AD-A255 380 @

R ARER

FINAL REPORT FOR 1991

MECHANICS OF COMPOSITE
MATERIALS FOR SPACECRAFT

George J. Dvorak and Mark S. Shephard

_ DTIC_

ELECTE
AUG 3 11992

This document has been approved 1
for public release and sale: its
distribution is unlimited. |

Submiitted to

Mechanics Division
Office of Naval Research
800 North Quincy Street

Arlington, Virginia

Contract Number N00014-90-]J-1918

~ <) EE JAE WE B BN EE EN BN Ny QU S Ey Ew Bn S ..

92-23937
\92 8 28 040 AN




Accesion For

NTIS CRA&I

DTIC TAB
DTIC QUALITY LNu-ECTED 8 Unannouiiced

Justiication ]

By
ONR Contract Information , Dist inution |

ONR Contract Number: N00014-90-J-1918 Puatlabiny e

Scientific Officer: Dr. Yapa Rajapakse o
Principal Investigators: Dr. George J. Dvorak and Dr. Mark S. Shephard | Dist oo
Project Duration: June 1, 1991 to December 31, 1991

Description of the Scientific Research Goals Lq_:l—-«--f--

During this seven month project efforts continued on the development of advanced analytical
and numerical techniques which can be effectively combined to provide advanced thermo-
mechanical modeling of composite materials with nonlinear constituents. The areas of emphasis
during this period were:

* development of thermoplastic and thermoviscoplastic models of composite materials using
transformation strains

» finite element formulation of bimodal plasticity model in combination with various forms
of dimensional reduction

* idealization control for composite materials

Significant Results of the Project

Thermoplastic and Thermoviscoplastic Models of Composite
Materials using Transformation Strains

This part of the research program focused on development and implementation of an
innovative approach for nonlinear problems in multiphase media to replace classical solutions
which rely on finite element analysis of representative volumes. The latter approach has been
employed in our previous research work in the context of the Periodic Hexagonal Array (PHA)
model [9, 14] and required substantial computational effort.

The new approach evolved from our research in uniform fields and transformation fields in
two-phase and multi-phase elastic media [5, 6, 7, 8] and leads to a simple solution of nonlinear
thermomechanical problems in multiphase media. In particular, thermal and inelastic strains in
the phases are treated as transformation strains and the inelastic deformation problem is reduced
to an elasticity problem for the transformation strain in the phases. When such strains are taken
as piecewise uniform in the discretized microstructure, problems of this kind lead to a system of
linear algebraic equations which involve certain eigenstrain influence coefficients and the given
instantaneous constitutive relations of the inelastic phases. The influence coefficients depend
on the microstructure and on elastic constants of the phases, and are therefore constant. These
influence coefficients can be evaluated for any given representative volume element.

This solution strategy is advantageous when the representative volume is subjected to many
incremental loading steps under homogeneous boundary conditions. The results coincide with
those obtained by conventional finite element analysis, but can be found more efficiently. In
particular, in viscoplastic analysis of composites where the inelastic strain in the phases is derived
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from the thermoviscoplasticity theory which was developed under the current project [1], or other
theories with a similar framework, the local stress and strain rates depend on the overall applied
thermomechanical load and the current local fields. In this way, the solution can be found fairly
easily in the new method. In contrast. evaluation of the local fields with the PHA model anc
the finite element method requires evaluation of a local instantaneous stiffness matrix which is a
function of the local stress or strain rate. This causes certain numerical complications since the
local stress and strain rates vary continually.

In the reporting period, we have fully developed computational schemes for evaluation of the
local fields in fibrous media with elastic-plastic and viscoplastic phases using the transformation
strain approach described above. Expansion of the transformation strain method to symmetric
laminated plates was also formulated. The approach for laminates treats the collection of
subelements present in all the layers as one multiphase media subjected tv certain constraints
which are derived from the micromechanical model for each layer, such as the PHA model.
and the constraints imposed on the strains in the plane of the laminate. In this way, the
procedure developed for nonlinear analysis of multiphase media is applicable to laminates when
the appropriate influence coefficients derived from the laminate analysis are used.

Finite Element Formulation of Bimodal Plasticity Model in
Combination with Various Forms of Dimensional Reductions

The two mode semi-phenomenological model underlying bi-modal plasticity should give a
distinct computational advantage to models such as the periodic hexagonal array (PHA) model
in which a local finite element solution is required. However, the combination of the need to
always check both modes at a point and the complexity of resolving the slip planes for the
matrix dominated mode introduced substantial increases in the computational effort required to
apply this model. In particular, the need to construct and solve the roots of a quartic polynomial
introduced substantial computational expense [16]). The original implementation of the bi-modal
plasticity mode! introduces only a small computational improvement over the coarse mesh PHA
model. A more careful examination of the implementation of these procedures has identified a
number of areas where specific improvements can be introduced. Those implemented to date cut
the computational effort of bi-modal plasticity in half, thus increasing the attractiveness of the
model. Additional improvements are possible.

Plate and shell formulations, and the equivalent reduced dimension finite element formula-
tions operate in a five dimensional stress space. Since the basic bi-modal plasticity model was
formulated in a full six dimensional stress space, specific modifications were required to eliminate
the sixth component so it could be used with these finite elements [2].

These versions of the bi-modal plasticity model were then used with both three-dimensional
solid and our previously developed discrete layer theory element [4] finite elements on various
test cases [2, 3, 13]. With total loads taken to from four to seven times that causing initial yield, a
number of solution quantities were compared. Since the linear fibers provide the majority of the
structural stiffness, the overall deformations showed only a small influence due to matrix yielding.
The difference between the solid and discrete layer shell idealizations were not noticeable.
Examination of resultant bending moments along supports showed a more p.onounced influence
to the nonlinear material behavior with redistributions of nearly fifteen percent. Examination of




the stresses through the thickness showed a more pronounced redistribution in specific locations
due to the material nonlinearities. The local stresses also demonstrated the biggest difference
between the solid and discrete layer shell idealizations. Although direct inplane stresses were
nearly the same for both idealizations as the load was increased well past initial matrix yield,
the through the thickness shear stresses showed major differences as the load increased. These
differences can be important in the prediction of failure modes which are dependent on the
values of the transverse shear stresses.

In addition to the above studies, a detailed examination of the formation and distribution
of both the fiber and matrix dominated modes in the layers of both a thin and thick transverse
load plate were examined [12].

Idealization Control for Composite Materials

The goal of the majority of our development efforts to date have focused on the specific
idealizations associated with the mixing models in the presence of nonlinear constituents, and the
through the thickness kinematic assumptions on plate and shell type formulations. The experience
gained in combining these two levels of idealization [3, 12] clearly indicates that the reliable
modeling of the physical behavior of composite structures requires the balanced consideration of
each of the analysis idealizations used to go from the physical system to the numerical analysis
models. The goal of our efforts on this portion of the project was to begin to build on our
expertise in adaptive finite element techniques and idealization control methodologies [11, 15] to
develop idealization control techniques for nonltinear composite materials.

Specification and categorization of the idealization steps associated with the analysis of
composites with nonlinear material behavior is complicated by both the complexity of the
idealizations needed and the close interrelationships among the idealization steps. The prediction
of the performance of composite structures must explicitly account for the physical scales that
control the behavior of interest. There are a variety of methodologies available to account for
these physical scales in an analysis. Of particular interest in composite structures with material
nonlinearities is accounting for micromechanical behavior. The methods available to account for
micromechanical level nonlinearities include:

»  application of micromechanical mixing models using idealized micro-geometry and boundary
conditions to predict the macromechanical constitutive relationship at the material points in
the macromechanical model

»  application of local micromechanical level models coupled with macromechanical models

= application of micromechanical models throughout the entire analysis domain

The second analysis idealization steps critical to the effective analysis of composite materials
are dimensional reductions.

Initial efforts in composite idealization control have focused on implementing and extension
of our currently available techniques within a general analysis idealization control framework
[15]. In addition Professor Fish at RPI has begun extending his superposition concepts to control
the multiscale idealizations common to composite materials [10]. The combination of these two
key capabilities, is allowing us to use a new approach for the adaptive control of the multiscale
idealizations needed for the effective analysis of composite materials [12].
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IDEALIZATION CONTROL FOR THE
ANALYSIS OF COMPOSITE MATERIALS

M. S. Shephard, J. Fish and M. W. Beall

Scientific Computation Research Center
Rensselaer Polytechnic Institute
Troy, NY 12180-3590

Abstract—The various idealization steps required to go from the physical description of a
composite structures to the numerical analyses used to predict thermo-mechanical response
are overviewed. A general methodology for the reliable control of these idealizations steps
in proposed. One component of this methodology is a general analysis idealization control
system which can easily combine a variety of analytic (numeric) and knowledge-based
procedures through a goal manager and analysis strategist. The second component of the
methodology is the use of idealization regions typically added to lower level analysis models

using superposition techniques. A simple example that demonstrates some of the concepts
is presented.

INTRODUCTION

The reliable modeling of the physical behavior of composite structures requires the
balanced consideration of each of the analysis idealizations used to go from the physical
system to the numerical analysis models. Specification and categorization of the ideal-
ization steps associated with the analysis of composite materials with nonlinear material
behavior is complicated by both the idealizations needed and the close interrelationships

among the idealization steps. This paper discusses a set of techniques currently under
development to control these idealizations.

The prediction of the performance of composite structures must explicitly account for
the physical scales that control the behavior of interest. There are a variety of method-
ologies available to account for these physical scales in an analysis. Of particular interest
in composite structures with material nonlinearities is accounting for micromechanical

behavior. The methods available to account for micromechanical level nonlinearities
include:




* application of micromechanical mixing models, using idealized micro-geometry and
boundary conditions, to predict the macromechanical constitutive relationship at the
matenal points in the macromechanical model

* applicadon of local micromechanical level models coupled with macromechanical
models

* application of micromechanical models throughout the entire analysis domain

Since most composite structures are small in at least one direction, dimensional
reducton is also an important analysis idealization which is commonly applied.

The techniques under development build on two key capabilities. The first is an
overall idealization control modeling methodology (1, 2, 3] which combines analytic and
knowledge-based applications with the model representations of the composite structure.
A goal manager is used to specify the analyses to be performed and the analyses are
controlled by an analysis strategist responsible for performing, evaluating and improving
the analysis idealizations. The second capability, which is key to the efficient and
reliable application of analysis strategies appropriate for composite materials, is multiscale
solution procedures based on the mesh superposition-method (s-method) {4, 5, 6]. The
s-method for analysis idealization control expands the concepts of hierarchical mesh
overlays to control mesh discretizations, to hierarchic idealization overlays where the
overlays introduce specific local improvements in the analysis idealizations. In the case
of composite materials this includes local elimination of dimensional reductions and the
explicit representation of micro-structure.

The combination of the overall idealizaton control methodology with the mesh
superposition method allows the reliable performance of analyses throughout the design

process where the level of idealization control used is that needed at that point in the
design process.

CONTROL OF ANALYSIS IDEALIZATIONS

Analysis Idealization

The application of engineering analysis typically incorporates a number of idealiza-
tons to reduce the physical behavior of a system to a set of algebraic equations that can
be solved manually or on a computer. Each step of idealization used in an engineering
analysis process introduces some level of approximation. The reliability of an analysis

depends on the ability to understand and control the errors introduced by each step of
idealization {7, 8, 9].




The accuracy of a solution is a function of the measure(s) of accuracy of interest. It
1s therefore important to qualify the error of interest, e,, In an appropriate norm as

€ = ||t — Lappl, (1

where u Is the exact solution, u,,, is the approximate solution, uad {jv|, is the norm
written in terms of the variable v. Typically several norms of the solution results are
of interest.

The first step to esumate the errors in engineering analysis is to enumerate the
contributing sources as

ea = €q(¥,0,9,Q,D,5,A) (2)

where ¥ is the basic mathematical model selected to represent the physical behavior of
interest, ¥ represents the physical scale the mathematical model is solved upon and the
alterations to the basic mathematical model associated with representation of lower scales,
® are the dimensional reductions and associated alterations to the mathematical model
to eliminate physical dimensions,  is the domain of the analysis, D are the material
property parameters, 3 are the boundary conditions (also initial conditions when time
is one of the dimensions of the problem), and A represents the discretization used for
the analysis.

Since the exact solution to a requested analysis is generally not known, it is only

possible to obtain estimates of the solution error. The goal of idealization error control
1s to ensure that

Eal S Tal 1= 1, 2, 3, ey M (3)

where T, is the desired error limit for the i*® norm, E,, is the value of the error estimate
for the i norm, with E4, — eq, as the solution procedure is refined, and E,, = e,
for a solution of acceptable cost.

The techniques available to aid in the control of idealization errors include
analytically-based error estimation, hierarchic model comparisons, analytically-based re-
sults for ideal situations, sensitivity analysis, statistical methods, comparison to known
physical limits, test results and reasonable limits, and rules based on experience and intu-
ition[8]. Analytically-based error estimation and hierarchic model comparisons provide
the greatest promise for the reliable estimation of the idealization error contributions.
Analytically-based error estimators have been developed to provide reliable control of
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some of the finite element discretization errors. However, techniques of similar reli-
ability are not readily available to control other idealization error contributions. The
combination of analytically-based error estimation and hierarchic model comparisons is

a promising approach for the control of the other idealizations critical to the analysis of
composite structures.

Framework for Analysis Idealization Control in Engineering Design

The ability to apply idealization control during engineering design requires a system
framework which can house various levels of analysis idealization control along with
intelligent design methodologies and engineering analysis tools. The framework of an
engineering modeling system for mechanical objects IDEALZ) that is specifically struc-
tured to support the idealizations used in engineering modeling and analysis is described
in references [1, 2, 3]. The system archatecture is consistent with the architectures being
considered to support design modeling systems in reference [10].

The heart of the system is the representation of the object being designed and
the modelers that support that representation. To support the functions necessary in
the design evolution of an object, its representation is housed in linked functional and
geometric model structures, each of which are controlled by the appropriate modelers.
The other operational components of the modeling system are the applications. The
applications include analysis procedures to answer performance questions, algorithms
to alter the design based on analysis results, and procedures to plan the manufacturing
processes, etc. Applications are separated into two groups based on the technology
underlying their implementation, not on the functions addressed. The first group is
analytically-based applications. The majority of the applications in this group are
numerical analysis and optimization procedures. The second group is knowledge-based

applications. Knowledge-based applications operate from codified heuristics placed in
rule sets.

The task of analysis idealization control falls to the goal manager and the analysis
strategist which guide the operation of the system. The goal manager and the analysis
strategists interact with the models, applications, and databases to track the various
activities that have been performed and guide the application of those that are requested.
The first task of the goal manager is to accept a request to perform an operation, and
determine if the basic information and capabilities required to perform the task exist.
It then invokes the strategist which is responsible for formulating and controlling the
idealization steps required to perform the requested analysis. The goal manager is




responsible for maintaining information about the status of the analysis goals used for
the design and the goals that have been performed previously.

ANALYSIS IDEALIZATION CONTROL
FOR COMPOSITE STRUCTURES

The close interaction of the methods of idealization control applied to composite
materials tends to make one idealization process flow into the next and makes the
idealization processes dependent upon each other. Although this makes the process
of idealization categorization difficult, and in some cases seemingly arbitrary, it affords
an opportunity to incorporate idealization evaluation processes that can provide useful
insight into multiple idealization steps.

Mathematical model. The derivation of the base mathematical model begins
with a clear enumeration of the physical laws deemed critical to the description of
the physical behavior at hand. In the case of the thermo-mechanical behavior of
heterogeneous materials the minimum scale that must be addressed in any analysis
idealization must be considered. In structural composites of the overall scale considered
here, the minimum level is deemed to be orders of magnitude above that of the individual
atomic units. This assumption allows us to employ classic continuum mechanics in
terms of i) equilibrium of mechanical forces, ii) kinematic relationships relating internal
deformations (strains) to displacements, and iii) constitutive relations between internal
forces and deformations. These relationships must be satisfied at any scale for which they
are constructed. They are valid down to constituent levels where the minimum dimensions
of the constituents considered are well above atomic dimensions. Such assumptions may

not be reasonable in extremely small scale structures such as micromachines or ultra-thin
multichip interconnects.

Physical scale of the solution and representation of lower scales. By their very
nature, the thermo-mechanical analysis of heterogeneous materials at a macromechanical
level must explicitly account for the micromechanical structure and properties of the
constituents. In some simple linear cases, this may be through simple models which are
easy to apply. However, in more advanced situations much more explicit consideration
of the micromechanical level behavior is needed. For example, metal matrix composites
can not be properly designed without explicit consideration of the material nonlinearities.
These materials demonstrate nonlinear behavior early in the load-deformation process,
and the extension of linear results past the limit of linearity is not conservative [11, 12].

5




The determination of a homogenization method and its bounds of validity appropriate
for the problem at hand must consider:

» the accuracy level required for the terms in the homogenized constitutive model
developed

» the geometry of the microstructure

» the well posedness of the mathematical model with respect to local damage models
due to the possible loss of ellipticy

» the material behavior of the constituents

» the need to use the information generated during the homogenization process to
predict local field information after the global field is determined

» the gradients in the solution parameters with respect to the size of the microcon-
stituents used in the homogenization process

A number of analytic procedures are available to perform the homogenization of
idealized micromechanical geometries when the constituent materials are linear elastic
[13]. In many cases these procedures can be shown to produce tight bounds on the
macromechanical constitutive relations. However, they often do not provide accurate

estimates of the detailed local stresses and strains for other than the idealized geometric
configuration assumed.

When one or more of the constituent materials becomes nonlinear, analytically
derived homogenization expressions require solution through numerical iteration. One
such model is the vanishing fiber diameter model which has the two deficiencies of not

being able to accurately model behavior dominated by transverse stresses and not being
able to provide accurate local values.

An alternative approach to the development of homogenization procedures when
the constituents become nonlinear is phenomenological micromechanic models such as
bimodal plasticity [11]. This model uses the inner envelop of a micromechanical level
fiber dominated mode and matrix dominated mode. The numerical implementation of
such a procedure can be made quite efficient, however, it is not likely that such approach
will provide accurate predictions of local field quantities.

Numerical models using more realistic micro-geometries have recently received
considerable attention for the homogenization of nonlinear constituents. One such model
is the periodic hexagonal array model [14] in which a local finite element discretization is
used in the construction of a macromechanical constitutive model based on the constituent
properties. Although a computationally demanding model, the periodic hexagonal array
model does provide accurate prediction of the overall properties, and, if the local
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discretization is fine enough, a good estimation of the local field quantities. Another
micromechanical level analyses based on a finite element implementation of mathematical
homogenization [15] is given by Guedes and Kikuchi [16].

Most homogenization procedures rely on a level of uniformity of the local fields at
each point of evaluation. If the gradients of the critical solution parameters are too high,
the accuracy and validity of the homogenization process is in question.

The ability to evaluate the idealization errors associated with homogenization is
strongly dependent on the homogenization process used. Mathematical analysis pro-
cedures can be used in some cases to bound specific elastic constants. The ability to
define such bounds is often lost by the introduction of nonlinear material behavior of the
constituents. The use of finite element techniques for the solution of the homogenized
problem provides an interesting method to employ discretization error control techniques
to evaluate the homogenization errors [16].

Separate evaluation procedures are required when the high local gradients invalidate
the micromechanical uniform periodicity of the entire homogenization process.

Dimensional reductions. Since the effective use of composite materials must account
for the directional nature of the material, most composite components are thin in at least
one direction. Therefore, the development of analysis idealizations must deal with the
reduction of the through the thickness direction. This introduces the complexities of
the plate and shell type of assumptions which all utilize at least one representational
inconsistency which leads to complexities in the representation of transverse shear
and/or introduce representational difficulties at boundaries and junctures in shells. These
problems become even more critical in composite materials [17].

One approach to the control of idealization errors associated with dimensional
reduction is to convert it into a discretization process. Instead of stating specific
assumptions on the through the thickness direction, a convergent discretization through
the thickness is used which allows the development of estimates of the error introduced
by truncating the expansion at a given point [18, 19]. Since many of the finite element
discretizations of laminated shells [20] employ semi-discretizations where there are
laminate level through the thickness discrete assumptions applied, the use of an expansion
through the thickness is possible.

Often the need to improve the through the thickness idealization is limited to
critical areas. In these cases is advisable to employ different levels of through the
thickness idealization locally. For example at shell boundaries or at junctures complete
three-dimensional representations could be used to improve the solution accuracy [21].
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Alternatively, two level models can be used to determine local parameters and to provide
feedback to locally improve the through the thickness idealization. Noor has successfully
demonstrated such a procedure [22, 6] for composite shells.

Domain. Domain simplifications in the analysis of composite materials can arise
at each scale level considered. At the macromechanical level there are the standard
domain simplifications of ignoring fillets, small cutouts, etc. An additional concern in the
evaluation of the influence of these procedures is the directional nature of composites will
complicate the evaluation of idealization procedures. For example, typical dimensions for
assuming Saint-Venant's principle holds can be much greater for anisotropic materials.

At the micromechanical scale it is common to employ geometric simplifications of
the shape and distribution of the constituents in the specification of the idealization used
in the homogenization process. Consideration must be given to the influence of these
approximations on the determination of macromechanical material parameters. Often
the approximations used have only a small influence on these parameters. In some
cases, consideration must also be given to the influence of micromechanical domain
approximations on the estimation of local quantities such as stress concentration factors
that may be used in criteria to estimate the initiation of local nonlinear behavior and/or
damage.

Material properties. The accuracy of the material parameters in a macromechanical
constitutive relation are a function of the homogenization process and the accuracy of the
constituent material parameters, including the representation of interfaces or interphases.
Therefore, the accuracy of representation of the material parameters must consider the
constituents and the representation, if any, of the constituent interfaces. Once the
constituent material parameters have been combined through homogenization to produce
a macromechanical constitutive relation, it is also necessary to examine the ability of that
relationship to represent the material behavior.

Although the mathematical model places constraints on the overall form of the
constituent constitutive relations, there are a wide range of possible models that can
be selected when material nonlinearities must be represented. The selection of these
models must consider both the model’s ability to represent the experimentally measured
material response, and the validity and influence of that model on the nonlinear solution
processes that must be applied to that model during thermo-mechanical analyses. At this
time there has been a limited amount of work on the qualification of the idealization
errors associated with nonlinear material models [23, 24].

Boundary and initial conditions. The representation of boundary conditions must
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account for the homogenization and dimensional reduction processes. The dimensional
reduction processes introduce a number of problems in the specification of boundary
conditions [25]. The issues of boundary condition representation become even more
complex in composite materials if edge effects are considered. Another issue of particular
importance associated with the specification of boundary conditions is when a local

micromechanical level analysis needs to obtain boundary conditions determined by a
global macromechanical analysis.

Discretization. The control of discretization errors for composite materials at a
particular level becomes complicated by the desire to control the discretization errors as
they relate to variables at different scales where different discretizations may be used at
the different levels of scale. Even with these complications it is clear that error control

based on a posteriori error estimation is the most reliable method to qualify and control
idealizations.

COMPOSITE STRUCTURES IDEALIZATION
CONTROL USING SUPERIMPOSED REGIONS

An Approach to a-posteriori Idealization Control

The approach to analysis idealization outlined here is an extension of the basic
concepts used in adaptive discretization error control coupled with hierarchical models
applied through hierarchic superposition methods. The basic assumption underlying the
approach is the ability to selectively apply improvements to locally enrich idealizations
in much the same manner the basis functions can be enriched over portions of a finite
element mesh to obtain a given level of discretization control.

To consider such an idealization control process, one must consider the exact solution
to the analysis problem. This solution would be obtained by the most-comprehensive
idealization if all idealization expansions are allowed to go to their limit. For example,
in a case where only dimensional reduction and spatial discretization errors are introduced,
the exact solution to the most-comprehensive idealization would have a three-dimensional
discretization with an infinite number of degrees-of-freedom. It is clear that the exact
solution to the most-comprehensive idealization cannot be obtained. However, the goal
of adaptive idealization control is to have a reliable estimate of the error between the
current idealization, for which we have a solution, and the exact solution to the mos:-
comprehensive idealization. These estimates will be obtained by employing various forms
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of higher-level idealizations which would, in the limit, become the solution to the most-
comprehensive idealization.

A major objective of this approach is to develop practical computational techniques to
construct and solve the required higher-level idealizations in a computationally efficient
manner. A promising approach to achieve this is by a hybridization of a posteriori
discretization error estimation procedures with hierarchic modeling methodologies. As
a by-product, a measure of the local idealization error, termed here as a posteriori
local idealization error estimators, will be developed. This concept is analogous to the
elemental a posteriori discretization error estimators, in which two numerical schemes
are compared on the element level and the local error of a lower degree scheme is
approximately taken as the difference between the two.

The philosophy behind the proposed local idealization error estimates is similar to that
of their discretization counterpart, namely, if the solution is locally enriched, the solution
outside the local region is not significantly affected, and thus the bulk of the error can be
computed on the local level assuming insignificant changes outside the local region are
taking place, thus reducing the problem of error estimation to one of manageable size.
Discretization error indicators based on this approach were found to be very efficient,
especially in linear applications, making us believe that application of these ideas in the
context of hierarchic modeling will be efficient as well.

The basic steps in the a posteriori idealization error estimation procedure are i) model
subdivision into idealization regions, i1) error estimation on individual idealization regions
and ii1) esimation of the total idealization error

Model subdivision. There are two levels of model subdivision used. The first
is the lowest level used for the numerical discretization, e.g., the finite element mesh.
The second subdivision consists of what are referred to as idealization regions. The
idealization region is the local unit over which local a posteriori idealization error
estimation is performed. In general, the idealization regions may be of arbitrary shape
(Fig. 1) and can be independent of the finite element mesh. However, it may often
be advantageous to align the boundaries of the idealization region with the boundary of
finite elements to maximize computational efficiency.

The idealization regions are defined to isolate portions of the model where it may
be necessary to introduce hierarchic improvements in the idealization used in the global
analysis. Figure 1 depicts one such example where the global idealization has introduced
geometric simplifications that ignored a crack tip and small circular cutout. These
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Figure 1 Idealization regions

geometric features can be introduced into an improved idealization locally using an
appropriately selected idealization region.

Reliable computational techniques require that these regions be defined based on
a combination of a priori and a posteriori information. The a priori information is
knowledge of the individual localized idealizations performed in a step of the analysis.
For example, knowledge of the local geometric simplifications in the example of Figure
1 can be used in the determination of an idealization region that isolates them, allowing
further local investigation. The a posteriori information to be used must be derived
from the solution results of the global analysis model. These results, combined with
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a knowledge of the local idealizations performed, must be used to derive simple error
indicators which key the need to define idealization regions allowing an explicit estimation
of the idealization errors. For example, the stress in the area of a small hole ignored
in a global analysis can be multiplied by a conservative stress concentration factor to
see if a more careful consideration of the idealization error due to ignoring that hole
is required [68]. Another simple example would be to use knowledge of global stress
magnitudes and gradients to see if an idealization region needs to be defined to more

carefully estimate the influence of edge effects at critical locations on the boundary of
a composite structure.

