' .
- AD-A255 408 °?
' ENRARNED

| DSTO &k

AUSTRALIA

ELECTRONICS RESEARCH LABORATORY

i

Information Technology

® [ ] [ )
Division
ELECTE £°¢
AUGO 51992 < g
RESEARCH REPORT %;j
{ ERL-0600-RR R
' PROGRAM VERIFICATION USING
HIGHER ORDER LOGIC
b
; y
A. Cant
¢
| 1 SUMMARY
; This paper describes a number of experiments in program verification carried out within
; two automated proof assistants, namely the HOL (Higher Order Logic) system and Isabelle.
. Various approaches to programming language semantics are described. Theories and
' tactics for proving the correctness of programs written in small functional and imperative
1 \ languages are then constructed within HOL and Isabelle.

! © COMMONWEALTH OF AUSTRALIA 1992

JAN 92 This document has been approved .
| for public release and sale; its
distribution is unlimited.

/036>
1'9p_pp913

POSTAL ADDRESS: Director, Electronics Research Laboratory, PO Box 1500, Salisbury, South Australia, 5108.

UNCLASSIFIED

L ' P2 7 1 20

APPROVED FOR PUBLIC RELEASE IMMMMMMII'O\\ W0

ErN e
Wi};'e‘ﬂ e

v
g




ERL-0600-RR

-
£

This work is Copyright. Apart from any fair dealing for the purpose of study, research,
criticism or review, as permitted under the Copyright Act 1968, no part may be
reproduced by any process without written permission. Copyright is the responsibility
of the Director Publishing and Marketing, AGPS. Inguiries should be directed to the
Manager, AGPS Press, Australian Government Publishing Service, GPO Box 84,
Canberra ACT 2601.

ii




-q

L)

e m——————

oo

ERL-0600-RR
CONTENTS
Page No.
Chapter 1 INTRODUCTION ... ittt ittt it ii e 1
1.1 Why Program Verification? . . . . . . ... .. 1
1.2 Aimofthe Paper. . . . .. .. .. e 2
Chapter 2 PROGRAMMING LANGUAGE SEMANTICS. .. ... ... ........ 3
2.1 Introduction . . . .. L L e 3
2.2 Methods for semantics specification . . . . . .. ... ... o)
2.3 Denotational Semantics . . . . . .. ... e e e 4
231 History . . . .. 4
232 Syntax . . ... 4
233 Semantic Algebras . . .. ... ... L L 5
234 Semantics . ... .. ... 7
235 Recursively Defined Functions . . . . .. ........... .. ...... 9
236 Limitations . . . . .. ... ... ... 10
24 Operational SEMAantics . . . . . ... . e 10
2.41 Semantics of FUNC1 . ... ... ... .. .. ... ... .. ..... 10
242 Semantics of FUNC2 .. .. ... ... .. .. ... .. ... .. ... 12
243 Semantics of FUNC3 . . .. .. ... .. ... ... . ..... .. .. .. 14
244 Semantics of IMP1 . . . . . . ... . 15
2.5 AXIOMAUC SEMARLCS . . . . . o o o e e e e e e e N
Chapter 3 INTRODUCTIONTODML .. ... o ii ittt it ittt ce e 17
31 Features of ML . . . L 17
320 SYIRAX L Lo e e 17
I3 EXAMDIES . . . e 18
3.31 Expressions . . . .. .. ... ... 19
332 Declarations . . . . ... ... ... ... ... ... 19
3.33 Functions . . . .. .. .. ... L 19
334 Lists . . . 20
3.35 Polymorphism . . . ... ... .. .. ... 20
336 Failure . . . . . .. . . 21
337 New Types . . . .. .. .. 21
338 Imperative Features . . .. .. .. ... ...... ... ... .. ..., 22
Chapter 4 THE HOL SYSTEM . . . . . . ittt ittt it it i i e enn 23
S0 Inroduction . . . L L L e 2
4.2 Higher Order Logic . . . . . . . . . . . . . . 23
421 TYPeS . . e 23
422 OIS . . e e e 24 ‘
423 Logical Formulae . . .. ............................ 24 ii
424 Constant Definitions . . . .. ............. ... ... .. .. .. 25 g
425 Deductionand Proofs . .. .......................... 25 ¥
426 The HOL Deductive System . . . .. .................... 26 i
427 Theories. . . . ... .. ... 28 L
43 The HOL Logicin ML . . . . . . . . . . .. e e 2
431 ML Functions for Handling Theories . . . .. .. ............. 28 '
432 The Type Definition Package . . . .. . ................... 29
1




ERL-0600-RR

44 Goal Directled Proof . . . .. . .. .. i e e e e e e 30
4.4.1 Tacticsand Tacticals . . . ... ... ............ ... ...... 30

442 The Subgoal Package . . . . ......................... N

Chapter 5 PROGRAM VERIFICATIONINHOL ................c.0... 3
S, INroduction . . . . . . e e e e e e 33
52 TheLanguage IMPl . . . . . ... . .. .. e e 34
521 SemanticAlgebras . . . .. ... ... 34

522 SYNMAX . . o o 36

523 Semantic Equations . . .. .. ... .. ... ... 37

5.3 Reasoming about Programs in IMP1 . . . . .. ......... ... .. ... i, 39
5.3.1 Tacltics . . . . . . e e 39

532 Example Proofs . . .. .. ... .. .. ... 40
Chapter 6 ISABELLE............. f ettt et e e 45
6.1 BasicCOMCEPIS . . . . . o ittt ittt e e e e e e e e 45
6.1.1 Isabelle’s Meta-Logic. . . ... ... ... ... ... .. ..., 45

6.1.2 Object LOGICS . . . .. . . . 46

6.1.3 Inference Rules . . ... ... ... .. .. ... .. 47

6.1.4 SubgoalPackage . . .. ......... ... ... .. ... ... ... 47

6.15 Tactics . . . . .. e 48

6.1.6 A Simple Proof . ... ... . . ... 48

6.1.7 Tacticals . . .. .. ... .. 49

6.1.8 Comments . .......... ... ... .. . ... 50
Chapter 7 PROGRAM VERIFICATIONINISABELLE ................ 51
7.1 Iatroduction . . . . . . .. e e e e e e e 51
7.2 The Language FUNCI . . . . . . . . .t e e i e e 51
7.21 Syntax and Semantics . . . . . ... ... L 51

722 Proof Procedures . . . . ... .. . ... 53

73 Thelanguage FUNC2 . .. .. ... . .. .. ittt et 54
74 TheLanguage FUNC3 ... ... .. .. .. . ittt et 58
75 Thelanguage IMPl . . ... ... .. . et e e 58
Chapter 8 DISCUSSION ANDCONCLUSIONS . . . . ... ... iiiinennnnn. 59
81 Commentson HOL ..... ... ... . . ... .. ittt 59
8.1.1 EaseofUse ... ........ .. ... .. .. .. . . . .. 59

8.12 Expressiveness . . .. .. ... .. ... ... 59

8.1.3 Documentation . ... ... ..... . ... .. . ... ..., 59

8.1.4 Tactics . . . . . e 59

8.1.5 Proof Management . . . . . ... ... ... .. .. ... ... 60

8.16 Instantiation of Types from Parent Theories . . ... .......... 60

8.1.7 The TypePackage . ............. ... . 60

82 Commentsonlsabelle. .. ............. ... it einnnnnneen.. 61
8.2.1 EaseofUse .......... ... ... . .. . ... ..., 61

822 Object Logics and Theories .. .. ..................... 61

823 Libraries . . . . ... ... .. ... .. 61

8.24 TaCtCS . . . . . e e 61

83 Suggestions for Further WOrk . .. ... ... .. .. ...t iiierinneenaneann 62

iv



P

*

-

ERL-0600-RR
Chapter 9 Acknowledgments . . . . . ... ... ... 0ttt 63
Bibliography . . . . e 64
Appendix A Example; Denotational Semantics in HOL . . . . .. ... ... ... ... .. ... 66
Appendix B Example: Natural Semantics in Isabelle . . . . ... ... .. ... ... L. 71
Appendix C Example: Translator for FUNC3 . . .. . .. ... ... . .. .. ... ... 78
LIST OF TABLES

Page No.

Table 1 Notation for Semantic Domains . . . . . .. ... ........... .. 1
Table 2 HOL Types . . . . .. .. 24
Table 3 Primitive Terms of the HOL Logic . . . . .. .. ...... ... ... . .. 24
Table 4 Derived Logical Constructsof HOL . . . . . . ... .... ... . .. .. 25
Table 5 Basic Rules of Inferencefor HOL . . . . . .. ... .. ... ... .. 27
Table 6 ML Theory Functions . ... ... ...... ... .. ............ 29
Table 7 Subgoal Package Commands . . . .. .. ......... ... ... .. 32
Table 8 Isabelle Meta-Logic Constructs . . . . . .. ........ ... ... .. 45
Table 9 Object Logic Symbols . .. ... .. ... ... .. ... ... ... 46
Table 10 Intuitionistic First Order Logic . . . . . .. ............ ... .. 46
Table 11 Inference Rules: Syntax and Semantics . . . . ... ........ ... 53

Accesion For

DTIC QTTATITY INSFECTED 8

DTIiC T7AR
Unannouiced
Justilication

1
NTIS CRA&GI W)
©y
]

By

Disk bt

e

Dist

A,

Avaiianiiy Coues
SR

U Avail andjor
special

||

o T .

1




ERL-0600-RR

vi



ERL-0600-RR

Chapter 1 INTRODUCTION

The study of computing machines has always ranged from the fundamental mathematical approach, such
as computability and decidability, to more practical engineering concerns, such as the construction of
integrated circuits. The discipline of computer programming sits (at imes uneasily) between science and
engineering. In the past, programming tended to be regarded as something of a black art. The carly
programming languages (such as FORTRAN) made it almost impossible to write well-structured and
easy-to-understand programs. If a program happened to work without crashing, one was relieved.

Modern computer science is becoming more and more a mathematical discipline, with the realisation
that languages can be carefully designed to enable well-structured programs to be written. and that
mathematics is an appropriate arena for reasoning about computer programs. Today computer science
and sottware development are increasingly making use of formal methods, namely specification languages.
automated theorem provers, verification tools and a number of other systems based on formal mathematical
techniques.

This paper focuses on the issue of program verification: proving that programs written in a given
language conform to their specifications. ie are correct.

1.1 Why Program Verification?

Large sottware systems are now widespread, being used in finance, medicine, defence, transport. power
generation and in other application areas. In many of these systems, one failure could be disastrous.
leading to loss of lite, damage to the environment, breaches of national security etc. We refer to these
systems generally as critical systems, because failures can lead to critical hazards — those with an
unacceptable risk. In saferv-critical software. for example, attention is focused on the possibility of
sertous injury or even loss of life if the software fails.

Software, by its nature, can be extremely complex. In many cases it is not possible to have an overall
mental grasp of what a piece of sottware does. Although modern software engineering stresses the use
of s utable programming languages and techniques, errors will inevitably occur in the software. Testing
is the time-honoured way of removing these errors. Sometimes, it does not matter if software has errors
— tor example, the software used to write this paper has numerous bugs, but none of these prevent
usetul results from being obtained.

But 1n a critical system, just one simple error somewhere in the code might have catastrophic conse-
quences. In the USA, the FAA and NASA have established a requirement of less than 10~ 10 safety-critical
farlures per hour throughout a ten hour flight [1]. For hardware components, it is possible to achieve such
low tailure rates by using highly reliable components and redundancy in the design. For software, the
situation is ditferent. Current software testing techniques can reduce this figure to perhaps 10~ *per hour.
Tesung can make significant contributions to the assurance of safety; however, the reliability levels ob-
tained by testing fall far short of the levels required for critical applications. In any case, the complexity
and logical nature of software means that a probabilistic approach is of doubttul validity.

Theretore, in such cases, testing is not adequate (Dijkstra’s comment that testing can show the presence
of bugs, but never their absence. 15 well-known). We need a way of verifying that the software is correct
betore 1t is used.

At this stage, we introduce some terminology. Software can be termed correct only with respect to a
detailed formal specification which describes exactly what the program is required to do. The objective
of program verification is 1 prove mathematically that every execution of the program will satis{y the
given specifications.

The term partial correctness is used to describe a program which either does not terminate, or else is
correct with respect to its specifications; the term total correctness is used to describe a program which
is correct, and also terminates.

In practice, it is also desirable that the formal specifications themselves (which can be complex and
suibject to logical and other errors) be proved correct with respect to simpler, more abstract specification.

1y e lbiann 3057




C - - ——

. e g —————

ERL-0600-RR

In this case, we speak of design verification. Again, this specification may itself need to be verified
against an even simpler and yet more abstract specification, until we evenwally reach the formal top-
level specification. The specifications reflect different levels of detail in the design. Ultimately, we need
to check whether the specifications capture the original informal user requirements. This step is called
validation. The issues of design verification and validation will not be considered further in this paper.

Henceforth, we shall use the term verification as a shorthand for program verification.

1.2 Aim of the Paper

The verification of a program is a difficult task — much harder than programming itself. It is an
essentially mathematical task. System specifications are naturally expressed in a mathematical notation,
and the process of verification uses techniques of mathematical proof.

It follows that, if we are to say mathematically that a program behaves correctly with respect o its
specifications, then we must have a clear mathematical description of what the program does. In other
words, the semantics of the language needs to be clearly formulated so that the meaning of constructs
in the language is well-understood.

We need to construct a mathematical model of the system by formulating a theory based on certain axioms,
and proving theorems from these axioms. The mathematician may be content with — and convinced by
— paper and pencil proofs. However, mathematical models of critical systems need to be subjected to
a greater level of rigour. In such cases an automated reasoning tool can help us formulate the theory,
manage the proofs of key results and avoid logical errors, leading to increased assurance of correctness.

It is the interaction of the language semantics with the issue of program verification which this paper
concentrates on. Our aim is to construct a program verification system for a language L, which:

is clearly based on semantics of L;

is easy to modify;

can evaluate programs and expressions (i.. act as an interpreter if required);
can carry out non-trivial reasoning about programs;

can prove some non-trivial programs correct;

compares well with other systems;

is efficient, easy to use;

is applicable to concurrent programming languages; and

can help assess language design and semantics.

The plan of this paper is as follows. We shall first describe in Chapter 2 various approaches to
programming language semantics. In Chapter 3, because of its importance for the theorem proving
tools we use, the language ML will be described. In Chapter 4 we give an overview of the HOL system,
followed by some examples of verification for a small language. Chapters 6 and 7 deal with the theorem
prover Isabelle and with examples of verification. Finally, in Chapter 8 we make some comments on the
theorem provers used, and make some suggestions for further work.

VPN A D SD =

5 A RATRAGRR .: £ o+

L 2]




&

ERL-0600-RR

Chapter 2 PROGRAMMING LANGUAGE SEMANTICS

2.1 Introduction
There are three characteristics of programming languages [2]:

1. syntax: the structure and appearance of legal phrases in the language:
2. semantics: the assignment of meanings to the phrases; and
3. pragmatics: the areas of application for the language, methods of implementation etc.

Of these three aspects, the first two are directly relevant for program verification. The specification of
language syntax is by now well-understood, and Backus Naur form (BNF) is routinely used to describe
syntax. The semantics of the language is more difficult to describe, and there is no single method in
widespread use. Language semantics is of central importance for program verification. We must have a
reliable and usable definition of the semantics in order to talk about program correctness.

2.2 Methods for semantics specification

There are at least four general methods for describing the semantics of a language, which teflect the rather
ditferent ways in which a program can be viewed, ranging from highly abstract mathematical constructs
to changes in the physical state of hardware devices. The study of programming language semantics is
a fascinating and rapidly growing area of modern computer science.

The method of denotational semantics maps each phrase in a language (and, in particular, a program)
directly to 1ty meaning (called its denoration), which is a mathematically defined object, often a number
or a function. Thus the phrase is regarded as having a meaning even 1t no interpreter or compiler for
the lunguage exists.

The method of operational semantics, sometimes called natural semantics, gives the meaning of a program
In terms of an interpreter for the language. It defines a program in the language in terms of a sequence
ol interpreter configurations. The semantics is given as a number of inference rules which describe under
what conditons a language construct will evaluate to a particular value.

[n the method of axiomatic semantics, the meaning of a program is not explicitly given. Rather, logical
properties about language constructs are defined, and a number of axioms and inference rules describe
under what conditions an assertion about a construct will follow. The most familiar example of the
axtomatic method is Hoare logic, which captures assertions about the partial correctness of imperative
languages.

Finally, an approach which is essentially equivalent to the denotational description is the method of
algebraic semantics (3], In this case, one studies many-sorted algebras and functions from these algebras
to possible spaces of meanings. A familiar analogy in mathematics is that of group theory: groups may
be studied as abstract objects, and the various representations of the group in (say) finite-dimensional
vector spaces can also be studied. Although a most interesting area, under investigation by a number of
theoretical computer scientists (including a strong group in France), it has not yet been applied to real
programming languages. We shall not be examining this approach further in this paper.

Although these various methods all attack the problem of assigning meaning to programs, they are really
complementary rather than competing methods. Whichever approach one chooses depends on particular
aspects of the language one is studying. Broadly speaking, we have the following hierarchy (2]

axiomatic semantics — denotational semantics — operational semantics

language design — language development — language implementation

L T -




ERL-0600-RR

2.3 Denotational Semantics

We shall now give an overview of denotational semantics using a couple of examples. The subject is a
large one, and we do not have the space to give more than a brief description here. There are a number of
textbooks on the subject. Gordon [4] gives an elementary introduction which, however, glosses over the
deeper mathematical ideas; Stoy's book [S] is an excellent account of the subject. The book by Schmidt
(2] is perhaps the best and most up-to-date, while the review article by Mosses (6] is excellent, notably
for his attempt to standardise the notation. These last two accounts contain numerous useful references.

Denotational semantics establishes a canonical definition for a language, and thereby documents the
design of that language. It also establishes a standard for implementations of the language. Also, and
importantly for us, a denotational semantics definition provides a basis for reasoning about the correctness
of programs, either directly, or else indirectly, by means of derived proof rules.

Denotational semantics, by its nature, is built on a number of mathematical concepts and some special
notation. These will be introduced as needed.

2.3.1 History

The systematic study of denotational semantics was begun in 1964 [7] by Christopher Strachey in the
Programming Research Group, University of Oxford. Strachey was using the type-free lambda-calculus
10 assign meaning to programming constructs. In the words of Mosses [6]:

“By 1969, Dana Scott [the logician] had become interested in Strachey’s ideas. In an exciting collab-
oration with Strachey, Scott first convinced Strachey to give up the type-free lambda calculus; then he
discovered that it did have a model after all. Soon after that, Scott established the theory of semantic
domains, providing adequate foundations for the semantic descriptions that Strachey had been writing.”

Scott’s contribution was to put the entire formalism of denotational semantics on a sound mathematical
footing, using the theory of domains to make legitimate the definitions of while loops, recursive functions
and recursively defined domains. Their remarkable collaboration continued until Strachey’s untimely
death in 1975.

2.3.2 Syntax

We need to understand programming language syntax in order to formalise semantics correctly. Concrete
syntax regards a language as a set of strings over some alphabet, while abstract syntax regards a language
as a set of derivation trees. Denotational semantics is solely concemed with abstract syntax. It is the job
of a parser to describe how 10 get from the concrete to the abstract syntax (the reverse transformation
is called unparsing, or pretty-printing). The concrete syntax is obtainable from the abstract syntax in a
well-defined way, and is not important, save to make programs more readable (we shall see later on that
this i~ a very real concern in modelling semantics in HOL and Isabelle).

It will be useful to introduce as a working examiple a small imperative language (essentially the language
discussed by Schmidt) which we shall call IMP1. Its abstract syntax is given below:




ERL-0600-RR

ABSTRACT SYNTAX OF IMP!

p: Program

¢ Command

e . Expression
b Booleanexpr

1 Ldentifier

n: Number

p =

¢ n=cyp;cal if thencyelsecy | 1 :=e | diverge | skip | whilebdoc¢
e n=e;+e|i|n

o
]

ey =ea | =b | true | false

In the above, tor example, the notation “e : Expression” means that Expression is a svntactic domain,
and that e i1s the non-terminal representing an arbitrary element of that domain (this is a set-theoretic
view) or. it we prefer, we can think of “e : Expression” as stating that € is an arbitrary element of type
Expression (a type-theoretic view). The latter view is a natural one when we use a typed logic such as
HOL to tormulate scmantics. as we shall see. (However, we must be careful to distinguish types in the
logic from types in the language being studied, if any).

The syntax is formulated in terms of a context-free grammar (CFG). The BNF rule for a typical expression
¢ says that an expression can either be the sum of two other expressions, an identifier, or a number. In the
grammar. objects such as Number and Identifier have no BNF rules associated with them: they are tokens.

It 15 well-known that certain features of a language (such as typing information and declarations of
vartables before they are used), cannot be handled by a context-free grammar; these are context-sensitive
features, In denotational semantics, it turns out to be more convenient to regard such features not as part
of syntax, but as part of the semantics, called static semantics because it only depends on the program
text, and not on how the program might behave at run-ume. In this paper, we shall only be concerned
with run-ume behaviour (i.e.dvnanuc semantics).

2.3.3 Semantic Algebras

Denotational semantics is built on domatn theory. due to Scott. The fundamental concept in domain
theory is that of a semantic algebra, which consists of an underlying set (called a semantic domain),
along with a number ot operations on the domain. A basic example of 2 semantic algebra is the set
Nat of natural numbers, along with the operations plus, minus and times. Certain special domains are
necessary to allow the modelling of such things as while loops and recursive data types.

From primitive domains, a number ot compound domains can be obtained by means of domain construc-
tors. These are (if A and B are domains)

1. Product dJomain A x B

2. Sum domain A + B (also known as the disjoint union)
3. Function domain A — B

4. Lifted domain: A




ERL-0600-RR

The first three constructions are well-known. The fourth one adds a special element called 1 (read "bot-
tom") which denotes nontermination or undefined. It is needed 0 model nonterminating computations
and partial functions. A function £ 4; — By is called strict if f(.L) = L. If Ax.a is some function on
A, then we use the notation Ax.a to denote the extension to a strict function on A .

