
AD-A255 376 Special Report

Fault Tolerant Systems
Practitior"er's Workshop
June 10-11, 1991

Waiter L. Heirnerdinger
Charles B. Weinstock

October 1991

DTICS ELECTE
x AUG27 1992 53

X X A >

x x
SX ,× /

E1 H III f11 1 II Ii
,,d :i I II... . . .=



6�



Spech~l Report
CMU/SEI-91-SR-13

October 1991

Fault Tolerant Systems
Practitioner's Workshop

June 10-11, 1991

Walter L. Heimerdinger
Charles B. Weinstock

Nils , - Systems Fault Tolerance

--

Approved for public release.
Distribution unlimited.

Software Engineering Institute
Carnegie Mellon University

Pittburgh, Pennsylvania 15213



This document was prepared for the

SEI Joint Program Office
ESD/AVS
Hanscom AFB, MA 01731

The ideas and findings in this document should not be construed as an
official DoD position. It is published in the interest of scientific and
technical information exchange.

Review and Approval

This document has been reviewed and is approved for publication.

FOR THE COMMANDER

Ct-4~res. R~nM or, ýUSA
SEI Joint Program Office

The Software Engineering Institute is sponsored by the U.S. Department of Defense.
This report was funded by the Department of Defense.

Copyright C 1991 by Carnegie Mellon University.

This document is available through the Defense Technical Information Center. DTIC provides access to and transfer of
scientific and technical information for DoD personnel, DoD contractors and potential contractors, and other U.S.
Government agency personnel and their contractors. To obtain a copy, please contact DTIC directly: Defense Technical
Information Center, Attn: FDRA, Cameron Station, Alexandria, VA 22304-6145.

Copies of this document are also available through the National Technical Information Service. For information on
ordering, please contact NTIS directl.y: Nailonal Technical Information Service, US. Department of Commerce,
Springfield, VA 22161.

Use of any trademarks in this document is not intended in any way to infringe on the rights of the trademark holder.



Table of Contents

1 Introduction 1
1.1 Workshop Objectives 1
1.2 Workshop Format 1
1.3 Chronology 2

2 Barriers to the Deployment of Fault Tolerant Systems 3
2.1 Barriers Proposed by the SEI 3
2.2 Additional Barriers Identified at the Workshop 4

3 State of the Practice 7
3.1 Application Fault Tolerance 7
3.2 Hardware vs. Software Fault Tolerance 8
3.3 Deficiencies 8
3.4 General Observations 9

4 Fault Tolerance Technology Needs 11
4.1 Methodology 11
4.2 Theory 11
4.3 Education 12

5 Potential SEI Role 13
5.1 Methodology 13
5.2 Theory 13
5.3 Education 13

6 Workshop Participants 15

CMU/SEI-91-SR-13



CMU/SEI-91 -SR-13



Fault To rant Systems Practitioner's Workshop
June 6 -11,1991

Abstract: On June 10-11, 1991, a Fault Tolerant Systems Practitioner's
Workshop was held at the Software Engineering Institute. The purpose of
the workshop was to attempt to identify how fault tolerance is being applied
today, why fault tolerance is under used, and what can be done to bring
fault tolerant practices into wider use. Attendance at the workshop was
limited to a small number of practitioners who had successfully applied fault
tolerance in a systems context. This report summarizes the proceedings of
the workshop which included a discussion of barriers to the deployment of
fault tolerant systems, a summary of the state of the practice, and a
discussion of the technology needs of fault tolerance. The report concludes
with a discussion of ways the Software Engineering Institute may be able
to help bring fault tolerant practices into wider use.

1 Introduction

1.1 Workshop Objectives

A Fault Tolerant Systems Practitioners' Workshop was convened at the SEI on June 10-
11, 1991 to obtain a sample of the state of the practice in fault tolerant system design and
implementation. The purpose of the workshop was to attempt to identify how fault toler-

ance is being applied today, why fault tolerance is underused, and what can be done to

bri-ig fault tolerant practices into wider use.