Error estimation in a single idealization region. In general, the errors in the
idealization region can be estimated by comparing the behavior of the most-comprehensive
idealization to the current idealization model in the idealization region. One way the
behavior of such a local idealization region may be quantified is in terms of its overall
and local responses.

The quality of the overall behavior of a given idealization region may be assessed by
its ability to accurately represent the interaction with the remaining global idealization. A
given idealization model can be considered to have an accurate overall behavior if, for all
possible prescribed displacement modes applied on its boundary, the traction resultants in
the current idealization model and its higher level counterpart are within the required error
tolerance. The difference in these traction values measured in appropriate norms can be
used to estimate the quality of the overall behavior in the idealization region. Obviously,
in the implementation of such error estimation procedure, the prescribed displacement
field will consist of a finite number of degrees-of-freedom expressed in terms of finite
element shape functions applied on the boundary of the idealization region as shown
in Fig.1.

On the other hand, the ability of a given local idealization model to accurately resolve
some critical local behavior, such as a maximum stress, must be assessed using various
sup-norms, depending on the goal of analysis. In many cases, a current idealization
model can accurately resolve the overall behavior of an idealization region, but may err
badly in predicting some critical pointwise values. A typical example is a problem of a
small scale yielding zone at the tip of a crack. If the characteristic size of the idealization
region is much greater than the size of the plasticity zone, the overall behavior of the
idealization element might not be significantly affected by the material nonlinearity.

Although this procedure will reduce the error estimation to a local level, numerical
solution of the most-comprehensive local idealization model subjected to a variety of
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loading conditions as shown in Fig. 1 is not realistic, especially in the case of large
idealization regions and nonlinear material and kinematical mathematcal models. There-

fore, efforts must be devoted to further reduce the computational cost of the local error
estumanon.

So far, the formulation of the local error estimation was based on the idea that since
the displacement field at the boundary of the idealization region is unknown g priori
the behavior of the local model can only be assessed by subjecting it to all possible
prescribed fields. By drawing the analogy to the elemental discretization error estimators,
it is reasonable to assume that, for the purpose of error estimation, it is sufficient to assess
the behavior of the local model by only subjecting it to the displacement field found from
the global solution of the current idealization model. This reduces the computation of

the local error estimation to a single boundary value problem over the domain of the
local idealization region.

To provide effective idealization estimates the relative contribution of various individ-
ual idealizations associated with the reduction of the most-comprehensive local idealiza-
tion model to the current local idealization, must be obtained without explicit comparison
of these two models. For example, consider a linear laminated plate as a current idealiza-
tion, and a fully nonlinear layerwise solid as the most-comprehensive idealization. In this
case, solution of a single three-dimensional nonlinear problem is more expensive than
solving both a nonlinear laminated plate problem (to examine the effect of nonlinearities)
and a linear layerwise solid model (to examine the effect of the refined through-the-
thickness modeling). These two contributions added together in some meaningful way
should be able to determine the total local idealization error.

Remark 1: The philosophy behind this approach is analogous to that of the residual
error discretization error indicators, except that the actual idealization is compared not
only to the higher level discretization models, but also, to other higher level local
idealization schemes. Note that the idealization error, although it may be large, can
be orthogonal or "almost orthogonal” to one or more higher level idealization models.
In other words, one may have a poor idealization of a physical phenomenon, but by
enriching the actual idealization model in a certain manner (for example, accounting
for geometric nonlinearities in a plate where the deflections are much smaller than the
thickness) no significant improvement in the solution will be achieved. For this class of
problems, estimation of the relative contributions of various idealizations associated with
the reduction of the most-comprehensive local model to the current local idealization will
be more efficient than comparing these two models.
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It is currently assumed that only the errors in the overall behavior of the local
idealization region will be needed to steer the process of global (or first level) adaptivity,
since only these errors may directly affect the global response and the force redistribution
within the model. The detailed response within the local idealization region can be
recovered by means of postprocessing techniques such as subjecting the local model to
the boundary conditions obtained from the global solution. Adaptive techniques may be
employed to solve the local boundary value problem, which is referred here as a second
level (local) adaptivity. This approach will enable the further reduction of the problem

of error estimation to one of a manageable complexity, while retaining its essential
charactenstcs.

Estimation of the total idealization error. Idealization error estimates for the whole
problem domain are to be obtained by adding the contributions from ail idealization
regions in some meaningful way to be determined as a part of this research. The
effectiveness of this approach must be verified by computing the idealization error
effectivity index, defined as the ratio of the estimated idealization error to the "exact”

error which can be approximated by employing a close approximation to the most-
comprehensive global idealization model

Remark 2: Special care must be exercised while estimating errors due to the
scale reduction, where the homogenized (macro) and heterogeneous (micro) models are
considered as lower and higher level representations, respectively. Idealization errors
resulting from scale reduction cannot be assessed without explicitly considering the
homogenization procedure as indicated below.

Assessment of Idealization Errors Due to Scale Reduction

The techniques to derive the effective properties of heterogeneous media is a well
established field starting from the simple model of Rule of Mixtures (RM), followed by
the Composite Spheres (CS) model of Hashin [26], the Self Consistent (SC) method
of Budianski [27] and Hill [28], the Generalized Self Consistent (GSC) method of
Christensen [29], the Mori-Tanaka (MT) method which has many contributors, but the
simplest form has been given by Benveniste [30], and finally the Periodic Hexagonal
Amray (PHA) of Dvorak and Teply [14]. The primary objective here is to assess the
errors introduced by scale reduction when one of the homogenization procedures is used,
and consequently, to develop an adaptive strategy for nearly optimal scale representation.

For the purpose of developing a unified framework to control homogenization errors
it is convenient to view the scale reduction as a five-step process:
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1. Macrostructure idealization as a spatial repetition of representative volume elements
(RVE) of the microstructure.

2. Idealization of prescribed fields of the RVE assuming that it is subjected to prescribed
uniform (periodic) field.

3. Solution of the boundary value problem of RVE for all prescribed uniform fields.

4. Solution of the boundary value problem of an equivalent homogeneous volume EHV
for the same prescribed uniform fields.

5. Extraction of material properties from the energy equivalence between EHV and RVE.

Remark 3: In practice homogenization models based on the solution of the inclusion
problem (fiber embedded in the infinite matrix media (SC), fiber embedded in the
homogenized composite media (MT), fiber embedded in the two-phase (matrix and

composite) media (GSC)) are based on finding concentration factors relating averages
of local fields to overall fields [24].

Four of these steps introduce some level of approximation. A brief description ngen
below indicates what each source of error is and how to control these errors.

Periodicity assumption. Periodicity is referred herein as a geometric repetition
of representative volume with no restriction made on uniformity of local fields. In
most composites geometric periodicity is only an approximation. Various mathematical
approaches to control these errors exist, but will not be extensively addressed in this paper.

Solution of the boundary value problem for RVE. The errors introduced in this
step depend on the type of homogenization procedure employed. The CS, SC, GSC and
MT homogenization techniques employ analytically-based results for idealized situations
to solve microscopic boundary value problems. The PHA method involves solution of
the boundary value problem of the representative volume element using a finite element
method. In this case, a standard discretization error control procedure can be used to
control the errors at this step. Furthermore, since, with reasonable discretization the PHA
model is more accurate than any of the above analytically-based methods, especially

for inelastic problems [24], it can serve as a higher level hierarchical model for all
homogenization techniques.

Solution of the boundary value problem for EHV. At this step we prescribe a
uniform overall strain field on the boundary of the equivalent homogeneous volume. No
errors are introduced at this step if the geometry of the EHV can be exactly represented
by a finite element mesh, and the finite elements employed in the discretization pass the
‘patch’ test (which test their ability to exactly represent constant fields).
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Idealization of prescribed fields on RVE. Theoretically, the problem of simplifica-
tion of boundary conditions and loading applied on the RVE can be treated by means of
hierarchical modeling. By this technique the microscopic boundary value problem can
be solved for both actual and idealized (uniform and periodic) prescribed fields applied
on the boundary of RVE. The difference in the solution measured in an appropriate norm
can be used to quantfy the errors introduced due to the idealization of prescribed fields.
Further research is required to assess the idealization errors introduced in this step.

Energy equivalence. At this step, the energies absorbed in RVE and EHV are
compared in order to extract material properties. For linear problems this step introduces
no errors. However, when one of the phases deforms plastically, its homogeneity is
lost, local properties become stress-dependent within the phase and their instantaneous
values need to be found at many loading points. In such a case it is only possible
to define instantaneous properties of EHV from the instantaneous properties of phases.
This is accomplished by comparing the energy rates in both models [14]. The error in
this step is tightly linked to the mathematical idealization of the material model and the
specification of material and state parameters.

Remark 4: Special care must be exercised to account for degradation of effective material
properties (as a result of damage in microstructure), which may result in strain softening
phenomenon [31, 32]. It has been shown that strain softening dissipates no energy, and
thus a failure is localized to a region of a vanishing size. The mathematical model
becomes ill-posed since the governing equations change type, which manifests itself in
severe mesh-size dependence in the finite element solution. For real materials this is an
urrealistic feature and demonstrates one of the difficulties we encounter in modeling
failure processes of materials. Regularization of these ill-conditioned mathematical
equations by enriching the fundamental mechanics of failure process is a critical step
in reliable modeling. This can be achieved either by regularization through localization
limiters techniques [33], or by incorporating rate sensitivity into the material model [32],
or by the use of embedded shear banding techniques of the type proposed by Pietruszak
and Mroz [34] and Belytschko, Fish and Engelmann [31].

Framework for Multiscale Computational Techniques

In practical problems modeling of physical phenomenon has to be performed at
several scales in order to capture both the overall and local features of the prototype. For
example, an airplane shown in Fig. 2 is approximately 30m long, while the diameter of
the fastener hole is approximately 2.5mm. In order to determine the force redistribution
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between the various structural components, fasteners, lugs and other interconnecting
parts must be accurately modeled at a scale which is three orders of magnitude smaller
than the entire aircraft. Furthermore, if various failure modes such as delamination
or matrix yielding at the free edge of the fastener made of more than 100 layers
(not unusual in aircraft structures) are of interest, the interconnecting parts should be
modeled as an assemblage of three dimensional lamina models. And finally, prediction
of micromechanical failure modes such microbuckling, microcracking, or fiber breaking
necessitates considerations at even smaller scales. The useful Life and cost of maintenance
of the structure depends on the quality of modeling at each scale and the ability of a
reliable transfer of the appropriate information between various modeling levels. In this
section we briefly summarize the basic ideas of such multiscale computational techniques
termed in the references [3, 6, 35, 36, 4] as the s-version of the finite element method.

The basic idea of the s-version of the finite element method is that a portion of
domain, where unacceptable idealization errors have been identified, is overlaid by a
patch(s) of local idealization regions as shown in Fig. 3. The solution in the entire
problem domain (2 is obtained ty superimposing displacements resulting from the global
analysis model u€ defined on Q with the displacements u’ on local idealization regions
Q. The total displacement field u is approximated by adding the two fields

Q=QG+_§LinQL (4)
where
_qL =0onTg &)
and
uf-{-uf::gkOnrgkk:l,...,n,d (6)

where I is the boundary of the problem domain 2, which consists of the prescribed dis-
placement boundary I'y, and the prescribed traction boundary I';,. 'y is the boundary
between the global and local analysis models, and g; are prescribed displacements on
[,.. Condition (5) is required in order to satisfy compatibility between the global and
local analysis models.

Both the global (macroscopic in Fig.3) and the local (microscopic Fig.3) displacement

fields are discretized using hierarchical C° continuous shape functions on finite element
meshes as

u§ = NE,(s,t)d 7)
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Figure 3 Multiscale modeling by the s-method

uf = NE,(s,t)an ®)

where d4 and a 4 are the degrees-of-freedom in the global and local finite element meshes,
respectively. The lower case subscripts indicate spatial components, while the upper

case subscripts indicate degrees-of-freedom. Standard tensorial notation is used with
summation over the repeated indices.

The compatibility condition (S5), is imposed by constraining the nodal and side
degrees-of-freedom on the boundary between the meshes

aA‘I‘aL =0 &)

The discrete equilibrium equations can be obtained by the principle of virtual work,
which for linear elasticity problems, states

/ 6u(,',j)D,~J~k1u(k,,)dQ+/6u(,-,j)D,-J-“u(k,,)dQ— /511.,"7..’(1[’ - /6“,’6,’(19 = (0 Véu
-0, 173 I, 2

(10)




In equaton (10) the D;;i; and D;;; represent homogenized and heterogeneous con-
stitutive tensors, respectively, b; and t; are the body forces and prescribed tractions,
respectively, and the prefix é designates a variation. Discrete equations are obtained
by substituting interpolants eqs.(7, 8) into variational statement eq.(10) and requiring
arbitrariness of local and global variations. For details of see [37, 38].

Remark 5: Several strategies can be employed to control the location of the super-
imposed mesh. One approach is to construct the superimposed heterogeneous mesh from
a fixed amount of representative volumes, corresponding to those which would give the
highest value of the homogenization error indicators. Alternatively, one could decide
a priori on the homogenization error indicator value, say ¥ (E het _ g hom) o Vhere

. . m
0 < v £ 1, above which all the representative volumes which produce a larger error
would be included in the superimposed model.

ILLUSTRATIVE RESULTS

The purpose of this section is to illustrate the process of idealization error control.
A very simple problem was selected to investigate some of the issues in developing this
type of system. Much work remains to be done in the area of developing reliable and
accurate idealization error estimation proceedures and the overall control system. For the
purposes of this demonstration some simple idealization error indicators are used. The
general idea for this example was to model a problem as simply as possible and then use
that solution and some simple post processing techniques to enhance our knowledge of
how the problem should be modeled. In this example the idealizations considered are the
modeling of material properties, dimensional reduction, physical scale and discretization.

Problem Definition

The problem investigated here is that of a flat plate, with three sides clamped
and one simply supported, subject to a uniform pressure load. The plate is made of
boron/aluminum with a fifty percent volume fraction. A (0/90)s lay-up is used in this
example. The geometry of the plate is as indicated in Fig. 4.

System Description

The geometric model in this example was generated using the geometric modeler
CATIA [39]. Interfaces to CATIA have been developed for both the model manipulations
required to construct idealized geometries, which are controlled by the goal manager and
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strategist [40] and for mesh generation using the Finite Octree [41] mesh generator. The
ABAQUS [42] finite element analysis program and the Mesh Superposition Research
Code [4, 5, 6] were used to perform the analyses in this example. In the future many
different types of analysis codes and modelers will be integrated into the system to allow
for the use of the most appropriate analysis procedures for a given analysis goal. All of
these programs are tied together to provide a system which can both adaptively change the
representation of the model to reflect different idealization and provide adaptive meshing
capabilities.

The process starts with the definition of the problem to be analyzed. This definition
must include a geometric description, attributes and a functional model. From this
problem definition and any a priori information known about the problem, an initial set
of idealization regions is created and initial idealizations are defined on the idealization
regions. After this initial information is given to the system the adaptive idealization
process can start.

At each cycle of the adaptive idealization process the following steps must be
performed:

1. Determine and specify the appropriate idealizations over the appropnate idealization
regions.

2. Convert the physical model to a numerical model through the specified idealization
processes.
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Obtain the numerical solution.

4. Evaluate the idealization error estimate or indicator for each idealization in each
idealization region.

5. Redefine the idealization regions and idealizations and return to step 2.

Initial Model

There are four idealizations that will be investigated in this problem. The first
1dealization investigated is the material behavior. The assumption of elastic behavior
in this material is incorrect at most reasonable load levels since plasticity in the matrix
occurs long before the material approaches its usable limits. However, it has been
observed [43] that even when plasticity occurs in the matrix, the overall deformation of
the plate is primarily governed by the elastic response of the fibers. In this example the
elastic material properties are calculated using a Mori-Tanaka mixing model. The second
idealization is that of dimensional reduction. In this problem the plate relatively thin (h/L
= 25) thus for the initial analysis a first order shear deformation model will be used. The
appropriate initial dimensional reduction is then that of a two dimensional plate. The
third idealization is the mesh discretization used for the analysis. Mesh discretization
error is controlled using adaptive mesh refinement procedures. The fourth idealization is
the scale of analysis. This issue will be addressed using a global/local analysis procedure
and s-method finite element analysis [4, 5, 6]. The initial scale used in this analysis
assumes that the material is homogeneous on the lamina level. Further refinement of this
1dealization will consider the existence of both fibers and matrix in the material.

For this problem the initial idealization regions cover the entire domain of the plate.
There is one defined for the material property idealization and one for the dimensional
reduction. In the course of an adaptively idealized analysis these idealization regions will
be subdivided and refined when there are areas with different idealizations.

Mesh Discretization

The mesh for this model was automatically generated and refined using the Finite
Octree mesh generator [41] and a simple adaptive algorithm to define the areas of mesh
refinement. The adaptive meshes are shown in Fig. 5

Material Model

For this particular problem, if we account for yielding in the matrix, we would not
expect the gross behavior of the plate to change significantly since the elastic response of
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Figure 5 Adaptively Refined Meshes for Flat Plate

the fibers will stll be the dominant factor. However, stress resultants and local stresses
will change strongly with the nonlinear material behavior. How important these changes
are depends on the goals of the analysis. If the goal of the analysis is to find the
displacement at the center of the plate to within a few percent, the elastic material model
may be sufficient. However, if the goal is to investigate some local stresses at a point in
the plate or to determine the reaction forces and their distributions at the supports with
great precision, then such an analysis may not be adequate. We can obtain an indication
of the error due to the material model by using the stresses predicted by the problem
solved using the elastic model. In this case, it was determined where, in relation to
the initial yield surface of the composite, the stresses from the elastic model were. The
initial yield surface used is that given by the bimodal plasticity material model [11].
Note that this is a very inexpensive procedure compared to doing the analysis with the
nonlinear material model itself. Figure 6 shows the areas where plasticity will have
occurred anywhere through the thickness using this criterion. The actual plastic areas
would be expected to be somewhat larger than those shown here since there will be a
certain redistribution of load away from the inelastic areas. This information can then be
used to redefine the idealization regions for the material properties and, in those regions
where plasticity was predicted, change the idealization.

Dimensional Reduction

The first order shear deformation theory used in this analysis generally gives good
results for the inplane stress quantities, however the predictions for transverse quantities
are usually poor. These poor predictions for transverse stresses may not be too important
unless these stresses reach too large a magnitude. Large transverse shear stresses may
indicate an area where delaminations may occur or grow. Also large transverse shear
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Figure 6 Areas of Plasticity for Plste Exampie

stresses may initiate plasticity in the matrix. A more accurate stress field can be calculated
from the one predicted by shear deformation theory by finding transverse stresses that
satisfy the equilibrium equations locally [44]. For the problem at hand the transverse
stresses were calculated to satisfy the equilibrium equations through the thickness of
the plate. Since the occurrence of large transverse shear stresses are of concern, the
magnitude of the greatest shear stress was found through the thickness of the plate at
each integration point. The results of this are shown in Fig. 7. If the transverse shear
stress is high enough there is the need to model that particular area in more detail. In

particular we might choose to use a layerwise plate model or a three dimensional solid
model of the plate in that area.

The new idealized model in this example could include a three-dimensional idealiza-
tion region. An example of such a refined model is shown in Fig. 8.

Scale of Analysis

To assess the micromechanical response (stresses and strains) of the heterogenebus
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Figure 7 Areas with high mansverse shear stress

Figure 8 Model after idealization region defined
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constituents (fibers and matrix) we employ a multiscale finite element method for locally
nonperiodic medium developed in references [37, 38]. By this technique, in the portion
of the problem domain where the material is formed by a spatial repetition of the base
cell and the macroscopic solution is smooth, a double scale asymptotic expansion and
solution periodicity are assumed. Consequently, mathematical homogenization theory is
used to uncouple the microscopic problem from the global solution. It has been found
that the reactions on the plane normal to the simply supported edge are significantly
smaller than the other planes. Therefore, a two-dimensional idealization was deemed
adequate. This analysis was performed by extracting the tractions thought the thickness
of the plate near the edge of the global model and applying them to the local model.

— Superimposed micro-mesh

| \ Solid model
‘, 4.0 |

fiber

Micro-mesh Solid model mesh

Figure 9 Idealization used for micromechanical level idealization region

In the immediate vicinity of the singularity (interface between 0/90 layers at the
edge as shown in Fig. 9) it is assumed that the periodic solution does not exist
and the approximation space is decomposed into macroscopic and microscopic fields.
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Compatibility between the two regions is explicitly enforced. For formulation detail,
comparison to other techniques and validation tests see [37, 38]. Figure 10 depicts the
distribution of shear and normal stresses in the superimposed region. As expected higher

stresses are found in the vicinmty of the singularity with stress concentration in the fiber
phase.
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PFigure 10 Shear stresses in microstructure at fres edge

CLOSING REMARKS

A broad consideration of the various classes of idealizations used in the analysis of
composite structures has been presented as well as a framework to provide the reliable
control of these idealizations. The overall analysis idealization control framework allows
the inclusion of a wide variety of idealization control techniques and can easily build on
a variety of analysis procedures implemented in different software packages. The use of
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1dealization regions and adaptive idealization region control, in much the same manner
as finite elements in adaptive discretization control, has been introduced for use in the
reliable control of analysis idealizations. The use of these idealization regions within the
context of a superposition method has also been discussed. A simple example problem
was used to partly demonstrate the application of multiple analysis idealization control.
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ABSTRACT

The inclusion of an advanced nonlinear mixing model for
the determination of composite constitutive relations in finite
element formulations for the analysis of composite structures is
considered. The nonlinear mixing model considered is based on the
bimodal plasticity model. This material model is baeing
implemented into various forms of finite element Idealizations
including solid elements and laminated sheil finite slements
employing different through-the-thickness kinematic
assumptions. At the time this papar was due a complete set of
results was not available. They will be presented in the associated
presentation and pubiished subsequently.

NOMENCLATURE

stress increment

strain incremaent

instantaneous complignce matrix
instantaneous stiffness matrix

fiber volume fraction

matrix volume fraction

instantaneous stress concentration matrix
instantaneous strain concentration matrix
fiber stress concentration for a dilute solution
fiber strain concentration for a dilute solution
plastic compliance matrix

unit normal vector

slip direction vector

shear stress
slip plane angle

slip direction angle
material stiffness matrix
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INT "ODUCTION

The accurate modeling of struciures constructed of
advanced high temperature composite materials requires
consideration of inelastic materisl behavior. The accurate
prediction of the inelastic behavior of these materials requires the
oxpiicit consideration of the inelastic behavior of the constituent

materiais. The mixing models for fibrous composites that consider
the inelastic behavior of the constituents have been developed
[Teply and Dvorak, 1988), {Dvorak and Bahei-El-Din, 1987),
[Bahei-EI-Din, and Dvorak, 1989]. This effort is considering the
application of one of these models, the bimodal plasticity model
[Dvorak and Bahei-El-Din, 1987] into various leveis of spatial
discretization as applied in the finite element analysis of
composile structures.

Since most composite structures have one dimension which
is substantially smaller than the other two, it is desirable to
employ a spatial discretization assumption which reduces the
amount of computation needed in this small dimension. This
dimensional reduction process is particularly complex in the case
of laminated structures constructed from thin orthoiropic layers.
This process is further complicated when lamina level noniinear
material behavior is considered.

The purpose of our efforts is 1o examine the influence of
the type of modeling on the accuracy and computationa! expense of
analysis of composite shell structures with laming level nonlinear
behavior. Lamina level nonlinear behavior is represented using
the bimodal piasticity theory [Dvorak and Bahei-El-Din, 1987)
which is defined by the inner snvelope of a fiber dominated mode
(FOM) and a matrix dominated mode (MDM).

The next section gives a brief overview of the bimodal
plasticity theory. The associated presentation and subsequent
publications will describe its implementation into various levels
of finite element idealizations and present the results obtained.

INTRODUCTION TO BIMODAL PLASTICITY

Bimodal plasticity is a semi-phenomenociogical model
which describes the plastic deformation of fibrous composites
consisting of elastic fibers and an elastic-plastic, rate-
independent matrix {Dvorak and Bahei-El-Din, 1987). The
theory assumaes that the deformation of such a composite can be
described in terms of one of two deformation modes, the fiber-
dominated mode (FDM) or the matrix-dominated mode (MOM). in
the fiber-dominated mode, both phases deform together in the
elastic and plastic range and the composite aggregate is treated in
the context of heterogeneous media elasticity and plasticity. In the
matrix-dominated mode, plastic deformation is caused by slip on
matrix planes which are paraliel to the fiber axis. The yield
condition corresponding 10 sach mode gives a yield surface in the
overall stress space. The overall yield surface of the composite is




then given by the inner envelop of the yield surfaces of the two
modss.

The dominant deformation mode is determined by the
elastic modulll of the phases, in particular the longitudinal shear
modulus, and the overall loads. In the plane stress space, the
matrix-dominated mode is active in composites where the ratio of
the longitudinal elastic shear modulus of the fiber and the matrix
is large, eg. B/Al and SiC/Al composites. The fiber-dominated
mode is common in composite systems where the fiber longitudinal
shear modulus is comparable or smaller than the matrix elastic
shear modulus. This mode aiso occurs when stress in the fiber
axis is the dominant loading. Recent experiments on a B/Al
composite system have verified the existence of the deformation
modaes postulated by the bimodal plasticity theory. Following is a
brief description of both of the deformation modes.

Plastic deformation in the fiber-dominated mode is
described by averaging models originally introduced for elastic
phases [Hil, 1963]. The constitutive relations of the phases are
assumed to be known for the volume average of the local fields.

Under isothermal loads, the phase strain average de, and the
stress average dc, are related by:

dor = Leder
de, = M, do,
where

r = t (fiber phase) or m (matrix phase)

Ls = instantaneous stiffness matrix phase r.