Recursively defined domains, such as

Value = Number + {Value — Value)

need special handling. The central role of domain theory is to make sense of such equations. It turns out
that the above equation has a solution provided that the functions in the domain A — B are restricted to
be those which are continuous with respect to a certain topology (called the Scou topology) on A and
B. Imposing restrictions onto a set in order to make rigorous concepts which already seem intitively
clear is a well-known technique in mathematics (examples are the theory of distributions, or generalised
functions, and the theory of quantum mechanical operators) However, the technique is perhaps less
familiar in computer science.

We now retum to our example IMP1. Imperative languages use a special data structure called a store,
which exists independently of any program in the language. Certain constructs can access and update
the store. In IMP1, we can think of the store as computer memory.

The semantic algebras for IMP1 are the basic domains in which the meaning of our language constructs
will be defined. We shall model the store as the domain of functions from identifiers to values. In the
table below, b = x O y is a shorthand for "if b then x else y"




ERL-0600-RR

SEMANTIC ALGEBRAS FOR IMP1

Truth values
Domain : Tr = {true, false}
Operations :

not : Tr — Tt

Identifiers

Domain : Ide

Natural Numbers
Domain . Nat
Operations
plus : Nat x Nat — Nat
equals - Nat x Nat — Nat

Store
Domain : Store = fde — Nat
Operations .
hewstore  Store

newstore = AU

access  [de — Store — Nat

Access 1s = s{l)

npdate  Ide — Nat — Store — Store

updateins = (M =1=n0s())

2.3.4 Semantics

‘The final step is to assign a meaning to each phrase in the language by giving a valuation (or meaning)
tunction trom the phrase in terms of elements and operations of the semantic domains. The defimtion is
an inductive one, guided by the abstract syntax of the language. The key property is that the meaning of a
phrase is defined solely in terms of the meaning of its proper subphrases (this is called compositionality).
For example, the meaning of the phrase “if b then e, else e;” will depend on the meanings of the boolean
expression b, and the other expressions ¢; and ¢2. There are a number of primitive phrases, such as
assignment, which do not depend on any other phrases.

[n the case of IMPI, it is natural to picture a command as an operation taking a given store t0 a new
store. Thus its meaning will be given by a tunction of the following type:

C : Command — Storey — Store

The Store domain is lifted because the action on the store may not terminate. [t is natural to take C to
be a strict function on Storey, i.e. we cannot recover from an nonrecoverable situation.

The semantics for IMP1 is given below — omitting, for the moment, the while construct, which will
be discussed later.




ERL-0600-RR

SEMANTICS FOR IMP1

P : Program — Nat — Nat
Plc] = An.let s = (update input n newstore) in let s’ = C[c]s in (access output s')

C : Command — Store — Store

Cley: c2] = As.Cle1](Cleals)

C[if b then ¢, else ¢2] = As.B[b]s = Cle,}s O Clea]s
(
L

!

i = e] = As.update i Ele]s s
Cldiverge] = As.L

E : Expression — Store — Nat
Ele; + e2] = As.E[e,]s plus Eleq]s
E{i] = As.accessis

E[n] = As.n

B : Booleanexpr — Store — Tr
Ble; = e2] = As.E[e;]s equals E[ez]s
B{-b] = As.=(B[b]s)
B[

(

B[false] = false

true] = true

The above valuation functions are what we would expect. The semantic functions have as their arguments
phrases of the language, enclosed in square brackets for readability. Purely for convenience, the equation
for P says that the meaning of a program is obtained by taking an input number, associating it with the
special identifier ’input’, evaluating the body of the program, and then extracting the answer from the
identifier "output’. Note that an expression does not have side-effects in its evaluation; it may need to
consult the store to be evaluated, but will never change it.
As a simple example of working with denotational semantics we have:

Ploutput := 1; if input = 0 then diverge; output := 3] = An.nequals0=> 103
The proof is straightforward (it is treated in detail in {2]). For this program, if the input is 0, the answer
is undefined; in all other cases the answer is 3.

Once we have captured the denotational semantics of a language, there is an immediate notion of
equivalence of expressions and commands (and hence programs). We define:
e) = e; & Ele1] = Elea]
¢y & ¢z & Cley] = Clea]
This is an important notion: in proving the correctness of a program p we may wish first o apply a
transformation T in order to simplify it. If p = T(p), then the correctness (or otherwise) of p will be
preserved by the transformation. Here are some examples of equivalences (where ¢, ¢, ¢ are arbitrary
commands and b is an arbitrary boolean expression):
e +ex ey e
( <; skip) =~ (skip; ¢) = ¢
if b then ¢, else ¢; 2= if —b then c; else ¢;
x =0, y =x+lzy: =1 x =0
The proofs are again straightforward.




ERL-0600-RR

2.3.5 Recursively Defined Functions

As we remarked earlier, certain types of language construct require more formal machinery to capture
therr meuning in denotational semantics.

Once such problematic construct is the while loop, which we omitted from our earlier discussion of the
lunguage IMPL. We could attempt to define its meaning as follows:

Clwhile b Jo ¢] = As.B[b]s => Clwhile b do ¢}{(Clc]s) O's

This certainly captures our intuition about what a while-loop should do, but it is, unfortunately violating
the requirement that the meaning of a program phrase must be defined in terms of its proper subphrases.

The theory of domains provides us with a rigorous way of capturing the semantics of while, along with
other recursive objects. Essentially, we need to make formai the meaning of a recursive specification.
Space does not permit us to do more than summarise this theory, but here are some key results. For
more details, consult the book by Schmidt [2].

A puartial ordering on a set D is a relation C which is:
a.  reflexive: Yae D, aC a:

b,  antisymmetric: Ya.b€ D, aCbandbCa>a=>b; and
¢.  transitive: Ya, b.ceéD. aCbandbCcDaCc

A least element of D with respect to this ordering is an element L such thatVae D, L Ca. It Xisa
subset of D, then the least upper hound, wniten || X, denotes the element of D (if it exists) such that:

4 Y EX. xCUJX and
n. vieD uUvxeX.xCdrhen [ JXCd

A non-empty subset X of D is called a chain if, Va, b € X either a C b or b C a. Finally D is called a
domain 1f D has a least element L and every chain has a least upper bound.

Suppose that A and B are sets with partial orderings. A function f : A — B is called monotonic
it ¥x.y € A, f(a) Cf(b). The tunction f is called continuous if it is monotonic and, furthermore,
for every chain X C A, f(LUX) C Y {f(x) ] x € X}. If F: D — D is continuous. then a fixed point of F
15 an clement d of D such that F(d) = d. It is called the least fixed point of fif, Ve € D, F(e) =eD d Ce.

The key result of domain theory 1s the tollowing:

Theorem: It D 1s a domain, then every funcuion F : D — D has a least fixed point, given by:

fix F = | [{F'(L)]i20}

We then take the meaning of a recursive specification f = F (f) to be fix F.

It can be shown that the domain constructors described earlier all construct new domains from given
domains (which justifies their name). A primitive domain such as Nat, is given the discrete partial
ordering: a Cb < a=bora= L (such drmains are called flat).

Now we are in a position to define the meaning of a while loop as foilows:

Clwhile b do ¢} = fix (Af.As.B[b]s = f(Cl[c]s) Os)

- O ok e



ERL-0600-RR

To complete the discussion of fixed points, we note that, for certain kinds of predicates (called inclusive
predicates), we have an important induction principle, known as fixed-point induction. For such a
predicate P on a domain D, we have the inference rule:

P(L) Vde D, P(d) D P(F(d))
P(fix F)

~

This result is very important for reasoning about fixed points in theorem provers such as LCF.

2.3.6 Limitations

By now, the methods for giving denotational semantics for sequential programming languages are
well-understood: all the constructs used in such languages have been given well-defined mathematical
formulations. This is true of blocks, jumps, procedures and functions and so on. However, the method
has its limitations {6].

The extension of denotational semantics to cover parallel languages is not straightforward. The problem
is that denotational semantics makes heavy use of functions, whereas the essential property of parailel
programs is non-determinism. In contrast, operational semantics (see below) extends quite neatly to
cover the case of parallel languages, and is, for example, the standard way of formulating Robin Milner’s
Calculus of Communicating Systems.

Also, the method does not scale up well to real programming languages — whose domains can be
extremely complex — and it is fair to say that denotational semantics definitions have not really affected
the mainstream development of languages such as Ada (8]. Denotational semantics definitions are also
very hard to read, and make little sense to the non-expert.

Another issue is that it is not possible to reuse parts of the description of one language in another
language (in other words, denotational semantics has no construction analogous to that of modules in
software engineering).

2.4 Operational Semantics

There is today a good deal of interest in the natural or operational style of semantics, which grew out of
the work of Gordon Plotkin [9). His aim was to formalise language semantics in a natural way, in terms
of transition systems, without being too worried about mathematical rigour. The method has found favour
among those who wish to study real languages without wanting to use a full denotational semantics. In
fact, the definition of Standard ML is given in terms of a number of transition rules.

An operational semantics is given by defining a transition system, which we define to be a pair (T, =),
where [ is a set of configurations, and = is a relation on I, with the interpretation that ¥; = y; means
that v, evaluates to v;. Many systems actually fall into the category of transition system, but we are most
interested in the case of language semantics, where a number of inference rules capiure the meaning of
the language.

Operational semantics has the advantage that it is an easier formalism to understand than denotational
semantics. Also, as mentioned above, it is better able to cope with the treatment of non-deterministic
languages, where meaning is captured by relations rather than functions. The main disadvantage is that it
is tied to the way an interpreter will evaluate phrases in the language, and so it is not a good formalism
for reasoning about termination, or loops which may iterate an arbitrary number of times depending on
the input.

Our discussion of operational semantics draws on the lecture notes of Milner {10]

24.1 Semantics of FUNC1

As an example, we shall consider a very simple language FUNCI, with simple expressions and a
mechanism for local scoping, which later will be extended to a functional language.

10




- ————

-~

ERL-0600-RR

SYNTAX OF FUNCI1

e exXpression
1 declaration
X udentifer

n - nuinber

e =x | n|e +er | letdine

di=x=e | dy i dy

Phrases in this language are evaluated in the context of an environment, which records the current
bindings ot identifiers to their values (in this case numbers). We shall regard an environment as a set
ot pairs, as follows:

E = {(x1,n1), ... (xx, nk) }
Our transition system relation has the form:
Environment + phrase = result
in which the resuit is a number if the phrase is an expression, and is an environment if the phrase s
a declaration. Below are given the inference rules for the operational semantics of FUNC1. We use

the notation E{E; to denote the new environment obtained from E; by overwriting its bindings with
those of Es:

OPERATIONAL SEMANTICS FOR FUNC1

Expressions

E-x=n if (x,n) € E

Ernu=n

Ere;=2u EFes=n n=n +ns

Ete; +es=n

E-Fd=>E EE'Fe=n
EFletdine=n

Declarations :

EFe=n
EFx=e= {(x,n)}

EFd = E; EB;"(IQQE;
Ef‘dl;dzéElsg




ERL-0600-RR

As examples, we have:

Erletx=3 y=10inx+y =15
Eblety=3inletex=y+1linlety=20inx =4

The second example illustrates the fact that we have static binding: x uses the value of y at definition-
time, not at call-time.

A formal proof of these examples uses the inference rules for the semantics to work backwards from
what it is required to prove (the “goal”), constructing a proof tree whose nodes are rivially true.

There is a natural notion of equivalence with respect to the semantics for the language FUNC1. We
define equivalence of expressions and declarations as follows:

eyxer=VE,n: EFey=>neEFes;=n
diyxdy=VE,E': Erd =E @®EFdy=>FE

For example, it is easy to show that

e +erxertey
letx=1linx+3=xlety=2iny+1
X=T. y=9=xy=9,x=7

2.4.2 Semantics of FUNC2

Now let us extend to the language FUNCI1 to a more interesting and useful language, called FUNC2. [t
is a functional language: functions are allowed to be values, and can be passed as arguments (o other
functions. We shall add the following new expressions: conditional expressions, pairing e,, e, function
application e; (ez) and lambda-expressions Ax.e. We have also included parallel declarations, with the

construct “and”. Here is the syntax of FUNC2:

SYNTAX OF FUNC2

. expression

: declaration

®x a o

. identifier
: constant = number + {tt,f{} + {+.x}
n=X | c) e ez | eler)
| ifegthene, elsee; | Ax.e | letdine
d i=x=e | dl ’ dzldl anddg

(2]

@

An environment will still associate identifiers with values; however, this time the set of values is defined
as follows:

¢  every constant is a value;

« if v; and v, are values, then v,, vz is a value; and

» if E is an environment, x an identifier and e an expression, then the closure <x.eE> is also
a value.

Function closures (or function values) contain all the information necessary 1o evaluate a function. we
evaluate ¢ (the function body) in the environment E exiended by associating the actual parameter value
with the formal parameter x. Closures are needed to avoid inconsistencies due to the use of the same
identifier as both a bound and a free variable (well-known as the “funarg problem” in LISP).

Now if we wanted to make rigorous sense of such a recursively defined set we would, of course, require
the machinery of domain theory. Thus the denotational semantics for this language needs some special
care. However, the operational semantics is not difficult to formulate, and is given below:

12




ERL.-0600-RR

OPERATIONAL SEMANTICS FOR FUNC2

Expressions :

Erx=wv iw(x.v) € E

Ei"(‘=><‘

EFe =>v; EFe, v,

E ?‘Pl,t"_: = V. V2

Ere; =>(x.eE) Etesv E{(x,v)}Fe=V
Efeifen) =

EFel=¢ EFe;=v apply(c,v) =+

Erei(es) =V

Ete,=>true Ele v

E b if e, then ey else ea = v

Ete,=false EFe, =y

EF if e thien e else eq = v

E-Axe = (x.¢ E)

E-d=F EEFe v
EFletdine=v

Declarations

EFe=n

EFx=e={(x.n)}

E-rd, = E; EE, Fdy =2 E,
EF (ll y (lg = EIE'.)

EFdy=>E, Erd,zE,
EF (l\ and d’g = E]Ez

Note that, for constants such as + which happen to be operations, we assume that the semantic algebras
support a tunction apply, which evaluates its application to arguments, for example apply (+. (3,6))=9.
Also note that there are two rules for function application, according as the operator €, of the application
evaluates to a closure or a constant value.

13

o R A BN A U s




ERL-0600-RR

2.4.3 Semantics of FUNC3

The next stage is to extend FUNC2 to allow for recursively defined functions in the language. The
extension to the syntax is simply to allow a declaration 10 be qualified by the word “rec”. So we extend
the syntax of declarations to be:

d »=x=e|dy; d2|dyanddy|recd

This will allow the local declaration of mutually recursive functions, for example:
let rec (fy = Ax;.e; and f2 = Axs.ez) ine

in which, typically, both ¢ and e; might contain applications of f; or f;.

Milner [10] gives a careful discussion of how the operational semantics needs to be modified to allow
for recursion. We shall just give the inference rules which need to be changed.

Firsdy, we need o extend the notion of function closure to have the form <x,e,E.E’>, in which the new
fourth component is an environment specifying the function identifiers which must be treated recursively
when we evaluate the body ¢ of the closure. We modify the rule for lambda-expressions as follows:

E+ Ax.e = (x,e,E,0)

The semantics of recursive declarations requires the-key notion of unfolding an environment, defined as
follows. if E is an environment, then whenever E contains a member

(fl' <x|veiv En E:))
then UNFOLD E will contain instead the member
(fly (xnen Elv E))

Now we can give the rules for recursive declarations and function applications:

EFd=FE
EFrecd = UNFOLD E'

Eo e =>(x,e,E,E') Eole; v E(UNFOLD E'){(x,v)}Fe= Vv
Eo | o el(eg) = v

We shall meet the languages FUNC1, FUNC2 and FUNC3 again later on in Chapter 6, where we set up
proof procedures for reasoning about these languages.

14




ERL-0600-RR

2.4.4 Semantics of IMP1

It 1s not hard to give an operational semantics for the language IMP1 (whose denotational semantics was
given earlier). This language ts essentially that discussed in Milner's notes [10). It has also been studied
by Rachel Roxas and Malcom Newey [11]. We shall not give its semantics in full here.

Phrase evaluation is now written as follows:

environment - expression, memory; => value, memory,

environment b program, memory, = memory:

where we have allowed for expression evaluation to have side-effects and change the memory (for the
stmplest imperative langauges there will be no side-effects). In general, there is aiso an environment to
altow local declarations, as tor our tunctional languages.

Omutting environments for now, we give just the rules for assignment and while loops:

e. M =0 M

X = e M = update(x. n. M)

b.M = true. M p. M = M’ whileb dop, M” = M
while b do p, M = M"

b, M = false. M’
while b do p. M = \/

[t1s not ditticult to formulate operational semantics for the other constructs found in imperative languages
tprocedure calls, jumps etc), but we shall not do this here.

2.5 Axiomatic Semantics

The key ideas 1n axiomatic semantics were put forward in 1969 by C A R Hoare {12] in a paper describing
a logic for capturing assertions about a small imperative language. This paper had a major impact. and
his the distinction of being one of the most widely cited papers in computer science. There has been
tremendous activity in the area over the last twenty years, as witnessed by the extensive review of the
subject by [13]. We shall give a brief discussion, following Schmidt (2].

In Hoare logic we deal with partial correctness assertions of the form (P} ¢ {Q}. which specify the
behaviour of some command ¢ in terms of predicates P and Q, which are functions of program variables.
Informally, the assertion means that “if P is true in some state, and ¢ is then executed and terminates,
then Q is true in the resulting state”. In the language of denotational semantics, such an assertion reads:

{P}c{Q} = Vs € Store, B[P}s A ~(C[c]s = L) D B[Q](C[c]s)

Some examples of the Hoare rules for assignments, sequencing and while loops are given below:

15

¥ B

< A o e



ERL-0600-RR

{P(e/x)} x := e {P}

{P}c1 {Q} QDR {R}c: (S}
{P}ci:ca{S}

P A{b}c{P)}
{P} while b do ¢ {-b A P}

The point we want to make here is that these rules can be shown to follow from the denotational
semantics of the language (2].

The Hoare rules are very popular in program verification, and many treatments of the subject take these
rules as their starting point. However, the Hoare rules will not be used further in this paper.

16




"

L]

ERL-0600-RR

Chapter 3 INTRODUCTION TO ML

In this chapter we shall give a brief overview of the programming language ML (ML stands for Meta-
Language), on which both the HOL system and Isabelle are built. ML was originally developed during
work on the early theorem prover LCF (LCF stands for Logic for Computable Functions), which was
developed by Robin Milner and collaborators in the early 1970°s [14].

ML has now become an important programming language in its own right. Even during its early stages.
the language featured higher order tunctions, along with a robust type system with an method for type
inferencing, and had an exception raising mechanism to facilitate the definition of proof tactics. ML was
redesigned to incorporate new ideas trom the work of Burstall's group on HOPE and CLEAR . such as
pattern matching and the modular construction of specifications using signatures in the interfaces. Most
recently, a major enhancement to ML has been that of modules, due to MacQueen.

The agreed standard tor the language is called Standard ML (SML), and its definition is given in [15].
A readable, but low-level, introduction to the language is the book by Wikstrom [16]. Another readable
summary of ML is the manual for the version under development by Malcolm Newey and collaborators
at the Australian National University{17]. However, since we are discussing the HOL system first, the
examples in this chapter will be for the slightly different dialect of the language on which HOL is built.
(The theorem prover Isabelle is built on SML). We do this for convenience: the differences are not
significant for the examples we wish to give.

3.1 Features of ML

ML 1s a modern tunctional programming language, with a number of powerful features which tollow
modern software engineenng principles. In fact ML is the paradigm for a functional language which
we have in mund for our experiments on the verification of programs written in functional languages.
Here are the highlights of ML.

O Ivis atunctional language — tunctions are first-class objects and can be passed as arguments
to other functions, or returned as values.

O Itis statically-scoped: identifiers are associated with values according to where they appear
in the program text (and not on the run-time behaviour of the program). This is safer than
Jynamic scoping (as in LISP).

O Itas astuongly typed language — every ML expression has a statically-determined type. The

type of an expression can usually be inferred automatically, by an algorithm due to Milner.

This catches many trivial errors at compile-time, and promotes good programming practice.

It is polymorphic — type expressions may contain type variables, to allow for tunctions to

be defined on a class of arguments of ditferent types.

It has facilities for abstraction — the user can define new abstract data types and hide the

details of their implementation from tunctions which make use of them.

It has a modules facility, allowing the grouping of large ML programs into separate units

which can be separately compiled.

It has an exception trap mechanism, to allow the uniform handling of user and system-

generated exceptions.

It has a rigorous semantics — the language definition of SML [15] is expressed in terms of

operational semantics, so that implementors and others know what is required. There is also

an (unpublished) denotational semantics for the language, due to Gordon and Milner.

o 0O a a a

3.2 Syntax

In this section we shall summarise the syntax of ML, concentrating on the bare essentials. The following
table shows which variables are used to range over the various semantic domains of ML.

g




ERL-0600-RR
Table 1 Notation for Semantic Domains
Variable Ranges over
var variables
con constructors
constexp constant expressions
d declarations
b bindings
p patterns
e expressions

A simplified syntax of ML, in which we omit types, precedence information, constructs which are
equivalent to others, and certain exotic forms of exceptions can be summarised as follows:

let b | letref b | letrec b
p=e | varp py...pn =e |b and by and ... and b,

| constexp | var | conp | p1-p2 | p1,P2| (| [P1;.ipal
;1= constexp | var [ con | e ey

® T o a
]

|pxeleyixes|p :=e] failwithe
|if e, then e; {else e3}

| e17e2

| while e; do e,

fer;...;en i ler;..en)]dine
I\P1 P2 ...Pne
[funpi.e;|p2.e2 |...|pn.en

3.3 Examples

Rather than give a formal definition of the semantics of ML, we shall be content to explain the language
by means of a number of examples.

ML constructs are evaluated in the context of an environment and a store (these concepts have already
been discussed in 2). The environment holds current bindings. It specifies what the variables and
constructors in use denote — they may be bound either to values or locations. The store specifies the
contents of locations (which must be values).

