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BEAM TRAPPING IN A MODIFIED BETATRON WITH A LOCALIZED
BIPOLAR ELECTRIC FIELD PULSE

I. INTRODUCTION

Compact, high-current accelerators are currently under development in several labora-

tories. 1 -5 Among these accelerators is the modified betatron."- This accelerator is a

toroidal, closed orbit device that utilizes three different magnetic fields to accelerate and

confine the high current electron ring; the time varying betatron or vertical field that

controls mainly the major radius of the electron ring and also is responsible for the accel-

eration, the quasi-static toroidal magnetic field that controls primarily the minor radius

of the ring and also the growth rate of the various unstable modes and finally the quasi-

static strong focusing (SF) field that reduces the sensitivity of the electron orbits to energy

mismatch and spread.

A challenging physics issue of the modified betatron concept is the capture of the

injected beam into the closed magnetic field configuration of the device. Capture of the

beam requires that its poloidal orbit be modified within a bounce period rB, i.e., within a

poloidal revolution around the equilibrium position. Modification of the beam's poloidal

orbit can be achieved by either changing the equilibrium position of the gyrating electrons

or by reducing the radius of the poloidal orbit.

The strong focusing field in the modified betatron is generated by a set of stellara-

tor windings. Since this field is a function of the toroidal angle, the canonical angular

momentum Pe is not conserved. However, when Pe is averaged over the intermediate fre-

quency mode of the system ww, (= 47rve/L.f, where v9 is the toroidal velocity and L8 1 is

the period of the SF windings), the averaged < P, > is an approximate constant of the

motion."0 Two different schemes°- 12 have been developed, so far, for trapping the beam

Manuscript approved July 6, 1992.
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in the modified betatron. In both schemes < Pe > is an approximate invariant. In this

paper, we discuss an additional trapping approach, in which < Pe > is not conserved. The

proposed trapping scheme is based on the change of the centroid's equilibrium position by

a localized electric field. This electric field pulse is produced by a coaxial pulseline and

has a pulsewidth comparable to the bounce period of the beam.

This paper is organized as follows: Section II briefly reviews the generation of the

localized electric field pulse. Section III treats the propagation of electromagnetic waves

in toroidal geometry. Beam centroid orbits from the numerical integration of equations of

motion are presented in Section IV. Section V describes the constructional details of the

pulseline and the experimental data are presented in Section VI. An interesting feature

observed in the experiment is discussed in Section VII, and Section VIII contains a brief

summary of the results and some important conclusions.

II. THE ELECTRIC FIELD PULSE

Although the pulseline that is described in Section V is toroidal, the discussion in

this Section is limited for simplicity to the coaxial, cylindrical pulseline shown in Fig. 1.

This pulseline is similar to the radial line initially employed by Pavlovskii et al.,13 and

analyzed by Eccleshall and Temperley.14 In this Section, we briefly review the pulseline

for completeness.

The voltage at the gap Vg of the pulseline after the switch closes can be found by

integrating the equation V x E = -aB/lat along the dash line of Fig. 1. Assuming that

the resistivity of the conductor can be neglected, then
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=as' (i)

where 0 is the magnetic flux through the area A surrounded by the dash line.

The magnetic field of the propagating wave is found by integrating the equation

V x B = A. + pE(8E/at) in the circular area D that is located just behind the wave front.

The result is

B = -hlt/27rR, (2)

where I. is the current of the line, and R is the radius of the circular area.

The magnetic flux 4 can be computed from

fLB dS, (3)

where B is given by Eq. (2). Substituting (2) into (3), we obtain

SpItUt Rfort<

-" /I'U In (L3 )(2r -t),£--2 for r< t< 3r,(4
27r

where U is the speed of the electromagnetic wave, T = 2t/U is the one-way transit time, I

is the length of the pulseline (see Fig. 1), and it has been assumed that R 2 = N/-R-TiT.

Since the characteristic impedance Zo of the line is given by

and V. = ItZ., where V. is the initial voltage of the line, Eqs. (1) and (4) give
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V., for t<r

-V., for r<t<3r.

Up to this point the effect of the beam (load) has been neglected. The beam induces

a voltage Vb at the gap and thus the accelerating voltage is reduced, i.e.,

V, = Vo - Vb (6)

Since Vb = IbZ., where Ib is the beam current and assuming that the beam is matched

to the line, i.e., Vg = IbZo, Eq. (6) gives Vg = V',/2. When the beam is matched to the

line all the energy that is initially stored in the line is transfered to the beam and thus the

efficiency of the system is 100%.

If AE is the beam energy change required to move the beam equilibrium position by

a few centimeters, and r, is the period of revolution around the major axis, then

for the case where the injected beam interacts with the pulseline during the period r < t < 3r.

Since Ib = V./2Z., Eq. (7) together with the expressions for r and Z, given previously,

yield

R 3  AEro0 7r
221b (8)

In the NRL modified betatron the ratio R 3 /R 2 is restricted to values close to unity

by the presence of the strong focusing windings Therefore, the length of the line is unac-
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ceptably large. This difficulty can be avoided by mismatching the beam. In this case, the

initial voltage of the line is made larger than the value needed for matching, namely 21bZo.

Then the voltage at the gap is Vg = V0 - IbZo, and the length of the line is given by

AETro (9)

4 [Vo - IbZ,

For AE = 60 keV, r. = 24 ns, e/EO = 80, V. = 20 kV, Ib = 2 kA, R, = 16.8 cm,

R2 = 19.0 cm and R 3 = 21.6 cm, Z,, = 0.84 fl and Eq. (9) gives t = 0.66 m. Although

lower than in the case of the matched beam, the system efficiency is still resonable and is

given by

4Z01&b.J V2 (Vo- IbZo). (10)

0

For the parameters listed above ef L- 31%.