M( « L' = instantaneous compliance matrix phase
r

Similar relations can be written for the composite overall
uniform fieid

do=Lde

de = M do

The volume average of the local stress and strain
increments are related 10 their overall counterparts by

do=c¢dos + cp dOm
de=cqdeq + cpden
where

Cf. Cm = fiber and matrix volume fraction ¢f + Cm =
1.
in addition, the local fleids are assumed 1o be related to the
overali fieids by:

do, =B, do
de, = A, de
where

Br = instantaneous stress concentration phase r.
A¢ = instantaneous strain concentration phase r.
Thus, the overall stiffness and compliance matrices can be

written as
LacilitAr+CmlmAnp
M= cfM{Bf+CmMmBm
in the elastic range, the concentration factors of the phases
found from an averaging modsl. In the present work, the
developed by Mori and Tanake [1973] was used 10 evaluate
ommmmlon factors. The fiber stress concentration

HE

By=W(cpul+crW)!
utlo whare W is the fiber stress concentration factor of a dilute
solution:

198

W=l TMy
T is the fiber strain concentration factor of the dilute
solution:

T={1+P (- Lu)]"!
where P is a constant matrix that depends on the shape of
the fibers and the elastic properties of the matrix.
In the plastic range, for composites with elastic fibers, the
plastic strain increment in the matrix phase (de?) is related to

the overall plastic strain increment (deP) by

deP = c, B],, deP,
where BL, is the transpose of the matrix elastic stress
concentration factor.
The plastic strain increment of the matrix phase is related
to the matrix stress increment (doy) through the plastic
compiiance matrix (G)

where G is derived from the constitutive model of the
matrix, which in this case is described by a two surface plasticity
theory.

The explicit form the insiantanecus stress concentration

tactor (Bi2*Y) can then be shown 1o be:
Bi* = {(Mgpe - My) + (1- BL.) G (Me - MiYc

where
Mo is the composite overall elastic compliance
matrix.
Mme is the matrix elastic compliance matrix.
Mq is the fiber compliance matrix (assumed always
elastic)

The fiber instantanecus concentration factor (Bi**) and

matrix instantanecus concentration factor (BI2*y can then be
related:

B = (I - c B ey
it can be shown that the phase stress concentration factor
and strain concentration factor are related as:

Ar=M,B,L
where L is the composite overall stiffness matrix.
Thus, onck the instantaneous stress concentration factors
of the phases are found, the overall stiffness matrix of the
composite can be determined.

Matrix-dominated mode

{n the matrix dominated mode the deformation in the
plastic range is derived from plastic slip along plane parallel to
the fiber direction. Consider a typical siip system shown in Fig.
1. The unit normal n defines the siip plane, and s is the slip
direction,

n=[0cosP -sinP]T

$=[cosO sinBsin® cosPsin0]T
The resolved shear stress on the plane with normal n in the
direction s is then:

Tne = 0; Gj; S
or

Tns = 1/2 sin 2P sin 8 ( 622 - G33) + cos P cos 6 634

- sin B cos 0 G3; + cos 2P sin 8 &3,
We now transform the coordinate system by rotating by p
about the fiber axis. In jhis new coordinate system we denote a21
and 023 by 1 and t2, respectively.




T1=cosf oz -sinBoyn

2 = 12 5in 28 (022 - 633) + cos 2B 032
The resoived shear stress can be written as:

T = T2 + 12
The onset of yielding occurs when the magnitude of the resoived
shear stress tng oquals the matrix yield stress in simple

shear. Thus the slip planes are found by evaluating the
maxima of tng(B).:

2;\_;,[(21;4@12_-ogz]sin4a+ogz(czz-033)°°s4ﬂ

.@Z%gzulsinZB-czlcslcoszﬂ’o

Some trigonometric simplification of this condition leads to
the following quartic equation for B's corresponding to the
maximum resolved shear stress.

ay + agy? *asy? + auy +as =0
where

aq = 4(A2 + B2)

a2 = -4(AC + BD)

a3 = -4(A2 + B2 . C2 . D?)

a4 = 2(2AC + BD)

as =B2-C2

A=}(°zz-033)z'°§z
B = 032(022- 033)
C= %(0%1 -3y

D= 63101

Thus once the roots of the quartic equation are known, the
possible slip planes are given by:
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A more complete derivation and a discussion of the specific
plasticity theory used can be found in Wu [1991].
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ADVANCED FINITE ELEMENT FORMULATIONS FOR
COMPOSITE SHELLS

Mark W. Beall*
Mark S. Shephard**

ABSTRACT

This paper considers the application of advanced nonlinear mixing models for the
determination of composite constitutive relations in finite element analysis of composite plates
and shells. The nonlinear mixing model considered is based on the bimodal plasticity model.
This material is used in conjunction with two spatial discretizations: solid finite elements and
layerwise linear kinematic deformations through the thickness in first order shear
deformation shell finite elements. Initial numerical results are presented.

INTRODUCTION

Accurate modeling of structures constructed with advanced high temperature composite
materials requires consideration of the inelastic behavior of these materials. The accurate
prediction of the inelastic behavior of composites requires explicit consideration of the
inelastic behavior of their constituent materials. Mixing models for fibrous composites that
consider the inelastic behavior of the constituents have been developed [1,2,3]. This paper
considers the utilization of one of these models, the bimodal plasticity model [2], with various
levels of spatial discretization in the finite element analysis of composite structures.

Since most composite structures have one dimension which is substantially smaller than
the other two, it is desirable to employ a spatial discretization assumption which reduces the
amount of computation needed in the small dimension. This dimensional reduction process is
particularly complex in the case of laminated structures constructed from thin orthotropic
layers. This process is further complicated when lamina level nonlinear material behavior
must be considered. This paper considers two spatial discretizations: solid finite elements and
layerwise linear kinematic deformations through the thickness in first order shear
deformation shell finite elements.

For composite materials that are generally characterized by linear material responses,
such as epoxy matrix composites, this issue of accuracy has been investigated for many different
laminated shell models. Noor and Burton [4] give a complete review of the subject. However, in
some composite systems, for example metal matrix composites, there is significant nonlinearity
in the material response, i.e. matrix plasticity, long before the useful strength of the material
is reached. For these materials the nonlinear response of the matrix material and thus the
composite as a whole, must be accounted for.

**Professor, Dept. of Mechanical Eng., Aeronautical Eng. and Mechanics, Director,
Scientific Computation Research Center, Rensselaer Polytechnic Institute, Troy, NT 12180-3590.
*Research Assistant, Dept. of Mechanical Eng., Aeronautical Eng. and Mechanics, RPI.




COMPOSITE SHELL MODELS

Due to the complex nature of laminated composites there are many different manners in
which they may be modeled. Many papers, surveys and reviews have been published on this
subject, for a recent reviews see Noor and Burton [4] and Reddy [5]. Each type of model provides
good engineering accuracy for different types of problems. The increase in computational
expense incurred by increasing the modeling accuracy can be quite significant. Therefore, it is
important to understand the bounds of validity of each of the models.

The most complete way to model a composite structure is with full 3-D solid modeling.
In this way no specific kinematic assumptions are introduced regarding the behavior of the
structure. Assuming a correct material model, the only source of error is the discretization error,
which can be easily quantified and controlled. This type of modeling, however, is
computationally expensive, especially with thin curved structures. A typical composite may
have dozens of layers, each of which requires one or more element through the thickness.

One way to derive formulations for the behavior of shells is to apply specific
kinematic constraints to the full three-dimensional elasticity equations. This 'degeneration’ of
the three-dimensional elasticity equations is the basis for many shell formulations. A common
kinematic assumption on the behavior of shells is that the in-plane displacement components
vary linearly in the thickness direction. In particular, if we assume a linear variation through
the thickness of the in-plane displacement quantities in each layer (equivalently, constant
transverse shear strains in each layer) we arrive at a first-order discrete layer theory. In this
formulation, if we neglect the generally small direct strain in the thickness direction, there are
2N +3 displacement parameters through the thickness, where N is the number of layers, which
can be a significant reduction compared to 3-D modeling. Since the transverse stresses are
constant in each layer, the continuity of these stresses is not satisfied at the layer interfaces
and they are generally not zero at the top and bottom surface of the shell. This set of
assumptions will be referred to as discrete layer theory (DLT) throughout this paper although
there are many different shell theories that also fall into this category.

Another common simplification that is made is to apply the assumption of a single
linear variation of the in-plane displacement quantities through the entire shell thickness,
rather than to each individual layer. In this way the layered shell is replaced by an
equivalent single-layer anisotropic shell. This type of formulation, generally called a first-
order shear deformation theory, is computationally advantageous since the number of
displacement parameters is independent of the number of layers, but gives poor results for
transverse stress distributions {4].

The analyses performed in this investigation utilized the ABAQUS finite element
program [6]. This program provides a simple interface to add user routines that are run during
an analysis. In this work both a user element, for the discrete layer theory shell, and a user
material, for the nonlinear material model, bimodal plasticity, were used.

The 3-D solid modeling was performed using the ABAQUS C3D20 element. This is a
20-noded quadratic displacement element. Both the fully integrated (3 x 3 x 3) and version and
the reduced integration (2 x 2 x 2) version of this element were used. The reason for using the
reduced integration element was to reduce the computation time for models with several
elements through the thickness of each layer for problems where the reduced integration did
not introduce errors into the solution.

The discrete layer theory element, called LCSLFC, was developed by K. Dorninger [7].
It employs C? linear segments for the through the thickness deformation of each layer. The
LCSLFC element is based on the degeneration principle. The element is a 16-noded shell using
cubic shape functions for the in-plane displacement quantities.

The implementation of the LCSLFC element allows considerable flexibility in
modeling composite laminates. The shell thickness may be varied through each element. Each
layer may have a different orientation, thickness and material. In this study a user defined
material is incorporated into the element.




BIMODAL PLASTICITY

Bimodal plasticity is a semi-phenomenological model which describes the plastic
deformation of fibrous composites consisting of elastic fibers and an elastic-plastic matrix [2].
The theory assumes that the deformation of such a composite can be described in terms of one of
two deformation modes, the fiber-dominated mode (FDM) or the matrix-dominated mode
(MDM). In the fiber-dominated mode, both phases deform together in the elastic and plastic
range and the composite aggregate is treated in the context of heterogeneous media elasticity
and plasticity. In the matrix-dominated mode, plastic deformation is caused by slip on matrix
planes which are parallel to the fiber axis. The yield condition corresponding to each mode
gives a yield surface in the overall stress space. The overall yield surface of the composite is
then given by the inner envelope of the yield surfaces of the two modes.

The dominant deformation mode is determined by the elastic moduli of the phases, in
particular the longitudinal shear modulus, and the overall loads. In the plane stress space, the
matrix-dominated mode is active in composites where the ratio of the longitudinal elastic
shear modulus of the fiber and the matrix is large, e.g. B/Al and SiC/Al composites. The fiber-
dominated mode is common in composite systems where the fiber longitudinal shear modulus is
comparable or smaller than the matrix elastic shear modulus. This mode also occurs when
stress in the fiber axis is the dominant loading. Recent experiments on a B/ Al composite system
have verified the existence of the deformation modes postulated by the bimodal plasticity
theory [8]. Following is a brief description of the both of the deformation modes [9].

Fiber-Dominated Mod

Plastic deformation in the fiber-dominated mode is described by averaging models
originally introduced for elastic phases [10]. The constitutive relations of the phases are
assumed to be known for the volume average of the local fields. Under isothermal loads, the
phase strain average der and the stress average doy, are related by:

dor=1L; d€r 40
dEr = Mr dcr (2)
where
r = f (fiber phase) or m (matrix phase)
Ly = instantaneous stiffness matrix of phaser.
M; = L;’! = instantaneous compliance matrix of phase r
Similar relations can be written for the composite overall uniform field
do=Lde 3)
de=Mdo 4)
The volume average of the local stress and strain increments are related to their
overall counterparts by
do= ¢ dof + cy dom (5)

de= csdeg + ¢y dem (6)
where
cf, cm = fiber and matrix volume fraction, ¢+ ¢ = 1.
In addition, the local fields are assumed to be related to the overall fields by:
do; =B;do (7)
de; = Arde (8)
where
B = instantaneous stress concentration of phaser.
A, = instantaneous strain concentration of phase r.
Thus, the overall stiffness and compliance matrices can be written as

L=ctLiAf+cmLlmAm 9)




M = cfM¢ Bt + cm Mm Bm (10)
In the elastic range, the concentration factors of the phases are found from an averaging
model. In the present work, the method developed by Mori and Tanaka [11] was used to
evaluate the elastic concentration factors.
In the plastic range, for composites with elastic fibers, the plastic strain increment in
the matrix phase (def) is related to the overall plastic strain increment (deP) by

deP = Cm Be de?, (11)
where B, is the transpose of the matrix elastic stress concentration factor.

The plastic strain increment of the matrix phase is related to the matrix stress
increment (dop,) through the plastic compliance matrix (G)
(h?- = G dom (12)
where G is derived from the constitutive model of the matrix, which in this case is
described by a two surface plasticity theory. .
The explicit form of the matrix instantaneous stress concentration factor (B®) can then
be shown to be:

BE™ = [(Mume - M) + (1- BL) G ' (Mo - MiY,, 13)

where
M, is the composite overall elastic compliance matrix.
Mme is the matrix elastic compliance matrix.
Mg is the fiber compliance matrix (assumed always elastic)
The fiber instantaneous concentration factor (B ) and matrix instantaneous
concentration factor (B™®) can then be related:

: inst\!
B = (1-ca B2 /e, (14)
The phase stress concentration factor and strain concentration factor are related as:
Ar = Mr Br L (15)

where L is the composite overall stiffness matrix.
Thus, once the instantaneous stress concentration factors of the phases are found, the
overall stiffness matrix of the composite can be determined.

Matrix-domi m
In the matrix dominated mode the deformation in the plastic range is derived from

plastic slip along planes parallel to the fiber direction. Consider a typical slip system shown
in Fig. 1. The unit normal n defines the slip plane, and s is the slip direction,

n=[0 cosp sinP]T (16)
s=[cos0 sinBsin® cosPsing]T (17)
The resolved shear stress on the plane with normal n in the direction s is then:
Tns =N Gjj §j (18)
or
Tns = 1/25in 28 sin 6 ( 622 - 633) + cos B cos O o7 (19)
- sin B cos 8 631 + c0s 2B sin 6 03

We now transform the coordinate system by rotating by B about the fiber axis. In this
new coordinate system we denote 021 and 623 by 11 and 1, respectively.

11 = cos B 621 - sin B 031 (20)
12=1/25in 2B (022 - 033) + cos 2B 032 (21)

The resolved shear stress can be written as:
Tns = 112 + 122 (22)
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Figure 1. Slip Plane in Matrix Dominated Mode

The onset of yielding occurs when the magnitude of the resolved shear stress tpns equals
the matrix yield stress in simple shear. Thus the slip planes are found by evaluating the
maxima of tps(B).: '

OTas [(022 ;"”f . o?{z] sin 4B + 032 (022 - G33) cos 4B

(23)
(chi-oh)
2

sin2f - 02103 cos28 =0

Some trigonometric simplification of this condition leads to the following quartic
equation for B's corresponding to the maximum resolved shear stress.
a1yt + 02y® * oay? + agy + 05 =0 24)
where
a1 =4(A2 + BY)
a2 = 4(AC + BD)
a3 =4(A2+B2-C2-D2)
a4 = 22AC + BD)
o5 =B2-C2

A=-l-(o‘zz- on) - ok
B = o5 (o2 - 013)

C= 12-(0‘11 -oh)

D= on0m
Once the roots the quartic equation are known, the possible slip planes are given by:

B=tcost 4/ L_; ! 25)

A complete derivation and a discussion of the specific plasticity theory used can be
found in Wu [9].

e ettt e, .

IMPLEMENTATION OF BIMODAL PLASTICITY INTO LAMINATED SHELL ELEMENTS

The original bimodal plasticity formulation considered a six dimensional stress-strain
space. Therefore it is necessary, in the implementation of bimodal plasticity into shell
elements, to eliminate the stress and strain terms that do not occur in the shell formulation.




The shell formulation used here assume that each layer is in a state of plane stress, that is 63 =
0. This condition was enforced by modifying the stiffness matrix (D) into a plane stress stiffness
matrix (D) as follows.

D;j= Dy, - 226 D2y (26)
D22
where the correspondence between i,j and k! is given by:
ij12345

bldlid

k112456
The strain increments passed into the material model are also modified to properly
reflect the assumed state of the material. For this case the proper increment of €3 must be
passed to the material model such that the model returns 63 = 0. this strain increment is
calculated as:

= D;; de;
3

This transformation of the stiffness matrix is performed between the element routine
and the bimodal plasticity routine. Thus, the same code can be used for the material model in
both the shell elements and the solid elements.

RESULTS
The material properties in Table 1 were used for all examples.

des 1=12456 27)

Fiber Matrix
| axial stiffness 689655 | | axial stiffness 723954
axial shear stiffness 15517.2| | axial shear stiffness 272163
 axial Poisson's ratio 0.2} | axial Poisson’s ratio 0.33
transverse stiffness 0.41! | transverse stiffness 723954
transverse shear stiffness 2068.97| | transverse shear stiffness 272163
volume fraction 0.5] [ vield stress 70.0

Table 1. Material Properties
imply supported flat plate under uniform pressure load

For these problems, one-quarter of a simply supported plate, under a uniform load was
modeled using shell elements and solid elements. The solid models used a 5 by 5 mesh for the
quarter plate, with symmetry conditions, with 2 or 4 elements through the thickness of each
ply. The shell models employed a 4 by 4 mesh for the quarter plate.

For all the plots presented below, stresses are given in the global axis system as shown
in Fig. 2. The fiber orientations are measured with respect to the x axis.

Figure 2. Simply supported flat plate.




(0/90) square plate

For this problem L1 = L2 = 2. Although, for all the cases tested with this layup, there
was significant material nonlinearity, load-deflection curves were very nearly linear. This
implies that the overall response is primarily governed by the elastic response of the fibers.

For this layup the solid model and the discrete layer model produce essentially the
same displacement results. The stress distributions obtained from the solid and discrete layer
models, for a plate thickness h = 0.1, are shown in figures 3 and 4, { is the normalized thickness
coordinate. For both models the in-plane stress distributions are in good agreement, while the
transverse stress distributions show a significant difference, as would be expected since the
discrete layer model assumes constant transverse strains through the thickness of each layer.
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Figure 3. In-plane stress distributions for solid and discrete layer model. h = 0.1, Load = 2 MPa.
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Figure 4. Transverse shear stress distributions for solid and discrete layer model. h = 0.1,
Load = 2 MPa.

In Fig. 4 it can be seen that the transverse shear stresses in the discrete layer model are
not constant. The transverse shear strain components are assumed constant through the layer
but the other strain component vary through the thickness. Thus, for a nonlinear material the
shear moduli may change through the thickness resulting in stress that are not constant. This in

an important consideration in the formulation of shell elements for use with nonlinear material
models.



(£45)s square plate
For this problem Ly = L3 = 2. The thickness, h, was taken to be 0.1. The load-deflection curves
for this laminate showed much more nonlinearity than those for the (0/90)s laminate. This

implies that the overall response was significantly affected by the nonlinear behavior of the

matrix.
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Figure 5. Stress distributions for (£45)s laminate, solid model, 2 elements through
thickness per layer




Figure 5 shows the stress distributions through the thickness for the laminate in both
the elastic and plastic ranges for the solid model with 2 elements through the thickness. The
stresses have been normalized by the applied load. The inplane stress quantities show similar
distributions in both the elastic and plastic ranges. The transverse stress quantities, both direct
and shear, show some significant differences between the elastic and plastic cases. The
differences in the distributions increased with increasing load.

The transverse shear distribution through the thickness of the laminate for the shell
model are shown in Fig. 6. These stress distributions show a significant difference from those
obtained from the solid element. There is also a significant change in the stress distribution
between the elastic and plastic stress distributions. The inplane stress quantities are similar to
those from the solid model and have similar distributions in both the elastic and plastic range.
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Figure 6. Transverse shear stress distributions, shell model.

Since the response of this material is dominated by the in-plane stiffness of the
laminate and not the detailed transverse shear stress distribution, a first order shear
deformation model, might be expected to give reasonable results. Combining this model with a
predictor-corrector approach, such as that proposed by Norr, et. al. [12], could be expected to
give good results with a significant reduction in computation time. Also since the response, for
the layups tested, was dominated by the elastic properties of the fiber, it may be possible to use
the elastic properties of the composite in the predictor phase and then incorporate the
nonlinear material properties into the corrector phase.
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1. INTRODUCTION

Reliable modeling of the physical behavior of composite structures requires
the balanced consideration of each of the analysis idealizations used to go from
the physical description of the composite system to the numerical analysis
models used to predict the behavior. Specification and categorization of the
idealization steps associated with the analysis of nonlinear composite materials
is complicated by both the complexity of the idealizations needed and the close
interrelationships among the idealization steps.

Prediction of the performance of composite structures must explicitly
account for the physical scales that control the behavior of interest. There are a
variety of methodologies available to account for these physical scales in an
analysis. Of particular interest in composites with noanlinear constituents are the
methodologies used to account for the micromechanical nonlinear behavior.

Another analysis idealization important to the analysis of composite structures
is dimensional reductions.

This paper begins with a brief review of the issues associated with the
control of analysis idealizations and outlines a modeling system being
developed to provide this control. This is followed by a more detailed
discussion of the idealizations associated with the thermo-mechanical analysis
of composite structures. Finally some results which make comparisons between
specific idealizations and emphasize the application of the bimodal plasticity
model! for nonlinear composites are given.

2. CONTROL OF ANALYSIS IDEALIZATIONS

The application of engineering analysis typically employs a number of
idealizations to reduce a physical behavior to a set of algebraic equations that
can be solved manually or on a computer. Each step of idealization used in an
engineering analysis process introduces some level of approximation. The
reliability of an analysis depends on the ability to understand and control the
approximation errors introduced by each step of idealizadon (1, 2, 3].




314 Composite Material Technology III

The accuracy of a solution is a function of the measure(s) of accuracy you
are interested in. For example, the results of a finite element solution to the
equations of elasticity for a given problem may yield values of the reactions
and displacements with sufficient accuracy, while the predictions of the peak
stresses are unacceptably inaccurate. It is therefore important to qualify the

error of interest in an appropriate norm. Typically several norms of the
solution results are of interest.

The first step in estimating the errors in engineering analysis is to
enumerate the contributing sources which in the thermo-mechanical analysis of
composites include: the basic mathematical model selected to represent the
physical behavior of interest; the physical scale the mathematical model is
solved upon and the alterations to the basic mathematical mode! associated with
representation of lower scales; the dimensional reductions and associated
alterations to the mathematical model to eliminate physical dimensions; the
domain of the analysis; the material property parameters; the boundary
conditions (also initial conditions when time is one of the dimensions of the
problem); and the discretizations used for the analysis. Section 3 discusses
each source with respect to the thermo-mechanical modeling of composites.

Since the exact solution to a requested analysis is generally not known, it is
only possible to obtain estimates to the solution error. The goal of idealization
error control is to ensure that reliable estimates of the errors of interest can be

obtained and that these estimated errors are forced to be less than a user
specified limit for that analysis.

The techniques available to aid in the control of idealization errors include
analytically-based error estimation, hierarchic model comparisons, analytically-
based results for ideal situations, sensitivity analysis, statistical methods,
comparison to known physical limits, test results and reasonable limits, and
rules based on experience and intuition [2]. Analytically-based error estimation
and hierarchic model comparisons provide the greatest promise for the reliable
estimation of the idealization error contributions. Analytically-based error
estimators have been developed to provide reliable control of some of the finite
element discretization errors. However, techniques of similar reliability are not
readily available to control other idealization error contributions. The
combination of analytically-based error estimation and hierarchic model

comparisons is a promising approach for the control of the other idealizations
critical to the analysis of composite structures.
W

The ability to apply idealization control during engineering design requires
a system framework which can house various levels of analysis idealization
control with intelligent design methodologies and engineering analysis tools.
The framework of an engineering modeling system for mechanical objects
(IDEALZ) that is specifically structured to support the idealizations used in
engineering modeling and analysis is described in references [4, 5). The system
architecture is consistent with the architectures being considered to support
design modeling systems in reference [6].

The heart of the system is the representation of the object being designed
and the modelers that support that representation. To support the functions
necessary in the design evolution of an object, its representation is housed in
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linked functional and geometric model structures, each of which are controlled
by the appropriate modelers. The other operational components of the modeling
system are the applications. The applications include analysis procedures to
answer performance questions, algorithms to alter the design based on analysis
results, and procedures to plan the manufacturing processes, etc. Applications
are separated into two groups based on the technology underlying their
implementation, not on the functions addressed. The first group is analytcally-
based applications. The majority of the applications in this group are numerical
analysis and optimization procedures. The second group is knowledge-based

applications. Knowledge-based applications operate from codified heuristics
placed in rule sets.

The task of analysis idealization control falls to the goal manager and the
analysis strategist, which guide the operatdon of the system. The goal manager
and the analysis strategist interact with the models, applications, and databases
to track the various activities that have been performed and guide the
application of those that are requested. The first task of the goal manager is to
accept a request to perform an operation, and determine if the basic information
and capabilities required to perform the task exist. It then invokes the strategist
which is responsible for formulating and controlling the idealization steps
required to perform the requested analysis. The goal manager is responsible for
maintaining information about the status of the analysis goals used for the
design and the goals that have been performed previously.

3. ANALYSIS IDEALIZATION CONTROL FOR COMPOSITE
MATERIALS

This section outlines the analysis idealizations that should be considered in
the analysis of composite structures and gives a brief indication of how the
idealization processes can be addressed. The close interaction of the methods of
idealization control applied to composite materials tends to make one
idealization process flow into the next and makes the idealization processes
dependent upon each other. Although this makes the process of idealization
categorization difficult, and in some cases seemingly arbitrary, it affords an
opportunity to employ idealization evaluation processes that can provide useful
insight on multiple idealization steps. This possibility is being specifically
considered in the current research program.

The derivation of the base mathematical model begins with a clear
enumeration of the physical laws deemed critical to the description of the
physical behavior at hand. In the case of the thermo-mechanical behavior of
heterogeneous materials, the minimum scale that must be addressed in any
analysis idealization must be considered. In structural composites of the overall
size scale considered here, the minimum level is assumed to be orders of
magnitude above that of individual aromic units. This assumption allows us to
employ classic continuum mechanics in terms of i) equilibrium of mechanical
forces, ii) kinematic relationships relating internal deformations (strains) to
displacements, and iii) constitutive relations between internal forces and
deformations. These relationships must be satisfied at any scale for which they
are constructed. They are valid down to constituent levels where the minimum
dimensions of the constituents considered are well above atomic dimensions.
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Such assumptions may not be reasonable in extremely small scale structures
such as micromachines or ultra-thin multichip interconnects. Since the
definition of the mathematical model as used here is the fundamental starting

point for an analysis process, the only idealization evaluation measure available
is comparison to measured physical behavior.