Evaluation of a declaration d changes the bindings in the environment of the identifiers declared in d.
Evaluation of an expression yields a value. Any assignment done during an evaluation changes the store
(such changes are called side-effects).

Expressions and paterns may optionally be given types (for example x:int), which forces the type-
checker (o assign an instance of the asseried type to this construct.

We shall illustrate the various constructs in ML by means of some simple sessions with the HOL system.
In these interactions, # is the HOL prompt, and the user enters ML phrases followed by two semi-colons.

18

i T



* * ERL-0600-RR

3.3.1 Expressions

Expressions can take a number ot forms. A simple example is:

The value of the expression (12) is returned, along with its type (int). Here are some other examples:

3.3.2 Declarations

The declaration let x = = evaluates @ and binds the resulting value to the identifier x. For example:

3.3.3 Functions

The general form of a function definition is let £ x = e, where x is a formal parameter, and e the
hody of the function. For example we can define the successor function as follows:

2.7 3uST W o= R .

P

= - @ int == lnt

Note that the type inferencing mechanism of ML means that the type of succ has been :nferred to be
1 int —> int without having to declare x explicitly to be of type int.

L Functions of several arguments can be defined:




ERL-0600-RR

#let add X y = x + y;;

add = -~ @ (iat => int -> int)
#.2% 3dd3 = add 3;;
add3 = - {int -=> int)

An equivalent notation for functions is the lambda-expression. A backslash *\' is used to approximate a
lambda. The expression let f = \x.e is equivalent to let £ x = e. Recursive functions may
be defined using the keyword letrec:

tlet £ = \x.x+1;;

£ = - (int -> iny)
€ 7.

"

int

&

#letrec fact n = if n=0 then 1 else a*fact{n-1);;
I3 -

= - : (int =-> int

334 Lists
All the elements of a list must be of the same type:

’

#.;2;3;4

i3
L2 3 4

;
3} ¢ int list

We have the following standard operations on lists:

and 1;2:31;;

nt

#'one'. [ ‘“wo'; ‘three‘l;:;
i‘one'; '-wo‘; ‘three‘l : string list

#:.;2;31 Q@ [4;5;6);;
‘1027 3; 4; 5; 61 : int List

3.3.5 Polymorphism
Let us inspect the type of the function hd:

khd;;
= ¢ (" list -> *)

This says that hd has many types: it is defined on any list of elements with the same (but arbitrary) type,
(hence the type variable *), and returns an element of that type. Such functions are called polymorphic.

20




ST

. ERL-0600-RR

3.3.6 Failure

i, R AR

Some standard tunctions fail at run-time on certaln arguments:
BL. ‘;
=valuanicon fallad div %
#3075
iill-typed phrase: 7 ]
Yias an instance of type int
whish should match type * list .
L =rror in typing
typechack failed
Failures can be trapped with 7, so the value of the expression el ? e2 is el unless 21 causes a
failure, in which case the result is the value of 22, A failure may be forced as follows:
#fallwith ‘miztake!’ ;;
=valuation failed mistake!
3.3.7 New Types T
ML is very tlexible in this respect. We may simply abbreviate a type, as in:
slertype soringpilr = string # string:;
ryme strinapair definaed
or define a new type, for example:
#rype card = ace ¢ wing | qu2en | jack | ather of int;;
Wew zsonstructors declared:
aze @ zard
king : card i
queen @ card :
sazk @ card !
cmher o {(int -> oard) * :
which declares a new type consisting of four constructors: the constants king, queen and jack, and ;
the function other. A function whose argument is of such a type is defined by the general expression

fun pat.e; | pats.ez | ... | patn.eqn

Such an expression denotes a function which, given a value v, selects the first pattern which matches v,
say pat, binds the variables of pat; to the corresponding components of the value, and then evaluates
the expression e.

So, for example, a function giving the standard value of a card in contract bridge is given by:

#la2t value = fun ace .4
| king 3
| queen 2
| jack 1
| {other n) 0;;

#value = - : (card -> int)

Then the total value of a hand of cards (represented as a list H) Is given by:

21

PR




ERL-0600-RR

4letrec totalvalue H =
if null H then 0 else value(hd(H)) + totalvalue (tl(H));;
#zotaivalie = -~ : (card list =-> int)

$zotalvalue lace;king;king; jack; (cther 5)1];;

D

Recursive types can be defined: for example, we could define the positive integers by:
(rectype int = zero | succ of int;;

New constructors declared:

zero
suce

int
{int =>

int)

New types can also be defined by abstraction. For example here is a definition of an abstract type called
sat, constructed from a list of integers. Note that the intemnals of this type are hidden from the user:

4abstype set = int list
with make_set = \x. abs_set x and

empry = abs_sert and

size = \s. length (rep_set s);;
#4emake_set = - : (int list -> setr)
erpty = - : set

size = - : (set =-> int)

¢let s = make_set [1;2;3;4;31;;

s = = ! set

ss.ze s;;

5 ¢ int

4slze empty;;

N D
v + 20C

3.3.8 Imperative Features

We have relegated until last those features of ML which lie strictly outside of functional languages.
Assignable variables are created with the keyword letref. The while construct is also avilable.

tletref a = 3;;
a=3.: int

ta;;

3 : int
ta = 7;;
7 int
#a;;

7 : int

let fact n = letref count = n and result =1 in

while count > 0 do count, result := count-1, count*result; result;;

sfact 5;;
120 : int

22

bt

R e




o

e s — A -

N

ERL-0600-RR

Chapter 4 THE HOL SYSTEM

4.1 Introduction

In this chapter we shall give an overview of HOL, a system developed by Mike Gordon at the University
of Cambridge. HOL supports interactive theorem proving in higher order logic. It inherits many deas
from LCF [14], a good up-to-date account of which may be found in the book by Larry Paulson [i8].
As in LCF, the language ML provides the environment in which terms and theorems of the logic can
be denoted and theorem proving takes place.

HOL is really a proot-assistant and proof checker. It will not prove complex theorems automatcally: the
user must have an idea of the way the proof will work, and apply the appropriate steps (called tactics) in
the proot, which works in a goal-directed fashion. The HOL system manages the proof, taking care of
the details of primitive proof steps, and provides a sound theorem proving environment — i.e. the user
is assured that a theorem, once obtained, is true within the logic.

HOL provides a natural and highly expressive way of specifying and reasoning about models of abstract
systems. It was originally suggested as a tool for the verification of hardware, and it is fair to say that
most of the activity in HOL is in hardware (with Mike Gordon’s group at Cambridge primarily involved
in this area). Nevertheless, HOL has been applied to other areas, including protocol verification {1Y],
mathematical theories such as groups and integers, machine architecture specification [20], security policy
modelling [21]. The HOL TUTORIAL [22] gives several examples. HOL is just beginning to be applied
to the area of software verification, which is the concern of this paper.

The following 15 not meant to be exhaustive, but rather to give a flavour of working with HOL. as well
as highlighting both those features of the system which support reasoning about programming languages.
and those which hinder such reasoning.

4.2 Higher Order Logic

The HOL logic is a version of higher order logic based on Church’s formulation of simple type theory
[23]. It 1 a variant of typed polymorphic A—calculus, with formulae being identified with terms of
buolean type. Variables can range over functions and predicates, and functions can take other tunctions
as arguments (hence “higher order’). The important property of t

he HOL logic is that it is expressive enough to be able to formulate mathematical theories: one might
think of it as being as format tool which replaces the usual mathematician’s meta-language of informal
Jdescription and proot with a formal system which captures the same ideas.

An important notion is that of a theory, which is a collection of types, constants, definitions and axioms
— as with any logical system — but which also contains an explicit list of theorems which have already
heen proved from the axioms and definitions, and perhaps earlier theorems. A HOL theory is a dynamic
abject which can be extended or even modified during an interaction with the HOL system.

4.2.1 Types

The HOL logic is typed: we can think of types as expressions that denote sets. We shall use the generic
variable @ to range over arbitrary types. The possible kinds of types are given by the following table
adapted from [22]:

B3 1o L
PR~ P SR

vl



O e

= - —

ERL-0600-RR
Table 2 HOL Types

Kind of Type HOL Notation ML Notation Description

Type variable a " " arbitrary type

Type constant c "op " fixed type

Function type og->0 "o >0 " functions from o to ¢’
Compound type (o1, ... 0q) OP ":(G1s oy Tn) OP” general type

coastructor

Type variables denote arbitrary (non-empty) sets, and are used to specify ranges of types in the logic.
Type constants, or atnmic types denote fixed sets of values. Each theory determines some collection
of type constants. Fo. example, the standard constant type bool denotes the set of truth values. The
function type o—o’ denotes the set of total functions from the set denoted by o to the set denoted
by ¢’. Finally, the compound type (o1, ..., o) op gives a general means of constructing new types,
for example the product type oy x o2 = (01, 02) prod. Types containing type variables will be called
polymorphic, all other types being monomorphic. An instance o’ of a type & is obtained by replacing
all the occurrences of a type variable in o by a type.

Also shown in the table is the representation in ML of the various kinds of type. This will be discussed
later on.
4.2.2 Terms

The terms of the HOL logic are simply expressions denoting elements of the sets denoted by types. We
shall use the variable t 1o range over terms. The following table summarises the four kinds of terms
in the logic:

Table 3 Primitive Terms of the HOL Logic

Kind of term HOL Notation ML Notation Description

Variable X "var: o " variable var of type o
Constant c "const: o " constant of type o
Application te "t " function t applied to t/
Abstraction Ax.t X, t" lambda expression

A function application t t’ denotes the result of applying the function denoted by t to the value denoted
by t’, while the A—term Ax.t denotes the function v — t [v/x], where t [v/x] denotes the result when
v is substituted for x in t

Although the terms just given make no mention of types, each term in the logic actually has a unique type.
If we need to be explicit, we write to to express the fact that t is of type 0. Once again, we call a term
containing a type variable polymorphic. Any term input to the system must be well-typed according to
the rules of the logic. HOL has a type checker for logical terms based on the ML type checking algorithm.

4.2.3 Logical Formulae

Every theory is assumed to contain the constant type bool; it is an important feature of the HOL. logic
that logical formulae are then identified with terms of type bool. The HOL system does not distinguish
between them at all'. also, various logical constructs are assumed to be present in each theory. We shall

! In Isabeile’s version of Higher Order Logic, terms of typs bool are distinguished from formulse, but are interchangeable by
means of centsin built-in equivalences.

24

v A

RGP vt




L S

- e - - —

ERL-0600-RR

not go to dJetails, but just assume that the logic is expressive enough in that it contains the following
constructs:

Table 4 Derived Logical Constructs of HOL

Kind of term HOL Notation ML Notation Description
Truth T “T" true
Falsity F "F " false
Negation =t e nott
Disjunction tvt tvryY " tort
Conjunction tAL tAY tand t/
Implication ot “tx=> " t implies v
Equality t=t’ t=t " t equals t’
Universal vx.t Tixt forall x : t
Quantification
Existential Ix.t e there exists an x such
Quantification that t
Unique Existential Ix.t D A& there exists a unique X
Quantitication such that t
e-term Ix.t "@x.t” an x such thatt
{ Conditional t =t )t t=>viY if t then U else

4.2.4 Constant Definitions

The HOL logic provides ways of introducing definitions in a manner which preserves consistency of the
logic. A constant definition over some theory is an equation of the form ¢, = t,,where

1. ¢ 15 not already a constant in the theory;
2. t1s a closed term (i.e. has no free variables); and
3. all the type variables occurring in tg OCCUr in o.

4.2.5 Deduction and Proofs

The HOL logic is based on natural deduction. Sentences of the logic are sequents, denoted generally
by [ F t, where T is a set of boolean terms called assumptions, and t is a boolean term called the
conclusion. It T iy empty, we write simply F t.

A deductive system Q consists of a set of interence rules, which we write in the following natural style:

ARt .. A Ft
AFt

We read this rule as saying that, if the sequents A F t;, ..., Ak t; all hold, then we can conciude the
truth of Akt

25

Ry IR

R

4 PO MG R o tesiars




ERL-0600-RR

We say that a sequent T + 1 follows from a set of sequents A by a deductive system {2 if there are
sequents ['; Ft;, ..., [’y F t, such that
'Ft="C,Ft, and
fl1<i<n:
either T, - ti € A,or
[ F t; follows by means of Q from
members of AU (T F ty,....Ticy F tioy }

The sequence T F ty, ..., [y F t, is then called a proof of T  t from A with respect to Q.

42.6 The HOL Deductive System
We shall now give the eight basic rules of inference of HOL's deductive system®:

2 There are also five sxioms — which are usually defined by deftnitional estension of & basic theory and will nat be given here

26




-

ERL-0600-RR

Table 5 Basic Rules of Inference for HOL

Description

Inference Rule

Assumption Introduction

[ad
Lad

Reflexivity

Ft=t

Beta-Conversion

F{Ax.t))ts = tl[t—_;/x]

Substitution

I‘lr-n:t'l Fnl—tn=c;, THtfty. ...ty

7l

ru..ul,k t[t'l, .4._t;1]

Abstraction

r }‘ "X = t.'_)
I'F(Ax.ty) = (Ax.ta)

Type Instantiation

CFt
r"t[dl,...,tfn/’al ,,,,, {ln]

Discharging an Assumption

| G P8
r—{tl}f‘h)t'z

Modus Ponens

LiFt; Dt "k
I‘lul‘gl-tn_.

27

at s



ERL-0600-RR

These inference rules are natural and simple ones 10 write down, although the side conditions on the
variables involved can be rather complicated (for more details see the manual).

4.2.7 Theories
A theory in the HOL logic is a quadruple:

T = (Structr, Sigr, AxiomsT, TheoremsT)
where

i.  Structr is the type structure of T;

.  Sigr is its signature (its basic constants);

ili. Axiomsrt is a collection of sequents; and

iv. Theoremst is a set of sequents in which every member follows from Axiomsr by means of
the HOL deductive system,

There is a natural notion of extension of a theory: a theory T’ is an extension of T if:

i.  Structy C Struct T3

ii. Sigr € Sig 1

iii. Axiomst C Axioms T;

iv. Theoremsy C Theorems 1;

If co = 1o is a constant definition over T, then the definitional extension of T by cg =ty is the theory
Tiget(cs =ts) = (Structy, Sigt U ¢y, Axiomst U {¢c, = t, }, Theoremsr)

The crucial property of this extension is that it is consistent if the original theory T is consiswent.

43 The HOL Logic in ML

Having looked a little at the HOL logic, we now need to discuss its representation in ML. It is impossible
to go into all the details here, so we shall just go over some key points, referring to the manual for
further details.

In the HOL system, the types of HOL terms have the ML type called type, while terms of the logic have
the ML type term. They can be input to HOL enclosed in quotation marks; their explicit form is shown
in the tables given in the previous section. Various ML functions exist for creating and manipulating these
values. A theorem is represented in HOL by a value of ML abstract type thm. The system represents
inference rules by ML functions whose arguments are of type thm and which return a result of type
thm. HOL contains a large number of derived theorems and inference rules, which are built up from
the basic axioms and primitive inference rules of the logic.

The system is sound in that the only way to obiain theorems is by generating a proof. This is done by
applying the ML functions representing inference rules, ¢cither to axioms or previously generated theorems.

4.3.1 ML Functions for Handling Theories

A theory is represented in the HOL system as a Lisp file called “name.th”, with ‘name* being the name
of the theory supplied as an ML string. Theory files have a hierarchical structure which represents
sequences of extensions of an initial theory, which is called HOL. A theocy will generally have one or
more parenss, of each of which it is an extension. A session with the HOL system consists of creating
a new theory by extending existing theories with a number of definitions (and perhaps axioms). There
are two modes of interaction with HOL.: in draft mode, a theory can be arbitrarily exiended, but in proof
mode only new theorems can be proved.

28




ERL-0600-RR
Here 18 2 summary of the most important ML theory functions:
Table 6 ML Theory Functions

Function Description

new_theory “name’ Go into draft mode for a new theory called
‘name’

new_parent ‘name’ Make ‘name’ a parent of the current theory

new_type n "op’ Make op a new n-ary type operator in the current
theory

new_constant ('¢‘.o) Make a new constant of generic type o in the
current theory

new_axiom (°¢'.0) Declare the sequent F t to be an axiom of the
current theory with name c.

save_thm (¢ .th) Save the theorem th with name ¢ in the current
theory file

close_theory Save the current theory and exit draft mode

new_defintion (‘a', "C vy, ..., Vp =) Extends the current theory with a constant
definition: declares the sequent ¢ = Avy. vyt
to be a constant definition called a.

extend_theory ‘name’ Go into draft mode for ‘name*

load_theory "name’ Go into proof mode for ‘name*

include_theory ‘name* Make all the axioms, theorems, definitions trom
the theory called ‘name* avalable.

When the HOL system 1s started up, the initial theory is called HOL. This theory has a complicated
ancestry, whose exact structure is not important. What the user needs to know is that there are a certain
number ot built-in theories, which capture a large body of mathematical knowledge. These theories are
. bool, ind, num, prim_rec, arithmetic, list, tree, combin, Itree, tydefs, sum and one. The HOL
system also has as a set of useful library theories (such as sets, string, integer etc) which can be catled
upon at will.

4.3.2 The Type Definition Package

In our table of theory functions earlier, we deliberately omitted a function called

new_type_lefinition, which allows a new type or type-operator 1o be added to the theory in a
conservanve (1.¢. consistent) fashion. This usually involves a lot of work. For many kinds of types,
this tunction has been superseded by the new type definition package (due to Tom Melham). This
package automates the considerable proof effort required to define new concrete (possibly recursive)
types. Because of its usefulness for the study of language semantics, we shall look at it in some detail.

The mamn ML function in the package is
arine_nyr=:is3tring--string->thm
where the first sring is a name under which we want the result to be stored in the theory, and the second
string is 3 speaification of the type, given in a manner rather like ML compound types. 1t is of the form:
. v oagl ek 1 Ko ¢
op=Cyty;..ty' | ... |Cn t¥m--t¥m

where each ty! is either a type expression already defined as a type in the current theory (which must
not contain op) or is the name op itself. For example, we could define natural numbers by

29

.
I
&




ERL-0600-RR

let nat_Axiom = define_type ‘nat_Axiom®
‘nat = Z | Suc nat‘';;

In this case, Z stands for zero, and Suc is the successor function. The theorem returned (nat_Axiom) is
just the primitive recursion theorem for the nawral numbers.

The type package makes it easy to define recursive functions on these new types. For example, we can
define the function parity on elements of our type nat by
new_recursive_definition false nat_Axiom ‘parity’
"(parizy Z = 0) /\
(parity {(Suc k) = 1 -~ parity (k))";:

When this is input to HOL, the package automatically proves the existence of the primitive recursive
function (in this case parity), and declares a new constant in the current theory with the above
definition as its specification.

The type package also gives us a number of other useful theorems automatically, including an induction
theorem for the concrete type, a cases theorem, a theorem stating that the constructors are one (o one,
and so on.

4.4 Goal Directed Proof

It is possible to carry out proofs in HOL in a forwards manner, starting from known theorems and
repeatedly applying inference rules until the required result is obtained.

In practice, however, it is very awkward 10 do proofs this way, and proofs are almost always not carried
out forwards, but in a more natural goal-directed fashion invented by Robin Milner for LCF. We begin
with the goal, and then try to reduce the goal to a number of subgoals, whose validity implies that of the
original goal. These subgoals are successively decomposed, until eventually we reach known facts.

4.4.1 Tactics and Tacticals

To implement this idea in LCF, Milner invented the notion of tactics. A tactic is an ML function which,
when applied to a goal:

1. reduces a goal to a list of subgoals, and
2. provides a “proof function” which justifies why solving the subgoals will solve the goal.

In ML, we have the following type abbreviations:

tactic = goal —> subgoals

goal = term list # term
subgoals = goal list # proof
proof = thm list —> thm

We cay that a tactic solves a goal if it reduces the goal to the empty list of subgoals.
Tactics are specified as follows:

goal

goal; goal, ... goal,
HOL has a rich supply of tactics. For example, we have the tactic CONJ_TAC:

AAB
A B
which expresses the fact that, if we want t0 prove the formula A A B, it suffices 10 prove the subgoals

A and B, because we know that from + A and - B we can deduce the theorem - A A B. The inference
rule which does this is called CONJ.

30




ERL-0600-RR

It 1s interesting to look at the ML code for CONJ_TAC:

the! . TCONS thl zhiy:

to, -~k oh

The code shows how the subgoals are constructed, how the proof function is built using CONJ, and what
happens 1t the tactic fails. Even such a simple example also shows how painful the writing of tactics
as ML procedures can be!

In practice, new tactics are usually built using ML functions called tacticals. An example of a tactical
1s the sequencing tactical THEN: if Ty and T, are tactics, Ty THEN T, is a tactic which first applies
T\ to the goal, and then applies T, to each resulting subgoal. Another import»nt tactical is OREL3E :
T, ORELSE T» is a kind of “choice” tactic which applies T; to the goal, unless 1t fails, in which case u
applies T>. The tactical REPEAT is for iteration : REPEAT T keeps applying T until it fails.

Becoming a HOL expert means becoming familiar with a range of tactics, and the situations where they
can be applied. By using tacticals (which we might also term strategies), we can build quite powertul
and sophisticated tactics, tatlor-made for the problem domain being studied.

442 The Subgoal Packace

In order to allow interactive proot to be carried out, the HOL system is provided with a subgoal package
talong the lines of LCE's) which takes care of proof management. It traverses the tree of subgoals
depth-first, The curre.at goal can be expanded into subgoals, which are kept on a goal stack. Once a
tactic solves o subgoal, the package automatically applies the appropriate proof functions to compute part
of the proot, und then and shows the next subgoal to be proved. Unfortunately, the subgoal package
does have i1~ hmutations, but is to be improved in tuture versions of HOL.

Here 1s 1 example of a rather artiticial but simple interactive proot. First we set the goal to be proved
using the tunction g :term —> void:

B - . -~ - L .o,
SRR I S SIninum. D= S g

This godl 1s expanded into two subgoals with CONJ_TAC:

g—wy and JINJI_TAT

Let us examine the first (bottom) subgoal, which is an obvious assertion about lists of arbitrary elements.
To prove this subgoal, we simply rewnite with the definition of the head of a list:

sHD;

- th 2. HO(CGNS h ) = h
=xpand (REWRITE_TAC {HD});:
K.