Plots of Zo, 1, ef, and r as a function of E/l, for the parameters given above are shown

in Fig. 2. For a matched beam, Eq. (10) gives an efficiency of 100%, and at time t = 3r

there is no energy left in the pulseline. The interaction of a beam with a charged pulseline

cavity can be better understood using superposition. It can be shown that the gap voltage

is the sum of the open circuit voltage at the gap of the charged pulseline in the absence of

the beam, and the gap voltage induced by the beam in the absence of any charge voltage.

If the beam is present beyond t = 3r (as is the case with a cyclic accelerator like the

modified betatron), energy will be transferred from the beam back to the pulseline during

the period 3r < t < Sr. This is the case regardless of whether the beam is matched to

the pulseline or not. Fig. 3 shows the gap voltage for a matched beam injected at t - T.
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To avoid beam interactions beyond t = 3r, the pulseline needs to be crowbarred by firing

a set of switches located in the insulating gap region. This isolates the pulseline from

the circulating electron beam. Pulselines used in linear accelerators do not need crowbar

switches because the beam duration is usually less than 2r.

IH. WAVE PROPAGATION IN TOROIDAL GEOMETRY

Let (r, 0, z) be the cylindrical coordinates and C4,, C-0, e-, be the unit vectors in

cylindrical geometry. Then the electromagnetic field can be decomposed into its toroidal

components Ee, Be and its transverse components Et, Bt, namely:

E =Et +Ee~e, (11a)

B = Bt + Be8 e, (11b)

where

it =E,4 + E., (12a)

S= B,4 + B,4, (12b)

It is assumed that the electromagnetic field can be expressed in the form

f = (r,z)e-iWt+•m9 , (13a)

B = B(rz)e-wt+tme, (13b)

where w is the frequency and m is an integer (m 0 0). Then, it is possible to show from

Maxwell's equations (in MKS units) that the transverse components can be expressed in

terms of the toroidal components as follows:

1 [ ]
E k2t (m/r)2  -rVtEe - iw4e x VtBe + T2 Eecr + iwlBeed (14a)
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Fim"" ik 2  i __ ik 2 1 ]1bBt T- VtBo + -- o VtEo + - CBor i o ' (14b)
k2 - (m/r)2  r2 + w r

where

a a
Vt = r + G , (15)

k = V'/IiAi?(w/c), Ju and Cr are the relative permeability and relative permittivity of the

medium, and c is velocity of light in vacuum.

After a lengthy computation, it can be shown that the toroidal components satisfy

the following coupled set of differential equations:

( 1: a + 2m 2  1E# [2 m 2 +1 2m2  18r 8+ Ee- [k E~r2r8r-5- - + 7+r2 - (M/r)2 r74 e

2mw 1 Be(
+ k2 - (m/r)2 ;2 0, (16a)

(1a a a2 B 2m 2  1oBe [ 2  m 2 + 2m-2  1Br 5 + oB- r [k22 - -l-2jr + r2 +
k2r- k2 - (m/r)2 r4J

2m(k 2/w) 1 aEe -0. (16b)
k2 - (m/r)2 r2 , z

These equations indicate that it is not possible to have pure TE or TM modes in

a toroidal cavity. But it is possible to have solutions with a small Ee or Be component,

inversely proportional to r. In the first case, the solutions determine the pseudo-TE modes

7



and in the second case, the pseudo-TM modes. Notice that when Eqs. (16a) and (16b)

are solved, the transverse components can be computed from Eqs. (14a) and (14b).

In order to solve Eqs. (16a) and (16b), we shall make use of the following theorem:

Let Gm and Hm be the solutions of the differential equation

(a+ Fn+ k2-M Fy = [. (17)

-rYr-ryr- +~ F4[.92m2

Then the set of toroidal components

E= a [Gm..i(r, z) + Hm+i(r, z)] e-iwt+imO, (18a)

Be! k 2 _ M2) (GM-I(r, Z) - Hm+i(r, z))

+- (a +I) (GM. I-(r, z) + Hm+1(r, z)) e-iWt+im'

satisfies the differential equations (16a) and (16b). The same is true for the set

Be = a [Gm-i (r, z) + Hm+i (r, z)] e-iWt+iM, (19a)

E (k 2 M2 (Gm.-.1i(r, z) - Hm+ I(r,z)(1b-2 r Z))(19b)
+- m (Gmi_ (7, z) + Hm+i (r, z)) e-iw+ime,

7 78r -r

The first set (Eq. (18)) is appropriate for the computation of the pseudo-TE modes and

the second set (Eq. (19)) is appropriate for the pseudo-TM modes, although both modes

can be derived from either set.
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All the results given above are valid for any toroidal cavity. In the following we shall

confine ourselves to a toroidal conductor with rectangular cross section. Figure 4 illustrates

the geometry of the problem. The inner and outer surfaces of the conductor are at r = a

and r = b, while the lower and upper surfaces lie at z = 0 and z = D. By direct inspection

of Maxwell's equations it is easy to show that for such a toroidal conductor the boundary

conditions are:

Le = 0, (20a)

arrBo = 0 (20b)

at r = a and r = b, and

Ee = 0, (21a)

