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Abstract

There is a lack of precise information on the effectiveness of specific methods in generating optimum designs for realistic aircraft
structures. In this situation it is difficult for designers to make decisions on which systems to employ for a given design problem
and which developments to pursue. Thus it is necessary for designers to be aware of the relative merits of the different methods
currently used for the design optimisation of advanced aircraft.

This Lecture Series covers the methods available for the computer based design analysis and design optimisation of aircraft
structures. The Lecture Series deals with the principles and practices adopted to integrate the various factors which are
considered in the design of advanced aircraft. These factors include: structural shape, aerodynamics, active control technology
and aircraft performance. Realistic case studies are used to illustrate the methods used for different design problems.

The following topics are covered in detail:

—  Overview of integrated design analysis, background, methods, objectives and requirements.
—  Optimisation in design (CAE/CAD).

— A system approach to aircraft optimisation.

—  Case studies for different design problems.

This Lecture Series. sponsored by the Structures and Materials Panel of AGARD. has been implemented by the Consultant and
Exchange Programme.

Abrégeé

Iy 4 un manque dinformations précises sur lefficacité des méthodes spécifiques qui ont été élaborées pour Foptimisation des
études en vue de la réalisation de structures daéronefs. Dans cette situation il est difficile pour les concepteurs d’avion de
décider des systtmes a employer pour résoudre tel ou tel probleme de conception et d'identifier les développements
intéressants. 1L importe donce, de sensibiliser les concepteurs sur la valeur relative des différentes méthodes employees pour
l'optimisation de la conception des aéronefs.

Ce cycle de conférences couvre les méthodes disponibles pour I'analyse de la conception assistée par ordinateur et
l'optimisation de la conception des structures d’aéronefs. Il examine les principes et les pratiques adoptés pour l'intégration des
différents facteurs pris en compte lors de la conception des aéronefs. Ces facteurs comprennent: la forme structurelle,
I'a¢rodynamique, la technologie des commandes actives et les performances. Des études de cas réelles sont utilisées pour
illustrer les méthodes employées pour résoudre divers problemes de conception.

Les questions suivantes sont examinées dans le détail:

—  panorama de I'analyse intégrée de la conception, historique, méthodes, objectifs et besoins
—  Toptimisation de la conception (IAO/CAQ)

-~ une approche “systtmes™ a loptimisation des acronefs

—  des €tudes de cas pour des problemes de conception.

Ce cycle de conférences est présenté par le Pancl AGARD des structures et matériaux; et organisé dans le cadre du programme
des Consultants et des Echanges.
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FUNDAMENTALS OF STRUCTURAL OPTIMISATION

by

Professor A.J.Morris

Department of Aerospace Science
College of Aeronautics
Cranfield Institute of Technology
Cranfield Bedford MK43 OAL
UK

1. Introduction

Structural Optimisation is concerned with the computerised automatic design
of structures which are optimum with respect to some major design parameter.
In the aircraft industry this parameter has usuvally been structural weight,
though cost, performance or other factors are now being considered. The
parameter being optimised is referred to as the objective function and the
variables which can be changed to achieve the desired optimum are referred to
as design variables. Mathematically this can be characterised by saying that
the problem is;

minimise (or maximise) f(x) x e R"
subject to the constraints gj(x) 20 i=1... m
hk(X) =0 k=1... p

where the design variables x € R" are positive and the range of x for which
the constraints are not violated constitute the feasible region. If the
objective function f(x) is structural weight the design variables are size
parameters such as bar cross-sections, plate thicknesses and, in certain
cases, shape parameters which vary the geometrical configuration of the
structure. Current researches are seeking to extend the scope of structural
optimisation to cover more extensive objective functions which include
factors such as performance, cost, etc. Indeed, certain commercially
available systems already cover non-weight objective functions. The
constraints on the optimum will include behavioural parameters so that the
terms g}(x) could include, stress, displacement, flutter speed, vibration

limits or any other relevant parameters. In addition, to behavioural aspects
these constraints also cover physical limits imposed by practical
manufacturing considerations such as gauge limits. Whilst equality
constraints are not common in minimum weight optimisation they can occur
where design codes are employed or where components can be selected from a
specific range (i.e. stock items).
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In all this variety two aspects remain constant in all current structural
optimisation applications. First, the general problem which is characterised
by (1L.1) remains unchanged so that the basic nature of the optimisation
problem is the same for all applications. Thus, the theory described in this
Lecture Series can be wused in all design applications. Secondly, the
structural behaviour of the optimisation problem is always characterised by
the Finite Element Method. In many cases this has lead to the development of
optimisation modules which form an integral part of many commercially
supported F.E. packages i.e. NASTRAN, SAMCEF, IDEAS, ELFINI, ANSYS, etc. In
addition, independent structural optimisation systems have been developed,
such as the DRA/SCICON STARS, MBB Lagrange, systems, which can be attached to
any existing FE system. These developments have resulted in Structural
Optimisation Methods being routinely available to users of modern CAD
systems.

The use and application of these methods in a safe and effective manner
requires some understanding of the underlying mathematical principles. As in
the case of the Finite Element Method the basic mathematics provides a
tool-kit’ which is repeatedly used to develop solution methods. It is shown
in later sections that this process of developing solution methods use the
optimisation criteria as the basis for creating the up-date formulae which
are the solution algorithm drivers. Thus, this first part of the Lecture
Series, describes the optimality criteria, the associated duality theory and
the algorithms themselves.

2. A Basic Algorithm

The computer based numerical solution process for the problem defined at
(1.1) is in essence, simple. It requires that a repetitive formu}o%e is used
which starts with an initial estimate of (tge design variables x e R" and
systematically changes them until a set x is generated after ¢ iterations

which satisfy (1.1).

The process is best demonstrated by considering an optimisation problem which
has no constraints, thus we seek to solve the problem

minimise f(x) x € R"
The solution can be found using the following solution algorithm:
Basic Algorithm.

Step 1  Select starting values x'® and choose a value for €

Step 2 Set k =0

Step 3 Set k =k +1

Step 4  Set xX* = Ax™)
f(lul) = f(x““n)




StepS If B(xu"l)) < € go to Step 6;

Otherwise go to Step 3

»

L]
(k+1) = f(x““”)

Step 6 Set x = x , T

STOP.

Thus, step 4 ge?f)rates a new version of the design varig)bles x(h" from the
earlier values x and the formula for doing this A(x ) is kx(\lswn as_ the
up-date formula. (Eﬁs:ause we are(k{noving from one position x in R to
another position x in R A(x ) this constitutes a move of specific
length along a given direction. Hence

(k) ) - x(kol)

Alx )=§(k +ae..

~

(x)

where p is a direction, in R", from x = and « is a value giving the distance

to be moved in this direction. Two questions now need to be answered:
- what should be used for u

- how far to move along u -i.e. what is the value for «?

In answering the first of these questions we must select a direction which
points towards the optimum and one, very effective, method for achieving this
is to enforce the satisfaction of the optimality criterion. Once a direction
has been selected the value of a is found by seeking the minimum value of
f(x) along the direction .

EXAMPLE (Newton's Method)

Suppose that the function to be minimised f(x) has first and second
derivatives available so t{Bt it can be approximated by a second order Taylor
expansion about a point x € R"

f(),f(k) + 3)5) = f(’f“‘)) + V~fT(§(k)). 5)‘5
(1.2)
+ L ax". Hix*)ax
where &8x is an increment xn xm; Af(xm). H(x(k,) are the first

derivative and the Hessian respectively of f © at x™ er™.

In order to generate the up-date formula we note that the optimising
condition for f(x) xeR" is:

Vf(x) = O
If this is enforced on (1.2) with &x as the free variables (since the start

point x™ is fixed) then




(k) (k)

Vflx) =V f(x )+H(x ").éx =0
or
8x = - H'™)v 1
and thus we choose p= -g_‘(x(k)).v~f(x(k)).

If f(x) is of higher order than a quadratic in xeR" then a is found by
minimising -

f(x"'+ au) along p

Having discussed the generation of the up-date formula A(xm) v§ now return
to the second unexplained term in the algorithm, namely B(x ¥y This is
simply a stopping criteria! Because the algorithm is a computational process
the optimum point is only located to a specified level of accuracy. The term
B is, therefore, an accuracy measure and can be represented by the change in
objective function during an iteration, or the design variables. As the next
section shows a very effective measure is given by noting the difference
between the feasible value of the objective function and the associated dual.

Although the algorithm described above is simple in concept it is applicable
to all optimisation problems, the difference in a&sﬂying it to a range of
problems lies in the changes associated with A(x ). In the next section
the optimality criteria for (1.1) is introduced and algorithms developed from
it.

3. Optimality Criteria and Duality

In order to generate the up-date formula in the previous section the
optimality criteria was used to generate the solution algorithm. However,
this applied only for the case of an unconstrained optimisation problem which
does not represent the situation described in (1.1). Generating the
optimality conditions for the constrained problem is done by sequentially
moving from an unconstrained problem to an equality constrained one then,
fiially, to the full inequality constrained optimisation which is the heart
of the structural optimisation design problem. This is not a complex process
but is too lengthy for inclusion here and is fully described in reference

(1l

Because the inequality constrained problem is the most common form for
structural optimisation we shall consider a reduced form for (1.1) and, for
simplicity take the problem to be a minimisation. Thus (1.1) becomes:

minimise f(x)
(1.3)
subject to gj(x)zo j=1..m

and the optimality criteria for  this problem are known as the Kuhn-Tucker
conditions. These state that x eR" is a local optimum for (1.3) if these




exist A€E™ such that:

Vix) -aATw g(x') =0
~ - (1.4)
ATg(x") = 0

Az0 g( x‘ )20

The first part of (1.5) are the constrained derivatives of the objective
function. That is, the gradient of the objective function projected onto the
linearised form of the constraints. In essence this projection returns us to
an unconstrained optimisation problem so that the algorithm developed in
section 2 once more applies.

An alternative form for (1.3) uses the Lagrangian which is defined by
L(x,A) = f(x) - éT.g(x)

in which case (1.4) can be re-written as

I
(=]

[
V L(x ,A) =
X

ATgix’) =0 (1.5)

Az0  g(x )0

where Vx = {—a-}
<Sxl

The standard problem defined by (1.3) is clearly a minimisation problem which
is often called the °’primal problem’. Associated with this is maximisation
problem known as the 'dual problem’ where a new function is maximised subject
to a new set of constraints. These two problems are connected by a saddle
point so that the minimum value which represents the solution of the primal
problem is also the value which is the maximum value for the dual problem.
The dual has, therefore, two uses both of which have been exploited by the
developers of structural optimisztion programmes. First, the dual
formulation provides an alternative description of the optimisation problem
which can be used to create solution algorithms. Secondly, it has been
employed as a method for genqg)ating bounds on the optimum which can play the
rdle of the accuracy check B(x )

Many forms for the dual can be developed and are discussed elsewhere,
ref.[2]. The one usually employed for structural optimisation states that
the dual associated with the primal problem (1.3) requires that, for f(x)
convex and g(x) concave, we
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maximise L({x,A)
subject to VxL(x.A) =0 (1.6)
A20

Although not obvious from this formulation, for many structural problems, the
dual constraints can be solved to yield x(A) giving rise to an unconstrained
optimisation:

maximise L(x(A),A)

with x(A) the solution of VxL(x,}\) = 0. As we shall see later this allows

the creation of powerfull dual solution algorithms. These have formed the
basis of the class of dual algorithms successfully employed in the SAMCEF
system for several years.

4. Structural Optimisation Algorithms
4.1 STRESS RATIOING

The Kuhn-Tucker conditions (1.4) or (1.5) provide the optimality criterion
which are used to generate the up-date formulae employed in the modern
automated design systems. But a very simple up-date formula has been
effectively employed both as a hand calculation and as a computerised
optimisation method. This assumes that the optimum is a vertex solution in
constrained design space. It required that the number of constraints in
(1.3} is equal to or exceeds the number of design variables i.e. mzn. In
this situation the optimum 1is found by solving n equality constraint
equations

gk(x) =0 k=1..n
and, used iteratively, this produces the classical stress ratioing algorithm.

For the minimum weight design of statically determinate structures subject to
stress constraints only, this method will find the optimum in a single
iteration. For indeterminate structures there is no guarantee that an
up-date formula based on enforcing vertex solution will locate the optimum
design. This is because the solution process takes no account of the desire
to minimise the structural weight. For problems involving constraints other
than stress the approach is highly inappropriate. However, it is robust and
does not require the calculation of any derivatives so is effective in the
initial stages of any solution involving a structural optimisation problem in
which stress constraints play a réle. For this reason the stress ratio
algorithm is available in all systems used for the design of minimum weight
aircraft structures.




4.2 OPTIMALITY CRITERION ALGORITHMS

In the past the optimality criterion method was a term applied to a set of
algorithms devised by Venkayya, Khott and Berke [3] in the United States and
Kerr (4] in the U.K. However, these methods are a special case of the
general process of using the Kuhn-Tucker conditions as the basis of the
up-date formulae. The term Optimality Criterion methods is, more properly,
applied to a general class of solution methods. In this situation the
unifying factor is that the constraints are always approximated by a first
order Taylor expansion. (Though more recent work has attempted to employ
second order approximations for the constraints, but this is not considered
in the present paper.) The differentiating factor between the various
methods in this class is the order of the Taylor expansion used to
approximate the objective function. A common factor to all the methods is
the need to select from the total number of constraints a sub-set which are
considered to be active. This means that, at each iteration, the solution
process must establish which constraints are good candidates for being strict
equality, as opposed to inequality constraints, at the optimum point.

4.2.1. Linear Approximation. The first optimality criterion approach assumes
that both the objective function and the constraints are approximated by
first order Taylor expansions. Thus, (1.3) now becomes

minimise f(x) + v f.8x
subject to g(x) + N.ox 2 0
where N is the matrix of constraint gradients Vg(x) taken with respect to the
design variables. These gradients can be computed in a variety of ways but
the finite element method lends itself to analytic derivatives for a range of
element types. For complex problems recourse may be made to semi-analytic
derivatives or, if absolutely necessary, to finite difference schemes. The
generation of gradient derivatives is not discussed here as it is a well
documented procedure available in standard texts.
The Lagrangian associated with the linearised problem is:
L(x,A) = f(x) + YT.6§ - éT.(g(x) + N.&x)
The differential part of the Kuhn-Tucker condition are then
VLxA) =Vf-N2A=0
The lagrangian multipliers can now be extracted:
A= (NNDUNY £

and can be used to generate the constrained derivative.

Vf = {1 - (rg.lg’)“.rg}.v;

The up-date formula can now be constructed on the basis that the optimum
can be located along the direction of steepest descent. Thus, the algorithm




uses (—Vfc)mu as the direction I and a line search can then be conducted.

If a single constraint (displacement) only is active, the equations transform
into those used by Knott/Venkayya/Berke and Kerr for the original optimality
criterion method. This formulation can also be used to generate a solution
algorithm based on the premise that the optimum can be found from a sequence
of linear programmes.

4.2.1. Quadratic/Linear Application. The next level in the “hierarchy of
solution methods assumes that the objective function is approximated by a

second order Taylor expansion and the constraints, as at 4.2.1, by a first
order expansion. Thus, the problem (1.3) becomes:

minimise f(x) + V~f‘T.6~x + % 8~x.!-_l.6)_g
subject to g (x) + N.3xz0

where H is the Hessian of the objective function. The Lagrangian associated

with this problem is:
Lix,A) = f(x) + V_f1.8x + 25x.H3x - A'(glx) + Nax

Thus, for optimality:

VL(xA) =V f+HX-N.2A=0
giving
ox

~

-H.(0f - NT.2)

Noting that the constraints involved in this formula are the active sub-set
then:

or

H™.(v f - N".2)

Thus
A= (NHINDUINHTO f - gx)

and substituting back into the expression for 8x gives
5x = -xj“.[v; - rg’.{ng.g".ng)".(g.g".v; - g(x))}]

or

As in section 2 this is a Newton step and gives the direction u. It has




two components, the first

steps onto the active constraints, and the second

- {1 - lgT.ug.g“.g*)“.lg.g“}.ﬂ".Vf
projects the Newton direction onto the plane (linearised) of the active
constraints.

The Quadratic/Linear approximation is a very popular algorithm and has
found application in a variety of systems including STARS, OPTISEN, OPTI,
ASTROS. It is used with direct design variables, inverse variables or
asymptotic variables. Also the precise implementation of the algorithm may
vary from system to system and a range of generalised quadratic programming
methods have been employed.

4.2.1. Active Set Strategies. As indicated above the algorithms described
rely on the fact that the set of constraints being used at each iteration of
the algorithm are a sub-set of the total. These control the space available
for the up-date search direction to sweep. In principle this reduced set of

constraints generate a local feasible direction. The projection vectors
developed in 4.2.2 restrict the search direction to lie along this reduced
set which are actively controlling the up-date process. These constraints

are, therefore, called the active set of constraints and the procedure for
deciding on which of the total constraints are active, at any iteration, is
known as the Active Set Strategy.

There are two parts to this strategy; one part deciding which constraints
are to be included, the other deciding those to be dropped from the active
set. The process of including a new constraint is straightforward; at each
iteration an analysis must be performed and should any constraint be seen to
be violated it must be included in the active set. Dropping constraints is a
little more complicated. As shown in the Kuhn-Tucker optimality conditions
the Lagrange multipliers must be positive. Thus, any constraint at any
iteration which has a negative Lagrange multiplier should not be in the
active set. The formulae in 4.2.2 which calculate the Lagrange multipliers
can be used to identify these constraints with negative multipliers. Such
constraints can then be dropped before the next iteration is performed.

The exact process of implementation is a little more complicated than the
outline given above and anti zig-zag rules need to be imposed to provide a
degree of smoothness to the operation of the strategy. Nevertheless, the
basic principles of most active set strategies are those given here.

S. Exploiting the Dual

In this section the power of the dual formulation is demonstrated both as the
basis for a solution algorithm and as a bounding procedure. It is convenient
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to be a little more specific in formulating the problem and, to this end, a

linear weight function is taken as the objective function. However, to
assist in the process of linearising the constraints this is transformed into
a non-linear form by the use of inverse sizing variables. The generic
structural minimum weight design problem becomes

n w

minimise ; _
o X

m n (5.1)
subject to ; [ Z c x - b) =0
=1 =1 1y

where w, is the specific weightimass) associated with the 1 th design
variable.

S.1 DUAL BOUNDING

The dual problem associated with the primal optimisation problem (5.1) is

n Wl m n
maximise L(x,A) = Z =~ * Z AJ [ Z C %" bj]
=1 1 J=1 =1
(5.2)
w, m
subject to - — +§: A c =0 i=1..... n
2 1)
X =1
1
Multiply each of the constraint equations by X, and sum i=1..... n gives

R

- —_— ¢+ A c. x =0
T=1 Xy Vo1 P M !

and substituting this into the dual problem gives a new dual:

m
maximise ; A b

=1 )

m
subject to Z A ¢ =—;i=l ..... n
J x,

If we explicitly take into account the positivity of the design variables
this problem becomes:




m
minimise ; A b

m w, (5.3)
subjecttoEAc z—zi=l ..... n

Thus (5.3) is the linearised dual to the primal problem (5.1) and can be used
to provide a pseudo-dual bound on the optimum.

In order to demonstrate the procedure we assume that at the end of the kth
iteration of any of the algorithms described in section 4 we have the current

estimate of the "optimising” inverse design variables x:” . These may now

be fed into (5.3) to provide a ’dual’ problem

m
minimise Z A b
j]

m w,
subject to z AJ cU z T i=1.... n
T=1 (xl )
(k)

and because the variables xl i=1 ... n are fixed the above is a linear

pmgramming problem which can be solved to produce a set of dual variables
Aj i=1... m. These can be used to compute a value of the Lagrangian

L(xm, A™)) which can be compared with
P
weight =
T x (k)

1

to give a bound on the optimum. The gap between these(kswo values is known as
the duality gap and can be used as the function B{(x ) used as a stopping
criteria in the basic algorithm of section 2.

This approach of using a linear programming routine to solve a linearised
dual to provide a bound on the optimum is used in many structural
optimisation codes including STARS and OPTISEN.