The workshop was convened by the SEI Systems Fault Tolerance Project. The project is

attempting to characterize both the state of the art in fault tolerance technology (the con-
cepts and techniques generally recognized as part of the technology) and the state of the
practice (the concepts and measures actually used in the development of deployed fault
tolerant systems). While the state of the art is generally discussed in the literature, propri-
etary and business pressures, and the lack of incentive to publish make the state of the
practice more difficult to assess; hence this workshop.

1.2 Workshop Format

Attendance at the workshop was limited to a small number of practitioners who had suc-

cessfully applied fault tolerance in a systems context. The majority of invited participants
were from industry since the activities of academic researchers are more widely available.
Each attendee was experienced in the implementation of a deployed fault tolerant system
using both hardware and software techniques. lr, ited attendees were limited to practitio-

CMU/SEI-91-SR-13 1



ners in real-time fault tolerant applications, rather than in applications that emphasized da-
tabase technology, which is also an important area for future consideration.

To stimulate discussion, the SEI circulated a set of barriers which appear to limit the wide-
scale adoption of fault tolerant techniques. A goal of the workshop was to identify addition-
al barriers to progress as well as possible ways of overcoming these barriers. To this end,
each participant was asked to submit a one- to two-page position paper on one or more of
the following issues:

"* the barriers mentioned in the announcement,

"* the application of fault tolerance to a system development,

"* the problems of using fault tolerance in development contracts, and

"* possible solutions to the above problems.

1.3 Chronology

The workshop began with an overview of the SEI, and the Systems Fault Tolerance
Project. Then, each participant was given the opportunity to present his views, with ample
time for discussion. The participants then worked together as a group to summarize the
state of the practice in applying fault tolerance, major problems, and potential solutions, in
list form. This list was used to create this summary report.

2 CMUISEI-91-SR-1 3



2 Barriers to the Deployment of Fault Tolerant
Systems

In the workshop announcement, the SEI suggested that there were several barriers to
progress in the deployment of fault tolerant systems. Participants were asked to comment

on them. The following section lists the barriers suggested by the SEI, along with explan-
atory comments. This is followed by comments and additional barriers from the workshop

participants.

2.1 Barriers Proposed by the SEI

Fault tolerance is not a "top-of-the-list" consideration.

Managers don't understand the importance of fault tolerance in achieving dependable sys-
tems. Dependability must become as important a consideration as performance, quality,
and cost. The need for fault tolerance and maturity of the technology must become widely
accepted so that it is risky not to incorporate fault tolerance.

No convenient metrics of the dependability of a system exist.

If dependability can't be conveniently measured, it is difficult to tell whether it has been
achieved, or whether one system is more dependable than another. Contracts are made
specifying "seven nines" reliability (i.e. probability of failure of 10Q9) with no way of telling
whether the dependability goal has been met. Contractors need clear, measurable goals.

Program managers don't have the tools to properly specify fault tolerance in their con-

tracts.

This is related to the previous two barriers. No program manager can be an expert in every
area; yet, if a program manager lacks knowledge in this area, little help is available. As a
result contractor and approach are often selected before dependability requirements have
been properly specified.

There is an "all or 7othing" mentality when specifying fault tolerance.

"All or nothing" means that if any component of the system fails, the entire system is said
to fail. To achieve this level of fault tolerance is extremely expensive, if not impossible. In
reality there are very few systems that couldn't be partitioned into functions that are highly
critical (and must therefore always work), and those that are less critical (and could be jet-
tisoned in the event of failure).

Fault tolerance is included in a system design for two similar but very different reasons:
safety and dependability. In the former case extreme care and substantial cost is usually
justified. In the latter, affordability becomes more important.

CMU/SEI-91-SR-13 3



There is an "all or nothing" mentality with regard to which faults will be tolerated.

It is much too costly to build a system that attempts to cope with all faults whether or not

they are likely to occur. Instead it is important to specify and design a system which copes
with specific faults or hazards based on an understanding of the application. Using a priori

knowledge of the environment and possible failures (or credible faults) can reduce the cost

and actually result in a system which one feels better about. It is important to spend time

at the beginning of a project assigning priorities to fault tolerance needs. This leads to:

There is insufficient failure data available to designers of fault-tolerant systems.

Few organizations have collected failure data. Since the data provides them with a com-

petitive advantage, those that have are reluctant to share.

The lack of examples of software fault tolerance inhibits the development of fault tolerant

software systems.