--- -- 0, (21b)

at z = 0 and z = D. For a rectangular toroidal conductor, the solution of Eq. (7) is

separable. First, let us consider the pseudo-TE modes. A solution of Eq. (17) is

1 q~rz
Gmn(r, z) = I (AJm(/Ir) + BYm(Or)) cos 1--, (22)

2D

where J,,,(x), Ym(x) are the Bessel functions of the first and second kind, and

-2  D = ( )2- (L (23)

Let us also choose Hm(r, z) = Gm(r, z). Then,

9



q2rz
Gm-i + Hm+i = T Av~~)+ ~(3) O (24a)rn (AJ~n(Or) + BYn n(Or)) Cos D-- 2a

Gm-i - Hm+ = (AJ (Or) + BYý(Ozr)) cos (24b)

and substituting these relations into Eqs. (18a) and (18b) we obtain

q= 1Mrn (AJm (,Or) + BYm (fr)) sin LI--) 'eitime (25a)

Be = k- AJ'(Or) + BY--' (Oo) e iwt+tme

By choosing q to be an integer, i.e., q = 1, 2,..., the boundary conditions at z = 0 and

z = D are satisfied. The boundary condition (20a) leads to the relations

AJm(Zi) + BYm,, (x) = o, (26a)

AJm(X2 ) + BYm(X 2) = 0, (26b)

where x, = fla and X2 = fb. It is easy to show that the boundary condition (20b) is

satisfied when Eqs. (26a) and (26b) are true. The determinant of the algebraic system

(26a), (26b) must be zero, and, therefore, the unknown parameter#f is determined from

the zeroes of the relation

J,.(Xl)Ymn(X 2 ) - Jm(X2 )Ym(Xi) = 0, (27)

10



for pseudo-TE modes.

Next, let us consider the pseudo-TM modes. A solution of Eq. (17) is

S-+~q~rz (8
Ga,(r, z) = 1(PJ ..(fl) + QY,, Y(flr)) sin 1-r-z (28)

where 0 is given by Eq. (23). We choose Hm (r, z) = G .(r, z), as before, and substituting

into Eqs. (19a) and (19b), we obtain

B q (PJ()m ( C z eit+imo (29a)
D- "3- QY (Dr))

Eo = - w (PJ (Or) + QY (Pr)) (sin C _iAt+ime, (29b)

for the TM modes. Again, by choosing q = 1, 2,..., the boundary conditions at z = 0, and

z = D are satisfied. Either of the boundary conditions (20a), (20b) leads to the algebraic

system

PJ,(P () + QY4(zi) 0 0, (30a)

PJ (z 2 ) + QYn(z 2) = 0, (30b)

where Zx and z 2 have been defined. For the pseudo-TM modes, the parameter is deter-

mined from the zeroes of the relation

J,(XI)Yý(X2) - J,(z 2 )YA(zi) = 0. (31)

11



The final task is the computation of the parameter # from Eq. (27) for the pseudo-TE

modes and Eq. (31) for the pseudo-TM modes. This will be done under the assumption

that the aspect ratio d/a, where d b - a, is much less than unity. First, let us investigate

for zeroes such that the quantity b X2 - zX is much less than unity. A Taylor expansion,

to third order in 6, of Eq. (27) yields

2d [!d m 2+2 (d )l2 _62] = 0, (2
-- -- + - = ,(32)

7ra [ 2a 6 ka16J

and Eq. (31) to second order in 6, yields

2d [ 1 _ 3 M (33)
ra A 2< a )J(

These equations are obtained using the identity

JM+I(XI)YM(XI) - Jm(XI)YM+I(XI) = 2 (34)7rz1

and the recursion formulas for the Bessel functions. Equation (32) does not have a zero

for small 6, while Eq. (33) has a zero when zi i m. In this case, we have 6 si md/a, and

for m not very large, the parameter 6 is small as originally assumed. More accurately, it

follows from Eq. (33) that x, - m(1 - d/2a). Therefore, when 6 is small, the pseudo-TE

modes do not have zeroes, while for the pseudo-TM modes P ; (m/a)(1 - d/2a) and from

Eq. (23),

Ar=I.r.( -a21-a+ D) (35)
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For moderate values of b and small d/a, the arguments zx, X2 of the Bessel functions

are large (at this point this is an assumption that will be justified after the zeroes have

been computed). Using the asymptotic expressions for the Bessel functions, Eq. (27) gives

to lowest order in d/a

tan b (d) 2  (36)

while Eq. (31) reduces to

btan m (d) 2 (37)

An approximate solution of the relations above can be obtained by setting b = plr + c, where

p = 1, 2,..., and c is a small parameter. Then Eqs. (36) and (37) have the approximate

solutions

S4m 2 -1 2 (38)

and

;:ep+4mn2+ 3 (d 2 (39)5 • ~r + 8p~r a 3g

for values of m that are not very large. From Eqs. (38) and (39) it follows that z: . p7ra/d

and z 2 = pirb/d, i.e., both zx and X2 are very large and the use of the asymptotic expansions

is justified in the derivation of the zeroes. The eigenfrequencies of the psuedo-TE modes

can be obtained from Eqs. (23) and (38), and are given by

13



k 2 = /Arr - , 2 -r 2 _ + , (40)

Similarly, the eigenfrequencies of the pseudo-TM modes can be obtained from Eqs. (23)

and (39), and are given by

k ArEr() (m +).(-)+~2 (41)

Eqs. (40) and (41) indicate that the eigenfrequencies for a toroidal rectangular conductor

are similar to those of a straight rectangular cavity.

