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ABSTRACT

Revnolds stress caleulations of homogeneous turbulent shear flow are conducted with a
second-order closure model modified to account for non-equilibrinum vortex stretehing in the
dissipation rate transport equation as recently proposed by Bernard and Speziale [J. Fluids
Engng. 114,29 (1992)]. As with the carlier reported A —& model calculations incorporating
this vortex stretehing effect, a production-equals-dissipation equilibrium is obtained with
bounded turbulent kinetic energy and dissipation. However, this equilibrium is now not
achieved nntil the dimensionless time St > 60 an elapsed time that is at least twice as large
as any of those considered in previous numerical and physical experiments on homogencous
shear flow. Direet quantitative comparisons between the model predictions and the results
of experiments are quite favorable. In particular, it is shown that the inclusion of this non-
cquilibrium vortex stretehing effect has the capability of explaining the significant range of

production to dissipation ratios observed in experiments.
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INTRODUCTION

In transport models for the turbulent dissipation rate it is traditionally assumed that an
equilibrium exists where the production of dissipation by vortex stretching is exactly counter-
balanced by the leading order part of the destruction of dissipation term (see Tennekes and
Lumley 1972 and Lesieur 1990). Recently, Bernard and Speziale (1992) proposed a new
transport model for the dissipation rate with residual vortex stretching to account for small
departures from equilibrivin. This new model - which is of the same general form as that
obtained from the theory of self-preservation (see Speziale and Bernard 1992 and George
1992) - was shown to yield a more complete description of isotropic decay. More importantly,
however. it was demonstrated hy Bernard and Speziale (1992) that the inclusion of this
vortex stretching effect yields a production-equals-dissipation equilibrium in homogeneous
shear flow, with bounded turbulent kinetic energy and dissipation. Prior to saturation -
which occurs at an elapsed time larger than any of those considered in previously conducted
physical and numerical experiments - the turbulent kinetic energy and dissipation rate grow
exponentially with time. Good qualitative agreement between the model predictions with
vortex stretching, and the results of physical and numerical experiments on homogeneous
shear flow, was demonstrated by Bernard and Speziale (1992) and Bernard, Thangam and
Speziale (1992). However, they were not able to make more detailed quantitative comparisons
with experiments since, for simplicity, they based their calculations on the A"— ¢ model. This
establishes the motivation of the present paper: to present full Reynolds stress calculations of
homogeneous shear flow with a state of the art second-order closure model that incorporates
this vortex stretching effect.

In this paper, more detailed calculations of homogeneous shear flow are presented based
on the second-order closure model of Speziale, Sarkar and Gatski (1991) modified to account
for non-eqnilibrium vortex stretching in the dissipation rate transport equation. For elapsed
times St < 30, vortex stretching has little qualitative effect on the solution which exhibits an
exponential time growth of turbulent kinetic energy and dissipation that is in good agreement
with the results of physical and numerical experiments (see Tavoularis and Karnik 1989 and
Rogers, Moin and Reynolds 1986). However, for St > 60 {which is far beyond the largest
elapsed time that has been considered in experiments), the flow saturates to a production-
equals-dissipation equilibrinm. Interesting features of this vortex stretching solution - which
include its apparent ability to explain the wide range of production to dissipation ratios

observed in experiments - are discussed along with the implications for turbulence modeling.




FORMULATION OF THE PROBLEM

We consider homogeneous turbulent shear flow where the mean velocity gradient tensor
takes the form -

(()% = Sbidj (1)

given that S is a constant shear rate and &;; is the Kronecker delta. In the usual formulations

of homogeneous shear flow, an initially decaying isotropic turbulence is subjected to the

uniform shear rate S at time t = 0. The Reynolds stress tensor 7;; = uju’, is a solution of

the transport equation (c.f. Hinze 1975)
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in incompressible homogeneous turbulence, where a superposed dot represents a time deriva-

tive and

dul  du ou’
N=p|—+2), e=v—7— 3
1=r (('.).l'j + (').r,'> ! dr; or; (3)

denote, respectively. the pressure-strain correlation and the turbulent dissipation rate. In

(3). p’ and u! represent the fluctuating pressure and fluctuating velocity, respectively, and v
denotes the kinematic viscosity of the fluid: as with most model studies of high-Reynolds-
number turbulence, Kolmogorov's assumption of local isotropy is invoked for the dissipation
rate.

