
AD-A255 408 (i
00ý AA-0067933

DST06
ELECTRONICS RESEARCH LABORATORY

Information Technology
Division DT ri.

EL.ECT'.�
AUG 05 109Z-

RESEARCH REPORT "
ERL-0600-RR W A

PROGRAM VERIFICATION USING
HIGHER ORDER LOGIC

by

A. Cant

SUMMARY

This paper describes a number of experiments in program verification carried out within

two automated proof assistants, namely the HOL (Higher Order Logic) system and Isabelle.

Various approaches to programming language semantics are described. Theories and

tactics for proving the correctness of programs written in small functional and imperative

languages are then constructed within HOL and Isabelle.

© COMMONWEALTH OF AUSTRALIA 1992

JAN 92 This document has been approved t1 ()d ,2
for public release and sale; its 92-20913
distribution is unmlimited.

APPROVED FOR PUBLIC RELEASE

i.

POSTAL ADDRESS: Director, Electronics Research Laboratory, PO Box 1500, Salisbury, South Australia, 5108. ZERL600RR

UNCLASSIFIED

, !)92 7 !

ERL-0600-RR

This work is Copyright. Apart from any fair dealing for the purpose of study, research,

criticism or review, as permitted under the Copyright Act 1968, no part may be
reproduced by any process without written permission. Copyright is the responsibility

of the Director Publishing and Marketing, AGPS. Inquiries should be directed to the

Manager, AGPS Press, Australian Government Publishing Service, GPO Box 84,

Canberra ACT 2601.

iii

ERL-0600-RR
1

CONTENTS
Page No.

Chapter I INTRODUCTION 1
1. 1 W hy Program Verification'? I

1.2 A im of the Paper . 2
Chapter 2 PROGRAMMIING LANGUAGE SEMANTICS 3
2.1 Introduction . 3
2.2 M ethxls for semantics specification 3
2.3 Denotational Sem antics 4

2,3.1 H istory . 4

2.3 .2 S yntax . 4
2.3.3 Semantic Algebras 5
2.3.4 Sem antics 7
2.3.5 Recursively Defined Functions 9
2.3.6 Lim itations . 10

2.4 O perational Sem antics 10
2.4.1 Semantics of FUNCl. 10
2.4.2 Semantics of FUNC2 12
2.4.3 Semantics of FUNC3 14
2.4.4 Semantics of IM P1 15

2.5 Axiomatic Semantics 5..15
Chapter 3 LNTRODUCTION TO ML 17

3.1 Features of M L 7.. 17

3 .2 S y nt ax . 17
3 .3 E xam ples . 18

3.3.1 Expressions 19
3.3.2 Declarations 19
3.3.3 Functions 19
3.3.4 Lists . .. 20
3.3.5 Polym orphism 20
3 .3 .6 Failure . 2 1
3.3.7 New Types 21
3.3.8 Imperative Features 22

Chapter 4 THE HOL SYSTEM 23

4.1 Introduction . 23
4.2 H igher O rder Logic 23

4.2.1 Types .. 23
4.2.2 Terms .. 24
4 2.3 Logical Formulae 24
4.2.4 Constant Definitions 25
4.2.5 Deduction and Proofs 25
4.2.6 The HOL Deductive System 26
4.2.7 Theories 28

4.3 The HOL Logic in M L ... 28
4.3.1 ML Functions for Handling Theories 28
4.3.2 The Type Definition Package 29

iii

S

ERL-0600-RR

4.4 Goal Directed Proof ... 30
4.4.1 Tactics and Tacticals 30
4.4.2 The Subgoal Package 31

Chapter 5 PROGRAM VERIFICATION IN HOL 33
5.1 Introduction 33

5.2 The Language IM PI ... 34

5.2.1 Semantic Algebras 34

5.2.2 Syntax 36
5.2.3 Semantic Equations 37

5.3 Reasoning about Programs in IMPI 39

5.3.1 Tactics 39
5.3.2 Example Proofs 40

Chapter 6 ISABELLE 45

6.1 Basic Concepts 45
6.1.1 Isabelle's Meta-Logic 45

6.1.2 Object Logics 46

6.1.3 Inference Rules 47

6.1.4 Subgoal Package 47

6.1.5 Tactics 48
6.1.6 A Simple Proof 48

6.1.7 Tacticals 49
6.1.8 Com m ents 50

Chapter 7 PROGRAM VERIFICATION IN ISABELLE 51

7.1 Introduction 51

7.2 The Language FUNCI ... 51

7T2.1 Syntax and Semantics 51
7.2.2 Proof Procedures 53

7.3 The Language FUNC2 .. 54

7.4 The Language FUNC3 .. 58

7.5 The Language IMPI ... 58

Chapter 8 DISCUSSION AND CONCLUSIONS 59

8.1 Comments on HOL ... 59

8.1.1 Ease of Use 59
8.1.2 Expressiveness 59
8.1.3 Documentation 59

8.1.4 Tactics 59

8.1.5 Proof Management 60

8.1.6 Instantiation of Types from Parent Theories 60

8.1.7 The Type Package 60

8.2 Comments on Isabelle .. 61

8.2.1 Ease of Use 61

8.2.2 Object Logics and Theories 61

8,2.3 Libraries 61

8.2.4 Tactics 61

8.3 Suggestiom for Further Work 62

iv

5

ERL-0600-RR

Chapter 9 Acknowledgments 63
B ibliography . 64
Appendix A Example: Denotational Semantics in HOL 66
Appendix B Example: Natural Semantics in Isabelle 71
Appendix C Example: Translator for FUNC3 78

LIST OF TABLES
Page No.

Table 1 Notation for Semantic Domains 18
Table 2 HOL Types 24
Table 3 Primitive Terms of the HOL Logic 24
Table 4 Derived Logical Constructs of HOL 25
Table 5 Basic Rules of Inference for HOL 27
Table 6 ML Theory Functions 29
Table 7 Subgoal Package Commands 32
Table 8 Isabelle Meta-Logic Constructs 45
Table 9 Object Logic Symbols 46
Table 10 Intuitionistic First Order Logic 46

6 Table 11 Inference Rules: Syntax and Semantics 53

Accesion For
NTIS CRA&I

"DT 7 7.......... 5 DTIC TALI
Unalw Ifla r ied
Justi: i ation

By -.-.-

Diz;t;'ibutioi: I

Avi:iM i;.y Cc.ýJJ

Dist Special

-

v

ERL-0600-RR

VI

ERL-0600-RR

Chapter 1 INTRODUCTION
IThe study of computing machines has always ranged from the fundamental mathematical approach, such
as computability and decidability, to more practical engineering concerns, such as the construction of
inteigrated circuits. The discipline of computer programming sits (at times uneasily) between science and
engineering. In the past, programming tended to be regarded as something of a black art. The early
programming languages (such as FORTRAN) made it almost impossible to write well-structured and
easy-to-understand programs. If a program happened to work without crashing, one was relieved.

Modern computer science is becoming more and more a mathematical discipline, with the realisation
that languages can be carefully designed to enable well-structured programs to be written, and that
mathematics is an appropriate arena for reasoning about computer programs. Today computer science
and software development are increasingly making use of formal methods, namely specification languages.
automated theorem provers, verification tools and a number of other systems based on formal mathematical
techniques.

This paper focuses on the issue of program verification: proving that programs written in a given
language conform to their specifications. ie are correct.

1.1 Why Program Verification?

Large software systems are now widespread, being used in finance, medicine, defence, transport. power
"generation and in other application areas. In many of these systems, one failure could be disastrous.
leading to loss of life, damage to the environment, breaches of national security etc. We refer to these
systems generally as critical systems, because failures can lead to critical hazards - those with an
unacceptable risk. In safet.-critical software. for example, attention is focused on the possibility of
serious injury or even loss of life if the software fails.

Software. by its nature, can be extremely complex. In many cases it is not possible to have alt OVerall

mental grasp of what a piece of software does. Although modern software engineering stresses the use
ot, s [table programming languages and techniques, errors will inevitably occur in the software. Testing
is [ie time-honolured way of removing these errors. Sometimes, it does not matter if software has errors
- for example, the software used to write this paper has numerous bugs, but none of these prevent

,seful results from being obtained.

But in a critical system, just one simple error somewhere in the code might have catastrophic conse-
quences. In the USA, the FAA and NASA have established a requirement of less than 0- 0o safety-critical
f.ulures per hour throughout a ten hour flight [1]. For hardware components, it is possible to achieve such
low failure rates by using highly reliable components and redundancy in the design. For software, the
situation is different. Current software testing techniques can reduce this figure to perhaps 10- 4 per hour.
Testing can make significant contributions to the assurance of safety; however, the reliability levels ob-
tained by testing fall far short of the levels required for critical applications. In any case, the complexity
and logical nature of software means that a probabilistic approach is of doubtful validity.

Therefore, in such cases. testing is not adequate (Dijkstra's comment that testing can show the presence
ot bugs, but never their absence. is well-known). We need a way of verifying that the software is correct
before it is used.

At this stage, we introduce some terminology. Software can be termed correct only with respect to a
detailed formal specification which describes exactly what the program is required to do. The objective r
of program verification is to prove mathematically that every execution of the program will satisfy the
given specifications.

The term partial correctness is used to describe a program which either does not terminate, or else is
correct with respect to its specifications; the term total correctness is used to describe a program which
is correct, and also terminates.

In practice, it is also desirable that the formal specifications themselves (which can be complex and
subject to logical and other errors) be proved correct with respect to simpler, more abstract specification.

ERL-0600-RR

In this case, we speak of design verification. Again, this specification may itself need to be verified
against an even simpler and yet more abstract specification, until we eventually reach the formal top-
level specification. The specifications reflect different levels of detail in the design. Ultimately, we need
to check whether the specifications capture the original informal user requirements. This step is called
validation. The issues of design verification and validation will not be considered further in this paper.

Henceforth, we shall use the term verification as a shorthand for program verification.

1.2 Aim of the Paper

The verification of a program is a difficult task - much harder than programming itself. It is an
essentially mathematical task. System specifications are naturally expressed in a mathematical notation,
and the process of verification uses techniques of mathematical proof.

It follows that, if we are to say mathematically that a program behaves correctly with respect to its

specifications, then we must have a clear mathematical description of what the program does. In other
words, the semantics of the language needs to be clearly formulated so that the meaning of constructs
in the language is well-understood.

We need to construct a mathematical model of the system by formulating a theory based on certain axioms,
and proving theorems from these axioms. The mathematician may be content with - and convinced by
- paper and pencil proofs. However, mathematical models of critical systems need to be subjected to
a greater level of rigour. In such cases an automated reasoning tool can help us formulate the theory,
manage the proofs of key results and avoid logical errors, leading to increased assurance of correctness.
It is the interaction of the language semantics with the issue of program verification which this paper
concentrates on. Our aim is to construct a program verification system for a language L, which:

1. is clearly based on semantics of L;
2. is easy to modify;
3. can evaluate programs and expressions (i.e. act as an interpreter if required);
4. can carry out non-trivial reasoning about programs;
5. can prove some non-trivial programs correct;
6. compares well with other systems;
7. is efficient, easy to use;
8. is applicable to concurrent programming languages; and
9. can help assess language design and semantics.

The plan of this paper is as follows. We shall first describe in Chapter 2 various approaches to
programming language semantics. In Chapter 3, because of its importance for the theorem proving
tools we use, the language ML will be described. In Chapter 4 we give an overview of the HOL system,
followed by some examples of verification for a small language. Chapters 6 and 7 deal with the theorem
prover Isabelle and with examples of verification. Finally, in Chapter 8 we make some comments on the
theorem provers used, and make some suggestions for further work.

2

ERL-0600-RR

Chapter 2 PROGRAMMING LANGUAGE SEMANTICS

2.1 Introduction

There are three characteristics of programming languages [2]:

1. syntax: the structure and appearance of legal phrases in the language:
2. semantics: the assignment of meanings to the phrases; and
3. pragmatics: the areas of application for the language, methods of implementation etc.

Ot these three aspects, the first two are directly relevant for program verification. The specification of
language syntax is by now well-understood, and Backus Naur form (BNF) is routinely used to describe
syntax. The semantics of the language is more difficult to describe, and there is no single method in
widespread use. Language semantics is of central importance for program verification. We must have a
reliable and usable definition of the semantics in order to talk about program correctness.

2.2 Methods for semantics specification

There are at least four general methods for describing the semantics of a language, which reflect the rather
different ways in which a program can be viewed, ranging from highly abstract mathematical constructs
to changes in the physical state of hardware devices. The study of programming language semantics is
a tascinating and rapidly growing area of modern computer science.

The method of denotational semantics maps each phrase in a language (and, in particular, a program)
directly to its meaning (called its denotation), which is a mathematically defined object, often a number
or a function. Thus the phrase is regarded as having a meaning even it no interpreter or compiler for
the language exists.

The method of operational semantics, sometimes called natural semantics, gives the meaning of a program
in terms ot an interpreter for the language. It defines a program in the language in terms of a sequence
of interpreter configurations. The semantics is given as a number of inference rules which describe under
what conditions a language construct will evaluate to a particular value.

In the method of axiomatic semantics, the meaning of a program is not explicitly given. Rather, logical
properties about language constructs are defined, and a number of axioms and inference rules describe
under what conditions an assertion about a construct will follow. The most familiar example of the
.Laiomatic method is Hoare logic, which captures assertions about the partial correctness of imperative
languages.

Finally, an approach which is essentially equivalent to the denotational description is the method of
alcebraic semantics (3]. In this case, one studies many-sorted algebras and functions from these algebras
to possible spaces of meanings. A familiar analogy in mathematics is that of group theory: groups may
be studied as abstract objects, and the various representations of the group in (say) finite-dimensional
vector spaces can also be studied. Although a most interesting area. under investigation by a number of
theoretical computer scientists (including a strong group in France), it has not yet been applied to real
programming languages. We shall not be examining this approach further in this paper.

Although these various methods all attack the problem of assigning meaning to programs, they are really
complementary rather than competing methods. Whichever approach one chooses depends on particular
aspects of the language one is studying. Broadly speaking, we have the following hierarchy [2]:

,axiomatic semantics - denotational semantics operational semantics

language design - language development - language implementation

3

S

ERL-0600-RR

2.3 Denotational Semantics

We shall now give an overview of denotational semantics using a couple of examples. The subject is a
large one, and we do not have the space to give more than a brief description here. There are a number of
textbooks on the subject. Gordon [4] gives an elementary introduction which, however, glosses over the
deeper mathematical ideas; Stoy's book [5] is an excellent account of the subject. The book by Schmidt
[21 is perhaps the best and most up-to-date, while the review article by Mosses (61 is excellent, notably
for his attempt to standardise the notation. These last two accounts contain numerous useful references.

Denotational semantics establishes a canonical definition for a language, and thereby documents the
design of that language. It also establishes a standard for implementations of the language. Also, and
importantly for us, a denotational semantics definition provides a basis for reasoning about the correctness
of programs, either directly, or else indirectly, by means of derived proof rules.

Denotational semantics, by its nature, is built on a number of mathematical concepts and some special
notation. These will be introduced as needed.

2.3.1 History

The systematic study of denotational semantics was begun in 1964 [7] by Christopher Strachey in the
Programming Research Group, University of Oxford. Strachey was using the type-free lambda-calculus
to assign meaning to programming constructs. In the words of Mosses [61:

"By 1969, Dana Scott rthe logician] had become interested in Strachey's ideas. In an exciting collab-
oration with Strachey, Scott first convinced Strachey to give up the type-free lambda calculus; then he
discovered that it did have a model after all. Soon after that, Scott established the theory of semantic
domains, providing adequate foundations for the semantic descriptions that Strachey had been writing."

Scott's contribution was to put the entire formalism of denotational semantics on a sound mathematical
footing, using the theory of domains to make legitimate the definitions of while loops, recursive functions
and recursively defined domains. Their remarkable collaboration continued until Strachey's untimely
death in 1975.

2.3.2 Syntax

We need to understand programming language syntax in order to formalise semantics correctly. Concrete
syntax regards a language as a set of strings over some alphabet, while abstract syntax regards a language
as a set of derivation trees. Denotational semantics is solely concerned with abstract syntax. It is the job
of a parser to describe how to get from the concrete to the abstract syntax (the reverse transformation
is called unparsing, or pretty-printing). The concrete syntax is obtainable from the abstract syntax in a
well-defined way, and is not important, save to make programs more readable (we shall see later on that
this i- a very real concern in modelling semantics in HOL and Isabelle).

It will be useful to introduce as a working example a small imperative language (essentially the language
discussed by Schmidt) which we shall call IMPI. Its abstract syntax is given below:

4

ERL-0600-RR

ABSTRACT SYNTAX OF IMPI

p Program

c (uommand

Expression

h Booleanexpr

i hIenrifier

n Nunber

p .. = c

c := c., if t henc elsec., i i e diverge skip whilebdoc

e el + e, i n

b el = -e --) 1 true I false

It the above, for example, the notation 'e Expression" means that Expression is a syntactic domain.
and that e is the non-terminal representing an arbitrary element of that domain (this is a set-theoretic
view) or. if we prefer, we can think of "e : Expression" as stating that e is an arbitrary element of type
Expression (a type-theoretic view). The latter view is a natural one when we use a typed logic such as
HOL to tormulate scmantics. as we shall see. (However, we must be careful to distinguish types in the
logic trom types in the language being studied, if any).

The syntax is formulated in terms of a context-free grammar (CFG). The BNF rule for a typical expression
c says that an expression can either be the sum of two other expressions, an identifier, or a number. In the
grammar, objects such as Number and Identifier have no BNF rules associated with them; they are tokens.

It is well-known that certain features of a language (such as typing information and declarations of
variables before they are used), cannot be handled by a context-free grammar; these are context-sensitive
features, In denotational semantics, it turns out to be more convenient to regard such features not as part
of syntax, but as part of the semantics, called static semantics because it only depends on the program
text. and not on how the program might behave at run-time. In this paper, we shall only be concerned
with run-time behaviour (i.e.dynamnc semantics).

2.3.3 Semantic Algebras

Denotational semantics is built on domain theory, due to Scott. The fundamental concept in domain
theory is that of a semantic algebra, which consists of an underlying set (called a semantic domain),
along with a number of operations on the domain. A basic example of a semantic algebra is the set
Nat of natural numbers, along %kith the operations plus, minus and times. Certain special domains are
necessary to allow the modelliog of such things as while loops and recursive data types.

From primitive domains, a number of compound domains can be obtained by means of domain construc-
tors. These are (if A and B are domains)

1. Product domain A x B

2. Sum domain A + B (also known as the disjoint union)

3. Function domain A - B

4. Lifted domain: Aj.

5

ERL-0600-RR

The first three constructions are well-known. The fourth one adds a special element called _L (read "bot-
tom") which denotes nonterminatiou or undefined. It is needed to model nonterminating computations
and partial functions. A function f: A1 - B.L is called strict if f(1) = _L. If Ax.a is some function on
A. then we use the notation A)x.a to denote the extension to a strict function on A1 .

Recursively defined domains, such as

Value = Number + (Value - Value)

need special handling. The central role of domain theory is to make sense of such equations. It turns out
that the above equation has a solution provided that the functions in the domain A - B are restricted to
be those which are continuous with respect to a certain topology (called the Scott topology) on A and
B. Imposing restrictions onto a set in order to make rigorous concepts which already seem intuitively
clear is a well-known technique in mathematics (examples are the theory of distributions, or generalised
functions, and the theory of quantum mechanical operators) However, the technique is perhaps less
familiar in computer science.

We now return to our example IMPI. Imperative languages use a special data structure called a store,
which exists independently of any program in the language. Certain constructs can access and update
the store. In IMPI, we can think of the store as computer memory.

