetration/perforation for quite some time after the projectile nose has passed the original rear

surface (230 lis in Fig. 8); however, there is an inflection in the slope of the penetration velocity
when the projectile nose has gone approximately 0.75 D past the original position of the rear surface.

This point corresponds to a time of 250 ps in Fig. 8. After this point, the bulge is "thinning" as
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opposed to advancing. According to the computational results, the target influences "penetration"
4 D (335 ps in Fig. 8) past the original rear surface; however, this is a •.onsequence of the treatment
of failure for this computational model.

The fracture algorithm in CTH is a simple, heuristic tensile stress model. An input fracture
pressure (mean stress) denotes the tensile pressure at which fracture will occur. If the pressure is
more tensile than the fracture pressure, then the void volume in the cell is increased to relax the
tensile pressure. In the computation here, the target is considered to be infinitely ductile. The
material thins due to the stretching until sufficient void is present to "break" the material. More
realistically, the target material will fail after some finite amount of strain. For this particular
computation, this "detail" does not invalidate most of the conclusions. This is largely because the
penetration velocity is rapidly increasing after 250 AS, and therefore, only a little projectile erosion
occurs between 250 ps and breakout. This is evident in Fig. 12, which depicts the position of the
nose and tail of the projectile versus time (and provides a comparison of the projectile response for
the semi-infinite and finite-thickness targets). The distance between the nose and tail at any instant
in time gives the length of the projectile.
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Figure 12. Centerline Penetration (Interface) and Tail Positions versus
Time: Semi-Infinite and Finite-Thickness Targets
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If a more realistic failure criterion had been used, the remnant projectile would have been

slightly longer, and the residual velocity would have been correspondingly higher. To investigate
the potential for failure more closely, we examined the contours of equivalent plastic strain in the
bulge region at several time increments. At 225 pgs, plastic strains between 25% and 50% exist

within the bulge region; at 250 jIs, all the region has undergone 50% plastic strain; and by 275 pts,
all the material has experienced plastic strains in excess of 100%. It is therefore reasonable to
conclude that bulge failure (target perforation) would have occurred no later than 250 to 275 pts.

The final ratio of residual velocity to impacting velocity (V,/ V) is 0.74. If failure would have

occurred at 250 pIs, then V', / V-using conservation of momentum and the fact that the velocity
decreases linearly from the penetration velocity to the tail velocity over a distance of two projectile
diameters [6]-would have been approximately 0.85, which is in excellent agreement (0.86) with
the results of Fig. 79 from Ref. [10] (using a value of 0.58 for the plate thickness normalized by
the projectile length, i.e., TDL = 0.58).

The nose and tail velocities of the projectile differ by 120 m/s at breakout (see Fig. 11). We
can calculate how long it should take for the projectile velocity to equilibrate. One elastic wave

transit changes the velocity by 47 m/s [Au = 2a,, I(pps.) where ac,, p., and s. are the flow stress,
density, and longitudinal wave speed, respectively, of the tungsten projectile; the dynamic flow

stress for the tungsten alloy is approximately 2 GPa, p. is 17.2 g/cm 3, and sp is 4900 m/s]. Thus, it
requires 2.5 wave transits for the projectile velocity to equilibrate. We can estimate the length of

the projectile at breakout from Fig. 12, the projectile is approximately 12 cm long. Thus, it will

take 61 pts to equilibrate. If the time of breakout is approximately 335 jts, then equilibration will
occur at 396 pts, in excellent agreement with the results in Fig. 8. The normalized residual length

(L, IL) is 0.39, which also is in good agreement (within 10%) with data from experiments by Hohler

and Stilp [101.

Strain-Rate Dependent Modeling. The computational results for the two scale sizes were

again compared with the strain-rate terms zeroed in Eqs. (1-2) to ascertain if there existed any
numerical rate effects associated with target breakout and perforation. The numerical results were
ide,tical. Then the problems were rerun including the strain-rate term in the constitutive models.

The one-tenth-scale results for the penetration and tail velocities are overlaid onto the graph with
the full-scale results, Fig. 13. It is seen that the full-scale penetration velocity increases at a slightly
higher rate than for the tenth-scale projectile. The residual velocity, after target perforation, of the

prototype projectile is approximately 5% higher than for the model projectile.
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The positions versus time of the nose and tail for prototype and model projectiles are shown
in Fig. 14. At homologous times, the scaled projectile has not gone as deep as the prototype
projectile. Thus, a conclusion similar to that for the semi-infinite target is reached: the scaled target
is slightly "stronger." The normalized length of the projectiles L,/L after perforation is 0.37 versus
0.35 for the prototype and model projectiles, respectively. Thus, the model projectile is
approximately 5% shorter after perforation.

