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ABSTRACT

The generation of long-wavelength, viscous-inviscid interactive Gortler vortices is studied in
the linear regime by numerically solving the time-dependent governing equations. It is found
that time dependent surface deformations, which assume a fixed nonzero shape at large times,
generate steady Gortler vortices that amplify in the downstream direction. Thus, the Gortler
instability in this regime is shown to be convective in nature, contrary to the earlier findings
of Ruban and Savenkov. The disturbance pattern created by steady and streamwise-elongated
surface obstacles on a concave surface is examined in detail, and also contrasted with the flow
pattern due to ronghness elements with aspect ratio of order unity on flat surfaces. Finally, the
applicability of the Briggs-Bers criterion to unstable physical systems of this type is questioned
by providing a counterexample in the form of the inviscid limit of interactive Gdortler vortices.
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1 Introduction

The physical realizability of an unstable equilibrium solution corresponding to a nearly homo-
geneous shear flow is dependent on whether or not the equilibrium state corresponds to the
time-asymptotic solution of the related unsteady problem. The answer to this latter question
can usnally be obtained quite easily, provided one has sufficient information to classify the lin-
ear instabilities of this equilibrium state as being of either absolute or convective nature (Briggs
1964, Bers 1975, Huerre and Monkewitz, 1985). The presence of an absolute instability means
that any compact unsteady source with a continuous Fourier spectrum will introduce distur-
bances that amplify indefinitely in time at all neighbouring locations, thereby eliminating the
possibility of any time-asymptotic state within the linear framework. In contrast, the response of
a convectively unstable flow to a pulsed source takes the form of an instability-wave packet that
is swept away from the source by the mean flow, thus restoring the original state at sufficiently
large times.

For convectively unstable flows, it is also possible to investigate the response of the flow to
some continuous forcing in a local region, say in the form of a time-harmonic disturbance which
is switched on at a finite time. The time-asymptotic solution to a “signalling” problem of this
type can be obtained either from a superposition of the wave-packet solutions Balsa (1988), or
by directly solving the steady state equations which have the harmonic time dependence built
into them. The overall amount of effort required is perhaps larger in the former case; however,
it automatically ensures the causality of the steady-state response, without any need (as in the
latter case) for extraneous considerations such as the Briggs-Bers criterion in order to specify
the correct streamwise boundary conditions at the upstream and/or downstream ends.

The objective in this paper is to consider the above issues in the context of a centrifugal. i.e.,
the Gortler instability of boundary-layer flows over concave surfaces. Experiments have shown
that this instability is usually manifested in the form of steady streamwise vortices which amphfy
in the downstream direction, eventually yielding to time-dependent instabilities of a secondary
and tertiary nature. The varicus experimentally observed features of the lincar and nonlinear
development of the Gortler vortices have also been explained using asymptotic theories (Hall
1982a-b, Hall and Lakin 1988, Hall 1990), and direct numerical simulations (Hall 1983, Sabry
and Liu 1990, Liu and Sabry 1991).

While the occurence of steady unstable vortices is suggestive of a convective nature for the
Gortler instability. the validity of this assumption had not been addressed until Parks and Huerre
(1988), who examined the special case of an asymptotic suction profile. More recently, Ruban
(1990) (herafter referred to as R) examined the Gortler instability of an arbitrary profile in the
long-wavelength regime using asymptotic methods in the limit of a large Reynolds number R, and
a large Gortler number (. Somewhat surprisingly, he found that the flow is absolutely unstable
to spanwise-periodic perturbations. However, he also examined the disturbances created by an
isolated point source and concluded that the flow is convectively unstable in this latter case.
Here, the wave packet, determined through steepest-descent analysis, was found to spread in all
directions including upstream, except for a sector of 60° directly ahead of the source.

Savenkov (1990) (henceforth, S) applied the same asymptotic framework as Ruban to study
the receptivity problem for the Gortler vortices in the long-wavelength regime. He used a residue
analysis in conjunction with Fourier transform methods to compute the approximate temporal
development of the perturbations created by an unsteady wall hump which assumes its final




(nonzero) shape after a finite length of time. His results were supportive of the conclusions
in R, in that the steady-state pattern was found to be similar in shape to the time-dependent
wave packet of R, and no Gortler vortices were generated downstream of the hump. Previously.
Rozhko ¢t al (1988) (henceforth, RRT) had also studied the same problem. albeit by solving the
steady state equations directly in Fourier transform space. The disturbance pattern computed
in this manner was also similar to that obtained by S as a limit of the time-dependent problem.
RRT had also found that a crucial difference between the disturbance patterns on concave and
convex walls corresponds to the presence of an O(1) upstream signature in the former case, as
against a total lack of any upstream influence in the latter case.