"The semantic algebras for IMPI are the basic domains in which the meaning of our language constructs
will be defined. We shall model the store as the domain of functions from identifiers to values. In the
table below, b .=: x [y is a shorthand for "if b then x else y"

6

IG

ERL-0600-RR

SEMANTIC ALGEBRAS FOR IMPI

Truth values

Domain: Tr = {true, false}

()jerati,,ns.

not : Tr - Tr

Identifiers

Domain : Ide

Natural Numbers

Domain. Nat

Operations

plus i Nat x Nat - Nat

equals Nat x Nat - Nat

Store

Domain Store = Ide - Nat

Operations .

newstore Store

i.wstore = Ai0

:1C"Ss lie - Store - Nat

,CC.., I s = -(I)

iitdate Ide - Nat - Store - Store
tipdlate ii ns = (nj = i : n 0 s(j))

2.3.4 Semantics
TiMe final step is to assign a meaning to each phrase in the language by giving a valuation (or meaning)
tunction from the phrase in terms of elements and operations of the semantic domains. The definition is
an inductive one. guided by the abstract syntax of the language. The key property is that the meaning of a
phrase is defined solely in terms of the meaning of its proper subphrases (this is called compositionalir).
For example, the meaning of the phrase "if b then ei else e2" will depend on the meanings of the boolean
expression b, and the other expressions el and e2. There are a number of primitive phrases, such as
assignment, which do not depend on any other phrases.

In the case of IMPI, it is natural to picture a command as an operation taking a given store to a new
store. Thus its meaning will be given by a function of the following type:

C : Command - Storet - Storej

The Store domain is lifted because the action on the store may not terminate. It is natural to take C to
be a strict function on Store., i.e. we cannot recover from an nonrecoverable situation.

The semantics for IMPI is given below - omitting, for the moment. the while construct, which will
be discussed later.

7

ERL-0600-RR

SEMANTICS FOR IMPI

P : Program - Nat - Nat.

P[c] = An.let s = (update input n newstore) in let s' = C[c]s in (access output s')

C : Command - Store - Store

CtCL; C1] = _s.C(Cj](Cic2]s)
C[if b then ci else c21 = As.B[bls =* C[c1]s 0 C[c2]s

C[i := e] = As.update i E[e]s s

C[diverge] = As.-I

E : Expression - Store - Nat

E[ej + e,] = As.E[el]s plus Ere2]s

E[i] = As.access i s

E[n] : As.n

B : Booleanexpr - Store - Tr

B[ej = e2] = As.E[ells equals E[e2]s

B[-'b] = As.-(B[bls)

B[true] = true

B[false] = false

The above valuation functions are what we would expect. The semantic functions have as their arguments
phrases of the language, enclosed in square brackets for readability. Purely for convenience, the equation
for P says that the meaning of a program is obtained by taking an input number, associating it with the
special identifier 'input', evaluating the body of the program, and then extracting the answer from the
identifier 'output'. Note that an expression does not have side-effects in its evaluation; it may need to
consult the store to be evaluated, but will never change it.

As a simple example of working with denotational semantics we have:

P[output := 1; if input = 0 then diverge; output := 3] = An.n equals 0 =0 -L 0 3

The proof is straightforward (it is treated in detail in [2]). For this program, if the input is 0, the answer
is undefined; in all other cases the answer is 3.

Once we have captured the denotational semantics of a language, there is an immediate notion of
equivalence of expressions and commands (and hence programs). We define:

ei e2 t* E[ei] = E[e2]
c1 • c2 '* C[ci = C[c21

This is an important notion: in proving the correctness of a program p we may wish first to apply a
transformation T in order to simplify it. If p - T(p), then the correctness (or otherwise) of p will be
preserved by the transformation. Here are some examples of equivalences (where c, c1, c2 are arbitrary
commands and b is an arbitrary boolean expression):

el + e2 ý, e 2 + el
(c; skip) ;v (skip; c) st c

if b then c, else c2 z if -'b then c2 else cl
x :=0; y :=x+IAy := 1; x :=0

The proofs are again straightforward.

k 8

ERL-0600-RR

2.3.5 Recursively Defined Functions

As we remarked earlier, certain types of language construct require more formal machinery to capture
their meaninn in denotational semantics.

)nCe Nuch problematic construct is the while loop, which we omitted from our earlier discussion of the
language IMPI. We could attempt to define its meaning as follows:

('[while 1 do c) = As.B[bjs : C[while b (1 c](C[cls) Es

This certainly captures our intuition about what a while-loop should do, but it is, unlortunately violating
the reqWrement that the meaning of a program phrase must be defined in terms of its proper subphrases.

The theory of domains provides us with a rigorous way of capturing the semantics of while, along with
other recursive objects. Essentially, we need to make formal the meaning of a recursive specification.
Space does not permit us to do more than summarise this theory, but here are some key results. For
more details, consult the book by Schmidt [2].

A partial ordering on a set D is a relation C %hich is:

a. reflexive: Va E D. a C a:
h. antisymmetric: Va. 1) E D. a C b and b C a D a = b; and

c. transitive: Va, b. cED. aC bandbC cDaC c

A !,a.st eh'ment of D with respect to this ordering is an element 1_ such that Va E D, J. C a. If X is a
,ub.,,et ot D. then the lea.et upper bound, written LI X, denotes the element of D (if it exists) such that:

J. VxC X. X CU.JX aid
h. 7d1E D. iftVx E X, x Cd then LX C-d

A non-empty .subset X of D is called a chain if, Va, b E X either a C b or b C a. Finally D is called a
domain if D has a least element 2. and every chain has a least upper bound.

Suppose that A and B are sets with partial orderings. A function f : A - B is called monotonic
it Vx. y E A. f(a) C f(b). The function f is called continuous if it is monotonic and, furthermore.
fr %,rr chain X C A, f(.]X) C U {f(x) Ix E X}. If F: D- Discontinuous, then afixed point of F
is an clement d of D such that F(d) = d. It is called the leastfixed point of f if, Ve E D, F(e) = e D d C e.

Mlie key result of domain theory is the following:

"Theorem: It D is a domain, then every function F : D - D has a least fixed point, given by:

fix F = [j {F'(1) 1i > 0}

We then take the meaning of a recursive specification f = F (f) to be fix F.

It can be shown that the domain constructors described earlier all construct new domains from given
domains (which justifies their name). A primitive domain such as Nat1 is given the discrete partial
ordering: a C b -* a = b or a = _L (such dr'nains are called flat).

Now we are in a position to define the meaning of a while loop as follows:

II

C[while b do c) fix (Af.As.11bli; =:P f(C[cjs) Os)

9

ERL-0600-RR

To complete the discussion of fixed points, we note that, for certain kinds of predicates (called inclusive
predicates), we have an important induction principle, known as fixed-point induction. For such a
predicate P on a domain D, we have the inference rule:

P(l) Vd E D, P(d) D P(F(d))

P(fix F)

This result is very important for reasoning about fixed points in theorem provers such as LCF.

2.3.6 Limitations

By now, the methods for giving denotational semantics for sequential programming languages are
well-understood: all the constructs used in such languages have been given well-defined mathematical
formulations. This is true of blocks, jumps, procedures and functions and so on. However, the method
has its limitations [6].

The extension of denotacional semantics to cover parallel languages is not straightforward. The problem
is that denotational semantics makes heavy use of functions, whereas the essential property of parallel
programs is non-determinism. In contrast, operational semantics (see below) extends quite neatly to
cover the case of parallel languages, and is, for example, the standard way of formulating Robin Milner's
Calculus of Communicating Systems.

Also, the method does not scale up well to real programming languages - whose domains can be
extremely complex - and it is fair to say that denotational semantics definitions have not really affected
the mainstream development of languages such as Ada [8]. Denotational semantics definitions are also
very hard to read, and make little sense to the non-expert.

Another issue is that it is not possible to reuse parts of the description of one language in another
language (in other words, denotationai semantics has no construction analogous to that of modules in
software engineering).

2.4 Operational Semantics

There is today a good deal of interest in the natural or operational style of semantics, which grew out of
the work of Gordon Plotkin (9]. His aim was to formalise language semantics in a natural way, in terms
of transition systems, without being too worried about mathematical rigour. The method has found favour
among those who wish to study real languages without wanting to use a full denotational semantics. In
fact, the definition of Standard ML is given in terms of a number of transition rules.

An operational semantics is given by defining a transition system, which we define to be a pair (r, =),
where r is a set of configurations, and :> is a relation on r, with the interpretation that ri => y2 means
that -yl evaluates to 72. Many systems actually fall into the category of transition system, but we are most
interested in the case of language semantics, where a number of inference rules capture the meaning of
the language.

Operational semantics has the advantage that it is an easier formalism to understand than denotational
semantics. Also, as mentioned above, it is better able to cope with the treatment of non-deterministic
languages, where meaning is captured by relations rather than functions. The main disadvantage is that it
is tied to the way an interpreter will evaluate phrases in the language, and so it is not a good formalism
for reasoning about termination, or loops which may iterate an arbitrary number of times depending on
the input.

Our discussion of operational semantics draws on the lecture notes of Milner (101

2.4.1 Semantics of FUNCI

As an example, we shall consider a very simple languge FUNCI, with simple expression and a
mechanism for local scoping, which later will be extended to a functional language.

10

ERL-0600-RR

SYNTAX OF FUNCd

exp ress10on

'I ale-alarat ion
X: ,I'llr iti,•r

II nuii lll er

e x el + e2 let (I in e

I e= x | ; (2

Phrases in this language are evaluated in the context of an environment, which records the current
bindings of identifiers to their values (in this case numbers). We shall regard an environment as a set
of pairs. as follows:

E = {(xi, nj) (xk, nk)}

Our transition system relation has the form:

Environment I- phrase *:: result

in which the result is a number if the phrase is an expression, and is an environment if the phrase is
a declaration. Below are given the inference rules for the operational semantics of FUNC. We use
the notation E1E, to denote the new environment obtained from El by overwriting its bindings with
those of E,:

OPERATIONAL SEMANTICS FOR FUNC1

Exiresstorxs

E x => i if(x,n) E E

E i- iI : n

E ne1 n El-e, => n, ni= nl +n.,

El-el + e-, n

(I =- 1 E' E E' ý- e =:ý n

E I- let d in e =: n

Declarations

El-e : n

El- x = e := {(x, n)}

E -IdI * EI EEl I- d12 =. E2

E '- dt d 2 => E1 E2

S11

3

ERL-0600-RR

As examples, we have:

E I- let x 5; y= 10 in x + y = 15

El- lety=3in letx=y+linlety=20inx =*4

The second example illustrates the fact that we have static binding: x uses the value of y at definition-
time, not at call-time.

A formal proof of these examples uses the inference rules for the semantics to work backwards from
what it is required to prove (the "goal"), constructing a proof tree whose nodes are trvially true.

There is a natural notion of equivalence with respect to the semantics for the language FUNCI. We
define equivalence of expressions and declarations as follows:

el e=VE, n: E -el *:ýn*EIF-e2 *n
d, 1 d 2 =VE, E': E- d = E' €El- d2 => E'

For example, it is easy to show that:

el + e) 2 e 2 + el

let x = I in x + 3 _ let y = 2 in y + I

x=7; y =9 y-=9; x=7

2.4.2 Semantics of FUNC2

Now let us extend to the language FUNCI to a more interesting and useful language, called FUNC2. It
is a functional language: functions are allowed to be values, and can be passed as arguments to other
functions. We shall add the following new expressions: conditional expressions, pairing el, e2, function
application el (ez) and lambda-expressions Ax.e. We have also included parallel declarations, with the
construct "and". Here is the syntax of FUNC2:

SYNTAX OF FUNC2

e: expression

d declaration

x identifier

c constant = number + {tt, ff} + {+, x

e ::=x c eI ,e2 I el(e2)

I if eo then el else e2 Ax.e I let d in e

d x =e I di; d2 I di and d2

An environment will still associate identifiers with values; however, this time the set of values is defined
as follows:

0 every constant is a value;
0 if v, and v 2 are values, then vj, v2 is a value; and
• if E is an environment, x an identifier and e an expression, then the closure <x,e,E> is also

a value.

Function closures (or function values) contain all the information necessary to evaluat a function. we
evaluate e (the function body) in the environment E extended by associating the actual parameter value
with the formal parameter x. Closures ae needed to avoid inconsistencies due to the use of the same
identifier as both a bound and a free variable (well-known as die "funtg proem" in LISP).

Now if we wanted to nmke rigorous sense of such a recursively defined set we would, of couse, require
the machinery of domain theory. Thus the denotetionl semantics for this language needs some special
care. However. dfe operationtl semantics is not difficult to formulate, and is given below:

12

"ERL-0600-RR

OPERATIONAL SEMANTICS FOR FUNC2

Expressions:

Er-=•v tl'(x~v) EE

E r- x" => if(,V

E

E - el : ,. E - , v2
E • t,e-- => i v -,2

E e,•(x.e.E') E-e, =>.v E'{(x,v)}'e v'
E H- IL(e2) ; v'

E h , E e., =. v ;apply(c,v)= v'

E -" el(e.2) = v'

E H e,o : true E H e1 = v

E " if e, then e1 else et, =:ý V

E e• e:> false E - P-., = v

E i- f e, then eI else e, :: v

E - Ax e =-: (x. -. E)

E 1- E,' EE' - e v

E H- let (I in e • v

Dc'arations

E = >: n

E x = e => {(x, n)}

E -11 d .E l., ý- E 1E2

E Hdt =E E I-E ,12, = E2

E l- d, and (12 => E1 E2

Note that. for constants such as + which happen to be operations, we assume that the semantic algebras
support a function apply, which evaluates its application to arguments, for example apply (+. (3,6))=9.
Also note that there are two rules for function application, according as the operator el of the application
evaluates to a closure or a constant value.

13

...

ERL-0600-RR

2.4.3 Semantics of FUNC3

The next stage is to extend FUNC2 to allow for recursively defined functions in the language. The
extension to the syntax is simply to allow a declaration to be qualified by the word "rec". So we extend
the syntax of declarations to be:

Id ::= x = e, d, ; d2 I d, and d2 I rec d

This will allow the local declaration of mutually recursive functions, for example:

let rec (f, = Axl.ei and f2 = Ax2.e2) in e

in which, typically, both el and e2 might contain applications of ft or f2.

MiMer [101 gives a careful discussion of how the operational semantics needs to be modified to allow
for recursion. We shall just give the inference rules which need to be changed.

Firstly, we need to extend the notion of function closure to have the form <x,e,E.E'>, in which the new
fourth component is an environment specifying the function identifiers which must be ueated recursively
when we evaluate the body e of the closure. We modify the rule for lambda-expressions as follows:

IE - Ax.e = (x,e, E, 0)

The semantics of recursive declarations requires the key notion of unfolding an environment, defined as
follows, if E is an environment, then whenever E contains a member

(f,. (xe,, iE,, E'))

then UNFOLD E will contain instead the member

(f, (x., e,, E., E))

Now we can give the rules for recursive declarations and function applications:

E I- d =* E'

E H- rec d =* UNFOLD E'

EoH ei *o(x,e, E, E') E0 I- e2 =* v E(UNFOLD E'){(x, v)) I- e :*V

Eo I- ej(e 2) =P V'

We shall meet the languages FUNCI, FUNC2 and FUNC3 again later on in Chapter 6, where we set up
proof procedues for reasning about these languages.

14

ERL-0600-RR

2.4.4 Semantics of IMPI

It is not hard to give an f)perational semantics for the language IMPI (whose denotational semantics was
given earlier). This language is essentially that discussed in Milner's notes [10]. It has also been studied
by Rachel Roxas and Malcom Newey [fII. We shall not give its semantics in full here.

Phrase evaluation is now written as follows:

ýnivironmietit "- expression, memory, = valuememory 2

environment H- program, memory, =: memory 2

where we have allowed for expression evaluation to have side-effects and change the memory (for the
simplest imperative langauges there will be no side-effects). In general, there is also an environment to
allow local declarations, as for our functional languages.

Omitting environments for now, we give just the rules for assignment and while loops:

=>M n, NI'
x M. = update(x. n. NV')

1. NI t Irue. NI' p. NI' = NI" while b do p, .M" = I M"'

while h lo p, NI :ý NI.'"

1. N[=NI false. NI'
while b 4l0 p, NI =" NI'

It is not difficult to formulate operational semantics for the other constructs tound in imperative languages
(procedure calls, jumps etc), but we shall not do this here.

2.5 Axiomatic Semantics

The key ideas in axiomatic semantics were put forward in 1969 by C A R Hoare [12] in a paper describing
a logic for capturing assertions about a small imperative language. This paper had a major impact. and
has the distinction of being one of the most widely cited papers in computer science. There has been
tremendous activity in the area over the last twenty years, as witnessed by the extensive review of the
subject by [13]. We shall give a brief discussion, following Schmidt [2].

In Hoare logic we deal with partial correctness assertions of the form [P) c (Q), which specify the
behaviour of some command c in terms of predicates P and Q, which are functions of program variables.
Informally, the assertion means that "if P is true in some state, and c is then executed and terminates,
then Q is true in the resulting state". In the language of denotational semantics, such an assertion reads:

{P)c{Q) E Vs E Store, B[PJs A -,(C[c]s = -L) D B[Q](C[c]s)

Some examples of the Hoare rules for assignments, sequencing and while loops are given below:

15

ERL-0600-RR

{P(e/x)} x:= e {P}

{PI cl Q) Q DR I RIc 2{(S)
{P}c1 c2{S}

PA{b)c {P)
{P} while b do c {-'b A P}

The point we want to make here is that these rules can be shown to follow from the denotational
semantics of the language (2].

The Hoare rules are very popular in program verification, and many treatments of the subject take these
rules as their starting point. However, the Hoare rules will not be used further in this paper.

16

I

ERL-0600-RR

Chapter 3 INTRODUCTION TO ML

In this chapter we shall give a brief overview of the programming language ML (ML stands for Meta-
Language), on which both the HOL system and Isabelle are built. ML was originally developed during
work on the early theorem prover LCF (LCF stands for Logic for Computable Functions), which was
developed by Robin Milner and collaborators in the early 1970's [14].

NIL has now become an important programming language in its own right. Even during its early stages,
the language featured higher order functions, along with a robust type system with an method for type
inferencing, and had an exception raising mechanism to facilitate the definition of proof tactics. ML was
redesigned to incorporate new ideas from the work of Burstall's group on HOPE and CLEAR . such as
pattern matching and the modular construction of specifications using signatures in the interfaces. Most
recently, a major enhancement to ML has been that of modules, due to MacQueen.

The agreed standard for the language is called Standard ML (SML), and its definition is given in [15].
A readable, but low-level, introduction to the language is the book by Wikstrom [16]. Another readable
summary of NIL is the manual for the version under development by Malcolm Newey and collaborators
at the Australian National University[17]. However, since we are discussing the HOL system first, the
examples in this chapter will be for the slightly different dialect of the language on which HOL is built.
(The theorem prover Isabelle is built on SML). We do this for convenience: the differences are not
significant for the examples we wish to give.

3.1 Features of NIL

NIL is a modern functional programming language, with a number of powerful features which follow
modern software engineering priucipies. In fact ML is the paradigm for a functional language which
we have in mind for our experiments on the verification of programs written in functional languages.
Here are the highlights of NIL.

O It is a functional language - functions are first-class objects and can be passed as arguments
to other functions, or returned as values.

o It is statically-scoped: identifiers are associated with values according to where they appear
in the program text (and not on the run-time behaviour of the program). This is safer than
dynamic scoping (as in LISP).

o It is a strongly typed language - every ML expression has a statically-determined type. The
type of an expression can usually be inferred automatically, by an algorithm due to Milner.
This catches many trivial errors at compile-time, and promotes good programming practice.

O It is polymorphic - type expressions may contain type variables, to allow for functions to
be defined on a class of arguments of different types.

13 It has faci:ities for abstraction - the user can define new abstract data types and hide the
details of their implementation from functions which make use of them.

"O It has a modules facility, allowing the grouping of large ML programs into separate units
which can be separately compiled.

"O It has an exception trap mechanism, to allow the uniform handling of user and system-
generated exceptions.

"O It has a rigorous semantics - the language definition of SML [15] is expressed in terms of
operational semantics, so that implementors and others know what is required. There is also
an (unpublished) denotational semantics for the language, due to Gordon and Milner.

3.2 Syntax

In this section we shall summarise the syntax of ML, concentrating on the bare essentials. The following
table shows which variables are used to range over the various semantic domains of ML.