By their very nature, the thermo-mechanical analysis of heterogeneous
materials at a macromechanical level must explicitly account for the
micromechanical structure and properties of the constitueats. In some simple
linear cases, this consideration may be through simple homogenization models
which are easy to apply. However, in more complicated situations much more
explicit consideration of micromechanical behavior is needed. For example,
metal matrix composites can not be properly designed without explicit
consideration of the material nonlinearities. These materials demonstrate
nonlinear behavior early in the load-deformation process, and the extension of
linear results past the limit of linearity is not conservative {7, 8].

The determination of a homogenization method and its bounds of validity
appropriate for the problem at hand must consider:

1. the accuracy level required for the terms in the homogenized
consttutive model developed

2. the geometry of the microstructure

3. the well-posedness of the mathematical model due 0 the possible loss
of ellipticity of local damage models

4. the material behavior of the consttuents

5. the need to use the information generated during the homogenizaton

process to predict local field information after the global field is
determined

the gradients in the solution parameters with respect to the size of the
constituents used in the homogenization process

A number of analytic procedures are available to perform the
homogenization of idealized micromechanical geometries when the constituent
materials are linear elastic [9]. In many cases these procedures can be shown to
produce tight bounds on the macromechanical constitutive relations. However,
they often do not provide accurate estimates of the detailed local stresses and
strains for other than the idealized geomertric configuration assumed. In cases of
linear material problems, where these techniques do not provide accurate
macromechanical constitutive properties or where accurate local solution
quantities are important, more detailed micromechanical level homogenization
analyses based on finite element techniques are possible [10).

When one or more of the constituent materials becomes nonlinear,
analytically derived homogenization expressions require solution through
numerical iteration. One such model is the vanishing fiber diameter model
which has the two deficiencies of not being able to accurately model behavior

d:lminawd by transverse behavior and not being able to provide accurate local
values.
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Numerical models using more realistic micro-geometries have recently
received considerable attention for the homogenization of nonlinear
constituents. One such model is the periodic hexagonal array model [11] in
which a local finite element discretization is used in the construction of a
macromechanical consttutive model based on the constituent propertes.
Although a computationally demanding model, the periodic hexagonal array
model does provide accurate prediction of the overall properties, and, if the

local discretization is fine enough, a good estimation of the local field
quantities for the idealized micro-geometry.

An alternative approach to the development of homogenization procedures
in the presence of nonlinear constituents are phenomenological micromechanic
models such as bimodal plasticity (7]. This model employs the inner envelop of
a micromechanical level fiber dominated mode and matrix dominated mode.
The numerical implementation of such a procedure can be made quite efficient,

however, it is not likely that such an approach will provide accurate predictions
of local field quantties.

Most homogenization procedures rely on a level of uniformity of the local
fields at each point of evaluaton. If the gradients of the critical soluton

parameters are too high, the accuracy and validity of the homogenization
process is in question.

The ability to evaluate the idealization errors associated with
homogenization is strongly dependent on the homogenization process used.
Mathematical analysis procedures can be used in some cases to bound specific
elastic constants. The ability to define such bounds is often lost with the
introduction of nonlinear material behavior of the consttuents. The use of finite
clement techniques for the solution of the homogenized problem provides an

interesting method to employ discretization error control techniques to evaluate
the homogenization errors [10].

Separate evaluation procedures are required when the high local gradients
invalidate the micromechanical uniform periodicity of the entire
homogenization process. As indicated below, this area is one that will receive
specific consideration in the current research.

Since the effective use of composite materials must account for the
directional nature of the material, most composite componeats are thin in at
least one direction. Therefore, the development of analysis idealizations must
deal with the reduction of the through the thickness direction. This introduces
all the complexities of the plate and shell theories which all have at least one
representational inconsistency which leads to complexities in the represeatation
of transverse shear and introduces representational difficulties at boundaries

and junctures in shells. These problems become even more critical in composite
materials [12].

One approach to the control of idealization errors associated with
dimensional reduction is to convert it into a discretizarion process. Instead of
stating specific assumptions on the through the thickness direction, a
convergent discretization through the thickness is used which allows the
development of estimates of the error introduced by truncating the expansion at
a given point [13, 14, 15, 16]. Since many of the finite element discretizations
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of laminated shells [17] employ semi-discretizations where laminate level
through the thickness discrete assumptions are applied, the use of an expansion
through the thickness is possible.

Often the need to improve the through the thickness idealization is limited
to critical areas. In these cases it is advisable to employ different levels of
through the thickness idealization locally. For example, as shell boundaries or at
junctures, complete three-dimensional representations could be used to improve
the solution accuracy [18). Alternatively, two level models can be used to
determine local parameters and to provide feedback to locally improve the
through the thickness idealization. Noor has successfully demonstrated such a
procedure [19] for composite shells.

Domain

Domain simplifications in the analysis of composite materials can arise at
each scale level considered. At the macromechanical level there are the
standard domain simplifications. An additional concemn in the evaluation of the
influence of these procedures is the directional nature of composites which
complicates the evaluation of idealization procedures. For example, typical

dimensions for assuming Saint-Venant's principle holds can be much greater in
an anisotropic material.

At the micromechanical scale it is common to employ geometric
simplifications of the shape of the constituents in the specification of the
idealization used in the homogenization process. Consideration must be given
to the influence of these approximations on the determination of
macromechanical material parameters. Often the approximations used have a
small influence on these parameters. In some cases, consideration must also be
given to the influence of micromechanical domain approximations on the
estimation of local quantities such as stress concentration factors that may be
used in criteria to estimate the initiation of local nonlinear behavior.

The accuracy of the material parameters in a macromechanical constitutive
relation are a function of the homogenization process and the accuracy of the
constituent constitutive parameters, including the representation of interfaces or
interphases. Therefore, the accuracy of representation of the material
parameters must consider the constituents and the representation, if any, of the
constituent interfaces. Once the constituent material parameters have been
combined through homogenization to produce a macromechanical constitutive

reladon, it is necessary to examine the ability of that relationship to represent
the material behavior.

Although the mathematical mode!l places constraints on the overall form of
the constituent constitutive relations, there are a wide range of possible
representational models that can be selected when material nonlinearines must
be represented. The selection of these models must consider both the model's
ability to represent the experimentally measured material response, and the
validity and influence of that model on the nonlinear solution processes that
must be applied to that model during thermo-mechanical analyses. At this time
there has been a limited amount of work on the qualification of the idealization
errors associated with nonlinear material models {20, 21).
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The representation of boundary conditions must account for the
homogenization and dimensional reduction processes. The dimensional
reduction processes introduce a number of problems in the specification of
boundary condidons [22]. The issues of boundary condition representaton
become even more complex in composite materials if edge effects are
considered. Another issue associated with the specification of boundary
conditons of particular importance to this research is when a local
micromechanical level analysis needs to obtain boundary conditions
determined by a global macromechanical analysis. However in engineering
analysis the choice of boundary condidons is usually a modeling decision
between several alternatives. If this is the case for a particular problem then the

choice leading to the smoother solution is preferable since it increases the rate
of convergence of the solution [14].

The control of discretization errors for composite materials at a particular
level become complicated by the desire to control the discretization errors as
they relate to variables at different scales where different discretizations may be
used at the different levels of scale. Even with these complications it is clear
that error control based on a posteriori error estimation is the most reliable
method to qualify and control idealizations.

4. APPLICATION OF NONLINEAR MIXING MODEL WITH AND
WITHOUT DIMENSIONAL REDUCTION

The following sections present some initial results comparing idealizations
of the material model and idealizations involving dimensional reductions.
First, an overview of the nonlinear material model, bimodal plasticity, is
presented. Next the specific dimensional reductions used are discussed.
Finally, some initial results of the effect of these idealizations on the prediction
of the behavior of a transversely loaded plate are presented.

Bimodal plasticity is a semi-phenomenological model which describes the
plastic deformation of fibrous composites consisting of elastic fibers and an
elastic-plastic matrix [23, 7]. The theory assumes that the deformation of such
a composite can be described in terms of one of two deformation modes, the
fiber-dominated mode (FDM) or the matrix-dominated mode (MDM). In the
fiber-dominated mode, both phases, fiber and matrix, deform together in the
elastic and plastic range and the composite aggregate is treated in the context of
heterogeneous media elasticity and plasticity. In the matrix-dominated mode,
plastic deformation is caused by slip on matrix planes which are pgrallcl to.the
fiber axis. The yield condition corresponding to each mode gives a yield
surface in the overall stress space. The overall yield surface of the composite is
then given by the inner envelope of the yield surfaces of the two modes.

The dominant deformation mode is determined by the elastic moduli of the
phases, in particular the longitudinal shear modulus, and the overall loads. In
the plane stress space, the matrix-dominated mode is active in composites
where the ratio of the longitudinal elastic shear modulus of the fiber and th_e
matrix is large, e.g. B/Al and SiC/Al composites. The fiber-dominated mode is
common in composite systems where the fiber longitudinal shear modulus is
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comparable or smaller than the matrix elastic shear modulus. This mode also
occurs when stress 1n the fiber axis is the dominant loading. Recent
experiments on a B/Al composite system bave verified the existence of the
deformation modes postulated by the bimodal plasticity theory {23, 7].
Following is a brief description of both of the deformation modes (24].

Eiber-Dominated Mode Plastic deformation in the fiber-dominated mode is
described by averaging models originally introduced for elastic phases [25].

The constitutive relatons of the phases are assumed to be known for the
volume average of the local fields.

The overall stiffness and compliance matrices can be written as functions of
the phase volume fractions, phase propertes and stress concentrations. In the
clastic range, the concentration factors of the phases are found from an
averaging model. In the present work, the method developed by Mori and
Tanaka [26] is used to evaluate the elastic concentration factors. In the plastic
range, for composites with elastic fibers, the plastic strain increment in the
mamix phase is described by a two surface plasticity theory.

The explicit form of the matrix instantaneous stress concentration factor in
the plastic range can be found. Once the instantaneous stress concentration

factors of the phases are found, the overall stiffness matrix of the composite can
be determined.

Marrix-Dominated Mode In the matrix dominated mode the deformation in the
plastic range is derived from plastic slip along planes parallel to the fiber
direction. The active slip planes are determined by finding the planes parallel
to the fibers on which the resolved shear stress is a maximum. The onset of
matrix yielding occurs when the magnitude of the resolved shear stress along
one of the slip planes equals the matrix yield stress in simple shear. The plastc
strain on each active slip plane is found from the associated flow rule and the
normality requirement. The overall plastic strain is then found by the
summation of the plastic strain on each active slip plane. A complete

derivation and a discussion of the specifics of the implementation can be found
in reference [24].

One of the most important idealizations in the analysis of composite
laminates is dimensional reduction. Dimensional reduction can significantly
reduce the number of degrees of freedom required to model a given problem.
This process is practical since a typical composite structure is usually relatively
thin. However, the accuracy of the dimensional reduction process used
depends on the particular probiem to be analyzed and it is generally difficult to
make a priori statements about its accuracy.

Dimensional reduction can be performed in several different manners. In
reference [17] four general approaches for constructing two-dimensional
theories for multilayered shells are identified. These four approaches are: 1)
the method of hypotheses, 2) the method of expansion, 3) asymptotic

integration techniques, 4) iterative methods and methods of successive
corrections.

Qf the above four methods the one that is most commonly used in
engineering applications is the method of hypothesis. In this approach a priori
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assumptions are introduced regarding the variation of displacements, stresses or
strains through the thickness. This approach has the advantage of being
intuitive and easily extendible 1o large displacements and nonlinear materials.
However the theory does not provide an estimate of the error in the response

predictions.

The other three methods have the advantage of producing, within the scope
of the theory, some kind of estimate of the error introduced by the
approximatons. One recent theory [14] results in a set of hierarchic models
that have the properties that the exact solution of the hierarchic series of models
converge to the solution of the corresponding problem in elasticity for a fixed
laminate thickness, and that the exact solution of each model in the series
converges to the same limit as the solution of the corresponding problem in
elastcity as the laminate thickness approaches zero. The lowest order model of
the theory corresponds to Reissner-Mindlin plate theory.

The dimensional reduction used in this paper is a discrete layer shell with
assumptions of a piecewise linear approximation for the in-plane displacements
and constant transverse displacements in the thickness direction. This element
is formulated using the degeneration principle, where the three dimensional
elasdcity equations are reduced to two dimensions by assuming a certain
displacement behavior through the thickness of the shell. This approximation
generally gives good results for in-plane quantities but since the ransverse
shear strains are constant within each layer, the continuity of the transverse
shear stresses is not satisfied at layer interfaces.

A recent development in this area is a layerwise plate theory by Reddy [27].
This theory allows arbitrary piecewise representation of displacements through
the thickness of each lamina. This theory has been shown to produce accurate
results, even for thick plates [28). It has also been extended by Barbero to
account for multiple delaminations between layers including geometric
nonlinearity to capture layer buckling [29].

This section demonstrates some of the effects of idealizations of the
material model and the finite element formulation on the analysis of a
transversely loaded plate. In each case, two analyses, which differ by only one
of the idealizations used, are performed. Comparing the results of the two
analyses shows the effect of that idealization.

The first set of results deals with the effects of idealizations on the global
behavior of the model. Specifically, the effect of the material model used in the
analysis is investigated. This is done by comparing the displacements and the
stress resultants predicted using an elastic material model and those predicted
using bimodal plasticity.

The later results deal with the effects of idealizations on local behavior of
the model. The effect of the material model is first shown with a comparison of
transverse shear values using elastic material model and bimodal plastcity.

Also the effect of the finite element formulaton on the prediction of transverse
shear stresses is examined.

Some recent articles by Noor, et. al. (30, 17, 12, 19] provide a very good
overview of many different plate and shell theories and their effects on the
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accuracy of various analysis results, although all of their results are for elastic
materials.

The results shown here are raw finite element data, no attempt was made to
smooth the data or use various procedures to post process the data to improve
the results. Predictor-corrector procedures [31] have been shown to be
effecdve in obtaining better estimates of global and local response quantities
for composites incorporating elastic materials. If these methods can be
effectively implemented for composites with nonlinear materials much better
local stress distributions could be found. The predictor-corrector procedures in
reference [31] use a first-order shear deformation shell theory to obtain initdal
estmates of the solution to a problem (predictor). The results of the predictor
are then used in conjuncton with the three-dimensional equilibrium and
constitutive equations to calculate a more detailed estimate of the solution.
This result is then used either to calculate a corrected transverse shear stiffness
for the shell or to directly calculate the functional dependence of the
displacement components on the thickness coordinate.

The procedures used in the predictor-corrector methods were developed for
linear elastic materials and take advantage of this fact by being implemented in
a 'post-processing’ manner. For elastic-plastic materials such procedures may
have to be implemented in the solution procedure. The path dependence of such
materials may preclude the correction of the stress and strains unless this is
done within each load increment before any stress update procedures.

The specific problem analyzed is a flat plate with clamped edges as shown
in Fig. 1. The plate is Boron/Aluminum with a (0/90)s lay-up. The parameters
for the problem, unless otherwise noted are: L=2.0, h=0.1, and po=2.0. In the
following results the loads are normalized to the load that causes initial yielding
in the matrix. The finite element meshes used to produce the results varied
from example to example. In all cases a uniformly refined mesh was used
which was refined until the solution quantities of interest had converged.

Po

'

WRE

Figure 1. Flat square plate with clamped edges.

Global solution Figure 2 shows the effect of the material model on the overall
solution. The difference in the displacements at the center of the plate does not
become significant until almost three times the inital yicld load and there is
only a 4% difference at four times the initial yield load. As expected, the
bimodal plasticity model shows softening behavior at higher loads.




Composite Material Technology III 323

Thick Plas
Solid Model

4_ —t 7

<
<

b — -Solid - Hlaatia
1 e ;
- H H -
- H 1
o;/ L P
| T

0 _0.0005 0.001 0.0015 0.002 0.0025 0.003
Displacement at ceater of plate

Figure 2. Effect of material model on displacement at center of plate.

Load/Initial Yield Load

Figure 3 shows the displacement at the center of a thin plate (h=0.01, po=
0.05). Again, the difference between the two solutions is only a few percent
even up to eight times the inidal yield load. The geometric nonlinearity, due to
the large displacements, is much more significant than material nonlinearity for
this problem. In both the thick and thin plates the linear response of the fibers,

rather than the plastic response of the matrix, dominates the displacement
behavior.

Thin Plate
Solid Model
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/,

0 0004 0008 0012 0016 0.02
Displacement at center of plate

Figure 3. Effect of material model on displacement at center of plate.
(thin plate: h=0.01, pg= 0.05)

Figures 4 and 5 show another example of the effect of the material model
on the overall solution. This result shows the resultant moment along edges A-
B and A-D of the plate. The moment predicted by using the bimodal plasticity
model is significantly different from that predicted by the same analysis using a
linear elastic material model. As the load is increased past the elastic limit the
moment does not change uniformly along the edge of the plate, rather there is a
significant redistribution of moments. Edge A-D of the plate shows a similar

O m N WA U NG

Load / Initial Yield Load
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result but with the moments predicted using bimodal plasticity being higher
than those predicted with the elastic material model.

This redistribution of moment occurs when yielding of the matrix limits the
load carrying capability of a lamina. As the load is increased the reaction
moments along the edges increase proportionally untl one or more of the layers
begins to yield. At this point the layer cannot maintain the increase in load, but
the laminate must stll be in overall equilibrium with the applied load. Thus,

the increased compliance of the yielded portion of the laminate causes the load
to be transferred to other portions of the plate.

Thick Plate
Salid Madel

Thick Plate
Solid Model

Figure 5. Bending moment disaibution along edge A-D.
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ion The effect of the material model on the local solution is shown
in Fig. 6. In this figure the transverse shear stress, an important quantity in
determining the initiation of delaminations, is plotted through the thickness of
the plate. Generally, this example shows a decrease in the transverse shear
stress everywhere except the bottom of the third layer of the plate. In some
areas, the local values of swess change significantly after onset of marrix
plastcity. In this example the significant changes are generally decreases.

Thick Plate
Solid Mode!

Position through thickness
[~}

P S

0.1 -0.05 0 005 0.1 0.15

G, MPa)

Figure 6. Changes in transverse shear stress due to nonlinear material model.

Next, the effects of finite element formulation on the local solution are
investigated. The problem analyzed for these results has the same geometry as
shown in Fig. 1. The material is Graphite/Aluminum with a (£45)s lay-up. In
these results the problem was modeled with both a solid element model and a

discrete layer shell model, in both cases the bimodal plasticity material model
was used.

The inplane stress values agree well between the discrete layer shell and the
solid model, as would be expected. However, as shown in Fig. 7, the discrete
layer shell assumption of layerwise constant transverse strains produces poor
local values for the transverse stresses. The transverse shear stresses are not
constant due to the nonlinear material model. This arises because the direct
stress quantities are allowed to vary linearly through the thickness of each
layer. Thus, although the transverse strains are constant through each layer, the
point in overall stress space may change through the thickness of each layer.
This results in different points through the thickness following different loading
paths. With a plastic material model the response of the material is path
dependent and a different loading path results in different material properties.
The result of this is that the transverse shear stiffness may change through the
thickness of each layer. The varying material properties through the thickness
give rise to changes in stress even when the strain is constant.
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1 2 I R
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Figure 7. Effect of finite element formulation on transverse shear stress
distribution (solid model and discrete layer model).

The next two figures show the evolution of the different plasticity modes
throughout the loading history of an analysis. The load indicated in the figures
is the actual load normalized to the initial yield load. In each figure one quarter
of the plate is shown with the center being in the upper right comer (point C).
The deformation mode icted by the bimodal plasticity model is indicated
by the shading in the figures. Elastic behavior is indicated by white, fiber
dominated mode (FDM) is shown as gray and matrix dominated mode (MDM)
is shown as black. In each case the data is shown for the bottom of the lower
two layers in the laminate.

Figure 8 shows the results for a thin plate (h=0.01, po= 0.05). For this case
the primary stresses are inplane loading due to bending-stretching coupling and
bending behavior around the edge of the plate. The first inelastic behavior is
FDM deformation at the center of the plate and along edge A-B near point B.
The first appearance of MDM is at a load of 3.0 times the initial yield load on
edge A-D near point D. This load is also when inelastic behavior is first
indicated in layer 3. The inelastic deformation in layer 3 first appears as FDM
near the center of the plate. Subsequently, areas of inelastic behavior can be
seen to spread out from these initial areas. There are several areas that
unloading at one time or another, this shows up as an area of elastic behavior
where there was previously FDM or MDM. At a load of 7.0 times the initial

yield load layer 4 is almost totally inelastic and approximately one half of layer
3 is inelastic.
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Figure 8. Bimodal plasticity deformation modes for thin plate.

Figure 9 shows the results for the thick plate. For this case the plate resists
the load primarily by bending forces around the edge of the plate and near the
center. As would be expected the initial inelastic behavior appears in the areas
where the stresses causing these bending moments are highest: in layer 4 at the
edges and center of the plate. Again in this case the inidal deformation mode is
FDM. The first appearance of inelastic behavior in layer 3 is at 2.0 times the

initial yield load. By 3.4 times the inidal vield load almost all of layer 4 and
about 35% of layer 3 is behaving inelastic!y.
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Figure 9. Bimodal plasticity deformation modes for thick plate.
5. CLOSING REMARKS

Reliable modeling of composite squctures must take into consideration the
idealizations used at each step of the process. Reliable estimates of the error
introduced at each step in the idealization process is required to indicate the
applicability of a given solution. Some progress has been made by various
researchers in developing theories which give an estimate of the error for some
types of idealizations for specific linear cases. These techniques must be

extended to include nonlinear consttuents in order to reliably predict their
response characteristics.

This paper irdicated the analysis idealizations important for the analysis of
composite structures and outlined a system for the control of analysis
idealizations in engineering design. Specific results were presented to illustrate
some of the effects of idealizadons on the analysis of composite laminates.
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I. Introdection

Fabrication. processing, and effective use of metal matrix composites often
cause nelastuc deformations in the matenal. In many actual systems, the
elastic-strain range of the elastic-plastic matrix is much smaller than the
failure strain of the elastic-brittle fiber. Similarly, the temperature changes
that may cause yielding in a stress-free composite are often smaller than
those encountered in service. However, the total strains seen in fibrous
svstems are also small, i.e., they seldom exceed the failure strain of the fiber,
which 1s usually found in the range of 0.01-0.02. Therefore. in contrast to
metals, plasticity of fibrous composites is usually limited to small strains.
but it may affect much of the useful load-bearing capacity of structural parts
designed to utilize the high strength of the fibers.
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GEORGE J. DVORAK

The purpose of this chapter is to give a brief review of the elastic-plastic
response of fiber composites and of its implications for the mechanical
behavior of these matenals. First. we shall discuss some general features of
thermoelastic behavior. such as evaluation of overall thermomechanical
properues. phase concentration factors. thermal concentration factors. and
transformation stress and strain concentration factors. Next. the elastic-
plastic behavior of macroscopically homogeneous metals and composites 1s
outhined. This provides a basis for a discussion of the plasucity of fiber
composttes. which includes a number of new. exact results. Then. some
specific micromechanical models for plasucity analysis are described. to-
gether with their expenmental venfication and implementation in finite
element programs for structural analysis.

The approach 1s based on micromechanics of heterogeneous media. The
objective 1s to evaluate overall instantaneous properties of the medium from
information about local properues and mucrostructural geometry and to
establish various general connections between local and overall response.
The consequences of plasticity in such phenomena as dimensional stabulity.
fatigue. and fracture of fibrous metal matrix laminates are briefly described.

The notation used 1s similar to that introduced by Hiil [/. 2). Vectors are
denoted by lower-case boldface letters. e.g.. 6. €. a. b: matnices are denoted
by upper-case boldface Roman letters. ¢.g.. L. M. In the contracted notation
used. those will typically be (6 x 1) vectors and (6 x 6) matnices. L ! denotes
the inverse of L. defined 1f it exists to satisfy LL™' = 1 = L™'L. where 1 is
the umit matrix. Further details of the notation are explained in the Appendix.

II. Elastic Response

4. Orerall Properties and Local Fields

We start the exposition with an outline of a general procedure for the
evaluation of overall thermomechanical properties of two-phase composite
media in terms of thermoelastic constants and volume fractions of the phases.
The elastic response contributes to the total strain duning plastic loading.
and 1t 1s the sole source of this strain 1n any elastic unloading step.

Consider a fibrous composite matenal consisting of two distinct con-
unuous phases of cylindrical shape. which are aligned paraliel to the x,-axis
of a Cartesian coordinate system. The phases remain bonded and are free
of voids and cracks during deformation. A representative volume V with
surface S is chosen so that under certain boundary conditions. it represents
the macroscopic response of the composite. Within V,each phase r = 2. 8
occupies a volume ¥,, and the volume fractions ¢, = V, V satisfy c, + ¢, = 1.
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The volume V is subjected to certain uniform overall stresses & or strains
& and to a uniform temperature change 4. Suppose that the constitutive
relauons of the phases are known. e.g.. from expenments on neat matnx
samples and on the fibers, and are written in the form

aix) = L e(x) + 1,0, ex) = M, a1x) - m, 0. th

where L,. M, are instantaneous suffness and compliance matnces. which
have full diagonal symmetry. L, = LT. M, = M]. LM = [ |, and m, are the
thermal stress and strain vectors. such thatl, = —L,m,. As long as the phase
remains elastic. the coefficients of these matnices are constant in V.. Note
that the components of m, are the linear coefficients of thermal expansion
of the phase. which are not affected by deformation and are assumed to be
independent of temperature.

The local fields in (1) are generallv not uniform. Therefore. it 1s often
conventent to work with volume averages of the nonuniform fields defined
by the integral

l
-t

Phase volume averages of local fields follow from (2) if one takes V" = V,
and integrates both sides 1n (1.

e, =1L, ~1L56. g, =Ma, +~m,0. 13

where
g, = [Oix)}, . (4)
€, = E(X)) . (4’

Since L,. M, are constant in V,. (3) are exact analogs of (1) for phase volume
averages. One can also obtain the overall stresses and strains as averages of

the respective local quantities over the representative volume V and write
the overall constitutive relations as

=L +106, é¢ = Mé& + mb. (5)

where
é = ax)},. (6)
&= gx)},. (69

The implication is that the representative volume V of the composite
aggregate s regarded as a macroscopically homogeneous medium and that
under uniform overall stress or strain. the L. M are the elastic overall stiffness
and compliance matnces. and m. | = —Lm are the overall thermal strain
and stress vectors of this composite medium.
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To determuine L. M. L and m of an elastic composite. one can proceed as

follows. Suppose that for the composite system considered. one could
evaluate the actual local fields (1) and write them in the form

oix} = B,(x)§ + b,(x)0. £(x) = A (X)E + 8,(x)0. (N

Of course. 1n many practical situations. one cannot find the actual fields.
but 1t 15 usually possible to evaluate an estimate of average local fields in

the two phases under the prescribed load increment. The result is the integral
121 of 171, taken over V,,

e, =Bé& ~b0 £, = A£ +ab 18)

where A,. B,. a,. b, are certain mechanical and thermal strain and stress

concentration factors. If those are known. one can uulize 12) to write for
r=1 4.