5.2 A DUAL ALGORITHM

In order to create a dual based algorithm we note that the dual probl&sn can
i=

be developed to remove any dependence on the design variables x,

1..... n. This is done by explicitly solving the dual constraints to obtain




w
2 1

[ L’J °U]

This expression for the design variables can be substituted into the dual
objective function so that (5.2) becomes, simply;

maximise L(A)

which is an unconstrained maximisation problem for which the optimality
criteria is

V__L(A) =0
Assuming a 2nd order Taylor expansion for L(A) gives a new unconstrained
maximisation problem

maximise L(A) + V LAS A + 2 8 A HQA) 5 A

for which the optimum is given by

VL) =ALM)+HA) SA=0
or
dA=-HVL

This provides the up-date formulae A(J\m) in terms of the Lagrange
multipliers:

é(kd) = é(l() _ H—lv L (5.4)

We note that:

aL
VL has terms —— = ¢c X -b =
s terms 2': . \ gj(x)

aAJ - 1)
8L 8
and H has terms 9% - BA (gj)
[/ ) L
_ i ag | dx‘
e ax dlt

2
(¢}

.- ; REYIY)
=1 2w x3
1 i

The up-date formulae (5.4) is used in the module OPTI in the SAMCEF system
and was created by Fleuxy, [1]. However, it was used as the basis of Kerr's
up-date formulae within his ’optimality-criterion’ code which still forms the
core of the B.Ae Warton code ECLYPSE.




6. Conclusion

The above sections show that fundamental principles upon which the modern
structural optimisation codes are based are sound. The theory with respect
to sizing variables is well established and the following chapters exploit it
for a wide range of applications. It also forms a secure platform on which
current research can build to develop new applications. The use of shape
variables represents one such development and the inclusion of performance
characteristics is another. Thus alternative design variables and objective
functions are being introduced but the basis of algorithm development still
remains the same as that given above.
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Summary

The structural optimisation system MBB-Lagrange allows
the optimisation of homogeneous isotropic, orthotropic or an-
isotropic structures as well as fiber reinforced materials. With
the simultaneous consideration of different tequirements in the
design of aircraft structures it is possible to reduce the numver
of iteration steps between design, analysis and manufacturing.

Based on finite element methods for structures and panel
methods for acrodynamics, the analysis with sensitivity in-
cludes modules for static, buckling, dynamic, static acroelastic
and flutter calculations.

The optimisation algorithms consists of mathematical pro-
gramming methods and an optimality criteria procedure.

The important link berween optimisation and analy-
sis/sensitivity is the optimisation model which leads to a very
modular architecture.

Typical application examples show the power and gener-
ality of the approach.

1. INTRODUCTION

Modern aircrafts are complex systems whose performance
depends on the interaction of many different disciplines and
parts. The complexity of the problems, that means the cou-
pling among a very large set of governing equations, is dealed
traditionally by solving only a subset of the system, such as
aecrodynamics, structures, flightumechanics, controls, etc.
(Fig.1.1 [1]). For these individual disciplines great advances
were made due to theoretical, computational and methodol-
ogy break throughs. However, these more sophisticted meth-
ods of ten result in a decrease in the awarenes of the influence
of the specialist’s decisions in his area on other disciplines. On
the other hand it became more and more troublesome to ac-
count strictly for all those couplings between these subsets
only by parametric studies. In such investigations a relatively
small number of principle parameters were varied, to find out
their effects on the design requirements - which were them-
selves often contradictory - and to improve the design.

Vehicle
performance

Fig. 1.1: The network of influences

With this approach, working in a limited design space, the
engineer may achieve better results, but more often it leads to a
penalty on the design objectives to make the initial concept fea-
sible.

A more efficient way to integrate the differer. disciplines
and to balance their distribution in the early design phases, is
the multidisciplinary design optimisation approach (MDO).
Mathematical optimisation algorithms together with reliable
analysis programmes and the so-called optimisation model
build up a basis for MDO-calculations with a high rate of gener-
ality and efficiency. This concept makes it possible to
o find designs which meet all specified requirements simulta-

neously
e achieve an optimal objective (or a combination of different

goals)

without time consuming manual and more or less intuitive
search for modifications of the initial design.

Looking at a typical data flow in the structural design
phases of an aircraft (Fig. 1.2) the integrating effects of a gen-
eral structural optimisation program can be seen. The program
MBB-Lagrange is such a procedure which has been developed
by MBB and several university institutes since 1984 {2).
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In this lecture the different parts and the basic procedure
of the structural optimisation process are described.
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Fig. 1.2: General data flow

2. PRACTICAL ARCHITECTURE OF
MULTIDISCIPLINARY DESIGN
OPTIMISATION SOFTWARE

For the treatment of optimisation problems the "Three-
Columns-Concept” [3] defines the practical architecture of an
optimisation program. In the case of structural design these
three columns are

e  Structural model
e Optimisation algorithm
e  Optimisation mode!

The structural model is the mathematical description of
the physical behaviour of the structure, i.e. the necessary
analysis procedures for calculating state quantities. They are
often based on finite element methods (FEM) for the struc-
tural part and on panel methods for the acrodynamic calcula-

tions but other analysis methods can also be applied (e.g.
transfer matrix procedures for special shell structures).

The optimisation algorithm is a mathematical method for
solving the general nonlinear problem (NLP).

minimize f (x) (objective function) @n

subjectto g(x)>0 (mg in-equality constraints)
h(x)=0 (my cquality constraints)
x;<x<x, (lower and upper bounds
for the designvaribles x).

The relationship between the structural model and the op-
timisation algorithm is defined in the optimisation model,
which is devided in the design model and the evaluation
model. The design model contains the transformation be-
tween the mathematical quantities - the design variables -
which are processed by the optimisation algorithm and the
physical parameters - the structural variables - of which the
optimal values have to be determined.

In the evaluation model, the values for the objective func-

ton and for the constraints are computed from the response
quantities of the structural analysis.

OPTIMIZATION MODEL |Structural Modet
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Fig. 2.1: Optimization loop

Fig. 2.1 shows the interaction of the three columns in the
optimisation process [4]. First, the decision maker has to de-
scribe the structural and optimisation model for the special de-
sign problem. Based upon an initial design ¥, for the structural
variables, the corresponding initial xofor the design variables
are determined. The design model then yields the variable sub-
set of the structural parameters to be optimised. These, together
with the constant structural parameters (material constants, non-
variable structural parameters), are taken to define a special de-
sign for which the state variables are calculated by the struc-
tural analysis. By means of the evaluation model the objective
function and constraint values are calculated as one part of the
input values for the optimisation algorithm. In addition to the
functional values, most optimisation algorithms require the gra-
dients of the behaviour functions with respect to the design
variables which are evaluated by the sensitivity analysis. If a
special optimisation strategy is applied, for example a strategy
for solving a multicriteria optimisation problem, the behaviour
functions and their derivatives are transformed into correspond-
ing substitute values. Otherwise, they are directly transferred to
the optimisation algorithm. Using this information, the optimi-
sation algorithm calculates a new design variable vector and,
thereby, one obtains a closed optimisation loop. If the optirnal
design is achieved, which is indicated in the optimisation algo-
rithm by breaking-off criteria, the optimisation process is termi-
nated.

3. Optimisation MODEL

Design Model

The design model describes the relationship between the
structural variables and the design variables determined by the
optimisation alorithm. If the finite element method is used for
structural analysis the following structural variables are possi-
ble.

e Sizing Problems
- Cross sectional area of elements
- Thickness of elements
- Laminte thickness of composite elements




- Mass of concentrated masses

¢ Geometric probiems
- Fibre orientation angles for composite structures
- Coordinates of nodes

- Conrtrol parameters of parametric curves
(c.g. B-Spline, Bezier, polynome, ...)

- Pseudo loads
e Topological problems
- Arrangement of elements (e.g. ribs, spars)

For integrated design problems, with additional discipline
analysis techniques, such as linear aerodynamics and flight
performance and flightmechanics, new types of variables
must be considered. Aerodynamic variables can be:

®  Wing shape
- Surface area
- Aspect ratio
- Taper ratio
- Sweep angle
- Profile shape
e  Wing topology
- Armangement of rudders and flaps
- Hingelines

Looking at the flight performance, flightmechanics and
control possible variables are

e  Weight
- Gross weight
- Fuel weight
- Payload
*  Wing load
e Mission parameters
- Range
- Block times
e  Thrust parameters
e Fin volume

e Control parameters

All these different types of physical variables, used in the
discipline analysis codes, are often not very suited for a gen-
eral mathematical optimisation algorithm. In order to avoid
numerical difficulties and - especially for the finite element
analysis - to reduce the number of design variables, a nor-
malization and "Linking" of variables is performed.

As an example, equation (3.1) shows a linear transforma-
tion between structural sizing and fiber orientation variables
and the corresponding design variabies:

X+ i G

with

t vector of the layer thicknesses of all finite
elements,

a vector of the layer angles of all finite ele-
ments,

Ap A, linking matrices of layer thicknesses and
angles,

X design variable vector,

to’ o, constant portions of the layer thicknesses
and angles.

Arbitrary design models can be defined by the arrange-
ment of the linking matrices A, and A ; and the vectors of con-
stants ¢, and a. It is also possible to link one common design
variable with the structural variables of several elements in or-
der to carry out a so-called "variable linking”. On the other
hand, one structural variable depends at most on one design
variable which means that cach row of the linking matrices
contains at most one coefficient different from zero. The coef-
ficients of the linking matrices and the vectors of constants are
chosen in such a way that the design variables take on the di-
mension "1" in the design space and are precisely "1" in the in-
itial design.

Evaluation Model

The evaluation model describes the requirements on the
structure to be optimised. The special behaviour, which should
attain 2 minimal or maximal value in the optimal design, is
chosen as the objective function. With aircraft design it is pri-
marily important to find a design with a minimal structural
weight. However, any other state quantity (e.g. costs, fuel con-
sumption etc.) can be considered as objective as well if there
are several objective functions, the problem has to be solved
by multicriteria optimisation strategies, which are discussed in
[51.

All nonobjective requirements on the structural behaviour
are formulated as constraints which are normally upper and/or
lower bounds on the corresponding state variables. For the de-
sign of aircraft structures many different types of design re-
quirements have to be considered and, there still is quite a ot
of work in order to combine all of the necessary analysis and
sensitivity analysis modules and optimisation modules within
an multidisciplinary optimisation system. The following list
contains constraint types for the different discipline analyses:

e  Structural analysis,
Thermal stresses,
Strength (failure safety factor),
Displacements,
Stability (local buckling) {6, 7],

Dynamic quantities (eigenvalues, eigenvectors,
transient- and frequency-response) [8, 9]

Manufactoring aspects

e Including steady and unsteady aerodynamic analysis
methods, additional constraints are for example:

- Acroelastic efficiencies [10, 11]

- Flutter speeds anxi damping

- (elastic) Polar quantities (lift/drag ratios)
- (elastic) Derivatives
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e From flight performance, flightmechanics and -control
the following constraints may arise:

- Manocuvre guantities
> Roll- and tum rates
> Start- and landing performance

- Hinge moments
- Stability margins
- Handling qualities

The typical requirements for all these types of constraints
is, that the considered response quantity must be less than an
allowable value (c.g. stress, cost) or greater than a certain
limit (e.g. flutter velocity, roll rate). In the case of the optimi-
sation of a static structural model, the number of constraints
can become very high (e.g. failure criteria in a large mulu-
layer FRP-structure with a lot of critical load cases may icad
to 100.000 and more constraints). It is clear, that the treat-
ment of such a kind of problems is much different to optimi-
sation tasks with a few constraints only (e.g. the maximum
turn rates of an aircraft or the frequencies of rigid or/and elas-
tic aircraft vibrations).

As an example for the mathematical formulation of the
constraints, this latter mentioned frequency requirement is de-
scribed in the following:

gj(x) ;o= fm -f(x)> 0 3.2)
or in a normalized form:
g = I-Tfﬁ >0

max

This normalized representation has the great advantage of
the independence of the physical value of the response quan-
tity and guarantees a similar magnitude for all types of con-
straints. Thus an improvement of the convergence behaviour
of the mathematical optimisation algorithm can be reached.

By means of all these above mentioned constraints on the
state variables, many of the most important requirements for
the design of aircrafts can be formulated. All the different
types of constraints and the objective function - which can be
defined by one or more of these constraints - form the evalu-
ation model, and together with the design model they com-
pletely describe the optimisation model and the design task.

For practical applications it can not be expected and even
it is not desired that there will be one computer program only
for the optimal design of aircraft. A much better solution for
the multidisciplinary design optimisation of a complex, inter-
nally coupled system behaviour is the separate evaluation of
the individual discipline analysis and the partial sensitivity
analysis with a well organized exchange of input and output
data. But most important is an efficient method for calculat-
ing the coupled system sensitivities.

Such a formulation is presented in [13] and shortly de-
scribed in the second part of this lecture by applying it to the
integrated design of a fin.

4. THE OPTIMISATION ALGORITHM

Another column in the "Three-Column-Concept” repre-
sents the optimisation algorithms. In the previous chapter the
different types of problems in the multidisciplinary design op-
timisation process were shown. Many practical applications in
the last decade have proved, that it is necessary to provide
several different optimisation strategies and algorithm to get
reliable solutions, because there is no known single method
which is adapted to every type of problem.

To understand the solution process for the NLP-problem
formulated in equation (2.1), it is necessary to formulate the
required optimality conditions (Kuhn-Tucker-Conditions):

V,L(x*2%) = 0 <==>7 f(x*) = ZA*V, g(x*)

Vg e =0 @
A >0
j

where L =f-ATg isthe Lagrangian function
x* the optimal solution vector
A* the Langrangian multiplier in

the optimum
and V, the gradient with respect to x.

That means, that in the optimum the gradient of the objec-
tive function is a non-negative linear combination of the gra-
dient of the so-called "active constraints”. The determination
of these active constraints is one of the main problems of all
optimisation procedures. The "less active” constraints have
less influence on the current design change and are therefore
temporarily neglected. Suitable deletion of these constraints
accelerates the optimisation process, but it is not easy to man-
age.

To find the optimal solution vector x*, most of the mathe-
matical proramming algorithms uses the following iterative
formulation:

=y a¥sY 4.2)

where sV is the downhill search direction and &’ the step
size. o is a positive scalar, which minimizes a function F in
the direction of sVusing a one-dimensional line search, that
means:

Fx™Y) = min [F&'+ a"s")] @3)
a

The formulation of F depends on the optimisation method
and is explained somewhat later. The calculation of the step
size a” is a relatively simple mater, which however requires
the evaluation of the structural model and must therefore be
carried out very effeciently.

Without going too much into detail, a classification of
mathematical programming methods is given below [14]:

e Transformation methods

- Penalty functions

- Barrier functions

- Method of multipliers




For these strategies, the function F is the original objec-
tive function f (x), augmented by a weighted penalty term,
which summarizes the constraint values g (x).

For the inversc barrier method (IBF) for example, the
transformed problem can be written as

Fa)=fa)+rVs gj" 9] 4.4)

where the penalty parameter ¥ is updated after each iteration
step by

v+i

™= e, O<c<l1 4.5)

These strategies are very reliable, but they need a lot of
function and gradient evaluations and are very "expensive”.
e Primal methods

- Indirect methods

- Sequential linear programming (SLP)

- Sequential quadratic programming (SQP)

These methods solve a sequence of linearized or quad-
ratic subproblems. In the sequential linear programming
methods the nonlinear functions f(x) and g(x) are expanded in
Taylor series considering only the lincar terms (Fig. 4.1). This
linearized problem can then be efficiently solved by using the
simplex algorithm. For problems with many active constraints
this method works very efficiently. (Normally less than 10 it-
erations are needed!). But if there are only a few active con-
straints, convergence can worsen. In the case of highly non-
linear problems (e.g. buckling, structural dynamics), the
method tends to fail because of the rough approximation (=
linearization) of the original problem.

g,=0
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Original Nonlinear Problem  Linearized Substitute Problem

Fig. 4.1: Sequential linearization SLP

For the SQP-methods, the quadratic subproblems result
from a second order approximation of the Lagrangian func-
tion L(x,A) and a linearization of the constraint functions g(x).
The search direction 8 of equation (4.2) is then found by solv-
ing the following quadratic subproblem [15):

min. (%8 Bs + V, f(x") Ts] 46

Vi) Ts + a2 0

where B, is an approximation of the Hessian mamix of the
Lagrangian function for the v-th iteration step.
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These methods are very general and robust. They can be
used for a wide range of problems, independent of the ratio of
active constraints and design variables. The accuracy of the
optimal result is very good. If the starting point is far from the
optimal solution, it might happen, that a lot of iteration sieps
(= function and gradient evaluations) are needed (more than
20). For this reason, the best efficiency is shown for medium
size problems.

¢ Direct methods
- Gradient projection method (GPM)
- Generalized reduced gradients (GRG)
- Method of feasible directions (MFD)

One principle idea of the GRG-method is the transforma-
tion of the m,, inequality constraints g(x) of the original prob-
lem (2.1) into equality constraints by introducing additional
variables. By this means the optimisation process is working
in the feasible domain. This leads to the following modified
optimisation problem:

min. f(x)

s.t. h(x) =0 4.7
XS X <X i=1l..n
Osxi_<_oo ; i=n+l,n+mg

This system of (mg + m,) equations with (n + m,) un-
knowns gives a solution for m, + m,, so-called basis variables
which depends on (n - my) nonbasis variables. A clever sepa-
ration technique for these two types of variables and a lineari-
zation of the constraint functions h(x) results in a linearized
objective function fp(x), with a reduced set of variables, which
depend only from the (n - my) non-basis variables x. The
search direction ¥ for this smaller problem can be found for
example by using the negative reduced gradient of the objec-
tive function

sV=. dg®x
R

& (4.8)

or a modified direction, which take into account second order
informations.

An important improvement of the efficiency of the GRG-
method is the use of a SQP-search direction that means the so-
lution of a quadratic subproblem [16]. This hybrid SQP-GRG-
Algorithm can reduce considerably the number of function
calcs and gradient evaluations.

¢ Dual concepts

The principles of the dual formulation are summarized in
the following [17]: The solution of the primal probiem (equa-
tion 2.1) can be obtained by a "Min-max" two phase proce-
dure:

maximize 1(A)

subjectto?.j >0

where the dual function 1(A) which depends only on the
Langrangian multipliers, result from minimizing the Lagran-
gian L (x, 1) over the aliowable primal variables:

IA) = min L(x,A)

LELELN
Very important for the practical application of this method

4.9)




2-6

is the approximation concept of the objective and the con-
straint functions. A so-called "convex linearization" [18] for
example, leads to a sequence of convex and separable sub-
problems with a likewise separable Lagrangian function,
which can be solved easily by one-dimensional minimizing
methods:

minL; (x) = a,x, + 2 (4.10)
StoXSXSXy; i

where the coefficients

J
?dij Xj

3

i

depend only upon the dual variables A.. The coefficients
f;, d;; and c;; results from a mixed approximation of the objec-
nvc and thé constraint functions, where the f, represents the
first derivatives of the objective function and the d;; i denote
the first derivatives of the constraint functions with réspect to
the design variables x. (i.e the components of the gradients).
The ¢, j are the first éenvanves of the constraint functions
with respect to the reciprocal variable z; = 1/x;. (The type of
the constraint approximation (direct or rcc1procal) can be de-
cided by the sign of the derivatives for example).

Practical applications of the CONLIN-algorithm for
structural optimisation problems have shown a very efficient
convergence behaviour for sizing as well as for shape design
tasks.

Besides these mathemtical programming methods there
exists another approach to solve the structural optimisation
problem - the optimality criteria procedure [19).

For this formulation the stationary conditions of the La-

grangian function in the optimum (Kuhn-Tucker-conditions,
egs. 4.1).

o - Zh S
Ox be

is written in the form

_ 4.11)
A};eij lj = 1

where ¢.. is the ratio of the first derivatives of the con-
straints and éle objective function. This set of equations can
be solved easily for the unknown Lagrangian multiplies l
with a kind of separability assumption for the active con-
straints, which leads to an estimate of the Lagrangian multd-
pliers:

(] e.. 4.12)

Now an iterative resizing algorithm can be derived by
multiplying both sides of equation (4.11) by x.* and taking
the a-th root:

1/
1 v o
xiv«r - x, [2 . l’j] (4.13)

where a is relaxation parameter and can be seen as a step
size parameter (e.g. a = 2 assures a reasonable rate of con-
vergence). The optimality criteria approach lead with a reltive
small amount of computing effort to a solution, almost re-
gardless of the number of variables. This is in general how-
ever, not an optimal design, especially if there exists not only
one dominant type of constraint in the optimum, but a variety
of different constraint types, which is often the case in mutli-
disciplinary design optimization problems. Therefore it is
necessary to have a very good understanding of the physics of
the problem to decide, if an optimality criteria method can be
used.