It is apparent from Eqs. (35) and (41) that w does not vary linearly with m and that

the system is dispersive, i.e., the phase velocity is a function of w. However, when D --* 00,

i.e., for a curved stripline of infinite width satisfying the relation (b - a)/a < 1, Eq. (35)

gives

-w -11--(d

c Vsj-'r ra/\ 2 a/

which implies that the phase velocity of the propagating wave is not a function of frequency

and thus the various frequency components of the wave propagate with the same speed.

Figure 5 shows a sketch of the electric field lines in the stripline. In this geometry, a quasi-

TEM mode propagates. The dominant fields are B, and E, with a small Ee component

and all other components, namely E,, B, and Be are zero.

The pulseline described in Section V has a topology different from that of the curved

stripline of infinite width and thus it is not clear if the results of the stripline model

14



are applicable. Obviously, a complete 3-D analysis is required for the actual topology of

the toroidal pulseline before a definitive conclusion can be reached about its properties.

However, it should be noticed that the wave equation in toroidal geometry is separable

in the variables t and 0 and thus its solution is a superposition of eigenfunctions of the

forms F(Ii, C)ecwt-ime, where p, ý and 0 are the toroidal variables. Unfortunately, the

eigenfrequencies of the toroidal pulseline cannot be easily obtained. It is expected that

in the general case the pulseline is dispersive. However, for the special case where the

separation between the pulseline conductors is much smaller than their minor radii, and

the minor radii are also small compared with the major radius of the line, the dispersive

effects are likely to be negligible for quasi-TEM modes.

IV. NUMERICAL RESULTS

The beam dynamics in the modified betatron have been studied for the bipolar pulse

shown in Fig. 6. The pulse is negative (accelerating) for the first 50 ns, and positive

(decelerating) for the subsequent 100 ns. In a Pavlovskii line13 only the second pulse is

used for acceleration. Here, both the positive and negative polarity components of the

pulse are used because more efficient trapping occurs with this choice. The orbit for the

beam centroid is obtained by integrating the equations of motion with JAX, a 3-D particle

integrator code. The toroidal pulseline electric fields are computed from a cylindrical

model with a simple 1/r toroidal correction to ensure that J EerdO is the same for any

path. The stellarator fields are calculated from Biot-Savart's law by dividing each period

of the winding into twenty segments. The image electric and magnetic fields used in the

code have been discussed in previous publications .
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Successful trapping in the modified betatron requires that 1) the beam does not hit

the injector after the first toroidal revolution around the major axis and 2) the beam does

not return to the injector after a poloidal (bounce) period. Numerical results for various

amplitude pulses are shown in Figs. 7, 8 and 9. The parameters for the three runs are listed

in Table I. The figures show the projection of the beam centroid on the 0 = 0 plane. The

small circular motion in these figures is associated with the stellarator field (intermediate

frequency mode). Since there are six stellarator field periods between 0 < 0 < 27r, the

beam centroid performs six oscillations during a revolution around the major axis. The

beam moves approximately 1 m in the toroidal direction for each small orbit.

Results with the 80 kV bipolar pulse are shown in Fig. 7. At the end of the first

revolution around the major axis (t ; 25 ns), the beam has moved almost 5 cm which

is more than enough to miss the injector and its shroud. At the end of the first bounce

period, the beam is on an orbit with a radius of just over 3 cm centered at 100.6 cm. Thus

both trapping criteria have been met.

As the beam passes through the gap, its energy changes. This change in -Y will cause

the center of the bounce (slow) motion to move according to

Ar _ _ _/_ _

r n - n,(rb/a)2 + n8f

where A-y is the energy mismatch, n is the external field index, n, is the self field index,

nf is the strong focusing index1' , rb is the beam radius, and a is the minor radius of the

vacuum chamber.
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For the parameters of Fig. 7, Ar is =.0.9 cm. Its sign depends on the polarity of the

pulse. At t = 0 the center of the bounce motion is at r = 102.4 cm. After t = 50 ns,

the electron beam has been accelerated twice by the negative voltage and the equilibrium

position is at 104.2 cm. This change in the center of the motion results in a smaller radius

of curvature than it would have otherwise. During the second (positive) phase of the

bipolar pulse, the beam is decelerated 4 times with a net change in equilibrium position of

3.6 cm and the center of the orbit is at 100.6 cm. The bipolar pulse, properly timed, has

the effect of chasing the particle and continuously decreasing the size of the orbit.

An even better final orbit is obtained by increasing the pulseline voltage to 100 kV as

shown in Fig. 8. Because of the larger A-y the final equilibrium position is at 100.2 cm and

is closer to the beam. The final radius of the poloidal orbit is considerably larger when

the amplitude of the bipolar pulse is reduced to 60 kV, as shown in Fig. 9. If the toroidal

field and the strong focusing current are halved, the required bipolar pulse amplitudes are

also roughly halved for similar trapping characteristics. However, the beam radius rb is

larger at the lower toroidal field.

V. PULSELINE CONSTRUCTION

The modified betatron vacuum chamber consists of twelve flange coupled 30°sectors

with a major radius of 100 cm, and a minor radius of 15 cm. The pulseline was designed

as an integral part of a 600 sector, and it is intended to replace two 300 vacuum chamber

sectors. Fig. 10 shows a simplified drawing of the pulseline. The insulating spacer across

which the gap voltage is developed is shown at the leftmost end. The pulseline looks like a

toroidal coaxial equivalent of a folded stripline. The radii of the inner and outer conductors
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are R, = 16.8 cm and R3 = 21.6 cm. The radius R 2 of the middle conductor is chosen

to make the characteristic impedance between the inner and middle conductors equal to

that between the outer and middle conductors. Thus R2 =- • =19.0 cm. The choice

of values for RI and R 3 is severely limited by the available space between the vacuum

chamber and the coils of the modified betatron.