The above results concerning the absolute nature of the Gortler instability, as well as the
occurence of an upstream interaction in the concave-wall case, are rather intriguing. the former,
sinee it casts a doubt on the relevance of much of the previous work on Gortler instability which
was related to steady vortices, and the latter. due to the fact that the steady-state equations
are actually parabolic in nature. In this paper we examine the problems addressed by R, S and
RRT. and demonstrate that the peculiar findings of these investigators are actually a result of
having ignored a fundamental property of the partial differential equations governing the steady
and unsteady problems.  Specifically, we show that solving the unsteady problem with the
appropriate boundary conditions not only confirms the convective nature of Gortler instability
in the spanwise-periodic case. but also vields the solution to the receptivity problem in the limit
of large times.

The problem of the generation and subsequent linear development of long-wavelength Gortler
vortices is formulated in the following section. Although no extra effort is involved in solving
the complete problem related to viscous inviscid interactive vortices, it is more illustrative to
separately consider the two limiting cases corresponding to the viscous and inviscid vortices.
respectively. Both analytical and numerical methods are used towards this purpose: the analyt-
ical work is presented in Section 2. whilst in Section 3 we present our results. Finally we draw
some conclusions in Section L.

2 The governing equations for viscous-inviscid interac-
tive longitudinal vortex structures and some analyti-

cal results
At a given value of the eurvature parameter, viz. the Gortler number (7 = L‘—:R(‘IL/.Z. the linear
development of steady Gortler vortices is determined primarily by the nondimensional wave-
length in the spanwise direction. A, = H(}J/.Z%%. Here L™ denotes a typical streamwise length
scale based on the distance between the leading edge and the location of interest, a* (>> O(L~))
is the radins of curvatnre of the surface at this location, and Rep+(>> 1) is the Revnolds number
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hased on the local free-stream speed 72, and the distance L*. The asterisk is used to indicate
the dimensional quantities here, and thronghont the rest of this paper.

It was shown independently by Denier, Hall and Seddougui (1990), and Timoshin (1990)
that in the limit of large Gortler numbers ((C>> 1) one needs to consider five different asymp-
totic regimes along the Ao axis. In the order of increasing spanwise wavelength, these regimes
correspond to (i) the neutral regime (A ~ 7Y% (ii) the most unstable regime (A. ~ (=17,




(ii1) the inviscid regime (A. = O(1)), (iv) the long wavelength or viscous-inviseid interactive
regime (A. ~ (Y/7), and finally, (v) the nonparallel regime corresponding to A, = O(G'/?).
Investigations of the linear and nonlinear stability problems associated with the first three of
these five regimes have been given by Hall (1982a-b), Hall and Lakin (1988), Denier, Hall and
Seddougui (1990), and Timoshin (1990). The viscous-inviscid regime for Gortler vortices was
first investigated by Rozhko and Ruban (1987) in connection with the disturbances generated
by streamwise-clongated roughness elements over curved surfaces, and subsequently, in the szii.e
context by RRT, R and S. as mentioned already. The fifth regime corresponding to nonparallel
vortices does not appear to have been studied in any detail until now, but see Hall(19383).

As stated in the Introduction, our concern in this paper is with the generation and linear
amplification of the long wavelength, or viscous-inviscid interactive Gortler vortices, which are
relevant at locations close to the leading edge. As first shown by RR, the asymptotic scalings
of this regime are fixed by the condition of viscous-inviscid interaction, plus a balance of the
displacement-induced pressure with the jump in pressure across the main part of the boundary
laver due to centrifugal effects associated with the surface curvature. These balances identify
the spanwise length scale A.. based on the boundary-laver thickness, as being of O(¢~1). where
¢ = (77 (<< 1), whereas the streamwise length scale £, based on the distance L* from the
leading edge, is determined to be O(¢?). In the normal direction, the vortex structure consists
of three distinct subregions, viz. the lower, middle and upper decks, whose thicknesses relative
to that of the boundary layer are of O(¢),O(1), and O(¢7!) respectively. The overall dynamics
of cach of the decks, as well as their coupling, is quite analogous to that in the conventional
three-dimensional triple deck problem. The structural similarities between the two problems
lead one to anticipate that the Gortler vortex problem is also amenable to the same solution
procedure as that applied in triple-deck problems, and indeed. this was shown to be the case by
RR. Specifically, it is possible to obtain closed form solutions for the perturbations in the middle
and npper decks, and a matching of these two provides the interactive relationship between the
pressure and displacement-thickness perturbation, this closes the lower-deck problem governed
by some form of the three-dimensional boundary layer equations.