5. DISCIPLINE ANALYSIS AND SENSI-
TIVITY ANALYSIS

The task of discipline analysis is to calculate the state
quantities of the structure required to determine the constraint
and objective values defined in the evaluation model. As
mentioned before, most optimization algorithms do not only
require the functional values of the behaviour functions but
also their sensitivities with respect to the design variables.
The calculation of these sensitivities can be carried out ana-
lytically as well as numerically by means of simple differen-
tial quotients. Since in the aircraft design one has often large
scale design problems with sometimes several hundreds of
design variables, it is necessary, for the sake of calculation ef-
fort and economy, to determine the sensitivities by the ana-
lytical differentation of all descriptive equations as far as pos-
sible.

In the following a brief survey of different type of analy-
sis and sensitivity calculations is given.

Structural anglvysis

The structural analysis is based on the finite element
method. This is a well-known reliable and very general way
of modelling both the static and the dynamic behaviour of
structures. It is possible *~ treat homogeneous materials with
isothropic, orthotropic and anisotropic properties as well as
composite materials. (For special types of structures it can
make sense to use other - often very efficient - methods to de-
scribe the response quaniities, e.g. Kirchhoff plate theory for
thin wing structures {20) or transfer matrix procedures for cy-
lindric shell structures [21].

Static problems

For linear elastic structures with static loads, the funda-
mental stiffness equation describes the structural response:

KX -ux) =
with
K (x) stiffness matrix

P (1,%) (5.1)




u (x) displacement vector

p (u,x) load vector

With the displacement vector u (x) and the design vari-
ables x, the stress and the strains in the structure can be calcu-
lated.

Besides these strength quantities, for lightweight aero-
space structures exists the important problem of local and
global instability, than means large deformations of the struc-
ture. Two main concepts for solving the buckling mechanism
are shortly described in the following (Fig. 5.1).
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Fig. 5.1: Concept for stability calculation

One possibility is the formulation of an eigenvalue pro-
belm:

[K(x)+A- l(g (x)] =0 (5.2)
where
Kg (x) is the geometrical stiffness matrix the
lowest eigenvalue, which defines the cri-
tical load by p,. = A - p
and
u (x) the eigenvector, which represents the

buckling shape.

For local instability problems (buckling of bars and
shells) the critical loads and stresses can often be calculated
with special stability equations (e.g. the well-known Euler
equations for bars) [6,7].

In the case of a two-dimensional loading, considering ten-

sion/compression and shear forces with the following formula
the margin of safety can be defined:

ool , t? _ (5.3)
ocf tcl'

The calculation of the critical stresses O, T., can be done by
solving analytically the differential equations of the plate-
theory with special material and geometrical assumptions.

In the case of aeroelastic problems, the load vector p(u,x)
depends on the deformation of the structure. The load vector

HEURISTIC AND EMPYNCAL
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is composed of a part that depends on the solution and one that

is independent of it. Thus equation (5.1) can be wrirten as:
K{x)-u(x) = p,+p ) (5.4)

Assuming linear aerodynamics the load can be expressed
as

P,tPW) = qfg F-A(w,+w,) + m, (5.5)

with

q = _g v?  Dynamic pressure

p Air density

v Air speed

T Transformation of aerodynamic panel
forces into finite element mode forces

F Aerodynamic panel surfaces

A Aerodynamic influence matrix

w, Angle of attack of the panels for the

rigid structure

w Angle of artack of the panels due to elastic
deformations of the structure

m Mass loads

Expressing the elastic part by the finite element node dis-
placements, the aerodynamic forces acting at the nodal points
of the FE-mesh become

pa=qTg FAW, +qTg FAT - Tscu(x) (56)

where the transformation

Tic relates the panel comner displacements with the
equivalent panel angle of attack

and

Tge the panel corner displacements with the finite

element node displacement.

With the abbrevation
C=qTg FAT Tyl

the aeroelastic equilibrium equation can be written in the gen-
eral form

(K-Cu(x) = p, CR))

If the difference (K - C) is regular, that means non-
singular, this equation can be solved. Because of the non-
symmetry of the acrodynamic influence matrix, which is part
of the matrix C, the numerical effort for a direct solution of the
equation (5.7) became very high, already for minor problems.

For that reason an iterative solution procedure was devel-
oped, where an additional relaxation process is introduced to
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improve convergence {10}:
Ku"V=0Cu®+1-0) K + 0 P, (5.8)

The convergence of the iteration strongly depends on the
dominant eigenvalues A, of the corresponding eigenvalue
problem:

(C+(-)K-A (K)yw=h | 5.9
with the eigenvalue transformation
Ao = ho-o+1 (5.10)

where A is either the maximal or the minimal eigenvalue of
the original problem (eq. 5.7)

(C-AK)w (5.11)

which can be computed by a simple v. Mises-Iteration:
ax = Kleax® (5.12)

An approach for the optimal relaxation parameter ® can
than be found by the mean of the minimal and maximal ei-
genvalues from the following simple geometric relation,
which is also indicated in Fig. 5.2:

2
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Fig. 5.2: Dominant Eigenvalues

In most cases K represents the symmetric and banded stiff-
ness matrix of the finite element model of the structure (e.g. a
wing) which can be decomposed by a Cholesky facturization
as follows:

K = L-LT (5.14)

where L is a lower triangular matrix. This fact is very impor-
tant for the efficiency of the method, because one iteraion
step, that means a better approximation of the solution vector
u*h), requires only one forward and one backward substitu-

tion with the right side of equation (5.8) using the vector u
of the proceeding iteration step. Practical applications have
shown a good convergence behaviour of this solution process.
With the optimal value of the relaxation parameter , the dis-
placement vector u(x), due to acrodynamic and mass forces
can be determined. The solution can then be used for the com-
putation of a so-called static acroelastic efficiency of a struc-
ture. These factors describe the influence of the elastic struc-
ture on the aerodynamic forces and moments an are usually
expressed in the form

total load

T 7 Tgdload (5.15)

This ratio is normally less than one and depends on the
dynamic pressure g acting on the structure. From equations
(5.4 and 5.7) the aeroelastic efficiency can be obtained

0 = s” [py + Cu(x)] (5.16)
S'r po

with s as a vector for summing up the forces or moments of
those aerodynamic panels which contributes to the efficiency
(e.g. the panels on a control surface).

By using only unit cases for the angle of attack of the
panels i.g. & . = 1, it is possible to compute all a-dependent
derivatives of the elastic complete aircraft (e.g. Cp,, Cog )
and by the same way th~ derivatives with respect 1o the side-
slip angle B (e.g. Cyg: CTIB"') can be calculated, too.

These method is also applicable to the determination of
the derivatives which depend on the rotational degrees of
freedom of the airplane, i.e. roll velocity p, pitch velocity q
and yaw velocity 1. For these cases the distribution of angle of
attack @ and sideslip 3 depend on the distance of the panels to
the corresponding axis, respectively to the center of gravity
and on the flight velocing v. With that, the angle of attack o,
of a panel i due to pitching for example, can be written as:

o=q%i/v (5.16)

with x; as distance from the pitch axis.

To calculate these clastic derivatives of the complete air-
craft, the decomposition of the stiffness matrix has to be done
(eg. 5.14), which is only possible if the matrix K is positiv de-
finit. That means, that the airplane either has to be supported
or the rigid body degrees of freedom must be eliminated by
special expensive and time consuming transformations [22]. It
can be shown (23], that a statical determined support of the
aircraft (e.g. close by the center of gravity) gives correct re-
sults for total aircraft loads using the unit case method, if trim
conditions are considered. That means, that the total sum of
forces and moments due to aerodynamics and masses, which
act on the airplane, has 10 be zero. These trim conditions can
be written in the following short form [12], [23]).

ZTr=2"H¥+n,2Tn, (5.17)

with




r total sum of external loads
H unit aerodynamic loads
b, mass loads
n load factor
Zg marix, which contains the rim conditions
(= sum of forces and moments)
and
vy the vector of the unknown factors for the

trim parameters (e.g. rudder deflection, an-
gle of attack for a steady two degree of
freedom longitudinal case).

The total elastic deformation u(x) is finally achieved by
multiplying the deformations u,,(x) resulting from the unit
cases with the scaling factors y:

u(x) = u (x) ¥(x) + ng u_ (x) (5.18)

where u, (x) is the deformation due to mass load for load fac-
tor one.

Using the displacements determined by the global static
structural analysis, the strains and stresses can now be calcu-
lated. Especially for fiber compostite structures the safety
against material failure is usually checked by means of vari-
ous failure criterias, e.g. according to Tsai-Wu, Tsi-Hill,
Hoffmann and others [24].

All these in the foregoing sections explained state vari-
ables, which will be generally denoted by the vector r in the
following, depend on design variables with an explicit de-
pendency on the equation parameters and on implicit depend-
ency on the structural deformation n. Therefore the corre-
sponding constraints are formulated as

g=gir(x,u) (5.19)

and the derivatives of the constraint vector g with respect to
the design variables as it is needed for the optimisation algo-
rithm can then be achieved by using the chain rule:

% . Og(or, row
or

Bx Bx Oudx (5.20)

The derivative of the constraint vector g with respect to
the state variables r depends only on the applied discipline
analysis and is determined by the evaluation model. In the
following the solution method is shortly explained for the
state variable acroelastic efficiency 1, where

g=L -1 >0 (5.21)

nmin
Differentation with respect to design variable x; leads to

Sg.1 oM™ 5.22)
Ox; My Ou O,

With equations (5.7,5.15)

m:hT
Su

and (5.23)
b ko' K,
ox; 5x;

and using an auxiliary vector d, which can be calculated by the
same iterative solution procedure as shown in equation (5.8)

ATK-C)l = d (5.29)
the derivative can be calculated finally by
.b_g = -1—— dT -O-—K-u
ox{ Nmin X (5.25)

The derivtive of the stiffness marix K can be calculated
analytically for thickness and fiber orientation as design vari-
ables by using the finite element formulation [25]. For general
geometry variables the sensitivity can be achieved numeri-
cally:

_gl_( _ K(x+exe)-K(x)

—_— T iy 2
ox; €X; (5.26)
with
€ unit vector
€ small real number

The computing effort for the additional stiffness matrices
can be essentially reduced, if only the terms effected by x; are
calculated anew.

Dypamic Problems

The general equation of motion describing time-dependent
system deformations reads as follows:

Mu + D + Ku = p@d (5.2
with

M Mass matrix

D Damping matrix

Time

In the case of undamped eigenvibrations, equation (5.27)
can be transformed into a real eigenvalue problem using a har-

monic approach for the displacements
(l(-ij)yj =0 (5.28)
where

o, is the j-th natural frequency
and Yj the j-th eigenvector
The constraints on natural frequencies usually consist in
imposing lower or upper limits. With the normalized formula-
tion (eq. 3.2, 5.19) the sensitivity of problems with frequency
constraint is given by
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The derivative of the mass matrix M can be calculated in
the same way as described earlier for the stiffness matrix K.

A more advanced type of constraints from dynamics is
given by frequency or fransient response problems. These
may occur when a structure is loaded harmonically or by a
time dependent load and it is required that the displacement,
velocity or acceleration at certain points of the structure must
not exceed prescribed values.

To get the structural response quantities in the time-
domaine the second order differential equation (5.27) has to
be solved. This can be done for example by the method of
Newmark.

The displacement vector of a harmonically loaded struc-
ture (excitation frequency Q) is computed by

(-Q*M +iQD + K) u = p() (5.30)

The solution of these equations (5.27, 5.30) is quite ex-
pensive. To reduce the computational effort, normally a trans-
formation is introduced:

u=Tgq (5.31)

The transformation matrix T isa n x m - Matrix (m
<<n) which reduces the original system drastically. If T con-
tains eigenvectors of the structure (normally the lowest one),
equation (5.31) represents the transformation to modal coor-
dinates. In recent years the transformation to Lanczos coordi-
nates have been proposed in structural dynamics. This
method was shown to be especially promising because it is a
load-depenent transformtion which approximates the influ-
ence of higher modes as well.

Modaltransformation
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Fig. 5.3: Comparison of the acceleration of
a cantilever plate

Fig. 5.3 shows the results for the acceleration of a point of
a cantilever plate in the time domaine. In this example five
and twenty transformation vectors for the modal respectively
the Lanczos transformation are used

It can be seen that only five vectors on the Lanczos case
are necessary to get good results [8]). Formulation of con-
straints on transient and frequency response quantities and the
corresponding sensitivity analysis is quite complicated and
out of scope of this lecture and well described in [8.9].

A special kind of harmonically Joading, however, must be
mentioned in this context. The phenomena of self-exciting vi-
brations of elastic structures in a flow field, which is a dy-
namic stability problem and designated as flutter. Due 1o the
interaction of the aerodynamic forces, the elastic forces and
the inertia forces with the strucwural deformation, there is an
exchange of kinetic energy of the air flow with the elastic and
kinetic energy of the structure

At the boundary between damping and excitation there is
no energy exchange, which means that small disturbances
lead to harmonic vibrations. Depending on the stiffness and
mass distribution of a structure, such a critical case occurs
when certain combinations of flow velocity and Mach number
are given. The corresponding critical flow velocity is called
flutter speed. Since no flutter case can be admitted in the
whole mission range of an aircraft it must be required that the
smallest flutter speed does not fall short of a certain limit
given by the maximal flight speed plus safety increase (15%
safety increase for military aircrafts, 20% for civial aircrafts).
The maximal flight speed can be taken from the so-called
flight envelope, which depicts the mission range of an air-
craft.

According to (2.1) the flutter constraint can be formulated

as
g = VF/ Vinax 1 (5.32)
with Vg flutter speed
Vmax Maximum flight speed

For the determination of the flutter point, that means the
calculation of the critical flow velocity vg, harmonic aerody-
namic forces which depend on the harmonic deflection u of
the structure are introduced:

p(t,0) = C(®,Ma) u ¥ (5.33)

where C contains the complex aerodynamic influence
matrix and the transformation of loads from the aerodynamic
into the finite element mesh similar as described for the static
aeroelastic (eq. 5.6) and the dynamic pressure.

The aerodynamic influence matrix is a fully occupied,
non-symmetric complex matrix depending on the Mach num-
ber and the reduced frequency k. For constant altitudes the
dependency on the Mach Number can be transformed into a
dependency on the airspeed. With (5.27, 5.33) and by neglect-
ing material damping the flutter analysis equation can be writ-
ten as:

K - Cvk) + A%(v.k) M] q(v.k) (5.34)

This equation contains a system reduction according to




(5.31) 1o reduce the numerical effort,with

K = TTKT  Generalized stiffness matrix

M = TTMT  Generalized mass matrix

¢ = 1'CT Generalized aerodynamic load matrix
and

q generalized coordinates, right hand

eigenvector

The complex eigenvalu¢ problem of equation (5.34) can
be solved for example with a QR-algorithm or - if an inital
solution is known - with the very efficient perturbation
method by Wittmeyer [26].

The resulting complex eigenvalues of the flutter equation
depend on the reduced frequency k and the velocity v:
Ag(v,k) = Ag’(v.K) + i Ag " (v.k) (5.35)

where
Ag is the real part or the damping

Ag the imaginary part or the eigenfrequency.

With the notation of (5.35) the definition equation of the
reduced frequency k of the aerodynamic matrix, is given by

o Mg (5.36)
\]
or
Ay vk = L

That means, that valid points for a flutter curve are only
those, where the imaginary part of a solution Ag, i.g. the fre-
quency Ag'', comesponds to the frequency A, of the oscil-
lating airload. This requirement can be formulated by the fol-
lowing intersection condition

A= A" = A = A7(K)] (5.37)

Fig. 5.4: Evaluation of flutter curves
A flutter point, finally, is found for a velocity vg, in
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which the real part of the eigenvalue A;’, vanishes, that means
an undamped, harmonic motion takes places (Fig. 5.4) with
the frequency Ap"".

Using this flutter velocity in the constraint equation (5.32),

the derivative of the flutter constraint with respect to design
vanables, can be achieved.

At first the differentation of the flutter equation (5.34)
leads to the sensitivity of the eigenvalue in the flutter point:

o} 1 TfdK dC 2 M
g . L pTf3K_BC, 52 3M 5.38
5x; 2, P (bxi x, Bx; ) ¢ 6B
with

p left hand eigenvector

and the normalization

PMg = 1

The sensitivity equation of the flutter speed itself is ob-
tained by re-arrangement and differentation of the definition
equation of the reduced frequency:

| 18 g5k (539
Ox. k bxi k2 bxi

With these basic equations (5.38, 5.39), and the additional
condition, that in the flutter point, the real part of the eigen-
value, i.g. the damping vanishes and finally taking into ac-
count the dependency of the acrodynamic influence matrix
from the reduced frequency k and the Mach number Ma, the
derivation of the flutter constraint can be obtained.

It should be mentioned, that the differentiation of the
vansformed matrices K, M and C with respect to the design
variables includes terms, which depend on the derivative of
the transformation matrix T. In the case of a modal transfor-
mation, T contains a number of eigenvectors of the undamped,
homogeneous eigenvalue problem (5.28), which have been
chosen for the system reduction. The calculation of these de-
rivatives requires a high numerical effort and it has to be in-
vestigated if their influences can be neglected. It can be
shown, that if the transformation T contains all possible eigen-
vectors, that means no system reduction is achieved (m = n),
these terms vanishes exactly.

15 Normal Modes 20 Normal Modes
g v, = 426.5 n/s Vv, = 419.6 /s
x, analyt. num. analyt. mm.
1 -6.084-3 | -7.350-3 | -8.117-3 -8.668-3
2 7.971-4 | -6.53¢-4 | -5.751-4 | -2.127-3
3 1,593-4 +2.742-4 -2.117-4 -4.145-4
4 1.457-1 1.677-1 1.602-1 1.637-1
Fig. 5.5: Comparison of analytical/numerical

flutter gradients
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In Fig. 5.5, the results for the derivation of the flutter
constraints for the fin - example described in [27] are de-
picted. The comparison between the numerical and the ana-
lytical flutter gradients shows, that with an increasing number
of modes, the quality of the analytical derivation becomes
much better.

6. THE SOFTWARE SYSTEM MBB-
LAGRANGE

Corresponding to the Three-Columns-Concept described
in section 2, the software system MBB-Lagrange is divided
into the main modules structural and sensitivity analysis, op-
timization modeland optimization algorithms (see Fig. 6.1).
The proram contains design models for cross-sections or
wall-thicknesses of isotropic elements for layer thicknesses
and layer angles of fiber composite materials, and for concen-
trated masses as well.

@ 1 INPUT
oPT r“'
L2
DATABASE
CONTROLFILE

ot

PLOT

\

Fig. 6.1: General program architecture

In order to choose the most suitable optimization algo-
rithm for a specific problem, the following algorithms are
supplied:

i. IBF : Inverse Barrier Function,

2. MOM Method of Multipliers,

3. SLP : Sequential Linear Programming,

4. SRM Stress Ratio Method,

5. RQP1 Recursive Quadratic Programming
(Schittkowski),

6. RQP2 Recursive Quadratic Programming
(Powell),

7. GRG : Generalized Reduced Gradient,

8. CONLIN: Convex Linearization,

9. QPRLT - Quadratic Programming with Reduced

Line Search Technique (SQP-GRG-
Combination)

The structural and sensitivity analysis consists of the pro-
cedures for determining the various state variables and their
gradients, to characterize the static, dynamic, aeroelastic and
stability behaviour.

The input data for the optimisation are divided into a con-

trol part, a part for the description of the FE-model and one
describing the optimization model. The FE-description is
done in form of a NASTRAN-Bulk-Data-Deck. For an aero-
elastic analysis the aerodynamic influence matrices must be
supplied additionally.

The optimisation results are documented by the following
data:

o afile for describing the optimization history,

s plotfiles for the graphic illustration of the optimisation
history,

e re- and warmstart files for continuing an optimisation,

¢ a2 NASTRAN-Bulk-Data-Deck of the optimised struc-
ture,

e an IDEAS-Universal file of initial and final design for the
graphic illustration of the structural parameters, displace-
ments, stresses, strains, values of the safety factor etc.

Besides the IDEAS-interface there is also an interface to
the pre- and post-processing-system PATRAN.

Since many different optimisation routines are available,
a user must either define them "by hand” or he requires a se-
lection made by the system. In this case a rule-based subproc-
ess {28] will send some questions to the terminal and depend-
ing on the answers and the information on the design
available so far, a heuristic proposal is made. A user may ac-
cept the proposed method and parameters or he may choose
another code. The following table shows an example for the
so-called safety factors, which indicates if a strategy will be
more or less successful: 0 means not possible, 100 means it is
the best.

IBF MOM SLP SRM RQP1 RQP2 GRG CONLIN
0 63 64 0 70 70 14 75

If some results are available obtained from a previous run
with the same algorithm, it is possible to perform a warm
start, i.c., continuation of the iteration which was interrupted
before by exceeding the maximum number of iterations. Oth-
erwise a cold start may be activated starting from the last
computed iterate or alternatively, a new optimisation cycle is
initiated starting from the originally given design variables.