Deionized water is used as the dielectric medium between the pulseline conductors.

This choice yields the maximum practical pulselength for given geometric dimensions.

Since the dielectric constant of water is ,-80, the mean one-way transit time r is 45 ns. To

avoid field errors, the magnetic field penetration time of the pulseline needs to be the same

as for the rest of the vacuum chamber. The pulseline is constructed from fiberglass and

epoxy-reinforced carbon fibers. The modified betatron vacuum chamber is constructed

similarly. The inner pulseline conductor is made of seven layers of carbon fiber cloth with

a total thickness of 1.5 mm. However, a major portion of the line current is carried by a

sheet of phosphor-bronze wire cloth embedded between the outer two carbon layers. The

surface resistivity of the wire cloth is 32 m[I on a square. The measured resistivity of

the carbon fiber matrix is -'8 mfl-cm. The middle conductor is also made of carbon fiber

with an overall thickness of 1.5 mm, but it has two sheets of phosphor-bronze wire cloth

to simulate the folded nature of the pulseline. Finally, the outer conductor is similar in

construction to the inner conductor.

The middle conductor is perforated with a large number of 3-mm-diam. holes to

facilitate free circulation of water within the pulseline. The hole spacing is -2.5 cm. Water

is admitted through five holes at the bottom. After circulating through the pulseline, the
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water exits through five holes at the top, and then passes through a deionizer before

returning to the inlet holes. The water resistivity is maintained above 8 Mfl-cm. Also, the

initial filling is done gradually, typically taking 20-30 minutes. This minimizes bubbles in

the pulseline and in the circulating water.

Switching is done by a set of triggered vacuum surface flashover switches. Cast

polyurethane annular disks separate the vacuum flashover region from the outside, and

from the water dielectric medium. Spark gap switches cannot be used here for several

reasons. The capacitance of the middle conductor with respect to the inner and outer con-

ductors is 50 nF. For a typical charge voltage of 20 kV, the stored energy in the pulseline

is only 10 J. It is doubtful if spark gaps can switch the pulseline with a total switch resis-

tance loss less than 0.5 J. Another disadvantage of spark gaps is their inability to perform

at low voltages as crowbar switches. Ideally, during the crowbar phase, the switch needs

to close when there is no voltage between its electrodes. The vacuum surface flashover

switches used here perform admirably well under these conditions as will be shown in the

next section. Because of the tight space restrictions, a spark gap switch might take the

form of an annular rail-gap switch. But the machining tolerances that would be necessary

to ensure multichannel operation at these low voltages, would be quite impractical for a

rail-gap switch. The surface flashover switches also offer the added convenience of almost

complete isolation between the trigger and pulseline charge circuits.

Eight surface flashover sites on the vacuum side of the outer polyurethane disk initiate

pulse propagation in the water lines. Each site is triggered by plasma emanating from the

end of an overvolted 0.64-cm-diam. semi-rigid coaxial cable. A simplified circuit diagram of
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the initiation driver circuit is shown in Fig. 11. The spacing between the end of the trigger

coax and the polyurethane surface is typically 8 mm. The inductance of each flashover

switch is roughly 50 nH. If all eight switches fire synchronously, the net inductance is 50/8

= 6.3 nH. Using Eq. (5) the pulseline characteristic impedance is 0.84 fl. So the risetime

due to inductance alone is 2.2 x 6.3/0.84 = 16.5 ns. The crowbar switches are a similar

set of eight triggered flashover sites on the inner polyurethane disk. The crowbar driver

circuit is also similar to the initiation circuit shown in Fig. 11. All electrical connections

between pulseline conductors are made via spiral wound RF gaskets. Gold plated, 1.3-cm-

wide stainless steel strips on the conductor walls provide the mating surfaces for the RF

gaskets.

Four capacitive probes in the outer conductor wall monitor the electric field between

the middle and outer conductors. Each probe is a gold plated stainless steel disk with

a diameter of 1.25 cm. The probe surface is in intimate contact with the water and is

flush with the inside surface of the outer conductor. Thus field perturbations due to these

probes are kept to a minimum. Of the four probes, two namely CAP1 and CAP4 are on

the horizontal midplane. CAP1 is the capacitive probe closest to the initiation switches.

Its distance from the switching plane, measured along the inside surface of the outer

conductor, is -27 cm, and the distance of CAP4 from the switching plane is -80 cm. The

probes CAP2 and CAP3 are located midway between the other two probes, but CAP2 is

displaced 600 in poloidal angle above the horizontal midplane, and CAP3 is 600 below the

midplane. Their distance from the switching plane is -53 cm.
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VI. EXPERIMENTAL RESULTS

Before discussing the pulseline results, it is instructive to review some of the results

obtained from an earlier experiment set up to study the characteristics of the vacuum

surface flashover switch. A 2.5-cm-high block of polyurethane supported between brass

plates, formed the flashover switch for this experiment. The plates were connected to a 3-m-

long semi-rigid coaxial cable charged to 30 kV. Plasma from another overvolted semi-rigid

coaxial cable triggered the main switch. The driver circuit for the trigger coax is similar

to that shown in Fig. 11, and typical charging voltages ranged from 15 kV to 30 kV.