J-al proved
- !'xy z. HD(x;y;2) = x

3

aavhl B

Bl . § v



ERL-0600-RR

Previous subproof:
"?n. “(n = O)"

HOL now displays the remaining subgoal, which states the (again obvious) fact that there is some number
distinct from zero. We only have to find a suitable n: the value 1 = SUC 0 will do. We expand the

goal with EXISTS_TAC:

texpand (EXISTS_TAC “SUC U");;
OK..
"T(sSgC 0 = O

This goal is solved immediately by rewriting with the derived theorem NOT_SUC:

#NOT_SUC;;
= In. “{SUC n = 0)

#expand (REWRITE_TAC (NOT_SUCl);:

CK..

goal proved

= T(SUC 0 = 0)

= 2n. T{n = 0)

i~ {Ix y z, HD[x;y.;z] = x) /\

Previous subproof:
goal proved

The above proof looks even simpler if we use tacticals (THENL is like THEN but can apply different

tactics to the resulting subgoals).

#g "(Ix y z:*.HD [(x;y;z) = x)
"(lx y z. HD!x;ysz] = x} /\ (2

(22, “(n = 0}))

/\ (Pninum. “(n = 0))";;

a. (n=00"

te (CONJ_TAC THENL {REWRITE_TAC (HD];
EXISTS TAC "SUC 3" THEN REWRITE_TAC [NOT_SUC]));:;

4CK. .
goal proved
= (txy z., HO{x;ysz] = X} /©\

Previous subproof:
goal proved

There are a number of functions provided for interaction with the subgoal package, the most important

of which are summarised in the following table:

Table 7 Subgoal

(?n. “(n = 0))

Package Commands

Function

Description

gt

initialises the subgoal package with a new goal

expand (or e)

applies a tactic (o the top goal on the stack

backup (or b)

backs up to the previous proof state

rotate (or r)

rotates the order of subgoals on the stack

print_state (or p) n

displays n levels of the goal stack

get_state

retumns the current goal stack

set_state s

resets the goal stack to s

32




—;T"'— N I

ERL-0600-RR

Chapter 5 PROGRAM VERIFICATION IN HOL

5.1 Introduction

Whatever our predisposition may be about the best way of describing the semantics of programming
languages, it is often the case that a given automated theorem prover will make it more natural and easier
for us to adopt one particular method. This is perhaps somewhat surprising.

The early theorem prover LCF was, of course, devised with domain theory (and denotational semantics)
in mind. LCF has as built-in constructs the notions of partial orderings, bottom elements, continuity etc.
LCF turns all sets into domains, with artificially added bottom elements if necessary; all functions are
to be continuous. LCF is a slow system. and is apparently no longer available or supported, owing to
the rise of interest in HOL.

Now HOL's logic 1s not directly tailored to reasoning about programs; it is a general purpose logic,
powertul enough to express mathematical theories. The logic does away with LCF's annoying habit
of litting sets like Nat (the natural numbers). Therefore, where possible, proofs of such laws as the
associative law for anthmetic

X+(y+2z)=(x+y)+z Vx,y.z€ Nat

can be proved without having to reason about cases such as x = L. This makes using HOL a lot easier.
However, the price one pays tor this is the need to import the relevant parts of domain theory as. and
when, they become necessary.

Despite these considerations, we claim that HOL is useful for formulating denotational semantics
definitions, and reasoning about program correctness, for the following reasons:

[.  syotax specitications in BNF form are easily modelled in HOL by establishing new compound
(possibly recursive) data types usuig the type package;

2. common semantic algebras (for example natural numbers, strings, lists) are either already
present tn HOL or its libraries:

3. HOL's logic is expressive enough to capture the semantic equations, with the meaning of a
phrases being, in general, a recursively defined function on the new data types defined above;

4. assertions about program phrases are easily expressed in HOL; and

S.  many tedious proofs in denotational semantics can be taken care of by simple rewriting.

What about operational semantics definitions? We claim that HOL seems less natural here. Consider,
for example, the typical rules for constants and tor the sum of two expressions:

EFv=>v

E}'t‘(—-‘\’l ElFes—vas v=vy4+vy

Ebe +er—v

which we might formulate as the tollowing HOL axioms:

Len UTMBER = new_axiom o NUMBERY, "seq (‘E, Const v, Vit
L STOMATION = oriew_axilmn (O SUMMATIONY,
v2) /N (v o= UL o vl

"Ll il izeg (B, =1, Yl) /N seq (E, 22,
zaq (E, Plus el =22, v)" ).,

Suppose our goal is “seq(E, Plus (Const 5) (Const 7),5 + 7)". We could solve it by using
MATCH_MP_TAC and the axiom for SUMMATION, but then we have the variables v1 and v2 which must
be instantiated “by hand”. Thus the tactic needed to solve the goal depends on the explicit form of the
goal. Such tactics are cumbersome to write. What we really want is to be able to treat v1 and v2 as
scheme variables to be instantiated awtomatically, and propagate the instantiations to the other subgoals.
However, HOL does not have a mechanism for doing this.

3

FIIVARN AN



ERL-0600-RR

It might be more logical to capture the operational semantics rules as new inference rules to be added to
HOL. We would then have to write appropriate tactics for them directly in ML, which is messy.

However, other authors have had some success with operational style semantics in HOL. Rachel Rox.:
and Maicolm Newey [11] have used the method to reason about program transformation for a smal.
imperative language. Also, Version 1.13 of HOL is to be provided with some simple tools for the study
of structured operational semantics.

We note here that Mike Gordon [24] has had some success in implementing axiomatic style semantics
in HOL. He has constructed the Hoare rules along with corresponding tactics for generating verification
conditions. These rules are proved within HOL directly from the denotational semantics of the language.

In this chapter, we shall ¢ ncentrate on capturing denotational semantics definitions within HOL.

5.2 The Language IMPI1

In this section we implement the imperative language IMP1, whose denotational semantics was given in
Chapter 2.3. To begin with, we declare a new theory called impl, with string as a parent (to handle
identifiers). We also load some useful inference rules for strings and some special tactics. Note: in the
following, HOL's responses will be omitted — unless they provide useful information.

isyszem ‘rm Iimpl.zh‘;;

new_thecry ‘impl‘:;
-0ad_Llibrary ‘stiring';;

5.2.1 Semantic Algebras

It is straightforward to formalise the semantic algebras for IMP1 in HOL. Identifiers may be modelled
by strings

inew Type_atbrev (‘Identililer', ":string");;

The domains Tr (truth values) and Nat (natural numbers) are already present in HOL as the types:bool
and :num. However, we shall need also the lifted domain Nat, , which we express as

#_ev Number Axiom = define type ‘Number®

‘Numper = number num ! urdef num‘;;
sNumber Axiom =
- fe. 2! fn, (ln. fn(number n) = £ n) /\ (fn undef_num = e)

Here we have used the type package to construct this domain, with undef_num being the undefined
clement. HOL returns the primitive recursion theorem for this compound type. A very useful feature
of the type package is that it can prove a number of theorems about new types automatically. We have
an induction theorem:

#let Number_Induct = prove_inauction_thm Number Axicm;;
Number_I[nduct = {- !P. (!n. P{number n)) /\ P undef_num ==> (!N. P N}

We also have theorems which state that the constructor functions are one-to-one and distinct, and a
theorem which permits case analysis:

¥save_thm {'Number_one_one‘,
prove_constructors_one_one Number_Axiom);;
= 'n n’, (number n = number n’) = (n = n’)

save_thm (‘Number_distinct®,
prove_constructors _distinct Number Axiom);;

34




p

#oi

oo,

ERL-0600-RR

= o Tirunker no= undef_num)

Zave_thw L Humber_cages’,
prove_ras2s_thm Number_Induet);;
i- M, {fn. N o= rnumber n) \/ (N = undef_num}

The tunctions is_number and is_undefined act as discriminators, while get_num retrieves the
number trom a proper element of the domain.

3

t IS_NUMBER_DEF = new_recursive_definition falze Humber
S_NUMBER_DEF'
(ig nueber number n) = T) /\
tiz_number undef_num = F) *;;
Is_ JU:EER DEF = _
I- {in. iz_number (number n} = T} /\ (is_number undef num = F)

%1
v
-~

_NDEFINED_DEF= new_recursive_definition false Number_Axiom
IS_'\DE?IHHD DEF'

*(iz_undefinad inumber n) = F) /\

tie_uraletfined undef_num = T) "5

= rew_recursive_definition false lumber_axiosm

GET_NUM_DEF = !- {!n., get_num{number n) = n} /\ iget_num undef_num =

The store also needs to be lifted; its deﬁmuon in HOL is as follows:

#.2f Store Axizm = lefine_type 'Store’

"Store = store {(Identifier->Number) ! undef_stsre;;
stere_Axidn = ] o
(- tf @ ¥ fn. {!'f’. fn{stora £’} = £ £') /\ (fn undef_store = 2)

Once again, we have standard theorems for this type:

4let Store_Induct = praove_induction_thm Store_Axiom;:
store_Induct = .
t- IPL (YE', Plstore £‘)) /\ P undef_store ==> (!S’'. P 3')
#leot Store_one_one =

zave_thm {'Store_one_sne’,

prova_sonstructars_sne_sne Store Axiom) ;;

' €', (store f' = store £’} = (£’ = £'*)

e,

Lore_sn2_one = - |
1 o] dx-cxn =
:hm ‘Store diotinct'

prove_son ;truccors ~distinct Ctore_Axiom);
store_distinece = (- 1€, “(gtore £’ undat_stcre)
let Store_casges =

save_thim (’Store_cases’,

prove_cases_thm Store_Induct);;
Store_cases = |- 18", (?f'.. 8§’ a store £') \/ (S’ = undef_store)

It is straightforward now to define the operations newstore, access and update. Note that the
latter two (strict) functiony are defined using now recursive_definition to specify their action
on every pus\ible pattern,

35




ERL-0600-RR

#.et NEWSTORE DEF = new_definition (‘NEWSTORE_DEF:‘,
"{rewstore:Stcre) = store (\i.undef num)");;
NEWSTORE _DEF = '- newstore = store(\l. undef_num)

#let ACCESS_DEF = rew_recursive definition false Store_Axiom
‘ACCESS_DEF®
"(access L (store s) = s i) /\
i

(access undef_store = undef num)“;;
ACCESS _DEF =
‘- (!i s. access i(store s) = s i) /\
(!i. access i undef store = undef num)

tlet UPDATE DEF = new_recursive definition false Store_ Axiom
‘UPDATE_DEF®
"({update 1 v {(store m) = store {(\J.{(3=1) => v I m ¥ /\
(update i1 v undef store = undef_store)";;

UPDATE DEF
- (i v m. update i v{store m}) = store(\j. ((j = 1) => v I m 3))) /\
(11 v. update i v undef_store = undef store)

I

This completes the HOL formalisation of the semantic algebras for IMP1.

§.2.2 Syntax

The syntax for IMP1 is neatly captured using HOL’s type package. Below we give the syntax for
expressions, with the usual auxiliary theorems. The HOL responses are rather long, so they are omitted.

Note that we are using an abstract syntax in which, say, Plus e; e; is used to render the original e,
+ €2 in the concrete syntax. This is necessary because the type package requires constructors to be of
this form. It does have the advantage of giving the language phrases a uniform appearance. From one
point of view, only the abstract syntax of the language matters; however, the big disadvantage is that
programs written using it can quickly become unreadable, and are also difficult to write because of the
morass of brackets. Clearly a parser (from concrete to abstract syntax) is needed so that programs can
be easily written. This is easily done using the Unix tools yacc and lex.

For boolean expressions and commands we have, similarly:

_et 3Zxpression_Axiom = cefire —ype ‘BExpression®
‘8Expression =
True |
False |
Equals Expression Expression |
Not BExpression';;

iet BExpression_Induct = prove_induction_thm BExpression_Axiom;;

save_thm (‘'BExpression_one_one®,
prove_constructors_one_cne BExpression_Axiom);;

save_thm (‘'BExpression_distinct®,
prove_constructors_distinct BExpression_Axiom);;

save_thm (‘BExpression_cases®',
prove_cases_thm BExpression_Induct);;




ERL-0600-RR

P
¥

b

sneand_Axiom = define_type ‘Zommand’
Chownand o= Ukip )

Val Identifier Expression |

If BExpression Command Command )
While BExpression Command |

Seq Command Command |

Uiverge’ ;;

-
t

et Tomimared Induct = oprove_indurnion_thin Command_Axiom:
sasee_rthm ' Comnand_one_on2’,
nrove_lonstructors_one_one Command_Axiom)

save_thi (Comsand_distinct’,
praove_zonstructors_distinet Tommand_Axiom)
sava_thin

{
prove_cas

Coummand_cases’,
23_thm Command_Induect);;

It will be convenient to allow a list of commands (this is a form of syntactic sugar):

let SELL_DEF = new_list_rec_definition ('SEQL_DEF’,
"y Seqgl [ o= Skip) SN
(Sl (CONS command sequence) =
Saqg ocmunand (S=gl sequence)) )

=)

3]

t— "1}

-

()

£Li

.

oz Skipy SN
nmand s=guence.

41 0ONS sompand sequence) = Seq command({Seql sequencs:

.
v

1

'

e

To complete the syntactic description, we have

arew mype_sbbrev (O Programt, < Command”)

5.2.3 Semantic Equations

Now we are ready to capture the semantics of IMP1 in HOL. To make things as simple as possible,
we shall make use of the fixed-point combinator in order to express the semantics of while loops. The
fixed-point property is added as an axiom to the theory (this is reminiscent of LCF, where fixed-points
and partial orderings are part of the logic — not proved using some mathematical model). Clearly, this
is a short-cut, and quite an unsound thing to do®. We muist promise only to use appropriate functions f
for which domnain theory guarantees us that FIX tis well-defined!

dnew_sonstant (CFINY, YrivenTyesttygy

slot FIX_EQ = new_axXiom (FIN_EQ’, "!f:v=»* FIX € = £ (FIX £)":1;:
]

FIX_EQ = (- £, FIX £ = £(FIX ©)

The semantic equations for expressions are given in terms of the valuation function EXPR, which is
naturally detined using new_recursive_definition:

4 Tt would be sounder to impont results from & HOL theory of domains. Such a theory has been constructed by Albert Camillerd,
but will not be used in this paper.

37

TR

<
]

-



—_— -~

ERL-0600-RR

#let EXPR_DEF = new_recursive_definition false Expression_Axiom
‘EXPR_DEF®
"(EXPR (Const v) s = ({(s = undef_store) => undef_num | v)) /\
(EXPR (Var i) s = access 1 s) /\
(EXPR (Plus el e2) s =
(is_number (EXPR el s) /\ is_rumber (EXPR e2 s))

=> nurzer (get_num (EXPR el s) + get_num (EXPR e2 s)) | undef_num)";;
ZXPR_DEF =
- (iv s, ZXPR(Const v)s = ((s = undef store) => undef num | v)}) /\
(i s. EXPR(Var i)s = access 1 s) /\
(lel e2 s,

ZIXPR(Plus el e2)s =

({is_number (EXPR el s) /\ is_number (EXPR e2 s)) =>
number { {(get_num(EXPR el s)) + (get_num(EXPR e2 s))) !
undef num))

For boolean expressions we have

#.et BOOL_zZXPR DEF = new_recursive definition false BExpression Axiom
‘300L_EZXPR_DEF!
"(3C0L_ZXPR True s = T) /\
(BOCL_EXPR False s = F) /\
(BCOL_zXPR (Equals el e2) s = (EXPR el s = EXPR e2 s)) /\
(BCOL_EXPR (Not b) s = “(BOOL_EXPR b s))";;

XPR True s = T) /\

XPR False s = F) /\

BOOL_EXPR(Equals el e2)s = (EXPR el s = EXPR e2 s)) /\
s. BCOL_EXPR(Not b)s = "BOOL_EXPR b s)

The semantics of commands and programs is given by similar functions, after which we close the theory.

L]

t COMMAND DEF = rew_recursive_definition false Command_Axiom
*COMMAND_DEF
CCMMAND skip s = s) /\
CCMMAND (Val i e) s =

(s = undef_store) => undef_store | update i (EXPR e s) s) /\

(COMMAND (If b ¢l ¢c2) s =

(s = undef_store) => undef_store |
((BOOL_EXPR b s) => (COMMAND cl s) | (COMMAND c2 s))) /\
(CCMMAND (While b c) s=
FIX (\f t.(BOOL EXPR b t => £ (COMMAND c t) ! t}) s} /\

(COMMAND (Seq cl c2) s =

"y
(

(s = undef_store) => undef_store | COMMAND c2 (COMMAND cl s)} /\

(COMMAND Diverge s = undef_store)";:
ZCMMAND_DEF =
.= {!s. COMMAND Skip s = s) /\
(!i e s.
CCMMAND (Val i e)s
((s = undef_store) => undef store | update i1(EXPR e s})s)) /\
{(!b cl c2 s.
COMMAND(If b cl c2)s =
({s = undef_store) =>
undef_store |
(BOOL_EXPR b s => COMMAND cl s | COMMAND c2 s))) /\
(tb ¢ s.
COMMAND (While b c)s =
FIX(\f t. (BOOL_EXPR b t => f(COMMAND c t) | t))s) /\

38

e s iy e L e




R ERL-0600-RR

ridef_store) => undef_store | WMAND C2(CLMMAND =L 3395 /o
AND Diverge s = undef_store)

_OEF = new_definition (’PROGRAM_DEF’,

ip:Program) = \n.let s = (update ‘input’ n newstora;: in

= (COMMAND p s) in faccess ‘output’ s )*i;;

- s =
-t =

2t =’ = COMMAND p s in access ‘oukput’ s’)

update ‘input’ n newstore

clrseE_thesry (Vo

5.3 Reasoning about Programs in IMP1

5.3.1 Tactics

As with any user-constructed theory, we need a number of tactics which are appropriate for the kind of
problems we wish to solve. In the following STRING_RULE recursively searches terms and rewrites
slring expressions such as ‘a’ = ‘a’ as T (true) and ‘a’ = ‘b’ to F (false); STRING_TAC is
the corresponding tactic. Next we have rules and tactics for comparing and adding numbers, and for
comparing tunctions. Finally, we shall need two tactics which carry out case analysis on variables of
type Store and Command.

et STEING_TAC = CONV_TAC (DEPTH_CONV string_EQ_CONV);;
L= STRIMN3_RULE = TONV_RULE (DEPTH_CONV string_EQ_CONV);:
L=c ADD_TAC = CONV_TAC {ONCE_DEPTH_CONV ADD_COMV) : ;

L=: ADD_RULE = CONV_RULE (ONCE_DEPTH_CONV ADD_CONV) ;;
et mum_EQ_TAC T = c-:»Nv_TAc L(ONCE_DEPTH_CONV num_EQ_CONV) ; ;
tet roum_ESQ_RULE = CONV_RULE (ONCE_DEPTH_CONV num_EQ_fONV)
i-z FUN_EQ_TAC = CONV_TAC (DEPTH_CONV FUN_EQ_CCNV) ;

L=t FUN_EZ_RULE IiVV R”LL {DEPTH_CONV FUN_EQ_CONV} ;;

1=t C:mmand_CASES_TAC % = DISJ_CASES_THEN
STRIP_ASSUME_TAC (SPEC t Command_cases) THEN
(ASM_REWRITE_TAC ([Command_distinct])

et Store CASES_TAC t = DISJ_CASES_THEN
STRIP_ASSUME_TAC (SPEC t Store_cases) THEN
(ASM_REWRITE_TAC (Store_distinct});;

Two auxiliary lemmas are needed ( the proofs are omitted):

LEMMAL = (-~ !'s. “(s = undef_store) => ~(update i v s = undef_store)
LEMMAZ = |- “(update i v newstore = undef_store)

Next we define SIMPLIFY_TAC, which repeatedly uses the definitions of the semantic operations, along
with some basic arithmetic, and simpliﬂes environments using BETA_TAC and STRING_TAC, If these

-

]

39

S LE

PN
g

i

15 i L g

:Z
é
g
#
3
4

B
L
f2
kB
ga
i
i

i



ERL-0600-RR

steps are making no progress, the goal is rewriten once, in case we need to unfold a term involving a
fixed-point combinator.

et

JEF

) ve D

S_
ET
-

= [IS_UNDEFINED_DEF;

ACCESS_DEF:
UPDATE_DEF;
NEWSTORE_BEF;
Number_one_one;
Number distinct;
Store_one_one;
Store_distinct;

ADD_CLAUSES;

LEMMA2];;

let SIMPLIFY TAC
REPEAT
(CHANGED TAC
(ASM_REWRITE_TAC DEFS THEN

3ETA_TAC THEN

STRING_TAC THEN

num_EQ TAC THEN

ADD_TAC ORELSE
(CNCE_REWRITE_TAC [FIX_EQI));;

NUMBER_DEF;
NUM _DEF;

Our final collection of tactics basically carry out rewriting with the semantic equations.

e

EXPR_TAC

300L_ZXPR_TAC

COMMAND_TAC

PRCGRAM_TAC

RUN_TAC

REWRITE_TAC {EXPR DEF] ;;
REWRITE_TAC [BOOL_EXPR _DEF];;:
REWRITE_TAC (COMMAND DEF; SEQL _DEF];:

REWRITE_TAC [LET_DEF; PROGRAM_DEF]
THEN BETA_TAC;:

PROGRAM_TAC THEN
COMMAND_TAC THEN
BOOL_EXPR_TAC THEN
EXPR_TAC; ;

The tactics we have defined may look rather ad hoc — and are to some extent — but are very simple in
structure and easy to comprehend. They illustrate the fact that powerful new tactics are easy (o construct
(using tacticals).

5.3.2 Example Proofs
We shall give a number of example proofs of correctness about programs in IMP1 using the above tactics.

First, some basic constants:

let
let
let
let
let

vl =
vl =
v2 =
vl =
V4 =

"number
"number
"number
“number
"number




ERL-0600~RR

S TP R SRR T T L I

[ 1 - W ~ "

M S RSP ) vl

. ~. oz VDot Telvg

s - U R Ceptiw o, ,

- ¥ - IR ¢ ‘o

RS . bt pm ,__
T I IRV

-

First we shall prove the example already given in Chapter 2

Ploutput := 1; if input = 0 then diverge else skip; output := 3] =
Ann=0=L103 -

The method of proof is simple: we rewrite successively with the semantic equations, and then perform
case analysis on n = 9. Finally, we simplify.