There are many safety systems that are implemented as analog systems but that cry out
for the use of computers (e.g. those for nuclear reactors). They aren't computerized be-
cause we don't trust them as well.

Each major fault tolerant system design begins anew.

Fault tolerance techniques supplement fault avoidance and fault removal in achieving de-

pendable systems. Fault avoidance relies on the use of tried and true designs and repeat-
ed use of designs contributes to fault removal. Although many of the basic principles are
reused in the designs of new fault tolerant systems, each individual system usually is a

completely new design. Thus, fault tolerance sacrifices the advantages of fault avoidance

and fault removal.

2.2 Additional Barriers Identified at the Workshop

The workshop participants identified a number of barriers in addition to those listed above.
These include:

A need to educate users, especially government program personnel

Potential users of fault tolerance need to understand that it is a means for achieving de-

pendability in their systems and not an end in itself. They also need to learn when fault tol-
erance may not be appropriate. They need to recognize the importance of incorporating
fault tolerance early in the design process. Also, they need to understand the relationship
between fault tolerance and reliability and how to specify fault coverage and system reli-
ability parameters.

Dependability/fault tolerance are not included in educational curricula.

Although operating systems technology, compiler technology and artificial intelligence are

covered in many degree programs, with few exceptions there are no courses offered in de-

4 CMU/SEI-91 -SR-13



pendability and fault tolerance in university-level programs. As a result, new graduates are
ill prepared to deal with the complexities of such systems, and indeed are not sensitive to
the need to desigr _ ý,stems with dependability in mind. The University of Cincinnati's major
in Dependable Systems Engineering is an important exception.

A better understanding of fault tolerance economics is necessary to make intelligent deci-
sions in dependable systems design.
This is reflected in the tendency of some programs to rely entirely on fault prevention (i.e.
conservative software design and an extensive quality process) to develop critical soft-
ware. Also, it is necessary to understand the relationship of fault tolerant software with oth-
er fault tolerance measures, including manual backup mechanisms.

Intuition is a poor guide when dealing with the extremely rare events characteristic of ultra-
dependable systems.
Failures that persist in ultra-dependable systems are not simple: they usually involve com-
plex interactions and multiple failures, and are extremely difficult to understand. Conse-
quently, simple analysis based on straightforward scenarios involving single failures can-
not guarantee successful recovery in such systems.

The accounting community does not have the tools to measure the value of fault tolerance.

The accounting community strongly influences program decisions. This community is un-
able or unwilling to measure the value of fault tolerance: hence fault tolerance appears as
an unnecessary cost. This is at least partially due to the difficulty of estimating the value
and cost of dependability or safety in a system, especially when measured against total
life-cycle cost. Contributing to this also is the budgetary separation of procurement and
post-deployment support in government systems.

The fault tolerance community lacks standards.

There is no standard symbology or a reference model, (e.g., the Open Systems Intercon-
nect reference model developed for computer-based communications). There is no stan-
dard vocabulary to explain concepts such as fault tolerance, fault prevention, fault remov-
al, fault avoidance, etc. There are efforts in this area (e.g. the glossary produced by IFIPS
Working Group 10.4 on Dependable Computing and Fault Tolerance), but not general
agreement. There are no general guidelines as to what can fail - including "real life" ex-
amples of how faults happen and advice to inexperienced engineers on what to protect a
system against. There are no useful classifications of faults - application independent
characterizations of faults. Standard fault tolerance architectures are not available to guide
system designers. Life-cycle models do not typically include fault tolerance or the effect of
dependable and safe operation. Handbooks of reusable components are not available.

CMU/SEI-91-SR-13 5



Fault tolerant systems are still perceived as too complex.

Each scheme for fault tolerance is individually crafted, making it difficult to build on previ-
ous work. Although the concepts are common, the implementations are unique and sys-
tem specific. Areas of complexity include: voting and synchronization, and N-version pro-
gramming, which is popular but not well understood.

Fault tolerance looks deceptively simple.

This is a paradox. To some fault tolerance is too complex, to others it is too simple. Most
system designers routinely incorporate some fault tolerance in their designs, but this ex-
perience does not necessarily equip them for designing ultra-reliable systems. Reliability
engineers typically don't understand fault tolerant techniques.