For the sake of definiteness, consider the same problem as that studied by both R and S,
riz.. the disturbance pattern produced by an unsteady wall-hump with an arbitrary but specified
shape that can be expressed as the coordinate surface

Y =0, (2.1)
corresponding to the Prandtl-transposed coordinate within the lower deck, Y = (! 11’(';4/.2,\4/731*/14‘ -
hF(X.Z.T). where X = ¢ 3AN 70 /L and 7 = (H('}‘/.Z,\”'/T:‘/L' are local coordinates in the

. . . . . ' P V2N R/ Tyrw gm = - .
streamwise and spanwise directions respectively, T = ¢2Re 2\=R/T /L™ 1s the nondimen-
o L o~

sional time, and h (<< 1) and F(X, Z,T) are. respectivelv. the normalized height parameter
and shape function characterizing the wall-hump geometry (see Fie. 1). For reasons which will
be obvious later. it is appropriate to only consider the type of biinp geometries which have a
definite streamwise origin, i.e.. F(X.Z.T) = 0 for X less than some finite value Xy, which will
be assumed to be the origin. X = 0. without any loss of gruerality. The parameter A is used
to denote the wall shear corresponding to the incoming houndary-layer profile just upstream of
the ronghness element.

'l. 1'. 11'.
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Introducing the expansions (




YFx + V), e 3Re[?hA¥TW, ¢S Rep!hAY"P) for the lower deck variables, one finds that
the leading-order perturbations (U, V, W, P) are governed by the linearized, three-dimensional
boundary-layer equations

IxU +yV+0;W =0, (2.2a)
(Or + YOox)U+V =L, (2.2b)

and
(a'r +Y dx)W =-0zP + df,w, (22(‘)

without any pressure gradient along the streamwise direction. Since the surface deformation
dune to the unsteady hump has been assumed to originate at a finite time, the disturbance field
may be taken to be zero at the initial instant of time. Similarly, it can be assumed that the
surface obstacle will not produce any disturbances sufficiently far upstream, and also that the
disturbance motion either decays, or remains bounded, as |Z| — oo, depending on whether
F(X,Z,T) has a compact or noncompact support in the spanwise direction. The boundary
conditions in the normal direction are given by

U=V=W=0aty =0, (2.3a — c)

and

= F(X.Z,T) = A(X.Z,T), W =0 as ¥ — oo, (2.3d, ¢)

where the displacement-thickness perturbation A(X, Z, T') is related to the pressure perturbation
P(X,Z.T) via the interactive relationship (RR)

92
OzP = —sign(G)ozA + L= wdf (2.31)
TJoo E—Z2

which reflects the simultaneous balance between the lower-deck pressure, the curvature-induced

pressure within the middle deck and the displacement-induced pressure inside the upper deck.

In (2.30). the sign of the Gortler number has been assumed to be positive for concave surfaces,

and negative for convex ones. Moreover, one may also obtain results for the case of an underlying

surface that is flat, or has an asymptotically small curvature, by setting sign(G) = 0 in (2.3f).

In that case, the small parameter € is to be interpreted as a measure of the aspect ratio of the
planform of the surface obstacle.

[t is worth mentioning that apart from the absence of a streamwise pressure gradient term in
equations (2.2a-c), which follows as a consequence of the length-scale disparity in the streamwise
and spanwise directions, the problem of viscous-inviscid interactive vortices differs from the
three-dimensional triple-deck problem in two other aspects which are related to properties of the
middle and upper decks, and thus, are manifested through the interactive relationship (2.3f).
Firstly. the role of the main deck is no longer just a passive one, corresponding to a direct
transmission of the outer pressure to the lower deck, since the centrifugal effects in the middle
deck now substantially alter the pressure gradient imposed on the lower deck. As seen from
equation (2.3f). the pressure jump across the middle deck turns out to be independent of the
details of the incoming boundary-laver profile. being equal to just the normalized displacement-
thickness A in terms of its magnitude. For this reason. the equation set (2.2-2.3) is a canonical
one and, indeed, after some additional analysis. it can be shown to be valid at both subsonic and




supersonic speeds. The other source of differences between the Gortler-vortex and triple-deck
problems is related to the behaviour in the upper deck where, due to the negligible pressure
gradient in the streamwise direction, the secondary flow in the cross-flow plane is decoupled
from the local streamwise motion, in a manner somewhat analogous to slender body theory. As
a result, the upper deck motion is elliptic only within the cross-flow (Y — Z) plane and, thus,
cannot exert an O(1) upstream influence on the lower deck motion via the pressure-displacement
relation (2.3f).

Applying a Fourier transform in the spanwise direction (Z — k), and denoting the trans-
formed variables using an overbar, the governing equations can be rewritten as

IxU + 0y V +ikW =0, (2.4a)
(Or + Y ox)U +V =83U, (2.4D)

and
(Or + Y 0x)W = —ikP + AW, (2.4¢)

along with the boundary conditions

U=V=W=0at} =0, (2.5a — ¢)
U=F(X,Z,T)-AX,Z,T). W=0asY — oo, (2.5d. ¢)

and
kP = —sign(GYkA + sign(k) Ay x. (2.5f)

obtained from (2.3a-f), plus the homogeneous initial conditions in X and T.