MBB-Lagrange possesses a very flexible failure sytem
and it is out of the scope of this report to explain all of its fea-
tures. Severe failures interrupting the optimisation, are written
to a output file and are sent to the terminal. By activating the
failure analysis, a user will see the same failure information
again. Subsequently a rule-based, heuristic proposal of a suit-
able remedy is displayed and the user may accept the pro-
posed action or not.

7. EXAMPLES

The following sample of examples gives a good idea of
the capabilities of MBB-Lagrange.

Airbus AY00/600 Support Beam




Beside the stringers and flanges, the cabin floor influ-
ences the mechanical behaviour of the fuselage of a passenger
or cargo aircraft. Important parts of the cabin floor are a large
number of support beams. The beams are connected to the fu-
selage at both ends and are supported by struts.

The support beam presented here has a shape of an U-
profile. Because of the symmetry only half of the structure is
considered for the FE-model, which gives a total size of 1068
elements, 6409 degrees of freedom and one load case (Fig.
7.1).

Fig. 7.1: A300/600 Support Beam
(Finite Element Model)

The beam is manufactured by milling, which allows a
very fine discretisation of the wall thickness. For that reason
221 design variables could be defined. The stress require-
ments are assured by von Mises constraints on each element.

Additional special empirical functions for compression
(crippling allowables), according to the german aircraft indus-
try’s design manual, are defined for the flanges and stiffening
holes, to include stability constraints.

The optimisation is carried out by the SLP-algorithm in 5
to 13 iteration steps and the weight is reduced by about 30
percent depending on the loading condition.

Frame of a Combat Aircraft Fuselage

This frame is located in the inlet for the engine of a com-
bat aircraft. It is a typical example for a sizing problem of a
light weight structure made of an aluminium alloy. For the
formulation of the optimisation problem it is important to
know that a milling machine will be used to realize a variable
thickness distribution. So large number of design variables
can be defined in order to calculate the optimal thickness of
the frame.

The finite element model is shown in Fig. 7.2. It involves
975 degrees of freedom, 930 elements and 97 load cases.

Fig. 7.2: Finite Element Model of Frame
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The objective function is the weight. The constraints en-
sure static requirements. For each element the feasibility of the
stresses have to be ensured. Stability constraints are taken into
account to prevent buckling and lateral instability of webs.
Since these constraints have to be satisfied for cach single load
case we get a very large number of inequality constraints (m8
= 92829). Together with the thickness design variables (n =
187) it is a really large scale optimisation problem.

The initial design has infeasible buckling loads and
stresses. The optimisation algorithm SLP needs 20 iterations to
achieve convergence. Fig. 7.3 shows the optimisatoin history
of the buckling constraints, where respectively the most criti-
cal constraint of the corresponding iteration is taken. The opti-
mal design fulfills all static requirements of all 97 load cases
and achieves a weight reduction of about 25 percent.
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Fig. 7.3: History of most critical buckling

constraint
Horizontal Stabili {2 Heli M

The structure consists of an airfoil section like an airplane
wing and endplates which act as vertical stabilizers. The upper
and lower panels of the airfoil section are sandwich plates with
a honeycomb core and aramid fiber face sheets. The spar is an
I-shaped bar with sraps made from unidirectional carbon fiber
reinforced material and a shear web which is a honeycomb
sandwich with CFRP face sheets.

Fig. 7.4: Design variables of the spar
and the endplate
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The endplates are sandwich plates of constant thickness con-
sisting of aramid fiber reinforced face sheets and a honey-
comb core. They are fixed to the airfoil section by screws.

Fig. 7.4 shows the design variables of the span and the
endplate.

Three load cases define the loading of the stabilizer. The
structure shall withstand these loadings with a factor of safety
larger than 1.5. Sandwich wrinkling has to be considered as
well as a composite failure criterion such as that from Tsai-
Wu. Additionally to these constraints, a lower bound for the
first eigenfrequency is given. The results are shown in Fig.
7.5.

G

]

3

0 12
Required First Exgendreguency [Hz}

Fig. 7.5: Minimum weight of the horizontal
stabilizer versus the first
eigenfrequency

The original design with spar has a structural weight of
10.6 kg (one half of the airfoil section plus one endplate) and
a first eigenfrequency of 14 Hz. Considering only strength re-
strictions, the weight can be reduced by nearly 3 kg, but in
this case the first eigenfrequency drops significantly. If the
first eigenfrequency is held constant, then a weight reduction
of about 2 kg is possible.

From Fig. 7.4 it can be clearly seen that the design with a
spar is far better than a design without a special spar. Con-
cerning the thickness of the airfoil section it can be stated that
for low stiffness (e.g. a low first eigenfrequency) there is
nearly no difference in the weight between a thin (12%) and a
thicker (15%) profile. Only if a high stiffness is required (a
high first eigenfrequency) a thicker acrodynamic profile is
useful.

Composite Fin

Fig. 7.6 shows the structural model of the well known
MBB-Fin. The cover skins of the fin are made of carbon fiber
laminate with four different fiber orientations in the stabilizer
and three in the rudder. The inner supporting structure is real-
ized by an aluminium honeycomb core. The fin is supported
at the connection points to the fuselage and the stiffness of
the fuselage is modeled with a general stiffness clement. As
static load cases the aerodynamic forces of five different
flight conditions (different sideslips and rudder deflections;
subsonic and supersonic) are chosen.

copnection points to the fuselage

Fig. 7.6: Structural model of the fin

For this concept study 1862 constraints were defined:
e  Stress limitation (isotropic elements 119/load case)
* Limitation of failure safety (FRC. 252/load case)

e Acroclastic efficiencies - Fin (0.8)
(Ma = 1.8 (750 kis) - Rudder (0.5)
e  Flutter speed - 530 m/s

The problem consists of 102 sizing-design variables (one
independent design variable for every layer in every element).

The sizing optimum results in a weight of 42.3 kg (=
100%) for the variable skin weight.

By introducing the layer angles as additional design vari-
ables it is possible to define a lot of other optimisation mod-
els.

A model with sizing plus 7 layer angle variables (one de-
sign variable is assigned to each layer of the stabilizer and of
the rudder) leads to an optimal weight of 34.6 kg. An optimal
weiht of 25.3 kg is achieved for an optimisation model with
additional 84 layer angle variables, Fig. 7.7 (one design vari-
able for every angle in each element and a linking of the first
and the third layer). This weight is the theoretical lower limit
and it will be not manufacturable but it shows the high poten-
tial on weight saving possibilities including fibre orientation
as design variables. But it is also obvious, that manufacturing
requirements has to be considered.
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Fig. 7.7: Optimal thickness distribution for
the design model with 84 layer angie
variables
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For this reason a development was initated which in-
cludes these manufacturing informations as additional con-
straints into the optimisation model. By this it will be possible
in the near future, to have the optimisation as the "driving
part” in the complete composite design process.

I { Fin Desi

This example, using the same structural and acrodynamic
model, is an approach to an integrated design analysis with
not only structural sizing variables t but also three additional
aerodynamic design variables:

® taperratio A
® aspectratio A
e surfacec arca §

The interesting response quantity of this study is the unit
side load p as basic flight mechanic design requirement for a
vertical fin. It depends on the acrodynamic derivative C;, on
the surface area S and the acroclastic efficiency . The state
variable equations for this multidiscipline problem can be for-

mulated in a generalised form as:
P = M S (Flight mechanics)
CB = f, A A) (Aerodynamic)

n = fs (A, A, S, t) (Structure/Aeroelastics)

The internal coupling of the system is given by the first
equation. The system sensitivity equations can be formulated,
using the method proposed by [13]. The partial derivatives of
the state variables, which will be provided by the individual
disciplines are on the right hand side of the system sensitivity
equations.

- - - - - -
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Fig. 7.8 System sensitivity equations

The derivatives with respect o the acrodynamic design
variables are done by using the finite difference method with
a 10% perturbation magnitude (Fig. 7.9).

Fig. 7.9: Aerodynamic shape differencies
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The results of this design study are shown in Fig. 7.9).
The state variable p is plouted for all finite difference sensitivi-
ties of the design variable A, A, S and for the optimised ele-
ment thicknesses, with an aeroelastic efficiency fin require-
ment of 80 percent. (The stress and strain constraints coming
from fiv: static load cases are in the optimal design aiso ful-
filled.) The best integrated design solution is got with a 10 per-
cent reduction of aspect ratio. In this case the lateral unit load
will be slightly increased and the weight is reduced by 7.5 per-

cent.
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Fig. 7.10 Summary of partial sensitivities

8. CONCLUSION

This paper presents a way of solving design tasks in the
aircraft development process using structural optimisation
methods. As design criteria, requirements on the static, dy-
namic and acroelastic behaviour of aircrafts are considered.
The analysis procedures for the various state variables describ-
ing this behaviour are based on the Finite-Element-Method.
The application of this program demonstrates that the design
process can be supported very efficiently by the structural op-
timisation method. Another important advantage is the fact
that the structural optimisation enables to achieve technically
optimal design.

In order to optimise real-life structures many important
procedures and methods are combined in the optimisation sys-
tem MBB-Lagrange. Many further developments, however,
must follow. Since an optimal design has to fulfill all demands
on the structure simultaneously, suitable completions and ex-
tensions of the structural and sensitivity methods as well as the
optimisation models (local and global stability, heat transfer,
acoustics, thermal stresses, flight mechanics, and control,
manufacturing) are furthermore required.

For fiber composite materials in particular the characteris-
tic possibilities and requiremnents of manufacturing must be in-
cluded in the optimisation process in order to guarantee that
optimal designs can be produced efficiently by fully utilising
the design potential.
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STRUCTURAL OPTIMIZATION OF AIRCRAFT

C. CORNUAULT - C. PETIAU

DASSAULT-AVIATION, 78 Quai Marcel Dassault, 92214 SAINT-CLOUD

ABSTRACT

A general survey of Dassault experience and
knowledge on Aircraft Design with Optimization
Methods is depicted.

This  survey results from compiling the
developments and the results already worked out
and already presented in several papers by
C. PETIAU and Al.

Part 1 gives a detailed description of the
methodology. The specfal features of optimization
with  composite materials are shown. The
organization of design resulting from use of
optimization techniques is described and
techniques neighbouring optimization as model
adjustment are reviewed, as well as further
developments.

Part II {1lustrates this methodology by an actual
case study of an atrcraft design by
Dassauit-Aviation with relevant examples of
structural and aercelastic optimization on carbon
structures of a wing and a fin.

PART I - METHODOLOGY OF STRUCTURAL OPTIMIZATION
1 - INTRODUCTION

The structural optimization technique has been
a routine process at Dassault since the late
1970s. It has been applied for all projects from
the Mirage 2000 to the Rafale.

In the past, the design of a structure was
achieved by the -fully stressed design” process
(FSD), which consists of iterations of drawing and
analyses, with reinforcement where the structure
is not sufficiently strong and lightening where
there are strength margins. However, where the
only constraints on a metallic structure are those
relating to strength of material, it has been
demonstrated (see Ref. 1) that this approach is
neither optimal (maximization of stresses is not
equivalent to weight minimization) nor efficient
for the design process. In practise, the designer
is completely unable to predict intuitively any
solution when constraints relating to flexibility
(such as eigenfrequencies, aerodistorsion and
flutter) or to the ply arrangement of composite
materials are involved.

Therefore we consider today that the use of
mathematical optimization {s compulsory for the
design of aircraft.

We have built the structural optimization too)
around the Dassault softwares CATIA and ELFINI
which include.

(1) the well-known CAD tool CATIA, which gives us
geometry and mesh generation,

(2) static finite element analysis for linear and
nonlinear problems,

(3) static aeroelasticity, calculation and
management of loads,

(4) 1inear dynamics : calculation of eigenmodes,
harmonic and transient responses,

(5) nonlinear dynamics : impact and crash
analysis, landing gear and aircraft
interaction,

(6) unsteady aeroelasticity, flutter, coupling
with flight control system,

(7) fatigue and crack propagation analyses,

(8) heat transfer and thermo-elastic coupling,

(9) acoustic and elastoacoustic coupling.

The optimization monitor covers most of these
branches.

The system works on request, in either an
interactive or a batch mode, and uses a common
data base managed automatically. Some of the main
common characteristics of the branches are :

- topological dialogue for mesh and all data
generation. A1l properties as connectors between
nodes and elements (geometry connection with
CATIA surface element characteristics, etc.) are
described by blocks of constant properties in a
space of indices referring to node and element.
The process leads to very clean meshes for all
types of structure from the whole aircraft
meshes to tridimensional analyses of fitting
details,

- a wide range of possibilities for visualization
of inputs and outputs, many of “wire frame~ and
“pixel” types of pictures for displacement
stresses, failure criteria and for optimization
design varfables, active constraints and safety
margin plots,

- advanced mathematical solution : the solution of
linear problems is run by a very powerful
varfant of the Frontal Gauss method, which
minimizes the computer time for classical 1inear
problems.

For large three-dimensional problems
the use of the conjugate gradient technique
enables the same level of performance to be
maintained, taking into account the contact
nonltinearities.

For geometric nonlinear problems (membrane
effects, post-buckling, snap through, etc.) an
original algorithm called “preconditioned BFGS
with exact line search™ has been developed. This
algorithm benefits directly from the biquadratic
character of total potentfal. It can handle the
most severe snap-through conditions
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which shows calculation of post-buckling of a
curved stiffened panel in carbon epoxy material).

We must underline the strong practical
interest of the post-buckling analysis, which
enables the design of thin composite skin, which
buckles before ultimate loading.

We are going to present a more detailed view
of :

- the optimization technique which is mainly used
to set the general dimensions of the structure.
[t is supported by FE models of the whole
aircraft, which are elaborated only from the
rough definition of external shape and internal
architecture, the result of this optimization
being the starting point of detail drawing,

- the checking analysis which comes with detail
drawings,

- the organization of drawing and analysis which
are a necessity of composite design, and are
present possibilities of computer tools.

2 - THE OPTIMIZATION METHOD

We present the operational tool as it was used
for the design of the Rafale, the organization is
iterative, and the flow-chart is shown in Fig. 1 :

2.1 - Cost function

The current goal in optimization is weight
minimization. Nevertheless, in some ra-es, weight
can be taken as a constraint, tr o~ jective being
maximization of the safety margin see table 1).

2.2 - Design variables

The characterization of the optimisation
design variables i- made on groups of finite
elements (FE) . The choice of these
variables partly takes into account manufacturing
constraints a3 tooling vrules for metallic
material.

For a composite material, the design variables
are the rumber of plies in each direction for each
group.

The number of design variables often reaches
500, which can act simultaneously over several
analysis models.

7.3 - Constraints

Constraints  inequalities come from the
different analysis branches of ELFINI. We can
consider simultaneously :

Al

~

various failure criteria (including composite

materials), computed from static stresses for

all the dimensioning cases of loads,

(2) local buckling criteria,

(3) limited displacements,

(4) aeroelastic variation of aerodynamic
derivatives,

(5) dynamic natural frequencies,

(6) flutter speed and aercelastic dynamic damping,

(7) various technological constraints (such as

minimum values of design variables, and

Timitations of the thickness variation between

adjacent design variables).

The constraints considered during the same
optimization can come from several analysis models
(e.g. symmetric and antisymmetric FE aircraft
model, local buckling analysis by the
Rayleigh-Ritz method, ‘local refined FE analysis,
different external store configurations for
dynamics and flutter, variation of shape because
of control surface deflections, etc.).

2.4 - Sensitivities

We define ~sensitivities” as the derivatives
of constraints in the function of design
variables. The principle of ELFINI optimization is
to compute these derivatives by a correct
mathematical process. It can easily be
demonstrated (see Table 2 and Refs 1 and 2) that
the computation of derivatives of static stresses,
displacements, and aeroelastic coefficients is
equivalent to solutions with a ~“dummy~ case of
loads.

The number of loads in this dummy case is :

(a) number of loading cases x number of design
variables if formula (1) of Table 1 is used :
(b) number of constraints if formula (2) is used.

For practical problems the number of loads in
the dummy case currently reaches several
thousands, and their solution makes up the main
part of the computer cost of optimization.

For nonlinear constraints relative to the
static displacements (equivalent stresses, failure
criteria...). The operator [JT/JX]is linearized
near X.

When constraints are eigenvalue or are direc-
tly related to eigenvalue (E.g. eigenfrequency,
linear buckling load, divergence or flutter speed,
aeroelasticity damping) the cost of their deri-
vation is negligible (see Tables 3,4,5,6 and 7).
However, we must underline that these derivations
need a far more accurate calculation of eigen-
vector than those needed for eigenvalue analysis.
Also, we have found that it is very difficult to
compute with reasonable accuracy derivations of
solution of problems treated with the classical
modal basis reduction (e.g. dynamic response,
aeroelasticity), in practise it would be necessary
to compute the correct mathematical derivative of
the basic vectors. This is mainly why we have
developed a static aeroelasticity approach without
the basic truncation effect (see Ref. 1), as it
leads to a mathematically exact and low-cost
calculation of derivatives.

2.5 - Mathematical optimization

Starting of the analysis and derivation of
constraints, we use an explicit nonlinear approxi-
mation of the constraints in terms of the design
variables, mainly the formulation 1in 1Jnverse
variables. Taking as new variables the inverses of
design varfables, leads to minimization of
homographic function (weight) subject to 1linear
inequalities. This problem is easily solved by a

projected conjugate gradient algorithm(see TABLE 8 )




Sub-iteration process

The right results and the good convergence of
our algorithm in static optimization are mainly
due to the explicit approximation of constraints
in 1/21.

But for other types of constraints as natural
frequencies, flutter, speed, dynamic responses,
this explicit form in 1/Aj has no theoretical
basis and on some cases we could have a bad
convergence.

Since the cost of the calculation of these
dynamic constraints 1is raised relatively low
compared to the analysis cost, it’s interesting to
carry out a sub-iteration process in order to
improve convergence.

The convergence of the sub-iteration process
in ensured by move 1limits and a relaxation on
admissible value of the constraints making
possible the detection of unfeasible approximate
praoblems.

The cost of the mathematical optimization step
is low. The mathematical optimization step gives a
prediction of the optimum, from which we start new
iterations. The number of iterations needed to
obtain global convergence ranges from three to
five . The cost of all of the
iterations of optimization ranges from about eight
to 15 times the cost of the analysis.

2.6 - Final touches

Generally, the theoretical optimum obtained
from the optimization algorithm needs some
modification, as it often does not represent a
realistic design. Starting from the table of
constraint derivatives, the final touches consist
in examining interactively the effect of small
modifications, made directly by the designer
during the drawing. The program instantaneously
shows the new safety margin and any violated
constraints .

We can also  interactively rerun the
mathematical optimization step after changing the
assigned values of constraints.

3 - SPECIAL  FEATURES OF
COMPOSITE MATERIAL

OPTIMIZATION  WITH

The organization described above 1s well
suited for a composite material, with the addition
of the following specifities.

3.1 - Failure criteria analysis and derivation

Inside the optimization Toop we use fatlure
criteria of the ~Tsai-Hill1~ family :

O
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where Ox.0,  and r}y are stress tensor

components,and Oyag. Oyads Txyag aNd S1 = 0 or 1 are
criteria parameters.

The arguments of the criterfa are adapted to
each situation (e.g. tension, compression,
bending, holed panel, etc.), by calibration with
more sophisticated criteria and test results.
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Because, at a given point, the final failure
mode is not known beforehand, it is necessary to
handle constraints on all potential failure modes
simyltaneously. This is achieved at a relatively
low cost if the derivation 1is performed in two
steps :

(1) the strain tensor and 1ts derivative are
computed by formula (1) of Table 2 (three
components common to all plies with membrane
assumption),

(2) starting from the strain tensor and Hooke's
law for the material, the failure criteria and
their derivatives are calculated ply by ply.

3.2 - Local buckiing criteria

Even if optimization can
buckling directly, for management and cost-
effectiveness it 1s generally preferable to
calculate and derive local buckling criteria with
the following post-processing analysis :

handle global

(1) using the general FE model, stress flows of
structural meshes are calculated and derived,

(2) local buckling 1load factors and their
derivatives are calculated by a Rayleigh-Ritz
method (see Table 4).

Sizes of meshes for local buckling analyses
are independent of their representation in the
global FE model, and they can be tuned to suit the
actual stiffening.

In the optimization loop, stacking sequences
are not taken into account (it is assumed that the
material is homogenecus through the panel
thickness), for the sake of algorithm simpiicity,
and because of difficulties in expressing the
drawing constraints due to restrictions of cutting
and stacking the fiber layers.