6 CMU/SEI-91 -SR-13



3 State of the Practice

The main conclusic of thE) rkshop is that the state of the practice is the state of the art,

that is, the practice is more art than engineering. Practitioners have been forced to use a

variety of fault tolerance techniques without the assurance that the contribution made by

these techniques to dependability or safety is worth the investment. Most fault tolerance

approaches proposed by researchers have appeared in deployed systems. This includes

techniques such as N-modular redundancy, recovery biocks, atomic transactions, N-ver-

sion programming, self-checking hardware processors and self-checking process pairs.
However, in some cases it appears that these techniques are not used widely enough, and

in other cases it is not clear that the techniques have provided enough benefits to justify
their cost.

The workshop reached a number of other significant conclusions. They are grouped below
into four categories; application fault tolerance, hardware vs. software fault tolerance, de-
ficiencies, and some general observations.

3.1 Application Fault Tolerance

"• Successful examples of fault tolerant systems have existed for some time.
These include the NASA Space Shuttle Data Processing System and the Mar-
iner guidance and control system. Fragmented pockets of expertise exist.

"* Generic solutions exist in certain domains such as space applications. Space
vehicles such as Magellan have reused portions of prior designs (e.g. Mariner,
NASA Space Shuttle Data Processing System design).

" Diverse design, both in hardware and software has been used in a number of
deployed systems. It remains to be seen if its use is economically or technically
justified. The benefits of physically separated resources are well accepted. The
independence of logically independent resources is much more difficult to ver-
ify. One participant posed the question, "Can diverse hardware be justified giv-
en the cost of diagnostics for multiple versions of the hardware." Another par-
ticipant reported that three versions of the system did not cost three times as
much. There was at least a 30% reduction in cost because of commonality. In
some cases people have used N-version programming approaches to reduce
testing requirements (back-to-back testing).

" Fault tolerance in commercial aircraft systems has evolved from relatively sim-
ple approaches (monitored systems) to very sophisticated and complex ap-
proaches (diverse software). The designers have been driven to this extreme
by the enormous economic penalty of a commercial aircraft loss traceable to its
computer system.

CMU/SEI-91-SR-13 7



" Military applications are less stringent than civilian aircraft applications. They
generally rely on fault containment boundaries ("brick walling") for fault toler-
ance.

" Fault tolerance is beginning to move into application areas such as radar where
mechanical failures have previously been the dominant concern.

Fault tolerance is being considered for applications where data security is a
major concern.

3.2 Hardware vs. Software Fault Tolerance

Hardware fault tolerance is mature, since it is relatively easy to insure that physical faults
are independent. Software fault tolerance, which must deal with "generic" or common
mode faults such as design faults, is not mature. Nevertheless, many hardware fault toler-
ance approaches require software for successful operation.

The techniques for hardware fault tolerance are mature. When DRAMS were
introduced into on-orbit applications, predictions of single bit upsets proved to
be accurate and memory scrubbing techniques successfully compensated for
them.

The use of ultra-reliable components does not in itself provide dependability for
ultra-dependable applications; fault tolerance mechan.;rnms are also required.
The Magellan spacecraft has sustained eight fault incider.,,- involving four hard-
ware failures and still continues to operate.

Software fault tolerance appears to have emphasized two major options; 1) di-
versity and 2) recovery blocks. At least one of the workshop participants urged
the development of fresh ideas, possibly derived from natural laws (e.g. phys-
ics).

3.3 Deficiencies

• There is no broadly accepted methodology for fauit tolerant design or analysis.
While there are concepts that are commonly used, there is no common design
approach.

Conventional design techniques do not take into account possible system fail-
ures. Successful fault tolerant design requires a constant awareness of what
can go wrong throughout the design process. Failure domains are bigger than
design domains. Designers must postulate failures, design, and iterate.

* Software reliability engineering is a new discipline, and most software reliability
engineers don't understand fault tolerance.

• Verification is the weakest area. For example, there is no way to determine if
the money spent for backup recovery software might be more effectively em-
ployed in improving the quality of the primary seftware. Fault tolerance cover-

8 CMU/SEI-91-SR-13



age can be verified using either of two approaches; analytical or testing with
simulation/fault injection. CompletP formal proofs are seldom done; rather
semi-formal proofs are used as gu lines for reasoning. When they are used,
it is important that they be carried throughout the life cycle to guarantee that fu-
ture changes do not violate the assumptions.