The flashover switch current was measured with a shielded Rogowski coil. The risetime

appeared to be -10 ns. The calculated rise time due to switch and lead inductances is

only 5 ns. Thus a substantial part of the rise time needs to be attributed to the resistive

phase of the switch. Resistive rise times usually depend on the magnitude of the voltage

across a switch, while inductive rise times show no such dependence. The presence of the

resistive phase was confirmed when the rise time increased to 20 ns for charge voltages

below 15 kV. For a 10 mm spacing between the trigger coax end and the flashover surface,

switch current was observed roughly 50 ns after the trigger coax end overvolted. This

delay may be attributed to the finite plasma propagation velocity, which appears to be on

the order of 107 cm/s. When the spacing was increased to 13 mm the delay increased to

-65 ns, and for a spacing of 6 mm the delay appeared to be -35 ns. The switch voltage

was 30 kV and the driver charge voltage was -25 kV. The switch performance showed a

weak dependence on the polarities of these voltages. The sixteen initiation and crowbar

switches used on the pulseline are roughly similar in dimensions to the switch described

above. Thus comparable performance can be expected.

21



The pulseline cannot be dc charged because of resistive losses due to the relatively

high water conductivity. For a 20-kV charge voltage, the resistive loss in the pulseline

is 1.3 J if the voltage is applied for 4 As and the water resistivity is 8 Mfl-cm. This

needs to be compared with the 10 J stored energy in the electric fields. The pulse charge

time is therefore chosen to be less than 2 lis, and the charge voltage is near its maximum

only for about 1 j&s. Figure 12(a) shows the charging voltage on the middle conductors

as measured by capacitive probe CAP1. The pulse charge circuit consists of an 80-nF

capacitor dc charged to 18 kV and discharged by a spark gap into a short length of

coaxial cable the other end of which connects to the middle and outer pulseline conductors.

Since the pulseline capacitance is 50 nF, the charging waveform is expected to have a

[1 - cos(wt)] dependence, which appears to be the case in Fig. 12(a), and the peak voltage

is 18 x 2 x 30.8/50 = 22 kV. The equivalent series inductance is --8.7 AH.

The initiation switches fire at -2 uss when the charge voltage reaches its peak. A

gap voltage appears immediately after initiation as shown in Fig. 12(b). The gap voltage

is shown on an expanded time scale in Fig. 13(b). It is measured using a capacitive

probe located close to the insulating gap spacer. The signals in Fig. 12 are integrated

with a 10-ps passive integrator. For the waveforms in Figs. 12 and 13, the pulseline is

not crowbarred and there is no load (beam current). When the initiation switches fire, a

quasi-TEM wave is excited in the outer water line. The wavefront propagates away from

the switches until it reaches the end of the middle conductor. Here the wave makes a 1800

turn and most of the wave energy propagates in the inner water line toward the crowbar

switches. Because of the open-circuit condition at the gap, the wave reflects and proceeds

towards the initiation switches where it reflects again because of the short-circuit, and the
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cycle repeats. The period of the cycle is the two-way transit time in the pulseline, i.e.,

90 ns.

The gap voltage in Fig. 12(b) appears to decay with an e-folding time of 0.7 jss. The

decay rate can be calculated from the known resistivities of the conductors used. The

gap voltage is obtained by integrating the rate of change of the magnetic flux enclosed by

the dashed line in Fig 1. This voltage is also equal to the magnitude of the propagating

voltage wavefront, if a one-dimensional approximation is employed for the pulseline. A

propagating wavefront in an infinitely long line is described by V exp(--yz), where -92

(R + Ls)(G + Ca). R, L, G and C are the line resistance, inductance, conductance

and capacitance per meter and s is the Laplace transform time variable. Since the gap

voltage is roughly sinusoidal after the first oscillation, one can substitute jw for s and

write -y = a + jf), where w/27r is the frequency of the oscillation. If R << wL and G

<<: wC, a s R/(2Z.) + GZ./2, where Z. = -- 1/. Using the known resistivities for the

carbon-fiber matrix and the phosphor-bronze screen, R = 33.5 mfl/m. G can be used to

account for losses in the water. For a resistivity of 8 MO-cm, the conductance G is 6x

10' mho/m, and since Zo = 0.84 f0, the attenuation constant a is 0.02 Neper/m. Losses

in water account for only 1.3% of the total losses. The calculated value of a predicts an

e-folding time of 1.5 Ats for the decay rate of the gap voltage. This is roughly twice the

observed time in Fig. 12(b).

The higher resistive losses in the experiment may be due to several factors. Potential

sources for this discrepancy include joint resistances, perforations in the middle conductor,

additional losses when the wave makes the 1800 turn around the edge of the middle con-
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ductor, losses in the switches, and losses due to skin effect. The correction for skin effect is

likely to be small because the diameter of the individual wires forming the phospor-bronze

screen, is 38 lm, while the skin depth for the dominant frequency is -50 pm.