17

ERL-0600-RR

Table I Notation for Semantic Domains

Variable Ranges over

var variables

con constructors

constexp constant expressions

d declarations

b bindings

p patterns

e expressions

A simplified syntax of ML, in which we omit types, precedence information, constructs which are
equivalent to others, and certain exotic forms of exceptions can be summarised as follows:

d let b I letref b I letrec b

b p=e varp, p2 ... Pn =e Ib, and b2 and ... and bn

p I constexp I var Icon p PI -P2 I P, P2 U1 1 [PI;-.. ;PI

e constexp J var I con I el e 2

px e I el ix e2 I p := e failwith e

if el then e 2 {else e3}

el ? e2

while e1 do e 2

e ;...; en ID Iei; ...e,] I d in e

\P1 P2 ... Pn.e

fun pi . el I P2 . e 2 l..- Pn•en

3.3 Examples

Rather than give a formal definition of the semantics of ML, we shall be content to explain the language
by means of a number of examples.

ML constructs are evaluated in the context of an environment and a store (these concepts have already
been discussed in 2). The environment holds current bindings. It specifies what the variables and
constructors in use denote - they may be bound either to values or locations. The store specifies the
contents of locations (which must be values).

Evaluation of a declaration d changes the bindings in the environment of the identifiers declared in d.
Evaluation of an expression yields a value. Any assignment done during an evaluation changes the store
(such changes are called side-effects).

Expressions and patterns may optionally be given types (for example x: int), which forces the type-
checker to assign an instance of the asserted type to this constmcL

We shall illustrte the various consarts in ML by means of some simple sessions with dte HOL system.
In these interctiom. # is the HOL prompt, and the usr enters ML phrases followed by two semi-colons.

18

'ERL-0600-RR

3.3.1 Expressions

Expressions can take a number ot forms. A simple example is:

The value ot the expression (12) is returned, along with its type (int). Here are some other examples:

3.3.2 Declarations

The declaration let x = e evaluates e and binds the resulting value to the identifier x. For example:

-- 4 : 2 .2 '

3.3.3 Functions

The general form of a function definition is let f x = e, where x is a formal parameter, and e the
body of the function. For example we can define the successor function as follows:

Note that the type inferencing mechanism of ML means that the type of succ has been inferred to be

int -> int without having to declare x explicitly to be of type int.

Functions of several arguments can be defined:

19

6

ERL-0600-RR

*-ez acid x y = x ý y;;
add - : (int -> Int -> Lnt)

#*er add3 add 3;;
.dd3 - (int -> int)

*add3 5;;

An equivalent notation for functions is the lambda-expression. A backslash T" is used to approximate alambda. The expression let f - \x.e is equivalent to let f x = e. Recursive functions may
be defined using the keyword letrec:

*Iet f \x.xc-;;
S=-:(Lnt -> Ln•t)

4 etrec fac' : ir f .=a rhen r e.se n'fact(n-l-;;
fac= - (nt -> int)

#fac 5; ;
'20

3.3.4 Lists

All the elements of a list must be of the same type:

-; 2; 3; 4; 5 : nt St

We have the following standard operations on lists:

*-j .I ;2;31;;

2; 3ý : ý st

4'one'. 'two'; 'three'j;;
['one'; 'two'; 'three'l : string list

S'.;2;31 @ 14;5;61;;
'1; 2; 3; 4; 5; 61 : int ist

3.3.5 Polymorphism

Let us inspect the type of the function hd:

*hd; ;

- "(* list ->)

This says that hd has many types: it is defined on any lis of elements with the same (bu aMity) tye(hence the type vwiable *), and reurns an element of tha typ. Such functions am called polymorphic.

204 _ _ _ _

ERL-0600-RR

3.3.6 Failure •

Some standard functions fail at run-time on certain arguments: 4

il!-typed phrase: 7
!.as an instance of type int
whizh should match type * list

"-error in typing
-ypecheck failed

Failures can he trapped with ?, so the value of the expression el ? e2 is el unless el causes a
failure, in which case the result is the value of e2. A failure may be forced as follows:

•ilwithv 'rfi~zt Ike! ;

luatrio failed mistake!

3.3.7 New Types --... -

ML is very flexible in this respect. We may simply abbreviate a type, as in:

.- t:•ype .;-.rir, gp••r = string # string;;

or define a new type, for example:

#type :ard = tce , ir.1 1ueen I jack I other of int;;

".:ew .:ristructors declared:
A,:- : ard
king :ard
iuten card

i.ack : card

:-'-ther (int -> ard

which declares a new type consisting of four constructors: the constants king, queen ad jack, and
the function other. A function whose argument is of such a type is defined by the general expression

fun patt.et I pat2 .e2 I I patn.e.

Such an expression denotes a function which, given a value v, selects the first pattern which matches v,
say pati, binds the variables of pati to the corresponding components of the value, and then evaluates
the expression e.

So, for example, a function giving the standard value of a card In contract bridge is given by:
#let value -un ace 4

I king 3
I queen 2
I jack I
I (other n) 0;;

Ovalue = - (card -> int)

Then the total value of a hand of cards (represented as a list H) Is given by:

ERL-0600-RR

#letrec totalvalue H
if null H then 0 else vaiue(hd(H)) totalvalue (tl(H));;

*totaivalue = - : (card list -> int)

*totalvai.e 'ace;king;king; jack; (other 5)];;
'I : int_

Recursive types can be defined: for example, we could define the positive integers by:

4rectype int = zero I succ of int;;

New constructors declared:
zero int
succ: (int -> .nt)

New types can also be defined by abstraction. For example here is a definition of an abstract type called
set, constructed from a list of integers. Note that the internals of this type are hidden from the user

*abstype set = int list
with Take-set = \x. abs set x and
efpty = abs set [K and
size = \s. lengtn Crep_set s);;
*#*nake set = - : (int list -> set)
empty =-:set
size = - : (set -> int)
*[et s Take set K;2;3;4;S1;;
s = - : set

#size s;;
5 : int

#size e-p"ty;;
ý : Lnt

3.3.8 Imperative Features

We have relegated until last those features of ML which lie strictly outside of functional languages.
Assignable variables are created with the keyword letref. The while construct is also avilable.

#letref a = 3;;
a = 3 : int

#a; ;

3 : int

•a := 7;;

7 : int

7 : int
let fact n = letref count : n and result I 1 in
while count > 0 do count, result count-i, count*result; result;;
#fact 5;;
120 : int

22
I

ERL-0600-RR

Chapter 4 THE HOL SYSTEM

4.1 Introduction

In this chapter we shall give an overview of HOL, a system developed by Mike Gordon at the University
Ot Cambridge. HOL supports interactive theorem proving in higher order logic. It inherits many ideas
from LCF [14], a good up-to-date account of which may be found in the book by Larry Paulson [181.
As in LCF, the language ML provides the environment in which terms and theorems of the logic can
be denoted and theorem proving takes place.

tHOL is really a proof-assistant and proof checker. It will not prove complex theorems automatically: the
user must have an idea of the way the proof will work, and apply the appropriate steps (called tactics) in
the proof. which works in a goal-directed fashion. The HOL system manages the proof, taking care of
the details of primitive proof steps, and provides a sound theorem proving environment - i.e. the user
is assured that a theorem, once obtained, is true within the logic.

HOL provides a natural and highly expressive way of specifying and reasoning about models of abstract
systems. It was originally suggested as a tool for the verification of hardware, and it is fair to say that
most of the activity in HOL is in hardware (with Mike Gordon's group at Cambridge primarily involved
in this area). Nevertheless, HOL has been applied to other areas, including protocol verificaton [191.
mathematical theories such as groups and integers, machine architecture specification [20], security policy
modelling [21]. The HOL TUTORIAL [22] gives several examples. HOL is just beginning to be applied
to the area of software verification, which is the concern of this paper.

The tollowing is not meant to be exhaustive, but rather to give a flavour of working with HOL. as well
as highlighting both those features of the system which support reasoning about programming languages.
aind those which hinder such reasoning.

4.2 Higher Order Logic

The HOL logic is a version of higher order logic based on Church's formulation of simple type theory
[231. It is a variant of typed polymorphic A-calculus, with formulae being identified with terms of

boolean type. Variables can range over functions and predicates, and functions can take other tunctions
is anguments (hence 'higher order'). The important property of t

he II0L logic is that it is expressive enough to be able to formulate mathematical theories: one might
think ot it as being as formal tool which replaces the usual mathematician's meta-language of informal
description and proof with a formal system which captures the same ideas.

An important notion is that of a theory, which is a collection of types, constants, definitions and axioms
-as with any logical system - but which also contains an explicit list of theorems which have already

been proved from the axioms and definitions, and perhaps earlier theorems. A HOL theory is a dynamic
,bject which can be extended or even modified during an interaction with the HOL system.

4.2.1 Types

The IIOL logic is typed; we can think of types as expressions that denote sets. We shall use the generic

variable at to range over arbitrary types. The possible kinds of types are given by the following table

adapted trom [221:

23

S

ERL-0600-RR

Table 2 HOL Types

Kind of Type HOL Notation ML Notation Description

Type variable i arbitrary type

Type constant c ":op " fixed type
Function type T -> functions from a to a'

Compound type (.71 a.) op ":(cra...) op" general type

constructor

Type variables denote arbitrary (non-empty) sets, and are used to specify ranges of types in the logic.
Type constants, or atomic types denote fixed sets of values. Each theory determines some collection
of type constants. Fo, example, the standard constant type bool denotes the set of truth values. The
function type ar-a' denotes the set of total functions from the set denoted by ar to the set denoted
by a'. Finally, the compound type (al ... , a,,) op gives a general means of constructing new types,
for example the product type al x Cr2 = (Ci, C2) prod. Types containing type variables will be called
polymorphic, all other types being monomorphic. An instance C' of a type a. is obtained by replacing
all the occurrences of a type variable in ar by a type.

Also shown in the table is the representation in ML of the various kinds of type. This will be discussed
later on.

4.2.2 Terms

The terms of the HOL logic are simply expressions denoting elements of the sets denoted by types. We
shall use the variable t to range over terms. The following table summarises the four kinds of terms
in the logic:

Table 3 Primitive Terms of the HOL Logic

Kind of term HOL Notation ML Notation Description

Variable x "var.: a" variable var of type a'
Constant c "const: a'" constant of type or

Application t t' "t t' " function t applied to t'

Abstraction Ax.t '%. t" lambda expression

A function application t t' denotes the result of applying the function denoted by t to the value denoted
by t', while the A-term Ax.t denotes the function v - t [v/xJ, where t [v/x] denotes the result when
v is substituted for x in L

Although the terms just given make no mention of types, each term in the logic actually has a unique type.
If we need to be explicit, we write to, to express the fact that t is of type a'. Once again, we call a term
containing a type variable polymorphic. Any term input to the system must be weli-typed according to
the rules of the logic. HOL has a type checker for logical terms based on the ML type checking algorithm.

4.2.3 Logical Formulae

Every theory is assumed to contain the constant type bool; it is an impotant feature of the HOL logic
that logical formulae are then identified with terms of type bool. The HOL system does not distinguish
between them at all1. also, various logical constructs a•e assumed to be present in each theory. We shall 6
I In lUbsis'l version a(Highi Orde Loaic. ums toyeM bod ans dismingWhe from famuhnle, bem ibutansm inw by
meres a(eetsin built-in equivalecw.

24

ERL-0600-RR

not go into details, hut just assume that the logic is expressive enough in that it contains the following
Coinstructs:

Table 4 Derived Logical Constructs of HOL

Kind of term HOL Notation ML Notation Description

Truth T "T " true

Falsity F "F " false

Negation t 't " not t

Disjunction t V t. t V t' " t or t'

Conjunction t A t' t A t' " t and t'

Implication t D t! "t ==> t' " t implies t'

Equality t=t' t = t' " t equals t'

Universal Vx.t "!x.t" for all x : t
Quantification

Existential 3x.t ?x.t " there exists an x such
Quantification that t

Unique Existential B!xt. '?!x.t" there exists a unique x
Quantilication such that t

,-term -x.t "@x.t an x such that t

Conditional t =:, t' I t t => t' I t" if t then t' else t"'

4.2.4 Constant Definitions

The 1IOL logic provides ways of introducing definitions in a manner which preserves consistency of the
o.iC, A constant delinition over some theory is an equation of the form c, = t.,,where

1. c is not already a constant in the theory;

2. t is a closed term (i.e. has no free variables); and

3. all the type variables occurring in ta occur in a.

4.2.5 Deduction and Proofs

The HOL logic is based on natural deduction. Sentences of the logic are sequents, denoted generally
by r I- t, where F is a set of boolean terms called assumptions, and t is a boolean term called the

conclusion. itf r is empty, we write simply ý- t.

A deductive system Q1 consists of a set of inference rules, which we write in the following natural style:

At'-t ... A Itk

We read this rule as saying that, if the sequents A - ti. A t- tk all hold, then we can conclude the

truth of t ý- t.

25

ERL-0600-RR

We say that a sequent r t- follows from a set of sequents A by a deductive system Q2 if there are
sequents r, I- ti, ..., rn - tn such that

r I- t = r I- tn, and

if 1 <i < n:
either r, F- ti E A,or

r, F- ti follows by means of 12 from

members of AU.r {,t F- t1 ... , r-I tI...i-}

The sequence r t . . rF- tn is then called a proor of r F- t from A with respect to t.

4.2.6 The HOL Deductive System

We shall now give the eight basic rules of inference of HOL's deductive system 2:

I

2 hn wo an so& ,emm en-- which an upidl dehied by d~fimum eani at a bakdmyc md wil nm be SO ý

26 .

ERL-0600-RR

Table 5 Basic Rules of Inference for HOL

Description Inference Rule

Assumption Introduction

Reflexivity
F-- t =t

Beta-Con version

I- (Ax.tl)t 2 = ti[t2 /X]

Substitution

Frjtt t u ... u r. Htn It', .. -ttt'n

Abstraction

rI-- tH =t'

r I- (Ax.t 1) = (Ax.t.2)

Type Initanrtitaon

rI-t
r F tk. n~l~nF -t[ci, Cn/a , -1.. (kn]

Discharging an Assumption

r F- t 2

r - {t1} ý-ti D t,

"Modus Ponens

17 F htt 2 ',H ti

r, u r 2 -t

II

27

ERL-0600-RR

These inference rules ame natural and simple ones to write down, although the side conditions on the
variables involved can be rather complicated (for more details see the manual).

4.2.7 Theories

A theory in the HOL logic is a quadruple:

T = (StructT, SigT, Axiomsr, TheoremsT)

where

i. StructT is the type structure of T;
ii. Sig-r is its signature (its basic constants);
iii. AxiomsT is a collection of sequents; and
iv. TheoremsT is a set of sequents in which every member follows from AxiomsT by means of

the HOL deductive system.

There is a natural notion of extension of a theory: a theory T' is an extension of T if:

i. StrUCtT C_ Struct T'"
ii. SigT 9_ Sig T';

iii. AxiomsT g Axioms r;
iv. TheoremsT C Theorems T';

If co = ta is a constant definition over T, then the definitional extension of T by co, = ta is the theory

T+,jeif(c = t,) = (StructT, SigT u c,, AxiomsT U {c,- = t,}, TheoremsT)

The crucial property of this extension is that it is consistent if the original theory T is consistent.

4.3 The HOL Logic in ML

Having looked a little at the HOL logic, we now need to discuss its representation in ML. It is impossible
to go into all the details here, so we shall just go over some key points, referring to the manual for
further details.

In the HOL system, the types of HOL terms have the ML type called type, while terms of the logic have
the ML type term. They can be input to HOL enclosed in quotation marks; their explicit form is shown
in the tables given in the previous section. Various ML functions exist for creating and manipulating these
values. A theorem is represented in HOL by a value of ML abstract type thin. The system represents
inference rules by ML functions whose arguments are of type thin and which return a result of type
thrm HOL contains a large number of derived theorems and inference rules, which awe built up from S
the basic axioms and primitive inference rules of the logic.

The system is sound in that the only way to obtain theorems is by generating a proof. This is done by
applying the ML functions representing inference rules, either to axioms or previously generated theorems.

4.3.1 ML Functions for Handling Theories

A theory is represented in the HOL system as a Lisp file called "name.th", with 'name' being the name
of the theory supplied as an ML string. Theory files have a hierarchical structure which represents ,
sequences of extensions of an initial theory, which is called HOL. A theory winl generally have one or
more parents, of each of which it is an exnsio. A session with the HOL system consists of creating
a new theory by exterding existing thries with a number of definitions (and perhaps axioms). There
are two modes of interaction with HOL: in draft mode, a theory can be arbiurily extended, but in proof

mode only new theorems can be proved&

28

I.

ERL-0600-RR

* Ilere is a .summary of the most important ML theory functions:

Table 6 ML Theory Functions

Function Description

Snewjthieory 'name' Go into draft mode for a new theory called
"name'

new-parent -name- Make 'name' a parent of the current theory

new-type n "op- Make op a new n-ary type operator in the current
theory

newconstant ('c',) Make a new constant of generic type o- in the
current theory

new_axiom ('c',t) Declare the sequent I- t to be an axiom of the
current theory with name c.

savethin ('c'.th) Save the theorem th with name c in the current
theory file

closetheory Save the current theory and exit draft mode

newjelinition ('a'. c v1,..., v= t") Extends the current theory with a constant
definition: declares the sequent F- c = Av. .v n t
to be a constant definition called a.

extendtheory *name' Go into draft mode for 'name'

loadtheory 'name' Go into proof mode for 'name'

include-theory 'name' Make all the axioms, theorems, definitions trom
the theory called 'name' available.

When tile IIOL system is started up, the initial theory is called HOL. This theory has a complicated
ancestry. %whose exact structure is not important. What the user needs to know is that there are a certain
number ot built-in theories, which capture a large body of mathematical knowledge. These theories are

b I)nl, jud, num, prim rec, arithmetic, list, tree, combin, Itree, tydefs, sum and one. The HOL
system also has as a set of useful library theories (such as sets, string, integer etc) which can be called
upon it will.

4.3.2 The Type Definition Package

In our table of theory functions earlier, we deliberately omitted a function called
:-'~.._ype._.eef ini.t ion, which allows a new type or type-operator to be added to the theory in a
,:onservative (i.e. consistent) fashion. This usually involves a lot of work. For many kinds of types,
this function has been superseded by the new type definition package (due to Tom Melham). This
package automates the considerable proof effort required to define new concrete (possibly recursive)
types. Because of its usefulness for the study of language semantics, we shall look at it in some detail.

The main MLNh function in the package is

where the first string is a name under which we want the result to be stored in the theory, and the second
string is a specification of the type. given in a manner rather like ML compound types. It is of the form:

"op = C, ty...t' I.. Cm tyl...tyk'

where each ty, is either a type expression already defined as a type in the current theory (which must
not contain op) or is the name op itself. For example, we could define natural numbers by

29

II

¶ ERL-060-RR

let nat _Axiom = define_type 'nat Axiom'
Inat = Z : Suc nat';;

In this case, Z stands for zero, and Suc is the successor function. The theorem returned (natAxiom) is
just the primitive recursion theorem for the natural numbers.

The type package makes it easy to define recursive functions on these new types. For example, we can
define the function parity on elements of our type nat by

new recursive definition false nat_Axiom 'parity'
"(parnty Z 0) /\
(parity (Suc k) = I - parity (k))";;

When this is input to HOL, the package automatically proves the existence of the primitive recursive
function (in this case parity), and declares a new constant in the current theory with the above
definition as its specification.

The type package also gives us a number of other useful theorems automatically, including an induction
theorem for the concrete type, a cases theorem, a theorem stating that the constructors are one to one,
and so on.

4.4 Goal Directed Proof

It is possible to carry out proofs in HOL in a forwards manner, starting from known theorems and
repeatedly applying inference rules until the required result is obtained.

In practice, however, it is very awkward to do proofs this way, and proofs are almost always not carried
out forwards, but in a more natural goal-directed fashion invented by Robin Milner for LCF. We begin
with the goal, and then try to reduce the goal to a number of subgoals, whose validity implies that of the
original goal. These subgoals are successively decomposed, until eventually we reach known facts.

4.4.1 Tactics and Tacticals

To implement this idea in LCF, Milner invented the notion of tactics. A tactic is an ML function which,
when applied to a goal:

1. reduces a goal to a list of subgoals, and

2. provides a "proof function" which justifies why solving the subgoals will solve the goal.