" No matter how well we verify a system, users will still continue to insist on qual-
itative measures that provide a minimal level of independence (i.e. two inde-
pendent success paths.) As one participant said, "If you provide 10"9 failures
per year reliability in a system that is 'single string' (includes a single point of
failure) it is very hard to convince somebody to trust their life to it."

" Requirements for fault tolerance appear in two forms; qualitative (i.e. fail soft,
fail hard), or quantitative (i.e. seven nines probability of success). It is difficult
to know when each is appropriate. Ideally, it must be possible to validate the
requirements. It is impossible to prove quantitative requirements for the current
state of the art.

3.4 General Observations
" Critical software is a multi-disciplinary, team effort. Fault tolerance is at the cen-

ter of system design. Fault tolerant practitioners must also understand system
hardware-software partitioning, system interfaces, and system performance re-
quirements. They have to know how everything works normally, how the sys-
tem is designed, and what can go wrong.

" Transients are usually more important to deal with than permanent failures. A
Rand study reports that most problems in F-1 4, F-1 5, and F-1 6 avionics sys-
tems were "cannot duplicate" problems, presumably due to transients instead
of permanent failures.

" There are many lists of fault tolerant mechanisms (e.g. the techniques directory
in Volume III of the series Dependability of Critical Computer Systems pub-
lished by Elsevier Science Publishers in 1990) which constitute a "toolkit" of
techniques, but they are fragmented and applied on an ad hoc basis.

" Mature programs tend to add fault tolerance software to cope with scenarios
that are more and more improbable and complex. For example, in a satellite ap-
plication a ROM subsystem was provided as a recovery mechanism, despite
the fact that no known scenario would lead to its use. In service the ROM has
been required at least three times. This process of continuing refinement car-
ries with it the risk of introducing bugs into previously working software.

" Fault tolerance can improve fault avoidance. The analysis of a system neces-
sary for adding fault tolerance can often uncover flaws in the system's design.

" The system designer is the weak link in many industrial applications, since the
designer often only implements a given design only once in a career. Large
consulting firms often assign engineers with limited experience to critical

CMU/SEI-91-SR-13 9



projects. Such a person is an expert in neither the application domain nor in
fault tolerance. When the engineer moves on to the next project there is no op-
portunity to apply the lessons learned.

10 CMU/SEI-91 -SR-13



4 Fault Tolerance Technology Needs

4.1 Methodology

" Common reference material is needed. This should include: a standard vocab-
ulary, a reference model, useful fault classes (i.e. an application-independent
characterization of faults), guidelines as to what can fail (what to protect a sys-
tem against), and examples of how faults happen in "real life".

" We need methods for effectively dividing systems into critical and non-critical
subsystems. Without such a division, the high dependability system design and
validation process must span an entire system, an unaffordable alternative.
Furthermore, it is extremely difficult to extend and modify the noncritical portion
of a system that lacks such a division.

"* The design process must be extended to explicitly consider faults (what can go
wrong) as well as functionality (what can go right).

" We have to recognize that fault tolerant systems will continue to be custom de-
signs, but that they will be implemented using a few well-understood approach-
es. Methods of designing and analyzing standard fault tolerant subsystems are
needed that can be reused often enough to justify extensive validation and test-
ing. Standard subsystems offer the only practical way to accumulate sufficient
service exposure to provide adequate confidence in a subsystem's reliability.

" Standard implementations of fault tolerant mechanisms, such as for synchroni-
zation and voting, are needed to deal with concerns that these approaches are
too complex.

"* We need methods for identifying fault containment regions.

" A validation process that supports the design process is needed. The effort ex-
pended in validating a design should not only provide the required confidence
in the dependability of the design, but also inform designers of the strong and
weak aspects of their design. Such a process will reinforce good design prac-
tices and discourage the use of potentially less fault tolerant approaches.

" The scope of formal proofs of correctness must be extended to cover a greater
portion of system designs. As this is done, it will be essential to find ways of
carrying the assumptions and properties used in the proofs through the life cy-
cle to guarantee that upgrades do not violate critical assumptions.