The order of buckling modes can change between
iterations, this can cause a non-convergence of
iterations if all potential buckling modes are not
controlled simultaneously (see Ref. 2).

3.3 - Design constraints

These constraints express the fact that the
results of optimization must correspond to a real
drawing of a composite panel, which must be made
of stacked layers with special ryles for easy
manufacture. Design constraints are handled at two
levels :

(1) inside the optimization 1loop, by placing
constraints on the minimum number or a given
minimum proportion of plies in each direction,
or on a maximum slope of thickness (these
constraints correspond to linear inequalities
in design variables),

(2) after mathematical convergence, automatic
rounding of thicknesses is used to obtain a
whole number of plies, and a special
half-interactive program transforms the
stacking of plies by area, which are the rough
output of optimization, into a proper lay-up.
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4 - MULTIMODEL OPTIMIZATION

Optimization has to provide the single
physfcal characteristics of a structure and must
take all the sizing considerations into account.
So many F.E. models (or other type) are necessary,
depending on the studied phenomena. So
optimization must insure :

- jdentification between design variables defined
on several models,

- data transfers between models (characteristics,
boundary conditions, loads...),

- management of calculation and derivation of
constraints defined on several models, :

- the 1linking of all the design variables and
constraints (values and derivatives) in the
single explicit optimization step giving the
optimum.

The organization (see TABLE 9 ) of the models
has needed some software investment and is able to
manage several FE meshes with several boundary
conditions, mass configurations (modal and flutter
analysis), Mach number (aeroelasticity and flutter
analysis). Other models are used for panel
buckling analysis.

5 - CHECKING ANALYSIS

It must be understood that, if an optimization
tool 1is essential to achieve a good general
drawing rationally, the result must be justified
in detail, using more complex analyses than those
which can be handled inside the optimization loop.
The most typical of these checking analyses are
the following :

(1) effect of local loads (e.g. fuel tank
pressures, vibration, thermal load, etc.),

(2) local fatigue analysis.

(3) damage tolerance analysis,

(4) detalled local analysis of holed composite
panel (e.g. point stress analysis),

(5) post-buckling analysis (see Refs 3 and 4).

~

Design constraints corresponding to these
detail-checking analyses have been simplified to
be handled by general optimization. These
simplified assumptions must be validated by local
checking analysis.

Effects of calibration of these constraints
can be examined with a Lagrange multiplier of
active constraints (handled interactively by
“final touches” modules) or by re-running the
mathematical optimization step.

6 - ORGANIZATION OF DESIGN PROCESS

We now have the following organization for the
design of composite structures, from the
preliminary project to the delivery of
manufacturing drawings :

(1) start from a CATIA drawing of the external
shape only and a brief definition of the
internal architecture,

(2) elaboration, by CATIA-MESH, of a first simple

general FE mesh of the whole aircraft

(10-30000 dof) with approximate cross-sections

and thicknesses (see Fig. 1). The model is

adjusted with simple cases of load,

analysis of static aeroelasticity and loads,

which give the envelope cases of loads and

show the latent problems of aeroelasticity,

(3
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(4) examination of internal load fields and
stresses for seélection of “strength of
material” constraints in the optimization.

(5) computation of dynamic modes with the various
external store  configurations : flutter
problem recognition,

(6) first run of optimization,

(7) drawings of the structure supported by :

(a) an interactive test of authoritative
modifications of optimization results to
make drawing easter, together with use of
the “final touches” module :

(b) changes and additions of constraints,

(c) critical examination of “cost of require-
ments~, directly obtained from <“Lagrange
multipliers~ of optimization. This allows
appreciation of the real influence of the
safety margin of uncertain criteria
(composite materials),

(d) Detail-checking analyses supported by
methods described above 1in Section 5.
These are performed taking proper boundary
conditions in the FE model for the whole
aircraft via a super-element technique.
Detail-checking analyses must validate the
simplified criteria used for mathematical
optimization, otherwise, optimization must
be re-run with calibrated criteria.

~—

Although a single optimization run lasts only
one night, the optimization job can remain inside
the computer for more than 6 months, for examina-
tion of the detail analysis effects, the influence
of the choice of constraints and alternative
designs.

7 - TECHNIQUES NEIGHBOURING OPTIMIZATION, IDENTI-
FICATION AND COMPUTATION WITH UNCERTAIN DATA

The solution of these problems can be
considered because of the possibilities of
derivative elaboration.

7.1 Model adjustment

Generally, this involves adjustment of the FE
dynamic model to measured natural modes, the
unknowns are design variables of local thickness
and mass, modal deformation and frequencies. The
modal equation appears as an equality constraint,
and the objective is to minimize the -distance~
between the measured and the computed modes. The
method does not require knowledge of the
connection between computed and measured modes,
some results of this technique applied to the
Mirage I11 NG are shown in Fig. 2.

For general cases of model adjustment, we use
a simpler technique. The objective function is to
minimize the -“distance” between a design variable
and its theoretical value, we take as constraints
the fact that the computations must give measure-
ments with a given approximation (which can be
objectively estimated from the accuracy of measu-
rements).

The advantage of this technique over the
classical mean-square method i{s that under-
determinatfon {s not possible, if a design
variable, or a combination of design variables, is
not “observable~ by measurement the process gives
the theoretical values automatically. In Ref. 5 a
good example of this process for flight identi-
fication of aerodynamic loads was given.




7.2 - Computation with uncertain data

Sometimes, at the start of a problem, the data
are i{mprecisely known, the idea of computation
with uncertain data is to find the -~worst” point
in the uncertain design variable space. The
problem is solved by two approaches :

(1) find the ~worst~ possible point by minimiza-
tfon of a safety margin function inside the
authorized space of design variable
variations, and

(2) if there exists a possibility of failure,
compute the probability of failure, starting
from the probability density of the design
variables.

We have now started to apply these ideas on
flutter and vibro-ac stic analysis of preliminary
projects.

8 - FURTHER LEVELS OF OPTIMIZATION

The general tendency is to introduce progres-
sively all the "arguments” of structural design in
the optimization 1loop. The next steps of
development are as follows.

8.1 - Optimization with "bending” design variables

This does not give rise to any theoretical
difficulties, the relative complication comes from
the nonlinear dependence of stiffness, neutral
surface and constraints on design variables, which
complicates program writing.

8.2 - Optimization with post-buckling analysis

This is one of the most important needs of the
present operational optimization. The difficulty
is avoided, generally by an empirical adjustment
of the load level of linear buckling, and the
results of  optimization are checked by
post-buckling analysis.

The correct solution 1is not much more
intricate than that of the bending case, it can
easily be demonstrated that the derivation cost is
almost that of the linear problem (“dummy- cases
of load at the final equilibrium state) (see
table10).

8.3 - Shape optimization

This 1s needed in many pratical problems of
varying difficulty (shape of stiffeners, pressu-
rised vessels, fitting, etc.). The main difficulty
is to express design variables and -topological”
constraints. For such problems, many workers and
ourselves have elaborated specimen programs for
scholastic cases, but for a really operational
tool, 1t is necessary to f{ntroduce geometrical
design variables and the assoctated ~topological”
constrafnts at the level of a CAD system, which
requires considerable investment.

8.4 - Optimization in heat transfer problems

One of the necessities of the Hermes project
has been to achieve the same level of sophisti-
cation for thermal analysis as for structural
analysis, we have met the need for a thermal
optimization tool. The general arrangement of
thermal optimization {s the same as in structural
optimization. The complicatfons are in the
transient and highly non-linear character of
thermal problems.
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Fortunately, it can be demonstrated that
temperature derivation needs the solution of the
same differential linear equation system for all
design variables, and, as it ¥s integrated at the
same .time as the analysis, it does not need
additional factorization. The cost of derivatives
is therefore relatively lower than that of
solution of the static elasticity ; “oblem.

We have developed a Joint heat transfer
identification process with computation with
uncertain data, which is needed particularly
because of the random or badly known character of
many data.

8.5 - Myltidisciplinary interactions

For a combat aircraft, the idea should be to
optimize simultaneously the structure, dimensions
of control surfaces, actuators and hydraulic
power, the parameters of the electrical flight
control system, and the aerodynamic shape.

This state of grace has not yet been reached,
the tendency is to apply optimization to each
discipline and to proceed in relation to the other
matters by a “fixed point method” or by simpli-
fication of the interactions. Thus, starting from
Lagrange multipliers obtained from the optimi-
zation of each discipline, it is possible to
“condense” their interactions, for instance, as
far as structure is concerned, we can easily give
the weight cost of requirements of other disci-
plines (exchange rate between structure weight and
roll speed, profile relative thickness, etc.).

9 - CONCLUSION

The tendency to include increasingly detailed
analyses in the mathematical optimization loop is
hindered by the difficulties of the task. The tool
described ahove vrepresents achievement of the
first level of structural optimization, where
geometry is given and mass and stiffness matrices
are linear functions of design variables. signi-
ficant progress is not easy. It corresponds to
including in the optimization.

(1) “bending~ design variables,

(2) nonlinear and post-buckling analysis, rules of
effective width,

(3) stacking order of plies and constraints due to
cutting of layers of composite material,

(4) shape optimization, which is also implicitly
necessary in the above functionalities.

Apart from their theoretical difficulty, these
developments need a higher level of integration of
FE optimization with CAD, 1in particular, the
architecture of the CAD system must support the
description of design varifables and of drawing
constraints.

Another promising field of research is to use
expert systems to pilot the design, this seems to
be one way to manage optimization with
discontinuous evolution of design variables. At
present, we have started the development of this
technique at the level of size check of carbon
fiber panels. It rests on a knowledge base
composed of rules, relating to technological
constraints and calculation methods.
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TABLE 1
MAXIMIZATION OF MARGINS

Minimization of the weight is not the only aim
of the optimization of structures. Indeed in
projects, by example, a global mass is allocated
to a part of a structure (fuselage, wing, fin...)
and it°'s interesting to design the safest
structure for a limited mass.

We have to maximize the margin for a limited
mass
$-9 _8 4
G dj
with Gj  value of the j constraint
G_J admissible value

Margin :

The algorithm has to minimize the /.Lj = QJ.

with a constraint on the mass : zmi )jénovj

To minimize the Mj we define u = Max (Hj)
and the problem has the following form :J

Min /u_

GJSFEJ for constraints concerned by the margin
dkg Gk for other constraints
Mass constraint
In reciprocal variables o¢j = 1/1‘, we have :

rMim’m1ze M
Goj + 2 i (oi- =<io) < p G
! dox |
Gok + 2 0k (i - ejo) g U
I dexi
3 a8l ¢,
1
0 < <1
{ M
This optimization problem, with a linear
objective function and nonlinear constraints

(mainly mass constraint) is solved by a sequence
of linear programming using moove limits.

TABLE 2

Derivation of FE Static Solution

Finite element analysis
Displacement computation:

X = [K]"'F
Strength. stress computation:
do
o= [GX]X

Optimization constraint derivation
Displacement derivation:

AX = —|K|"'JAK)X - AF]

Strength. stress derivation:

Ao

%7 -
- [%2]wiaxix - ary ()

aV¥ed

]

—[IKr' [g—;;]] IAK]X - AF) (2)

(1) number of resolutions = number of load cases
(2) number of resolutions = number of constraint operators

TABLE 3

Derivation of Eigenvalues

Analysis:
eigenmodes: V,
eigenvalues: w,
[[KI - 02{M))V, = 0
Sensivity analysis of eigenvalues:
AfVI[IK) -} IM)IV] = 0
K] - @ IMNIAV, + VIHAK] - o [AM]] + Aw? VI[M]|V, =0

VIIAK] - w?|AM|}V,

Aw = T VIMIY,
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TABLE 4
Local Buckling Anatysis by Rayleigh-Ritz Method

Rayleigh-Ritz model

¢10
External load fluxes: 0 =100 [= poy
0:]0
Normal deflection:
agy
w = Za,,x'x Lix.y) Vo=
al‘“\
Buckling factors
Buckling initiation: W, = W,
W, = bending elastic energy
W, = membrane work of external loads (W, = pl};)
W, = pU,
mlnp = WI/U1<==>6W|/0V"06U1/6V =
[K-poGlV =0

Derivation of buckling factors

- VIK(A‘V
P = PGy
dp _ _V'-9K/A-V V- 8G/3¢-00/0A-V
A Ve G) v Ve-Gle)- v

TABLE 5

- Derivatives of extrema in transient response

Mechanical equation in F.E. basis :
?m] X +[K)x =F{(t) @

is solved in the reduced basis X=[v] x
by integration of [m] T + [k] x=f(t)
with [m] = vy [M]V (k] =V [K]V PO =V F )

The dynamic stress q can be written :

= [DG/OX)x =3/ [V] x =[30/d3x]) x
Derivation of equation 6 gives
(] ax +(K] ax =-[aM] X - [ak]x
which is similar to equation except the

excitation. If this dummy excifation can be
expressed in the reduced basis, we obtain :

[mlax +{klax=-[am]x -[ak]x
[am] =ve{am)v [ak] = vy [aK] v
On the extremum

A Q(t) = [30/0x] axy

d O x,t).[AG/M]dMDﬂM dt

TABLE 6

STATIC AEROELASTIC COEFFICIENTS
ANALYSIS AND DERIVATIVES

1 - Basic equations of static aeroelasticity with
finite elements

Discrete pressure field

= [ JKp/ darl qr + [ IKp/ Jgs) qs

9. = rigid  aerodynamic  effect (incidence,
control surface setting, etc.)
q; = deformation of 1ifting surface expressed in

a monomial base.
- Flight equation
F C.D.G. =3 PVE ([Cr] gqr + [C5] g%

[Cr], [Cs] torseur resulting from [JKp/dgqrl,
[ JKp/ dgs] (aerodynamic coefficients).

Loads on F.E.
1 0V [R]Kp

[JF/dqr]
[JdF/ dasl

(R] [ JKp/ dqr]

F [RY [ dKp/ Jaqsl

"

- F.E. deformed

: (3% 3qr] = [K1-] [3F/ dgr]
X =(K)-'F [dX%/ dgs] = [K}-" [JF/Jgsl
- Smoothed transition F.E. qs = [L]X

[ATT
gs = 3 V¢ ([Allgr + [AZ2]gs) [A2]
F.E. = finite elements

~ Flexible effect elimination

-1
as =3 OV [yl [;u (037" a1y,
® fDJ [1"- § pvia2])

- Flexible aerodynamic coefficients
® [c] = [Cr]l + 3 P V2 [Cs] [yl

2 - Derivative relative to structural parameters

Differentiation of 1 knowing that
3 L SN (S YO B

Ags = - 3 PV ILY 127 1AKY (1 DX/ D qr) gr
+ [ X%/ dqsl ags) + % PV [A2] Ags

By eliminating 9 from 2

Ags = - 3 pve (037" (L1 (k)7 (KD <L D X/ Dgr]
+ [ X/ Jdgs) (p)) gr = [Ap] qr

=} PV ICsT (4]

(ac) - 3 AV [cs1 017" (L1 (k17! E"AK]
[CX7 3ar] + [ X/ dqs] Lyl

Differentiation of 3 [AC]

Preferable in the form

(41 = 4 PV K37V (resd 017 (LA K)
[ OX/ dqr] + [ IX/ dgs] [pl]

which means solving the equilibrium equation for a
single load for each aerodynamic coefficient at a
given Mach and dynamic pressure

(ACY = & PV [Cs) [017) (0kI™) [L1g)y [-8K)
[ XX/ dgr) « L %X/ das) [

with q_ solutions for all Mach numbers and dynamic
pressufies.




TABLE 7
DERIVATION OF FLUTTER SPEED (J.P. BREVAN'S METHOD)

1 - Analysis

- We attempt to solve the flutter equation at a
given Mach number

(KA —w? (14ig)? M (X)) - PV A (5Pl g =0

[K) = reduced stiffness matrix

[M] = reduced mass matrix

w = frequency of the solution

g = damping (g = 0 => flutter)
V = velocity

[A]l = matrix of aerodynamic forces
P = left solution

q = right solution

- In the simplified form

® D¢ XN, w, g, V)1q=0

@ Pticr,w, g, M1=0

with g = 0 (or given).

2 - Differentiation

() = A(DIg) = [AD1q + [D] Aq = 0

by multipimying with Pt

we obtain @ :E Eﬁg%qQ:%Bﬂﬁ =0
If we fix the damping g

Pt [ 3D/ ONIg + Pt [ DD/ dwlg
+Pt { 3D/ 3Vilg=0

This complex equatfon gives the derivatives of the
frequency of the solution and the flutter speed.

TABLE 8
EXPLICIT OPTIMIZATION

The main idea is to replace the exact
formulation @(\) of the constraints, which {is
only implicitly known by a F.E. analysis, by an
explicit approximation q *()\).

G¥(\)is selected so that :

- at A = X\ analysis % A) = QE.F. and
A XA IN=DTE.F./d)

- Q*(A) must be exact for  statically

determinate structure

- G*(A) must have a good form when X\ — 0 and
A —= oo

At the moment we think that the most efficient
explicit approximation is in reciprocal variables.

with
i = 1/ Ai aij = -1/ o2 3qj E.F./INi

GJ *(o¢) =a0j +2 atj o<i
i

a0j =T E.F. +3 aij (xi - exio0)
i

The optimization problem becomes :
2 mi/exi minimal

2,5 +2 aljoci (G jad (o)
Subject to J g
o ¢ 1/ Ai mini

With constraints on local buckling criteria,
the admissible values are not constant but
function of parameters.

The explicit optimization problem is solved
with a conjuguate projected gradient method
improved by an efficient normalisation of the
tangent Hessien.
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TABLE 9

MULTI-MODEL OPTIMISATION

OPTIMISATION

MONITOR
[ MODEL r] rMODEL 2 ]
DESIGN DESIGN DESIGN DESIGN
VARIABLES VARIABLES VARIABLES VARIABLES
CONNECTIONS

T

4
CONSTRAINTS , CONSTRAINTS

1 1
1 1
ANALYSIS ANALYSIS
DERIVATION J DERIVATION

Y

T

CONSTRAINTS
CONKECTIONRS

TABLE 10
OPTIMIZATION OF NONLINEAR STRUCTURES

Post-buckling analysis of composite structures
is one of the most significant advance of the last
years (Ref. 2). The next challenge is the
optimization of non-linear structure including
post-buckling behavior.

Most of the problems can be solved with a
similar algorithm to those of linear structures
with a sequence of analysis and partial
derivatives. Derivatives computation are relati-
vely less expensive than in linear structures :

T, 39

ANALYSIS

DERIVATION
ECLIP 1
exeucrr (@ 0/,

—e

OPTIMISATION

CONVERGENCE

Y
l CONSTRAINTS I

Fint - Fext = 0 Q=L
dFint _ JFint X _ dFint _
Ix " 5% .X+th.—bx—0 ( _th.)
dX -1 JFint x )G
o= - kg 2EIEEX 98 L X
S R N

But this type of algorithm couid lead to bad
convergence on post-buckled structures with
snap-through behavior.

So a simultaneous solution of the analysis and
optimization problems can be considered.

Min. M (A A = design variables
q (X, \) <« Gad X = displacements
GRAD wtot =0 wtot =non-linear potential

Recent advances in minimization method based
upon preconditionned matrices and explicit
line-search (Ref. 2) will be intensively used.




INITIAL MODEL
F = 8,52 Hz

CAL IBRATED MODEL
F=10,06 Hz

MESURED MODE
WING BENDING 2 NODES
F = 10,59 Hz

INITIAL MODEL
F=10,49 Hz

CALIBRATED MODEL
F=10,38 H2

MESURED MODE
FUSELAGE BENDING 2 NODES
f = 10,86 Hz

INITIAL MODEL
F = 18,50 Hz

=

CAL 1BRATED MODEL
F = 18,73 Wz

MESURED MODE
FUSELAGE BENDING 3 NODES
F = 18,83 Wz

Fig. 2 Automatic calibration of dynamic FE model of MIRAGE III NG
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PART Il - ACTUAL CASE STUDY OF AN AIRCRAFT TABLE 1
DESIGNED BY DASSAULT AVIATION
Ch ization of Optimization of a Carbon Epoxy Wing
EXAMPLE OF APPLICATION OF OPTIMIZATION OF CARBON i 1 ool 2
EPQXY STRUCTURE
FE models Wing model with a Complete plane 13003 dof:
We present two examples of optimization m:mu:;o: o{o(h:r.pans of .symmtlr_ic and‘ .
calculations for carbon epoxy parts for a combat chmictoe (3544 doh. symmetnic ymmetric analy
afrcraft. and antisymmetric analysis
1- Ojtimization of a combat aircraft wing Desi'gn variable 476 design variables (-number of plies in four directions)
Static cases of 24 cases of loads gombmed 0
We summarize here the configuration of the loads .ﬁ'.‘.’:;.,’.’.'.."i?.‘:":i.‘i;f.s
°pt1M1 zation of a carbon epoxy delta W1ng box, Failure criteria 476 failure criteria equivalent

corresponding to the mesh presented in Fig. 1,
with the design variable patch of Fig. 4.