& =c,a, + ;0. 9
€ = (.6 ~ C 8- 19)

Then. for ¢ =0. equations (3). (8). and (9) give the overall mechanical
properues

L = L, - C‘(L' - L.)A’. Vl = M, +- C‘(M‘ - M’)B,.
L = C,L,A, - C‘L‘A'. \' = C,M,B, + C‘M'B,.
together with the results

(10

C,.‘,*C’A"l. C,B.*’C,B,".
AM=MB,. B.L=LA,.

This sequence. first outlined by Hill [/. 2], enables evaluation of the overall
instantaneous L and M in terms of one mechanical concentration factor.
The overall thermal strain and stress vectors m and | can be evaluated from
known overall mechanical moduli and compliances or from local properties
and concentration factors (3-7]. Convenient forms are

m=c,B/m, +c,B/m, (1)
= (M = MM, = M,)"'m, + (M = MM, - M,)"'m, (11}

= c M,b, + m) + cAM,b, + m,), (i

I =c,ATL, + ¢,A]), (1™
=(L-LxL, =Ly~ 'L,+(L -LYL, =LY, (1"
=cL,a, + 1)+ cdL,a, + 1) (1"

Using (10), one can establish that the first two forms are equivalent.
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In a recent paper. Benveniste and Dvorak (8] had shown that the local
thermal fields in the phases can be denived from the mechanical fields. Their
result 1s

3dx) = (1 - A )L, = Ly~ 'y = L)
b,(x) = [I - B(x)}(M, - M,) " '(my —m,).

Of course. since all local and overall properties are assumed to be constant.
(12) can be integrated as in 12} to find the thermal concentration factors 1n
terms of the mechanical concentrauion factors. In each case. these factors are
phase volume averages of the fields A.(x). B{x). a4x), or bdx) 1n (7).

(1

B. Micromechanical Models

1. INCLLsioN PROBLEMS

In Section 1. A. the averages of local fields and the overall elastic properties
have been found 1n terms of stress or strain concentration factors. These
factors can be evaluated in several different ways. First we describe an
approach based on the solution of an inclusion problem. which will be useful
in some of the micromechanical models discussed in the following.

A single inclusion of ellipsoidal shape is embedded in a large volume of
a different homogeneous elastic matenal. There 1s a perfect bond between
the phases. hence the tractions and displacements must be continuous across
the interface. A circular cylindncal fiber is a particular example of such an
inclusion. Let L' and L~ denote the suffness matrices of the inclusion and
the surrounding medium. newther of which need to be isotropic. These
matnces have full diagonal symmetry, and their inverses are denoted by M’
and M. respectively. The surrounding medium is subjected to a uniorm
stress & or stran & at infinity. The objective is to find the stresses and strains
tn the inclusion.

Eshelby [9. /0] pointed out that in problems of this kind. the stress and
strain fields in the inclusion are also uniform. Therefore, one can wnite the
result in a form analogous to (8) as

c =B ¢t = AL

¢ =P8 ¢ =A'E
where @ and ¢ denote the uniform stresses and strains in the inclusion. and
¢ and ¢ the averages of the fields in the surrounding medium. Since the
inclusion causes only a local perturbation of the overall field. its contribution

to the overall averages & and & is vanishingly small. and it follows that
A =B =L

(13)
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The evaluation of B’ was outlined by Eshelby. and in 2 more general case
by Kinoshita and Mura (//); a recent survey of pertinent results appears in
Mura's monograph (/2]. Here we limit our attention to a particularly simple
approach to the solution proposed by Hill {2]. The fact that the inclusion
fields are umform suggests that the medium surrounding the inclusion 1s
loaded at the interface by certain surface tractions derived from a umform
stress field. Therefore. 1t is useful to formulate an auxihary problem in which
the inclusion 1s removed from the medium. the wall of the ellipsoidal cavity
is loaded by certain surface tractions derived from a unit uniform stress field
¢*. and the remotely applied stresses vanish. Suppose that the unit stress
components that generate the surface tractions are applied in a sequential
manner and that six such solutions are obtained. For each solution. one can
find the displacements of the cavity wall and convert them into strain
components £*. which represent a uniform strain of the ellipsoidal cavity.
The result can thus be written as

6* = —L*%e*. £* = - M**. (14

where each column of L* was generated by one of the six solutions. Both
L* and M* have full diagonal symmetry. and their coefficients depend on
the aspect rauos of the elhipsoid and on the moduli L” of the surroundi *
medium: they may be regarded as suffness and compliance matrices of t
cavity. [n Hill's terminology. L*® is the overall constraint tensor.

The solutuon of the inclusion problem then follows from that of the

auxiliary problem if one replaces the inclusion in the surrounding medium
and writes

e -d=—-L%¢ -8, £ -E= -M*%a — @) (s
Then. from the local constitutive relations and (13),

A =(L* - L)y 4L* +L", Ba(M*+M)"\M*+ M) (16

Note that if the local properties L' and L” are known, L*® alone yields the

solution. It 1s advantageous to separate that part of the solution that depends
only on L". or M" and to wnite

P=(L*+L""", Q=(M*+M")"". (an

This suggests that P = P7. Q = Q7. One can also establish that PL" +
MQ=1L

The forms of P that correspond to different ellipsoidal shapes in various

anisotropic matenals can be found in the literature [//-/5). Of partcular

interest here is the result for an inclusion in the shape of a circular cylinder
and for the surrounding medium. which 1s transversely isotropic about x,.
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the cylinder axis. This result can be recorded as follows:

K" + dm" -k"
P::’Pu'—fﬁ. P,y=P;, = —————
8mik” + m") 2 2 8mk - m)
{18)
1 k' - 2m”
P“=P”=2—p:. P“’:m"(k",m')'

where k. m . and p  are Hill's [/6] elastic moduli of the surrounding
transversely 1sotropic medium, which belong to L” and are defined in the
Appendix. The remaining P, vamish.

2. THe SELF-CONSISTENT METHOD

So far. we have considered only the problem of a single inclusion.
embedded in an elastic medium. as a stepping stone to the more important
probiem of finding the stresses in the constituents of a composite medium.
The latter problem can be solved in several different ways. One approach s
based on the self-consistent approximation [2. /7-/9], which assumes that
the stress and strain field averages in the fiber are equal to those found in
the inclusion problem above. provided that the fiber is embedded in a
homogeneous medium that has the properties of the composite. In the
notaton of Section [I.B.1. the L". M" are 1dentified with the overall properties
L and M. and the L' and M’ with the fiber properties. which we denote here
bv L,. and M,. The matrix properties are denoted by L,. M,.

Rewnite 19) in the form

8, =@+, —a =0, e, —&) +ce, - E) =0 (19)
The above postulate of the self-consistent method and (15), (19) suggest that
6, — @) = ~L%e, -2, (9,-8 = L%, -0 (20)

[t 1s now apparent that both phases are regarded on the same fooung, ie..
the concentration factor for the matrix phase is derived from the same L*®

as the concentration factor of the fiber. The expressions follow from (16) and
1N,

AV=l+PL ~L, B '=I+QM, -M, 21)

where P 1s given by (18) provided that the moduli k", m”, p” are replaced by
the unknown overall moduli k. m, and p. Since the coefficients in (18) were
derived for a transversely isotropic medium., the substitution of this particular
form into 121) is permissible only if the fibrous composite itself conforms to
the usual assumption of overall transverse isotropy.
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Equations (21) and (10) yield estimates of overall moduli of the composite,
L= L, - C,(L, - L,’[I + HL, - L’]-l‘

M=M, « M, - M1~ QM, - M)

Seil-consistency of the result can be established by showing that L' = M.

Note. however. that (22) is a system of six implicit algebraic equations for

the overall moduli. For fibrous composites that are transversely isotropic

and are made of two transversely 1sotropic phases. Hill (/9] denved a different

set of equations for evaluations of the self-consistent estimates of the overall
moduli. which vield the same results as 122):

49

¢ R, Caky J4 camy cym,
ky=m ky=m |mg-m m ~-m|
l " ¢
— = L S 123
b P—=Ps P—Ds
1 Cy C’

hal

k—m=k,<-m k"‘m.

[n addition. Hill (/6] shows that regardless of the method used to obtain
their estimates. only three of the five overall moduli of such composites are
actuaily independent. The moduli. k. [. and n are related by so-cailed
universal connections.

k—k, k—-ky l=cly=cyly k,—ky
L1, 1=l n—cm—cny =1,

(24)

between overall and phase moduli and volume {ractions. Therefore. only one
of the three moduli 1s independent. Relations (23) reflect this: they provide
a cubic equation for m. and quadratic equations for p and k. the latter tn
terms of m. Once & is known, [ and n follow from (24). If one or both phases
are 1sotropic. then there are only two independent moduli in each such phase.
and %,. [,. n,. m,, and p, can be wntten in terms of the engineenng phase
moduli. as shown in the Appendix. Hill also gives a proof that the estimates
(23) he between rigorous bounds on the moduli, discussed below.

3. THe Mori-TaNaka METHOD

Another and somewhat simpler approach to the evaluation of phase
concentration factors of composite media was proposed by Mori and Tanaka
(0] and restated recently in a more tractable form by Benveniste (2/). [n a
binary. matnx-based composite system. the method >sumes that the stress
ot strain in the inclusicn can be evaluated from a solution of the problem
in Section [1.B.1. provided that L, is 1dentified with the inclusion suffness
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L', L with the matnx stffness L,, and the matnx average stress o, is applied
1n place of & at infinuty.

This suggests that one must first find the partial concentration factors

e, =Teg, o, =Wa, 129
which follow from t16) as

T=L"-Ly " "L* ~ Ly W= (M*+M,) 'M* - M, 126

where the L* and M* are now functions of the coefficients L, and M, and
are derived from (17). P 1s again found from (18) if the moduli k. m". p" are
replaced by k,. my, p,. respectively.

Once T and W are known. one can uulize 19) and (2195) to establish that

6, =[c,W~,0]"e. gy = [c,T = ¢,I]7'e 27

Finally. using 1101, the overall properuies can be obtained in the form
L= L:, - Cy([-g - L.‘,’(C,T -~ le]-l.

128)
M= M, = oM, - My[e,W + 17

Note that in contrast to (22). these are explicit algebraic equations for the
overall properties. Proofs of self-consistency LM =1 and full diagonal
symmetry of L. M for binary fibrous media are available: also. the estimates
(28) lte within rigorous bounds on overail moduli [2/-23].!

As yet unpublished results of Chen and Dvorak (24] give explicit expres-
sions of the Mori-Tanaka estimates of the overall moduli for a transversely
isotropic fibrous medium made of transversely isotropic phases. With r = x
representing the fiber. and r = § the matnx. these expressions are

k=

_ ko kg + mglc,k, + caky)
L',k‘ -* C’k, * m' ’

C,lilky + my) + cylglk, + my)

Colkg + mg) + cylk, + mg)
l’ had l‘

n=cn +cgng+l=cl, - C'l')k e
17 s

(29

_mymgky + Imy) + kymg(c,m, + cymy)
kymy + (kg + 2mghc,my + cym,)
_ 2aPsPs + C4P1Ps + P))
ZC,P, + CI(PI + P:) -

See also a more recent paper by Benveniste er al. (/03]
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These are analogous to (23) and also satisfy the universal connections (24).
Again. If needed. the expressions in the Appendix may be used to evaluate
the phase moduli of isotropic phases in terms of engineering elastic constants.

4  Bou~ps o OvEraLL MoDLLE

The methods discussed in the previous two sections lead to simple
ssumates of locul fields and overall properties. but they are heuristic in nature
and thus do not provide an assurance of accuracy of the results The
leginmacy of the self-consistent. Mori-Tanaka. and simuilar estimates 1s
derived from proofs that show that. in certain cases of practical interest. the
estimates are bracketed by rigorous bounds on overall modull. A simpie
lustration of the bounding procedure is the derivation of the Voigt and
Reuss bounds {/]. The Voigt assumption 1s that the strain tield in the enure
representatine volume ¢ 1s umform. 1e. A, = [1n(8). If this field 1s derived
from continuous displacements that cotncide with the prescribed sur-
face Jdisplacements on S. it 1s a kinematically admussible field. and the
principle of mimimum potential energy then gives the inequality éLé <
éic, L, = «;L, € where the first term 1s the potental energy of the actual
state. and the second term 1s the energy of the admissible state. There follows
an upper bound on L,

L<Ly=clL, +clL, (30)

where L, 1s the Voigt estmate of the overall stiffness.

The dual assumpuon. introduced by Reuss. is that the stress field in V' 1s
uniform. 1e.. B, = I 1n (8). The overall field that 1s in equlibrium with the
surface tractions s a statically admissible field. and the principle of mimmum

complementary energy leads to the inequality that gives an upper bound on
M.

M< M, =c M, + ;M. 130
Each of the principles actually gives dual bounds that can be summanzed as
Ly <L <Ly, My>M>M,. (32)

Of course. the Voigt and Reuss bounds are tnsensitive to microstructural
geometry and thus not particularly sharp. More restrictive bounds. which
reflect essential features of the geometry, were originally derived by Hashin
and Shtrikman [25-28), and for fibrous composites by Hashin and Rosen
[29]. Alternauve derivations were given by Hill (/6. 30), Walpole [3/. 32],
Wilhs {33. 34). and Milton and Kohn [35]. they also appeared in Christensen’s
monograph [36] and in several reviews [34. J7-39]. The procedure again relies
on the elastic extremum prninciples and on certain polarization stress and
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strain fields that are estimated from solutions of inclusion problems in a
homogeneous comparison matenal of suffness L,. compliance M, = L, *.
from which follow the constraint tensors L§. Mg in (14-17). Walpole [3/.
32. 37 qves a particularly simple form of the bounds:

(Sl -1 '1"'=L3>L  of L,>L,.

T UM = M- — V* \ 33
[ oM, = MY M > M if My >M,.

where L., and M, can be assembled from the appropnate terms of either L,
or M,

C. Transformation Strain

[ LU~IFORM STRarN FIELDS In FiBrOUS MEDIA

Local and overall deformation n ¢lastic composite media can be caused
either by mechanical loads or by transformation strains in the phases.
Thermal changes and phase transformations are the most common sources
of such strains: however. both local and overall plastic strains also can be
regarded as transformation strains.

Problems of this kind are best analyzed with the help of umiform fields in
fibrous composite media. which were recently discovered by Dvorak [7. 40].
To introduce the subject. we rewrite (3) in the more general form

£1X) = M, a,(X) + B,. (34)
a,(x) = L,&(x) + A,. (34)

w here g, denotes uniform transformation strains in the phases, which would
be the only strains present if the phases were free to deform without mutual
constraints. and a, = —L,u,. The corresponding form of the overall relation
13118

E =Mé& +p, (35
d=Leg+ A (35)
where 6. €. a. and p are the overall volume averages of stress and strain. L and
M are the tensors of elastic moduli and compliances, and A = —Lu. Note
that if the medium were unioaded in an elastic manner. then g would be the
remaining overall strain caused by the eigenstrains u,. A is the overall stress

caused by p, in a fully constrained medium.
In the presence of both mechanical overall stress or strain, and uniform
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phase eigenstrains, the local fields in the phases can be written as

e(x) = AXIE + D, (x)p, + D, 4(x)i,.

(36)
a,(x) = B(x)d + F, (x)h, + F,(x)4,.

where D,,(x) and D,4(x) are the strain fields caused in the phases by unit
phase transformation strains while the representative volume I of the
aggregate 1s under zero overall strain. Similarly. F,,(x) and F, x) are stress
fietds in the respective phases due to unit phase transformation stresses 4,
in }" when the overall stress s zero.

With these definitions, we pose the following problem: For a fibrous
two-phase composite medium that 1s subjected to uniform transformation
strains @, 1n the phases. find an overall stress & such that the superposed

local strains are umiform in the enure volume ¥ and equal to the overall
strain &.

£,4X) = E4(X) = &. 37

The problem can be solved with the following decomposition procedure.
The phases are separated and subjected to the respective transformation
strains and to as vet unknown surface tracuons that cause only uniform
stresses @, n the separated phases. Before reassembly. the tractions must be

in equilibrium at the cylindnical interfaces such that the auxiliary phase and
overall stresses sausfy the conditions

& = & g2 =4 for j=23. .6
) . . . . (38)
&, =, 0% + 01 G, =adt=dt for j=2.3,..6

’

in the usual contracted notation. This means that the axial normal stress
may be piecewise uriform in V. whereas all other stress components are
unmiform n

The components of the unknown overall stress then follow from (34,). (37).
and the above equilibrium conditions.

6
ML = MG+ T My - MG+l -l =0 =126 (39)

1=2
There are seven unknown stresses in this system of six equations; if a
solution 1s found. it guarantees the existence of a uniform strain in the
aggregate under u, and &. In general, even the homogeneous set associated
with 139) has a solution that gives a proportional overall stress path that

creates 2 uniform field in the medium when p, = 0.

Whereas the solution of (39) may be obtained for any material symmetry
of the phases. we restrict our attention to systems in which both phases are
transversely isotropic about x,. Of course, one or both phases may be
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isotropic if the elastic moduli of the phases are defined as indicated in the
Appendix. [n any case, the phases and the aggregate share the same
transverse plane of symmetry. the x,x,-plane. This is the only symmetry
condition that must be satisfied on the macroscale: in single-crystal elasticity.
it 1s associated with monoclinic crystals. For this system. the soiution of (39)
was obtained by Dvorak [40]; here. we only summarize the results 1n the
following form.

6=4, -4, 8, =a° ~a". € =gy - £, (40)
such that for u, = 0,
6, =6 =0 g, =0 1)
The homogeneous solution s
6, =1M,S;. > =1°S,. g€, =4d,5;. 142)

where Sy =15, = 4,) 2 1s selected as a (ree parameter 1n the solution. The
coetficients of the above vectors are obtained in terms of Hill's moduli of
transversely 1sotropic solids defined 1n the Appendix. Also. the following
additional symbols are used:

Ak =k, = kg, m* =mmyimgs~m). m, %m,
Al=1l,=1ls.  p* =p.pylpy=PJ): Py *py.
g7 =l kg = k1) = 2k kgdvi = vi) % 0.
Then. the nonvanishing coefficients of f,. f?. and d, are
£9 = qledl, Al = n,Ak) + cgll,Al — ngAk)), [ =f3=1.
(10, = @, Al = nAKL (SO =(f0)y =L (43)
4% = —gAk. d}=d}=qAl2

The terms &,. 6%, and £, in (40) can be expressed in the form

&, =K, + Kopy = -K. M0, - K,Mya,, (44)
6, = N,p, + Ngpg = =N M,A, - N, M, (45)
6 = N, p, + N, g = =N_M,A, - N,,M,4, (46)
where the nonvanishing coefficients of K,, N,, N,,, N,, are
Kt = dliky. Ki: = Kiy = gk.ky. K3y = —qlly2.
Ki, = —=m® 2m; — qk,ly/2, K}y = m*2my — gk,ly 2.
Ky =K K3y, = K3, K3, = K3,
Kis=~=m*m,, Kss = =p* py. Kse = K35,
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and
.V:l = q‘c,k'l‘EZ - C'k‘I,Ez),
.Vi: = N"l) = qk,k,lC,EZ -~ C,Ez)-
NI = N for il

together with

#

NU=EYEL =2 f r=f p=f f r=2,
vy

]

Ny =gk Bk, NT = =N = -,
V= SN = -NVL =t NG =N = -t

{n addition, one can establish that

K,-K; =1L 47)
N, - N, =0. N,,+N,; =0 148)
N, =0,N, =N, 149)

A stmilar solution could be obtained for other matenal symmetries of the
phases: of course. the coetficients in the matrices in (43) to (49) would change.
This 1s also true for the case of ¢ ™' = 0.

2. LocaL aND OveratL EFFECTS

The existence of the uniform fields opens the way for the derivation of
local fields caused by the uniform phase eigenstrains. and of the overall stress
a and strain @ 1n (35). Consider a two-phase fibrous system that is initially
stress free and introduce uniform eigenstrains into the phases. Apply overall
auxiliary stress or strain that makes the strain field uniform in V. With
reference to (40). disregard the homogeneous solution and use only the
overall stress 8, or strain £, in this loading step. Finally, reduce the overall
strain or stress to zero.

[n terms of the overall quantities, this sequence can be recorded as

¢, -Mo, =
2 {50)
é, - Lé¢ =),
and in local terms as
g(x) = & — A (xR, = (] - A x)E,,
(51

a,(x) = & - B(x)d,.
with reference to (37).
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Next. substitute into (50) for the auxiliary quantities from (44) to (46) and
recover the following explicit forms of (35). with the overall u and A being
expressed 1n terms of local and overall moduli and the phase eigenstrains.

€ = Mo ~ K, - MN,)j, ~ (K, — MN j,. (52
o = Le — (LK, - N, - (LK, ~ Ny, 1821
Recall that (11 presented an analogous result. albett for thermal phase

strains. This can be generalized in a self-evident way to the case of general
ergenstrains if mo and m,¥ 1n tL1) are replaced bv u and u,. and 16 and
L by & and A, Then. compare the result with (52) and extract the
following expressions for the mechanical phase concentration factors:

BT =K, = MN, =1 = K, - MN,.
L'._'Bsr = K’ - \l.\., = l - K, - MN,-
L',.-‘xr = lLK, - .\.,).\I, =]- (LK‘ - -\.,)M,.
oA = (LK, = NgM, = 1 = (LK, = NM,.

15h

These equations give the same magnitudes of A, and B, as one would
obtain from 1) or i11). but they can be easily expanded so that one can
see the dependence of the individual coefficients 4,,, B, on L,, and M
respectively.

Proceed now to the evaluation of local fields and their phase averages.
Subsutute from (36) 1nto (51) and use (44) to (46) for the evaluation of the
auxihiary strain and stress. After some algebra. denive the following relations
between transformatuon and mechanical fields in the phases

(TA

D,.x) =l — A x)K,. F,(x) = (B,(x)N, = N)M,, ”
t
D, ix) =1 - A (x)K,, F,ix) = (B(x)N, = N,,)M,,

together with the connections

D,,ix) + D,(x) = (I = A(x)), F{x)L, + F (x)L, = 0. (59
Find phase volume averages (2), (4) of the above fields and employ (53)
to replace the mechanical concentration factors. This connects the eigenstrain
and eigenstress concentration factors directly to the overall L and M.
e.DI = KT(c,0 = (LK, - NM,). ¢, FT, = M,[NI(K, - MN,) —¢,NT],
DI =K[[c,1 - (LK, - N M,],  ¢,FL = M,[NJ(K, - MN,) - ¢, NIl
(56)
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One also finds that these factors satisfy
C‘DH+C‘D'I'0- C,Fu+C,F,,=0.
N
C,D,‘*'C.D,.'Ov C,F,,*’C'F"'o. ‘

These resuits. and parucularly Eqns. (54), can be utilized in the evaluation
of the local fields. Equations (36) are the key: they can be restated as follows:

The local strain fields 1n a composite subjected to an overall strain &
and to the phase eigenstrains g, are given by

£4%) = A XK€ - D, ,(xi, = D, zixipy,. 138)

The local stress fields 1n a composite loaded by an overall stress & and
by the phase eigenstresses o, = — L., are given by

a.x) = Bixid ~ F (&, = F  ix)a,. 159)

Phase averages of the local fields follow if AJdx). Bix), D,x). etc. are
replaced by A,. B,. D,,. and s0 on.

3 EvaLLaTiON PROCEDURES

Applications of the various relations that describe the elastic behavior of
fibrous composites must be preceded by a specification of phase thermo-
elastic properties and volume fractions. The first step 1s the evaluation of
mechanical stress and strain concentration factors and overall moduli. This
can be done in two different ways that, for a given approximauon. iead to
identical results. The factors can be evaluated directly by either the seif-
consistent method from (21) or by the Mon-Tanaka procedure from (25) to
(27). The overall moduli and compliances then follow from (22) or (28).
respectively. A more direct way to this result s indicated by (23) and (29),
which offer the magnitudes of the moduli. Using the equauons in the
Appendix. one can readily assemble the overall L and M. Alternatively. (33}
can be used to find bounds on these moduli. In any event. each set of moduli
obtained from one of these approaches must conform with the universal
connections (24). Also, each set may be substituted into (10) or (53}, which
vield the concentration factor teasors. Of course, if (53) is used. one must
first find the coefficients of K,. N,. and 50 on. in (44) to (46). The relanons
following (10) and (47)49) may be used to verify the results.

The response to a uniform change in temperature can be described in
terms of local thermoelastic properties and overall L or M; equations (11)
give the overall properties. and (12) give the local fields. These results
represent exact connections between the various thermal and mechanical
terms. However. the latter are not known exactly; they are known only 1n
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terms of bounds or estimates. Hence the overall thermal properties and phase
field averages are also approximations produced by the various procedures.

The effect of uniform transformation strains on overall stress of strain and
on phase field averages can aiso be described by local and overall moduli
and by mechanical concentration factors. Equations (52) indicate the overall
stress and strain tn terms of the concentration factors (53); and (58). (59) give
the local fields. Of course. these results reduce to those caused by a
temperature change 1if the transformation strains are replaced by phase
thermal strains.

The overall thermoelastic properties and averages of local fields can be
obtained with minimal information about the microstructural geometry of
the ibrous medium. essenually 1n terms of local properties and phase volume
fracuons. A much more difficult problem 1s the evaluation of local fields in
the phases. Obviously. the outcome depends very much on the details of the
geometry of the phases. and as such 1t calls for solution of specific boundary-
value problems for prescribed geometries. The actual local geometry usually
vanes in any given system. hence exact solutions are bevond reach. However.
the parts of the local fields that are of interest in applications are usually
located in the fiber and 1n the proximity of the fiber-matnx interfaces.
Estimates of such fields cannot be found by the self-consistent method unless
it 1s modified by introduction of a matnx interlayer to surround the fiber.
nor can they be deduced from the bounds. Only the Mon-Tanaka method
offers a direct estimate of the interface stress and of those in the surrounding
matnix. Recall that the method is based on the solution of an inclusion
problem 1n which the fiber is embedded in an infinite matnix subjected to
the average matnx stress or strain (27) at infinity; this field can be used as
an esumate of the actual field. The fields are not descnbed herein. but can
be found tn available texts [/2. 36).