In ML, we have the following type abbreviations:

tactic = goal -> subgoals
goal = term list # term
subgoals = goal list # proof
proof - thin list -> thin

We 6ay that a tactic solves a goal if it reduces the goal to the empty list of subgoals.

Tactics are specified as follows:

goal

goalt goal2 ... goal,,

HOL has a rich supply of tactics. For example, we have the tactic CONJ.TAC:

AAB
A B

which expresses the fact Mat, if we want to prove tie formula A A B, it suMces to prove the subloals
A and B, because we know that ftrom- A adl- B we can deduce dhe theotem I- A A B. The inference
rule which does this is called CONJ.

30

II

ERL-0600-RR

It is interesting to look at the ML code for CONJTAC:

: r: asl !, . ": th: 'h2

The code shows how the subgoals are constructed, how the proof function is built using CON':, and what
happens if the tactic fails. Even such a simple example also shows how painful the writing of tactics
as ML procedures can be!

In practice, new tactics are usually built using ML functions called tacticals. An example of a tactical
is the sequencing tactical THEN: if T, and T2 are tactics, T, THEN T2 is a tactic which first applies
T, to the goal, and then applies T2 to each resulting subgoal. Another impor,-nt tactical is ORELSE
Tj ORELSE T, is a kind of "choice" tactic which applies Ti to the goal, unless it fails, in which case it
applies T2 . The tactical REPEAT is for iteration : REPEAT T keeps applying T until it fails.

Becoming a I[OL expert means becoming familiar with a range of tactics, and the situations where they
can be applied. By using tacticals (which we might also term strategies), we can build quite powerful
and sophisticated tactics, tailor-made tfr the problem domain being studied.

4.4.2 The Subgoal Packa-,•

In order to allow interactive pr,,,i to be carried out, the HOL system is provided with a subgoal package
alonhg the lines of LCF's) vhich takes care of proof management. It traverses the tree of ,,ubgoals

depth-tirst, The curr a.t goal can be expanded into subgoals, which are kept on a goal stack. Once a
tactic solves, :a sti'ioal, the package automatically applies the appropriate proof functions to compute part
of the proot. .,nd then and shows the next subgoal to be proved. Unfortunately, the subgoal package
does have it, limitations, but is to be improved in future versions of HOL.

H ecre i,, i example of a rather artificial but simple interactive proof. First we set the goal to be proved
using the tlunction g term -> void:

x Z. =: .x n:num- n
:.X- ; :" .: .. n

lbis goal is expanded into two subgoals with CCNJTAC:

:-': :-:t.':7N_TAC :;

Z .,S. . . _ . *' - .. ''. -

Let us examine the first (bottom) subgoal, which is an obvious assertion about lists of arbitrary elements.
To prove this subgoal, we simply rewrite with the definition of the head of a list:

- h . h t) = h

R FEWRITE 7AC ýHDI)S.- • 'H]

pJ.3 proved
- !x y z. HD[x;y;zl = x

31

ERL-0600-RR

Previous subproof:

"?n. -(n = 0)"

HOL now displays the remaining subgoal, which states the (again obvious) fact that there is some number
distinct from zero. We only have to find a suitable n: the value I = SUC 0 will do. We expand the
goal with EXISTSTAC:

#expand (EXISTSTAC "SUC c");;

OK..
"'(SUC 0 = 0)"

This goal is solved immediately by rewriting with the derived theorem NOTSUC:

#NOTSUC;;
[- !n. -(SUC n = 0)

#expand (REWRITETAC [NOTSUCM);;
OK..
goal proved

- (SUC 0 0)
?n. -(n =)
(Ix y z. HD[x;y;z] = x) /\ (?n. *(n = 0))

Previous subproof:
goal proved

The above proof looks even simpler if we use tacticals (THENL is like THEN but can apply different
tactics to the resulting subgoals).

#g "(!x y z:*.AD [x;y;z] x) /\ (?n:num. -(n = C))";;
"(!x y z. HD~x;y;z] = x) /\ (?n. -(n = 0))"
*e (CONJ TAC THENL iREWRITE TAC 'AD];
EX:STS TAC "SUC 3" TH-iEN REWRITE, TAC [NOTSUC]]);;
#CK..
goal proved
.- (I.x y z. HDtx;y;zl = x) /\ (On. (n 0))

Previous subproof:
goal proved

There are a number of functions provided for interaction with the subgoal package, the most important

of which are summarised in the following table:

Table 7 Subgoal Package Commands

Function Description

g t initialises th subgoal package with a new goal

expand (or e) applies a tactc to the top goal on the stack

backup (or b) ba ks up teprvious proof stato

rotate (or r) rotates h order of subgoals on the stack

print_state (or p) n displays n levels o(the goal stack

get-state returns the current oa stack

set state 3 resets die goa stack to s1 32

I

ERL-0600--RR

Chapter 5 PROGRAM VERIFICATION IN HOL

5.1 Introduction

Whatever our predisposition may he about the best way of describing the semantics of programming
languages, it is otten the case that a given automated theorem prover will make it more natural and easier
for us to adopt one particular method. This is perhaps somewhat surprising.

The early theorem prover LCF was, of course, devised with domain theory (and denotational semantics)
in mind. LCF has as built-in constructs the notions of partial orderings, bottom elements, continuity etc.
LCF turns all sets into domains, with artificially added bottom elements if necessary; all functions are
to be continuous. LCF is a slow system. and is apparently no longer available or supported, owing to
the rise of interest in HOL.

Now HOL's logic is not directly tailored to reasoning about programs; it is a general purpose logic.
powerful enough to express mathematical theories. The logic does away with LCF's annoying habit
of lihting scts like Nat (the natural numbers). Therefore, where possible, proofs of such laws as the
associative law for arithmetic

x+(y+z)=(x+y)+z Vx,y,z E Nat

can be proved without having to reason about cases such as x = I_. This makes using HOL a lot easier.
However. the price one pays for this is the need to import the relevant parts of domain theory as. and
when. they become necessary.
Despite these considerations, we claim that HOL is useful for formulating denotational semantics

detinitions, and reasoning about program correctness, for the following reasons:

I. %yntax specitications in BNF form are easily modelled in HOL by establishing new compound
(possibly recursive) data types using the type package;

2. common semantic algebras (for example natural numbers, strings, lists) are either already
present ii IIOL or its libraries:

3. IIOL's logic is expressive enough to capture the semantic equations, with the meaning of a
phrases being, in general, a recursively defined function on the new data types defined above,

4. assertions about program phrases are easily expressed in HOL; and
5. many tedious proofs in denotational semantics can be taken care of by simple rewriting.

What about operational semantics definitions? We claim that HOL seems less natural here. Consider,
for example, the typical rules for constants and for the sum of two expressions:

E I-v v

E f" e2 - v E e v2 v v.

E ' ei + e2 - v

which we might formulate as the following HOL axioms:
-•:45ER = r.mw_'xi. 'm:;".14ER', "seq Const v, v;');;

" i '- . : IE , - 1,) /\ seq ;E, e2, v2) /\ (v
Z=Aeq i, Plus el e2, v)

Suppose our goal is "seq(E, Plus(Const 5) (Const 7), 5 + 7) ". We could solve it by using
MATCH_MP_TAC and the axiom for SUMMATION, but then we have the variables vl and v2 which must
be instantiated "by hand". Thus the tactic needed to solve the goal depends on the explicit form of the
goal. Such tactics are cumbersome to write. What we really want is to be able to treat v1 and v2 as
scheme variables to be instantiated automatically, and propagate the instantiations to the other subgoals.
However, HOL does not have a mechanism for doing this.

33
S

ERL-0600-RR

It might be more logical to capture the operational semantics rules as new inference rules to be added to
HOL. We would then have to write appropriate tactics for them directly in ML, which is messy.

However, other authors have had some success with operational style semantics in HOL. Rachel Rox.o.
and Malcolm Newey [I 1] have used the method to reason about program transformation for a smaL
imperative language. Also, Version 1.13 of HOL is to be provided with some simple tools for the study
of structured operational semantics.

We note here that Mike Gordon [241 has had some success in implementing axiomatic style semantics
in HOL. He has constructed the Hoare rules along with corresponding tactics for generating verification
conditions. These rules are proved within HOL directly from the denotational semantics of the language.

In this chapter, we shall c nicentrate on capturing denotational semantics definitions within HOL.

5.2 The Language IMPI

In this section we implement the imperative language IMPI, whose denotational semantics was given in
Chapter 2.3. To begin with, we declare a new theory called impl, with string as a parent (to handle
identifiers). We also load some useful inference rules for strings and some special tactics. Note: in the
following, HOL's responses will be omitted - unless they provide useful information.

4system Irm -pth;
new ýt-eory ip ;

-oadlibrary 'string';;

5.2.1 Semantic Algebras

It is straightforward to formalise the semantic algebras for IMPI in HOL. Identifiers may be modelled
by strings

*r'ew_ype_abbrev ('1dentif-er', ":string");;

The domains Tr (truth values) and Nat (natural numbers) are already present in HOL as the types: bool
and : num. However, we shall need also the lifted domain Nat,, which we express as

s'et NumberAxiom = definetype 'Number'
'Number = number hum ý ;ndefr _um';;

#Nu-ber Axiom =
- :f e. ?! fn. (!n. fn(n.;mber n) = f n) /\ (fn undefr um = e)

Here we have used the type package to construct this domain, with undef_num being the undefined
clement. HOL returns the primitive recursion theorem for this compound type. A very useful feature
of the type package is that it can prove a number of theorems about new types automatically. We have
an induction theorem:

#Let .Number induct = prove -inouction thm Number Axiom;;
Number Induct = :- !P. (!n. P(number n)) /\ P undef num ==> (!N. P N)

We also have theorems which state that the constructor functions are one-to-one and distinct, and a
theorem which permits case analysis:

$savethm ('Number one one',
prove_constructors one one NumberAxiom);;

I- !n n'. (number n = number n') = (n = n')

save thm ('Number distinct',
proveconstructors_dlstinct NumberAxiom);;

34

A

ER L-0600-RR

ýrtl'I~býr r, '4ndef-.nuni)

riurbe r ni) \(N =undetf num)

The Iftnctions is~number and is..undefined act as discrimninators, while get-num retrieves the
number from a proper element of the domain.

#!lt- :"2,UMER-EF = rnew-.reurs ive..defjinitjion falzt-Žubex:r

"isrn1-ne-r 'number ni) T) /
ýis~r~umnbr unrdef-num F)

!- n. io~nriuber(riumber ni) = T) /\ (is-number un~ief_nuaiur

etS_7!NDEFINED_D)EF= new..recursive...definition false 1uberAziom
':S_UNDEF.NED-DEF'

fi ren:ed ;%bumber ni) =F) /
i~ u.+~~ed .irdef-rium =T)

~ ~ETI;~.4 -, = -w~recursive~definition false ýrbrAim
tgetN mber n

1;t..r~trn :nubr n r)
veiUn r.de: rnum =0.) ;

.ZTM MDEF = -et-num(nuinber ni) n r) /\ get.nur undefnu.m

The store~ahso needs to be lifted; its definition in HOL is as follows:

~.et t~z- Axi:n s-fine~type 'Store'
10t,_r- zt'lre (d.i.nt if ier ->Number) undef. t~re'

*fe !fn. (!f'. fn(store fl) =f fl) /A (fn undef-st-ore e)

Once again, we have standard theorems for this type:

41let Store-Induct =pr!:ve~induction~thm StoreAxiom;;
Store-..riduct=
1- !P. (!f'. P(store ff') A\ P undef-.store ==>!S'. P S')

#1let Store-one-one =

pro;e_:ortr*:r'rsne~ieStore...Axiom) ;

I-n !f'ri f''. (store V~ = store f''; ff' '

eýave~thm ý'Store..distinct',
prc~ve-..:onstruicto:rs.Aistinct Ctore...Axiom);;

*~r~i~ti~c I- If'. -(store V' u undet~storeý)
'1. let Store-cases

save~thr (1Sto:re...':ases1,
prove...:ises..thm Store~.Induct);:

St~ore-cases =IIS,(?f'. S' store f') N/ (5' =undefs3tore)

It is straightforward now to define the operations riewstore, access anc(update. Note that the
latter two (strict) functions are defined using now..recurniv...def init ion to specify their action
on every possible pattern.

35

ERL-0600-RR

#let NEWSTORE DEF = new definition ('NEWSTORE DEF',
"(newstore:Stcre) = store (\i.undef nurn)");;

4NEZWSTRZE DEF = - newstore = store(\i. undef num)

*let ACCESS DEF = new recursive-definition false Store Axiom
'ACCESS DE2'
"(access i (store s) = s i) /\

(access i undefstore = undefnum)";;

ACCESS DEF =

(!i s. access i(store s) = s i) /\
(!i. access i undef store = undef num)

#Let UPDATE DEF = new-recursive definition false StoreAxiom
'UPDATE DEF'
"(update i v (store m) store (\j.ji) => v I m j)) I\

(update i v undefrstore .undefstore)";;

UPDATE DEF =

- (:i v m. update i v(store m) = store(\j. ((j = i) => v I jI)) /\
(1i v. update i v undef store = undef-store)

This completes the HOL formalisation of the semantic algebras for IMPI.

5.2.2 Syntax

The syntax for IMPI is neatly captured using HOL's type package. Below we give the syntax for
expressions, with the usual auxiliary theorems. The HOL responses are rather long, so they are omitted.

Note that we are using an abstract syntax in which, say, Plus el e 2 is used to render the original el
+ e2 in the concrete syntax. This is necessary because the type package requires constructors to be of
this form. It does have the advantage of giving the language phrases a uniform appearance. From one
point of view, only the abstract syntax of the language maters; however, the big disadvantage is that
programs written using it can quickly become unreadable, and are also difficult to write because of the
morass of brackets. Clearly a parser (from concrete to abstract syntax) is needed so that programs can
be easily written. This is easily done using the Unix tools yacc and lex.

For boolean expressions and commands we have, similarly:

Let BExpressionAxiom = aef-ne_type 'BExpression'
'BExpression =

True i
False I
Equals Expression Expression I

Not BExpression';;

Let BExpression Induct = prove induction thm BExpressionAxiom;;

savethin ('BExpressiononeone',
prove_constructorsone one BExpression Axiom);;

savethm ('BExpressionjdistinct',
prove_constructorsdistinct BExpression_Axiom); ;;

save-thm ('BExpressioncases',
prove cases3_hm BExpression Induct);;

36

ERL-0600-RR

-." ::utand_Ax,-.-:m =de fine_-,YPe ý'ommand'[
'':::•anl 2kip I

Vil Identi~fier Expressi,:n I,•

if RExpression C•t=mand Command I
While BExpreszi,:n Command I
zeq Command Co:rmmand
Diverge' ;

-• :.•tw:nJu,] u = pr.ee_inf u!.4rL.n_nthmn Ccmmand_.kciom;

:.';_ ~h::i 'Crurt.•id_*.-,e ne',

p r: t .:tg-D_.r ru or ine_,:,e C,'mmand.Axiom)

.,':e*_rhrri 'C.rtrnnd_disiincti,
pr:7e_ :-:ni ructors~distinct Crnmand_A~xiom} ;;

savethkn 'C,:mrand_cases'
~ro~ve_ ,zss_thx CommandInduct)

It will be convenient to allow a list of commands (this is a form of syntactic sugar):

- _-.F= ".ew_•t_ _,_e.nition ('SEQLDEF',"Hel ' ::kip: '\.

S eq ICONS cc~rnmand sequence) =

>eq ,-Snand zSeql sequence))");;

. .. , l se ,uence.

ýr-,NS :,,;,_ ,..znand zequ-ern:e = Seq command(Seql sequence•

To complete the syntactic description, we have

- -:. _':' ~• . bb eV .C.tutiand" I ; ;

5.2.3 Semantic Equations

Now we are ready to capture the semantics of IMPI in HOL. To make things as simple as possible,
we shall make use of the fixed-point combinator in order to express the semantics of while loops. The
fixed-point property is added as an axiom to the theory (this is reminiscent of LCF, where fixed.points
and partial orderings are part ot the logic - not proved using some mathematical model). Clearly, this
is a short-cut, and quite an unsound thing to do3 . We must promise only to use appropriate functions f
for which domain theory guarantees us that FIX f is well-defined!

Sn ew_ý: rn st an• t 'IX' , " '->)>'' ;

let I IXEQ = -. 1 X ivn ('FIXQ , f ',>, .F IX f f (FIX ft
:X_ EQ = I- !f. F X f = f FIX f)

The semantic equations for expressions are given in terms of the valuation function EXPR, which is
naturally defined using new_recursive__.def.inition:

' It would be stundler to iprtiort results from a HOL theory of domains. Such a theory ha. been constructed by Albert Camilled,
but will not be used In this paper,

37

ERL-0600-RR

4#1ec EXPRDEF = new recursive definition false ExpressionAxiom
'EXPR DEF'
"(EXPR (Const v) s = ((s = undefstore) => undefnum I v)) /\

(EXPR (Var i) s = access i s) I\
(7XPR (Plus el e2) s =

(is number (EXPR el s) /\ is number (EXPR e2 s))
=> nu-zer (get num (EXPR el s) - get-num (EXPR e2 s)) I undefrhum)";;

FXPR DEF =

(!v s. EXPR(Const v)s = ((s = undef store) => undef num I v)) /\
s. EXPR(Var i)s = access i s) /\

(!e! e2 s.
EXPR(Plus el e2)s =
((is _number(EXPR el s) /\ is number(EXPR e2 s)) =>
number((get_num(EXPR el s)) + (getnum(EXPR e2 s))) I
undef num))

For boolean expressions we have

#Iet BOOLEXPRDEF = newrecursivedefinition false BExpression Axiom
'3OOL EXPR DEF'
"(BOOL EXPR True s = T) f\

(BCOLEXPR False s F) /\
(BOOLEXPR (Equals el e2) s = (EXPR el s = EXPR e2 s)) /\
(BOOLEXPR (Not b) s = -(BOOL EXPR b s))";;

COL XPR DF_ =

- (:s. BOOLEXPR True s = T) /\
(:s. 3OOL EXPR False s = F) /\
(.el e2 s. B3OL_EXPR(Equals el e2)s = (EXPR el s = EXPR e2 s)) /\
(:b s. BCOLEXPR(Not b)s = "BOOLEXPR b s)

The semantics of commands and programs is given by similar functions, after which we close the theory.

*-'et COMMAND DEF = new recursive definition false Command Axiom
'COMMAND DEFI

"(CCO"MAND Skip s = s) /\
(CCMMAND (Val i e) s =

(s = undef store) => undefrstore I update i (EXPR e sO s) /\
(COMMAND (If b cl c2) s =

(s = undef store) => undef store I

((BOOL EXPR b s) => (COMMAND cl s) I (COMMAND c2 s))) /\
(COMMAND (While b c) s=

FIX (\f t.(BOOL EXPR b t => f (COMMAND c t) i t)) s) /\
(COMMAND (Seq cl c2) s =

(s = undef store) => undefstore I COMMAND c2 (COMMAND cl s)) /\
(COMMAND Diverge s = undefstore)";;

COM.ANDDEF =

- (s. COMMAND Skip s = s) /\
(.i e s.

COMMAND(Val i e)s =
((s = undefstore) => undefstore I update i(EXPR e s)s)) /N) j

(!b cl c2 s.

COMMAND(If b cl c2)s ,
(Hs = undef store) =>
undef store I
(BOOLEXPR b s -> COMMAND cl s I COMMAND c2 s))) /\

(!b c s.
COMMAND(While b cOs =

FIX(\f t. (BOOLEXPR b t => f(COIMAND c t) I t))s) /\

38

:::YAND ~q ci 1:2) s

ate in ut'n ewstore j OMN 2(1MX~:

_VtDiverg aiundef....tore)EL.60.R

-- srtr~r) n~e s~A = (ud te rinput, Cn V) in

-~ ' iO M N) n (ces 'up t s 'ri)"!;; ~ ;

.t- aCN.A =_pae'nu'nnwtr

Z' C CONVRULEM p ON acess THN 'ouput' s')

5.3V Resoin aboutPH.CCN ProgramsQ.in IM);

5.. TacticsINE.DET..CN um.EJ2~V

As wth ny serconsruced heoy, w ned anumer o tatic Whch ae aproriae fo th kid o

! rýZ.S CASE5GTAC C1 DISJCAS (ES TH-CN Vsrn_ _Ct!;
ST11RIP..ASSUEP.TA-C (SEC StorgeQ_c_-ses) THEN

1 DD-TA(ASM..REWRITTAC (StEDET-Ore DistiCOT]);;

%updai -RL NV _R riwa ore _ETHCN uridef..jtor.)