4.2 Theory

Diverse hardware and software have been incorporated into fielded systems
for years, yet so far little evidence has been accumulated that suggest these
particular measures are cost-effective. The value of diversity in general and di-
verse software in particular must be established.

CMU/SEI-91-SR-13 11



" Fresh ideas (other than diversity and recovery blocks) must be developed for software
fault tolerance. In particular we should seek an alternative to diverse software for ge-
neric or common mode faults.

" Fault tolerance needs to address real-time issues (i.e. fault latency) as well as func-
tionality issues. Time to criticality is an essential concept.

An economic model that recognizes not only the value and cost of functionality, but
also the value and cost of dependability is needed. This will allow accountants and pro-
gram managers to include fault tolerance intelligently in system procurements.

4.3 Education

An easily accessed repository of past experience is needed to insure that past mis-
takes are not repeated and to provide reference material for new engineers entering
the field. It is important that this collected experience be understandable. In other
words, raw material is not sufficient.

" Fault tolerance must be added to computer science and engineering curricula. This
must appear early enough in the curriculum to ensure that engineers learn to consider
what can go wrong as well as what is to be accomplished in all phases of system de-
sign and implementation.

" A process is needed to educate users, especially the government, in the importance
of fault tolerance. Fault tolerance should be recognized as a maturing technology that
must be considered as an alternative or complement to fault avoidance and fault re-
moval in achieving dependable systems. This process could include seminars, work-
shops, books, papers, videotapes, etc.

"* The disciplines of reliability engineering and fault tolerance should share more con-
cepts than they do at present, especially definitions of hazards, faults, system and soft-
ware reliability, and failure models.

12 CMU/SEI-91-SR-13



5 Potential SEI Role

Workshop participants were asked to suggest potential roles for the SEI in fostering the
adoption of fault tolerant technology. The suggestions are grouped in the same categories
as were used in the discussion of needs in Section 4

5.1 Methodology
"* Develop a reference model for fault tolerant systems that allows us to partition

a prototypical system into abstract functions that can individually be analyzed.

"* Select and distribute a standard vocabulary and a standard fault classification
scheme.

"* Specify reusable fault tolerant services and foster their implementation in a
demonstration environment.

"• Define the role of fault tolerance in the overall system engineering process.

5.2 Theory

• Study the cost effectiveness of diversity in compensating for software faults.

• Assist in the development of accurate metrics of software dependability.

5.3 Education

" Help establish communications between practitioners, researchers, and pro-
gram offices via a newsletter, workshops, etc.

" Serve aE neutral party to collect, interpret, and distribute experience and les-
sons learned in the deployment of fault tolerant systems.

" Develop and distribute a fault tolerant curriculum module and associated edu-
cational material.

"* Conduct Pn invitational seminar series on fault tolerance and distribute seminar
tapes

CMU/SEI-91-SR-13 13



14 CMU/SEI-91 -SR-13



6 Workshop Participants

Mr. Bob Dancey Mr. Stephen B. Johnson
IBM FSD Martin Marietta Astronautics
Building 869, Room 2F05 MS: T200; P.O. Box 179
9221 Corporate Boulevard Denver, CO 80201
Rockville, MD 20850 (303) 977-1449
(301) 640-3944 FAX: 303-977-1530

Mr. Terry Devlin Mr. Jim Kelley
Honeywell Air Transport Systems Division Hughes Aircraft Corporation
21111 N. 19th Avenue Radar Systems Group
Phoenix, AZ 85027-2708 P.O. Box 92426
(602) 436-2496 Los Angeles, CA 90009

(213) 334-2509
Mr. George Gilley
The Aerospace Corporation Mr. Ted Smith
Mail Station MI-046 IBM
Post Office Box 92957 Federal Sector Division, MC 6402A
Los Angeles, CA 90009-2957 3700 Bay Area Boulevard
(213) 336-1552 Houston, TX 77058
FAX: 213-336-8266 (713) 282-8285
e-mail: gilley @aerospace.aero.org

Mr. James E. Tomayko
Mr. Jack Goldberg Software Engineering Institute
3373 Cowper Street Carnegie Mellon University
Palo Alto, CA 94025 Pittsburgh, PA 15213
(415) 859-2784 (412) 268-6806
e-mail: goldberg@csl.sri.com