Tsai~Hill criteria

Buckling criteria 144 critical buckling factors. 0
obained from 77 local buckling
We have used two analysis models for static analyses of composite plates by
and aercelasticity with a survey of flutter on Rayleigh-Ritz method
three external load configurations (see Table 1). Static aeroelastic ] 7 control surface efficiencies
constraint and minimal roll speed
In Fig. 5 we present the history of conver- Flutter $ Mutter speeds and 60
gence in weight. Drawing constraints and flutter acroclastic dsmpings
constraints have been successively introduced ‘°"'I’P°"d"‘!;?“‘",°
later, to study their influence. The optimum extemal load configaration
values of design variables are presented in Fig. 4 Technological 374 ints on composite lay-up (thickness shape. maximum
and the corresponding lay-up of plies is shown in constraint and ratio each ply )
Fig. 7 (obtained automatically).
In Table 2 the weight sensitivities of wing TABLE 2
panels to a typical project hypothesis obtained by o )
optimization are shown. Influence of Design P
Design hypothesis Weight
{ranro)
1 Composite material 10
Strength of material constraints only. rough from computer
optimization
2+ Acroelasticity constraint 119
3 4 Aeroelasticity + technological consiraints 125
4  Weight from final detailed drawing (review by checking anaiyses) 136
5  Aluminium alloys solution 2:i0
Strength of material + aeroclasticity (comparable with line 3)
TABLE 3
2 - Optimum design of a vertical fin
The layout of the box and the rudder in carbon Characreristics of Optimizatian of a Vertical Fia
epoxy are optimized considering the static load Model 1 Model 2
for two rudder deflection cases, and constraints TE model P (1900 don with 3 i el with 3 defected
m S (] mod:l 0T) wal 1
on rudder aeroelastic efficiencies and dynamic super-clement of the whole radder
frequencies (see Fig. 6). The exact configuration sircraft

of this Opt"’” zatfon 1s shown in Table 3. Design variables 237 design variables (number of fiber layers of panels. cross-

sections of flanges and thicknesses of webs (or spars and nibs)

Static load cases 3 1
Failure criteria 190 failure criteria on composite 190
materisls with holes
Buckling criteria 98 buckling criteria computed 82
from Rayleigh-Ritz models for
panel buckling analysis
Dispt 1 displ on the step 0
between box and rudder

A lastici 3 ints on fin and rudder 1]
vaw efficiencies for two Mach
numbers
Dy # Fregq ies of first flexion [
mode and rudder mode
Technology o ints on ply distributions and on mini di

tay-up i P




Fig. 1

Fig. 2

General mesh of combat aircraft

NERS IR

Landing gear fitting analysis
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Fig. 3  Post-buckling analysis of a curved carbon epoxy panel
(test on fuselage panel of combat aircraft)

Fig. 4

Optimization of a carbon epoxy wing : (a) upper and (b) lower panel optimum lay-up
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Iterations

Optimization of carbon epoxy wing : history of convergence




Fig. 6

Optimization of a carbon epoxy fin. (a) Model ) : no rudder deflection.
(b) Model 2 : with rudder deflection. (c) Optimal lay-up. (d) Active constraints at optimum.




Fig. 7

Interactive lay-up design using optimum pattern
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MULTIDISCIPLINARY DESIGN AND OPTIMIZATION()
b

Jaroslaw Sobieszczanski-Sobieski
NASA Langley Research Center, MS 246
Hampton Virginia 23665 U.S.A.

SUMMARY

Mutual couplings among the mathematical models of physical
phenomena and parts of a system such as an aircraft com-
plicate the design process because each contemplated design
change may have a far reaching consequences throughout the
system. This paper outlines techniques for computing these
influences as system design derivatives useful for both judg-
mental and formal optimization purposes. The techniques fa-
cilitate decomposition of the design process into smaller, more
manageable tasks and they form a methodology that can easily
fit into existing engineering organizations and incorporate their
design tools.

1. INTRODUCTION

The engineering design process is a two-sided activity as
illustrated in Fig. 1. It has a qualitative side dominated by
human inventiveness, creativity, and intuition. The other side
is quantitative, concemed with generating numerical answers
to the questions that arise on the qualitative side. The process
goes forward by a continual question-answer iteration between
the two sides. To support that process one needs a compu-
tational infrastructure capable of answering the above ques-
tions expeditiously and accurately. For development of such
an infrastructure, the idea of “push button design™ ought to
be discarded in favor of a realistic recognition of the role of
human mind as the leading force in the design process and of
the role of mathematics and computers as the indispensable
tools. It is clear that while conceiving different design con-
cepts is a function of human mind, the evaluation and choice
among competing, discretely different concepts, e.g., classical
configuration vs. a forward swept wing and a canard configu-
ration, requires that each concept be optimized to reveal its full
potential. This approach is consistent with the creative charac-
teristics of the human mind and the efficiency, precision, and
infallible memory of the computer.

The computational infrastructure for support of the design
process entails data management, graphics, and numerics. The
first two embodied in CAD/CAM systems are well-known and
are taken for granted as a framework for the numerics. The
purpose of this paper is to introduce some new techniques
which may be regarded as a subset of the latter. Included
in the discussion are the system behavior derivatives with
respect to design variables, their use for both judgmental and
mathematical optimization purposes, formal decomposition
of a system into its components, and ramifications of that
decomposition for system sensitivity analysis and optimization,

(N Originally presented under the title “A System Approach
to Aircraft Optimization™ as Paper No. 2 at the AGARD
Workshop on Integrated Design Analysis and Optimization of
Aircraft Structures, 1-2 May 1991, Bath, United Kingdom.

all illustrated by aircraft application examples. The impact
on the design process of a methodology formed by these
techniques is also examined.

2. EFFECT OF DESIGN VARIABLE CHANGE IN A
COMPLEX SYSTEM

An aircraft is a complex system of interacting parts and physi-
cal phenomena whose behavior may be influenced by assigning
values to the design variables. Since the design process is, gen-
erally, concemned with an aircraft that does not yet exist, one
works with its surrogate—a system of mathematical models
that correspond, roughly, to the engineering disciplines, and to
physical parts of the vehicie. These mathematical models send
data to each other as depicted in the center of Fig. 2, and they
also accept design variable values as inputs from the designers.
To know how to change these design variables, designers must
know the answers to “what if” questions, such as *“what will
be the effect on the system behavior if the design variables
X, Y, Z will be changed to X + AX, Y + AY, Z+AZ?",
implied by the loop in Fig. 2.

An example of a hypersonic aircraft in Fig. 3 illustrates
how difficult it may be to answer an “what if” question for
even a single variable change in a complex system in which
everything influences everything else. Consider a structural
cross-sectional thickness ¢ in the forebody of a hypersonic
aircraft shown in the upper half of Fig. 3 as a design variable
that is to be changed. The lower half of the figure depicts a
complex chain of influences triggered by the change of ¢ and,
ultimately, affecting the vehicle performance. The change of ¢
influences the position of the bow shock wave relative to the
inlet in two ways: through the nose deflection, and through the
weight and the center of gravity position both of which affect
the trimmed angle of attack. The shock wave position relative
to the inlet is a strong factor in the propulsive efficiency of
the engine that, in tum, combines with the weight to influence
the aircraft performance. Additional influence on performance
is through the angle of attack whose change alters the vehicle
aerodynamic lift and drag. The resultant modifications of the
performance may require resizing of the vehicle which, of
course, may be a sufficient reason to change ¢ again, and so on,
until the iteration represented by the feedback loop in Fig. 3
converges.

The above iteration engages a number of mathematical mod-
els such as structures, acrodynamics, propulsion, and vehicle
performance. For the purposes of this discussion, each such
model may be regarded as a black box converting input to
output and, consistent with the black box concept, the inner
workings of the model will be left outside of the scope of the
discussion. While it may not be too difficult to evaluate the
input-on-output effect for each single black box taken sepa-
rately, evaluation of the resuitant change for the entire system
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of such black boxes may be exceedingly difficuit, especially
when iterations are involved. In general, the resultant may be
a small difference of large numbers, so even its sign may be
impossible to predict without a precise reanalysis of the entire
system.

To generalize from the above example, let X and Y denote
the system input and output, respectively, e.g., the structural
cover thickness ¢ and a measure of performance such as the
aircraft range. Then, the derivative dY/dX is a measure of the
influence of X on Y and its value answers quantitatively the
associated “what if”" question. More precisely, the derivative
value informs only about the rate of change of Y at the value of
X for which the derivative was obtained. Determination of the
increment of Y for a given finite increment of X, if Y(X) is
nonlinear, can be done approximately by a linear extrapolation

dY
1) Yoew = Y19 + HAX

Capability to extrapolate as above for many different X and
Y variables, enables one to decide, either judgmentally or
by means of an optimization program, which variables X to
change and by how much, in order to improve the design
in some way. However, that capability is predicated on
availability of the derivatives dY/dX termed the system design
derivatives (SDD). For large system analysis, especially if the
analysis is iterative, its is advantageous to avoid the brute force
method of finite differencing on the entire system analysis in
computation of these derivatives.

2.1 System Design Derivatives

Remembering that the mathematical model of an engineering
system may be an assemblage of a large number of mathe-
matical models representing its components and the governing
physical phenomena, it is convenient to limit the discussion to
three such black box models since that number is small enough
to foster comprehension and, yet, large enough to develop a
general solution pattern. Ascribing a vector function repre-
sentation to each black box, the set of equations representing
the system of the black boxes a, 3, v exchanging data as
illustrated in Fig. 4 is

Ya =Ya(X,Y5,Y,)
2) Yﬂ = Yﬂ(xs Ya,Ys)
¥, = ¥y(X, Ya, ¥p)

The Y and X variables in the above are vectors entered in
the black boxes selectively, e.g., some, but not necessarily all,
clements of the vectors X and Y, enter the black box 8 as
inputs. Regarding Yp(X,Ys,Y,) as an example of a black
box, the arguments, X,Yq,Y,, arc the inputs and Y3 is an
output. The functions in eq. 2 are coupled by their outputs
appearing as inputs, hence they form a set of simultaneous
equations that can be solved for Y for given X. The act of
obtaining such a solution is referred to as the system analysis
(SA). In the presence of nonlinearities, SA is usually iterative.

For each function in eq. 2, one can calculate derivatives of
output with respect to any particular input variable, assuming

that other variables are fixed. From the entire system perspec-
tive, these derivatives are partial derivatives since they mea-
sure only the local input-on-output effect, as opposed to SDD
which are total derivatives becaise they include the effect of
the couplings. To prepare for furtner discussion, the partial
derivatives corresponding to the Y-inputs are collected in the
Jacobian matrices designated by a pair of subscripts identifying
the origins of the output and input, respectively. For example,

(3) Jya = [0Y, /Y, al

is a'matrix whose j-th column is made of the partial derivatives
Y, /8Y4;. Assuming the length of Y, as N, and the length
of Yo as Ny, the dimensions of matrix J,q are N, x Na.
It will be mnemonic to refer to the partial derivatives in the
Jacobian matrices as the cross-derivatives.

The remaining partial derivatives corresponding to the X-
inputs are collected in vectors, one vector per each of the NX
elements of the vector of design variables X, e.g,

(4) {9Y./0Xi} =[0Ya/8Xi], k=1,...,NX;

is a vector of the length N (’ denotes transposition).

Calculation of the above partial derivatives may be accom-
plished by any means available for a particular black box
at hand, and may range from finite differencing to quasi-
analytical methods (ref. 1, and 2).

It was shown in ref. 3 that differentiation of the functions in
eg. 2 as composite functions and application of the implicit
function theorem leads to a set of simultaneous, linear, alge-
braic equations, referred to as the Global Sensitivity Equations
(GSE), in which the above partial derivatives appear as coeffi-
cients and the SDD are the unknowns. For the system of eq. 2,
the GSE are

I ~Jug —Juy dY,/dX, YL /80X,
—Jsa I —Jsy dYg/dX, » = { 0Yp/0X,
~Jya =Jyg I dY, /d X 8Y, /8X;

&)

These equations may be formed only after the SA was per-
formed for a particular X, a particular point in the design
space because the computation of the partial derivatives re-
quires that all the X and Y values be known. For a given
X, the matrix of coefficients depends only on the system cou-
plings and is not affected by the choice of X for the right hand
side. Hence that matrix may be factored once and reused in a
backsubstitution operation to compute as many sets of SDD’s
as many different X variables are represented in the set of
multiple right-hand-side vectors.

As recommended in ref. 3, numerical solution of eq. 5 and
interpretation of the SDD values will be facilitated by normal-
ization of the coefficients in the matrix and in the right hand
sides by the values of Y, and X, of the Y and X variables for
which the partial derivatives were calculated. The normalized




coefficients take on the following form, illustrated by a few
examples from i-th row in the 8 partition in eq. §

8Y; Bi Yy, dYy
(6) - mum‘,-, ~o,; P dx, X

where the normalization coefficients g are

Yai Y. _
qﬁnij=?2;‘f; QWJ'=?;L‘:'; qﬁx-‘k=ﬁ

Solution of the normalized eq. 5 yields normalized values of
the SDD’s from which the unnormalized values may always
be recovered given the above definitions.

Formation of the GSE and their solution for a set of SDD’s
will be referred to as the System Sensitivity Analysis (SSA).

2.2 Utility of the System Design Derivatives

The SDD carry the trend information that under a conventional
approach would be sought by resorting to statistical data or to
the parametric studies. The former have the merit of capturing
a vast precedent knowledge but may turn out to be ineffective
if the vehicle at hand is advanced far beyond the existing
experieace. The latter provide an insight into the entire interval
of interest but only for a few variables at a time, and that insight
tends to be quickly lost if there are many design variables, in
which case the computational cost of the parametric studies
also may become an impediment.

In contrast, the SDD information is strictly local but it reflects
the influences of all the design variables on all aspects of the
system behavior. Therefore, the SSA should not be regarded as
a replacement of the above two approaches but as their logical
complement whose results are useful in at least two ways.

2.2.1 Ranking design variables for effectiveness

A full set of SDD for a system with NY variables in Y and
NX variables in X is a matrix NY x NX. The j-th column
of the matrix describes the degree of influence of variable X;
on the behavior variables Y. Conversely, the i-th row shows
the strength of influence of all the design variables X on the
i-th behavior variable Y;. For normalized SDD’s, comparison
of these strengths of influence becomes meaningful and may
be used to rank the design variables by the degree of their
influence on the particular behavior variable. This ranking
may be used as a basis for judgmentally changing the design
variable values and for deciding which design variables to use
in a formal optimization.

An example of such ranking is illustrated for the wing of a
general aviation aircraft shown in Fig. 5. The design variables
are thicknesses ¢ of the panels in the upper cover of the wing
box and the behavior variable is the aircraft range R. The
chain of influences leading from a panel thickness to the range
calculated by means of the Breguet formula is depicted on
the left side in Fig. 6. In the Breguet formula, W, denotes the
zero-fuel weight and W), stands for the fuel weight. Increasing
t in one of the panels increases the weight W, and, in general,
reduces the drag of a flexible wing by stiffening its structure.
Consequently, the range is influenced in conflicting ways that
would make prediction by judgment difficuit. However, the
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corresponding SSA yields the SDD’s for the upper row of the
wing cover panels illustrated by the heights of the vertical bars
over the upper wing cover panels in Fig. 6. The bars show that
among all the wing cover panels, increasing ¢ in the extreme
outboard panel would increase range the most.

2.2.2 Gradient-guided formal optimization

Most of the formal optimization methods applicable in large
engineering problems use the first derivative information to
guide the search for a better design. Since the SDD values
provide such information for all the Y and X variables of in-
terest, the SSA may be incorporated, together with SA, in a
system optimization procedure (SOP) based on the well-known
piecewise approximate analysis approach (e.g., ref. 4). The
SOP flowchart is depicted in Fig. 7. An important benefit of
the SOP organization is the opportunity for parallel processing
seen in the flowchart operation immediately following the SA.
In that operation, one computes concurrently the partial deriva-
tives of input with respect to output for all the system black
boxes, in order to form the Jacobian matrices (eq. 3) and the
right-hand-side vectors (eq. 4) needed to form the GSE (eq. 5)
whose solution yields the SDD's. In a conventional approach,
these SDD’s would be computed by finite differencing on SA.
The SDD values are subsequently used in Approximate Anal-
ysis (extrapolation formulas) that supplies the optimizer (a de-
sign space search algorithm) with information on the system
behavior for every change of the design variables generated by
that optimizer, and does it at a cost negligible in comparison
with the cost of SA.

A generic hypersonic aircraft similar to the one that was dis-
cussed in Fig. 3 was used as a test for the above optimization.
The geometrical design variables for the case are shown in
Fig. 8. Additional design variables were the deflections of
the control surfaces, and the cross-sectional structural dimen-
sions of the forebody. The propulsive efficiency measured by
the I,p index, defined as the thrust minus drag divided by the
fuel mass flow rate, was chosen as the objective function to
be maximized. The aircraft take-off gross weight (TOGW)
for a given mission is very sensitive to that index, thus max-
imization of the index effectively minimizes TOGW. For the
reasons discussed in conjunction with Fig. 3, the problem re-
quires consideration of a system composed of aerodynamics,
propulsion, performance analysis, and structures. The opti-
mization included constraints on the aircraft as a whole and on
behavior in the above disciplines. Results are shown in Table 1
in terms of the initial and final values of the design variables
(cross-sectional dimensions omitted) and of the objective func-
tion, all normalized by the initial values. Considering that the
initial values resulted from an extensive design effont using
a conventional approach, the nearly 13% improvement in the
propulsive efficiency was regarded as very significant indeed.

Another example of the SOP application is the case of a hyper-
sonic interceptor (Fig. 9a) reported in ref. 5. The optimization
objective was the minimum of TOGW for the mission pro-
file illustrated in Fig. 9b. The system comprised the modules
of the configuration geometry, configuration mass properties,
mission performance analysis, aerodynamics, and propulsion
as depicted in Fig. 10, and the design variables were the wing
area, scale factor for the turbojet engine, scale factor for the
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ramjet engine, and the fuselage length. The constraint list
included a limit on the time needed to reach the combat zone,
the take-off velocity, and the fuel availabie mass being at
least equal to the one required (the fuel balance constraint).
It should be noted that in a conventional approach to aircrafi
design, satisfaction of the latter constraint is onc of the prin-
cipal goals in development of a baseline configuration whose
improvement is subsequently sought by parametric studies in
which the design variables are varied while always striving to
hold the fuel balance constraint satisfied. In contrast to that
practice, the optimization reported in ref. 5 allowed the fuel
balance constraint to be violated in the baseline configuration
and achieved satisfaction of that constraint in the course of the
optimization process. This demonstrated that an optimization
procedure may do more than just improve on an initial, feasible
configuration; it can actually synthesize an optimal configura-
tion starting with one that is not even capable of performing a
required mission.

The optimization results are illustrated by a vertical bar chart in
Fig. 11 that shows the changes of the design variables and of a
significant (13%) improvement of the objective function. The
figure shows also that the initially violated constraints of time
to intercept and take-off velocity were brought to satisfaction
in the optimal configuration. The SOP converged in only 4 to
S repetitions of SA and SSA.

3. MERITS AND DEMERITS

Before discussion of the ramifications of the above sensitivity-
based optimization in a system design process, it may be useful
to examine bricfly the merits and demerits of the proposed
approach relative to the conventional technique of generating
SSD by finite differencing on the entire SA.

3.1 Accuracy and Concurrent Computing

The SSA based on eq. 5 has two unique advantages. First,
the accuracy of SDD is intrinsically superior to that obtainable
from finite differencing whose precision depends on the step
length in a manner that is difficult to predict. As pointed out
in ref. 6 it is particularly true in the case of an iterative SA
whose result often depends on an arbitrary, “practical” con-
vergence criterion. Second, there is an opportunity for con-
current computing in the generation of the partial derivatives
which exploits the technology of parallel processing offered
by muitiprocessor computers and computer networks. Con-
current computing aiso enables the engineering workload to
be distritited among the specialty groups in an engineering
organization to compress the project execution time.

3.2 Computational Cost

Experience indicates that in large engineering applications,
most of the optimization computational cost is generated by the
finite difference operations. Therefore, relative reduction of the
cost of these operations translates into nearly the same relative
reduction of the cost of the entire optimization procedure.