In the following section, we present numerical solutions to the unsteady problem posed above
for the case of spanwise-periodic perturbations, and confirm the lack of any absolute instability
by demonstrating the appearance of an unstable, spatially-growing Gortler vortex at large times.
It is also possible to obtain closed-form, analytical solutions by taking the appropriate transform
along the streamwise direction. For instance, RRT, R and S used a two-sided Fourier transform
in their work; but, one should note that using a Fourier transformation along the streamwise
direction in unstable physical systems is not always a straightforward matter, although fairly
standardized recipes, such as the Briggs-Bers criterion (see Briggs 1964, Bers 1975). are now
available to treat this issue in the case of streamwise elliptic systems. Now, due to a lack of the
streamwise pressure gradient as well as streamwise diffusion terms, the system (2.2-2.3) is not
ellipticin X and Y. In fact, in the limit of very long wavelength vortices, it can be easily shown
to be parabolic in the streamwise direction; refer to the discussion following Eq. (2.12d). Noting
the failure of RRT, R, and S in accounting for this anticipated lack of upstream influence in
the concave-wall case, it would seem that a straightforward application of the Fourier transform
technique in non-elliptic unstable systems may lead to physically unacceptable results: In Section
3.1 below, we will also consider the short-wavelength (or inviscid) limit of the problem, and
illustrate the inapplicability of Briggs-Bers criterion towards predicting the nature of instability
in that case.

Thus, consider the Laplace transform solution to the problem posed by equations(2.4-2.5).
which is given by

i 135/3/11'1(C0)[‘7(0'. d)

Al kom) = — - — (2.6a)
FIAN(Co) + [s1gn(G) k2 — |k].32) Joo A(Q) dC

ot




kP = [#*sign(k) — ksign(G)]A, (2.60)

L=k AN A Gi(Go) ... ‘
U= —m gm0 = ey AN (2.6¢)
i —zl.ﬂ[’ i (,‘i(g ) -

and V" follows from the X-momentum equation, (2.4b). Here o and 3 denote the transform
variables corresponding to the time 7', and the streamwise coordinate X respectively, while ( is
defined as

- . - - - o ¥
C=4"BY + G, (o= 275 (2.6¢, f)
The dispersion relationship corresponding to the Gortler vortex instability modes is then given
by
35/3 A
D(o, 3: k) = ——I—(—c—). + sign(G)k* — [k|3% = 0, (2.7a)
S Q) d¢

(L) (M) (")

which further reduces to

347(0)8%° + sign(G)k* — |k|p% =0, (2.7b)

for the case of steady vortices (o = 0). which are apparently more important in practice than
the unsteady ones. An interesting property of the steady dispersion relation (2.7b) is that it
possesses a unique root in the complex 3 plane for any given (real) spanwise wavenumber &, and
moreover, this root always lies on the real, positive 3 axis, implyving that the steady vortices
exhibit a purely exponential growth in the streamwise direction. A plot of the stationary growth
rate 3 as a function of the spanwise wavenumber k is shown by the solid curve in Fig. 2, where
the large and small & asymptotes, given by (2.8b) and (2.9b) below, are also indicated by the
two dashed curves.

As described earlier. both the unsteady as well as steady dispersion relations represent a
balance hbetween the effects of viscosity in the lower deck (L), destabilizing centrifugal forces
in the middle deck (M), and the viscous-inviscid interaction via the upper deck (U). However,
in the limit of large spanwise wavenumbers (A >> 1), and commensurably larger frequencies
(Jr] >> 1). the dominant balance shifts to just the inviscid terms (M-U) in (2.7a,b) together
with the large o form of (L). and is given by

—o 3+ sign(GYhk* — |k|3% =0, (2.8a)
in the nnsteady case. For the steady problem (L) is negligible and we obtain

sign(GYk* — k3% = (2.8b)
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which matches with the dispersion relation in the main inviscid regime corresponding to sta-
tionary vortices with spanwise wavelengths comparable to the boundary-layer thickness; see
Denier, Hall and Seddougui (1990), and also Timoshin (1990). In contrast, the opposite limit
of extra-long spanwise wavelengths (A << 1), which was the focus of the work by RRT, R and
S, leads to the purely noninteractive, viscous-centrifugal (L-M) balances

35/3 A1 -
%‘—’(ﬂ + sign(Gk* = 0, (2.9q)
f(o Ai(C) d¢
and
3Ai'(0)3° + sign(G)k* =0, (2.90)

in the unsteady and steady cases, respectively.
Finally, setting sign((7) = 0 in (2.7a) yields the interactive, flat-surface limit,

353 A ((o)

BTANGD) g =, (2.10)
Sy AC)d¢

which corresponds to very oblique Tollmien-Schlichting waves (Hall and Morris 1991), and could
also have been obtained by taking the appropriate limit of the full three-dimensional triple deck
equations. Since our primary interest lies in the Gortler vortex type of instabilities, the limits
(2.8) and (2.9) are more relevant to us than (2.10), and therefore, we shall choose to concentrate
on these two cases in the remaining part of this paper. Of particular interest will be the extra-
long wavelength problem which is exemplified by the dispersion relationships (2.9a.b) and. was
also considered by RRT, R, and S. For this case, it is possible to further substantiate the lack
of any upstream influence in a manner described below.