Nex wedef ne SMPIF..TAC, whichON rpaelusstee finins _tesemanti prain, ln
wihsm aIc rtmt n ipiisevrnet usingON BETA...TA C adSRNG...AVfths

ERL-0600-RR

steps are making no progress, the goal is rewriten once, in case we need to unfold a term involving a
fixed-point combinator.

Let DEFS = :S _UNDEFINEDDEF;

:S NUMBERDEF;
GETNUMDEF;

ACCESSDEF;
UPDATEDEF;
NEWSTOREDEF;

Number one one;
Number distinct;
Store oneone;
Store-distinct;
ADDCLAUSES;
LEMMA2 1;;

let SIMPLIFY TAC =

REPEAT
(CHANGEDTAC

(ASM REWRITETAC DEFS THEN
BETATAC THEN
STRING TAC THEN
n.am EQ TAC THEN
ADD TAC ORELSE

(ONCEREWRITETAC [FIXEQD));;

Our final collection of tactics basically carry out rewriting with the semantic equations.

let EXPRTAC = REWRITETAC fEXPRDEFI ;;

let BOOLEXPRTAC = REWRITETAC [BOOL_EXPR_DEF];;

Let CC.1MANDTAC = REWRITETAC [COMMANDDEF; SEQL_DEF];;

let PROGRAM TAC = REWRITE TAC [LET DEF; PROGRAMDEF]
THEN BETA_TAC;;

"let RUN TAC PROGRAMTAC THEN
COMMAND TAC THEN
BOOL EXPR TAC THEN
EXPR TAC;;

The tactics we have defined may look rather ad hoc - and are to some extent - but are very simple in
structure and easy to comprehend. They illustrate the fact that powerful new tactics are easy to construct
(using tacticals).

5.32 Example Proofs

We shall give a number of example proofs of correctness about programs in IMPI using the above tactics.

First, some basic constants:

let vO - "number 0";;
let vl = "number 1";;
let v2 a "number 2";;
let v3 a "number 3";;
let v4 - "number 4";;

40

I--

IRL-0600-.RR

4J*-.. -. "- -. :t ¼"v-

First we shall prove the example already given In Chapter 2

P[oiitpur, 1; if input = 0 then diverge else skip; output 3]
An.n = 0=*1. 3

The method of proof is simple: we rewrite successively with the semantic equations, and then perform
case analysis on n = 0. Finally, we simplify.

A - ", i l ',vutput,' 'el;
": .Equalz :Var 'input' ^e0)

Dive rge

Skip;
Val ,ýUtput_' 'e3]"; ;

=vO) =,. ,undef-num I 'v3";;

' u, ' .- ' OC_,rst' number I));
"f jul ,V '.. 4_%r ut') (C-ýr,, t (number.. f)) Diverge k p

"• Inu imber I!))

. ,..def_%un I number 3

S: .,AID_TAC ThE:J
-.TAO :THEN

E PR_'TA'C THEN

,'I. CASESTAC n = vO THEN
X' .,7T-AC)

,t proved

a', I .:u ,.t ' i nst rtumher 1))

lfuEq1izi!VAr [rnput') I rC.:,ritnumber 0) DDiverge Skip;
Val I :,utput' ýC.•ri~z týnu:ber 3)])

(n =-number 0) => undefnum I number 3)

Pr- --,us ;ubproof:
.r.•u preved

This is quite a simple program, but it immediately highlights some problems. Firstly, it is very slow
(on a Sun Sparcstation 1+, this proof took about 7 minutes, and generated more than 46,000 primitive
inferences). Secondly, if the proof is done interactively, the intermediate goals are horribly long (taking
five or more screens to display). This Is because there Is as yet no straightforward facility for abbreviating
terms in HOL.

Our second example shows the unfolding of a while loop (the proof takes about 15 minutes):

P[output = 0; while(not(input = 1)) input = input + 1; output = output + l;] 0 = 1

41

ERL-600-RR

g "PROGRAM
(Seql (Val 'output' '-0;

While (Not tnals (Var 'input') ^el))
(Seql [Val 'input' (Plus (Var 'input') ^el);

Val 'output' (Plus (Var 'output') ^e!)1)])
"vO = ^vl";;

e (R•N TAC THEN
SIMPLIFYTAC THEN
RUNTAC THEN
SIMPLIFY TAC);;

OK..
goal proved
I- PROGRAM

(Seql
(Val 'output'(Const(number 0));
While
(Not(Equals(Var 'input') (Const(number 1))))
(Seql

[Val 'input'(Pius(Var 'input') (Const(number 1)));
Val 'output'(Pls(Var 'output') (Const(number 1)))1)1)

(number 0) =
number 1

Previous suoproof:
goal proved

Several examples of equivalence have also been proved using HOL, including the following:

e, + e -e2 e,+ el

c; skip - C

c; diverge cz diverge

We shall give the proofs of just two equivalences:

if b then cl else c 2 - if(not b) then c2 else c1

"g "COMMAND (If b cl c2) = COMM•.AND (If (Not b) c2 cl)";;

e (FUN EQ TAC THEN
GENTAC THEN
COMMAND TAC THEN BOOLEXPRTAC THEN
COND CASES TAC THEN COND CASES TAC THENL

(SIMPLIFY_TAC
SIMPLIFY TAC;
TRIVIAL TAC
REWRITE TAC (]]);;

OK..
goal proved
I- COMMAND(If b cl c2) = COMMAND(If(Not b)c2 cl)

Previous subproof:
goal proved

X:=O; Y :=X+ LY : 1; X:=O

42

ERL-0)600-RR

<~!ND :>'12.(V-11Ix 'X'eo;
VAI y7' (Plus (Var Ix') 'el)])

22.~!A[Val v' y' ^e1; Val 'x, ̂ e0] I
7~'~T A:' THIZN

-ENAr THEN

-'C HEN
.- :-r.?-2ASES-TAC "S' :Stor~e" THEN

7:MPL:FY-JAC THEN--
-7:NE-QTAC THEN
m-7TAJAC THEN
3EN-TAC THEN

::N CAESTAC TH4EN COVE) CASES..TAC) THEN
SIMPL:PYTAC THEN
R -WRE ASL WITHASLTAC [f) THEN
ýCHANGEASM_.TAC I STRIING-RULE) THEN

fx Ccnst (nu.,nber 0)
Val 'y'ýP'P:uztV.3 'x Const(number 1nflI]=

L -ý241 11"I '7' -.:rtst ýnumber 1)) ;Val. 'x' ýCon

-iprclv.ý(

43

ERL-0600-RR

44

I

ERL-0600-RR

Chapter 6 ISABELLE

In this chapter. we shall discuss the theorem prover Isabelle, which has been under development by Larry
Paulson at the University of Cambridge since 1986. Isabelle is also a descendant of the LCF system.
However, it is based on quite different basic concepts, and has a number of features which make it
different from HOL. As in HOL, formulae are manipulated by the language ML (in this case Standard
ML), and the system provides for backwards proof by means of tactics and tacticals.

The main source for this chapter is the Isabelle manual [25]. The theory underlying Isabelle is discussed
in [26, 271.

6.1 Basic Concepts

Isabelle is a generic theorem prover: the logic of discourse is not fixed, but can be chosen from a number
of built-in logics provided with the system. or even defined ab initio (although this is very difficult).
Isabelle has an expressive meta-logic, in which the inference rules and axioms of object logics can be
formulated. Isabelle comes with a number of object logics, including First Order Logic (FOL), Higher
Order Logic (HOL) and Constructive Type Theory (CTT).

Note: when ii ,cessary to avoid confusion we use "*HOL" to refer to Mike Gordon's HOL system. and
Isabelle-HOL to refer to Higher Order Logic as captured as an object logic within Isabelle.

6.1.1 Isabelle's Meta-Logic

The meta-logic used in [sabelle is intuitionistic higher order logic with universal quantification and
equality. It was chosen as being the minimal logic capable of formulating the axioms and rules of
arbitrary object logics.

The table below shows the constnicts used in the meta-logic, and their keyboard equivalents

Table 8 Isabelle Meta-Logic Constructs

Notation Keyboard Description

a = b a == b meta-equality

O = ,,o ==> • meta-implication

01 (O , I o -.0 v 1 ==> 0 nested implication

Ax.0 !x.0 meta-quantification

Ax., %x.0 meta-abstraction
?P ?P scheme variables

Pure Isabelle contains the material common to all logics: theories, rules, tactics, subgoal commands,

types and terms.

45

ERL-0600-RR

6.1.2 Object Logics

An object logic is an ML object of type theory. The axioms and rules are of type thin. Various symbols
are used in object logics; some of their keyboard equivalents are given below:

Table 9 Object Logic Symbols

Notation Keyboard Description

P D Q P - - >Q Implication

P - Q P < - > Q Bi-implication

Wx. P ALL x.P Universal quantification

3x.P EX x.P Existential quantification

-P - P Negation

Isabelle emphasises the natural style of reasoning. To illustrate this, we give the natural deduction system
for intuitionistic first order logic. Each logical connective may have elimination or introduction rules.
For example the rule for implication elimination (denoted by D E) is just the well-known law of modus
ponens in first-order logic.

Table 10 Intuitionistic First Order Logic

Introduction (I) Elimination (E)

Conjunction

A B A&B A&B
A&B A B

Disjunction

A B AvB [A]C [B]C

AvB AvB C

Implication

[A] B ADB A

ADB B

Contradiction

A

46

t,_

3

ERL-0600-RR

Table l0 (Continued) Intuitionistic First Order Logic

Universal
Quantifier

A Vx.A

Vx.A A[t/x]

Existential
Quantifier

A[t/x] 3x.A [A] B

3x.A B

6.1.3 Inference Rules

Isabelle works with inference rules expressed in a natural deduction style. We shall show how inference
rules are "packaged" within Isabelle. Consider the rule &I. In the meta-logic, this is expressed as
follows:

AAB.A = (B => A&B)

which eventually is rendered into the following keyboard characters:

[IA; BI] ==> A&B

(Actually, the variables involved are treated internally as scheme variables ?A and ?B, which may be
instantiated during unification).

6.1.4 Subgoal Package

As with HOL. Isabelle carries out goal-directed proofs, and contains a subgoal package to assist with
interactive proof. A proof state consists of a goal, along with a number of subgoals whose validity
establishes that of the goal. The subgoals can be thought of as proof obligations. Diagrammatically we
display a proof state as follows:

goal
subgoall

subgoal2

When we set a goal in Isabelle we have as our initial proof state

goal
goal

ii which there is a single subgoal identical with the original goal. When we reach a proof state with
no subgoals, we clearly have a proof of the original goal. As in HOL, tactics are available to transform
proof states to new proof states, using the ML function by. However, there is a crucial difference. In
LCF and HOL, a tactic either gives a unique new proof state, or falls. But in Isabelle a tactic can return
more than one, and possibly even an infinite number, of new proof states (how this can happen we shall
see shortly). If T is a tactic, and 0 a proof state, then the result TO of applying T to 0 is written as a
list to capture the various alternatives:

T = [] (failure)
TO = [vJ (unique result)

TO= [1, ,2, ik3, (multiple outcomes)

47
S

ERL-0600-RR

The possibility that a tactic can have multiple outcomes has a profound effect on the way one thinks
about theorem proving in Isabelle. The user tends to think on a grander scale: a proof state is usually
presented with all of its subgoals shown (contrast this with HOL, where one only sees one subgoal at a
time), and a number of proof strategies act on a number of subgoals, automatically instantiating variables
and renumbering the subgoals as appropriate.

6.1.5 Tactics

Pure Isabelle has a number of basic tactics (object logics come with a number of special purpose tactics).
We shall discuss the most important of these.

Recall that Isabelle emphasises the natural style of reasoning; correspondingly, most proof steps are
carried out backwards reasoning using inference rules of the theory. This is called resolution. Isabelle
provides a single ML function to do this (again, this is an improvement over HOL, where a new tactic
written in ML must be provided for each new inference rule).

The basic resolution tactic is resolve tac thmns i. This tactic tries each theorem (object logic rule)
in the list thins against subgoal i of the proof state. For a given rule, say

[lB1 Bk1l==>B

resolution can form the next state by unifying the conclusion with the subgoal, replacing it by the
instantiated premises. Thus if the subgoal is

[I At_. , An I1 ==> A

and A can unify with B, resolution will produce the following new subgoals:

in which the overbars denote the resulting formulae after instantiations have been made. Subgoals
frequently change their appearance as instantiations propagate throughout the proof tree - something
which users of HOL will find strange at first.

Note that unification in Isabelle is full higher-order unification (ie solving equations in the typed
A-calculus with respect to a, /3 and q/ conversion). There can be multiple outcomes, arising from
the fact that there can be more than one higher-order unifier. Multiple outcomes can also arise if more
than one theorem can be resolved with the goal. The tactic will fail if none of the rules can be unified.

Another fundamental tactic is assume_tac i, which tries to solve subgoal i by assumption (again,
this may involve unification).

Reasoning about definitions and deriving new rules is facilitated by a number of rewriting tactics. For
example, rewrite_goalstac thins uses the given definitional theorems for rewriting subgoals.
Rewriting is not as prominent in Isabelle as it is in HOL In fact, it is frowned upon: if we define a
new construct in a theory, the preferred strategy is to derive immediately elimination and introduction
inference rules for the construct, and thereafter to use these new rules in resolution steps. Rewriting with
the original definition can introduce unwanted complexity to a proof.

6.1.6 A Simple Proof

To illustrate theorem proving in Isabelle, consider a simple proof, namely the obvious fact in first-order
logic that:

P&Q : (R D P&R)

A step-by-step proof is given below. We Airst set e gol, and then resolve twice with the rule D I.
The conjunction is then attacked by resolving with &W. This gives two subgoals, the second of which

48

t

E ERL0600-RR

is solved by assumption, and the first by AzE1. Using assumption again solves the goal: the result is a
theorem which Isabelle echoes with scheme variables.

3ýi! :ntRule.thy "P&Q -- > (R -- > R)

-k Z --> R -- > P & R ;
S, Q _>R -- > P & R;

17y jresolve_tic limp-intr] 1);

F •<,. . -- > ?

" P R

Y Y-->S' R r

Q; R 1 F> p R

-by ieov~a ,=n~nr)

--> R -- > R R

by ,:s •:'e t ,

--> &P &

:' -, •Q-~ F; P-

C • - ->ýum -- >: 11

6.1.7 Tacticals

Single-step proofs such as the one above are much too laborious. As with LCF and HOL, tacticals are
available to build new tactics from basic tactics. A selection of basic tacticals is as follows:

tacl THEN tac2
tacl ORELSE Wac2

REPEAT tac
DEPTH FIRST pred tac

However, because tactics can have multiple outcomes, these tacticals are more high-powered than their
counterparts in LCF and HOL. They work by combining sequences of proof states.

The tactic tadl THEN tac2, applied to the proof state 0, first computes tacl (0), giving some
list [(, 01,. ...] of proof states, and then applies tac2 to each of these states, giving as output the
concatenation of the sequences tac2 (t1), tac2 (02), . .

49

ERL-0600-RR

The tactic tat ORELSE tac2 is a form of choice: it first computes tacl (0). If this is non-empty.
it is returned as the result; otherwise, tac2 (0) is returned.

The tactic REPEAT tac first computes tac (0). If this is non-empty, then the tactics recursively
applies itself to each element, concatenating the results. Otherwise, it returns (01.

The tactic DEPTHFIRST pred tac performs a depth-first search for a proof-state satisfying pred.
Usually pred is taken to be "no subgoals", so that the tactic will search for a proof of the original goal.

To show the power of tacticals, we do our example proof again using a single tactic:

P&Q D (R P&DR)

- goal :n: Rule.thy "P&Q -- > (R -- > P&R)";
Level 0
P & Q -- > R -- > P & R

1. P & Q -- > R -- > P & R;

- by (REPEAT
(assume "tac 1 ORELSE
resolve_tac (impintr, conjintr, conjunctl] 1));

Level 1
P & Q -- > R -- > P & R
No subgoals.

Even more dramatic is the built-in tactic fast tac which is powerful enough to solve a large class
of basic goals in logic:

- goal :nt_ Rule.thy "P&Q -- > (R -- > P&R)";
Leve: ,
P & Q -- > R -- > P & R
1. P & Q -- > R -- > P & R;

- by (fast_ tac [1 I);

Leve. 1
P & Q -- > R -- > P & R

No subgoals!

6.1.8 Cormments

We omit here a discussion of how new object logics are constructed in Isabelle: this is by far the most
difficult aspect of the system. In the next chapter, we shall show how simple extension of an existing
theory (such as Isabelle-HOL) can provide us with a program verification environment.

50

I

ERL-0600-RR

Chapter 7 PROGRAM VERIFICATION IN ISABELLE

7.1 Introduction

In this chapter we shall discuss some experiments in reasoning about programs using Isabelle.

We showed in Chapter 5 that HOL can be used to reason about denotational semantics definitions. In
principle, we could use Isabelle-HOL (i.e., Isabelle's object logic HOL) in the same way: definitions
can be set up, and proof steps devised exactly as was done for the HOL system. Rewriting would take
care ot a lot of the proof steps. The advantage of using Isabelle in this way would be the possibility of
answer extraction (using scheme variables). The disadvantages are that Isabelle is better at using derived
inference rules than rewriting with definitions, and that the built-in theories provided with Isabelle are
not as extensive as those in the HOL system.

We also claimed in Chapter 5 that HOL was not as well-suited to the study of operational semantics.
In contrast, Isabelle looks ideal for this purpose, because it stresses the natural deduction style, and
works well with derived inference rules. If we regard our operational semantics as the rules for a logic.
then we can quickly construct powerful proof procedures in Isabelle which allow reasoning about quite
complicated programs.

For the above reasons, we shall concentrate on the implementation of operational semantics in Isabelle,
using as working examples the languages FUNC1, FUNC2 and FUNC3 presented in Chapter 2. Our
aim is to autormate the t ollowing:

1, Evaluatton ot phrases, for example

E • let x = 7 in x - 3 =::')n

2. Proofs of correctness, for example: the swap routine

{(x,a),(y.a)} I- let z =x; x=y; y =z inx=,b

3. Reasoning about equivalence of program phrases, for example

let x= li iix+2 2 lety =2iny+ 1

7.2 The Language FUNCI

How can we implement the operational semantics for FUNCI? We have remarked before that it is
ditficult to set up new object logics in Isabelle from scratch. The easiest way to proceed is to extend
an existing object logic. For our purposes, we shall extend the theory arith (which is an extension of
HOL) to a new theory called flthy. It is important to note that we make no use of the features of HOL.
except for the fact that it is a typed logic. The semantic domains such as identifiers and values, and the
various kinds of language phrase (here expressions and declarations), are then regarded as HOL types.
We could equally well have pictured them as sets, but this makes things more complicated.

We shall not discuss the Isabelle code in detail, but concentrate on the essentials (as an example, the 4
complete source code for the larger language FUNC3 is given in the Appendix).

7.2.1 Syntax and Semantics

The first thing to be done is to capture the syntax of the language. We do this by means of a number
of inference rules:

*/31 fl-..hy
extend theory arith-thy "fl' " ' '

51

ERL-0600-RR

("Const-type",

"n : nat ==> Const (n) : expr"),
("Var-type",

"x : ide ==> Var (x) expr"),
("Plustype",

"[I el : expr; e2 : expr !I
Pius (el,e2) : expr"),

("Let type",
"[I d : decl; e : expr I ==>

Let (d,e) : expr"),
("Val •type",

",[I x : ide; e : expr I=
Val (x,e) : decl"),

("Comp_type",
"Hf dl : decl; d2 : decl H ==>

Comp (dl, d2) : decl"),
("empty type",

"empty : env"),
("bind-type",

"I : env; x ide; v : vallue i =>
bind (x, v, E) env')

("lookupl rule",
" 2i E env; x ide; n : nat il =>

lookup (x, bind (x, n, E), n)"),
("lookup2 rule",

"env; x - ide; y : ide; v value
w value; "(y = x : ide); lookup (x, E, n) I1
==> lookup (x, bind (y, w, E), n)"

("combine_empty",
"1 : env ==> combine (E, empty, E)"),

("combinebind",

"H! E- : env; E2 : env; 23 env; x : ide; a : value;\
\ combine (E1,-2,E3) I ==> \
\ combine (El, oind(x,a,E2), bind (x,a,E3))"),

These rules are very simple. For example, Plustype expresses the fact that if el and e 2 are
expressions, then Plus (el, e2) is also an expression. The constrctor Plus corresponds to the
symbol "+" in our language. Similar rules will hold for every other program phrase.