Mr. Chris Walter
Mr. Walter L. Heimerdinger Allied- Signal Aerospace
Software Engineering Institute 9140 Annapolis Road
Carnegie Mellon University CoJumbia, MD 21045
Pittsburgh, PA 15213 (301) 964-4082
(412) 268-6931
FAX: (412) 268-5758 Mr. Charles B. Weinstock
e-mail: wlh@sei.cmu.edu Software Engineering Institute

Carnegie Mellon University
Mr. Larry James Pittsburgh, PA 15213'
Hughes Aircraft Corporation (412) 268-7719
Ground Systems Group - Bldg. 618, MS W308 FAX: (412) 268-5758
P.O. Box 3310 e-mail: weinstock@sei.cmu.edu
Fullerton, CA 92634

CMU/SEI-91-SR-13 15



16 CMUISEI-91-SR-13



UNLIMITE,. UNCLASSIFIED
SECLar/Y CLASSIVICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
la. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

Unclassified None

2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBLTION/AVAILABILITY OF REPORT

N/A Approved for Public Release
2b. DECLASSIFICATION/DOWNGRADING SCHEDULE Distribution Unlimited

N/A
4. PERFORMING ORGANIZATION REPORT NUMBER(S 5. MONITORING ORGANIZATION REPORT NUMB ER(S)

CMU/SEI-91-SR-13

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORLNG ORGANIZATION

Software Engineering Institute (if applicable) SEI Joint Program Office
SEI

6c. ADDRESS (City, State and ZIP Code) 7b. ADDRESS (City, State and ZIP Code)

Carnegie Mellon University ESD/AVS
Pittsburgh PA 15213 Hanscom Air Force Base, MA 01731

&a. NAME OFFUNDING/SPONSORLNG 85b OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDEN•IFICATION NUMBER

ORGANIZATION (if applicable) F1 962890C0003
SEI Joint Program Office ESD/AVS

8c. ADDRESS (City, State and ZIP Code) 10. SOURCE OF FUNDING NOS.

Carnegie Mellon University PROGRAM PROJECT TASK WORK UNIT
Pittsburgh PA 15213 ELEMENTN O NO. NO NO.

63756E N/A N/A N/A
I I. TITLE (Include Security Classification)

Fault Tolerant Systems Practitioner's Workshop (June 10-11, 1991)

12. PERSONAL AUTHOR(S)

Heimerdinger, W.L., Weinstock, C.B.

13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Yr., Mo.. Day) 15. PAGE COLU.NT

FinalI FROM TO October 1991 15
16. SUPPLEMENTARY NOTATION

17, COSATI CODES I8. SUBJECT TERMS (Continue on reverse of necesary and identify by block number)

FIELD GROUP SUB. GR.

19. ABSTRAC 2
(Continue on revere if necssary and ideo•nfy by block number)

On June 10-11, 1991, a Fault Tolerant Systems Practitioner's Workshop was held at the Software
Engineering Institute. The purpose of the workshop was to attempt to identify how fault tolerance is
being applied today, why fault tolerance is under used, and what can be done to bring fault tolerant
practices into wider use. Attendance at the workshop was limited to a small number of practitioners
who had successfully applied fault tolerance in a systems context. This report summarizes the pro-
ceedings of the workshop which included a discussion of barriers to the deployment of fault tolerant
systems, a summary of the state of the practice, and a discussion of the technology needs of fault

(please turn over)

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

UN•LASSWFIED/UNLIMTED 1 SAME AS RPT] DTIC USERS Nl Unclassified, Unlimited Distribution

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE NUMBER (Include Area Code) 22c OFFICL SYMBOL

Charles J. Ryan, Major, USAF (412) 268-7631 ESD/AVS (SEI)

DD FORM 1473, 93 APR EDITION of I JAN 73 IS OBSOLETE UNLIMITED. UNCCLASSIFIED
SECURITY CLASSIICATION OF Ti IS



STRACT -c.otinud fron page one, block 19

tolerance. The report concludes with a discussion of ways the Software Engineering Institute

may be able to help bring fault tolerant practices into wider use.