Once the esumate of the mechanical fields (27) is found. it 1s an easy matter
to use 1t in the evaluation of the thermal stress fields via (12) or of the
transformation fields 158) and (59), with the connections (54).

IIl. Elastic-Plastic Respoase

4. Homogeneous Materials

. YIELD aND RELAXATION SURFACES

When a metal or a metal composite part 1s Joaded beyond a certain stress
magnitude, the total strain at each matenal point may consist of both elastic
and inelastic contnbutions. If the loading rates are such that the response
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can be regarded as independent of time. the inelastic part is represented by
a plasuc strain. At a given applied stress. the plastic part of the total strain.
if any. is defined as the strain that would remain after complete local
unloading. 1n which the material would be constrained to deform only
elasucally. In other words. the plastic strain in a homogeneous volume of
matenal under uniform stress 1s the difference between the total strain and
the elasuic strain that would be generated by the current applied stress in a
completely elastc solid.

[n poiscrystalline solids that are assumed to be elastically homogeneous
on the macroscale. the plastic strains caused by prescribed stress histories
can be evaluated. in principle. within the framework of classical plasticity
(4/—4]. The results are useful in the formulation of constitutive equations
for the plastically deforming phases in composite matenals. Although the
theory 1s largely phenomenological and thus not necessarily sensitive to the
effects that the heterogeneous microstructure may have on overall behavior.
1ts general aspects are relevant to the plasticity of composite materials. We
dre concerned only with situations where the total strains are small and
where the thermoelastic properties are independent of temperature. The vield
stress. however. may change with temperature. Only uniform temperature
changes will be applied.

Consider a representative volume of an elastic-plastic solid such that the
selected sample can be regarded as elastically homogeneous on the macro-
scale. Starting from an undeformed. stress-free state. apply uniform overall
stresses along a prescnibed path that terminates at the current state 4. In
most metals and composites. there s an elastic domain in stress space where
no plastic strains are generated by load cycles from the current stress. [n
principle. its boundary can be found as a locus of points that can be reached
by purely elastic loading excursions from &. The outcome 1s described by
a scalar-valued yield or loading function f(&. H). which depends on the
current stress and also on a functional of past history of inelastic deformation
H. The function represents a closed surface in the six-dimensional stress
space. If the sample 1s heterogeneous on the microscale, the surface may
consist of a fimite number of smooth branches.

Experimental evaluation of yield surfaces has been performed most ex-
tensively on polycrystalline metals. particularly on commercially pure alu-
minum. on some aluminum alloys. and on other metals [45—49]. Only recently
have similar results become available for metal matrix composites (50]. The
results suggest that the surface translates and distorts during plastic loading.
The distortions are often much less pronounced than the translation: hence
in the first approximation. they may be neglected. and

flé. H) = f(@ - 3), (60)
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where 2 denotes the position of the center of the surface. In the absence
of pnor inelasuc deformation. 4 = 0. and (60) defines the initial vield
surface.

Alternatively. the material volume considered can be viewed as subjected
to 1 macroscopically umiform state of strain. After a deformation sequence
leading to the current state €. elastic strain excursions from the current
state may be employed to determine the outer boundary of the elastic strain
domain. For matenals that obey (60). the outcome s represented by the
relaxauon surface in strain space

OlE. H) = o(M@ ~ €. H) = f(a. H), 6

where H. in an appropnate form. 1s again a functional of past plastic
strain history.

The specitic analvtic forms of o or f. which approximate experimental
observauons. are closely related to elastic symmetry of the matenal volume.
In the undeformed state. and after deformation histones that do not cause
internal rearrangements atfecting matenal symmetry. the functions (60) and
1611 must be form-invariant under the group of svmmetry transformations
associated with the particular solid. For example. most metals are usually
regarded as macroscopically isotropic. and the functions are expressed in
terms of the familiar 1sotroptc stress or strain invanants. The assumption of
plastic incompressibility eliminates the dependence on the first invanant. and
thus on the stress & 1n favor of the deviatonc stress §. The third invanant
of § 1s convenient in special situations. but its role 1s neglected in typical
applications. This leaves only the second invanant J, = 5, 5,, 2. and f is then
represented by the Mises form of the vield function

f@-a)=m(@-2C@-2-Y =0 162)
where the nonvanishing coefficients of the (6 x 6) matnx C are
C\ \=Co;=Cyy =l Cy=Cyy=Cy;= ‘f' Cua=CyymCoq=3.

and Y 1s the yield stress in simple tension; its magnitude may depend on
temperature and. or the plastic strain history.

[n contrast to the isotropic metals, fibrous composite materials are usually
transversely isotropic. i.e., their properties remain invariant under rigid body
rotations about the fiber axis x, and also under the transformation x, =
~x,. Hill (¢]] and Mulhern er al. [5!] point out that the functions (60)
and 161) must then depend on the corresponding invanants. Green and
Atkins [52] and Spencer (53] give the appropriate forms: for transverse
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isotropy the stress invariants are
11 = (&:3 + &,,)/2.
’: = &

Iy =163, +di. 163)

Other appropriate sets must be selected for other than transversely
1sotropic composites. Such considerations impose specific restrictions on the
admussible form of 160y and i61) that must be respected in modeling. In
parucular. f18. Hy = fil,. I.. I,. I, . H). [n properly constructed micro-
mechanical models. this restnction should be automaucally satisfied when

the overall vield or relaxation surfaces retlect the onset of inelastic deforma-
tion. e.g.. (n the matnx phase.

2. PrasTic STRAINS AND HARDENING

When the overall stress is taken as the independent variable. the plastic
strain 1s defined as the difference between total strain and the elastic strain
recovered during purely elastic unloading. Conversely, when the overall
strain 1s independent. plastic deformation is associated with the existence of
a relaxation stress &*. defined as the difference between the elastic and
current stress at the prescnibed overall strain. When this is applied to strain
and stress (ncrements. it suggests the additive decompositions

dé = Mdé + de’. (64)
dg = LdE - d&*. (64')

Unlike M dé or L di. the d#” or dé* are not linear functions of stress or
strain. Therefore. the total quantities generated under a prescribed load or
deformation history must be found by integration along the actual path.
The transiion from elastic to plastic deformation can be defined with
reference to the loading or relaxation surfaces. In what follows, we focus on
the stress space formulation; an analogous strain space formulation can be
found 1n [S4-56]. By definition, the surface (60) must always coatain the

loading point dunng plastic deformation; this is assured by the consistency
condition

AY . &
df (Ei) (dé—da)#EHdH‘réedOsO. (65)
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The possible states reached by loading excursions from the current
elastic state are:

. é y
dé? =0 for £ €0, £ de + %de < 0 (elastic state or unioading),
(4
) . ) cf &f i
J&# =0 for 1 =0, e dé - 3 d0 = 0 (neutral loading). (66)
(8

. o of
Ji? =0 for + =0. — dé& - —d¥# >0 (plastc loading).
g cd
The direction of the plastic strain vector Jé” can be established by
following a load cycle that starts at some stress §* within the current foading
surface. continues 1o the stress state & on the vield surface where the
excursion into the plastic range takes place. and then returns to *. The
elastic work s recovered in the cyvcle. whereas the plastic work performed
during the load cycle 1s
W,=|16-6° Jdé?dt20. (67

w i

This result suggests that
@ —&° - di’ 2 0. (68)

where the equality i1s valid only for neutral loading. The relations indicate
two important conclusions [42]. First. in matenals that satisfy (68), the yield
and loading surfaces are always convex. Second. at regular points of the
loading surface. the plastic strain rate vector 1s always normal to the loading
surface.

Thus one can write

dg® = d.. ‘—f. (69)
da
where the magnitude d4 needs to be determined.

During plastic straining, the yield surface must follow the motion of the
loading pont to satisfy (65). This can be assured by a proper evolution
equation for the vector & in (60). A suitable general form of a kinematic
hardening law 1s

da = dé + dy, (70)

where the magnitude of the vector dy i1s specified by various rules. Well-
Known prescriptions were suggested by Prager and modified by Ziegler
(7] However, experimental results [45—48] indicate that in aluminum alloys
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d’ 13 best approximated by selecting d7 = 0 in (60). This hardening law
was first suggested by Phillips (45. 46] and Phillips and Lee (¢7].

An illustration of the strain evaluation procedure for a umiformly stressed
metal sample is provided by the following example [58]. Let the loading
surface be represented by the Mises form (62). but with a temperature

dependent vield stress ¥ = Y(6). and the hardening by the Phillips law_ If the
latter 1s written in the form

da = uds.
then the consistency equation suggests that

NG AN I VAN

=[16 - 2)7Cda] " '[(6 - 1"Cdé - Y(OY(6)db].

where the second expression was derived {rom the Mises form 162).
The plastic strain magmitude 1s evaluated from Ziegler's equality

1

cdir L wgz, L (73)
¢ 1 ty
which gives
g 1 Yoy
ds = [cq"q*] | q7 d& + ?f-de = —|nTdé - —-}:-——Y—Qdo LT
co cQ Q
where

|
n=-q Q=(q'q")}?
Q

4 =q7 = 2AGy, = 2,) ~ (83 = Xp3) —(Gyy ~ 1y,),
g: =q7 = =0y — &) + ATy ~ 313) =~ (Fyy = iy,
gy =q3 = =0y, = &) —(G2; ~ 33) + ATy — Iy,)
Qe = 295 = 6, — ;1) qs = 293 = &(F,, — 1y,).
ds = 293 = §(d); — 1y;).

The magnitudes of ¢ and H are sometimes defined from a simple ten:.cn

test. this gives

c=2H3 H = (do - dY)de,

but a much better agreement with experiments follows when H is found

from one of the contemporary theories of plasticity discussed, for example,
in (48, 49, 59].
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B. Heterogeneous Materials

1 INnTIAL YIELDING AND HARDENING

[n comparnison with the analysis of elasuc svstems. micromechanics of
elastic-plastic composites 1s much more difficult. Some of the earlier results
apply. however. the instantaneous mechanical properties of the phases. such
as suffness and comphance are no longer known constants. instead they
depend on the current stress and on past history of plastic deformauon.
Therefore. a plasucally deforming phase that has experienced some non-
uniform plastic straimng 1s no longer homogeneous. 1ts instantaneous prop-
erties change from point to pornt.

The piastic deformation process can be better understood if the medium
15 viewed as an aggregate of small volume elements k = 1. 2. .... V. which
subdivide both the matnix and the reinforcement phase. and 1n which the
local strains are regarded as piecewise uniform. The refinement of such
subdivision can be varied from two elements. one for each phase. to as many
as desired. Since each subelement 1s replicated 1n numerous locations in the
actual composite. it 1s appropriate to assume that local properties are similar
to those that would be found tn a neat polycrystalline matrix or fiber material
that was exposed to the actual in situ processing sequence. Of course. in
many nstances such properties can be found only indirectly. but 1t 1s
apparent that those that apply to the inelastic phase must fit into the same
general framework as those of the phase matenal. described in Section [ILA.

The 1nelastic response of such a subdivided composite to external loading
will be studied in more detail with the micromechanical models in Section
{[1.B.4. However. an example of their behavior will be presented now, as an
introduction to the subject. The example is taken from the work of Lin
and Dvorak [60]. who examined an idealized periodic model geometry of a
discontinuously reinforced fiber composite shown in Fig. 1. The fibers are
cvlinders of hexagonal cross section, arranged in a periodic hexagonal array
in the transverse x,x,-plane. In the longitudinal x,-direction, the fibers are
distnibuted also 1n a periodic manner. Figure 2 shows a representative volume
of the composite and its subdivision into finite elements. When appropnate
periodic boundary conditions are prescnibed. the deformation of a large
volume of the composite under macroscopically uniform overall stress can
be studied with one such representative volume element. Finite element
analysis of the representative volume is usually used to obtain specific resuits.

Suppose that the fiber is always elastic but that the matnix is an elastic-
plastic material of the type described in Section IIL.LA. The composite is
imtially 1n a stress-free state, but loading excursions of sufficient magnitude
may cause plastic yielding in parts of, or in the entire matrix volume. At
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FiG. 1. ldealized microgeometry of a whisker-rewnforced composite medium. 1a) transverse
plane. ibi longitudinal plane (60].

current overall stress, the boundary of the elastic region can be established
by loading 1n many directions from this stress state. Onset of overall plastic
deformation can be detected as a specific deviation from lineanty in the
stress—strain diagram. In Fig. 3, this has been done by many radial loading
excursions from the origin. Then. the overall stress was changed along
the path indicated from A to B. Many excursions were again made (rom 8

to find the next loading surface. This was repeated at C, and the path CDE
was completed within the last surface.
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it lvading pounts B and C [60).
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These overall surfaces reveal some aspects of plastic yielding, such as the
essentially kinematic motion of the overall surface in the direction of the
stress increment: this will be related to the Phillips-type kinematic hardening
of the matrix. Also. there is some distortion. mostly éxpansion or contraction
of the overall surface during plastic loading. In contrast, the yield surfaces
of the kinemautically hardening matrix do not change size.

A better insight into local and overall yielding can be derived from an
examinaton of the local vield surfaces at integration points in the tinite
elements. To construct such local surfaces in the overall space. it 1s necessary
to find the elastic stress concentration factors 8, of all elements. Each column
of B, 15 generated by a single component of the umit overall stress. Then. \f
the local surface of point k 1s given by fie,. H,) = 0.1n the local stresses. its

image in the overall stress space 1s y (6. H,) = (B,@. H,) = 0. With reference
to 1601, this can be wnitten as

46 — 2, = 1B & -2, i°%

or. using 162),
Jld -3 =18 -3 B/CBug — 39 - Y- =0. (761
Figure 4 shows a plane secuion of the cluster of local surfaces for the
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Fic. 4 Cluster of mual vield surfsces found in the overall &, ,4¢,,-plane from local
mual vield surfaces of the matnx phase. Overall yield sutface found from deviation of the
overall stress-strain response from lineanty s supenmposed (60].
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integration points in Fig. 2. in the overall stress space for the undeformed
state. The surface found from macroscopic deviations from linearity in Fig.
315 supenmposed. Figures 5§ and 6 show similar clusters at points 8 and C.
together with the corresponding surfaces from Fig. 3. Of course. the loading
excursions designed to establish the points on the overall surface cause local
plastic vielding and rearrangement of the clusters. [n fact. even the seemingly
elastic path CDE causes such rearrangement and plastic vielding. Figure ~
shows 4 detail of the cluster at point C. This 1s a section of a vield cone 1n
the six-dimensional overall space. [n the plane shown. it represents a corner:
note the hinge-ltke arrangement which is typical after extended excursions.
At the current point C. one can draw normals to the internal envelope and
also evaluate the plasuc strain increment. Hill [6/] shows that the direction
of the piastic strain must fall inside a cone of normals. this 1s illustrated by
the plane section in Fig. ~

The example indicates that it 1s not generally possible to derive the actual
overall vield surface from a locai vield condition. [nstead. the overall surface
that corresponds to measurable deviations from lineanty is a locus of vertices

200
18
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d,,(MPa)

-100

150 =

.200 1 i L | | l 1 | ]
<300 -2%0 -200 130 100 -S0 0 $0 100 150 200

7,,(MPa)

£ ¢ Cluster of vield surfaces found at 8 in the overall #,,¢,,-piane from local vield
surfaces of the matnx phase. The loading path leading to B 1s indicated [60).
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of local yield cones. with associated cones of normals that contain the plastic
strain vectors.

From (75). one can read the following relation between the “radii” of local
surfaces 1n the overall and element space.

{de, — da,) = B,(dé ~ d&,). g

In 1 kinematically hardening matnx. (70) applies to the stresses and
translations in ¢ach element k. Together with (77). this specifies the direction
of mouon of the vield surface of each plasucally deforming element k in the
overall space as

da, = d& — B ' d,. "8)
ofr
da, = 4§

for the Phillips law. This last form s parucularly simple n that 1t does
not require any information about the local stresses or translauons. of
course. 1t still applies only to surfaces of the plastic elements: hence it does
not suggest an idenucal translauon of all surfaces in the cluster.

Under certain himited circumstances that will be descnibed in the sequel.
the subdivision of the microstructure may be restncted to the two phases
and the overall surface found from (77) and (78), with k replaced by the
matrix subscript B. and B, taken from the elastic estimates in Section [[.B.
However. an indiscniminate application of such a coarse subdivision of the
representative volume may produce entirely misleading esumates of overall
vield surfaces and hardeming.

2. Purastic CONSTITUTIVE RELATIONS

An examination of the constitutive equations for the inelastic phase.
Section [11.A.2. suggests that they can be reduced to the form

derx) = L{ex) ~ px). H(x)] dex) + L[H(x)] db.
deix) = M, [o(x) = ;Ax). H(x)] do(x) + =, [H(x)] d6.

where .4,[e1x) — 2x). H(x)] represents the instantaneous compliance of the
inelasuc phase. which can be constructed from (64). (69), and (74). The
£.[ax) - fx). H(x)] is the instantaneous stiffness of the phase that follows
from an analogous strain-space formulation. The vectors /,. e, are com-
posed from the temperature-dependent yield stress terms in (74), and from
the thermal vectors },. m, taken from (1). These forms must replace (1) in the
inelastic phase.

(79)
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The phase volume averages (2) now are

.
do, = - | Lfex) - x). Hixi] deix) + ¢,[Hix)] 48} aV;,
’ '_" (80)
- | .Lax) — wx). Hix)) dotx) - we,[H(x1) d6' 4V,
reb.

These 2quations replace 13). but they do not reduce to that simple form.
Unless the local deformaton s uniform. one cannot write the phase con-
stututive relauons in terms of phase averages of stress and strain. because
these are not connected by an instantaneous phase stuiffness or compiiance.
[ndeed. no such phase properties exist in the average sense. The phase
constitutive relations must be satsfied pointwise, and this can be achieved
only through integration of (79) in the phase volume along the prescribed
overall stress or strain path. The fields cannot be found exactly for an actual
or model geometry. An approximate evaluation 1s most conveniently done
with the finite-clement method. as indicated in the previous example.

Of course. there 1s a strong temptation to circumvent the difficulty
associated with evaluation of the local fields. Typically. an attempt 1s made
to reduce the actual phase constitutive relations (79) to the form

da, = Lle,. H,)de, + ¢(H,) 46, 181)
de, = M0, H,)de, - miH,) db. {817

where the instantaneous &, /,. and A, e, relate the averages of phase
stress and strain fields. as if these fields were always uniform. Such assump-
tions seem 1o be jusufied 1n modeling of the instantaneous properties of
individual grains 1n elastic-plastic polycrystals (63]. Models of this kind
regard the polvcrystal as a multiphase medium. consisting of many differently
ortentated but otherwise identical grains, where it seems appropnate to view
the deformation field as piecewise umform. However. this view becomes
untenable in two-phase systems where both the geometry and the elastic and
elastic-plastic properties of the phases are entirely different. Usually. only
the matnx phase deforms plastically, hence the phase properties grow even
further apart n the plastic range.

A tvpical application of (81) is in vaniants of the self-consistent or
Mon-Tanaka methods in plasticity. The schemes that have been proposed
often employ composite cylinder or sphere inclusions in an effective medium.
ot other adjustments of geometry designed to improve the estimate of the
local field in the matrix. We recall that in elastic analysis. these methods
derive their legitimacy from proofs that show that their predictions of overall
properties are bracketed by rigorous bounds. Such proofs are not available
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in plasticity. Therefore, there is no assurance that the estimates are reliable.
Errors introduced in this manner are easily compounded by integration of
the incremental forms along a prescribed overall loading path. Additional
problems may be introduced by a loss of consistency and.or symmetry of
the esumates. Therefore. the approximation (81) should be either avoided
altogether or used only in situations where it may be indicated by com-
parisons with expeniments and more accurate micromechanical models. In
two-phase fiber composites. such situations arnse in the fiber-dominated
deformation of the bimodal piasucity theory discussed in the following.

3 ExacT RestLrs

In most situations. the overall response of an inelastic composite is related
to the nonuniform locali fields. and those must be evaluated from an analysis
of a specific micromechanical model. Such models are often based on
simphfied assumptions that may or may not be admissible 1n plasticity of
heterogeneous media. To assist in model formulation. we now present certain
exact results that are independent of the choice of model. and therefore. must
be satistied by all admissible models. They refer to overall and local piastic
strains. to thermal hardening caused by a umform change in temperature.
and to normaiity and convexity of the overall yield surfaces. Except as noted.
the results apply not only to two-phase composites. but to representative
volumes of all inelastic heterogeneous media under homogeneous boundary
conditions.

a. Local and Overall Plastic Strains

Suppose that an initially stress-free aggregate is subjected to a load cycle
that starts and terminates at & = 0, but reaches some intermediate level
& = ° such that one or more phases undergoes plastic deformation. At each
overall stress 8°. the overall plastic strain is defined as the difference between
the total overall strain and the strain caused by purely elastic unloading by
—&° As long as the local plastic strains are regarded in the usual continuum
sense envisioned. for example by (79), a similar definition applies to each
homogeneously stressed and strained matenal point of the inelastic phases.
The local strain field in the inelastic phases consists of an elastic and plastic
part. and the latter may be written as a sum of the phase volume average
€’ and a vanable plastic field #7(x). If otx) is the local stress under current
uniform overall stress. the phase strain field is

g(x) = M,0,(x) + & + #(x). (82)
After complete elastic unloading to zero overall stress, these strains become
&(x) = M,[a,(x) - B(x)§°] + & + (x), (83)
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where B,(x) 1s related to the overall stress by the elastic influence function
in i7). and M, is the elastic phase compliance. The stress
a’(x) = a,(x) — B,ix}6° (84)
15 the elastic stress field associated with the residual strain. which together
with the plastic strain €°(x) creates a compaubie field in the unloaded
composite. The vanable part of the plastic strain field has the property
(. L]
ol Emdv=0=_ | #dr =0
", .V

bl

The phase volume average of the field (82) then s

o L . <
g, = Mo, ~& where & =—| [£x - Ma0]db 185)
L|v V.
The overall plastic strain &° i1s defined as the volume average of the
local strains (83) after complete elastic unloading from &°:

-

i =~ ' (M, e%x) + &) dV’ 186)
.

T"-—-

{n the alternative strain space formulation (64"), the overail strain &

1s regarded as the independent vanable. At current &. the local stress fields
are

a.(x) = Le.(x) - &* - a*x) 87)
and after elastic unloading leading to &€ = 0:
o.ix) = L [eix) — A x)}E] — &* - ¢%x) = L,e%x) — &* — gMx). (88)

The variable part of the phase relaxation stress *(x) has the property

| 1]
=] dhmdv =0m= | dhxidv =0, (89)
v v]

re V.

and the average of the field (88) thus becomes

o, =L -3 =Lc ~- & (90)
The overall relaxation stress follows as

c‘-%j[l.,zﬂx)-»éf] dv o1)

where

@t = -l—J (L,eix) - a(x)] dV.
v, Jv.
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The vanable parts of the local plastic strain and relaxation stress fields
do not contnbute to the overall strain or stress. Only the averages of the
fields and the residual elastic fields make such contnbutions. However. the
vanable parts. together with the applied elasuc fields. may have a very
sigmficant influence on the magnitude of plastic deformation which actuaily
takes place n the phases. and thus on the magnitude of the averages. For
example. Dvorak et al. [50. 62] show that extensive matrix-dominated plastic
vielding may occur tn an actual system under overall stress which would not
satisty 3 macroscopic vield condition based on average phase stresses.

We now proceed (o derive 3 quantitauve relationship between local and
overail plastic strains that does not involve the residuai field. A representative
volume of a muluiphase composite matenial under uniform overall stress or
strain 15 again considered. The virtual work theorem 1s used: 1t states that
the integral over 4 representative volume
-Jloixyeixydlh=8 ¢ 192
Ve
where gix) 15 any stress field that sausfies equations of equilibnum, with
volume average (6) equal to . Similarly. £'(x) ts any strain fieid denivabie
from continuous displacements. with volume averaging (6') equal to & (/).

The theorem 1s first applied to the elastic restdual stress field n (84) and
to the purely elastic strain field 1n a composite without plastic strains. The
result 1s

-

l
7 o’(x) M,Bx)g" dV = ¢ Mé" =0 193)
wV

because ¢° = 0.

Next. the theorem s apphed to the elastic stress field in a composite
without plastic strains and to the total strain field in the unloaded composite
183 and 186):

‘; | Bixw (M, e%x) + ()] dV = 6" & (94)
oV

With reference to (93), and to the symmetry M = M7, one then finds the
relation between local and overall piastic strains as

l
= [ Bl(x)e’(x) dV (95)
29
where V, is the part of the total volume undergoing plastic deformation.

where ¢ » 0.
Thus is a general result valid for a heterogeneous medium with any number
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of inelastic phases. Related but not identical relations have been derived by
Hill (6/] and Rice (67). ’

A dual relationship between the local and overall relaxation stresses in a

composite subjected to a prescribed uniform deformaton path is
é* = pl Alixeix) dv. (96)
w V.

[n many micromechanical models. the actual local fields are replaced by
their precewise uniform approxtmations. For example. the self-consistent
model assumes that the local fields are uniform at each phase. In the
Mori-Tanaka modei and in the dilute approximation. uniform fields result
in the inclusions. but not in the matrix. The unit cell models discussed in
Secuon [II.B.1 and in Secuon [I1.B.4.b. typically subdivide each phase into
many finite elements with uniform or piecewise uniform strain and stress
fields that are related by the elastic or inelastic phase constitutive relations.
During plastic loading. each such uniformly strained subdomain wiil have
Jifferent instantaneous properties and can be regarded as a separate inelastic
phase. In practice. the fields evaluated by a finite element procedure represent
the best available approximations of the actual fields.

Under such circumstances. both terms in the above integrals are constant
within a certain subdomain k. and the integrals may be replaced by the sums

=Y Bl 197
k,
ot =S cAlel (97)
ky
taken over all kK, in which the local plasuic fields exist. Note that only in
elastically homogeneous media (B, = I) is the overall plastic strain equal to
the volume average of local plastic strains.
The above results can be expanded to include the effect of a uniform
change n temperature and summarized as follows.
Under a given overall stress @ and temperature chaage ¢. the total

overall strain s the sum of the elastic strain, the thermal strain. and the
plastic strain:

t=Mé+mb+ @ (98)

Likewise. under fixed overall strain and temperature change 6. the overall
stress is the sum of the following terms:
dg=Li+10-4" {99)

with ” and " related to local plastic strain by (95) to (97).