Environments need a little thought. We could implement an environment as any one of the following:

1. as a primitive type, augmented by axioms for a constructor function;
2. as a lambda-expression in HOL; or

3. as a list of pairs of type (expr,value)

The first approach was chosen because it reduces the dependency on the host object logic HOL to a
minimum, and because it makes us assert as axioms exactly those inference rules needed to reason about
environments. These rules are the last six given above. They assert the existence of a special environment
called empty and a constructor function called bind. The lookup rules tel1 us how to look up values in
the environment The last two rules tell us all we need to know about combining environments, where
combine(E.E',E") is a predicate which holds if E"=EE'.

The next step is to write down the rules of the operational semantics. In writing these rules, we render
E I- e =: v as seq(E,ev), and E - d =* E' as seq'(EE'). Hen seq is remad as "sequent". We give just
the first three rules:

I"Construle",
"Hl E env; n : nat 1I ->r

seq (E, Const (n), nW"),

52

ERL-0600-RR

2

""•' • : e V; X• : l e a

"" : -; :r, v; r v: envr ; ýe: . ;
-t; ; zeq' -,

% ::b n E, E', E,' ; • ,q E ' e • =

Once this has been done, we have the following lists of inference rules summarising the syntax and
semantics of the language:

Table II Inference Rules: Syntax and Semantics

Name Description

type_rules inference rules capturing the syntax

lookup.rules inference rules for bind

combinerules inference rules for combine

expr-niles inference rules for expressions

declrules inference rules for declarations

langrules expr rules @ decl-rules

1`11f11lOfllMs'Ims trivial assumptions taken for granted, such as: x
ide, y : ide
m :nat, n : nat

e : expr
E: env

7.2.2 Proof Procedures

The construction of tactics to reason about programs in FUNCI is quite straightforward. The basic
,trategy is to keep resolving on sequents (and attempting to reduce complex environments) until none
remain, and then to apply the trivial type rules and common assumptions to finish off the proof. The
only thing we need to be careful about is not to resolve any sequent of the form seq (E, ?e, v). in
which there is a scheme variable holding the place of an expression. Let us call such a sequent unsafe.
It' we were to resolve this sequent using the language rules, we would get multiple outcomes, and the
proof effort will be wasted following wrong leads. Our method of getting over this is to define

FIRSTONLY :(term- > bool)- > (int- > tactic)- > tactic

to be a function which chooses the first subgoal for which a given selector function is true, and applies the
given tactic, failing otherwise. Using this function, along with the selector function issafe_sequent.
which is trite when the sequent is safe and false if not, we can define step-tac, which is the primitive
proof step to remove language sequents. Our all-purpose tactic is fl_tac.

;~I =
FIRSTCNLY is-safe-sequent (resolvetac lang.rules);

val ang_t acI
REPEATI (steptac THEN TRY (REPEAT1 reducetac));

53
S

ERL-0600-RR

val simp_tac =
REPEAT (arestac simprules 1);

val f!_tac = lang tac THEN simp_tac;

As an example, consider the proof of:

E H- let y = m in let x = y in let y = n in x => m

We set the goal with a scheme variable in place of the answer, and use our tactic fl_ta:

goal fl_thy
"seq (E, Let(Val(y,Const(const(m))),

Let(Val(x,Var(y)),
Let(Val(y,Const(const(n))),Var(x)))), ?a)";

by fl _tac;

Level I
seq(E, Let(Val(y, Const(const(m))),

Let(Val(x,Var(y)),
Let(Val(y,Const(const(n))),Var(x)))),

val (const (m)))
No subgoals!

Notice that Isabelle has obligingly given us the result of the evaluation, as well as proving the goal!

Our second example is the swap routine using a temporary variable:

{(x, a), (y, b)) H- let z = x; x = y: y = z in x > b

goa. f!_thy

"seq (bird (x,a,bind(y,b,e.pty)),
Let (Comp (Val (z, Var(x)),

Comp(Val(x, Var(y)),
Val(y, Var(z)))), Var(x)), ?a)";

by ff tac;

'evei I
seq (bind (x, a,bind(y,b,empty)),

Let (Comp(Val(z,Var(x)),Comp(Val(x,Var(y)),
Val (y,Var (z)))),Var (x)) ,b)

No subqoals.

7.3 The Language FUNC2

Now we shall consider how the semantics of FUNC2 may be implemented in Isabelle. The main hurdle
to overcome is that a program phrase can have more than one rule associated with it. For example, recall
from Chapter 2 that there are two rules for conditional expresion:

E l- eo => true E F- el v

E I- if eo then el else e2 = v

E I- eo => false E I- e 2 => v

E H- if eo then el else e 2 =:P v

(which will be called If 1 rule and If 2_rule). Consider te folOlwing exMpWe

{(x, a), (y, b)) F- if fale then x elme y z b

54

ERLL-0600-RR

Suppose we try to prove this starting with stop~tac:

-,i goa f2_thy nls

"1.e ýbind 'x,,bia~, bindt(y, b empt)v

Var(x)nt-f)VrxVry b)";

5. eq(bind(x,a,,bind(y,b,einpty)),IfConst(ftkv ',ar(tt)) ý'ar

3e(bind (x, aibirid~y,b, em pty) If(Vart(xf), Vrx)Vr

Vaunit -ýXp

Notice that the fifth subgoal is asserting that false evaluates to true - step_tac has chosen the wrong
rule (namely ltljule) to resolve on! We have gone down a "blind alley" in the proof.

55

ERL-0600-RR

Initial Proof
State

If r~ule• __rule

Failure No Subgoals

Failure

To solve this iroblem, it will not be enough to rearrnge the order of the language rules used by the
resolution tactic, because them will always be examples for which the wrong rule is applied. What we
need to do is use backtrcking searh. The sppoi tactics ae

56

ERL-O6OO--RR

'.:. s'--t• _-ac -r$:CaNLY issafe_sequent (resolve-tac lana ru-'es).
-''K L-ncr_'.c = .REPEATI (step-tac THEN TRY (REPEAT! reduce_tac) T i4E,

APP._AFFLICABLE is-sequent;

•:::_-ac = REPEAT {arestac simp-rules 1);
-",, DEFTH_FIRST (hasfewerprems 1)

(langtac THEN simp_tac);

The tactic f2-tac carries out a depth-first backtracking search, looking for a proof state with no
sub.c'A:s. We have modified lang_tac so that it will fail if the repeated application of step_tac and
reduce_tac leaves behind any sequents. If we do not do this, simp-tac may give rise to infinite
outcomes, and the search will not terminate.

- . Z-31 2_hy
":q !bjind :x, a, bind iy, b, empty)),

C-.nrst f r x) Vary) b)y

b'! x,,b~nd(y,b, , ty) , f Const (f fL VVar (x) ,Var (y',
a.=',x, b ,bi:,b,empty)),1f(Const(ff),Vartx);,Iz-: ,b,

.-.., , '•,•, z ~ !,' 7 fýCenst(ff),V~rk'x) ,Var ' , by

Our tactic is able to cope with the following well-known LISP example, in which x is used both as a
bound and free variable:

{(x. n)} 1- let (val z = Af.Ax.f(f(x)));

val g = Af(f, x) in (z(g) m) * (m, n), n

;c-al f2_hy
"zeq ibirnd fx, a, :empty \ ,

Let f'Co:mp (Val -z, "

Fn ',, Fn {x, Apply jVar(f), Apply(Var(f),Var-x) - i,
:cC , cj, Fn f. Pr :Var(f), Var(x))))),

Apply ,Apply',7ar,=:, V.at~g)), Const(const(m)))), , """

f -_ve 3 1

req (bind (x, --, eMpty;
LetC':.tp(Vnl(z,Fn f,Fn(x,Apply(Var(f),Apply(Var(f) ,ar xi !

Val tg,Fn(f,Pr(Var(f),Var(x))))),
Apply (Apply lVar(zi ,Var (g)),Const (const (m)))),

pair(pair(val(const (m)) ,a) ,a))
N., subgoals!
val it (I unit

The proof took only 75 seconds, including a garbage collection, which compares extremely well with
the HOL system.

57

ERL-0600-RR

7.4 The Language FUNC3

The extension to FUNC3 is not difficult. We need to give function closures a fourth afgument, as
described in Chapter 2. We also need to add inference rules for the unfolding operation on environments.
To control the search, it also becomes necessary to make tactics such as lookup_tac, combine tac
and unfoldtac safer, in that they are forced to fail if the environment being examined contains too
many scheme variables.

Isabelle correctly evaluates the resulting environment for the standard definition of the factorial function:

E I- rec(val f = \x.if(x = 0) then x * f(x - 1))

Work on this language is continuing, and we shall not give any other detailed examples here.

7.5 The Language IMPI

Implementing operational semantics for imperative languages is just as straightforward. Earlier, we
described part of the operational semantics for the language IMPI. The language has been fully
implemented in Isabelle (with environments present as place-holders to allow for the eventual addition of
local scoping) and some non-trivial proofs carried out. A translator has also been built to allow programs
to be written in a simple syntax.

For example, consider the following program containing a while loop:

Eý-x:=0; while(x<=0)x:=x+l,M=z-?M

Isabelle proves this rather quickly, and extracts the answer (the resulting memory):

goal ii_ýhy
"seg' (E, Como (Assign (x, Const (0)),

While (Less equals (Var (x), Const (0)),
Assign (x, Plus (Var wx), Const (Succ(0)))))), M, ?M) ";

seq' (E,Comp(Assign(x,Const(0)),
While (Lessequals(Var (x),Const(0)),

Assign(x,Plus(Var(x),Const(Succ(o0l)))),M,
;pdate(x,constant(0 #+ Succ(O)),update(x,constant(0),M)))

No sucgoals!
vai it = () : unit

Some arithmetic is required to proof programs such as these correct, and Isabelle has at the moment
only limited support for arithmetic. Despite this, I believe that Isabelle is a powerful and natural tool
for the study of operational semantics.

58

S

ERL-0600-RR

Chapter 8 DISCUSSION AND CONCLUSIONS
Our work has highlighted some of the advantages and disadvantages of using the automated theorem
provers HOL and Isabelle for the study of language semantics and program verification. We begin with
some specific comments on the HOL system.

8.1 Comments on HOL

8.1.1 Ease of Use

HOL is certainly a difficult system for a beginner to learn. The large number of theorems available, as
well as the fine-grained nature of most of the inference rules and tactics, means that the new user must
invest considerable time and effort in before even simple proofs can be attempted. The first taste of
HOL can be quite frustrating, especially without a HOL "expert" to be a guide. There are a number of
program verification/theorem proving environments - such as mEVES , Gypsy and MALPAS - which
are simpler. and whose proof commands may even be more powerful. However, these systems are not
flexible. Once the user gains familiarity with HOL, its expressive power and flexibility becomes more
and more apparent. I believe that HOL is an invaluable tool -not just as a proof assistant, but as an
aid to the clean formulation of mathematical theories.

8.1.2 Expressiveness

Higher order logic is a large and powerful logic: because it is higher order and polymorphic, it is expressive
enough to be able to capture the most sophisticated mathematical theories. It allows denotational semantics
definitions to be expressed in a natural and succinct way. Also, the soundness and level of mathematical
rigour of the HOL system give us a high level of confidence in the proofs which it generates.

Reasoning about programs requires some fairly subtle mathematical techniques. The built-in inference
rules and tactics of I [OL are of a fine-grained nature, providing the user with a flexibility not available in
many other automated reasoning systems. If a theorem or goal does not exactly fit the form required by
a built-in tactic or inference nile. it is possible to carry out quite delicate manipulation until the required
form is achieved.

8.1.3 Documentation

The new documentation which has appeared with the release of HOL88 makes it possible for a user
working alone to make a lot of headway in understanding the system, and how to construct proofs. The
manuals [22] are well-written and informative; clearly much care has gone into their production. The
document called DESCRIPTION is a good overview. The TUTORIAL has excellent sections on parity
checking, protocol verification and modular arithmetic, but I think could benefit from having many more
short examples. I believe that the case study by Jeff Joyce on Microprocessor Systems is a fine piece of
work, but seems out of place in a tutorial. There is rather too much emphasis on hardware verification
(though this is natural, given the interest of the Cambridge group in this area). The REFERENCE manual

is still incomplete, but will be greatly improved in the near future. It would be useful to have the tactics
listed by type (as well as alphabetically).

8.1.4 Tactics

The HOL system's expressiveness is especially apparent in the way that new tactics can be programmed,
either in the meta-language ML or by the use of tacticals. These tactics can be specially tailored for the
problem domain being studied. Our aim in verifying programs was to derive tactics which capture proof
procedures as general as possible, without sacrificing efficiency or clarity.

There are by now a large number of useful new tactics (especially in the group theory library).

On the debit side, there are a number of points to make. Most seriously, the treatment of tactics does

not compare well with Isabelle. In HOL, a tactic either fails, or gives a single outcome, in contrast with

59

ERL-0600-RR

Isabelle, where multiple outcomes are common. Backtracking is not possible within HOL There is also
no mechanism for carrying out answer extraction (which is handled in Isabelle by scheme variables).
This is a pity; answer extraction is very useful for reasoning about programs.

Much proof hacking is involved with manipulating a large number of assumptions, and carrying out such
operations as rewriting them against each other or with given theorems. The built-in tactics such as
POP_.ASSUM and related tactics are not easy to work with, while the tactic RESTAC seems to be quite
limited in its power to solve goals if the assumptions are not in a very specific form. There is clearly a
need for a range of fine-.grained tactics for rewriting assumptions, and manipulating them in general. An
experimental set of such tactics has been developed by Katherine Eastaughffe at DSTO. Although it is
not difficult to write such tactics, it is time-consuming; such tactics should already be part of the system.

I think that HOL will only become really useful to a large number of people if the collection of tactics
is completely overhauled. Presently there is a bewildering variety of tactics, with all sorts of odd names,
some of which are high-powered useful tactics (such as REWRITETAC and its relatives), and others of
which are highly specific "proof hacking" tactics written to solve a particular problem but not of general
applicability. I think that it would be valuable to spell out some consistent naming conventions for tactics
which people should try to stick to (a kind of allowed syntax for names), such as the prefixes ONCE,
PURE etc. At the moment (to take a trivial example) we have ASMREWRITETA.C and POP._ASSUM,
with different abbreviations used. Also, some older tactics will have been superseded by newer, more
useful ones, and they should be deleted.

8.1.5 Proof Management

The subgoal package allows great flexibility in the way theorems are proved. HOL can be used
interactively (as a proof assistant) to develop proofs step by step. We can also use it as a proof checker by
providing HOL with a complete proof and seeing whether HOL produces the required theorem as output.

There are problems with HOL's proof management. Proofs do not always look very 'natural'. Medium-
sized to large-proofs can be quite laborious and time-consuming to construct, involving a good deal of
proof 'exploration'. Often, a vast number of cases must be considered, and one then has the choice of
defining a different tactic for each subgoal, or else using a single tactic as a blunt instrument on all the
subgoals. Using a single tactic can improve the readability of the proof, but can be quite inefficient -

some proofs can take several minutes, or even hours, of computation.

8,1.6 Instantiation of Types from Parent Theories

One of the most serious difficulties with HOL is that theories are inherited en bloc, and cannot be
instantiated to specific instances. Essentially, what is needed is a mechanism for the refinement of types.
For example: one might have a type (say 'colour') declared in a particular theory, and prove various
things about it at a general level. Suppose then that we have a descendant of this theory, in which we
want to instantiate this type to be (say) an enumerated type of the form (red, white, blue). Presently this
cannot be done in HOL, but it seems essential to have such a facility if HOL is to become really useful,
especiall) in reasoning about mathematical theories which depend on some higher level abstract theory
for many results. The theory of modular arithmetic, where group theory is used to prove facts about
abelian subgroup of the integers, is a case in point. It has been studied by Elsa Gunter in the TUTORIAL
[221. She avoids the problem by defining predicates such as GROUP, SUBGROUP and NORMAL for
arbitrary sets. Saying that a given set of integers is a subgroup, say, of the integers, amounts to saying
that this predicate holds for this set. However, this method can be cumbersome in practice. Gunter has
suggested an extension to HOL[28] in which theories can be instantiated, but the suggested enhancements
are not widely accepted, and have not been implemented.

8.1.7 The Type Package

Tom Melham's type package is extremely usefuL: has taken a lot of the drudgay out of working with
new compotun dat types in the style of ML recursive dta types. However, the cument package does
have some limittonm:

VW VWu 1.12 o HOL nih.,. some, so all of dme cuiiamL

6 .0

I

ERL-0600-RR

1. It does not allow the definition of mutually recursive data types.

2. It does not allow the most general kind of recursive type (for exarm~ple, one cannot define a
recursive domain of values V such as

V =B + (V - V)

in which functions from V to itself are "first-class objects", and can themselves be values.
(Of course, we would not expect it to be easy to define such a domain!)

3. As for recursive functions, the only ones allowed are those which are recursive purely on one
of their arguments. This is quite restrictive: it does not allow functions which are doubly
recursive, or functions like

gcdxy = (x=y-x 0 (x<y-gcd xy-x gcdx-yy))

where the function is recursive on Ix-yl.
4. Infix constructors are not allowed.

Clearly, formulating HOL theories which capture the formal semantics of programming languages will
be much easier if the type package could be extended to cope with the above constructs.6

8.2 Comments on Isabelle

Our comments on Isabelle will necessarily be brief, because many have already been touched upon. and
because most of the comments about the strengths of HOL apply equally well to Isabelle.

8.2.1 Ease of Use

[sabelle is much harder to learn than HOL, particularly because one must contend with a number of
object logics. Writing new logics from scratch is quite difficult to grasp. However, generally Isabelle is
a cleaner, more elegant and faster system than HOL (NB: new versions of HOL built on standard ML
should not suffer from this comparison).

8.2.2 Object Logics and Theories

Isabelle is flexible in allowing a number of object logics, unlike the HOL system, in which the logic
is fixed. There is. too, more flexibility in the ability to use more than one theory in a single session.
Theories can be passed as arguments to various functions. Definitions can be overwritten in Isabelle
theories- in HOL, however, one must quit and start again.

Isabelle's version of higher order logic is more cumbersome to use than the version present in the HOL
system. Support for basic arithmetic is provided in Isabelle, but it is not as extensive as that in HOL.

Isabelle does not have anything equivalent to HOL's type definition package.

8.2.3 Libraries

Isabelle has as yet a modest collection of libraries, compared to those available in HOL. The main reason
is that [sabelle does not yet have a large enough user base.

8.2.4 Tactics

Isabelle has lull high-order unification (unlike HOL). Tactics can have more than one outcome. Back-
tracking and search are possible, and allow the construction of very powerful proof procedures. Scheme
variables permit answer extraction in proofs - this is very useful.

Isabelle's meta-logic allows inference rules to be expressed and reasoning about them to be done in a
uniform manner. This is made easy by a single tactic which carries out resolution in the meta-logic.
However, in HOL, which has no meta-logic, one must write a new tactic for each new inference rule.

5 A package written by a Stoup a Aadrus dom allow for mutually recuiave typea.
6 The type package haIt Wen sligildy improved in Venifice 1.12 of HOL.