Basically, further manipulation of equations (2.4) leads to a single partial differential equation
for the vertical velocity perturbation,

(02 — (Or + Yx)]|O2V =0, (2.11)

which, together with the boundary conditions

V=hV=0a) =0, (2.12a — b)
V(o) =0, (2.12¢)

and
IRV (0) + sign(GYk* [y V(o) + Ox F(X. Z.T)] = 0., (2.12d)

and the homogeneons initial conditions in X and T directions, can be viewed as a one parameter
(riz. ¥ family of linear advection equations in the X — T space with a positive semi-definite
range of convection velocities, the member equations being coupled via normal diffusion. and the
integral evolntionary constraint (2.12d). The nature of these advection equations lends further
support to our previons argument concerning the lack of any upstream influence in the problem,
Since the propagation of distiurbances in the npstream direction is prohibited. the homogeneous
initial condition in the streamwise direction can be imposed just npstream of the origin of the
surface nonuntformity. i.e. at X' — 0—. One should also note that the above classification of




the governing partial differential equations is independent of the sign, or the magnitude, of the
curvature parameter (7. since it only appears through the coeflicient of a zeroth-order derivative
term in (2.12d). The only difference between the convex and concave cases corresponds to the
existence of a Gortler instability in the latter case. which leads to disturbance amplification in
the downstream direction. This aspect appears to have been overlooked by RRT, R and S. who
utilized a two-sided Fourier transform in the streamwise direction without accounting for the
propertties of the governing differential equations.

3 Numerical Results

[n this section we present the numerical solutions to the set of governing equations corresponding
to (2.2) and (2.3). The case of spanwise periodic perturbations is examined first in Section 3.1,
followed by the case of an isolated surface excrescence, which is discussed in Section 3.2, In both
cases, spectral diseretizations, Chebyshev and Fourier, respectively, were utilized along the Y and
Z directions, whereas a second-order accurate backward difference scheme was used to compute
the vortex evolution in space (X') and time (7). Since both the {7 and W perturbations approach
their limiting values at infinity (corresponding to equations 2.5d.e) rather slowly, the usage of
higher order bonndary conditions obtained through asvmptotic considerations was found to be
imperative in maintaining the spectral accuracy in the Y-direction. Overall, this numerical
scheme combines a robust marching procedure with a strong coupling in the secondary-flow
plane. the latter being especially desirable for solving vortex-flow problems. The accuracy of
the nnmerical resnlts was verified by grid-resolution checks, as well as through comparisons with

analvtical solutions, as discussed below.

3.1 Unsteady Evolution of Spanwise Periodic Perturbations

We will first disenss the resnlts pertaining to the limit of the extra-long wavelength viscous
vortices.  We recall that this case has been considered by R. As poimnted out in that paper.
and as can be seen directly from the dispersion relation (2.9a). this regime admits a similarity
behavionr of the type X ~ Z%% and. T ~ Z°/1. and hence, it is sufficient to consider the
nnsteady evolution of jnst a single Fourier mode in the spanwise direction; this we take to be
bk =1 withont any loss in generality. The real and imaginary parts of the spatial (.3) root of
this unsteady dispersion relation are shown in Fig. 3 for real values of the frequency w(= i0).
Unlike the case of cross-flow vortices. where the most unstable modes are usually time dependent.,
here the steady Gortler vortex (w = 0) is found to have the largest growth rate for any given
spanwise wavenumber. This, along with the fact that a class of potentially dominant receptivity
mechanisms preferentially excite the steady vortices as compared to unsteady ones (Choudhari
and Streett, 1990). would help explain the observed dominance of steady Gortler vortices in
laboratory experiments.