In order to achieve closure, models must be provided for the pressure-strain correlation
[1,, and the turbulent dissipation rate ¢. The recent pressure-strain model of Speziale, Sarkar

and Gatski (1991) is utilized which takes the form:
1
L, = —(Cie+CTP)by; + Ca (bikbkj - gl’mbu&j)
H(Cy = GRS + Cok (baSe + b3S (4)
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given that b;; is the anisotropy tensor, A is the turbulent kinetic energy, and P is the
turbulence production. The constants of the model are given as follows: ('} = 3.4, C'7 = 1.80,
(=42, C3 =4/5, C; = 1.30, (¢ = 1.25 and 5 = 0.40. Equation (2) is solved with the

modeled dissipation rate transport equatici
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where KB, = K?/vs is the turbulence Reynolds number and .y, Cey and (o5 are constants
(see Bernard and Speziale 1992). The term containing (".3 occurs when there is a departure
from equilibrium so that there is an imbalance between the production of dissipation by
vortex stretching and the leading order part of the destruction of dissipation term which
cach scale as R:/l. Equation (8) is of the same general mathematical form as that obtained
from the theory of self-preservation (see Speziale and Bernard 1992 and George 1992). The
standard modeled dissipation rate transport equation is recovered in the limit as (3 goes to
zero. The same values of ("¢y and (', as proposed in the Speziale, Sarkar and Gatski (SSG)
model are chosen:

("61 = 1.44, (VE2 = 1.83. (())

A variety of values of ;3 in the range of 0.001 to 0.01 will be considered (these represent
small imbalances in vortex stretching of the order of 0.1% - 1.0%; of course, the magnitude
of this imbalance can depend on the initial conditions).

The governing nonlinear differential equations for homogeneous shear flow are obtained
by substituting (1) into (2) and (8) while making use of the pressure-strain model (4). Five
conpled nonlinear differential equations for 11, 712, Taa. 733, and £ comprise this system. These
coupled equations can be casily converted to an equivalent set in terms of by, byo, by, bss
and SK/z which constitute the non-dimensional structural parameters of the problem that
achieve equilibrium values that are independent of the initial conditions (see Speziale and
Mac Giolla Mhuiris 1989a.b). The governing system of differential equations are solved

subject to the nitial conditions:
Sk SK
b, =0, R =R, — =2 (10)
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at time t = 0. Ouly the solutions with net vortex stretching ((z3 > 0) require the specifica-

tion of the imtial turbulence Reynolds nnmber.

DISCUSSION OF THE RESULTS

We now present results obtained from a Runge-Kutta numerical integration scheme. In

Figure 1(a). the time evolution of the dimensionless turbulent kinetic energy (K™ = K/ Ky)




is shown as a function of the dimensionless time (¢* = St) for SKo/s0 = 3.38 and R, = 750

the initial conditions of the large-eddy simulation of Bardina, Ferziger and Reyvnolds (1983).
Here, we set ('3 = 0.001] so that there is only a minute imbalance in vortex stretching of the
order of 0.1%. As with the earlier reported calculations with the SSG model where (7.3 = 0.
there is excellent agreement between the model predictions and the large-eddy simulation
results as illustrated in Figure 1(a). However, while there is virtually no difference hetween
the short-time predictions of the SSG model with (.3 = 0 and Ce3 = 0.001, there is a distinct
difference in the long-time solutions. When ;3 = 0. the kinetic energy and dissipation rate

grow unbounded with time; for > 1,

K™ ~ €,\t" &~ 6,\t‘ (1 1)

-

so that A~ and ¢* — o as t* — oc. For any finite (.3 - no matter how small it may be -
the turbulent kinetic energy and dissipation rate eventually saturate to bounded equilibrium
values after an early time exponential growth as shown in Figure 1(h).

In Figure 2. the time evolution of the turbulent kinetic energy is shown for the same
inttial conditions (SKo/so = 3.33, R,, = 750) but with a variety of different values for
(3. It is clear from these results that the value of ('.3 determines the saturation level of
the turbulent kinetic energy. For sufficiently small C.3, the turbulent kinetic energy grows
exponentially for St < 30 - the largest elapsed time considered in all previously conducted
physical and numerical experiments. Here, saturation does not occur until St > 60, which
is a value that is more than double that of any considered in previous experiments. If the
vortex stretching solution were examined in isolation for elapsed times St < 30. it could
be erroncously concluded that there is an unbounded exponential time growth of turbulent
kinetic energy. This points to the danger of drawing conclusions about long-time asymptotic
states from data corresponding to only limited elapsed times.

In Fignure 3(a). the time evolution of the ratio of production to dissipation P/ predicted
by the SSG model both with and without vortex stretching is shown. The non-zero values of
the constant (3 are in the range of 0.001-0.009 (an imbalance in vortex stretching of the order
of 0.1%-1%). It is clear from this figure that just a minute imbalance in vortex stretching
can cause a significant spread in P/e at St = 30. This is reminiscent of the experiments of
Tavoularis and Karnik (1939) where, for comparably large shear rates SKhy/so > 1. values
of P/z in the range of 1.1 - 1.8 have been observed at the latest station measured which
corresponds to St < 30. Furthermore, P /s peaks at St = 20 before asymptoting to a value of
P/z = | whichis achieved for values of St > 60 as shown in Figure 3(b). This phenomenon of
a local maximum being reached, followed a gradual dropoff in the time interval 0 < St < 30.

is reminiscent of results observed in physical and numerical experiments (see the direet




simulations of Rogers et al. 1986 shown in Figure 4). Without this vortex stretching effect,
second-order closures predict that P /s goes to an equilibrium value of (C.y — 1)/(Cey ~ 1)
monotonically, getting close by the time St = 20.