61

I

rRL-0600-RR

8.3 Suggestions for Further Work
The work on implementing denotational semantics for imperative languages described in this paper can
be extended in a number of ways. Maris Ozols and the author have constructed a HOL system for
reasoning about a small imperative language [29]. Programs written using a simple, syntax are translated
(along with specifications, if any) into HOL terms using a yacc-generated translator. Special purpose
tactics allow interactive reasoning about programs, essentially using symbolic execution. A good deal of
careful theorem proving is required for while loops in the system.
The work on operational semantics in Isabelle suggests a number of extensions, for example the study of

1. typed languages such as ML (with type inferencing)
2. imperative languages (study already begun)
3. process algebras such as Milner's Calculus of Communicating Systems (CCS) (an initial

study begun)

A proof system for a significant subset of the Core language of Standard ML has been constructed by
M Ozols and the author [30]. For future work, I believe that the study of process algebras offers the
most challenge and will be the most rewarding; understanding concurrency remains a most difficult and
long-term goal of computer science.

6

ERL-0600-RR

Chapter 9 Acknowledgments
+This paper was submitted as a thesis towards the degree of Graduate Diploma in Science at the Australian
National University. I wish to thank my supervisor, Dr Malcolm Newey, Department of Computer
Science. ANU, ror suggesting the topic, introducing me to HOL, and for helpful discussions. I should
also like to thank Professor Robin Stanton for his support and encouragement.

A large part of this work was carried out while I was a member of the Trusted Computer Systems Group
of DSTO. I wish to express my gratitude to Dr Brian Billard, Head of Group, and to Mr Mans Ozols
and Ms Katherine Eastautghffe for their interest in this work, and for useful discussions.

63

!

ERL-0600-RR

Bibliography

[1] L. E. Moser and P. M. Meiliar-Smith. Formal Verification of Safety-Critical Systems. Software-
Practice and Experience, 20:799, 1990.

[2] D. A. Schmidt. Denotational Semantics - A Methodology for Language Development. Allyn and
Bacon, Boston, 1986.

[3] M. Nivat and J. C. Reynolds (eds). Algebraic Methods in Semantics. Cambridge University Press,
1985.

[4] M. J. C. Gordon. The Denotational Description of Programming Languages. Springer-Verlag, Berlin,
1979.

[5] J. E. Stoy. Denotational Semantics: the Scott-Strachey approach to programming language theory.
MIT Press, 1977.

[6] P. D. Mosses. Denotational Semantics. Handbook of Theoretical Computer Science, page 577, 1990.

[7] C. Strachey. Towards a formal semantics. In Working Conference on Formal Language Description
Languages for Computer Programming, pages 198-220. IFiP TC2, 1964.

[8] D. Bjorner and 0. N. Oest (eds). Towards a Formal Description of Ada. Springer Verlag, Lecture
Notes in Computer Science Vol 98, 1980.

[91 G. D. Plotkin. A Structural Approach to Operational Semantics. Report, University of Aarhus,
Denmark.

[101 R. Milner. Language semantics. Notes for Computer Science 3 Course, University of Edinburgh,
1986.

[I1] R. Roxas and M. C. Newey. Proof of Program Transformations. HOL '91 User Meeting, Aarhus,
Denmark, Australian National University, 1991.

[12] C. A. R. Hoare. An Axiomatic Basis for Computer Programming. Communications of the ACM,
12(10):576-583, 1969.

[131 P. Cousot. Methods and Logics for Proving Programs. Handbook of Theoretical Computer Science
(ed J van Leeuwen), page 843, 1990.

[14] R. Milner M. Gordon and C. Wadsworth. Edinburgh LCF: A Mechanised Logic of Computation.
Lecture Notes in Computer Science, No 78. Springer-Verlag, 1979.

[15] R. Milner, M. Tofte, and R. Harper. The Definition of Standard ML. MIT Press, 1990.

[16] A. Wikstrom. Functional Programming Using Standard ML. Prentice-Hall International Series in
Computer Science, 1987.

[17] M. C. Newey and J. R. Ophel. ANU ML User's Manual. Technical report, Australian National
University.

[18] L. C. Paulson. Logic and Computation: Interactive Proof with Cambridge LCF. Cambridge University
Press, 1987.

[19] R. Cardell-Oliver. The Specification and Verification of Sliding Window Protocols. Computer
Laboratory Technical Report 183, The University of Cambridge, 1989.

[20] J. J. Joyce. Using Higher Order Logic to Specify Computer Hardware and Architecture. In
D. Edwards, editor, Design Methodologies for VLSI and Computer Architecture, pages 129-146.
Procs. of the IFIP TC10 Working Conf. on Design Methodology in VLSI and Computer Architecture,
Pisa, Italy, September 1988, North-Holland, 1989.

[21] A. Cant and K. Eastaughffe. The Application of Higher Order Logic to Security Models. Research
Report ERL-0577-RR, Electronics Research Laboratory, DSTm, 1991.

[22] Cambridge Research Cente, SRI Internatioal and DSTO Australia. The HOL System: DESCRIP-
TION. TUTORIAL and REFERENCE, 1989.

[23] A. Church. A Formulation of the Simple Theory of Types. Journal f$Symbollc Logic, 5:56-68, 1940.

64

ERL-0600-RR

[24] M. J. C. Gordon. Mechanizing Programming Logics in Higher Order Logic. In G. Birtwhistle and

P. A. Subrahmanyamn, editors, Current Trends in Hardware Verification and Automated Theorem
Proving, pages 387-439. Springer-Verlag, 1989.

[251 L. C. Paulson and T. Nipkow. Isabelle Tutorial and User's Manual. Computer Laboratory, University
of Cambridge, June 1990.

[26] L. C. Paulson. The Foundation of a Generic Theorem Prover. Journal of Automated Reasoning,
5:363-397, 1989.

[27] L. C. Paulson. Isabelle: The Next 700 Theorem Provers. Logic and Computer Science (P Odifreddi,
eed), pages 361-385, 1990.

[281 P. J. Windley. Abstracts from the HOL User Group Meeting. 1989.
[29] A. Cant and M. A. Ozols. The Role of Denotational Semantics in Program Verification. Formal

Aspects of Computing (to be submitted), 1992.
[30] A. Cant and M. A. Ozols. A Verification Environment for ML Programs, to be submitted to ACM

Sigplan Workshop on ML, San Francisco. June, 1992.

6

65

ERL.0600-RR

APPENDIX A
Example: Denotational Semantics in HOL

% I:mpiementation of Benotational%

Semantics for a simple Imperative Language
FILE: impl.ml

% see: Denotational Semantics, by D Schmidt p 76

system 'rm impl.th';;
new_theory 'impl';;
map newparent ['string'; 'digit';'decimal'];;
map loadf ('startgroups'; 'stringrules'I;;
loadf '/packages/hol/sun3/tactics/local/odd';;
loadf '/packages/hol/sun3/tactics/local/asm';;

% -- -
Definitions of Semantic Algebras

and Basic Operalions

-- 1
1 Identifiers 1
-- 1

new_typeabbrev ('Identifier', ":string");;

-- I
% Numbers (a lifted domain) I
% Note: Truth Values should be lifted too but they are not I

let NumberAxiom = definetype 'Number'
'Number = number num undef_num';;

let Number_ nduct = proveinOuction thm NumberAxiom;;

save thmi ('Numberone one', proveconstructors one one Number Axiom);;
save-thm ('Number_distinct', proveconstructors_distinct NumberAxiom);;
save thm ('Number-cases', provecases thm Number_Induct);;

let IS NUMBER DEF = new recursive definition false NumberAxiom
1:S NUMBER 5EF'
"(is number (number n) = 7

(is-number undef_num = F)

let IS UNDEFINED DEF- new recursive definition false NumberAxiom
'IS -UNDEFINED DEF'
"(is-undefined (number n) = /

(isundefined undef_num =)

let GET NUM DEF - new recursive definition false NumberAxiom
'GET NUM DEF'

"(get _num (number n) = n) /\
(getnum undefnum - 0) ";;

I--%
I The Store - includes an "undefined" or "error" element %
1-- %

let Store-Axiom - definetype 'Store'
'Store - store (Identifier->Number) I undef store';;

let Store Induct = prove induction thm Store Axiom;;

let Store one on. -

save thm ('Store one one', proveconstructors one one StoreAxiom);;)

let Store distinct -

save thi ('Store-distinct', prove-constructors distinct StoreAxiom);;

66

1-RRL-0600-RR I

e th.n tr a s 3:3' pr.'vec.CaseU...hm zor*_1nduct);

3TRZP-ASSIJMETAC (3PEC t Store-cses) THEN
(ASM-RE74RITETAC (Storo..distLnct]);

z iiw_,-efinition t UEWSTOREDEF',
~zrore hi. incler num)*i)

ACC:iFw-r--ýursive-1.f-fnit~i'n false St~ore-Axiom

I 'indef_--tre undef nurn),

"I~at.i vr istore in) =store (\.j4 > v I M) '
.ucor v linleftstore =indef.st~ore)';

if .- vr-. 41o pr'rper, then 'ipdating~ it.
n.evpr l.~sto ,kn kindefined store 4

=.~1lintrestore) ==>-(ipdate I. v s3 indef~t..ore),.
!EllTAC THEN STP.IP-TAC THEN
'tore-CASESTAC -:Store' THEN
REWI:TE_7AC 1UnPrDATE-CEF; Sr-ore...distinctl THEN

nrhdef-storeV,
A.:'"E-TAC 1.7PC 1, i :'' lenti fler. indef...num)p LEMMAI) TH4E"

' -'2 ZEC i 'ir ndef-_num, Store~disrirnct) ýE

jyritx -or tne Langliage

1-t Expression..Axiom = efirne..ype 'Expression'
'Expression Const HNtiber I

Var :dencirier I
Plus E/~rsso Ex.pression';;

let Expression.Indtucý.= prove-inductibn-thm Expression-.Axiom;;

.~v,~thmn ('E-reiononeArna''

S n'rxresc n-,cL~zne xr.sincon

I~or~ectonstruict-'ors.Ilstnct. E:'pression-.Axiom);

vethin ('Expression..cases',
prove~cases-thrn Expression_:nduct),

1-1 BEXprezsion-.AXitoM lefine~typ* IBExpression'

True
False I
Equtals Expression Expression I
NFrt BExpressionl;

1-ct BExpvesion-1nducn prove~induction~thm BExpression_.Axiom:;

.jave-nhm PSExpression-one-one,
prove,.constructors-.one-one BExpressionAxiom) U

.dave thin) 'Expression~distinct.',

67

ERL-0600-RR

proveconstructors_distinct BExpressionAxioni;;

save_-thm ('3Expressioncases',
prove cases thm BExpressionInduct);;

"et Command Axiom = define-type 'Command'
'Command = Skip I

Val Identifier Expression I
If BExpression Command Command I
While BExpression Command I
Seq Command Command I
Diverge' ;

let CommandInduct = prove_induction_thim CommandAxiom;;

save thin ('Command one onel,
prove_constructors one one CommandAxiom);;

savethim ('Command-distinct',
proveconstructorsdistinct CommandAxiom);;

save thin ('Command-cases',
prove cases thm CommandInduct);;

newtypeabbrev ('Program', ":Command");;

let SEQL DEF newlist_rec definition ('SEOL_DEF',
"(Seql Li = Skip) /\

(Seql (CONS command sequence) = Seq command (Seql sequence))");;

% Fixed Point Combinator %

new constant ('FIX', ":(->)->");;

let F!X_EQ = new-axiom ('F:X_EQ', "!f:*->*.FIX f = f (FIX f)");;

% -- -
% Semantic Equations %
k--%

Ie: 7-XPR DEF = newrecursive definition false Expression Axiom
...XPRDEEF'

"(EXPR (Const v) s = Hs - undef_store) => undefrnum I v)) /\
(EXPR (Var i) s = access i s) /\
(EXPR (Plus el e2) s =

(:s nu.mber (EXPR el s) /\ is-number (EXPR e2 s))
= n-.,rnber (getnum (EXPR el s) + get_num (EXPR e2 s)) I undefrnum)";;

let BCOL EXPRDEF - new recursivedefinition false BExpression Axiom
'BOOL _XPR DEF'
"(BOOLEXPR True s = T) /\

(BOOL EXPR False s - F) /\
(BCOL EXPR (Equals el e2) s = (EXPR el s = EXPR e2 s)) /\
(BCOL EXPR (Not b) s = "(BOOL EXPR b s))*;;

% NB: the function COMMAND is strict in its store argument %

.e- COMMAND DEF - new_recursive_definition false Command Axiom
'COMMAND DEF'
"(COMMAND Skip s - s) /\

(COMMAND (Val i e) s -
(s = undef store) -> undef store I update i (EXPR e s) s) /\

(COMMAND (If b cl c2) s -
(s - undef store) -> undef store t

((BOOL EXPR b s) -> (COMMAND cl s) I (COMMAND c2 s))) /\
(COMMAND (While b c) s-

FIX (\f t.(BOOL EXPR b t -> f (COMMAND c t) I t)f s) I\
(COMMAND (Seq ci c2) s -

(s - undef store) -> under store) COMMAND c2 (COMMAND cl s)) /\
(COMMAND Dive*rqe s - undefstore)";;

let PROGRAM DEF - new definition ('PROGRAMDEF',
"PROGRAM (p:Proqram) - \n.let s - (update 'input' n newstore) in

68

ERL-0600-RR

~ *co.mmAND p s) in (access 'out~put, s,),),;

Tactics for Reasoning in imp2.

2A,!,~' ['ztrt..groups'; 'string-..rules'; 'digit.'; 'decimal'J;

packages /hol sun3 /tact~ics/ local /asmn

a.cr~ics Used in tche Proofs q

COWVTAC (DEPTHSONV st~ring-EQ_.CONV(;:
3TRING-P;LE _~VRULE ýDEPTH-.CONV st~ringEQCNV)

:.cQJACCOWI_TAC (ONCEDEPTH-CONV DECEQ_ COMy);
1-r.EC_.E-'_RULE =CONV_.RULE (,ONCEDEPTHCONV DEC. QCONV);

1ýn ZEC-ADDOA =M CONVTAC (ONCE.DEPTHCONV DECADDCCNJ);;
i1ý' DECADDRr:LE =CONIVRULE (ONCE-DEPTH-CONV DEC-ADD-C0NM)

NB :-ETHC-'IV liverges here

1 .~t ~EQTACCCN'ITAC (DEPTH-CONV PUN-EQ-CONV);
1-~ NEJ:JJE CNVRULE (DEPTHSONV UTN-EQ-CONV)

: -,m~rnd_ CASES TAC t=DrSJCA;SESTHEN
STR:PASSUMETAC (SPEC t Command-casesý, -HEN

3.SMREWRITE-TAC (Commanddi.stinct!;

- T -' E2TACCASES-THEN
- - ý-,?ASSUM1EjIAC (SPEC t. Store~cases) THE
* (~ASM-.RE74RITE-.TAC (St~ore~distinct.] ;;

* 2IMPL:FY-TAC does most. of t~he work in simplifying expressicn~s

:ES IS-.UNCEFINED-D.EF;
13-NUMBER-DEF;
GET.JIUMDEF:
ACCESS-.DEF;

N';mber-,ne-)ne:
111' mer_ it.c.

St~ore-one-orne;
Srore-4isti~nct.:

ADDCLAUSES; I takes care of trivial arithmet~ic
LEMMA2 1;

1.ý!t SIMPLIFYTAC
REPEAT

(CHAX4GEDTAC
(ASMRE74RITE_.TAC DEFS THEN
BETATAC THEN
STRING-TAC THEN
wimEQTAC THEN
ADDTAC ORELSE
QNCEREWRZTETAC [FIX..EQj)1fI

L'qt tXPR-TAC =REWRITETAC (EXPRDEF] ;

ERL-0600-RR

let BOOL-EXPR-TAC -REWRITETAO CBOOL EXPR DEFI;;

let COMMANDTAC . REWRITE_TAC (CCMMANDDEF; SEQLDEFh;;

etPROGRAMTAC = REWRITETAO (LETDEF; PROGRAM_-DEFI THEN BETA_TAC;;

let RUN TAO = PROGRAMTAO THEN
COMMANDTAC THEN
BOOLEXPRTAC THEN
EXPR TAC;;

70

ERL-0600-RR

"(I el :expr; e2 expr I I =-> Apply (el, e2) expr"),
(":f-type",

"I el :expr; e2 expr; e3 :expr Ii if> (el, e2, e3) expr") ,
("Fn type".

"[I x :ide; e expr 1] =" n(x,e) expr*),
("Let type",

"[7 d :decl; e expr 11== Let de) expr"),
("Val type".
"H*[x :ide; e expr 11 ==> Val (x,e) deci"),

("Comp type",
"P dl :decl; d2 decl 11 ==> Comp (dl, d2) deci"),

("And type",
"(~I dl :decl; d2 decl 11 ==> And (dl, d2) decl"),

("Rec type",
Id:deci ==> Rec (d) decl"),

("tt -type..,
"tt :constant"),

("ff type",
"-ft: constant"),

("plus type",
"plus :constant"),

("minus_type",
"minus :constant"),

("-times type",
"times :constant"),

("zero_type",
"zero :constant"),

("lempty_type"l,
"lempty :env") ,

("bind_type",
"[I E :env; x :ide; v value 11 ==> bind (x, v, E) env"),

("'val type",
"c:constant ==> val (c) :value"),

("const_type",
'In: at ==> const (n) :constant"),

("pair_ type",
"ý v1 value; v2 :vallue i]=>pair (vl,v2) value"),

("1closure-type",
x i de; e :expr; E env; env 11==
closure)x,e,--,E') :value"),

)"Const _ruale"l,

".1[F2 env; c constant =>seq (2, Const (c), val (c))I
("Var rule",

"E 2 env; x ide; v :value ; lookup (x, 2, v) 11
\==> seq (2, Var Wx, v)"),

("Pr rule",
"T1 E2 env; el :expr; e2 :expr; vl value; v2 value;\
\ seq (2,el,vl); seq (E,e2,v2) 11 -->\
\ seq (E, Pr(el,e2), pair(vl,v2))),

("Applyl _rule",
"(I 20 env; E :env; E2' env; Ell env; Ell' env;\

\ e expr; el expr; e2 expr;\
\ v value; vI value;
\ seq (20, ell closure(x,e,E,E')); seq (EO,e2,v);
\ unfold CE',2',2''); combine (E, E'', 2''')
\ seq (bind(x,v,2'''), e, v') 1) N
--=> seq (20, Apply(el,e2),v')"),

("Apply2 _rule",
"(I E env; el :expr; e2 :expr;\

\ v value; v' value; c :constant;\
\ seq (E, ell val(c)); seq (E,e2,v); \
\ apply (val(c),v,v') 11
\->seq (E, Apply(el,e2),v')"),

("Ifl rule",
"CT E2 env; el :expr; e2 :expr; e3 expr; S
\ eq (E,el,val(tt)l; seq(E,e2,v) 1)
\--> seq(E,If(el,e2,e3),v)"),

("Mf rule",
"(I) 2:env; el : expr; e2 : expr, e3:expr;
\seq (E,el,val~ff)H; seq(E,e3,v) 11
\--> seq(E,If(*l,e2,*3),v)"),

("Fn rule",
"-IE: env; x ide; e :expr 11 -
\seq(E, Fn(x,e), closure(x,e,E,empty))"),

72

ERL-0600-RR

ErV £rv E ' enlv, d dclci e expr:
I .E, zornbine ýE, E', E');

*1v x -w~ ide, e expr; seq CE, e, v) i)
-- ~~' EValfx~e). bind (x,v,,ernpry)),),

E -tnv E': env; El env; E2 env; E3 env,*\

-,qE dl', El);. :rc.bine .,E, EI, E')
E, -12, E'2); combine (£l1,E2,E3)11I ~

i ' E, -cp ~d 1,2) , E3)L

-?nv de ernv; El env; E2 :env; E3 ev

:E . , El); Zseq' ',E. d:,, E2); combine l,2~
:Z-' And ýdl~d2), E3P)*)

z' -v;E enlv; El, env; d :dec].
z n~cld 7.£,';seq''£.d,E') 1) =z> seq' (E, Rec dý,Z'wý

Efl; -?v; ide; v -vallie 1i 1~
x~p , bind IX,.r*, E). V.)*

env; x:< ide; y ide; v value;
-y x ile) ; lookup (X, E, v) I

cP tx, bind ~Y. w, E.) , , 1n)

-. nv £2 :env; E3 env; x ide, a value;\

bind~x~a.E£2), b ind (x, a, E3f)