As shown in Fig. 3. the spatial growth rate decreases monotonically with frequency. A
nentral point exists at «w = 2298 whilst in addition there is the asvmptote Re(3) ~ %iz/z as
w = xL with dy(x =3.2182) heing the second zero of 4'({p) on the negative real (o axis. On
the other hand, the maginary part of 4 is zero at w = 0. implving a purely exponential growth
by the stationary vortex. as mentioned previously: but Im(.3) increases nearly monotonically as




w 3/2
. . 'lz .
may also observe that, since the growth rate curve is locally stationary near its maxmnnuim at

w 1s increased, leading to an asymptotic behaviour of I (.3) ~ % at large frequencies. One
« = 0, the derivative ¢, = IZ—*, corresponding to the gronp veloeity of the stationary vortices
in the streamwise direction, is purely real and positive, equal to about 1.5 as seen from the
dash-dot curve in Fig. 3. Of course, the behaviour of Gortler vortices is far from that of the
mainly-oscillatory instability modes of the Tollmien-Schlichting or Ravleigh tvpe. and henee,
the notion of group velocity is not expected to be physically relevant in this case, especially for
the w = O(1) modes where the real and imaginary parts of ¢,y are comparable to cach other.
Nevertheless, it is interesting to note that the real part of the group velocity in the X-direction
is always positive, and less than its value for stationary vortices. Furthermore, the imaginary
part of the group velocity is bonnded for all spatial modes. Therefore, one might expect an
impulsive source to generate a wavepacket with both ends propagating at finite speeds. This
was indeed fonnd to be the case in the numerical solutions, which are presented below.

For the purpose of simulating the transient wavepacket problem. we considered a hump shape
of the form

FINVZ,T) = (1 = cos(2r X)) (1 = cos(dnT)) cos(2nZ) R(X.0.1)R(T.0.0.5). (3.1a)

where R(q.q,.qy7) denotes the restriction operator in the ¢ space. being eqnal to unity for ¢, <
q < qy. and zero elsewhere. Similarly, in order to obtain the steady hump solution in a causal
manner, an unsteady hump shape of the form

FIN.Z.T)= (1 = cos(20 X)) (1 = <7 7")) cos(277) R(X.0.1), (3.10)

was also considered.

For both these geometries, we have shown the behaviour of the displacement function
A(XLZ.T) along the vortex boundary 7 = 0 as a function of X at selected instants of time in
Figs. la and Ab respectively. Figure ({a) shows that the transient surface deformation generates
a vortex patch downstream which increases in its streamwise extent, and in amplitude. with an
increase in time. One may note that between 0 < X' < 1, the displacement function conforms
quite closely to the hump-shape during the period 0 < T < 1 when it is nonzero. Significantly
the vortex pattern displays no oscillations in the streamwise direction at all. Thus, the bound-
ary laver experiences a positive displacement at all times along the vortex boundary 7 = 0,
and a negative displacement along the centreline Z = 7. As a result of the amplification with
the passage of time, one wonld observe ar increasingly stronger streaky structure corresponding
to an alternate pattern of boundary layer upliftment (i.e. deceleration) and an equally strong
attachment (i.e. acceleration) with a constant spacing along the streamwise direction. It will,
of course. be very interesting to see how nonlinearity modifies this behaviour, and this will be
the topic of a forthcoming paper. Finally. but most importantly, the convective nature of the
spanwise periodic perturbations is seen very clearly from the downstream movement of the tail
of the vortex patch: see. especially, the curves marked 12 through 15.

Fignre th shows how the steady. spanwise-periodic vortex pattern gets established as the
hump s brought to its final shape over a period of time. Again. one may note the monotonte
behaviour of the displacement function A(XN.Z = 0.7) in the region downstream of the hump
at each instant of time. In the vicinity of the hump. again. the displacement function closely
resembles the instantancons hnmp shape, as in the case of Fig. ta. For small X this latter




behavionr can also be predicted using the closed form solution (2.6) above, which further shows
that for N << 1. the wall-shear perturbations {7(0) and 17(0) are considerably smaller than
the displacement-thickness perturbation. being of O(X*?) and O(X'?), respectively, relative
to 1. Furthermore. the viscous laver begins to grow at the nsual rate of ¥ ~ X% near X << 1.
thus suggesting a further split withiu the lower deck corresponding to ¥~ XV and ¥ = O(1).
The wall-shear scalings for small X show that the flow near the front end of the obstacle is
nearly in the spanwise direction: however. contrary to what one’s intuition might suggest. this
flow is found to be converging towards the obstacle instead of spreading out along the spanwise
direction. A physical explanation for this observation is provided in Section 3.2 below. The
unstable, Gortler vortex part of the steady-state solution can be shown to be

-

.

A= P (S0 k)Y 3y = (=3A17(0))%5, (3.2)

oy

which is shown via svmbols in Fig. (4h). It may be seen thi. the munerical solution is in
excellent agreement with the instabilitv-mode part of it for nearly all locations downstream of
the hmmp. Sinee the algeoraically decaying part of the solution appears to be dominated so
quickly by the nnstable cigenfunction part. this suggests that experimental measurements of
Gortler vortices need not only be carried out far downstream of the region where the vortices
are tndneed.