#len ot o= “Oenl (al foutput’ Tel:
If ‘Equals {(Yar 'input’) "e0)
Diverge
s =lse &
Shkip:
val ‘cutput’ Te3)f;;

Ttono= o ino= "v0) => undef_num | w3

73l Coutpun’ Constinumber 1))
I8 ZpialsiVar finput’) (Constinumber 7)) )Diverge Zkinm:

el oumroatt U nsoinumber 3)) )

o=
Losotcanber Y zs oundef_num 1 number 230
.
= Y

“vd* THEN

Ceal .

Cral Coutput ! onst inumber 1))

TifEquals¥ar ’input’ 1 Const{number 0)))Diverge Skip:
al ‘sutput’ (Constinumber 3))])

n = number ) => undef_num | number 3)

Pr—~ .mus subpraog:
goal proved

This is quite a simple program, but it immediately highlights some problems. Firstly, it is very slow
(on a Sun Sparestation 1+, this proof took about 7 minutes, and generated more than 46,000 primitive
inferences). Secondly, if the proof is done interactively, the intermediate goals are horribly long (taking
five or more screens to display). This {s because there is as yet no straightforward facility for abbreviating
terms in HOL.

Our second example shows the untolding of a while loop (the proof takes about 15 minutes):

Ploutput = 0; while(not(input = 1)) input = input + 1; output = output + 1;J0 =1




ERL-0600-RR

g "PROGRAM
{Seql {Val ‘output‘® "=0;
While (Not (t,.dls (Var ‘input‘') “el))
(Seql (Val ‘input® (Plus (Var ‘input‘') “el);
Val ‘output' (Plus (Var ‘output') “el)]) 1)
"v0 = Twvlw;;
e (RUN_TAC THEN
SIMPLIFY_TAC THEN
RUN_TAC THEN
SIMPLIFY_TAC);:
CK..
goal proved
|- PRCGRAM
(Seql
[Val ‘output ‘*{(Const{number 0));
While
{Not (Equals(Var ‘input') (Const (number 1))))
(Seql
{val ‘input‘(Plus{Var ‘irput’) (Const(number 1)))};
Val ‘output'(Plus(Var ‘cutput’) (Const{number 1)))]) 1)
(number 2) =
number I

Previous subproof:
goali proved

Several examples of equivalence have also been proved using HOL, including the following:

€1 +eaxer+€
c; skipxc¢

c: diverge = diverge

We shall give the proofs of just two equivalences:

if b then ¢; else ¢y & if(not b) then c; else ¢,

g "COMMAND (If b cl c2) = CCMMAND (I{ (Not b) c2 cl)";:

e (FUN_EQ_TAC THEN
GEN_TAC THEN
COMMAND _TAC THEN BOOL EXPR_TAC THEN
COND_CASES_TAC THEN COND_CASES_TAC THENL
[SIMPLIFY_TAC
SIMPLIFY_TAC;
TRIVIAL_TAC ;
REWRITE_TAC []]):;
OK..
goal proved
I- COMMAND(If b ¢l c2) = COMMAND(If(Not b)c2 cl)

Previous subproof:
goal proved

X=0;Y:=X+1laY:=1] X:=0

42




ERL-0600-RR

rOTIMMAND Zagl (Val it te0;
Val 'y’ {(Plus

[Val 'y’ “el; Val 'x’

(Var 'x")
SOMMAND ffeal

= TIRI_IU_TAT THEN
JEN_TAC THEN
SOMAND_TAC THEN

. THEN
sre Ck ES_TAC "S':Store" THEN
TAC THENM- .

;Q_TAP mHuV

BETA_”AC THEN

SEN_TAC THEN

- IUND_CAZES_TAC THEN CCND_CASES_TAC) THEN
SIMPLIFY_TAC THEN
REWRITE_ASL_WITH_ASL_TAC [l) THEN

VCHANG M_TAC 1 STRING_RULE) THEN

3 Tz

=3 r-l

_TAC (1)

4
3
1]
S
w |

- DNMAND
Sl-.'f}l

Val k' (Constinumber 0))

Tal 'yt tPlusz(Var
SUMAND Dzegl{Val 'y . Constinumber 1)) ;Val
Previsus zubprool

G-l proved

e

"al)l]) =
"e0]) "

'.')'Const(number P o=

X (Constinumbar 051

43

BRCR




ERL-0600-RR




T S

Y

ERL-0600-RR

Chapter 6 ISABELLE

In this chapter. we shall discuss the theorem prover Isabelle, which has been under development by Larry
Paulson at the University ot Cambridge since 1986. Isabelle is also a descendant of the LCF system.
However, it is based on quite ditferent basic concepts, and has a number of features which make it
ditferent from HOL. As in HOL, formulae are manipulated by the language ML (in this case Standard
ML), and the system provides for backwards proof by means of tactics and tacticals.

The main source for this chapter is the Isabelle manual [25). The theory underlying Isabelle is discussed
in [26, 27}

6.1 Basic Concepts

Isabelle 1s a generic theorem prover: the logic of discourse is not fixed, but can be chosen from a number
of built-in logics provided with the system, or even defined ab initio (although this is very ditficult).
Isabelle has an expressive meta-logic, in which the inference rules and axioms of object logics can be
formulated. Isabelle comes with a number of object logics, including First Order Logic (FOL), Higher
Order Logic (HOL) and Constructive Type Theory (CTT).

Notwe: when n.cessary to avoid contusion we use "HOL” to refer to Mike Gordon's HOL system, and
Isabelle-HOL to refer to Higher Order Logic as captured as an object logic within Isabelle.

6.1.1 [sabelle’s Meta-Logic

The meta-logic used in [sabelle is intuitionistic higher order logic with universal quantification and
equality. [t was chosen as being the minimal logic capable of formulating the axioms and rules of
arbitrary object logics.

The table below shows the constructs used in the meta-logic, and their keyboard equivalents

Table 8 Isabelle Meta-Logic Constructs

Notation Keyboard Description

a=b a== meta-equality
0=y 0o==>¥ meta-implication
o 2.0 = w) o1, ...l ==> ¥ nested implication
AX.¢ x.¢ meta-quantification
AX.¢ Tox.¢ meta-abstraction
7P P scheme variables

Pure [sabelle contains the material common to all logics: theories, rules, tactics, subgoal commands,
types and terms.

45

pey Bl

H
3
4
q




ERL-0600-RR

6.1.2 Object Logics

An object logic is an ML object of type theory. The axioms and rules are of type thm. Various symbols
are used in object logics; some of their keyboard equivalents are given below:

Table 9 Object Logic Symbols

Notation Keyboard Description

P2>Q P-->Q Implication

P—-Q P<->Q Bi-implication

Yx.P ALL x.P Universal quantification
Ix.P EX x.P Existential quantification
-P ~P Negation

Isabelle emphasises the natural style of reasoning. To illustrate this, we give the natural deduction system
for inwitionistic first order logic. Each logical connective may have elimination or introduction rules.
For example the rule for implication elimination (denoted by D E) is just the well-known law of modus
ponens in first-order logic.

Table 10 Intuitionistic First Order Logic

Introduction (I) Elimination (E)
Conjunction
A B A&B A&B
A&B A B
Disjunction
A B AVB [A]C [B]C
AVB AvVB C
Implication
(A] B ADB A
ADB B
Contradiction
&
A




~willaa,

L2

ERL-0600-RR
Table 10 (Continued) Intuitionistic First Order Logic
Universal
Quantifier
A Vx. A
Vx.A Aft/x]
Existential
Quantifier
Aft/x] Ix.A [A] B
Ix.A B

6.1.3 Inference Rules

Isabelle works with inference rules expressed in a natural deduction style. We shall show how inference
rules are “‘packaged” within Isabelle. Consider the rule &I. In the meta-logic, this is expressed as
follows:

AAB.A = (B = A&B)

which eventually is rendered into the following keyboard characters:
{A; Bj] ==> A&B

(Actually, the variables involved are treated internally as scheme variables ?A and 7B, which may be
instantiated during unification).

6.1.4 Subgoal Package

As with HOL, Isabelle carries out goal-directed proofs, and contains a subgoal package to assist with
interactive proof. A proof state consists of a goul, along with a number of subgoals whose validity
establishes that of the goal. The subgoals can be thought of as proof obligations. Diagrammaticaily we
display a proof state as follows:
goal
subgoal;

subgoals

When we set a goal in Isabelle we have as our initial proof state

goal

goal

in which there is a single subgoal identical with the original goal. When we reach a proof state with
no subgoals, we clearly have a proof of the original goal. As in HOL, ractics are available to transform
proot states to new proof states, using the ML function by. However, there is a crucial difference. In
LCF and HOL, a tactic either gives a unique new proof state, or fails. But in Isabelle a tactic can return
more than one, and possibly even an infinite number, of new proof states (how this can happen we shall
see shortly). If T is a tactic, and ¢ a proof state, then the result T¢ of applying T to ¢ is written as a
list to capture the various alternatives:

Té =[] (failure)
Té = [¢] (unique result)
Té = (¢1,¥2,¥a,..] (multiple outcomes)

47

I




ERL-0600-RR

The possibility that a tactic can have multiple outcomes has a profound effect on the way one thinks
about theorem proving in Isabelle. The user tends to think on a grander scale: a proof staie is usually
presented with all of its subgoals shown (contrast this with HOL, where one only sees one subgoal at a
time), and a number of proof strategies act on a number of subgoals, automatically instantiating variables
and renumbering the subgoals as appropriate.

6.1.5 Tactics

Pure Isabelle has a number of basic tactics (object logics come with a number of special purpose tactics).
We shall discuss the most important of these.

Recall that Isabelle emphasises the natural style of reasoning; comespondingly, most proof steps are
carried out backwards reasoning using inference rules of the theory. This is called resolution. Isabelle
provides a single ML function to do this (again, this is an improvement over HOL, where a new tactic
written in ML must be provided for each new inference rule).

The basic resolution tactic is resolve_tac thms i. This tactic tries each theorem (object logic rule)
in the list thms against subgoal i of the proof state. For a given rule, say

I Bi,....Bk ] ==>B

resolution can form the next state by unifying the conclusion with the subgoal, replacing it by the
instantiated premises. Thus if the subgoal is

“ Al An ” ==> A
and A can unify with B, resolution will produce the following new subgoals:

(1A An ) ==>B,

H A—l, A_n ” ==> B—k

in which the overbars denote the resulting formulae after instantiations have been made. Subgoals
frequently change their appearance as instantiations propagate throughout the proof tree — something
which users of HOL will find strange at first

Note that unification in Isabelle is full higher-order unification (ie solving equations in the typed
A—calculus with respect to a, 3 and n conversion). There can be multiple outcomes, arising from
the fact that there can be more than one higher-order unifier. Multiple outcomes can also arise if more
than one theorem can be resolved with the goal. The tactic will fail if none of the rules can be unified.

Another fundamental tactic is assume_tac i, which tries to solve subgoal i by assumption (again,
this may involve unification).

Reasoning about definitions and deriving new rules is facilitated by a number of rewriting tactics. For
example, rewrite_goals_tac thms uses the given definitional theorems for rewriting subgoals.
Rewriting is not as prominent in Isabelle as it is in HOL. In fact, it is frowned upon: if we definc a
new construct in a theory, the preferred sirategy is to derive immediately elimination and introduction
inference rules for the construct, and thereafter (0 use these new rules in resolution steps. Rewriting with
the original definition can introduce unwanted complexity to a proof.

6.1.6 A Simpie Proof

To illustrate theorem proving in Isabelle, consider a simple proof, namely the obvious fact in first-order
logic that:

P&Q D (R D P&R)

A step-by-step proof is given below. We first set the goal, and then resolve twice with the rule D 1.
The conjunction is then attacked by resolving with &1. This gives two subgoals, the second of which

48



2
- | ERL-0600-RR !
iy solved by assumption, and the first by &EL. Using assumption again solves the goal: the result is a
theorem which [sabelle echoes with scheme variables,
= J7ai Int_Rule.thy "P&Q --» (R ~-> P&R}“;
Level :
. P& 2 --R --» P &R '
.F % Qg «=» R --> P & R;
- by {re2solve_tac [imp_intr] 1i};
Letvel 1
F oW 2 === R == P & R :
S0P % D ==» R o--» P &R
-ty ireselve_tag limpaintr) 1)
Leyvel . DR - ’
P % Q --» R --» P R
1.0 P &Q; R1) ==> P & R
- by iresolve_tac {soni_intr] 1);
Lavel 3 .
P& -->R -->F &R
.V PR R VY 2=> P
2. Poxopy RO ==x» R
- by rassume_tac J g
Laval 4
PRy o--» F --» P &R
‘_’i?(.:,z'lj::>P
- by rezolve_tac T2onduncel] 1)
a2l ‘:
® 4oy -~» R --> P & R
oo B R D B ol o==x P o 73
-y Lasmsume_tar L
Ll m
N e A e A IR
we subgoals!
pronoiresule ()
TP ok 7D -<> PR -~> TP i TR
6.1.7 Tacticals
Single-step proofs such as the one above are much too laborious. As with LCF and HOL, racticals are :
available to build new tactics from basic tactics. A selection of basic tacticals is as follows:
23
]
tacl THEN tac2 2

tacl ORELSE tac2
T REPEAT tac 5
DEPTHFIRST pred tac 4
However, beCause tactics can have mulﬁBle (;ﬁtcomeé. these tacticals are more high-powered than their ;
counterparts in LCF and HOL, They work by combining sequences of proof states. §
1 The tactic tacl THEN tac2, applied to the proof state ¢, first computes tacl(¢), giving some
list (1, ¥a, ...} of proof states, and then applies tac2 to each of these states, giving as output the
concatenation of the sequences tac2 (i), ‘tac2(yz), ..., _
49 &

1
}
H
3



ERL-0600-RR

The tactic tacl ORELSE tac?2 is a form of choice: it first computes tacl (@) . If this is non-empty,
it is returned as the result; otherwise, tac2 (4) is retumed.

The tactic REPEAT tac first computes tac (¢). If this is non-empty, then the tactics recursively
applies itself o each element, concatenating the results. Otherwise, it returns (¢].

The tactic DEPTH_FIRST pred tac performs a depth-first search for a proof-state satisfying pred.
Usually pred is taken to be “no subgoals”, so that the tactic will search for a proof of the original goal.

To show the power of tacticals, we do our example proof again using a single tactic:

P&Q D (R D P&R)

~ goal Int_Rule.thy "P&Q --> (R --> P&R)";
Level Q
P&Q-->8% -=->P &R

1. P& Q ~->R =-=->P & R;

-~ by (REPEAT
(assume_zac 1 ORELSE
resolve_tac [imp_intr, conj_intr, conjunctl] 1));

Level 1
2 & Q -~>R -->P &R

No sukgoals!

Even more dramatic is the built-in tactic fast_tac which is powerful enough to solve a large class
of basic goals in logic:

- goal Int_Rule.thy "Pa&Q --> (R --> P&R)";
_evel 0O
2 5 3 -->R -->P? 5 R

1.2 & Qg -->R -->P & R;

- by (fast_tac [! 1);

Level i
D g Q-->R -=->P &R
No subgoals!

6.1.8 Comments

We omit here a discussion of how new object logics are constructed in Isabelle: this is by far the most
difficult aspect of the system. In the next chapter, we shall show how simple extension of an existing
theory (such as [sabelle-HOL) can provide us with a program verification environment.

50 R



FEN

ERL-0600-RR

Chapter 7 PROGRAM VERIFICATION IN ISABELLE

7.1 Introduction
In this chapter we shall discuss some experiments in reasoning about programs using Isabelie.

We showed in Chapter S that HOL can be used to reason about denotational semantics definitions. In
principle, we could use Isabelle-HOL (i.e., Isabelle’s object logic HOL) in the same way: definitions
can be set up, and proot steps devised exactly as was done for the HOL system. Rewriting would take
care af a lot of the proot steps. The advantage of using Isabelle in this way would be the possibility of
answer extraction (using scheme variables). The disadvantages are that Isabelle is better at using derived
interence rules than rewriting with definitions, and that the built-in theories provided with Isabelle are
not as extensive as those in the HOL system.

We also claimed in Chapter 5 that HOL was not as well-suited to the study of operational semantics.
In contrast, Isabelle looks ideal for this purpose, because it stresses the natural deduction style, and
works well with derived inference rules. If we regard our operational semantics as the rules for a logic,
then we can quickly construct powerful proof procedures in Isabelle which allow reasoning about quite
complicated programs.

For the above reasons, we shall concentrate on the implementation of operational semantics in Isabelle,
using as working examples the languages FUNC1, FUNC2 and FUNC3 presented in Chapter 2. Our
aim is to automate the following:

1. Evaluation ot phrases, tor example
Erletx=Tinx-3=2"n
2. Proofs of correctness, for example: the swap routine
{{x,a)(y.a)}JF letz=x;x=y; y=zinx=>b
3. Reasoning about equivalence of program phrases, for example

letx=linx+2=lety=2iny+1

7.2 The Language FUNC1

How can we implement the operational semantics for FUNC1? We have remarked before that it is
ditficult to set up new object logics in Isabelle from scratch. The easiest way to proceed is (0 extend
an existing object logic. For our purposes, we shall extend the theory arith (which is an extension of
HOL) to a new theory called f1_thy. It is important to note that we make no use of the features of HOL.
except for the fact that it is a typed logic. The semantic domains such as identifiers and values. and the
various kinds of language phrase (here expressions and declarations), are then regarded as HOL types.
We could equally well have pictured them as sets, but this makes things more complicated.

We shall not discuss the Isabelle code in detail, but concentrate on the essentials (as an example, the
complete source code for the larger language FUNC3 is given in the Appendix).

7.2.1 Syntax and Semantics

The first thing to be done is to capture the syntax of the language. We do this by means of a number
of inference rules:

val fl_thy =
2xtend_theory arith_%hy "fl*

51

PSR QP

[y

Y R L 3z



ERL-0600-RR

{ ("Const_type",
"n : nat ==> Censt (n) : expr"),
("Var_type",
"x : ide ==> Var (x) : expr"),

("Plus_type",
"[| el : expr; e2 : expr ] ==>
Plus (el,e2) : expr"),

("Let _type",
"[| d : decl; e : expr |] ==>

Let (d,e) : expr"™),
("Val_type",

"[] x : ide; e : expr |] ==>

Val (x,e) : decl™),
("Comp_type",

"] dl : decl; d2 : decl ] ==>

Comp (dl, d2) : decl™),
("empty_type",

"empty : env"),
{("bind_type”,

"{| E : env; x @ ide; v : value ] ==>
bind (x, v, E} : env")

("lookupl_rule”,
"y E ¢ env; X 1 ide; n : nat |} ==>

lookup (x, bind (x, n, E}, nm)" ),
("lookup2_rule”,
“i{ £ : env; X i ide; y : ide; v : value ;
w : value; “({y = x : ide); lookup (x, E, n) I]
==> lookup (x, btind (y, w, E}, n)" )
("combine_empty",

"E : env ==> combine (E, empty, E)"),
("combine_bind",
“{1 Z1 : env; E2 : env; E3 : env; x : ide; a : value;\
\ ccmbine (E1,22,E3) ] ==> \
\ combine (El, pind(x,a,£2), bind (x,a,E3)})}"),

These rules are very simple. For example, Plus_type expresses the fact that if e; and e, are
expressions, then Plus (e;, e;) is also an expression. The constructor Plus cofresponds to the
symbol “+” in our language. Similar rules will hold for every other program phrase.

Environments need a little thought. We could implement an environment as any one of the following:

1. as a primitive type, augmented by axioms for a constructor function;
2. as a lambda-expression in HOL; or
3. as a list of pairs of type (expr,value)

The first approach was chosen because it reduces the dependency on the host object logic HOL to a
minimum, and because it makes us assert as axioms exactly those inference rules needed to reason about
environments. These rules are the last six given above. They assert the existence of a special environment
called empty and a constructor function called bind. The lookup rules tell us how to look up values in
the environment. The last two rules tell us all we need to know about combining environments, where
combine(E,E’ E") is a predicate which holds if E"=EE’.

The next step is to write down the rules of the operational semantics. In writing these rules, we render
EFe=vasseqEev),and Et d = E’ as seq’(E,dE"). Here seq is read as “sequent”. We give just
the first three rules:

{"Const_rule"”,
“(| E : env; n : nat (] ==>
seq (E, Const (n), n)" ),

52

Pt P e



»e

&

ERL-0600-RR

Once this has been done, we have the following lists of inference rules summarising the syntax and
semantics of the language:

Table 11 Inference Rules: Syntax and Semantics

Name Description
type _tules inference rules capturing the symax
lookup_rules inference rules for bind
combine_rules inference rules for combine
expr_rules inference rules for expressions
decl_rules inference rules for declarations
lang_rules expr_rules @ decl_rules
COMMOn_asms trivial assumptions taken for granted, such as: x:

ide, y : ide

m: nat, n: nat

€: expr

E: env

7.2.2  Proof Procedures

The construction of tactics to reason about programs in FUNCI1 is quite straightforward. The basic
stritegy is to keep resolving on sequents (and attempting to reduce complex environments) until none
remain, and then to apply the trivial type rules and common assumptions to finish off the proof. The
only thing we need to be careful about is not to resolve any sequent of the form seq (E, ?e, v).in
which there is a scheme variable holding the place of an expression. Let us call such a sequent unsafe.
It we were to resolve this sequent using the language rules, we would get multiple outcomes. and the
proof etfort will be wasted following wrong leads. Qur method of getting over this is to define

FIRSTONLY : (term— > bool)—- > (int— > tactic)— > tactic

to be a function which chooses the first subgoal for which a given selector function is true, and applies the
given tactic, tailing otherwise. Using this function, along with the selector function is_safe_sequent,
which is true when the sequent is safe and false if not, we can define step_tac, which is the primitive
prout step to remove language sequents. Our all-purpose tactic is f1_tac.
VAl reduse [
loorup_tac ORELSE cowbine_tag;

Al snep_tacs =

FIRSTCNLY is_safe_sequent (resolve_tac lang_rules);
val lang_tac =

REPEAT1 (step_tac THEN TRY (REPEAT1 reduce_tac));

53

o

i e,

e



ERL-0600-RR

val simp_tac =
REPEAT (ares_tac simp_rules 1);

val £l tac = lang_tac THEN simp_tac;

As an example, consider the proof of:
EFlety=minletx=yinlety=ninx=m
We set the goal with a scheme variable in place of the answer, and use our tactic f1_tac:

goal fl_thy
"seq (E, Let(Val(y,Const(const(m)}),
Let (Val (x,Var(y)),
Let (Val (y,Const {(const (n))),Var(x)))}), 2a)";
by fl tac;

Level 1
seq(E, et (Val(y,Const (const(m))),
Let(Val(x,Varl(y)),
Let (Val (y,Const{const(n))),Vari(x)))),
val {(const {(m)))
No subgoals!