Figure 13 shows the pulseline waveforms on an expanded timescale. Only the initiation

switches fire for this sequence of shots. Figure 13(a) shows the current in one of the trigger

coaxes at the driver end of the line (see Fig. 11). The current is measured using a shielded

Rogowski coil and integrated with a passive 2-As integrator. This waveform triggers the

oscilloscope and serves as the time reference for all other waveforms in Fig. 13. The

dc charge voltage on the 80-nF driver capacitor is -24 kW. Waveforms (b) thru (e) are

integrated with a 10 -As passive integrator. Figure 13(b) shows a two-shot overlay of the

gap voltage. The dip at 330 ns does not appear to be q-tt. reproducible, probably because

of variations or lack of synchronism in the initiation switch firings. Waveforms (c), (d) and

(e) show the voltages measured by capacitive probes CAPI, CAP3 and CAP4. There is a

certain amount of shifting of the zero-level baseline in these signals. This is readily apparent

in Fig. 12(a), and it is due to the inadequate RC time of the 10-/is integrator. This effect is

absent in the gap voltage waveforms because they are approximately symmetrical voltages.

Signals (b) thru (e) use a common-mode rejector1 5 while (a) does not. The common-mode

rejector was made by winding 97 turns of RG-174 cable on a ferrite core, and it adds a

delay of 90 ns. Additionally, since the Rogowski coil measures the current at the driver

end, it can "sense" the trigger coax flashover event only after 45 ns, which is the one-way

transit time of the trigger cables. The flashover event occurs at t = 120 ns in Fig. 13(a),

and the gap voltage appears at t = 230 ns in Fig. 13 (b). The delay in the firing of the

initiation switches is therefore (230 - 120) - (90 - 45) = 65 ns. This is consistent with
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the finite plasma propagation velocities and delays measured for the prototype fiashover

switch described at the beginning of this section.

The rise time of the gap voltage waveform in Fig. 13(b) appears to be -22 ns as

indicated by the first negative going pulse. This could be the result of only six out of eight

switches firing simultaneously, in which case the predicted risetime is 2.2 x 8.3/0.84 = 22 ns.

Because of the transit time isolation between switches, there is a high probability that all

eight switches fire on every shot, but two switches may fire, say 5 ns later. This is a likely

event, in view of the fact that the delay due to trigger plasma propagation time, is roughly

65 ns. A more detailed comparison of the waveforms in Fig. 13 with simulated waveforms,

is carried out in the next section.

Figure 14 shows the effect of crowbarring. The delay between the initiation and

crowbar switch firings can be continuously varied. Figure 14(a) shows the gap voltage

when the crowbar switches fire at the right time. The waveform is close to the desired

waveform (see Fig. 6). In Fig. 14(b) the pulseline was crowbarred ,-20 ns later. The delay

can be arbitrarily varied to essentially short-circuit the gap voltage at any point in time.

Even though there is energy stored in the pulseline during the post-crowbar phase, no

gap voltage appears because both ends of the line have been short-circuited. Figure 14(a)

appears to indicate that the flashover switches perform satisfactorily even when there is

very little voltage across them. It is extremely difficult to achieve similar performance with

spark gaps.

Following the installation of the strong focusing windings in the NRL device it has been

routinely observed that for several combinations of injection parameters, the beam consis-
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tently spirals from the injection position to the magnetic minor axis and is trapped.1 , 12

Thus, trapping experiments using the pulseline have not yet been performed. If successful,

the trapping of the beam with the pulseline is expected to make the modified betatron

more versatile because it will allow a wider choice of the values of the toroidal and strong

focusing fields during injection.

VII. DISCUSSION

In this section, the experimental data are compared with results from a computer sim-

ulation for a straight coaxial transmission line, which is known to obey the one dimensional

wave equation. An interesting outcome of this comparison is the possibility that three di-

mensional effects in the toroidal pulseline counteract some of the distortions in pulse shape

due to switch inductance. The net result is a superior pulse shape in comparison with the

pulse that would have been obtained with a straight coaxial pulseline.

There are several features in the experimental data that do not agree with the com-

puter simulations. These differences are described in more detail later in this section. The

gap voltage waveform (Fig. 13 (b)) is of special interest. Although, the initial falling edge

of the bipolar gap voltage waveform indicates a rise time of -- 22 ns, which is close to

the predicted value, the subsequent rising edge at - 300 ns lacks a "shoulder" and has

a rise time of ~ 32 ns which is much larger than expected. Also, the dip at - 350 ns is

considerably smoothed out. These, and other smoothing effects become apparent when

waveforms (b) thru (e) in Fig. 13 are compared with the simulated waveforms appearing

in Fig. 16.

The I-D simulations are performed using a transmission line code that is routinely
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used for the analysis of transient in electrical circuits. The code successfully reproduces

the current waveform in Fig. 13(a), where wave propagation takes place in a 9-m long,

RG-214 coaxial cable, and three dimensional effects are absent. Figure 15 shows the

transmission line representation of the toroidal pulseline, as used in the 1-D code. The

voltages VI, V3 and V4 at the junction nodes correspond to the voltages measured by

the capacitive probes CAP1, CAP3 and CAP4, and the electrical lengths of the four
4

transmission lines are appropriately chosen. Also, -ri = 45 ns, which is the one-way

transit time of the pulseline. All lines are assumed to be lossless. The switch inductance

L. is assumed to be 8 nH, corresponding to the case where six out of eight switches fire

simultaneously.

The topology of the pulseline is interesting in the sense that the gap voltage responds

immediately to the closure of the initiation switches. Therefore, the rise time of the gap

voltage is directly related to the switch closure time. Figure 16(a) shows that the rise

time of the first negative going pulse is - 25 ns, which agrees with the experimental value.