Finallv. let us brietly consider the inviscid limit correspouding to the dispersion relation
(2.8a). It is casy to show that the corresponding differential equation for, say, the displacement
function 1 s given by

Oy (v + [klo)A = k*A = 0. (3.3)
which is hyperbolie in the N = T space on the basis of the standard classification of second

order partial differential equations. The two families of characteristic curves corresponding to
equation (3.3) are given by

1 = constant  and X — |k|T = constant, (3. 4a. b

respectively, This sngeests that the Cauchy problem should be posed at some initial station
N = 0. and if the Canchy data has a finite nonzero limit as T — oc. onc duly obtains the nnstable
Gortler vortex growing n the downstieam direction as part of the causal steady solntion. In
contrast. if one traces the trajectories of both roots of the dispersion relation (2.8a) in the
complex 3 plane as o moves from positive infinity to zero along the real axis (Iig. 5). then
application of the Briggs- Bers eriterion would imply that the root corresponding to the unstable
vortex onght to appear on the upstream side. The reason behind this failnre appears to be
linked to the infinite-speed characteristie (3.4a). which leads to a solution that does not decay
rapidiv enongh in X at any instant of time. thereby disallowing the usage of the imaginary 7
axis as the inversion contour for a two-sided Laplace transform in X even for small values of T'.
Sinece the Briggs-Bers eriterion is based on the assumption of a spatially compact disturbance at
small enongh times, it seems reasonable to expect that that it may not provide reliable results
in this particular case. This pecnliar behavionr of the instability in question is also reflected
in the dispersion relation (2.8a). which predicts purely dispersive behaviour for real streamwise
wavennmbers (e, nentral behaviour in the sense of a temporal instability). but predicts unstable
roots for real frequencies (e, spatial instability). in particular. the stationary Gortler vortex at
w = (.

1




3.2 Unsteady and Steady Disturbance Patterns due to Localized
Surface Irregularities

In view of the order of magnitude increase in the computational effort required for this case.
only one specific situation, corresponding to

F(X.Z.T)=(1 —cos(2r X)) (1 = cos(4xT)) ¢~ %1 R(X,0,1) R(T.,0,0.5). (3.5)

was considered for the purpose of numerically calculating the disturbance pattern due to an
unsteady, localized wall hump. Here, the Gaussian drop-off in the spanwise spectrum was chosen
in order to offset the ill-posedness of the steady dispersion relationship (2.9b). The contours of
constant (instantancous) displacement in the X — Z plane for this case have been shown for a few
selected values of time in Figs. (6a-e). Due to the spanwise symmetry of the surface obstacle.
only positive values of the spanwise coordinate: Z have been included in the plot. Results for
negative values of Z can be obtained through a reflection of the contour about the horizontal
(X) axis. Figures 6a-e clearly indicate that a vortex pattern is established downstream of the
source, and that as time passes, this pattern is convected downstream, also gaining in amplitude
at the same time. This further demonstrates the convective nature of Gortler instability in the
case of disturbances with a continuous spectrum of spanwise wavenumbers. Thus, it would be
possible to study the disturbances produced by a steady wall hump by a direct solution of the
steady form of the governing equations.
For the purpose of the steady calculation, we considered the hump shape given by

F(X,Z) = (1 —cos(2x X)) e Z/° R(X.0,1). (3.6)

The constant displacement contours corresponding to the disturbance pattern produced by this
hump are shown in Fig. Ta. One may observe that the confocal ellipses near the inflow boundary
conform rather closely with the obstacle shape, similar to that in the spanwise-periodic case
discussed in Section 3.1 above. Thus, over a major part of the hump, the boundary laver is
simply lifted up by the amount of the local obstacle height, although in the downward sloping
portion of the hump, there are regions of small negative displacement at sufficiently large values
of the spanwise coordinate Z. Figure Ta also indicates the presence of a streamwise corridor just
downstream of the hump (corresponding to curve 6 closest to the X-axis), which separates the
region of large (positive) displacement from the relatively less disturbed region outside. This
feature was also noted by Smith et al (1977) in the solution to a three-dimensional triple deck
problem. The most striking feature in Fig. Ta, however, is the gradual emergence of a vortex
structure downstream of the hump, which corresponds to alternating regions of positive and
negative displacement, separated by the contours marked as “67. At cach streamwise station,
the innermost vortex is the strongest one, with the amplitude falling ofl rather rapidly away
from the centreline, thus leading to a vortex pattern with a roughly parabolic shape. The
orientations of the centrelines of different vortices, corresponding to zero displacement contours
(marked as “6” in the figure), indicate that all of the vortices are present at locations just
downstream of the hump; however, since their amplitudes are inversely proportional to the
distance away from the axis (Z = 0). the more distant vortices become noticeably large only
at increasingly larger distances, thereby creating the illusion that additional vortices are being
created as one moves downstream. The gualitative resemblance between the vortex pateh of




Fig. (7a) and that compnted numerically for the case of (= O(1) and A, = O(1), Denier, Hall
ard Seddougui (1990), where no asvimptotic approximations were involved, indicates that the
presence of spanwise diffusion terms in the governing equations is not a prerequisite to obtain a
slowly spreading pattern of streamwise vortices.