Notice that Isabelle has obligingly given us the result of the evaluation, as well as proving the goal!

Our second exampie is the swap routine using a temporary variable:
{(x,a),(y,b)}Fletz=x; x=y; y=zinx=>b

jcal fl_thy
"seq (oind (x,a,bind(y,b,empty)),
et (Comp (Val (z, Var(x)),
Comp(Val({x, Var(y)),
Vally, Var(z)))), Var(x)), 2a)";
oy fl_tac:

_evel 1
seq(bind(x,a,bind(y,b,empty)),
Let (Comp(Val(z,Var(x)),Comp(Val (x,Var(y)),
Yal(y,Var(z)))),Vari(x)),b)
No subgoals!

7.3 The Language FUNC2

Now we shall consider how the semantics of FUNC2 may be implemented in Isabeile. The main hurdle
10 overcome is that a program phrase can have more than one rule associated with it. For example, recall
from Chapter 2 that there are two rules for conditional expressions:

EF ey = true ElFe =>v
EFifegthene  elseey > v

E I eq => false Etes=v
Erifegthene elsee; => v

(which will be called I1£1_rule and I£2_rule). Consider the following example:
{(x,a),(y,b)} I if false then x else y => b




ERL-0600-RR

Suppose we try to prove this starting with astep_tac:

- goal £f2_thy
a

‘zeq :bind 'x, 3, bind (y. b, 2mpty}i,
If(ConstZf),Varix),Vari{y)), b)*;
Leval 0
s=gibind(x,a,bind(y.b,empty)}, If(Conct (££),Var(x),Variy;: .o
Lo seq(bind(g,a,bind{y,b,2mpty) ), If({Const (L), Var(x),Variyi, o
val it = [] : thm list '
- 3 .

sec(bind(x, a,bind(y,b,empty) i, [f(Const (££),Var(x) ., Variy);. o)
1. bind(x,a,bind{y,.b,empty)) : 2nv

2. Const(Cff) : =xpr

Var(x) : =xpr

var({y) : expr
seqibind(x,a,bind{y.b,empty)) . .Const (£f£f),val(tt))
seq(bind;x,a,bggdjyib,empty)),Var(x),b)

val 4t = () @ unit o~

Ty U ks L2

Notice that the fifth subgoal is asserting that false evaluates to true — step_tac has chosen the wrong
rule (namely If1_ruie) to resolve on! We have gone down a “blind alley” in the proof.

e AR

PR AT



ERL-0600-RR

Initial Proof
j State

Ifl_rule Nule

[

|

Failure | No Subgoals |
I

] Failure

To solve this problem, it will not be enough to rearrange the order of the language rules used by the
resolution tactic, because there will always be examples for which the wrong rule is appliecd. What we
need to do is use backtracking search. The appropriate tactics are

[}




ERL-0600-RR

Vil Zt=p_tac = FIRSTOMLY is_csace_sequent (resolve_tac lang_rulas):
“al otang_tac = REPEATL (step_tac THEN TRY (REPEAT1 feduce_tac)) THEN
IT_APPLICABLE is_sequent;

SRl = REPEAT ‘fares_tac simp_rules 1);
=N = DEFTH_FIRST (has_fewer_prems 1)

{lang_tac THEN simp_tac):;

The rtactic £2_tac carries out a depth-fiest backtracking search, looking for a proof state with no
subgenls. We have modified Llang_tac so that it will fail if the repeated application of step_tac and
reduce_tac leaves behind any sequents. If we do not do this, simp_tac may give rise to infinite
outcomes, and the search will not terminate.

, bind :y, b, empty)!,
Y. Vartx),Varly)), bl*;

d{y,b,2rpty) ), IE1Const (£ £) ,Var(x) ,Var(y
2mpty) ), If{Const (££f),Var{x),var v

con,emptyl e IE{Const (££) ,Vari{x),Variy: . o

Our tactic is able to cope with the following well-known LISP example, in which x is used both as a

hound and free variable:

{(x.n)} F let (val z = AL Ax.£(f(x)));
val g = M.(f,x ) in (z2(g) m) = (m,n),n

- roal I2_thy
*z2q (bind {x, a, =mptyi, .
Let (Comp (Val :z, \
Fn o t, Fn {x, Appiy {(Var{f), Apply(Var(f) Varix)!i.1j.,
Yal (g, Fn £, Pr (Var(f), Var(x))}))i,.
Apply .Applyi{¥ar.z:, Var(g)), Ccnst(const{(m))}}. T
By (Z2_tach;

Leval 1
seqibind(x, 1, 20pty; .,
Let{Cxpi{Val{z,Fnii,Fnix,Apply (Var(£f),Apply(Var(f) Var(x;y) i,
Valig,fn(f,Pr(Var{f),Var(x}i))),
Apply (Apply(Var{z),Var(g}),Const(const (m})}),
pair(pair{val(const(m)),a),a})
o subgoals!
val it = () : unit

The proof took only 75 seconds, including a garbage collection, which compares extremely well with
the HOL system.

57

B TUESE N
oA

o N B i L
s o b e

HEEEAETN T P P RN

o KRR, Ml i i %

SR i

Sir




ERL-0600-RR

7.4 The Language FUNC3

The extension 10 FUNC3 is not difficult. We need to give function closures a fourth argument, as
described in Chapter 2. We also need to add inference rules for the unfolding operation on environments.
To control the search, it also becomes necessary to make tactics such as lookup_tac, combine_tac
and unfold_tac safer, in that they are forced to fail if the environment being examined contains 100
many scheme variables.

Isabelle correctly evaluates the resulting environment for the standard definition of the factorial function:
E F rec(val f = MAx.if(x = 0) then x » f(x ~ 1))

Work on this language is continuing, and we shall not give any other detailed examples here.

7.5 The Language IMP1

Implementing operational semantics for imperalive languages is just as straightforward. Earlier, we
described part of the operational semantics for the language IMPl. The language has been fully
implemented in Isabelle (with environments present as place-holders to allow for the eventual addition of
local scoping) and some non-trivial proofs carried out. A translator has also been built to allow programs
to be written in a simple syntax.

For example, consider the following program containing a while loop:
Etx:=0; while(x<=0)x:=x+1,M ="M
[sabelle proves this rather quickly, and extracts the answer (the resulting memory):

- goal il _thy
"seqg’ (E, Comp (Assign (x, Const (0)),
While (Less_equals (Var (x), Const (0)),
Assign (x, Plus (Var (x), Const {(Succ(0)))))), M, 2M) *;

seq’ (£,Comp (Assign(x,Const (0)),
While(Less_equals(Var(x),Const(0)},
Assigni{x,Plus(Var(x),Const (Succ(0)))))) M,
update (x,constant (0 #+ Succ(0)),update(x,constant (0),M)})
No sukcgoals!
val it = () : unit

Some arithmetic is required to proof programs such as these correct, and Isabelle has at the moment
only limited support for arithmetic. Despite this, | believe that Isabelle is a powerful and natural tool
for the study of operational semantics.

58




L

ERL-0600-RR

Chapter 8 DISCUSSION AND CONCLUSIONS

Our work has highlighted some of the advantages and disadvantages of using the automated theorem
provers HOL and Isabelle for the study of language semantics and program verification. We begin with
some specific comments on the HOL system.

8.1 Comments on HOL

8.1.1 Ease of Use

HOL is certainly a difficult system for a beginner to learn. The large number of theorems available, as
well as the fine-grained nature of most of the inference rules and tactics, means that the new user must
invest considerable time and effort in before even simple proots can be attempted. The first taste of
HOL can be quite frustrating, especiaily without a HOL “expert” to be a guide. There are a number of
program verification/theorem proving environments — such as mEVES , Gypsy and MALPAS — which
are simpler. and whose proof commands may even be more powerful. However, these systems are not
tflexible. Once the user gains familiarity with HOL, its expressive power and flexibility becomes more
and more apparent. [ believe that HOL is an invaluable tool —not just as a proof assistant, but as an
aid to the clean formulation of mathematical theories.

8.1.2 Expressiveness

Higher order logic is a large and powerful logic: because it is higher order and polymorphic, it is expressive
enough to be able to capture the most sophisticated mathematical theories. It allows denotational semantics
definitions to be expressed in a natural and succinct way. Also, the soundness and level of mathematical
rigour of the HOL systemt give us a high level of confidence in the proofs which i generates.

Reasoning about programs requires some fairly subtle mathematical techniques. The built-in inference
rules and tactics of HOL are of a fine-grained nature, providing the user with a flexibility not available in
many other automated reasoning systems. If a theorem or goal does not exactly fit the form required by
a built-in tactic or inference rule. it is possible to carry out quite delicate manipulation until the required
form is achieved.

8.1.3  Documentation

The new documemation which has appeared with the release of HOL88 makes it possible for a user
working alone to make a lot of headway in understanding the system, and how to construct proofs. The
manuals [22] are well-written and informative; clearly much care has gone into their production. The
document called DESCRIPTION is a good overview. The TUTORIAL has excellent sections on parity
checking, protocol veritication and modular arithmetic, but I think could benefit from having many more
short examples. [ believe that the case study by Jetf Joyce on Microprocessor Systems is a fine piece of
waork, but seems out of place in a tutorial. There is rather too much emphasis on hardware verification
(though this is natural, given the interest of the Cambridge group in this area). The REFERENCE manual
is still incomplete, but witl be greatly improved in the near future. It would be useful to have the tactics
listed by type (as well as alphabetically).

8.1.4 Tactics

The HOL system's expressiveness is especiaily apparent in the way that new tactics can be programmed,
cither in the meta-language ML or by the use of tacticals. These tactics can be specially tailored for the
problem domain being studied. Our aim in verifying programs was to derive tactics which capture proof
procedures as general as possible, without sacrificing efficiency or clarity.

There are by now a large number of useful new tactics (especially in the group theory library).

On the debit side, there are a number of points to make. Most seriously, the treatment of tactics does
not compare well with [sabelle. In HOL, a tactic either fails, or gives a single outcome, in contrast with

59




ERL-0600-RR

Isabelle, where multiple outcomes are common. Backtracking is not possible within HOL. There is also
no mechanism for carrying out answer extraction (which is handled in Isabelle by scheme variables).
This is a pity; answer extraction is very useful for reasoning about programs.

Much proof hacking is involved with manipulating a large number of assumptions, and carrying out such
operations as rewriting them against each other or with given theorems. The built-in tactics such as
POP_ASSUM and related tactics are not easy to work with, while the tactic RES_TAC seems to be quite
limited in its power to solve goals if the assumptions are not in a very specific form. There is clearly a
need for a range of fine_grained tactics for rewriting assumptions, and manipulating them in general. An
experimental set of such tactics has been developed by Katherine Eastaughffe at DSTO. Although it is
not difficult to write such tactics, it is time-consuming; such tactics should already be part of the system.

I think that HOL will only become really useful to a large number of people if the collection of tactics
is completely overhauled. Presently there is a bewildering variety of tactics, with all sorts of odd names,
some of which are high-powered useful tactics (such as REWRITE_TAC and its relatives), and others of
which are highly specific "proof hacking" tactics written to solve a particular problem but not of general
applicability. I think that it would be valuable to spell out some consistent naming conventions for tactics
which people should try to stick to (a kind of allowed syntax for names), such as the prefixes ONCE,
PURE eic. At the moment (10 1ake a trivial example) we have ASM_REWRITE_TAC and POP_ASSUM,
with different abbreviations used. Also, some older tactics will have been superseded by newer, more
useful ones, and they should be deleted.*

8.1.5 Proof Management

The subgoal package allows great flexibility in the way theorems are proved. HOL can be used
interactively (as a proof assistant) to develop proofs step by step. We can also use it as a proof checker by
providing HOL with a complete proof and seeing whether HOL produces the required theorem as output.

There are problems with HOL's proof management. Proofs do not always look very 'natural’. Medium-
sized to large-proofs can be quite laborious and time-consuming to construct, involving a good deal of
proof ’exploration’. Often, a vast number of cases must be considered, and one then has the choice of
defining a different tactic for each subgoal, or else using a single tactic as a blunt instrument on all the
subgoals. Using a single tactic can improve the readability of the proof, but can be quite inefficient —
some proofs can take several minutes, or even hours, of computation.

8.1.6 Instantiation of Types from Parent Theories

One of the most serious difficulties with HOL is that theories are inherited en bioc, and cannot be
instantiated to specific instances. Essentially, what is needed is a mechanism for the refinement of types.
For example: one might have a type (say ‘colour’) declared in a particular theory, and prove various
things about it at a general level. Suppose then that we have a descendant of this theory, in which we
want 1o instantiate this type to be (say) an enumerated type of the form {red, white, blue). Presently this
cannot be done in HOL, but it seems essential to have such a facility if HOL is to become really useful,
especially in reasoning about mathematical theories which depend on some higher level abstract theory
for many results. The theory of modular arithmetic, where group theory is used o prove facts about
abelian subgroup of the integers, is a case in point. It has been studied by Elsa Gunter in the TUTORIAL
[22). She avoids the problem by defining predicates such as GROUP, SUBGROUP and NORMAL for
arbitrary sets. Saying that a given set of integers is a subgroup, say, of the integers, amounts to saying
that this predicate holds for this set. However, this method can be cumbersome in practice. Gunter has
suggested an exiension to HOL[28] in which theories can be instantiated, but the suggested enhancements
are not widely accepted, and have not been implemented.

8.1.7 The Type Package

Tom Melham’s type package is extremely useful: has taken a lot of the drudgery out of working with
new compound data types in the style of ML recursive data types. However, the current package does
have some limitations:

¢ Version 1.12 of HOL sddresses some, but nct all, of thess criticiems.




#a

ERL-0600-RR

1. It does not allow the definition of mutually recursive data types®.
It does not allow the most general kind of recursive type (for exan:ple, one cannot define a
recursive domain of values V such as

V=B+(V—-V)

in which functions from V to itself are "first-class objects”, and can themselves be values.
(Of course, we would not expect it to be easy to define such a domain')

3. As for recursive tunctions, the only ones allowed are those which are recursive purely on one
of their arguments. This is quite restrictive: it does nol allow functions which are doubly
recursive, or functions like

gedxy = (x=y—x0 (x <y —gedxy—x0Oged x—yy))

where the tunction is recursive on Ix-yl.
4. Infix constructors are not allowed.

Clearly, formulating HOL theories which capture the formal semantics of programming languages will
be much easier it the type package could be extended to cope with the above constructs.®

8.2 Comments on Isabelle

Our comments on Isabelle will necessarily be brief, because many have already been touched upon. and
because most of the comments about the strengths of HOL apply equally well to Isabelle.

8.2.1 Euase of Use

[sabelle is much harder to learn than HOL, particularly because one must contend with a number of
ubject logics. Writing new logics from scratch is quite difficult to grasp. However, generally Isabelle is
a vleaner, more elegant and faster system than HOL (NB: new versions of HOL built on standard ML
should not sutter from this comparison).

8.2.2 Object Logics and Theories

[sabelle 15 fexible in allowing a number of object logics, unlike the HOL system. in which the logic
ts fixed. There 1y, too, more flexibility in the ability to use more than one theory in a single session.
Theories can be passed as arguments to various functions. Definitions can be overwritten in Isabelle
theories: in HOL, however, one must quit and start again.

Ixabelle’s version of higher order logic is more cumbersome to use than the version present in the HOL
system. Support for basic arithmetic is provided in Isabelle, but it is not as extensive as that in HOL.

Isabelle does not have anything equivalent to HOL's type definition package.

8.2.3 Libraries

Isabelle has as yet a modest collection of libraries, compared to those available in HOL. The main reason
15 that I[sabelle does not yet have a large enough user base.

8.2.4 Tactics

Isabelle has tull high-order unification (unlike HOL). Tactics can have more than one outcome. Back-
tracking and search are possible, and allow the construction of very powerful proof procedures. Scheme
variables permit answer extraction in proofs — this is very useful.

[sabelle’s meta-logic allows inference rules to be expressed and reasoning about them to be done in a
uniform manner. This is made easy by a single tactic which carries out resolution in the meta-logic.
However, in HOL, which has no meta-logic, one must write a new tactic for each new inference rule.

A package written by a group at Aarhus does allow for mutually recursive types.
The type package lias been stightly improved in Versioa 1.12 of HOL.

61

:




- arsnd)

FRL-0600-RR

8.3 Suggestions for Further Work

The work on implementing denotational semantics for imperative languages described in this paper can
be extended in a number of ways. Maris Ozols and the author have constructed a HOL system for
reasoning about a small imperative language {29]. Programs written using a simple, syntax are translated
(along with specifications, if any) into HOL terms using a yacc-generated translator. Special purpose
tactics allow interactive reasoning about programs, essentially using symbolic execution. A good deal of
careful theorem proving is required for while loops in the system.

The work on operational semantics in Isabelle suggests a number of extensions, for example the study of

1. typed languages such as ML (with type inferencing)

2. imperative languages (study aiready begun)

3. process algebras such as Milner’s Calculus of Communicating Systems (CCS) (an initial
study begun)

A proof system for a significant subset of the Core language of Standard ML has been constructed by
M Ozols and the author [30]. For future work, I believe that the study of process algebras offers the
most chalienge and will be the most rewarding; understanding concurrency remains a most difficult and
long-term goal of computer science.

62

-




ERL-0600-RR

Chapter 9 Acknowledgments

+This paper was submitted as a thesis towards the degree of Graduate Diploma in Science at the Australian
National University. I wish to thank my supervisor, Dr Malcolm Newey, Department of Computer
Science. ANU. tor suggesting the topic, introducing me to HOL, and for helpful discussions. I should
also like to thank Professor Robin Stanton for his support and encouragement.

A large part of this work was carried out while I was a member of the Trusted Computer Systems Group
of DSTO. I wish to express my gratitude to Dr Brian Billard, Head of Group, and to Mr Maris Ozols
and Ms Katherine Eastaughtfe for their interest in this work, and for useful discussions.

63



ERL-0600-RR

Bibliography

{1] L. E. Moser and P. M. Melliar-Smith. Formal Verification of Safety-Critical Systems. Software-
Practice and Experience, 20:799, 1990.

[2] D. A. Schmidt. Denotational Semantics — A Methodology for Language Development. Allyn and
Bacon, Boston, 1986.

{31 M. Nivat and J. C. Reynolds (eds). Algebraic Methods in Semantics. Cambridge University Press,
1985.

(4] M. . C. Gordon. The Denotational Description of Programming Languages. Springer-Verlag, Berlin,
1979.

{51 1. E. Stoy. Denotational Semantics: the Scott-Strachey approach to programming language theory.
MIT Press, 1977.

{6) P.D. Mosses. Denotational Semantics. Handbook of Theoretical Computer Science, page 577, 1990,

{71 C. Suachey. Towards a formal semantics. In Working Conference on Formal Language Description
Languages for Computer Programming, pages 198-220. IFIP TC2, 1964.

{8} D. Bjomner and O. N. Oest (eds). Towards a Formal Description of Ada. Springer Verlag, Lecture
Notes in Computer Science Vol 98, 1980.

[9] G. D. Plotkin. A Structural Approach to Operational Semantics. Report, University of Aarhus,
Denmark.

(101 R. Milner. Language semantics. Notes for Computer Science 3 Course, University of Edinburgh,
1986.

(11} R. Roxas and M. C. Newey. Proof of Program Transformations. HOL 91 User Meeting, Aarhus,
Denmark, Australian National University, 1991.

[12] C. A. R. Hoare. An Axiomatic Basis for Computer Programming. Communications of the ACM,
12(10):576-583, 1969.

[13] P. Cousot. Methods and Logics for Proving Programs. Handbook of Theoretical Computer Science
(ed J van Leeuwen), page 843, 1990.

[14] R. Milner M. Gordon and C. Wadsworth. Edinburgh LCF: A Mechanised Logic of Compuiation.
Lecture Notes in Computer Science, No 78. Springer-Verlag, 1979.

{15] R. Milner, M. Tofte, and R. Harper. The Definition of Standard ML. MIT Press, 1990.

[16]) A. Wikstrom. Functional Programming Using Standard ML. Prentice-Hall International Series in
Computer Science, 1987,

[17) M. C. Newey and J. R. Ophel. ANU ML User’s Manual. Technical report, Australian National
University.

{18] L. C. Paulson. Logic and Computation: Interactive Proof with Cambridge LCF. Cambridge University
Press, 1987.

{19] R. Cardell-Oliver. The Specification and Verification of Sliding Window Protocols. Computer
Laboratory Technical Report 183, The University of Cambridge, 1989.

{20] J. J. Joyce. Using Higher Order Logic to Specify Computer Hardware and Architecture. In
D. Edwards, editor, Design Methodologies for VLSI and Computer Architecture, pages 129-146.
Procs. of the [FIP TC10 Working Conf. on Design Methodology in VLSI and Computer Architecture,
Pisa, Ttaly, September 1988, North-Holland, 1989.

{21] A. Cant and K. Eastaughffe. The Application of Higher Order Logic 10 Security Models. Research
Report ERL-0577-RR, Electronics Research Laboratory, DSTO, 1991.

[22] Cambridge Research Centre, SRI Intemational and DSTO Australia. The HOL System: DESCRIP-
TION, TUTORIAL and REFERENCE, 1989.