However, the fall time of the negative pulse shows a well defined shoulder at - 45 ns. This

shoulder is absent, or is considerably smoothed out in the experiment (see Fig. 13(b)). The

shoulder occurs when the propagating wavefront reaches the crowbar switches, and reflects

due to the open circuit condition at the gap. The dispersive resistive losses in the pulseline

can also cause smoothing, but this is not applicable here because resistive losses modify

the pulse shape only over long periods of time, while the smoothing described above occurs

almost instantaneously. Traces (b), (c) and (d) in Fig. 16 show the calculated voltages

corresponding to those measured by capacitive probes CAP1, CAP3 and CAP4. These

waveforms show well defined shoulders (for example, the shoulder in (b) is at - 85 ns),
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which are delayed signatures of the reflection event at the gap. Again, all these shoulders

are smoothed out in the experimental data.

Another distinguishing feature is the large dip in the calculated gap voltage waveform

in Fig. 16(a) at - 100 ns. This occurs when the wavefront returns to the initiation

switches and reflects. The dip would be absent if an ideal, distributed, radial switch with

zero inductance is employed in place of the eight surface flashover switches used in the

experiment. If the switch inductance L. is reduced, the depth of the dip is unaffected,

but its width is reduced. This can also be shown analytically. The gap voltage dip is

considerably smoothed out in the observed waveform.

An explanation of the observed smoothing is the possibility that the three dimen-

sional geometry of the pulseline causes substantial wavefront distortions, and the toroidal

pulseline may indeed be dispersive. There may also be other mechanisms that distort the

waveforms in the experiment. However, the distortions cannot be attributed to the capac-

itive probes used for the measurements, because these probes are known to have adequate

frequency response. In an earlier analysis of curved transmission lines, 16 expressions for

the characteristic impedance of a deformed line have been derived, but the analysis does

not treat the details of wave propagation inside the line. It is well known that a sharp

bend in a coaxial cable distorts the shape of a pulse sent through it. The distortion is

usually analyzed in terms of the impedance mismatch introduced by the bend. In prac-

tice, mechanical considerations limit the bend radius of cables. As a result, the observed

distortions in cables are usually negligibly small.

The gap voltage waveform of a straight coaxial pulseline is expected to have a pro-
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nounced dip as shown in Fig. 16(a). This dip is considerably smoothed out in the toroidal

pulseline and the gap voltage waveform bears closer resemblance to the ideal waveform.

The accelerated electron beam interacts with the pulseline only via the gap voltage and

the beam cannot "sense" the higher order modes or other nonideal conditions existing

inside the pulseline. So, in a restricted sense, the toroidal pulseline might be superior to a

straight coaxial pulseline.

VIII. SUMMARY AND CONCLUSIONS

Numerical results from the integration of orbit equations indicate that the injected

electron beam in a modified betatron accelerator can be trapped using a charged pulseline

over a wide range of operating parameters. Trapping is accomplished by modifying the

poloidal orbit within a bounce period. This orbit modification is due to the change of

beam energy. A distinctive feature of this trapping scheme is that the average canonical

angular momentum < Pe > is not conserved. Trapping is achieved over a wide range of

pulseline voltages from 30 kV to 100 kV.

A toroidal coaxial version of the Pavlovskii line is used to change the energy of the

beam. A 0.84-41 water dielectric line has been built and tested. The toroidal pulseline is

successfully switched using triggered vacuum surface flashover switches. The rise time of

the crowbarred, bipolar pulse is typically 22 ns. The gap voltage waveform of a straight

coaxial pulseline is expected to have a pronounced dip due to switch inductance. Experi-

mental data show that this dip is considerably smoothed out in the toroidal pulseline.
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Table I. Parameters used for the beam trapping simulations.

Fig. 7 Fig. 8 Fig. 9

Relativistic factor -y 2.36 2.36 2.36

Bipolar pulse amplitude (kV) T80 T100 =160

Ay1/pass ±0.157 ±0.196 ±.117

Beam current Ib (kA) 1.36 1.36 1.36

Injection radius ri (cm) 108 108 108

Beam radius rb (cm) 1 1 1

Self field index n.(rb/a)2  0.6 0.6 0.6

Torus major radius r. (cm) 100 100 100

Torus minor radius a (cm) 15.2 15.2 15.2

SF radius p. (cm) 23.4 23.4 23.4

SF current I.! (kA) 20 20 20

SF index n./ 8 8 8

Vertical field at injection B. (G) 34 34 34

Vertical field index n 0.5 0.5 0.5

Toroidal Field Be (G) 4000 4000 4000
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33



2.5 125

(a)

2.0 100

I

1.5 75Zo % %zo . (cm)
(CM

1.0 - 50

0.5 - 25

01 00 I I 0

100 44

I (b)

80 -42
\ Sf

60 - -40

(%) , i(ns)
40 - 38

20 - -36

0 34
0 100 200 300 400 500

FIG. 2. Pulseline characteristics for AE = 60 keV, rD = 24 ns, VD = 20 kV, Ib - 2 kA,

R, = 16.8 cm, R2 = 19.0 cm and 3 = 21.6 cm. (a) Plots of Z, and I versus

e/e,. (b) Plots of Ef and r versus

34



Ib

o I I I I

o T 3T 5T t

Vvg

Vo/2 = IbZO

o 0 T 3T 5T t

FIG. 3. Injected beam current and gap voltage waveforms for the matched condition.
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FIG. 5. Sketch of quasi-TEM wave propagation in a curved stripline of infinite width.

Only electric field lines are shown, and Ee is shown exaggerated for clarity.
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FIG. 7. Beam trapping simulation for an 80-kV bipolar pulse. The minor axis is at

r = 100 cm. Other parameters are listed in Table I.
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