Damage Issues. There is an issue that has only been addressed obliquely at this point, however,
and that is the issue of failure. Failure is known to grow with applied stress and time [11]. For
example, the Tuler-Butcher model for spall failure [12] was developed to account for the observed
dependence of spall failure on stress pulse duration. Failure is assumed to occur instantaneously
when a critical value of the damage parameter K is reached:

K = f - 0 )d (4)

where a is the tensile stress pulse of arbitrary shape, and a0 is a threshold stress level below which
no significant damage will occur regardless of stress duration. The material constant ý is used to
fit experimental data. More complicated models would also account for material degradation due
to partial damage, e.g., the Cochran-Banner model [13].

Equation (4) was formulated specifically to model spallation numerically. The above
argument concerning the effects of scale size and damage is strengthened further by examining
nucleation and growth damage models. In particular, it is instructive to examine the work of Curran,
et al. [14], since their work was largely motivated by a desire to develop computational damage
models where the origins of the models are rooted in microscopic damage mechanics. Specifically,
we will dis,'-ss ductile fracture that results from the nucleation, growth, and coalescence of voids.
In their model, damage increases by nucleation of new voids and by growth of existing voids. The
rate at which the number of voids is nucleated, R, is governed by the tensile overstress in the solid
material (not the average pressure in the composite of solid and voids):

N R= . exp[(P, -Pm)IPIl P, > PA, O
N =10 P1 ,,,o (5)
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where P, is the tensile stress in the solid and Pwo is a threshold tensile stress for nucleation of voids;

Vo, Po and P, are material constants. In a time step At, the void volume, AV., nucleated is

proportional to NAt. Under high rates of loading, inertial and viscous effects dominate the growth

of voids, and it can be shown that the void volume, V, also grows according to a tensile overstress:

4P -P I..V, = V.ex.3 l) (6)411 Jt(6

with V,. being the void volume at the beginning of a time interval, P,*, is a tensile threshold stress

for void growth, and il is a material viscosity. Thus, the total void volume at the end of each time

step At is given by:

V,= At + AV. (7)

Damage development has a strong dependence on time: nucleation of voids depends linearly on

time, and the growth of voids increases exponentially with time.

Time scales as 1I&. The stresses, to first order (aside from strain-rate effects), are the same
at the two scales. Therefore, both Eq. (4) and Eqs. (5-7) indicate that the damage will not be the

same at homologous times. Assuming that the same value of K [from Eq. (4)] or V, [from Eq. (7)]

is required for failure in the model and prototype, then the smaller scale will have less damage than

the larger scale at homologous times (due to less absolute time transpiring in the model). In this

sense, the smaller scale "appears" stronger.

There is a caveat to the above argument, however. If the stress is far above damage thresholds,

the damage rate is quickly saturated, and the time-evolution model can be replaced by a much more

simplistic "sudden damage" criterion. An appropriate critical level can be estimated from known

material properties, e.g., total equivalent plastic strain at failure. Reference [15] discusses

computational failure models, and provides an example that demonstrates that computational results

are insensitive to the details of failure when a projectile overmatches a target. If a maximum stress,

equivalent plastic strain, or plastic work is a suitable failure criterion, then there will be no differences

in failure between the model and prototype (per the model law of Table 4), except for slight

differences in the stress resulting from strain rate.
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We thus conclude that differences in damage between a model and prototype can result from
two factors: 1) near thresholds, damage growth is time-dependent, and since time scales as the
inverse of the scale factor, less damage will accumulate in a smaller model at homologous times;
and 2) strain-rate effects will increase the strength of the material, which again will be most
noticeable near damage thresholds. If the target is overmatched, damage is insensitive to the value
of the damage parameter (e.g., critical equivalent plastic strain). Therefore, if the target is
overmatched, there should be little scale dependence (our study indicates about 5%). Near
thresholds, smaller targets will appear stronger because strain-rate effects increase the strength of
the material and because the same degree of damage has not developed at homologous times.
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4.0 SUMMARY

We have examined the penetration and perforation of semi-infinite and finite-thickness

targets. Numerical simulations have been used to quantify the distortion in penetrator and target

response due to higher material flow stresses that result from the higher strain rates at smaller scales.

We have shown that target resistance is sightly greater for small scale targets due to strain-rate

hardening. For the impact scenarios examined here, i.e., a tungsten long rod impacting an armor

steel target at 1.5 km/s, we conclude that the magnitude of strain-rate effects, however, are difficult

to separate from experimental scatter. Over a scale factor of ten, the increased target resistance

results in normalized penetration being less by approximately 5% for semi-infinite targets; the

residual velocity and normalized residual projectile length are approximately 5% less for a

finite-thickness target. One aspect of target perforation not explicitly quantified, but discussed

qualitatively, deals with failure. Near a limit condition, where the details of the time evolution of

failure are important, damage will not be as severe in the scaled target as the prototype target because

damage evolution is a function of absolute time and not the scale time. Therefore, a smaller scale
will have less damage than the larger scale at homologous times. These effects probably can be

observed in well-controlled experiments.
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