-,:--c de; e : '.pr; -infold (E, E.E'' II

m nat; n : nat Ti =\

pai:rs(vami ontm)nvl~ostnI'
11'; -''&r ($-

-rpI ',a! I.- iausy (val(:rt-,lto). va(Succv(nfl. a(t))),

val Rntyp *jetaxioin (0)h Val (e

7,1 Letjyzr-Pe = get~axiom f3_thy Lent..type*;

va 1 Var type get..axiom f3.thy 'Varlcypel;

"Va]. Andlytype gec..axiom f3_.thy 'Appdytypel;

*va! RCQ.type =get-axiom f3_.thy *Rectypel;

val enpty~rtype get~axiom t3..thy "empty..type',

73

ERL-0600-RR

Val, tt~type = get axiom ff3_thy l"tt type";
val ffff type = get ax jam ff3_thy "fff type";
val plus_type = get_axiom ff3_thy "plus type";
Val Tminus_type = get _axiom ff3_thy "minus_type";
Val times_type = get_axiom ff3_thy "times_type";
val. zero type = get_axiom ff3_thy "zero type";
val bind_type = get_axiom ff3 -thy "bind type";
Val val _ type = get_axioim ff3_thy "val type";
val const_type =get_axiom ff3_thy "consr type";
Val pair type = et_axiom ff3_thy "pair -type";
val closure type =get axiom ff3_thy "closure_type";

val Const _rule -get _axiom ff3_thy "Const _rule';
val Var -rule = get axiom ff3_thy '*Var rule";
Val Pr_- rule =get_axiom ff3_thy "Pr rule";
Val Applyl rule -get_axiom ff3_thy "Applyl _rule";
val Apply2_rule -get_axiom ff3_thy "Apply2_rule";
val 1ffl _ rule = get _axiom ff3_thy "Iffl _ rule";
val 1ff2_-rule = get _axiom ff3_thy IIff2 _ rule";
Val Fn_ rule =get _axiom ff3_thy "Fn -rule";
val Let -rule = get_axiom ff3_thy "Let rule";
val Val _ rule = get axiom ff3_thy "Val rule";
val Zomp_rule =get axiom ff3_thy "Camp_rule";
Val And -rule = get_axiom ff3_thy "And rule";
Val Rec-rule = get axiom ff3_thy "Rec rule";

val lookupi rul7e = get axiom ff3_thy "lookupl rule"*;
val lookup2 -rule = get axiom ff3_thy I"lookup2 -rule";
Val combine empty = get axiom ff3_thy "combine empty";
val combine-bind = get axiom ff3_thy "combine -bind";
val u;nfold _empty = get axiom ff3_thy "unffald__empty";
Val unfold-bind =get axiom ff3_thy "unffold_bind";
val plus rule =get _axiom ff3_thy "plus -rule";
val minus _rule getaxiom ff3_thy "'minus rule";
val ti.,,es rule =get _axiom ff3_thy "times rule";
val zerol _rule =get _axiom ff3_thy "zerol rule";
Val. zero2 -rule q et _axiom ff3_t.hy I-zero2_rule";
Val equiv-deff get axiom ff3_thy "equiv-deff";

(" nference rul;es for sequents in the language

val expr-r.;Ies = :Const _rule, Var_ rule, Pr rule, Applyl_rule, Apply2_rule,
:ffl rule, 1ff2 rule, Fn_ru-le, Let_rule];

Va. decl -rules = [Val-rule, Camp_rule. And-rule, Rec-rule];

va* lang rul'es - decl rules~expr _rules;

(* basic reduction rules
---------------- --- -*

val loakup_rules = [laakupl _rule, llookup2_rule];

val combine-rules [combine-bind, combine_empty];

Val inffold_ rules - [unfoald-bind, unffol~d empty];

val basval-rules -[plus_- rule, minus_ rule,
times-rule, zeral-rule, zero2_rule];

-~~~~~~~~~~ ~ ~ ~~ -- ----------- - - - --- - - - - -- - - - - - - - - - -
C"simpliffication: basic logical, arithmetic and typing rules I-

val HOL-rules - [refl, diffOeqO, add convO, ditffconvO,
conjlintr, disjlintri, disjlintr2,
iff-intr, True-intr];

val HOL typ. rules -arith type rlsgfSucc type, Zero..typeh 6

val El typo rules

74

ERL-0600-RR

:;.~r.tyeVar-type, Pr...type, Apply~type, If-t7Pe, Fn-.'/pe, -

Lýettype, Valtype, Comp~type, And~type, P.eec..t/'Ie,

pl*:,_ýr. mntio-r~ype, !irnes~tlpe, zero...ype,
Sctonsr~type, pair..type, closure~typel;

gjoal f3_rhy
x le; y Ide; z ide; f :ide; q ide;

y\ ide) -(y x ' de); \
z idle); -(Z x ide); \
f ide) -(f =x ide);

ide) -(Z y ide);
-' ide)f -(f y ide);\

=r ide) ; -(g y ide);

Ide); *fIz f ide);\

U! ie); -(g f ide);
mna::;! n :-nat;\
A val':e; Io value;,
e *.xpr; e, expr; E env 11 T*;

.~,. .im~_~U- ,7:,'on~asrs 4 HOL~rk.lJes 4 HOL~..type..rules 4 _y~ u.s

* 2Jfiltactics for proving programs in f3

* Zicr~i~itr~for zubgoals. These are used to make
-,r nn-:ic i;2.ife resolution rules are used

- -- - -- -- -- -- -- -- --- -- -- -- -- --- -- -- -- -- --- -- -- -- --

17~ .:.i f ixvar, ?E-)

;n ~ ne (seqt andaJlso not (could..unify(g., t)):

- -i. - .j seq '?E,?e,?v)';
g ergoal 1:

ý,,i~ eq =couild-unify (g,)

- ~al f3_thy *seq (?E,fixvar,?E)*;

O~_ i af-vseq C t is..seq --) andalsq not (could~unify(g, V

_ý;e.-.ec =fn 1: . (is...,eq C) orelse (is..seq' t);

- o~al 0'3_thy 'combine (?E, 'E. ?E)
val -4=g etgoal 1;
fi~;n iscombine t = :ouiduni fy(g, t);

joa f3.r-hy 'combine (?E~fixvar,?E)';
g ergoal l;-ý ----

,u;n is-safe-combine C = (Is~combine t) andalso not (could~unify~g, 1,)'

goal ,3_thy 'uinfold (?E, ?E, ?E)
'11 g =qcgoal 1;

fuin is..untold t zzcould unify(g, t);

goal f3,..thy *unfold (?E,fixvar',?E)'i
vAl g =getgoal 1;
flin is-.safe-unfold t a (isuinfold t) andalso not (eould..unity(g, t));

goal f3,.thy 'lookup (?x,?E,?v)*;
val g getgoal 1;

75

ERL-0600--RR

fun is lookup t = couldunify(g, t);

goal f3_thy "lookup (?E,fixvar,?E)";
val g = getgoal I;
fun is safelookup t = (is lookup t) andalso not (could unify(g, t));

fun outgoal i
tn state => let val (,_,t,_) = dest state(state,i) in t end;

- --)-
(" NOT APPLICABLE fails when there is a subgoal for which "
(t a given selector is true, and succeeds otherwise)
- --- -)

f.n NOT APPLICABLE selector =
let fun tac (i,n, state) =

if i>n then
all tac

else
if (selector (outgoal i state)) then notac else tac (i+l,n, state)

in Tactic(fn state =>
tapply(tac~l, length(prems_of state), state), state)) end;

(- .---
V" FIRSTONLY chooses the first subgoal for which the selector U

C' function is true; it then applies the given tactic, and
(" fails otherwise ')
- - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - -)

fun FIRSTONLY selector tf =

let fun tac (i,n, state) =

if i>n then
no tac

else
if (selector (outgoal I state)) then tf(i) else tac (i-l,n, state)

in tactic(fn state =>
tapply(tac(l, length(pres_of state), state), state)) end;

--- --

C' reduction tactics

C' lookup tac: reduces using tne lookup rules

(' combine tac: reduces using rules for
combining environments U

C�' nfold tac: reduces using rules for
C' unfolding environments U

C' basval tac: reduces using the rules for predefined
C' constant functions

)' reduce tac: performs a single reduction

val lcokuptac
FIRSTONLY is_safe_lookup (resolve tac lookup rules);

val combine tac -

FIRSTONLY is_safe combine (resolve tac combinerules);

val unfold tac -

FIRSTONLY issafeunfold (resolve tac unfold-rules);

val basval tac - FIRSTGOAL (resolvetac basvalrules);

val reduce tac -

lookuptao ORELSE combine tac ORELSE unfold tac ORELSE basval tac;

-.--

(" step tac: applies a lanquage rule once, and safely "
--

76

ERL-0600-RR

i•:;r'•,c:•,••.r.•l Ap plies .the 1,anguage rules, ?

* ~ ~ Vn ~~:i i'~*frt>r .ach ztep it possible
* " il- if iny ,equtintra emain

.. PEEATI ýscep-tac THEN TRY (REPEAT1 reduce-ta ,...
CoTAPLICABLE ± s~ienl~l

i,_ i:I .he joal by repeated assumptions
jyj ,nue of the ýype informarion,

S ":nr~•an& in the premijes.
------- -------------.-.-.. . .----------.

v1 :±imDp_:ac REPEAT sare._;•ac simp-rules 1);

fC: 5 jenccj-p'irpose tactic for proving goals by

" " pth-fiu•t :•erAr'h

",):E'H_:7:':T (has -ewerprems 1)
lang.tac THEN simp-tac):

77

ERL-0600-RR

APPENDIX C
Example: Translator for FUNC3

- --- -'
""ranslate.y

/" yacc source code for converting beL-len programs
expressed in a simple functional language to '/
suitable goals for Isabelle's HOL

- --- --

*rnclude "translate.h"
%I

%start text
%union

i.t rum;
String str;

%token <str> NUMBER IDENTIFIER PAIR APPLY IF THEN ELSE FN LET IN TRUE FALSE
%token <str> VAL COMP AND REC COMMENT TURNSTILE EMPTY
%token <scr> ENV EVAL SCHEME ZERO ML
Wtype <str> expr bexpr decl env bindlist
%eft '-
%'.eft '

text: ,, 2 othUng "/

text comment
text query
text nl

ccz-ent: COMMENT fprintf(outfile, "Ws", $1); }

quýery: env TRNSTILE expr EVAL SCHEME
fprintf(outfile,

"\'qgoal f3_thy \n\"seq(%s, %s, %s) \"; by f3_tac;\n\n", $1, $3, $5);
env TURNSTILE decl EVAL SCHEME
i forintf(outfile,

"\qoal f3cthy \rn"seq' (%s, %s, %s) \"; by f3_tac; \n\n", $1, $3, S5);

ML I fprintf(outfile, "%s\n", $1);

en:.-$ = makenullop(EMPTY); }
bindlist '1' ($$ = $2; 1

bindlis: 'I(' IDENTIFIER ',' NUMBER '1'
$$ = make binop (ENV, $2, z. kevalue(NUMPER,S4));

i bindlist ',' ' (' IDENTIFIER ',' NUMBER ')'
i5S = make ternop (ENV, $4, makevalue(NUMBER,S6), Si);

expr: NUMBER I $5 = makenumber ($I); I
IDENTIFIER SS = make :lop (IDENTIFIER, $i); 1

expr ',' expr I $5 make I'wýop (PAIR, $1, $3);
expr expr j $- = makebinop (APPLY, $1, $2);

IF bexpr THEN expr ELSE expr
($$ - make-ternop (:F, $2, $4, $6); }

FN IDENTIFIER '.' expr I $$ - make-binop(FN,$2,$4); I
LET decl IN expr I $5 - make_binop(LET,$2,$4);)

I expr '+' expr ($5 = makebinop (APPLY, makenullop('÷'),
make binop (PAIR, $i, $3)); 1

1 expr '' expr $$ - makebinop (APPLY, make_nullop('"*),
make binop (PAIR, $1, $3));

expr '-' expr $$ - make binop (APPLY, make nullop('-'),
make binop (PAIR, $1, $3)); 1

I '(' expr '1)' 1 $$ - $2; I

78

ERL-0600-RR

LýX.:pr PU E f 3 make-.nuJ.op iTRUS)
FALSE m 3~rake..nullcp (FALSE);

ZERO -:.pr 3$ 'ake~biflop (APPLY, make~nullop(ZERO).32-':
S3 2;

AL:CErJT:F:ER expr (;^4$ make..binop(VL 32 4
-b~1 C 3 make..binop (C'DMP, $1, $3);

1.eci AND 1-cl $ make-binop (AND, $1, S3)
PE2_ 3$cl make-.inop (REC,52);

1' $3 52; 1

:E*LnfiC.- zrlin;

in ineno;
* u r gc, <trrgv)

~r irj fl:

.2?: nr~:: , -C,;n~i :7.nsr (%s) n~) ;be

Strirvi t srig alloc (bufsize);

2printr-Ins Jz~CPi) brbreak

:-ring f~ monzt~nin's . beak

Cse ZERO: e =2o

.-printt(t '.Cons I.CeO n ; break;

sýprin~tt f (cpt j; break;

*ýprint~ m *.-onsn -Imjp); break

zprint' -epY') bekr-dturnIt

ERL-0600-RR

int bufsize = strlen(s)÷20;
String t = (String) malloc (bufsize);
switch (c)

case IDENTIFIER:

sprintf(t, "Var (%s)", s); break;
case REC:

spr'ntf(t, "Rec (%s)", s); break;
i

return t;

String make_binop (c,tl,t2)
int C;
String t1, t2;

int bufsize = strien(ti)-strlen(t2)+20;
String t = (String) malloc (bufsize);
switch (c)

i
case FN:
sprintf(t ,"Fn (%s, %s" , tLi, t2); break;

case APPLY:
sprintf(t ,"Apply (%s, %s)" , tl, t2); break;

case PAIR:
sprintf(t ,"Pr (%s, %s)" , ti, ,2); break;

case LET:
sprintf(t ,"Let (ts, %s)" , ti, t2); break;

case VAL:
sprintf(t ,"Val (%s, %s)" t i1, :2); break;

case COMP:
sprintf(t, "Comp (%s, %s)", tl, t2); break;

case AND:
spr'ntf(t, "And (%s, %s)", ti, t2); break;

case ENV:
sorintf(t, "bind (%s, %s, empty)", tl, t2); break;

return -;

String make ternop (c,tl,t2,t3)
:nt c;
String tl, :2, t3;

int bufsize = strien(t:1)÷strien(t2)+strlen(t3)+20;
String : = (String) malloc (bufsize);
swLtcn (c)

case IF:
sprintf(t, "If (%s, %s, %s)", tl, t2, t3); break;
case ENV:
sprintf(t, "bind(%s, %s, %s)", tlt2,t3);

i
return t;

yyerror(s)
char "5;

fprJntf(stderr, " %s near line %d\n", s, lineno);

/a

I" lex.l: lexical analyser
I- -- -

extern int lineno;
#include "translate.h"
#include "y.tab.h" iti%8
p.,

ERL-0600-RR

n iznencý..';
l~rnt2RNSTILE

- ~~.Lr:;EVAL;
r~.r.FN;

f .: rn; IF;
-~ -.~~t';rnTHEN;

:~t-ýin ELZE;

~i r n ND;

-~'u RUE;
-' r.?-t'irn FALSE;

vaI retlrn VAL;
r re!tirn ZERO;

-::A-:: yylval.str
(String) mal~loc (yyleng);

str.:v ly yytext); return SCHEME;
.... \n-f yylval.str =

(String) malloc (yyJleng),

r ~r n -'y:MMENT; I

(string) malloc (yy/leng);,
~.:cr:nry yyl~vA1.z~r, yytext - 2);
yy:,>r yyleng-4l = - 1'-/ strip brackets

:1)* yl*a..ztr (String) malloc (yyleng);

(:~yyy1lvAJ..tr, yytexc);

NUM;r' ~'BER;
:.i-A-: -:-ZC9) yyl~val.str (String) mal~loc (yyleng);

.01

........................ I

y f :h.Ar *Ztring;

tr4 I ., mke-.nurnber U

,tring mnake..var ;
Stin j maKe...v~a1'e(

String rtake..rerncop(I
Zti k_#mnptyci

A;"

ERL0600-RR

82

I

ERL-0600-RR

DISTRIBUTION

Copy No.
Defence Science and Technology Organisation

Chief Defence Scientist

Central Office Executive) 1

Counsellor, Defence Science, London Cnt Sht

Counsellor, Defence Science, Washington Cnt Sht

Scientific Adviser, Defence Central 1

Scientific Adviser, Defence Intelligence Organisation 1

Navy Scientific Adviser 1
Air Force Scientific Adviser

Scientific Adviser, Army 1

Electronics Research Laboratory

Director

Chief, Communications Division Cnt Sht

Chief, Electronic Warfare Division Cnt Sht

Chief, Information Technology Division I

Research Leader, Command and Control I
Research Leader, Intelligence I

PRSC3I 1
Head, Command Support Systems Group I

Head, Information Systems Development Group I

Head, Information Processing and Fusion Group I

Head, Software Engineering Group I

Head, Trusted Computer Systems Group I
Head, Architectures Group I

Head, VLSI Group 1

Head, Image Information Group I

A. Cant (Author) 41

K. Eastaughffe I

M. Ozols I

S. Crawley 1
Publications and Component Support Officer I

Graphics and Documentation Support 1
Libraries and Information Services

Australian Government Publishing Service 1

Defence Central Library, Technical Reports Centre I
Manager, Document Exchange Centre, (for retention) 1

National Technical Information Service, United States 2

Defence Research Information Centre, United Kingdom 2

Director Scientific Information Services, Canada I
Ministry of Defence, New Zealand 1

83

ERL-0600-RR

National Library of Australia I
Defence Science and Technology Organisation Salisbury, Main Library 2
Library Defence Signals Directorate, Melbourne 1
British Library Document Supply Centre I

Spares
Defence Science and Technology Organisation Salisbury, Main Library 6

84

Department of Defence Page Classification* Deartmnt o DefnceUNCLAS SIFIED

DOCUMENT CONTROL DATA SHEET Privacy Marking/Caveat
N/A

la. AR Number lb. Establishment Number 2. Document Date 3. Task Number

AR-006-933 ERL-0600-RR January 1992

4. Title 5. Security Classification 6. No. of Pages 84

PROGRAM VERIFICATION USING 77 Fo Ien 7. No. of Refs. A
HIGER RDE LOICocument Title AbstractHIGHER ORDER LOGIC

S (Secret) C (Confi) R (Rest) U (Unclass)

"For UNCLASSIFIED docs with a secondary distribution
LIMITATION, use (L) in document box.

8. Author(s) 9. Downgrading/Delimiting Instructions

A. Cant N/A

1 Oa. Corporate Author and Address 11. Officer/Position responsible for

Electronics Research Laboratory Security SOERL
PO Box 1600
SALISBURY SA 5108 Downgrading ...

1Ob. Task Sponsor Approval for Release.

DSD

12. Secor.ary Distribution of this Document

APPROVED FOR PUBLIC RELEASE

Any enquiries outside stated limitations should be referred through DSTIC, Defence Information Services,
Department of Defence, Anzac Park West, Canberra, ACT 2600.

13a. Deliberate Announcement
No Limitation

13b. Casual Announcement (for citation in other documents) No Limitation

* W Ref. by Author, Doc No. and date only.

14. DEFTEST Descriptors 15. DISCAT Subject Codes

Co t ter program verification, High level languages, 1205
S antics, Logic Programming

1 16. A tract

This paper describes a number of experiments in program verification
carried out within two automated proof assistants, namely the HOL (Higher a
Order Logic) system and Isabelle. Various approaches to programming

0 language semantics are described. Theories and tactics for proving the
correctness of programs written in small functional and imperative
languages are then constructed within HOL and Isabelle.

Doc SWIýt f"

Page Classification

UNCLASSIFIED

16. Abstract (CONT.)

7. Imprint
Electronics Research Laboratory
PO Box 1600
SALISBURY SA 5108

18. Document Series and Number 19. Cost Code 20. Type of Report and Period Covered

ERL-0600-RR 822522 RESEARCH REPORT

21. Computer Programs Used

Higher Order Logic
Isabelle

22. Establishment File Reference(s)

23. Additional information (it required)

V4

1