The computational cost of the SSA based on eq. 5, designated
Ci, may be reduced, in most cases very decisively, below
that of finite differencing on the entire SA, denoted by Cj,
but to achieve that reduction the analyst should be aware of
the principal factors involved. To define these factors, let the

computational cost of one SA be denoted by CSA while CBA;
will stand for the computational cost of one analysis of the
i-th black box in the system composed of NB black boxes.
The i-th black box receives an input of NX; design variables
X, and NY; variables Y from the other black boxes in the
system. Assuming for both alternatives the simplest one step
finite difference algorithm that requires one reference analysis
and one perturbed analysis for each input variable, the costs
C1 and C2 may be estimated as

C1 =) (1+NX;+ NY)CBA;
Y] i
Cy=(1+NX)CSA

Even though one may expect CBA; < CSA, a sufficiently
large NY; may generate Cy > C; and render SSA based on
€q. 5 unattractive compared to finite differencing on the entire
SA. This points to NY;, termed the interaction bandwidth,
as the critical factor whose magnitude should be reduced as
much as possible. Reducing the interaction bandwidth requires
judgment as illustrated by an example of an elastic, high aspect
ratio wing treated as a system whose aeroelastic behavior
is modeled by interaction of aerodynamics and structures,
represented by an CFD analysis and Finite Element analysis
codes, respectively. If one let the full output from each of
these black boxes be transmitted to the other, there might
be hundreds of pressure coefficients entering the structural
analysis and thousands of deformations sent to the aerodynamic
analysis. With the NY; values in the hundreds and thousands,
respectively, it would be quite likely that C; > Ca. However,
one may condense the information flowing between the two
black boxes by taking advantage of the high aspect ratio wing
slendemess. For a slender wing it is reasonable to represent
the entire acrodynamic load by, say, a set of 5 concentrated
forces at each of 10 separate chords, and to reduce the elastic
deformation data to, say, elastic twist angles at 7 separate
chords. This condensation reduces the NY; values to 50
for structures and 7 for acrodynamics. In the finite element
code, that implies 50 additional loading cases all of which
can be computed very efficiently by the multiple loading case
option—a standard feature in finite element codes. The CFD
code would have to be executed only 7 additional times. Thus,
the advantage of the interaction bandwidth condensation is
evident. In general, a condensation such as the one described
above for a particular example may be accomplished by
the reduced basis methods, among which the Ritz functions
approach is, perhaps, the best known one.

3.3 Potentisl Singularity
One should be aware when using SSA based on eq. 5 that,

in some cases, the matrix of coefficients in these equations
may be singular. In geometrical terms, a solution in SA
may be interpreted geometrically as a vertex of hyperplanes
on which the residuals of the govemning ecquations for the
black boxes involved are zero. As pointed in ref. 3, eq. 5 are
well-conditioned if these hyperplanes intersect at large angles,
ideally when they are mutually orthogonal. For two functions
of two variables the zero-residual hyperplanes reduce to the
zero-residual contours, and an example of a nearly-orthogonal
solution intersection is shown in Fig. 12a. In some cases,




the intersection angles may tend to be very acute, in the limit
they may be zero in which case a solution exist by virtue of
tangency of two curved contours as illustrated in Fig. 12b. It
is shown in ref. 3 that eq. § imply local linearization of these
contours in the vicinity of the intersection point so that the
solution point is interpreted as an intersection of the tangents.
Consequently, in the situation depicted in Fig. 12b the tangents
coincide and the matrix of eq. 5 becomes singular. In such a
case, ¢q. 5 should be replaced by an alternative formulation of
the system sensitivity equations in ref. 3 based on residuals.

There were no cases of singularity reported so far in any
applications probably because the system solutions of the type
illustrated in Fig. 12b characterize an ill-posed system analysis
usually avoided in practice.

3.4 Discrete Variables

Neither the reference technique nor the SSA based on eq. 5 can
accommodate truly discrete design variables. Truly discrete
design variables are defined for the purposes of this discussion
as those with respect to which SA is not differentiable. These
are distinct from quasi-discrete variables with respect to which
SA is differentiable but which may only be physically realiz-
able in a set of discrete values. An example of the former is
an engine location on the aircraft: either under the wing or at
the aft end of the fusclage. An example of the latter is sheet
metal thickness available in a set of commercial gages.

In the case of truly discrete design variables, different combina-
tions of such variables define different design concepts (alter-
natives) and each concept may be optimized in its own design
space of the remaining continuous variables, in order to bring
it up to its true potential. Then, one may choose from among
the optimal alternatives. Occasionally, a continuous transfor-
mation might be possible between two concepts that seem to
be discretely different. For example, a baseline aircraft with a
canard, a wing, and a conventional tail may be reshaped into
any configuration featuring all, or only some of these three
lifting surfaces. This is so because a sensitivity-guided SOP
may eliminate a particular feature, if a design variable is re-
served for that feature and if the feature is present in the initial
design (however, a feature initially absent cannot, in general,
be created).

3.5 Non-utilization of Disciplinary Optimization

Organization of the SOP discussed above may be described as
“decomposition for sensitivity analysis followed by optimiza-
tion of the entire, undecomposed system”. It may be regarded
as a shortcoming that the procedure leaves no clear place for
the use of the vast expertize of optimization available in the in-
dividual black boxes representing engineering disciplines. Ex-
amples of such local, disciplinary optimization techniques are
the optimality criteria for minimum weight in structures, and
shaping for minimum drag for a constant lift in aerodynamics.
It appears that combining these local, disciplinary optimiza-
tion techniques with the overall system optimization should
benefit the latter. Indeed, one way in which these techniques
may be used without changing anything in the SOP organiza-
tion described above is in the SOP initislization. Obviously,
starting SOP from a baseline system composed of the biack
boxes already preoptimized for minimum weight, minimum
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drag, maximum propulsive efficiency, etc. should accelerate
the SOP convergence and improve the end result. Such local
optimizations could be accomplished separately for each black
box, assuming X and guessing at the Y inputs.

Beyond that, the issue of incorporating the local, disciplinary
optimization in SOP remains to be a challenge for further
development. Some solutions were proposed in ref. 7 and 8 but
their effectiveness is yet to be proven in practice. This issue
will be taken up again in the later discussion in conjunction
with the special case of a hierarchic system decomposition
which does accommodate the local optimizations.

4. FORMAL DECOMPOSITION

When the system at hand contains a large number of black
boxes and, especially, if there is little or no experience with
its solution, it is useful to apply a formal technique to deter-
mine the data flow among the black boxes. The data fiow
information is useful because it characterizes the system as
non-hierarchic, hierarchic, or hybrid, and this, in tum, helps to
choose an optimization approach and to establish an efficient
organization of computing. Such formal techniques are avail-
able in Operations Research and some of them were adapted
for the system analysis and optimization purposes, e.g., ref. 9.

4.1 N-square Matrix

A brief introduction to one such technique begins with a
formalization of a black box (a module) in the system as one
that receives inputs through the top and bottom horizontal sides
and sends the output through the left and right vertical sides as
as shown in Fig. 13. Using that formalism, one can represent a
four-module system example depicted by the diagram (known
as the graph-theoretic format) in Fig. 14a in a different format
shown in Fig. 14b. That format is known as the N-square
Matrix format because N modules placed along the diagonal
form an N2 table. The N-square Matrix format assumes that
the modules are executed in order from upper left 1o lower
right (although, if possible, concurrent executions are allowed).
If the execution order is not yet known, the order along the
diagonal may be arbitrary. Referring to Fig. 13, each module
may, potentially, send data horizontally, left and right, and
receive vertically from above and from below. The actual
data transmissions from and to i-th module are determined by
comparing the module input list to the predecessor module
output lists while moving upward in column i. Wherever a
needed input item is found on the output list from module 7,
a dot is placed at the intersection of the i-th column and j-th
row as a data junction indicating transmission of output from
module j to input of module i. Afier the predecessor module
search gets to the first module, it switches to module i + 1
and continues downward through all the successor modules to
module N. If more than one source is found for a particular
input item, a unique, single source must be judgmentally
selected. However, an output item may be used by several
receiver modules and may also be sent to the outside. The
input items that could not be found in the vertical search are
designated primary inputs to be obtained from the outside of
the system. The above search is readily implementable on a
computer.
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When the above search procedure is completed for all the
modules, the result is an N-square Matrix as in Fig. 14b that
conveys the same information as the diagram in Fig. 14a but
is amenable to computerized manipulation. To see what such
manipulation may achieve, observe that each dot in the upper
triangle of the N-square Matrix denotes an instance of the
data feedforward, and cach dot in the lower triangle notes an
instance of the data feedback. Of course, every instance of
a feedback implies an iteration loop required by the assumed
diagonal order of the modules. However, that order may be
changed at will by a code that may be instructed to switch
the modules around, with the associated permutations of the
rows and columns to preserve the data junction information, in
order to eliminate as many instances of feedback as possible.
If all of them are eliminated the system admits a sequential
module execution, and may offer opportunities for concurrent
executions of some modules. If a complete elimination of
the feedbacks is not possible, they are reduced in number
and clustered. An example of a fairly large N-square Matrix
in the initial, arbitrary order is shown in Fig. 15a while its
clustered state is shown in Fig. 15b. In the clustered state
the system is hybrid—partially hierarchic and partially non-
hierarchic. A software tool that is available to make the above
transformation is described in ref. 9. All the modules in one of
the clusters in Fig. 15b may be regarded as a new supermodule,
and the system diagram may be drawn in terms of these
supermodules as shown in Fig. 16. This diagram defines a
hierarchic decomposition of a system because the data flow
from the top of the pyramidal hierarchy to the bottom, without
reversing the flow and without lateral flow, while inside of
each cluster there is a system whose modules define a non-
hierarchic decomposition.

The N-square Matrix structure has a reflection in the struc-
ture of the matrix of coefficients in eq. 5: each feedforward
instance in the former gives rise to a Jacobian matrix located
below the diagonal in the latter and each feedback is reflected
in a Jacobian above the diagonal. Hence, a sequential system
without feedbacks has a matrix of coefficients populated only
below the diagonal so that eq. 5 may be solved by backsubsti-
tution of the right hand sides without factoring of the matrix
of coefficients.

4.2 SOP Adapted to Hierarchic System

When a decomposed system has a hierarchic structure, its SOP
may be reorganized to include separate optimizations in each
black box. This SOP version was introduced in ref. 10 and
called an optimization by linear decomposition. It has found
a number of applications, for example, it was the basis for an
algorithm for multilevel structural optimization by substructur-
ing in ref. 11, and its use in multidisciplinary applications was
reported in ref. 12 for control-structure interaction and in ref.
13 for optimization of a transport aircraft.

Muitilevel optimization of a hierarchic system by a lincar de-
composition exploits the top-down flow of the analysis infor-
mation. At the bottom level, the inputs obtained from analysis
at the next higher level and the appropriste design variables
are regarded as constants in optimization of each, bottom-level
black box. Derivatives of each such optimization are computed
with respect to these input constants by means of an algo-

rithm described in ref. 14 and are used in linear extrapolations
(hence the name of the technique) to approximate the effect
of the input constants on the optimization results. Optimiza-
tions in the black boxes at the next higher level approximate
their influence on the lower level optimization by means of
these extrapolations. Thus, the top black box optimization is
performed taking an approximate account of the effect of its
variables (the system level variables) on all the black boxes in
the hierarchic pyramid. As mentioned in the foregoing, the ad-
vantages of the SOP exploiting the hierarchic structure of the
system is a separation of the bottom level detailed optimiza-
tions from the top level system optimization, and breaking the
large system optimization problem into a number of smaller
optimization problems, in contrast to the non-hierarchic sys-
tem SOP (Fig. 7) in which optimization is performed for the
system as a whole. However, if any of these black boxes
in a hierarchic system contains a cluster (see discussion of
Fig. 16) of black boxes forming a non-hierarchic system, the
non-hierachic system SOP (Fig. 7) may be used to optimize
it locally. Hence, both methods for system optimization de-
scribed above, the one based on the linear decomposition (ref.
10) as well as the SOP based on Fig. 7 flowchart have their
place in optimization of a general case of a hybrid engineer-
ing system that exhibits both the hierarchic and non-hierarchic
structures depicted in Fig. 16.

As reported in ref. 13, the linear decomposition method was
used to optimize the variables of configuration geometry and
cross-sectional structural dimensions of a transport aircraft il-
lustrated in Fig. 17a for minimum fuel burned in a prescribed
mission, under constraints drawn from the disciplines of aero-
dynamics, performance and structures. The analysis was rel-
atively deep, e.g., a CFD code in aerodynamics, and a finite
clement model of the built-up structure of the airframe struc-
tures. The number of design variables was over 1300, and
the number of constraints was also in thousands. Optimization
was conducted decomposing the problem into a three-level hi-
erarchic system shown in Fig. 17b. A sample of results is
depicted in Fig. 18 showing a smooth convergence of the fuel
mass and the structural weight in only 4 to 6 cycles (one cycle
comprised the top-down analysis and the bottom-up optimiza-
tions), for both feasible and infeasible initial design.

5. GENERALIZATION TO ENTIRE VEHICLE DESIGN
PROCESS

The approach to the system sensitivity and optimization dis-
cussed in the foregoing may be generalized to serve the entire
design process as shown in ref. 15 using as an example a def-
inition of that process given in ref. 16. The process defined
in ref. 16 is a conventional, sequential process illustrated in
Fig. 19. As suggested in the upper right corner of the flow-
chart, any change in a major design variable such as the wing
or engine size requires reentry into the sequence and repeti-
tion of all the operations in the chain. However, the black
boxes forming the sequence are also forming a coupled sys-
tem whose diagram is depicted in Fig. 20. The arrows in the
diagram represent the data flow among the black boxes, exam-
ples of the data being defined in Table 2. Application of the
SSA based on eq. 5 to the system in Fig. 20 leads to GSE in
the format shown in Fig. 21. In the abbreviated notation used




in that figure, Y;; stands for a Jacobian matrix J;; defined in
¢q. 3. Solution of the equations shown in Fig. 21 yields the
SDD values that answer the “what if”’ questions implied in the
upper right corner of the flowchart in Fig. 19, and does it for
all the variables of interest simultaneously and without repeat-
ing the entire chain for every question. The SDD values may
then be used to support judgmental design decisions and/or to
guide a formal optimization according to the SOP in Fig. 7.

6. CONCLUDING REMARKS

Design of an engineering system, such as an aircraft, is a
formidable task involving a myriad of cross-influences among
the engineering disciplines and parts of the system. The
time-honored approach to that task is to decompose it into
smaller, more manageable tasks. The paper outlines some
recently developed techniques that support such an approach
by building an engineering systern optimization on a modular
basis, that comprises engineering specialty groups and their
black box tools and allows engineers to retain responsibility for
their domains while working concurrently on manageable tasks
and communicating with cach other by means of sensitivity
data. The modularity and concurrence of operations map
onto the familiar structure of the engineering organizations
and are compatible with the emerging computer technology
of multiprocessor computers and distributed computing. The
only major new requirement is the generation of derivatives of
output with respect to input in each specialty domain,

The use of sensitivity data as the communication medium is the
distinguishing feature of the proposed approach and represent
a major improvement over the present practice because it adds
the trend information to the function value information. Both
types of information enhance the human judgment and intuition
while being readily usable in guiding the formal optimization
procedures.
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Table 1 Table 2
Hypersonic aircraft optimization results Coupling data in aircraft system
Optimization parameter Baseline | Optimization Vector Y Content examples
e rosult 1 Ses the box labeled INPUT
8 DOX
Design variable 2 S
1. Forebody length 1.000 1.0209 ‘:'""gl""- '::;‘;.';“‘- taper, awesp sngle,
2. Cone angle 1.000 0.9693 3 L
3. Upper surface height 1.000 1.0029 Fuel tank locations and assumed volumes.
4. Geometric transition length |  1.000 10760 4 Wing structural weight and internal volume.
5. Elevon deflection 1.000 0.8620 s Take-off Gross Weight.
6. Bodyflap deflection 1.000 1.0320 e See box 6.
? Landing gear weight and locstion, in
Objective stowed and extended position.
Effective trimmed Isp 1.000 11258 Take-off field length.
( Qualitative effort stream — Input constants [‘l Input design V.'i‘bla_lﬂ
’ [ ’ ~ ’ ] Systemn analysis
; New Vehicle
Q Questi Q i Q i hi
L A A L A R ‘.;:,"3,,': performance L !
‘ l l | J Propulsion s&< > rodynamlcs What
( Quantitative effort stream —— . _y| R Control if?
Structure: N\,
- o , ‘r Auxilliary
1. Qualitative and quantitative sides of a design process. Weights e sysiems
| System behavior data| —

2. Interactions in a system analysis and "What if" questions.

Fuselaéa"

skin thickness T~ Thrust
Engine
— Propulsion
lChange | Structural | [gp o0k wave eTcuency
t \. deformations| ™| “position |[pPerformancel.| Vehicle
Weight oninlet |t resizing
&CG. [~ 1
L_‘Angle of
attrck

3. A design change triggering a complex chain of effects.
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4. Example of a three component system.

7. Flowchart of the System Optimization procedure (SOP).

Q Wing box
| K Fuselage
g : upper '""‘“-\ Vertical tail

8. Hypersonic aircraft; some of the configuration design
variables.

5. Wingbox in aircraft wing

Normalized
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Structures [+ > Aerodynamics dt t
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Cp We ’
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Aerodynamics
[
t Deformation
Weight
6. a) System of mathematical models, the Breguet formula, b) Vertical bars illustrate magnitude of derivatives of range

and the channels of influence for the wing cover thickness; with respect to thickness.
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Hypersonic Interceptor
ygrmse Mach..5 5p

Cruise b)
— Cruise
Climb
Descent
Takeoff Landing
Mission Range
—— Outbound } Inbound —
2000 NM 2000 NM
9. a) Hypersonic interceptor, b) Mission profile.
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10. System of mathematical models for hypersonic interceptor optimization.
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11. Sample results from hypersonic interceptor optimization.
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12. System solution: a) Intersection point; b) Tangency point.

feed-torward

Y
OUTPUT || MODULE i ,' OUTPUT

INPUT coming from upstream

———e——e——

feedback | !
\-_r—d

INPUT

info. fed upstream | ] l
from downstream

—

feedback ¢

'F_

13. Schematic definition of a module.
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2

/

b)

14. Example of a system: a) Graph format; b) N-square Matrix format.

d.

15. System N-square Matrix: a) Random execution order,

1

Y

b) Execution order rearranged to reduce and cluster the

feedbacks.

8

16. Hierarchic structure of clusters in a system.
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17. Optimization of a transport aircraft: a) Configuration; b) Hierarchic system of modules.
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18. Sample of results from transport aircraft optimization.
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¢ Standard sequential design process from a textbook

input O Initial estimate of R
Mission & performance criteria ‘} empty & ta weight -Change w.elgh!,
< Payiond 7 wing & engine size
* Range * Wing sizing A\_
e Cruise aititude * No. of engines Field performance Implies a
e Cruise ¢ Engine configuration "pPerturb-and-
* Take-off fieid length or & size ¢ Undercarriage design lyze™
approach speed 7 > * Take-off field length reanalyze” to
* Climb requirements Covont desion : éandlng field length answer "What if”
Configuration geometry & data s y'ou g n ommunity noise questions
Technology data « Geometry parameters
* Aerodynamics except empennage
* Propulsion V
* Stability and control
 Airframe and systems Weight & balance
weight data * Group weights
* Wing location
¢ Loading C.G. limits
* Horizontal tail size
o Aerodynamic C.G. limits Evaluation & output
* Vertical tail size » Three-view drawings
* e Weight-balance diagram
e Drag polars, lift curves
Mission performance « Off-design performance
o Cruise speed * Weight statement
Change| |° Payload range * Operating cost
weight 12
Alrplane
A ves—]
19. A conventional, sequential design process for aircraft.
e Design represented as coupled system
@ input
Mission & performance criteria
* Payload
* Range
» Cruise aititude
« Cruise speed
« Take-off field length or
x-»|  approach speed
« Climb requirements
Contiguration geometry & data
Technology data
+ Aerodynamics
Y4 * Propulsion Yq
« Stability and control
» Airframe and systems @
@ < Wing sizing weight data Layout design
x ->| * No. of engines Ryl * General arrangement |
» Engine configuration D » Geometry parameters
& size ; v except empennage
Y, Y 5
“1\  / J 1 Initial estimate of
@ Y2 empty & take-off weight
Weight & balance 3 Y ® Y,
: VGV’,‘,’,"‘}O'Z:'.?;',',’ Y3 Mission performance
X Loaglng C.G. limits > Cruise speed
2| .G > .
* Horlzontal tail size \v-,\\}\}\ fﬁ/ Y4 » Payload range
¢ Aerodynamic C.G. limits O
» Vertical tail size z Field pertormance *YG

o —

X >

* Undercarriage design
* Take-off field length

¢ Landing field length

« Community noise

¥Y7

20. Black boxes from Fig. 19 forming a system.
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e System sensitivity equations of design represented as coupled system

[ 1
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e These system derivatives answer "What if" questions regarding these variables
without reanalyzing the system

21. GSE matrix for the system of Fig. 20.
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MATHEMATICAL OPTIMIZATION
A POWERFUL TOOL FOR AIRCRAFT DESIGN

Otto Sensburg

Deutsche Aerospace
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P. O. Box 801160, 8000 Miinchen 80
Germany

Abstract

Formal mathematical optimization methods have been
developed during the past 10 to 15 years for the structural de-
sign of aircraft. Together with reliable analysis programs like
finite element methods they provide powerful tools for the
structural design. They are efficient in at least two ways:

e producing designs that meet all specified requirements at
minimum weight in one step;

e relieving the engineer from a time consuming search for
modifications that give better results, they allow more
creative design modifications.