As in the absence of this vortex stretching effect, second-order closure models predict
that b;; and S’/ achieve equilibrium values that are independent of the initial conditions
as well as the constants ¢y, C.y and C.. In Table 1, the equilibrium values predicted
by the standard SSG model (C.3 = 0) and the SSG model with vortex stretching ((",3 >
0) are compared with the physical and numerical experiments of Tavoularis and Karnik
(1989) and Rogers et al. (1986). The inclusion of vortex stretching only causes modest
deviations from the experimental values for the anisotropies; only the shear parameter is
affected substantially. However, it must be remembered that the physical and numerical
experiments have only been conducted for St < 30. For the case where SKy/z0 = 3.38,
R, = 750 and C.3 = 0.001 shown in Figure 1, the SSG model with vortex stretching

0

predicts that
[)” = 0215, [)|2 = —0163. 1)22 = —0141, b_’;_’; = —0.074, S'[\’/f = H.40 (12)

at St =30 - results that are in close proximity to the experimental data which is given on

Table 1.

CONCLUDING REMARKS

The Revnolds stress calculations presented in this study clearly indicate that the in-
troduction of the non-equilibrium vortex stretching effect of Bernard and Speziale (1992)
in a recently proposed second-order closure model does not compromise the accuracy of its
guantitative predictions for homogeneous shear flow. In fact, when the SSG model was mod-
ified to incorporate this vortex stretching effect, better agreement with experimental data
was achieved on two fronts: (a) consistent with experiments, a universal equilibrium was
not reached by St = 30, and (b) a variety of production to dissipation ratios in the range
I < Ple < 1.8, depending on the initial conditions, were obtained at St = 30 consistent
with experiments (P/c asymptotes to | for elapsed times St > 60). In our opinion, the
level of agreement between the model predictions and experiments is of such quality that a
production-equals-dissipation equilibrium, with bounded energy states, cannot be ruled out
as a viable alternative to the classically accepted hypothesis of unbounded energy growth.

As discussed by Bernard and Speziale (1992), the question of whether or not homogeneous
shear flow actually saturates to a production-equals-dissipation equilibrium remains an open
question that will only be firmly resolved by a rigorous mathematical analysis. However, even

if it were to be ultimately proved that homogeneons shear flow has unbounded energy growth,




this would be due to the idealized nature of the problem; real physical systems saturate
before singularities occur. The introduction of this vortex stretching effect in Reynolds
stress closures could lead to better behaved models by preventing such singularities, without
compromising their ability to collapse experimental data in benchmark turbulent flows like

homogeneous shear flow.
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Equilibrium SSG Model SSG Model Experimental
Values (Cez = 0) (Cez > 0) Data
byy 0.219 0.201 0.21
by, -0.146 -0.127 -0.14
[)33 ‘0073 -0071 -007
by -0.164 -0.160 -0.16
SK/e 5.70 3.12 5.0

Table 1. Comparison of the predictions of the SSG model for the equilibrium values in

homogeneous shear flow with physical and numerical experiments (Tavoularis and Karnik
1989 and Rogers et al. 1986).
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igire 1. Time evolution of the turbulent kinetic energy in homogenecous shear flow: Shy/eg
= 3.38 and Ry, = 750. (a) Comparison of the vortex-stretching modified SSG model (€3 =
0.001) with the large-eddy simulation of Bardiua et al. (1983), and (b) the long-time SSG
model predictions (C,3 = 0 and C3 = 0.001).
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IFigure 1. Time evolution of the turbulent kinetic energy in homogeneous shear flow: S/ /eq
= 3.38 and Ry, = 750. (a) Comparison of the vortex-stretching modified SSG model (C,y =
0.001) with the large-eddy simulation of Bardina et al. (1983), and (b) the long-time SSG
model predictions (Ce3 = 0 and Cy = 0.001).
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Figure 2. Time evolution of the turbulent kinetic energy predicted Ly the SSG model with

vortex stretching for a range of values of C.3; SKo/eo = 3.38 and R,, = 750.
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Figure 3. Time evolution of the ratio of production to dissipation in homogeneous shear flow
for SKo/eo = 3.38 and R,y = 750: (a) Predictions of the SSG model for a variety of values
of Cy3 for St < 30, and (b) Predictions of the SSG model for St < 100.
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(b)
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Figure 3. Time evolution of the ratio of production to dissipation in homogeneous shear low
for SKo/en = 3.38 and R,y = 750: (a) Predictions of the SSG model for a varicty of values

of (i3 for St <30, and (b) Predictions of the SSG model for St < 100.
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Figure 4. Time evolution of the ratio of production to dissipation taken from the direet

numerical simulations of homogeneous shear flow by Rogers ct al. (1986).
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