[23] A. Church. A Formulation of the Simple Theory of Types. Journal of Symbolic Logic, 5:56~68, 1940,

64



LY

ERL-0600-RR

[24]) M. J. C. Gordon. Mechanizing Programming Logics in Higher Order Logic. In G. Birtwhistle and
P. A. Subrahmanyam, editors, Current Trends in Hardware Verification and Automated Theorem
Proving, pages 387—43Y. Springer-Verlag, 1989.

[25] L. C. Paulson and T. Nipkow. Isabelle Tutorial and User’s Manual. Computer Laboratory, University
of Cambridge, June 1990.

{26] L. C. Paulson. The Foundation of a Generic Theorem Prover. Journal of Automated Reasoning,
5:363-3Y7, 1989

(27] L. C. Paulson. Isabelle: The Next 700 Theorem Provers. Logic and Computer Science (P Odifredd,
ed), pages 361-385, 1990.

[28] P. J. Windley. Abstracts from the HOL User Group Meeting. 1989.

[29] A. Cant and M. A. Ozols. The Role of Denotational Semantics in Program Verification. Formal
Aspects of Computing (to be submitted), 1992,

[30) A. Cant and M. A. Ozols. A Verification Environment for ML Programs, to be submitted to ACM
Sigplan Workshop on ML, San Francisco. June, 1992.

65

e St S NI e it

-



ERL-0600-RR

APPENDIX A
Example: Denotational Semantics in HOL

B e oo o e e mamae - %
% Implementation of Cenotational )
% Semantics for a simple Imperative Language %
$ FILE: impl.ml %
1] %
% see: Denotational Semantics, by D Schmidt p 76 %
I e et e B e L %
system ‘rm impl.th®';;

new_theory ‘impl‘;;

map new_parent [‘string‘; ‘digit‘;‘decimal‘);;

map lcadf [‘start_groups‘'; ‘string_rules‘};;

loadf ‘/packages/hol/sun3/tactics/loccal/odd®;;

Loadf ‘/packages/hol/sun3/tactics/locai/asm‘;;

I et bl e L L e e e %
% Definitions of Semantic Algebras %
3 and Basic Operations %
§ ~mmmmr e e e e e ettt Tt %
$ ——--m- B e et P - %
% Identifiers %
§ c----m- - e e e e e —m s — e —————— %
new_type_abbrev (‘Identifier®, ":string");;

L ettt D D L L e e ettt %
% Numbers (a lifted domain) %
3 Note: Truth Values should be lifted too but they are rot %
LI it e ettt e s L]

let Number Axiom = define_type ‘Nurmber®
‘Number = number num i undef num';;

et Number Induct = prove_Iinduction_thm Number_ Axiom;;

save_thm (‘'Number_one one', prove_constructors_one_one Number Axiom);;
save_thm (‘Number_distinct', prove_constructors_distinct Number Axiom);:
save_thm ('Number_cases', prove_cases_thm Number Induct);;

et IS _NUMBER _DEF = new_recursive_definition false Number_Axiom
*IS_NUMBER_DEF'®
"(is_number (number n) = T} s\
(is_number undef num = F)

iet IS_UNDEFINED_DEF= new_recursive definition false Number Axiom
‘IS_UNDEFINED_DEF*®

®{is_undefined (number n)

{is_undefined undef_num

iet GET_NUM_DEF = new_recursive definitian false Number Axiom
‘GET_NUM_DEF *
"(get_num (number n) = n) /\
(get_num undef num = 0) ";;

% The Store - includes an "undefined" or "error"™ element §
let Store Axiom = define_type ‘Store’
‘Store = store (Identifier->Number) | undef_store‘;;

let Store_Induct = prove_induction_thm Store_Axiom;;

let Store_one one =
save_thm (‘'Store_one one', prove_constructors_one_one Store_Axiom);;

let Store distinct =
save_thm (‘Store_distinct', prove_constructors_distinct Store_Axiom);;

TN g T




ERL-0600-RR

FE-
Jave_nhin (rdtore_cases’, prove_cases_thm store_Induct):;

Lot Imre JASEC_TAC €2 DISJ_CASES_THEN
- STRIP_ASSUME_TAC {3PEC t Store_cases) THE!
(ASM_REWRITE_TAC [store_distinct})::

-n UEWSTIEE_DEF = new_definicion ('UEWSTORE_DEF',
T onewWsbore:3iore) = gcore (AL, andef_num) )
o AUTESS _DEF = new_recursive_definition false store_Axiom
'ACCESBS_DEF!
“faccesg L {crore 3) = s L) AN
1ccess L oundef_store = undef_num) *;;
ter DEDATE_DEF = new_recursive_-definition false Store_Axiom
FITPDATE_DEF .
“iupdate 1 v {store m) = store {(\j.{i=1) => v i md)) /
npdate 1 v undef_store = undef_store)*;;

g B meammeem—e——— %
: if a2 srtore iz proper. rhaen updating it 3
3 never lw=ads to an undefined store 3
B cmmmm e dac e memc—esameceasmamccmemmmccame—on ceewmcemm——em———— 3
Len LEMMAL =2 prove_thm ('LEMMAL’,

‘izt {asundef_store) =z=z> “(update | v s = undef_store)*,

FEM_TAC THEN STRIP_TAC THEN

Srnore_CASES_TAC *z:Store® THEN

REWRITE_TAC !UPDATE_DEF; Store_distinct] THEN

TRIVIAL_TACY

re
ler. rindef_num)*® LEMMAL)
undef _num* Store_distinct)

e mm e e e m e mm———————— 3
3
................ PR |

let Expression_Axicom = define_type 'Expression’
Expression = Const Number |

var Identifier |
Plus Expression Expression’;;

gxpression_Induct = prove_inductidn_thm Expregsion_axiom::

-
I3
3l

hm (’'Expressicn_cne_sn

Zave_zhm
T -unthnc ors_one ome =xpr~saion Axiom) ;;

<

save_nhm (‘Expression_listincs',
prove_constructors_dlscince Zxpression_Axiom)

zave_thm (’*EZxXpression_cases’
prove_cacses_thm Expression_Induct);

L=t BExpreczion_Axiom = lefine_type ‘BExXpresaion’
‘BExpression =
True |
False i
Equals Expression Expression |
Nt BEXpression’;;

let BExprezsion_Inducn = prove_induction_thm BExpression_Axiom:;

save_rhm (‘BExpression_one_one’,
prove_constructors_one_one BExpression_Axiom);;

zave_thm (’'BExpression_distinct’,

67

1 i o .wﬂ.‘.mm‘.wi .

[N

£
1
Z
&




ERL-0600-RR

prove_constructors_distinct BExpression_Axiom:;:

save_ihm ('3Expression_cases‘,
prove _cases_thm BExpression_Induct);;

let Command_Axiom = define_type ‘Command’
‘Command = Skip |
Val Identifier Expression |
If BExpression Command Command |
While BExpression Command !
Seq Command Command |
Diverge® ;:

let Command_Induct = prove_induction_thm Command_Axiom;;

save_thm ('Command_one_cne‘,
prove_constructors_one_one Command_Axiom);;

save_thm (‘Command distinct®,
prove_constructors_distinct Command_Axiom);;

save_thm (‘Command_cases'®,
prove_cases_thm Command_Induct);;

new_type_abbrev (‘Program‘', “":Command");;
iet SEQL _DEF = new_list_rec_definition (‘SEQL_DEF®,

“(Seql [] = Skip) /\
{Seql {(CONS command sequence) = Seq command (Seql sequence))");;

I e e e e e L LR L P LR L P PP L %
$¥ ~ixed Point Combinator $
L e L e e e TR L PP PR L DL TP 3

rnew_constant (‘FIX', ":(*=>%)->"%);;

let FIX EQ = new_axiom (‘'FIX_EQ‘, "!f:*->*.FIX f = £ (FIX f)");;

L T e T T DT TR Y
% Semantic Equations %
LT e T T )
.et ZXPR_DEF = new_recursive_definition false Expression Axiom

EXPR_DEF*
"(EXPR (Const v} s = ((s = undef_store) => undef_num | v)) /\
(EXPR (Var 1) s = access i s) /\
(EXPR (Plus el e2) s =
(is_number (EXPR el s) /\ is_number (EXPR e2 s))
=> ~urper (get_num (EXPR el s) + get_num (EXPR e2 s)) | undef num)":;

.et BCOL_EXPR_OEF = new_recursive_definition false BExpression_Axiom
'B00L_EXPR_DEF®
" (BOOL_EXPR True s = T) /\
(BOOL_EXPR False s = F) /\
(BOOL_EXPR (Equals el e2) s = (EXPR el s = EXPR €2 s)) /\
(BCOL_EXPR (Not b) s = ~(BOOL_EXPR b s)}";;

% NB: the function COMMAND is strict in its store argqument §

.et TOMMAND DEF = new_recursive_definition false Command_Axiom
*CCMMAND_DEF *
" (COMMAND sSkip s = s) /\
(CCMMAND (Val { e) s =
{s = undef_store) => undef_store | update i (EXPR e s) s) /\
(COMMAND (If b cl c2) s =
(s = undef_store} => undef_ store !
((BOOL_EXPR b s) => (COMMAND cl s) | (COMMAND c2 s))) /\
(COMMAND (While b ¢) s=
FIX (\f t.(BOOL EXPR b t => f (COMMAND c t) | t)) s) /\
(COMMAND (Seq cl c2) s =
(s = undef_store) => undef_store | COMMAND c2 (COMMAND cl s)) /\
(COMMAND Diverge s = undef_store)";;

let PROGRAM OEF = new _definition {(‘PROGRAM_DEF:,
"PROGRAM (p:Program) = \n.let s = (update ‘input' n newstore) in




ERL-0600-RR

iet s’ = .COMMAND p s) in (access ‘output’ 37)*);;

Jiomwm_nhecry i
L R Lt R R R p— R N e L L L R %
tnpli_zac.ml ()
Basic Tactics for Reasoning in impl k]
2 %
U VY R T T R % -

ry “impl’;;

2a {'crart_groups’; ‘'string_rules’; 'digic’;‘decimal’];:
inelude_rchesry imple;;

Leadd vorackagyessholyssunld/tacticg/local/eddr ;s

1oadf “/packages/hol/sunld/tactics/local/asm’;;

b e e e e e e e e e ad e e amem e mmr e mam——m o —o——————————————— 3
@ Taccics Used in che Proofs 3
g %

»

CONV_TAC (DEPTH_CONV string_EQ_CONV}::

Len ITRING_TAC =

lem STRING_RULE = JCNV_RULE {DEPTH_CONV string_EQ_CCONV)::
=0 DEC_ZQ_TAC = CONV_TAC (ONCE_DEPTH_CONV DEC_EQ_CONV);;
1=t DEC_EQ_PULE = CONV_RULE {ONCE_DEPTH_CONV DEC_EQ_CONV) ; ;
i=n DEC_AUD_TAC = CONV_TAC (ONCE_DEPTH_CONV DEC_ADD_CONV) ;;
1=t DEC_ADD_RULE = ZONV_RULE (ONCE_DEPTH_CONV DEC_ADD_CCNV); :

foN

LNB o DEPTH_IZUWV d

verges here %

TONV_TAC (DEPTH_CONV FUN_EQ_CONV):;
CONV_RULE (DEPTH_CONV FUN_EQ_CONV) ;;

_CASES_THEN
TRIP_ASSUME_TAC (SPEC ¢ Command_cases; THEN
{ASM_REWRITE_TAC [Command_distinct!li;:

[y}
v
0
- W9
-
(2]
Ca

¢
3
i
:

TAC © = DISJ_CASES_THEN
LT T USTRIP_ASSUME_TAC (SPEC t o Store_cases) THEN
- . {ASM_REWRITE_TAC [Store_distinct)):;

SIMPLIFY_TAC does most of the work in simplifying expressicns %

=z !IS_UNDEFINED_DEF;
_NUMBER_DEF; .
T _NUM_DEF:
CESS_DEF;
DATE_DEF:
WSTORE_DEF:
Number_~ne_une:
Mumper _ilscinct:
Store_one_snne;
Srore_distince:
ADD_CLAUSES; % takes care of trivial arithmetic %
LEMMA2];

N
1
cr
%)
{x)
T re L)

23
M OMmy

T TR e 00 B 5 A Rl o

e
s

WAL

let SIMPLIFY_TAC =
REPEAT
{CHANGED_TAC
{ASM_REWRITE_TAC DEFS THEN
BETA_TAC THEN
STRING_TAC THEN
num_EQ.TAC THEN
ADD_TAC ORELSE
UNCE_REWRITE_TAC (FIX_EQ)))::

let EXPR_TAC = REWRITE_TAC (EXPR_DEF] ::




ERL-0600-RR

let

b
(1]
o

let

let

BOOL_EXPR_TAC
COMMAND_TAC
PROGRAM_TAC

RUN_TAC

REWRITE_TAC (BOOL_EXPR_DEF];:

REWRITE_TAC [COMMAND_DEF; SEQL_DEF);;

REWRITE_TAC [LET_DEF; PROGRAM_DEF] THEN BETA_TAC;;
PROGRAM_TAC THEN

COMMAND_TAC THEN

BOOL _EXPR_TAC THEN
EXPR_TAC; ;

70

Py 2




» -é
- o T ERL-0600-RR
[ 3 2
Example: Natural Semantics in Isabelle
e e e e e e e e e e e m v
. . T
M 3. ml: .
M lperational Semantics for a Functional “i H
ot Lanquage with Recursion A - ]
. .y
n} ---> Aterm}, (* expressions *)
var';, facerm] ---> Ata2rm),
{*pre? [ATerm, Aterm] ---> Aterm!,
Ceanply*i,  {Aterm, Aterm} ---> Aterm}),
{{e*If*}, [Atzerm, Aterm, Aterm] ---> Aterm},
ferntl! {Aterm, Aterm| ---> Aterm), -
rlent, fAzerm, Aterm] ---» Aterm),
e ‘Aterm, Aterm] ---> Aterm), {* declarations *:
iz . AT=2rm, Aterm} ---> Aterm},
(A TAterm, rm} ---> Aterm),
o= TAnerm] Aterm),
T*}. Alvpe;,
ATYDe)
Acype).,
i . Atype}, ,
N ATypal,
. ATyge),
Siremprtyti,  Atermy., {* environment constructors ‘!
Terrindtl, [Aterm, Arterm, Aterm] ---> Aterm),
{*lcokup®]. {Aterm, Aterm, Aterm) ---> Aform), !* auxiliary Ins *! !
{i*zombine*], [Aterm, Aterm, Azerm} --~> Aform),
iieunfold*}, fArerm, Aterm, Aterm] ---> Aform),
ctvalti,  lAterm] --~~'Arerm), (* value constructors ‘)
~+tpalre),  [Aterm, Aterm] ---> Aterm),
totclosuret], [Aterm. Atarm, Aterm, Aterm] ---> Aterm),
ii*conztt],  {Aterm] ---> Atarm}, 5
({*netl,  Aterm), 1% Tonstants *) 3
(efSt], Ararm), i
{[*plus*], Aterm},
Ji'minus®}, Aterm),
i{*zimes*], Arerm),
{{*zero*]l, Atermj,
iivapply*], (Aterm, Aterm, Aterm] ---> Aform),
if'seq*), [Aterm, Aterm, Aterm] ---> Aform), (* exXpr sequent *)
(f*seq’*!. {[Arterm, Aterm, Aterm} ---> Aform), (* decl sequent *)
(i tequive], [Aterm,Aterm] ---> Afcorm) ]; (* expression aquivalence )
val fi_chy =
»xzend_cheory arich_thy *£3°*
‘{*env®, *ide*, °*value*, ‘expr®, ‘decl*®, ‘constant®], const_decs)

{ {*"Const_type",
*c @ oconstant s> cConst {¢) : expr*),
(*var_type*,
*x : ilde =z=> Var {(x) : expr®),
(*Pr_type"*,
‘[t el : expr; e2 : expr 1] ==z> Pr (el,e2) : expr*),
(*Apply_type*,




ERL-0600-RR

"{1 el : expr; e2 : expr |] ==> Apply (el, e2) : expr®),
("If_type”,

“{] el : expr; e2 : expr; el : expr || ==> If(el,e2,e3) : expr"),
("Fn_type®,

"[1 x : ide; e : expr |] ==> Fn(x,e) : expr®),
("Let_type",

"[i d : decl; e : expr |] ==> Let (d,e) : expr"™),
(“Val_type”,

"(i x : ide; e : expr || ==> Val (x,e) : decl"™),
("Comp_type",

“[i dl : decl; d2 : decl '] ==> Comp (dl, d2) : decl"},
("And_type",

"{] dl : decl; d2 : decl !] ==> And {(dl, d2) : decl®),
("Rec_type",

"d : decl ==> Rec (d) : decl"),
(":r._type" ,

"tt : constant“),
("ff_type",

“ff : constant®),
{"plus_type",

"plus : constant“),
("minus_type",

"minus : constant"),
("times_type",

"times : constant"),
{"zerc_type”,

“zero : constant"),
("empty_type",

"empty : env"),
("bind_type",

“{| £E : env; x : ide; v : value |] ==> bind (x, v, E) : env"),
("val _type”,
"¢ : constant ==> val (¢} : value"},

("const_zype",
"n : nat ==> const (n) : constant"),
("pair_type",

"I vl ¢ value; v2 : value ! ==> pair (vi,v2) : value®),
("closure_type",

" x : ide; e : expr; € : env; E' : env |] ==>\

\ closure (x,e,E,E’) : vaiue"),
("Const_rule",

*"[{ E : env; ¢ : constant |] ==> seq (E, Const (c), val (c))" },

{"Var_rule",
“[{ E : env; x : ide; v : value ; lookup (x, E, v) {] \
\ ==> seq (E, Var (x), v)"),
("Pr_rule",
"[1 E : env; el : expr; e2 : expr; vl : value; v2 : value; \
\ seq (E,el,vl); seq (E,e2,v2) |] ==>\
\ seq (E, Pr(el,e2), pair(vl,v2))"),
{"Applyl_rule",
"[({ EO : env; E : env; E’' : env; E’' : env; E’’’ : env; \

\ e : expr; el : expr; e2 : expr; \

\ v : value; v’ : value; \

\ seq (E0, el, closure(x,e,E,E’))}; seq (E0,e2,v); \

\ unfold (E’,E’,E’'’); combine (E, E*’, E'*’) ; \

\ seq {(bind{x,v,E'*’'), e, v') |] \ N

\ ==> seq (EQ, Apply(el,e2),v’)"),
{("Apply2_rule”,
"(| E : env; el : expr; e2 : expr; \
\ v : value; v’ : value; ¢ : constant; \
A\ seq (E, el, val(c)); seq (E,e2,v); \
\ apply (valic),v,v") 1} \
\ ==> seq (E, Apply(el,e2),v’}"),
("Ifl_rule”, »
“[| E : env; el : expr; e2 : expr; el : expr; \
\ seq (E,el,val(tt)); seq(E,e2,v) |] \
\ ==> seq(E,If(el,e2,el), v)"),
("If2_rule",
"{| E : env; el : expr; e2 : expr; el : expr; \
\ seq (E,el,val(ff)); seq(E,el,v) ] \
\ ==> seq(E,If(el,e2,e3),v)"),
("Fn_rule”,
"l E: env; x : ide; e : expr |] ==>\
\ seq(E, Fn(x,e), closure(x,e, E,empty))"),

o i

72




-

ERL-0600-RR

ral
vail
ral
val
val
val
ora Y
Vit i
val
val
val
val
val

Troeny; E'' s oenv; d o decl: e axpr:
1, E’); combine (E, E’, E*'); A
PR SO T4 B {E, Let (d,e), wv)*),
s .
ot k ide: 2 : expr; seq (E, @, v} I}
=z> e’ {E, Val{x,e), bind (x,v,empty))*),
tLopommi=t,
"l g »nv: T anv; El : env; E2 env; E3 : env:
[ 58 lecl; 42 : decl :
feqr (2, dl, El); ccmbine {E,E1,E‘};. \ .
Swde (B0 42, 22); combine (E1,E2,E3) 1} ==>
I=q' (E, Zomp {dl,42), E3)%),
i_rae*,
T : 2nv: 20 : env; El : env; E2 env; E3 : env;
18 lecl; 32 : decl :
eyt 2, 11, El); seq’ ‘E, 32, E2); combine (El,EZ,El
=3¢ JE, And {dl,d2), 1)),
*Re_tile®

ida): lockup (x., E. v) ]
Y. W, E), V) )},

env; x ide; a value;\

. bind (x,a,E3))*).
empty) *}.

env; E’ : env; E'’ : env;
2 : avpr; unfold (E,E’',E’’') 1] ==>
pind(f,closure{x,e,EL,E2),E"}, \

2]

sura{x,e,EL,E},E°")) "),
nat 1} ==> \
~caliplus), pair{valiconst(m)),val(const{n}y),
wal{conscimpen; i)y,

N o: opat ] ==> \

{valiminus), pair{val{const{m)),val{constc(n))), .

vali{cosnst{m-n) i},

*mimes_rulet
*fi @ onat:; no: onat ) o=z=> \ °
v oapply (vali{zimes), pairival(const(m)),val({const{n}})’).:
vallconst mevn) )y,
*rercl_ _niler,
*apply {valizero); wvaliconseciuv)), val{cc))*},
*Taro2oruler,
" : onat ==»> apply {val{zero), val{Succ(n)}, val{(ff)})*),
Vtegpuiv_defr,
*aquiv {el, =20 =z ALL £ : env. ALL v value. \
v oseq(E,el, v <-> seq{E,e2,v)*)};

Jonse_type
var_type
Pr_type
Apply.type
if_~ype
Fn_type
Let _type
val_type
Cemp_type
And_cype
Rec_type
empty_type

= get_axiom f£3_thy *Const_type*:;
= get_axiom f£3_thy "Var_type®*;

= get_axiom f3_thy °*Pr_type*;
= get_axiom £3_thy 'Apply.type*;
get_axiom f3_thy *If_type*;
yet_axiom £3_thy *Fn_type*:

= get_axlom £3_thy *Let_type®;
= get_axiom £3_chy *Val_type*;

2 get_axiom f3_thy ‘Comp_type*:
Jet_axiom £3_thy *And_type*;
get_axiom f3_thy °*Rec_type*:
get_axiom £3_thy *empty_type®:

How

7

T

ORI

SRR Y ah g

ST LINR

PAP LAY

7or7Re




val tt_type = get_axiom f3_thy "tt_type";

val ff type = get_axiom £3_thy “ff type";

val plus_type = get_axiom f3_thy “plus_type*®;
val minus_type qget _axiom £3_thy "minus_type";
val times_type get_axiom f3_thy "times type®;

val zero_type = get_axiom f3 _thy “zero_type";

val bind type = get_axiom f£3 _thy "bind_type":

val val _type = get_axiom f3_thy "val_type";

val const_type = get_axiom f3_thy "const_type";
val pair_type = get_axjom f3_thy "pair_type";

val closure_type = get_axiom £3_thy "closure_type";

val Const_rule get _axiom f3_thy "Const_rule";
val Var_rule = get_axiom £3_thy "Var_rule";
val Pr_rule get_axiom f3_thy "Pr_rule";

val Applyl_rule get_axiom f3 _thy "Applyl rule®;
val Apply2_rule = get_axiom £3_thy "Apply2_rule”;

"

]

val Ifl_rule = get_axiom f£3_thy "Ifl rule";

val If2 rule = get_axiom f3_thy "If2 rule®;

val Fn_rule = get_axiom f3_thy "Fn_rule";

val Let_rule = get_axiom f3_thy "Let_rule";

val Val _rule = get_axiom f3_thy "val _rule™:

val CTomp_rule = get_axiom f3_thy "Comp_rule";

val And_rule = get_axiom £3_thy "And_rule";

val Rec_rule = get_axiom £3_thy “"Rec_rule"”;

val lookupl ruie = get_axiom f3_thy "“lookupl_rule";

val lookup2_rule = get_axiom £3 thy "lookup2_rule";

val combine_empty = get_axiom f3_thy "combine_empty";

val combine_bind = get_axiom £3_thy "combine_bind";

val unfold_empty = get_axiom £3 thy "unfold _empty*®;

vai unfald_bind = get_axiom f3_thy "unfold bind";

val plus_rule = get_axiom f3_thy "plus_rule*;

val minus_rule = get_axiom f3_thy "minus_rule";

val tirmes_ruie = get_axiom f3_thy "times_rule":

vai zeroi_rule = get_axiom f3_thy "zerol rule";

vai zero2_rule = get_axiom £3_thy "zero2 rule";

val equiv_def = get_axiom £3 _thy "equiv_def";

(' ____________________________________________________________________ ')

(* inference rules for sequents in the language *}

(t ____________________________________________________________________ ')

val expr_rules = ([Const_rule, Var_rule, Pr_rule, Applyl rule, Apply2_rule,
Ifl_rule, If2_ruie, Fn_rule, Let_rule];

va. deci_rules = [Val_rule, Comp_rule, And_rule, Rec_rule];

va. lang_rules = decl_rules@expr_rules;

(' -------------------------------------------------------------------- ')
(* basic reduction rules *)
(l .................................................................... ')

val lookup_rules = {lookupl_rule, lookup2_rule}:
val combine_rules = [combine_bind, combine_empty];
val unfold_rules = [unfold_bind, unfold_emptyl};

vai basval_rules = {plus_rule, minus_rule,
times_rule, zerol rule, zerol2_rule];

(? veccemccscnccacecacrccmanaa - ——————————————————— - ot 2o - %) .
(* simplification: basic logical, arithmetic and typing rules *)
(' ................ - = - - - - - - ')

val HOL rules = [refl, diff _0_eq_0, add_conv@, diff_conv0,
conj_intr, disj_intrl, disj_intr2,
iff_intr, True_intr};
val HOL _type_rules = arith_type_rls@{Succ_type, 2ero_type): t

val f1_type_rules =

74




ERL-0600~RR

Tonst_type, Var_type, Pr_type, Apply_type, If_type, Fn_type,
st_type, Val_type., Comp_type, And_type, Rec_: e,
bind_type, ce_type, ff_type,

minus_type, tlmes_type, zero_type,

onst_type, palr_type, closure_type):

s = goal £3_chy
vy ide; 2 : ide; £ : ide; g : Lde; \

=y : ide); “(y = % ide);
v = 2 ide): "(2 = x : ide);
y = £ ide}; "(f = x ;3 ide); \
. = g ¢ Ldedi ™{g7= ¥ —lde):r
: = 3 tde); “{z = y : ide);
\ = f ide):; “{f = y : ide);
A = ide); (g =y : ide);
: s 2 ide); “{z = ¢ {de): O
\ =z ide); “{z =2 g : ide);
: = ide); “{g = £ ide):

m : nat; n :-aat; o\ !

v a : value:; b : value:; \
e 1 owNpI; e’ 1 o2XDPr; E: env |} ==> T*;

VAL

(:D

i

subgoals. These are used to make .
resolution rules are used

U,

{is_seq’ t) andalso not (could_unify{g, t)):

hy *ceq (2E,7e,?V)*;
etyoal 1;
q = = conld_unify (g, t):

chy *seq (?E, fixvar,?E)*;

o
re O
Jq£ 3

«Q

o]

&

—
(o 0N ot

= {is_seq %) andalsq not (could_unify(g, ti);:

2al is_sequent = fn n o=> {is_seq t) orelse (is_seq’ t):

vil ls_safe_Jequent =z fn € z» is_zafe_seq t) orelse (is_safe_seq’ t);

goal £3_thy *combine (?E,7E,?E}*;
val g = getgoal 1;
fun is_combine ¢t = could_unify(g, t);

soal £3_chy *combine (?E,fixvar,?E)°;
ral 3 = getgoal 1; % - 5T .
tun iszsafe_combine t = (is_combine t) andalso not (could_ unifyl(y,

(24

goal £3_thy *unfold (?E,?E,7E)*;
val 3 = getgoal 1;
fun is_unfold ¢ = could_unify(g, t);

yoal f£3_thy *unfold (?E,fixvar,?E)*;
val g = getyocal 1;
fun iz_safe_unfold t = (is_unfold t) andalso not {could_unify(g, ti}):

goal £3_thy °*lookup (?x,?E,?v)*:
val g = getgoal 1;

15

3 it M bl B S A i




ERL-0600-RR -

fun is_lookup t = could_unify{g, t):
gcal £3 _thy “lookup (?E,fixvar,?E}";
val g = getgoal 1;

i

fun is_safe_lookup t = (is_lookup t) andalso not {(could unify(g, t}):

fun cutgoal L =

fr state => let val (_,_,t,_) = dest_state(state,i) in t end;
(' - - - = P S = WD S . . o A A D AP A S Y b D R A P v - ')
(* NOT_APPLICABLE fails when there is a subgoal for which ")
(* a given selector is true, and succeeds otherwise *)
(I __________________________________ - = - - . . . e e YR - - l)

f£un NOT_APPLICABLE selector =
let fun tac (i,n, state) =
if i>n then
all_tac
else
if (selector (outgoal i state)) then no_tac else tac (i+l,n, state)
in Tactic(fn state =>
tapply(tac(l, length{prems _of state), state), state)) end;

[ e e ittt - o 4 = *)
(* FIRSTONLY chooses the first subgoal for which the selector ")
[l function is true; it then applies the given tactic, and *)
(* fails otherwise «)
" ____________________________________________________________________ ')

f€un FIRSTONLY selector tf =
let fun tac (i,n, state) =
if i>n then
no_tac
else
1f (selector {outgoal ! state)) then tf(i) else tac (i+l,n, state)
in Tactic(fn state =>
tapply(tac(l, length(prems of state), state), state)) end;

(' ------------------- - - - - " - - - "
(* reduction tactics *)
(* *)
[ lcokup_tac: reduces using the lcokup rules *)
[ *)
(* ccmbine_tac: reduces using rules for )
(" combining environments )
(* *)
(* snfold_tac: reduces using rules for *)
(r unfolding environments *)
(* *)
(* basval_tac: reduces using the rules for predefined "}
(* constant functions ")
(* *)
[Td reduce tac: performs a sing.e reduction "
(o - *)
(? —mcwcccca= e am e e, — . ——————— - e m .- ———-————-———-- - - ——————— - - *)
val lcokup_tac = I

FIRSTONLY is_safe_lookup (resoive tac lookup_rules );

val combine tac =
FIRSTONLY is_safe combire (resolve tac combine_rules);

val unfold tac =
FIRSTONLY is_safe_unfold (resolve tac unfold_rules); e

val basval _tac = FIRSTGOAL (resolve_tac basval_rules);

val reduce tac =
lookup_tac ORELSE combine_tac ORELSE unfold tac ORELSE basval_tac;

-
4
A
r
R

(' - - D - S D D > W W Y O D D D D D W . W e - ',

{* step_tac: applies a language rule once, and safely ") ]

(' - > - A D W D P Uk W W Sy w @R A D AR D R D W A 4p U M b R A D P WD A S AR A D R S T R e ')

76




ERL-0600-RR *

val steporac = FIRCTONLY tz_zafe_zequent (resolve_tas lang_ruls:z;;

Latif_mal: repeatadly applies nhe language rules, -
. dinplitying afrer 2ach 2tep if possible ..
. I= falle L8 any cequenta remaln "y

EFEATL fstep_tac THEMN TRY (REPEATL reduce _tac): THEN
CABLE ls_gadquent;

Lt simp_mac: proves the goal by repeated assumptions ‘.
o and nze of the type informacion =
.t santalned in the premises. "

............... P L L L L L T e e i IR

val simp_nac = REPEAT {ares_tzac simp_rules 1);

e mmmeea e e e e e e e e e e et e ammm e mm————————————— .
. £3_tac Jeneral-plirpose tactic for proving goals by .
. lapth-filzt cearsh .

wal fi_nac = DEFTH_FIRST (has_fewer_prems 1)
:lang_tac THEN simp_tac):

§
i

R B e e

n




ERL-0600-RR

APPENDIX C
Example: Translator for FUNC3

e =~ " - - t/
i translate.y */
/= yacc source code for converting bet~cen programs ~/
i expressed in a simple functional language to */
. * suitable goals for Isabelle’s HOL */
[ et e e e e e e — e, - = - '/
LX
#inciude "translate.h"
%1
¥scart text
tunion |

int n~umg

string str;

%token <str> NUMBER IDENTIFIER PAIR APPLY IF THEN ELSE FN LET IN TRUE FALSE
%tcxen <str> VAL COMP AND REC COMMENT TURNSTILE EMPTY

$-oxen <str> ENV ZIVAL SCHEME ZERO ML

¥zyre <str> expr bexpr decl env bindl:ist

Slefr 4t 't

Lefc r e

1%

o

“ext: /* nothing */
Text comment
text query
text ml

comment: COMMENT { fprintf(outfile, "%s", $§1); }

.

guery: env TURNSTILE expr EVAL SCHEME
{ fprintf(outfile,
"\ngoal £3_thy \n\"seq(%s, %s, %s) \"; by f3_tac;\n\n", $1, $3, $5); }
env TURNSTILE decl EVAL SCHEME
i fprintf(outfile,
"\goal £3_rhy \n\"seq' (%s, ¥s, ¥s) \"; by f3 tac:; \n\n", $1, $3, S5); @

ml: oML { fprintf(outfile, "%s\n~", 51); }
any: ror e { $$ = make_nullop(EMPTY); }
0’ bindlist *])* [ §$ = $2; }

oindlist: ('’ IDENTIFIER ’,’ NUMBER ')’
{ $5 = make_binop (ENV, $2, = “e_value(NUMRER,S$4}); }
i bindlist ’," ’(’ IDENTIFIER ‘,’ NUMBER ')’

{ $$ = make_ternop (ENV, $4, make_value (NUMBER, $6), S1); } .
expr: NUMBER [ 55 = make_number (S$1); }
I IDENTIFIER { $$ = make_:nop (IDENTIFIER, S$1,; }
, expr ',’ expr { §$ ~ make_} inop (PAIR, $1, $3); }
| expr expr { $$ = make_binop (APPLY, $1, $2); }
) IF bexpr THEN expr ELSE expr )

{ $$ = make_ternop (IF, $2, 54, $6); |}

i EN IDENTIFIER ’'.’ expr { $$ = make_binop(FN,$2,54); }

| LET decl IN expr { 55 = make_binop(LET,$2,$4); }

| expr '+’ expr { $5 = make_binop (APPLY, make_nullop(’+'),
make_binop (PAIR, $1, $3)); 1}

| expr ’'*’ expr { $$ = make_binop (APPLY, make_nullop(’*'},
make_binop (PAIR, $1, $3)); }

| expr ‘-’ expr { $$ = make_binop (APPLY, make_nullop(’-’), q
make_binop (PAIR, $1, $3)): |}

o

I (" expr ')’ { §8 = $2; }

.~
2t

78

,.
o LR, o A e
A BT




ERL-0600-RR

Lespr:  TRUE { 3% = make_nullop (TRUE); |}
i FALSE { 5% = make_nullep {(FALSE): }
ZEROD —MpIr { 38 smake_binop (APPLY, make_nullop(ZERO},3I}:;
Cor ohewpr 'Y {55 = 825 % :

e AL IDENTIFIEZR ‘=' expr { 3% = make_binop (VAL, 52, 34); !
tlagl ' decl [ 35 = make_binop (COMP, 51, $3); )
. clecl AMD lecl (5% = make_binop (AND, 51, $13): }
©RED ddecl { 33 = make_unop (REC,52);: }
st lacl oty { 58 = 32; 1} :
&%
FILE *infile = scdin:
FILE *outflile = sndeout;
int lineno;
in .arge, argv)
voarygv ()
p
yyparse(l; -

snring n;

reliirn

nringemake_number iny

<trlenin)slu;

(string) malloc (bufsize):

onst (Tinst{%s)) e, n):

make_valie 2,51

(s)y+20;
malloc (bufsize);

cazge LUMBER:
o3l oonstds)yt, s): break:

-
-7

ring maxke_nullop ¢y

‘
int bufsize = l9: - .
String t = (String) mallcc (bufsize);
zwitch(e)

1ge TRUE:
sprincf(c
rage FALSE:
cprinti(t
race e’
sprincfic
~ase ‘'*':

sprincf(e
Tage -’
sprincf(c
case ZERO:
cprintf(e
cage EMPTY:
sprintf(c

.

3

sConstiplius)* | break:
sconst(times)® ); break;
sconstiminug)* ! break;
*Consti{zera)* ); break;

*ampty*® ); break;
) -

return t;

}

sering makKe_uncp (<, )

int ¢;
string s

79




ERL-0600-RR

{

int bufsize = strlen(s)+20;

String © = (String) malloc (bufsize};
switch(c)

case IDENTIFIER:
sprintf(c, “Var (%s)", s); break;
case REC:
sprintf(c, "Rec (%s)}", s); Dbreak;
}
return L}
}

ing make binop (c,tl,t2)
ing tl, t2;
t bufsize = strlen(tl)+strlen(t2)+20;

ing t = (String) malloc (bufsize);
switch(c)

sprintf(t ,"Fn (%s, 3s}” , tl, t2); break;
case APPLY:

sprintf(t ,"Apply (%¥s, %s)" , tl, t2); break;
case PAIR:

sprintf(t ,"Pr (%s, $s)}" , tl, t2); break;
case LET:

sprintf(t ,"Let (%s, %s)" , tl, t2); break;
case VAL:

sprintf(t ,"Val (%s, %s)* , tl, t2); break;
case COMP:

sprintf(t, “"Comp (%s, %s)", tl, t2); break;
case AND:

sprintf(t, "Ard (%s, %s)", =1, =2); break;
case ENV:

sprintf(t, "bind (%s, %¥s, empty)", tl, t2); break;

String make_ternop (c,tl,t2,tl)
String ti, t2, t3;

bufsize = strlen(tl)+strlen(t2)+strlen(c3)+20;
ing t = (String) malloc (bufsize);

case IF:
sprintf(t, "If (%s, %s, %s)", tl, t2, t3); break;
case ENV:
sprincf(t, "bind($s, %s, 3s)", tl,t2,t3);
}
return t;
}

*e

yyerror(s)
char *s;
{
fprintf(stderr, " %s near line %d\n", s, lineno)};

${

extern int lineno;
#include “translate.h" =
#include "y.tab.h" e -
%)

11




ERL-0600-RR

z] [P

in! i linenoes; } ’

it vorvennrn TURNSTILE ; )

R toreetinrn EVALS )

e voreZurn FN; )

Lo r=turn IF: )

Cmben twfurin THEN; §

el r=rtn ELSE; }

Clent or=oarn LET: )

in { return IN; )

*ande »oI=turn AND; )

smrnes voreonIn TRUE; }

*falset i return FALSE; }

*sale i raturn VAL; }

rerst v recurn TERQ; )

frece cerurn REC: )

“vi*la-2Aa-2]  { yylval.str = i

(string) malloc (yvleng):

stropy (yylval.str, yytext); return SCHEME; }

e ere)\n* [ yyival.str =

tscring) malloc (yyleng):

snropy o yylval.str, yytext):
reonrn JUMMENT; )
c.vrLorean® ¢oyylval.stcr o=

(String) malloc (yyleng):

stropy {yylval.scr, yytext « 2);
yy¢lsal.snr [yyleng-4] = *70’;” /* strip brackets */
yylvalizser (yyleng-S] = "\u';
retirn ML; )

oacc{dyr o yylval.str = (String) mallec (yyleng):
streony (yylval.str, yytext):
rewiirn HUMBER: )

fmn foyylval.scr = (String) malloc (yyleng):

stropy (yylvil.cstr, yytext):

recurn NUMBER: )
{ yylval.str = (String) malloc (yyleng):;
.Str, yytext);

R N A R R A R A A R A R AR A R A S A N AR A AR AR RS RN

. translate.h */

R A R A R R A R A RN

e
if

aslnde <stdio h>
vpedzf  char * String:

snring make_number ()
string make_bool ():
string make_var (}:
Soring make_valne():
Srring make_binop 1V
string make_ternoptls;
String mk_empty ()

Zrring mare_=nv(}; -

81

:,hwi%-«.u iasdiei i




ERL-0600-RR

82




re

ERL-0600-RR

DISTRIBUTION

Defence Science and Technology Organisation

Chief Defence Scientist

Central Office Executive

Counsellor, Defence Science, London

Counsellor, Defence Science, Washington

Scientific Adviser, Defence Central

Scientific Adviser, Defence Intelligence Organisation
Navy Scientific Adviser

Air Force Scientific Adviser

Scientific Adviser, Army

Electronics Research Laboratory

Director
Chief, Communications Division
Chief, Electronic Warfare Division
Chief, Information Technology Division
Research Leader, Command and Control
Research Leader, Intelligence
PRSC3I
Head, Command Support Systems Group
Head, Information Systems Development Group
Head, Information Processing and Fusion Group
Head, Software Engineering Group
Head, Trusted Computer Systems Group
Head, Architectures Group
Head, VLSI Group
Head, Image Information Group

A. Cant (Author)

K. Eastaughffe

M. Ozols

S. Crawley
Publications and Component Support Officer
Graphics and Documentation Support

Libraries and Information Services

Australian Government Publishing Service

Defence Central Library, Technical Reports Centre

Manager, Document Exchange Centre, (for retention)
National Technical Information Service, United States
Defence Research Information Centre, United Kingdom
Director Scientific Information Services, Canada
Ministry of Defence, New Zealand

Copy No.

) 1
Cnt Sht
Cnt Sht

— ek et pd b

-1
Cnt Sht
Cnt Sht

—— e et e ek ek b et el e el

[ 59
—

ot pub gk gk ped

- ot N D e ed e

RIS N e

- Ve

2



ERL-0600-RR

National Library of Australia
Defence Science and Technology Organisation Salisbury, Main Library
Library Defence Signals Directorate, Melbourne
British Library Document Supply Centre
Spares
Defence Science and Technology Organisation Salisbury, Main Library

— o D e




.y

Page Classification
Depantment of Defence UNCLASSIFIED
DOCUMENT CONTROL DATA SHEET Privacy M;*;"Q/Cavea*
/
1a. AR Number 1b. Establishment Number 2. Document Date 3. Task Number
AR-006-933 ERL-0600-RR January 1992
4. Title 5. Security Classification 6. No. ot Pagaes 84
|U| IUI |U| 7. No. of Refs
PROGRAM VERIFICATION USING bocument  Tile  Abstract ' : _
HIGHER ORDER LOGIC
S (Secret) C (Confi) R (Rest) U (Unciass)
* For UNCLASSIFIED docs with a secondary distribution
LIMITATION, use (L) in document box.
8. Author(s) 9. Downgrading/Delimiting Instructions
A. Cant
C N/A
10a. Corporate Author and Address 11. Officer/Position responsible for
Electronics Research Laboratory .
Eloctronics A S0cuy..crrrerrre SOERL
SALISBURY SA 5108 .
Downgrading........cccooreriieeeene e
10b. Task Sponsor Approval for Release........ DERL.. o
DSD

12. Secordary Distribution of this Document

APPROVED FOR PUBLIC RELEASE

Any enquiries outside stated limitations should be referred through DSTIC, Defence Information Services,
Department of Defence, Anzac Park West, Canberra, ACT 2600.

13a. Deliberate Announcement

No Limitation

13b. Casual Announcement (for citation in other documents) No Limitation

D Ref. by Author , Doc No. and date only.

14. DEFTEST Descriptors 15. DISCAT Subject Codes
Corpyluter program verification, High level languages,
Sefhantics, Logic Programming 1205

16. Alfstract

This paper describes a number of experiments in program verification
carried out within two automated proof assistants, namely the HOL (Higher
Order Logic) system and Isabelle. Various approaches to programming
language semantics are described. Theories and tactics for proving the
correctness of programs written in small functional and imperative
languages are then constructed within HOL and Isabelle.




P

Page Classification

UNCLASSIFIED

16. Abstract (CONT.)

17. imprint

PO Box 1600

SALISBURY SA 5108

Electronics Research Laboratory

18. Document Series and Number

ERL-0600-RR

19. Cost Code

822522

20. Type of Report and Period Covered

RESEARCH REPORT

p1. Computer Programs Used

Isabelle

Higher Order Logic

2. Establishment File Reference(s)

23. Additional information (if required)

Ooc. Sect WF 11

A
4
i