When written as relations between increments, the above relations are
analogous to (64).
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b. Constitutive Relations for Two-Phase Fibrous Composites

For each fiber composite system. there are certain loading conditions that
promote the fiber-dominated deformation mode defined 1n Section [I1.B.4c
below [n this mode. the magnitude of the variable parts of the inelastic fields
in (821 and (87) seems to be negligible. If this 1s the case. then one may simplify
the analysis of such fibrous composite systems by assuming that the phase
consututive relations are satisfied by phase volume averages of the stress
and strain Aelds. as indicated by (81). This suggests that the actual forms
32y and (87) of the local fields are now replaced by the much simplet forms
(331 and (901. respectively. In other words. both the phase plastic strains and
relaxation stresses are assumed to remain uniform dunng fiber-dominated
Jeformation.

Now compare (85) with the phase average of (34). and (90) with the phase
average of 134 The implication is that the & can be identfied with a
uniform phase transformation strain u,. and —&”" with &,. Similar connec-
tons exist between the overall transformation strain g in(35) and (52) and the
overall plastic strain &° derived from (97) and also between the overall
transformation stress a 1n (35) and (52) and the overall relaxation stress
—&* found from (97)). Therefore. 152) can be utilized to write the following
result for a two-phase tiber system:

& = (K, = MN,& + (K, — MN,&t,
é‘ = ‘LK, - V,)é: + (LK‘ - N,)é:.

which 1s analogous to 197), but employs the overall elastic moduh instead
of the phase concentration factors. Another form of (97) follows from (53):

& = ¢,Bl&? + ¢,BJ &, (100

" = c,ATe* + c,Af 8. (101')

(100

where the relation employs again the elastic mechanical concentration
factors. A companson with the Levin [3] and Rosen-Hashin (4] formulae 1n
111 and (11') serves to establish an analogy between the uniform thermal
and plastic strains.

If only one of the phases does yield. then the relation can be inverted and
the phase average of the plastic strain field can be evaluated in terms of the
overall plastic strain. Thus, if r = 8 is the inelastic phase,

1
& =(K, - MN,) ‘&’ = c—m{)' ‘g,
[}
(102)
1
6} = L(LK, - Ny~ 'é* = c—‘(A,')‘ et

providing that the inverses exist.
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When the local strains are assumed to be uniform in each of the phases.
equations (100) and (101) relate the local and overall plastic strains in a
two-phase fibrous compostte.

We now derive relations between local and overall total strains. For the
elastic composite. such relations are given by (8). Here we include the effect
of a uniform temperature change # 1n a similar way. but consider the plastic
strains as separate eigenstrains. which by assumption are now uniform in
the two phases. Recall that the effect of phase eigenstrains on the total phase
strain or stress was evaluated 1n (58) or (59). respectively With regard to the
above connections between the uniform phase eigenstrains and plastc
strains. or phase eigenstresses and relaxation stresses. and with the thermal
strains taken from (8). the local and overall quantities are related as follows:

Under applied overall strain and temperature change:

£, =AE+a0-D,E +D,&. 1103
Under a uniform overall stress and temperature change:
o,=B&+b0-F,a"-F,é) (104)

where the transformation concentration factors are given by (54) and 156).
While both the overall € or 6. and the temperature change 8 may have
contributed to the local plastic strains, the two leading terms in the equations
represent the elastic contribution to local averages: they may or may not be
equal to the overall thermomechanical loads that produced the plastic
strains. The relations are valid after a partial or complete unloading and in
any circumstances where & . and 6 cause no further plastic flow.

The average phase stress. which corresponds to the strain (103). follows
from 134). When all contributions are included, one finds the local stresses
In a constrained composite as:

e, =Le +1L,0-62=LJe, —-&)+10 (105)

Alternatively. the constrained composite may be viewed as medium
loaded by the overall stress &, given by (99). Then, (104) and (101') may be
utithzed to find another form of (105):

o, = B,LE + (b, + B,D8 + (c,B,A] — F,,)8* + (c,B,A] — F,,)8}. (106)

The identity & = L,&” may be introduced if desired.
Next. we find the local strains in a composite under uniform overail stress,
which coexist with the local stresses (104). According to (34), the result is:

g, =M,0, + m,0 + & (107)

Again, the overall uniform stress may be regarded as a consequence of
the applied overall strain (98) that has the component (101°) derived from the
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local plastic strains. When this is utilized in (103). the local strain (107)
assumes the form:

& = AME+ (2 +AmpY +(c,AB] + D,)E&! +(c;A,B] + D, &5 (108)

The above pairs of expressions for local stresses and strains. together
with (91 (10), (85). and (90), provide the following general connections
between the eigenstress and eigenstrain concentration factors:

L.A, =BL
F,=L[I-¢AB ' -D, M, (=28 (1109)
F.,,= -L[c,A,B] =D, JM,  (rp =18 or 2.

We remark that only (100) and (102) refer specifically to fiber systems.
while all the other results from (101) to (109) apply to any two-phase
composite for which the various concentration factors can be found. Exact
connections between the mechanical and transformation concentration fac-
tors have been derived in [40], hence 1t is only necessary to find the elastic
A, and B,. this should be possible for most geometnes of practical interest.
For completeness. we reproduce the expressions that apply to any two-phase
composite:

D,, =t - AL, - Ly~ 'L,. D,=~0-A)XL,-L,) 'L,

F,, =(1 = BXM, - M,)"'M,, F, o= —(1-BXM, - M;)"'M,.
(110
For a fiber composite. these can be shown to represent another form of
(54).
We now proceed to derive macroscopic constitutive relations for those

two-phase composites that admit the approximate relations (81) for the
phases. To this end. we utilize (81):

de, = M, de, + m, d0 (819

and the incremental forms of (104) and (107):
do, = B,dé + b,d0 - F,L,d¢, - F,,L,di (111)
de, = M, de, + m, df + d#’. (112)

From the first and third equation, one finds the average phase plastic
strain:

di? = (M, - M,)de, + (m, — m,) db, (113)

which we redefine to read as
dt! = @, de, + ¢, do.
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This is used in (112) to eliminate the local plastic strains and to write the
following two equations for the unknown local stresses:
de, = B,dg + b,d6

114)
- F, L{w@,do, + ¢,d0) - F,,L,i@,de, + #d0) (

forr =1 8.
The solution 1s:
de, = &,dé + 4, 4dP. (119

where 4, and 4, are the instantaneous stress concentration factors given by

¢, 1! 1
[ - FuL 9. - — Fxll’lg’ [B: - Fxl["gl]’
s . s (116)

TJ-1
[[ xgl - Ftl ngl (bx - Fu L:’: - F:ﬂ LB "]u
2 - [

9-1 |
+Fylogs — = Fn :9- [Bn Y FaaL.Q.]-

I 2

(17

-1t
[y
by = [' + Fylye - c" Fo.l.9,] [by—FoL,p, —Fgul;g,
This applies when both phases experience plastic straining. If one phase
remains elastic. say the x phase, then @, =0 and g, = 0.
The strain increments in the phases now follow by substitution of the
above stress increments into (81'):

de, = M, B, da + (M, 6, + m,)d0. (118)

Finally. the overall constitutive relation for the total strains is obtained
from (9') as

di = MNd& + mdb (19
where
M= T . MB, m= T M+ m) (120)
reg.p rus. g

are analogous to the elastic forms in (10) and (11).

Another possible derivation of these results may utilize the general formula
(101). Substitute (113) into (101) and write the overall instantaneous com-
pliances as:

M=M+c,Blg. R, +c,Bjy,B,

(121)
m=m+ Ca‘ﬂ’c‘: + ':) + C.B{(Q,J‘ + ")‘




| PLASTICITY THEORIES FOR FIBROUS COMPOSITE MATERIALS 39

where M and m are elastic, and the remaining terms are inelastic contribu-
tions that vanish for each elastic phase. when the particular g, = 0.

In pninciple. the above resuits may be extended to a multiphase composite
medium. The only requirement is to evaluate the additional transformation
concentration factor terms. up to —F,, L,€2 in (110). Once those are found.
then the solution of n equations (114), if 1t exists. provides the instantaneous
stress concentration factors for all n phases. Both {119) and (120) apply to
any number of phases if additional phase terms are attached.

For a two-phase medium. the above results may be simplified. Recall that
the phase transformation concentration factors are related to the mechanical
concentration factors by (110). Therefore. in a two-pkase medium (116) and
(117) may be written without reference to the transformation concentration
factors. The result may be derived in several ways. Here we recall the
idenuittes following 1 10) and restate them for the instantaneous concentration
factors:

;B -, A= C, 6, + by =0 (122)
s Wp 2%

This 1s venfied by the derivation leading to (116) and (117).

Next. compare the forms (120) and (121), and use (122) to eliminate one
pair of the instantaneous concentration factors. Then. in turn. solve for the
remaining tnstantaneous quantities to obtain

o
R, = —[M, - M, — (B! - Dg, + (B] - ig,]"'[M - M, + (B] - Dgs,]
L!

¢, = LM, - M, - B] - g, + (B] - Degy] ! 123

x [=c,B] = Dg, = cgBf = Dgy + c,m, + c,my, — m]

for any two-phase system. Both are symmetnc with respect to the exchange
of x and B subscripts. and thus (122) is satisfied. It can be verified that this
agrees with (116) and (117) if (110) is taken into account.

These results represent an explicit macroscopic constitutive relation for
any two-phase composite in which the response of the phases is approxi-
mated by (81). Note that no material model has been used in the derivation.
The only information about the microstructure is reflected in the elastic stress
and strain concentration factors A, and B,.

[n all two-phase systems, the transformation concentration factors can be
expressed in terms of A, and B,. this is indicated by (54) and (110). If this
route is chosen, then the self-consistent or Mori-Tanaka models may be
adopted for convenient evaluation of A, and B,. However, if the analysis
proceeds from an independent evaluation of the overall elastic properties L
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and M, ¢.g., via the Hashin-Shtrikman bounds (33), the concentration factors
are derived from (10). For a fiber system. the factors also follow from (53) and
(56). Then. the above constitutive relation is independent of the details of
microstructural geometry and. therefore. is exact for any two-phase system
that admits (81).

In summary, the above procedure gives closed-form expressions for the
instantaneous overall properties in terms of instantaneous phase properties
and overall elastic stiffness or compliance. In contrast, other available
approaches usually evaluate the instantaneous concentration factors from
approximate solutions of inelastic inclusion problems that often require
extensive numerical computations. The estimates of . are usually implicit,
and the plastic strains derived from these estimates may violate (95) to 197).

¢ Thermal Hardening

In an elastic composite. a uniform change in temperature will influence
the local fields: this can be evaluated from (7) and (12). Even in the absence
of plastic loading, such changes in local stresses and strains will affect the
vield and relaxation surfaces in the overall stress or strain space. Under such
circumstances. it is convenient to retain the representation of the yeld
surfaces suggested by (75) and (76) and to include the effect of temperature
through additional parameters. For example, with reference to the illustra-
tion of local yielding in Section II1.B.1. and Figs. 1 to 7, consider the effect
of a small change Ad on the overall yield surfaces of individual subelements
k 1n the elastic-plastic matnx. Suppose that the overall stress, if any. is
adjusted such that no plastic yielding is caused by the A8. The average stress
change 1n a subelement k is equal to Ag, = b, Af. There is no plastic loading,
hence da, = 0. and Ag, is the only change in the local stress. Then. it follows

from (771 that the transiation of the overall yield surface of subelement k is
equal to

Ad, = -B; 'Ae,. (124)

The implication is that the change A8 will cause a rigid body transla-
tion of all subelement yield surfaces in the overall space. This effect may
be referred to as thermal hardening. Of course, it is present both in the elastic
composite and during plastic deformation: in the latter case the translation
i (101) must be added to the &, during each loading step. Depending on
the respective loading directions. the thermal change may accelerate or retard
plastic deformation.

The resuit given is quite transparent, but not particularly convenient, as
it involves the stress concentration factors. A more useful description follows
from the decomposition procedure of Section I1.C.1. Recall that this pro-
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cedure admits eigenstrains in the phases and prescribes auxiliary overall
stresses that make the strain field uniform in the entire aggregate, while the
stresses become piecewise uniform. Moreover. if both the homogeneous and
particular solutions (40) are combined. one can create a one-parameter family
of such uniform fields. When each of the phases 1s isotropic in the transverse
plane. 1.e.. 1sotropic or transversely isotropic. it is possible to adjust the
parameter in such a way that the uniform auxiliary strain field is isotropic
in the aggregate.

These considerations suggest the following strategy for evaluation of the
effects of uniform changes in temperature on plastic deformation in com-
posites with elastic-brittle fibers. [n contrast to the example given. consider
now a general plastic loading step from some current reference state in which
a temperature change 46 1s applied simultaneously with an overall stress
dé. Furst. apply the temperature change and the auxiliary surface tractions
that create the above isotropic uniform strain field. In an isotropic metal
matrix that 1s plastically incompressible, such combined loading will cause
only an 1sotropic stress increment but no plastic yielding; the local stress
increment vector is parallel to the axis of the cylindrical local yield surface
(75) or (76). Next. remove the auxiliary tractions and add the overall stress
increment. if any, that has been prescribed together with the change d6. This
modifies the current stress increment and the entire overall mechanical
loading path. The effect of temperature is represented by a uniform and
isotropic strain field together with a certain mechanical loading, which in
superposition with the applied mechanical loads may cause plastic deform-
ation of the aggregate.

This approach to thermal hardening was first outlined by Dvorak (7],
without the benefit of the results in Section 11.C.1. Here we utilize (40) and
seek the magnitude of dS; that guarantees an isotropic stress dé, in the
metal matnx (r = f). which is assumed to be elastically isotropic and
plastically incompressible. The thermal strains in the phases are umform
phase eigenstrains given by

ds, = (a,, B,. B,. 0,0, 0] d6, (125)

where 2, and B, denote the linear longitudinal and transverse coefficients
of thermal expansion of the phases.

Substitute (125) into (40,), and with the help of (42) to (46), evaluate the
nonvanishing components of d8,. The result is:

d&* = qi,Al — n,Ak) dSy + qk,E(l,Az + 2k,AP) d,  (126)
dé® = qUi,Al — n,Ak) dSy + gk, Efl,Az + 2k,A8)d8,  (127)
3% = d3% = d&% = d34 = dS;. (128)
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Require that d¢4 = dg# = dd% and find
dSy = (qkyEfl,Ax + 2k, AP[1 = qU,Al = ngAK)] 1 8. (129)
The overall auxiliary stress dé has the nonvanishing components
dé, = ¢,dé* + ,dé% =dS,, dé, =dd, =dS,. (130)

Together with d6. this overall stress creates a uniform strain field in the
aggregate. [t also guarantees that the stress increment in the matnx is
isotropic and thus causes no vielding.

Finally. the auxiliary stress must be removed. This is a mechanical loading
step that also should include the actual stress d& that was prescribed
together with the 46. After this step. the stress fields in the phases are

da,(x) = d&, + M (xNd& — dé). 131
(130
dayix) = dg; ~ ByixXdé — d8).

Inasmuch as plastic straimng may be caused in the matrix during this
step. the 4,(x) denote the instantaneous stress influence functions (116). (117)
derived for a particular model geometry from an appropriate integration of
179 along the modified loading path. The implication is that the effect of
temperature on local fields can be represented by a modification of the
mechanical loading path from d@ to (d& — dé), where d& depends on df as
indicated by (126) to (130).

Similar conclusions apply to evaluation of the overall strain. [n particular.
the JS; in (129) is substituted 1nto (42,) and the dé, into (40,): this gives
the overall strain dé caused by 4dé and 46. Then, the strain caused by the
mechanical loading (d& — d@) is added. The result is

dt = d¢ + Kidé — d8), (132

where .4 1s the instantaneous compliance of the aggregate (122).

Durning an elastic unloading step. the results (131) and (132) convert to
thetr elastic counterparts. i.e., the (x) are replaced by B,(x), and .4 by M.

Recall that such elastic loading by A@ alone (A& = 0) was specified in the
example leading to (124). We now reconstruct (124) in the following way.
The change A4 is applied together with A8, selected such that Ad, is
1sotropic: te.. {129) is used to evaluate ASy. By definition, the Mises yield
condition (62) or {76) does not depend on the hydrostatic stress component:
hence Ad, renders Ae, = 0, and the A@ is accounted for by application of
the overall stress — Ad, which does not vanish. As before, Aa, = 0 because
there is no plastic loading. Accordingly. (77) now becomes

0 = B(Ad - Ady). (133
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Therefore. instead of (124), we now obtain
A&, = Ad. (134)

This 1s equivalent to (124), but it is now apparent that during elastic
deformauion. a temperature change A6 causes a ngid-body translation of al!
subelement vield surfaces in the overall stress space by the same amount Aé.

These results lead to several conclusions. First. unlike most polycrystals.
composite materials may experience macroscopic plastic straining due to a
sutficiently large change in temperature. The temperature change ¢,. which
will cause the onset of local yielding in an initially stress-free composite. can
be evaluated from 1134). The stress A¢ 1s a function of temperature: (130)
suggests that in the system considered. 1t 1s an axisymmetric overall stress
consisting of an axial normal stress dS, and transverse hydrostatc stress
dSr The temperature needed to generate a certain dSy follows from (129,
and the axial components from (126). (127). Then. if the subelement yield
surface 1s known 1n the overall stress space. or if the overall yield surface
1s derived from physical or numernically simulated experiments. the dé is
integrated along the thermal loading path unul 8 = 6. where & reaches
the respective yield surface. Of course. 1n reality the yield surface of a
stress-free composite undergoes a rigid-body translation equal to its diameter
in the é-direction in overall stress space. In the absence of an overall
mechanical stress. the ongin 1s the loading point. and plastic yielding starts
when the overall surface comes into contact with this point. Similar con-
clustons apply to prestrained systems where the center of the vield surface
1s at some 1mtial position distinct from the origin. A somewhat different
treatment of such effects and specific examples can be found in [64-66].

In apphications. 1t is useful to know that the effect of combined thermal
and mechanical loads on plastic deformation of a fiber composite can be
evaluated by prescribing only mechanical loading. but along a modified path.
The uniform auxiliary fields must be added to the results. If the matrix vield
stress depends on temperature. then it must be changed in each mechanical
loading step that corresponds to a specific temperature change. With such
adjustments. an existing model that was designed to predict overall response
of a fiber composite under mechanical loading can be easily modified to
accommodate both mechanical and thermal loads {7].

d. Normaluyv and Convexity

Additional connections between local and overall behavior of composite
matenals can be established for certain work relations and for the direction
of the plastic strain vector. The results summarized here were obtained
mostly by Hill (61].
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Consider the direction of the overall plastic strain vector. Suppose that
the composite is subdivided into many small subelements, as in the example
in Section [I1.B.1 above, Assume that each inelastic phase and therefore each
subelement conforms with the Drucker postulate (68). Locally. the plastic
strain rate vector coincides with the outside normal to the yield surface at

the current local stress o,. Any elastic stress increment daf must be directed

into the local surface, for example, if one takes da* = (6* — o), then (68)
indicates that

dedide, - M, de,) S 0. {135

After some algebra. this can be recast into the form:

de? de, — do, de? < 0, (136

where do? and de? are elastic. while de, and dg, are arbitrary.

Note that each of these terms is a product of an equilibrium stress field
with a strain field derivable from continuous displacements. This opens the
way 1o an application of (92) and to the result

dé* d¢ - da dé®* < 0. (137

The implication is that the plastic part of the overall strain rate lies
within the cone of normals associated with the yield cone at the current
vertex. Figure 7 shows an example of such a configuration of local yield
surfaces. where the yield cone could be inscribed as an internal envelope of
the local surfaces at the current loading point.

This property does not necessarily guarantee normality to a yield surface
evaluated from numerical or physical experiments. such as those shown in
Figs. 3 to 6. or in Fig. 25. Indeed. such surfaces are merely loci of vertices
of adjacent yield cones, and at each loading point, normality limits the plastic
rate vector only to the cone of normals.

Finally. consider the relation between the products of stress and plastic
strain increments. Appeal again to the stability postulate (68) in the form

where the equality holds in the elastic subelements. This can be integrated
over V1o yield

dédt > %J de (M, de,) dV. (139)
| 4

If the actual stress field in the inelastic aggregate is regarded as an
admissible field in equilibrium with d@, and the strain field M, 4@, compatibie
with the strain M d@, then the pninciple of minimum complementary energy
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in elasticity suggests that when M, is positive-definite
1
daM dé) < v J- de,(M, de,) dV, (140)
[ 4

where the left-hand side represents the energy of the actual field.
From the last two equations and from (92), one obtains the inequalities

i
Jdéide — M da) > v f dede, — M, de,) dV > 0, (141)
vV

under changing overall load d& # 0. The sharp inequality guarantees that
the overall plastic strain rate may vanish only in the absence of all local
rates. It also suggests that in the absence of local strain hardening, when
de, = 0 everywhere, the overall load must still increase. This is sometimes
referred to as constraint hardening, since it arises from mechanical inter-
actions between the phases.

Many additional aspects of the general structure of piasticity of hetero-
geneous media were discussed by Hill and Rice [69. 70] and Rice (67. 68].

3. MICROMECHANICAL MODELS

The discussion of elasticity and plasticity of heterogeneous media suggests
that overall elastic properties can be estimated or bounded with relative ease
and that the simplicity of elastic analysis is derived from the homogeneity
of the phases dunng deformation. The elastic properties are known constants,
hence volume averaging (2) of local fields (7) gives the relations (8), which
provide the desired result (10). The estimates of A, or B, then follow from
well-known approximate solutions of elastic inclusion problems, such as the
self-consistent or Mori-Tanaka methods. Direct evaluation of bounds on
elastic moduli can be made according to Section [1.B.4.

When at least one phase deforms plastically, its homogeneity is lost. Local
instantaneous stifinesses and compliances are no longer known constants.
Instead. they depend on current stress and on past history of plastic
deformation, and as such they are functioas of local coordinates. Although
Sections [11.B.2 and II1.B.3 present many exact results, they do not address
the influence of specific microstructural geometry on overall behavior. This
can be accomplished only through evaluation of local fields along an
incremental loading path. When the approximation (81) is no longer ac-
ceptable. evaluation of local fields becomes a necessary part of inelastic
modeling of composite materials.

Before the advent of micromechanics, problems of this kind were some-
uimes approached by introduction of certain assumptions about the overall
behavior of fibrous composites that were motivated by micromechanical
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considerations. For example. in the model by Mulhern et al. [51] and Spencer
[71]. the fibers were taken to be inextensible and the composite plastically
incompressible; and with these restnctions. the aggregate was regarded as a
homogeneous medium. The early micromechanical models often employed
simplified phase geometries 1n order to introduce actual mechanical proper-
nes of the phases. A natural goal was to adjust the geometry of the
mucrostructure in such a way that the local fields became piecewise umform.
This was accomplished. for example, by the self-consistent method [72), or
by assuming specific simple geometries of the matrix and fiber [73-76).

Ea:h of these approximate models had certain advantages as well as
drawbacks. but at least one of the early models. the vamishing-fiber-diameter
model of Dvorak and Bahei-El-Din [74] permitted a simplified analysis of
metal matrix composite structures. This model reduces the effect of the fiber
to a unidirectional elasuc constraint on the elastic-plastic matnx that 1s
otherwise free to deform uniformly under uniform overall stress or strain.
The model will not be reviewed here. but it is useful to recall its extension
to plasticity of laminated plates [75]. its implementation in a general purpose
finite element program for structural analysis [77), and applications in the
evaluation of stress fields at holes and notches in laminated composite plates
("8. "9]. More recent extensions to thermoplastucity were discussed by
Bahei-El-Din [58) and structural analysis applications in [80]. A strain-space
form of the model [56] has been recently implemented into the ABAQUS
program.

As an example of more recent work. we now describe two different
approaches to plasticity analysis of fibrous composite media; one that
provides bounds on certain instantaneous overall properties together with
estimates of local fields. and one that takes advantage of certain newly
recognized deformation mechanisms of fibrous composites.

d.  Bounds on Overall Instantaneous Properties

Models of this kind typically utilize a particular geometry of the fibrous
medium and derive bounds on instantaneous overall properties from esti-
mates of local fields and minimum principles of plasticity {44, 8/-83]. Here
we briefly summarize the derivation introduced by Dvorak and Teply [84.
85]; an analogous model was later described by Accorsi and Nemat-Nasser
(86].

In the minimum principle of plasticity for strain rates, one considers a
representative volume ¥ of a composite material that is subjected to overall
uniform strain. applied along an incremental path that leads to the current
strain point €. It is assumed that the current state is represented by known
actual local stress and strain fields in the phases and that these fields satisfy
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the local constitutive equations, which are also assumed as known in the
entire representative volume ¥ at the current point £ of the overall deforma-
tion path. At this current reference state, a uniform strain increment dg is
applied through certain displacements d@, prescribed on the entire surface
S of V. This creates local as well as overall stress changes that need
to be determined. An exact solution is often beyond reach. but an approxi-
mate solution can be found with the help of suitably chosen tnal funcuons.
A kinemaucally admissible field de® derived from a continuous velocity field
1s selected 1n | such that its volume average [de*!, = d&* = d&. is com-
patible with the surface displacements da* = dia on S = S,. This field is also
supposed to sausfy the actual local consututive equations in the current
reference state. so that a certain stress field de* can be found from the de*.
Under such circumstances, the fields de®. de®. and du® represent a kine-
matically admissible set. The energy changes that would occur in the actual
state (no asterisks). and those that take place in the admissible state are
related through the minumum principle for strain rates

‘dedodV — | dpdiadS < | tde*de*dV — | dp da* dS. (142)
V¥ vSs, wV vSs,

where §, = S — §,. Body forces are neglected. Recall that displacements are

prescribed on the entire surface § = S,. hence the surface integrals vanish.

The volume integrais can be written in terms of volume averages and work

averages 6¢ = ,0¢],. The result is

L deL di < }diL, di. (143)

If one prescribes the boundary conditions in terms of surface tractions
rather than displacements. such that d¢* = dd and dp* = dpon S = S, then
one can obtain the inequality

-1daM dé < - déM, da. (144)

The L and M represent the actual instantaneous overall stiffness and
compliance. The L, and M, are their approximations computed from the
admissible field d&*.