The contours of constant axial and spanwise shear stresses (not shown here) also bear some
stmilarities to the triple deck situation, excepting the lack of upstream influence, and the presence
of the Gortler vortex pattern. However. an examination of the secondary flow within the X — 7
plane reveals an important difference between the disturbance patterns in these two cases,
Specifically, the results of Smith ¢f al (1977) show that on the forward face of the hump. the
fhaid is pushed out in the spanwise direction within the lower deck. although it converges again
towards the obstacle inside the middle deck. thus creating a recirculating secondary-flow pattern.
This pattern is reversed on the backward face of the hump. whereby the fluid is drawn together
in the lower deck. but pushed out within the middle-deck. Clontrary to this, as well as to one's
imtuitive expectations, it is found that in the case of an obstacle over a concave surface, the fluid
moves towards the obstacle on both the forward. as well as rear faces of the hump. This spanwise
convergence of the fluid, which continues across the middle deck as well, is accompanied by an
upwelling near the axis (£ = 0). thereby setting up an outflux into the upper deck. where the
thud is pushed out again: sce Fig. (7b). The counterrotating vortices generated in this manner
become especially prominent farther downstream of the obstacle, and one observes the distinet
pattern of alternate regions of upwelling and downwelling. with the strength of this pattern
decreasing qaite rapidly away from the axis.

These differences between the two problems can be easily traced to the nature of the re-
spective relationships between the pressure and the displacement-thickness perturbations. In
the case of an obstacle with triple-deck scalings over a flat surface, the distribution of pressure
is controlled by the streamwise slope of the displacement function, whereas in the case of a
streamwise elongated hump over a concave wall. the pressure is equal to the negative of the
displacement. as seen from the viscous limit of the interactive relationship (2.3f). Therefore. the
decreasing displacement away from the centreline in Fig. 7a translates into a negative pressure
perturbation of decreasing magnitude away from the axis, Z = 0. In other words, the displace-
ment pattern of Fig. 7a induces a favorable pressure gradient towards the centreline, which
would explain the sink-like effect the obstacle has on the flow within the boundary laver.

4 Conclusions

We have investigated the unsteady spatial evolution of long wavelength Gortler vortices in a
boundary laver. The viscous-inviscid interactive regime we have considered 1s appropriate to
sitnations when the Gortler number is large but any perturbations in the flow have spanwise
wavelength much larger than the boundary laver thickness. In particular it follows that our
work is relevant to flows near the leading edge of highly curved boundary layers of the type one
might find for example on a turbine blade.

We have shown that the Gortler mechanism in this regime is a convective rather than absolute
istabilitv. This result contradicts previous work on the Gortler problem in this part of the
Gortler-wavenumber space. Perhaps the main conclusion to be drawn from our work is that
in general 1t s suflicient to study onlv the steady Gortler problem. However we must bear in
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mind that our analysis is restricted to the small wavenumber regime so that it is always possible
that absolute instabilities might occur at larger wavenumbers. The fact, that experimental
observations all indicate that Gortler vortices are convectively unstable, suggests that the latter
scenario is unlikely.
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Fig. 2 Spatial root of the steady dispersion relation (2.7b)
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Fig. 3 Spatial instability properties of the unsteady dispersion relation (2.9a)

for k = 1.0.
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Fig. 4 Displacement function A(X, Z,T) along the vortex boundary Z = 0 as
a function of X at selected values of time
(a) F(X,2,T) = (1-cos(27X)) (1-cos(47T)) cos(2wZ) R(X,0,1)R(T,0,0.5)
Curves 1 through 15 correspond to T=0.125, 0.250, 0.375, 0.5, 0.75,
1.0, 1.25, 1.5, 1.75, 2.0, 2.25, 3.5, 6.0, 12.25, and 18.5, respectively.

19




10 u

| ! |
t=9.75
[~ ... t=8.5
..... t=7.25
8 [ t=6.0 |
—_—— t=4.75
______ t=3.5
S £=2.25 i
........... t=2.0
— t=1.75
N 6 — .. t=1.5
~ ] .. t=1.25
N t=1.0
) - t=0.75
\i ______ t=0.5
[ N t=0.3 -
I~ 4 T t-0. L
t=0.
’ -t
.

Fig. 4 Displacement function A(X, Z, T') along the vortex boundary Z = 0 as

a function of X at selected values of time

(b) F(X,2,T) = (1 - cos(2nX)) (1 — e~T*/1)) cos(27Z) R(X,0,1)
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Fig. 7b Sketch of the secondary-flow pattern due to a wall hump on a conc
ave

surface
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