In a similar way, one can specify a statically admissible stress field in the
domain and use the minimum pnnciple for stress rates to obtain lower
bounds on energy rates. The final resuit can be summarized as

dEL,dt > diL dié > diL,d¢ >0 (145)
and
déM, d& 2> ddM d& > daM, dé > 0, {146)
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where L, and M, are the approximate values of instantaneous overall
properties computed from the admissible stress field.
Since each of these terms is a positive-definite quadratic form. all the L

and M matrices are also positive-definite. This property leads to the in-
equalities

dé(L, - L)dE 2 0, délL - L, dg = 0. (147
where the equality signs apply only to the exact solution. Let
L,-L=H L-L,=D. (148)

and observe that all these matnices are positive-definite. In tvpical applica-
tions. these are (6 x 6) matrices with six eigenvalues. diagonal terms. and
leading principal minors that are all positive. If the eigenvalues are arranged
in nonincreasing order. then according to the monotonicity theorem for
eigenvalues of svmmetric matrnices. the ordered eigenvalues of the above
matrices. denoted nere by lower-case kernel letters. are related by

21l ~h 217 +d. 1149)
where
h,2h=h,, d >d2d,

and the ordered eigenvalues satisfy the inequalities
L2t2-210>0 hy2hy 2 =2hg>0, et
This indicates that A, > 0. d, > 0. hence it follows that
lle,zl,‘.‘ (150

If the ordered eigenvalues are arranged in a nonincreasing order as diagonal
terms, then one can write the bounds as

diag I > diag [, > diag 7, i=1.2....6. (151

A ssmilar procedure can be applied to (146) to find analogous bounds
on the ordered eigenvalues of M,

diag m{ > diag m, 2> diag m!. (152)

One also can find bounds on the diagonal terms of L and M. Recall
that these terms are also positive, and it follows from (147) that

L, 2 Ly 2L, My 2 M, 2 M. (nosum on k) (153)

However, no close bounds can be found for the off-diagonal terms of L
and M. That can be done only on the basis of known connections between

the terms. such as those that exist. for example, in transversely isotropic and
other elastic media.
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If the bounds are used in an incremental evaluation of the overall
properties of an elastic-plastic composite. ¢.g.. by a finite-element analysis
of the representative volume. then they must be qualified in the following
way. We recall that the minimum principles compare the energy changes of
the actual and admissible states from a current reference state that cor-
responds to the actual solution of the problem. This is assumed to be known,
together with the actual local properties. However, in an incremental
numerical solution. this condition 1s not met. Except in the elastic state. the
local properties 1n each current state are not known exactly. they are known
only in terms of the finite element approximations. The current state does
not represent an admissible set. and 1t 1s not possible to find admissible local
fields for the next plastic step. Therefore. the bounds do not apply to the
actual composite system. Instead. they apply to a system in which the local
properties have been replaced by those computed. say. in the finite element
solution.

In a typical implementation. approximate upper bounds are computed
from the displacement formulation of the finite element method. and ap-
proximate lower bounds are obtained from the hybnd formulation. Thus
one follows a sequence of upper-bound solutions that also approximate the
local properties. or a sequence of lower-bound solutions that give different
approximations of the local properties. [t remains to be established if either
procedure ts convergent.

b.  Periodic Arrav Models

Evaluation of bounds on instantaneous overall properties of composite
aggregates is best performed for a specific model matenal that approximates
the microstructural geometry of the actual system. Although most micro-
structures are random. periodic distributions of the reinforcement are often
used in the development of model matenals. The advantage of this approach
1s that it may divide the composite into identical unit cells of smallest possible
size. which are repeated throughout the representative volume. The cells are
chosen so that one can prescribe for each cell certain periodic boundary
conditions that correspond to uniform overall strain or stress states. The
periodic representation appears to be justified in composites reinforced by
continuous large-diameter ( ~ 150 um) fibers, such as boron or silicon carbide,
in which a nearly periodic distribution of the fibers is assured in manufacture.
Models of this type are also useful in other fibrous systems, and in particulate
composites. particularly at higher volume concentrations when interaction
between phases becomes significant.

The model described here is the periodic hexagonal array (PHA) model
(84. 85). Figure 8 shows the typical cross section of the model matenial in
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FiG 8 Transverse cross-sections of penodic hexagonal array models of fibrous composites
with hexagonal and dodecagonal cyvlindncal fibers. Reprinted with permission from J VMeon
Phis Solids 36. 29.J L. Teply and G. J. Dvorak. ¢ 1988, Pergamon Press pic.

the transverse plane. The medium consists of a matrix reinforced by aligned
fibers of identical cross section. which is approximated by a regular n x 6-
sided polygon. As shown in the figure. the microstructure is divided into two
sets of idenucal triangular prisms. with vertices 1n the fiber axes: these are
selected as the unit ceils. '

Under uniform overall stress or strain. the deformation of the composite
can be compared to that of a homogeneous effective medium that has the
same overall properties. In particular, 1t is possible to identfy a set of contact
pointsn both the periodic and effective media, such that these points undergo
exactly the same displacements when etther medium is subjected to a given
umiform overall deformation. For example. the previous choice of unit cells
suggests that to each point x, in a given cell, there correspond points x in
all other cells of the same (shaded or unshaded) type. such that the local

stresses and strains are equal at all such points. [n the x, system of Fig. 9.
the coordinates of x are

X=Xy +C (154

where ¢ = ¢ i, 3, j. 2sic) and the values of i and j must be selected by
an appropriate combination of the following:

i=0,j= +2n for translation parallel to x,
1=j= +n, for translation parallel to V,V; direction
1= —j = +n, for translation parallel to V,V, direction.

where n is an integer. Clearly, the relative displacements of all points
(134) must be identical to those of the effective homogeneous medium,

such points represent one set of possible contact points. Note that the fiber
centers belong to this set.
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Vy=V,

FiG. 9. Two adjacent unut cells and their local coordinate systems. Reprinted with per-
mission ([rom J. Mech. Phys. Solids 36, 29. J. L. Teply and G. J. Dvorak. 1988, Pergamon
Press plc.

Next. one can show hat the shaded and unshaded prisms are equivalent.
In particular. the transformation

X = —-8x + Co (155)

{where & is Kronecker's symbol and c, is 2 particular value of c) converts
the shaded prisms into the unshaded ones and vice versa. Both the overall
and local stresses and strains remain invariant under this transformation,
and the surface tractions and displacements are identical in the x and x’
coordinate systems.

Finally, the periodic displacement boundary conditions must be specified
for the unit cells. For a uniform overall strain increment AZ Teply and
Dvorak [85]) show that, with reference to Fig. 9,

Auy. - Awy = Awy - Auy = Alc,, (156)
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where V and V"’ indicate pairs V, V. V; V. and so forth. Also, they find that
Ay, = HAu, + Au,) (157)

for any pair of points P and P’ selected on the boundary between two
adjacent cells (Fig. 9). When P = Vyand P = V|,

Auy = HAuy + Auy) = {Akc,,. (158)
Hence.

Auy - Au, = {Aéc,.  Auy — Auy, = 1Aéc,. (159)

Therefore. the displacements of ¥, and M., (i = 1. 2. 3). of the unit cell
are related to A£ in the same way as the displacements of the same points

Boundary Paints V,m3

Element Numbers

FiG. 10.  Unit cell and the finite element mesh used in evaluation of upper bounds. Reprinted
with permission from J. Mech. Phys. Solids 36. 29. J. L. Teply and G. J. Dvorak. T 1988,
Pergamon Press pic.
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located in the homogeneous effective medium. Accordingly, both sets repre-
sent contact points between the two media under uniform overall strain.
The subdivision of the unit cells into subelements is usually motivated by
the particular purpose of the calculation. If only distant bounds on overall
properties are needed. then one may prefer to choose the coarsest possible
mesh that, however, still provides the number of degrees of freedom needed
for plastic deformation. On the other hand. if one also wants to obtain some
insight into the local fields. then a much more refined mesh is required.
Figure 10 shows the mesh used in evaluation of the upper-bound solutions
for the PHA model. The number of subelements was determined with regard
to the considerations in the previous section. and is suitable only for
bounding of overall properties. Note that elements 7, 8. and 9 are shared by
two unit cells. The actual upper-bound solution employs the displacement
formulation of the finite element method. where the admissible strain-rate
field s denived from a continuous. piecewise linear displacement field.

prescribed in b Figure 11 shows the actual solution domain and support
conditions of the umt cell.
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FiG. 11. Dimensions and support conditions of the unit cell in upper-bound evaluauon.

Reprinted with permussion from J. Mech. Phys. Solids 36. 29.J. L. Teply and G. J. Dvorak.
1988. Pergamon Press pic.
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A complementary lower-bound solution was also obtained. A somewhat
coarser mesh was used in this case, with elements 1013 in Fig. 10 replaced
by a single element. The equilibrium or hybrid formulation was used: the
admissible stress field was specified as uniform in each element. Continuity
of the field was satisfied by boundary tractions applied at nodal points
selected at midside points of element boundanes. These tractions were
balanced with Lagrange mulupliers. identified with nodal displacements [87.
88. 89).

Figure 12 shows an example of the results found with the bounding
approach implementaton in the PHA model. A collection of stress-strain
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F1G. 12.  Approximate bounds on overall response under proportionai loading. Reprinted
with permission from J. Mech. Phys. Solids 36. 29. J. L. Teply and G. J. Dvorak. & 1988,
Pergamon Press pic.
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curves was computed for a unidirectional fibrous material subjected to
combined transverse tension and longitudinal shear stresses &,, and &,,. A
linearly hardening aluminum matrix and an elastic boron fiber were used in
the unit cell. For the three proportional loading paths used in the evaluation.
two stress-strain curves in close proximity were computed. one from the
upper bound and one from the lower bound procedure. Note that both
transverse normal and longitudinal shear strains appear in the first loading
case. However. the second and third paths apparently promote preferential
straining tn shear. This turns out to be a demonstration of a so-called matrix
deformation mode of fibrous composites. which is examined as a part of the
bimodal plasticity theory in the following.

Local stress tields can be evaluated with more refined meshes in the PHA
model unit cell. In the examples that follow. the cell was subdivided into 87
clements: the local stress fields were found and stress contours were piotted
in the domain (90]. Figure 13 shows such fields for a boron-aluminum
composite under transverse tension and longitudinal shear, at two overall
stress levels. Figure 14 shows contours of local normal stress caused in the
composite by uniform thermal change. At the lower levels of overall stress
or temperature change. the matrix is strained only elastically, but it becomes
fully plastic at the higher levels. Large gradients are present in each case.

The local fields can be utilized in a comparison of predictions of overall
instantaneous properties by different micromechanical procedures. Of par-
ticular interest 1s the question of accuracy of those approaches that rely on
averages of local fields. such as the self-consistent and the Mori-Tanaka
methods. No attempt was actually made to reproduce either of the two
techniques. Instead. the overall properties were found from averages of the
fields found by the refined finite element analysis of the PHA unit cell. At
many steps of each loading path, the local stresses in each element were
integrated over the volume of each phase. as in (4). Then the specific forms
of the constitutive equation (3) and (64) to (74), originally prescribed for the
elastic and plastic strain increments in the matrix subelements, were applied
to find the average total strain that would have been caused in the matrix
by the average of the matnx stress field. A similar strain average was also
evaluated in the elastic fiber. Finally, these phase strain averages were added
as 1n (9') to arrive at the total overall strain. Figure 15 compares the overall
response of the PHA model with that evaluated from the above averages of
local fields. The agreement is quite poor in the B/Al system, but better in
the T50-Gr Al system. Similar comparisons were made for longitudinal
shear loading of the two systems; the two methods gave reasonably close
predictions, but the response computed from the averages was somewhat
stiffer. Figure 16 shows the response under uniform thermal change. Again,
the agreement of the two methods is not very satisfactory in the B/Al
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Stress, T (MP3)
B-Al, ¢ = 0.48¢
Pradiction using PHA
model
- Prediction using average
locat lislds
L . I - Y SEPE— |
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Strain (%)

@)

Stress, T4 (MPa)
TS0 Gr-Al, ¢/ » 0.484

— Prediction using PHA
model

- Pregiction using average
local fields
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1.]]

FiG. 15. Overall response under transverse tension &, {90]. (a) Of a B/Al system. (b)
Of a Gr/Al system.
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system. There appears to be a better agreement in the TS0-Gr Al case.
but in fact. the prediction of the axial strain by the averaging approach is
entirely misleading. both in magnitude and in sign.

This example can serve as a salutory reminder of the possibly large errors
that can be introduced by averaging: similar discrepancies would be found
in analogous comparisons with the self-consistent or Mon-Tanaka schemes.
Several other examples of such errors appear in the following.

We note that the PHA model has been implemented as a UMAT routine
in the ABAQUS program [9/] and can thus be used in structural applications.
Also. the model opens an avenue to numerical experimentation. which 18
useful 1n the development of simpler constitutive theornes and in interpre-
taton of physical experiments. It 1s shown in the following that the PHA
model agrees well with experimental results. provided that an accurate
description of actual phase properties 1s specified. Finally. the PHA model
serves as a check of accuracy of other approaches. such as the averaging
scheme discussed earlier.

¢ Bimodal Plasticity Theory

Another approach to modeling of overall behavior of fibrous composites
was motivated. in part. by the expenimental results descnibed in Section
[IL.B.5. (50. 62]. The experiments suggest that a unidirectional fibrous layer
under plane stress may exhibit two distinct deformation modes that affect
only the inelastic response. If the overall stress increments have a large
normal component in the fiber direction, then the matenal tends to deform
in the fiber-dominated mode (FDM). In this mode. the composite appears
to deform as descnibed in Section [I1.B.3.b. In any event, the segments of the
overall vield surface that correspond to this mode are well approximated if
the matrix stress concentration factors derived from self-consistent estimates
of local stresses. To this end. one finds the estimate of the elastic stress
concentration factors in the matrix and relates the local averages to the
overall stress. At yield, the overall stresses assume the magmtudes required
to sausfy the Mises yield condition (62) by the stress averages in the matnx.
This procedure leads to a single surface, given by (75) with k = r = g, for
the matnx phase. The elastic concentration factor B, in (75) is given by (21,)
for the self-consistent method and by the inverse of the coefficient matrix in
127,) for the Mori-Tanaka method. Overall hardening follows from (77),
da = dé.

In the matnx-dominated mode (MDM), the theory postulates that the
composite can be regarded as an elastic-plastic continuum in which plastic
straining occurs in the form of smooth shearing deformations in the matrix,
on certain hypothetical slip planes that are parallel to the fiber axis. and in
certain preferred slip directions on these planes. This mode ignores the actual
microstructural geometry. Instead. the matnx is regarded as a homogeneous
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medium. and the fibers that occupy a finite volume fraction are assumed to
constrain the matnx deformation to the slip planes. There is a similarity with
continuum slip models of single-crystal plasticity, which ignore the discrete
dislocation substructure of the crystal and postulate smooth sheanng to
take place on certain slip systems [92).

The MDM mode is illustrated by Fig. 17, which shows the admissible
slip planes. The actual slip directions are determined by the requirement that
the resolved shear stress reaches a maximum on the active slip systems. It
1s possible to show that there are aiways two conjugate systems that satsfy
this requirement on planes parallel to the fiber axis. which is parallel to x,.
The corresponding MDM yield surface for an overall state of plane stress
appears in Fig. 18. It 1s an infinite cylinder of the oval cross section shown.
with generators parallel to the G,, axis. hence the &,, stress does not
influence the onset of MDM vyielding.

22

FiG. 17 Geometry of the two conjugate shp systems of the matrix-dominated mode

iMDM). Reprinted with permission from Spnnger-Verlag. G. J. Dvorak and Y. A. Baher-El-Din.
4cta Mechamca 9. 219 (1987).
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The surface consists of two segments defined by the equations
fom Gy — 1)t + (022 =32/ F1)P -1 =0 for lgisL

JpB(Gy =130 =t =0 for Iql21.
(160

where g = (6, — %;,)/(&;; — %;;), and %,; = 0 for an initial yield surface.
Figures 19 and 20 show superimposed yield surfaces for the two modes
and for two material systems. Figure 19 represents the section by the
transverse normal stress &,, and longitudinal shear &,, plane, Fig. 20 by
the axial normal stress &,, and longitudinal shear plane. In both figures. the
solid line indicates the MDM yield surface, which is not affected by
phase elastic properties and is therefore unique for all systems. The various
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ellipses represent the FDM surfaces. Those were found for the B/Al and
the T-50 Gr Al systems and are designated by letters B and G. respectively.
The phase volume fractions were taken as equal to 0.5 in both systems. One
set of the FDM surfaces was found using the self-consistent estimate of local
stresses (SCM). and another set with the Voigt approximaton. cf. (30).

Note that the B Al system yield surfaces have both MDM and FDM
segments. the actual yield surface 1s the internal envelope of the segments.
Within this envelope. the FDM segments can be regarded as end caps on
the MDM oval cylinder. In the Gr Al system. the FDM surfaces are
always within the MDM surface. hence the former 1s the active mode. Since
only phase elastic properties are involved. one may ask which property
makes a particular mode more or less prominent. In the example shown. the
matrix 1s 1sotropic and its properties are tdentical in both systems. The B
fiber 1s also isotropic. but the Gr fiber is transversely isotropic. Elastic
constants used in the evaiuation appear in Table I.

The axial fiber moduli are very similar. but there 1s a large difference
in the longitudinal shear modulus G ,. which is smaller in the graphite fiber
than in the matnx and an order of magnitude smaller than the corresponding
fiber modulus. The implicauon 1s that the MDM deformation 1s preferred
in systems that have fibers of large shear stiffness. and the FDM modes are
preferred in fibers that are compliant in shear. One may speculate that the
suff fiber tends to prevent plastic shearing on planes that intersect the fiber
axis. and therefore encourages the slip pattern of Fig. 17. The more compliant
fiber cannot do that. and thus the FDM mode may prevail.

Viewed (rom a different perspective. the results in Figs. 19 to 22 can be
taken as a senous warning against indiscnminate use of averaging methods
in plasticity of fibrous composites. Indeed. only the yield surface of the fiber
mode may possibly be approximated by the self-consistent estimate of the
local stresses. and then only under plane stress. Figure 14 tends to confirm
this: note the agreement between the PHA and the averaging predictions in
the Gr Al. which appear 1n Figs. 15 and 16. However, even in the seemingly
simple case of uniform thermal change, averaging methods typically predict

TABLE |
ELASTIC PROPERTIES OF SELECTED MATRIX AND FIBER MATERIALS
E‘ Gc Ve Er Gf
[(GPa) (GPa) (GPa) (GPa)
6061 Ajluminum 2.8 72 033 7.8 n2
Boron 400.0 166.8 0.20 400.0 166.8

T-50 Graphite 3864 152 0.41 76 26
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an open cylindrical yield surface in the principal overall stress space [72. 75],
whereas the actual overall yield surface is closed (64. 66]. Such disagreements
in yield surface predictions then imply further problems in the evaluation of
subsequent overall surfaces and plastic strains: this is illustrated in Fig. 16.
The conclusion that emerges from these and other examples is that one may
use the self-consistent or the Mon-Tanaka method with some confidence
only In exceptional circumstances. which are currently limited to the plane
stress FDM deformation.

We now turn our attention to the evaluation of plastic strains. Note first
that the yvield condition (160) suggests that the vield stress is independent of
the ship svstem involved, which 1s confirmed by the experimental results that
follow. Of course. that would be true in any case on the flat branches that
engage only a single system. However, compansons of the MDM results
with the PHA model. and experimental measurements of flow stress. indicate
that the slip direction. and perhaps even the direction of the stress increment.
both influence the instantaneous overall properties in the plastic range if
loading involves any of the semicircular segments of the MDM vyield surface.
The relevant connections have not vet been fully established, but work
currently in progress indicates that good compansons of predicted plastic
strains with those measured in carefully conducted experiments are possible
with the PHA model.

This is actually a part of a broader problem that remains unresolved in
plasticity of both homogeneous and heterogeneous media, namely the
formulation of reliable predictions of plastic strains durning loading along an
arbitrary path. A promising approach is offered by the contemporary
multiple surface theories that are discussed. for example. in [¢48. 49, 59], but
a definite treatment of this subject must await further research.

5. COMPARISON WITH EXPERIMENTAL RESULTS

Whereas the theoretical aspects of elastic-plastic behavior of fibrous
composites have been investigated rather extensively, only limited attention
has been given to experimental investigations of the actual behavior of
composite systems. To be useful in verification of a theory, the experiments
must reflect overall response under muitiaxial incremental loading. So far,
only the recent study by Dvorak er al. (50] has been designed with this
purpose in mind.

The work was conducted on thin-walled B/Al tubes, which were reinforced
by continuous fibers aligned in the axial direction. Similar matnx tubes were
tested as well. The tubes were loaded incrementally by combinations of an
axial force, internal pressure, and torque; the in-plane strains were measured
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and recorded. The purpose of the investigation was to establish initial and
subsequent yield surfaces, and plastic strain magnitudes and directions, for
severai different loading programs.

Figures 21 and 22 show the initial vield surfaces in two stress planes. The
coordinates have been normalized with respect to the composite yield stress
%y in longitudinal shear. The expenimental points are connected by the
arrows. which retrace the actual loading sequence. The solid line shows the
MDM and FDM yield surface segments determined for the current t,. The
dashed line 1s the prediction of the PHA model. with the same t, and yield
stress definiion used in the experiments: the definition. we recall, relies on
a back-extrapolauon from few iniual plastic steps. Both upper (UB) and
lower (L B) bounds were computed in Fig. 22, but only the upper bound in
Fig. 21. The agreement of the two predictions with experiments i. satis-
factory. and the existence of the flat segments of the surface is clearly
confirmed. The positions of the centers of the surfaces do not coincide with
the ongin. which 1s believed to be caused by residual thermal stresses left
after cooling from the annealing temperature. Note also that the values of
7o are different in the two figures. Such variations have been also observed
in subsequent surfaces. both 1n the composite and in similar matrix speci-
mens.

Many subsequent yield surfaces were evaluated. They were found to be of
similar shape. but the size, i.c.. the current . changed somewhat along the
path. Similar changes were observed in the matrix surfaces. Figure 23
tllustrates some of the results. The loading path connects points 87 and 88.
then continues from 99 to 100. then from 113 to 114, from 136 to 127, and
finaily from 132 to 133. The intervening points define the loading surfaces
established at the breaks in continuous loading. Note the similarity in shape.
and also the adherence to the Phillips hardening rule (77, 78). An exception
to the latter was found. however, for loading at the flat segments (Fig. 24).
The normal stress component, which is parallel to the flat segment, exerts
no influence on the translation, but reasserts itself if the loading vector is on
the semicircular branch, ¢f. path 132-133 in Fig. 23b. A possible explanation
of this behavior appears in {S0). The translation of the MDM surface is given,
with reference to (160),

di:l = d&ZI' dill = d&zz for f‘ = 0. lql < 1 161)
{
dx,, = dg,, for 4, =0, g 21.

The strain increment vectors were found to follow the normality require-
ment along some but not all loading directions. An interpretation of
the results is still in progress.

Figure 25 is another illustration of the agreement between the two theories
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and experiments. For a cyclic loading path 4BCDEA, which was retraced
several times, we show the subsequent yield surfaces found by the different
approaches. PHA-computed directions of the plastic strain vectors are shown
as well. These are mostly normal to the current surface, whereas the

experimentally measured plastic strains often have an additional longitudinal
shear component.

IV. Coaclasion

Space limitations prevent discussion of other aspects of plasticity of
composites, and aiso of the applications of the above theories to practical
problems. We note here related studies of fatigue behavior of B/Al laminates
(93, 94] that indicate that the onset and evolution of damage is closely related
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to shakedown of the laminate. The damage process is dominated by growth
of low-cycle fatigue cracks in the matrix, on planes that are parallel to the
fiber direction in each off-axis ply. Cracks perpendicular to the loading direc-
tion grow in the matnx of the axial 0° plies. Cyclic plastic straining of
the matnx daves the cracks. and when it terminates by shakedown. the
damage process reaches a saturation state. Laminate suffness loss caused by
damage saturation at a constant Joad amplitude has been predicted on these
grounds and found to be in agreement with experimental measurements.

Another recent application of the theory has been in predictions of fracture
strength of notched unidirectional B. Al plates (95. 96]. The matrix-domuan-
ated mode of deformation was identified there with discrete plastic zones
that were observed to grow from notch tips. in the fiber direction, under
increasing load. When plasticity was assumed to be limited to the matrix
mode. the defimtion of zone geometry led to reliable predictions of local
stresses ahead of the notch and to fracture strength estimates for the
plates.

Current work that utilizes the PHA model includes a study in dimensional
stability of Gr Al + 6 laminates [9/]. There we found that plastic deformation
may improve dimensional stability in comparison with a purely elastic
response in certain layups. The interaction between mechanical and thermal
loads was also examined: particular combinations may enhance or impair
dimensional stability.

Plasticity of particle- or whisker-reinforced composite matenals is closely
related to the present subject. In comparison to fibrous composites, the
mucrostructural geometry of such systems is much more complex. and that
makes modeling more difficult. The averaging techniques discussed earlier.
such as the self-consistent and the Mori-Tanaka methods, are often likely
to be empioved in model development. Examples can be found in the work
of Hutchinson [97. 98], Duva [99], Weng [/00], Tandon and Weng (101, and
McMeceking [/02). Experimental or computational verification is apparently
not avatlable in the literature.

Acknowiedgments

Financial support for this work was provided by the Office of Naval Research. Professors
Yehia A Baher-El-Din. Mark Shephard and Jerty Lin. Dr. Jan L. Teply. and graduate students,
R Shah and J. F. Wu. contnbuted (o the recent work on plasticity of composite matenais
descnbed heren.




™4 GEORGE J. DVORAK

Appendix

This 1s a brief summary of the relevant details of the notation used in the
chapter. The constitutive relations of an elastic. transversely isotropic solid,
with the axis of rotational symmetry x,. has the form

51W rl EL "V'_EL ""'LEL 0 0 0 7 (dl\
£y - | Er 0 0 0 <a, >
s 1G, O 0 o,
Es 1 G, 0 O
E“J LSY“ l GLJ kd’(,)
(¢\ [ n l { 0 0 07fe)
a, tk+m (k—=m 0 0 0j]e,
<rr,>_ (k+m 0 O 0<e,
a‘ - m O 0 E‘ >
Os ' P Ofes
7] [sY™ pJ\)
The moduli E;. G, refer to straining in the longitudinal direction. and
E;. G in the transverse plane. Poisson's ratios are defined as v, = —~¢, ¢,.
vr = —¢, &, under uniaxial tension a,, a,. respectively.

Hill’s modul k. [. n. m, and p are related to the moduli in the compliance
matrix by the relations

k=(1.Gr—~4Er+dviE] "
| = 2kv,,
n=E_ +dkvi=E + 1k
m=Gy, p=G,.
Additional useful connections are
Er = 2l + vi)Gp = dkmi(k + qm),
vy = (k — gm)/(k + qm),
g =1+ (dkv})E,.
If the solid is isotropic, with bulk modulus K and shear modulus G. then
k =G/l = 2v), | = K ~2G:3,
n=K+4G 3, m=p=gG
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