MBB has developed a powerful optimization code called
MBB-Lagrange which uses mathematical programming and
gradients to fulfill different constraints simultaneously [1].

Some examples depicting the successful application of
the MBB-LAGRANGE code are presented. Also results of
other optimization codes are shown.

The paper closes with an outlook how the optimization
problem could be enlarged to include also shape and size of
airplanes.

Juntroduction

To improve or modify a design, a process, a procedure, or
any given task into a "better” direction, is referred to as "opti-
mization”, This is often done by experience, parametric inve-
stigations, iterative procedures, by experimental testing and
modifications, or based on empirical data. Such an approach
usually leads to better results but nobody can tell how far
away the optimum still is or even where it is. A more efficient
way to perform this task is provided by a special branch of
applied mathematics, called optimization. This kind of opti-
mization changes the chosen variables in a design problem in
a way to achieve the best value for an objective while not vio-
lating defined constraints that represent the boundaries of the
design space.

This formal optimization was rather early introduced in
economics or chemical engineering due to the linearity of the
problems, as described by Ashley in an excellent overview
paper on the aeronautical use of optimization [2]. In order to

use the potential of mathematical optimization, it is necessary
to describe the physical nature of the problem in a way that all-
ows the use of optimization algorithms.

In structural design, finite element methods together with
modern computers have provided tools that allow to analyse
complex structures with high accuracy. These were main essen-
tials to initiate development and application of optimization
programs for structural design in 1970. Approximately at the
same time, composite materials were introduced in aerospace
design. They offer an infinite variety to combine their highly
anisotropic elastic properties for any specific combination of
design requirements. For a more efficient use of these mate-
rials, optimization programs are required to handle the comple-
xity of the problem, especially if additional requirements besi-
des swrength are involved in the problem [3). During the last
decade considerable effort has been spent to develop modemn
structural optimization procedures, using efficient mathematical
optimization algorithms as well as optimality criteria which sa-
tisfy all requirements simultanously and find optimal values of
the design variables by direct computation. The increasing em-
phasis of acroelastic considerations is shown in Fig. 1, which
was taken from [4].

-
Interdosciphinacy
=G winth Aerestastic
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Fig.1 EVOLUTION OF AEROELASTIC CON-
SIDERATIONS IN FIGHTER AIRCRAFT
DESIGN
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The use of structural optimization tools during the preli-
minary design stage of an advanced aircraft gives the follo-
wing potential improvements:

s satisfies the requirements of new aircrafts

s minimizes the objective (weight)

® increases the quality of products

* shortens the development phase

s increases chances of the company in competition.

In order 1o do this, an appropriate mathematical pro-
gramming procedure has to be embedded in the general data
flow, which is depicted in Fig. 2 and Fig. 3 taken from {5].

For the general data flow [ refer o [1].
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These figures show a typical flow of geometric, acrody-
namic, structural and other data which are used during the de-
sign phase of an aircraft. The improved productivity is a re-
sult of the integrating effects of the swuctural optimization.

Shorter time of development is realised and fewer data trans-

fers go wrong,

At the present time the development of new airplanes is
influenced by new techniques, such as flutter suppression,,
CCV-configuration, gust load alleviation etc. (Fig. 3). In ad-
dition to stress, displacement, acroelastic and dynamic con-
straints an integrated design involves all these techniques and
the optimization procedures must be extended for these new
constraints. A reliable optimization code is the basis, which
allows parametric investigations and weight penalties to be

evaluated properly.
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1

NEW TECHNOLOGIES OF RECENT
AIRCRAFT

STRUCTURAL OPTIMIZATION AT MBB

MBB has developed its own structural optimization sy-
stem called

MBB-LAGRANGE

The performance and requirements/constraints of this
new program system are shown below:

Finite Element Structure

 Structure Variabies

Skin Thickness
Balance Masses

Fibre Directions

Grid Point Coordinates

e Constraints

Min./Max. - Variable
Stresses

Strains
Deformations

Flutter Speed
Divergence Speed
Acroelastic Efficiencies
Eigen Frequencies
Element Stability
Dynamic Response
Weight

For more information reference is made to [11.




* Multiobjective Function f(x) = Min.

Vector Optimization = "Trade Off* Studies of Convex
Combination of Objectives

The program architecture is organized according to the
concept of H. A. Eschenauer [6) with the main parts optimi-
zation algorithm, optigization model and structural analysis
including sensitivity analysis.

The corresponding optimization models are based on the
general nonlinear programming problem according to [6).
The design variables x are cross sectional areas of trusses and
beams, wall thicknesses of membrane and shell elements, la-
minate thicknesses for every single layer in composite ele-
ments or nodal coordinates for geometry optimization pro-
blems. The constraints in form of inequalities may be any
combination of displacements, stresses, strains, buckling
loads, acroclastic efficiencies, flutter speed, divergence
speed, natural frequencies, dynamic response and design va-
riables (7].

In the case of scalar optimization, the objective function
f(x) often includes the structural weight or another linear
combination of the design variables. However, it is also pos-
sible to define one of the constraint functions as objective and
to introduce the weight as constraint at the same time. If vec-
tor optimization problems are under consideration, then opti-
mization strategies plf(x)] according to {6] ensure the trans-
formation to scalar substitute problems.

It is necessary to provide several different optimization
algorithms, because there is no known single algorithm which
is adapted to every type of problem. Some of the algorithms
which are implemented in LAGRANGE are shown below:

¢ IBF Inverse Barrier Function,

s MOM Method of Multipliers,

s SLP Sequential Linear Programming,

e SRM Stress Ratio Method,

* RQPI,RQP2 Recursive Quadratic Programming
* GRG Generalized Reduced Gradients

A more extensive explanation is given in [1).

Eariy Investigations with FASTOP

In 1979 the structural optimization program FASTOP
(Flutter and Strength Optimization Program) was acquired by
MBB. The capability of the program was extended to be able
to analyse also the static aeroelastic behaviour of structures.
Main features of the program were

* afully siressed design for static requirements that usually
goes near oprimal results.

¢ aflutter redesign for a defined minimum speed.

The program was extensively used for wing design stu-
dies [8]. An example for the flutter redesign of a stress desig-
ned (optimised) wing is shown in Fig. 4. Essential elements
that are sensitive for flutter are marked for the upper and lo-
wer cover skin. At that time the program could not handle the
different layers of composite materials individually as design
variables. The design space was limited by predetermined fi-
bre orientations and the proportion of the individual layer
thickness in the total laminate.
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Fig. 5 demonstrates the iteration steps to achieve the desi-
red flutter speed of 900 kis starting at 700 kis for the initial
fully stressed design. Results of fiutter calculations for both
designs are plotted in Fig. 6. It should be meationed also that
FASTOP could not solve the optimization for strength and
fiutter simultaneously.

LOWER WALUES AFTER FLUTTER OPTIRIZATION

FLUTTER VELOCITY DERIVATIVES

Fig.4 FLUTTER SENSITIVITIES FOR
WING COVER SKIN
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Tailless planes, sometimes also called "Flying Wings",
have always been a challenge in airplane design. They offer a
great potential in performance compared to conventional de-
signs because of less surface (parasite drag), less weight, and
less trim drag. Although this has been known for a long time,
tailless planes never have experienced the success one might
expect. Many carefully designed tailless gliders had to be re-
designed or designed completely new after first flight tests
because of strange instabilities, which were often not under-
stood or misinterpreted.

It was an interesting task for the "Akademische Flieger-
gruppe Braunschweig” to launch a tailless ailplane project for
the 15 meters standard class in 1983. During flight test with a
1/3 scaled remotely piloted model a severe instability occured
at very low speed. Flutter calculations using daia from a
ground resonance test showed that coupling of the rigid body
short period mode with the first elastic mode caused the phe-
nomenon. Solving this problem is a multidisciplinary task.
MBB offered assistance to redesign the wing with the help of
modemn optimization programs.

By applying these codes the flutter speed could be increa-
sed to an acceptable level with small modifications of the
wing root geometry, a new design of the main spar, and by
the use of a new high modulus fiber type. With a small weight
penalty-compared to the initial design - the flutter speed could
be doubled.

Sailplanes have achieved a very high technological level
during the last 20 years, mainly due to fiber composite struc-
tures and improved aecrodynamics.

Further improvements can be expected only from small
detail modification or expensive projects like variable wing
geometry. For this reason an unconventional design concept
like the tailless wing is a challenge for designers. It offers se-
veral advantages like

® |ess parasite drag
® less weight
¢ less construction effort

due to the missing rear fuselage and the tail. If the airfoil is
designed carefully for a small pitching moment, the flying
wing will not have a higher profile drag compared to conven-
tional planes. If the vertical tail is integrated in winglets, the
advantage of less induced drag can be explored without addi-
tional weight penalties.

The SB 13 project, Fig. 7, shows performance improve-
ments of up to 10% compared to existing competitors in the
15-meters standard class, as indicated in Fig. 8 for the veloci-
ty polar. Table 1 gives some main design parameters.

Fig.7 3-SIDE VIEW OF THE TAILLESS
SAILPLANE PROJECT SB13

Horizontal Speed km/h
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Fig. CALCULATED SPEED POLAR FOR
SB13
Ving
Span 15m
Area 11.6 m2
Aspect Ratio 19.4
Dihedral +4°
Twist - 1.5° outboard
Wing Section HQ 34 N/14.83 inboard
HQ 36 N/15.12 outboard
Winglets
Length 1.25m
Area 0.675 m2
Aspect Ratio 231
Profile FX-71-L 150/30
Fusclage
Length 302m
Width 0.66 m
Height 084 m
Landing gear 2 retractable wheels, spring-
suspended




Weights

Weight empty 2240 N
Payload 700 - 1100N
Water ballast max. 1330N
Gross weight 2940 -4270 N
Wing Loading 248 - 360 N/m?
Performance

v_. 70 kr/h
Vi 210 ko/h
min. sink speed 0.53 m/s
max. L/D-ratio 43.5:1

TECHNICAL DATA FOR THE SAIL
PLANE SB13

JABLE 1

Although tailless aircraft have been studied almost since
the beginning of aviation they have never experienced the
success one might expect. One reason for the lack of success
is described in [10] and {11} as the exwreme difficulty of
achieving satisfactory unaugmented handling qualities, con-
trol and dynamic stability.

Probably the most experienced desjgner of tailless planes
was A. Lippisch with numerous powered and unpowered de-
signs [12]. He reported about several difficulties and crashes,
caused among others by longitudinal oscillations or "unsatis-
factory handling qualities”- The Horten brothers also desig-
ned, constructed, and tested various tailless planes between
1936 and 1960 [13].

Among the few successfull tailless sailplane were the
single-seat AV-36 and the twin-seat AV-22 by Charles Fau-
vel [14), Fig. 9, and the very similar looking designs from J.
Marske [15]).

Fauvel Av-22 (1956)

Fauvel AV-36 (1951)

Fig.9 FAUVEL TAILLESS SAILPLANES

AV-22 AND AV-36

To study stability and handling qualities of the SB 13, a
remotely piloted 1/3 scale model was built and flown. The
handling qualities showed no problems, but an unexpected in-
stability in the longitudinal motion occured at very low
speeds. When a ground resonance test and a fluster calcula-
tion was performed, it could be shown that the reason for the
instability was the coupling between the rigid body short pe-
riod mode and the first symmetric structural mode.

After the problem was solved analytically by the means

of acroelastic tailoring and the application of a new carbon fi-
ber, a paper about a very similar design study at Cranfield
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was published [16). This project, called "Ricochet” showed
the same aeroelastic behaviour as the SB 13. Fig. 10 shows
the design and gives some design parameters. Because the
flutier problem could not be solved in this case, the project
was finally given up. But this study is the first one known to
the authors which identified the problem correctly.

The Ricochet

Parsmeter The Ricochet
Material of construction Auminium alloy
(6061-16)
Span 15m
Wing area 10.26 n2
Aspect ratio 22.93
Wing root chord 0.13 m
Wing tip chord 0.50 m
Sveep angle 13°
Mass of each ving 50 Kg
Fuselage mass vith equipoents 65 Kg

Fig. 10 RICOCHET SAILPLANE PROJECT

Fl tigns for the RPV-Model

To investigate the flutter behaviour murc thoroughly, a
ground resonance test was performed at the DFVLR, Institute
for Aeroelasticity in Géttingen. Fig. 11 shows the test instal-
lation, Table 2 gives the main results for two configurations,
where configuration II conmins additional fuselage mass for
non-structural items. The first bending mode for both confi-
gurations is shown in Fig. 12. Several flutter calculations
were performed using the described data. If the rigid body
modes are ignored, the first structural mode shows divergence
in the flutter calculation as indicated in Fig. 13 for free-free
boundary condition.
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Fig.11 GROUND RESONANCE TEST
EQUIPMENT FOR SCALED RPV
MODEL
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Symmetric Modes
Configuration | Configuration 11
Type | Frequency | gen. mass Type | Frequency | gen. Mass
fHz) [kg cw’} (Hz} (kg cw’)
St wn 1,231 S 2,82 2,755
52 11,76 1.108 $2 "2 6,788
s? 20.7% 0,162 ST 19,96 0,029
Antisymeetric Modes
peeemtm—
Configuration [ Configuration I1
Type | Frequency | gen. mass Type { Frequency | gen. mass
(#2] {kg ca']) [mzl (kg cw’]
M 7.52 1,99 At 7.4 2,075
A2 20.74 0,445 A2 20,17 0,664
I\ 17,87 0.122 AT 17.64 0.in
Total Mass and Pitch Moment of Inertis
Conftquration | Configuration [I
LI (] 7,2 Moot {kg] 12,6
e, [xom'} 0.683 e, xom?] 0,884

TABLE2 TEST RESULTS FOR SB13-RPV
MODEL

Confiquration [

Fig.12 STRUCTURAL MODE SHAPE FOR
FIRST SYMMETRIC MODE

&
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CONFIGURATION |
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Fig. 13 RESULT OF FLUTTER CALCULA-
TION FOR FIRST STRUCTURAL
MODE

$1

Confi},luration 11

deflected nositiorn
nodal line - g ) ;]

Fig. 14 ISOMETRIC VIEW OF MODE 1
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Fig. 16 COMPARISON OF RIGID BODY

SHORT PERIOD MODES FOR SB13
AND CONVENTIONAL SAILPLANE
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Fig. 14 gives a isometric view of mode 1 and Fig. 15
shows more clearly the local deformations at the quarter
chord line for both configuration.

In Fig. 16 the eigenvalues of the short period are plotted
vs. airspeed for the full scale SB13 and the conventional
SB11. The frequency of the SB13 is almost three times that of
the SB11 while the damping is smaller. This difference is
mainly due to the small pitch moment of inertia of the SB13.
Table 3 gives a comparison of important parameters for the
longitudinal motion of the model, the SB13 and the SB11.

The equations for the short period mode are

1 N ERED
Yo, 'c;) m CL* R 1)

for the frequency, and
Vo LGt C’k
e - ZVL'E. [ch ‘y Mg

for the damping. Here C o and Cy,, are functions of geome-
try only, C o also dcpends on thMg g. location. must
be identical for the model and the full scale version, if geome-
trical proportions are similar and the static longirudinal s1abi-
lity is equivalent. The last parameter for comparison is the re-
lative mass density.

2m
5.2 - ®

As table 3 shows, these terms are identical. The construction
of the model is similar to the one of a modern sailplane. The-
refore it can be expected that there is also elastic similarity
(replica).

With the results from the ground resonance test the rigid
body coupling with the elastic mode results in a flutter speed
of 53 knvh for configuration I, Fig. 17, and due to the smaller
f) only 44 km/h for configuration I1, Fig. 18. If we assume li-
ncamy between flutter speed and first elastic mode frequency,
we get

R C))

(L = large scale, M 0 model) for the velocity scale. With the
length scale A =% =271 we got

co - a2 [km/h/m] )]

for the SB13. If we demand a flutter speed equal to the maxi-
mum velocity Vp = 283 ken/h for the SB13, this would requi-
re a first structural mode frequency of 6.7 Hz.

i

57
S8 13-Mode! S et Ba
Configuration 11 Foulerfiaps i
»  [kg) 12,6 200 465
o, kol 0.884 1 s
1y =) 0,265 0,635 1,340
s [w) .3 1,0 13,32
T [a] 0.2n 0,735 0.772
w §7.07 56,54 3.8
e 5.72 .72 5.7
g 2,749 -2.749 -20.49
na 0,138 0,194 0.649
Sen -0.10 0,10 -0.10
a:L
Table3 LONGITUDINAL MOTION PARA-
METERS FOR SB13, AND A COM-
PARABLE EXISTING SAILPLANE
(SB11)
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Fig. 18 FLUTTER CALCULATION FOR
CONFIGURATION II INCLUDING
ADDITIONAL MASS FOR THE
PILOT

Airspeed

Possible Solutions to Increase the Flytter Speed

As described b fore, the flutter problem is caused by the
coupling of struct:ral bending mode (B1) and rigid body
short period mode (S1). Obviously a separation of ine two
frequencies would be favourable.

® To reduce mode S1 frequency one must increase the pitch
moment of inertia largely which is not possible with a
tailless configuration. As also the Ricochet study showed,
this is the only important parameter for the short period
mode. Static longitudinal stability, or wing sweep angle
do not improve the rigid body motion. Fig. 19 shows the
change in flutter speed with the pitch moment of inertia
for the Ricochet sail plane.

¢ Changing the configuration in a way that the first elastic
mode shape (S1) frequency shows no reduction with in-
creasing airspeed would require a completely new design.
Because a large effort had already been invested in the
aerodynamic layout, this solution was not desirable.

e Active Control Technology is a good method to extend
the flight envelope. Wykes [17] proposed a CSAS sy-

stem for the U.S. forward swept wing fighter project, where
the same coupling between rigid body and elastic structure
occurs. Although tested for several military and commer-
cial aircraft projects sucessfully, ACT is not a feasible solu-
tion for sailplanes. It would require power supply and a
complicated sensor-, control-, and actuation system.

e To change the aeroclastic behaviour using mass balance by
addition of lumped masses does not improve the situation
with feasible arrangements.

o Decoupling the pilot from the fusclage to change the criti-
cal mode shape/frequency would result in an unfavourable
sensing system for the pilot. In addition all spring systems
for this purpose would have large amplitudes (non lineari-
ties) under load, or would require too much volume (air
bag).

e The only practicable solution is a combination of a structu-
ral redesign (with small modifications in the wing root geo-
metry), using high elastic modulus carbon fibers to increase
the first elastic frequency and tailor the wing for a different
acroelastic behaviour (exploiting the anisotropic material
properties to change mode shapes). This procedure - finally
selected - will be decribed in the next chapter.
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Fig. 19 FLUTTER SPEED VS. PITCH MO-
MENT OF INERTIA FOR THE
RICOCHET PROJECT

The first handicap in the application of TSO and FASTOP
for "aeroelastic tailoring” the wing was caused by the lack of ri-
gid body modes in both computer programs. Therefore we had
to choose substitution systems to describe the critical flight me-
chanical mode. This can be achieved by defining soft springs
between the structure and an carthed point. The softness of the-
se springs is limited by numerical problems in the stiffness ma-
trix. Unfortunately this system caused other problems. The very
flexible wing attachment did not allow to use the great advanta-
ge of TSO, the simultancous optimization for different objecti-
ves and constraints. The soft attachment caused too high deflec-
tions under load for the strength design.

Only limited potential of aeroclastic tailoring sailplane-
wings is available, constrained by the extremely high aspect ra-
tio and sienderness of these wings. The main fiber direction can
be swept only within small limits. Additionally there is only a
small number of + 45 © - plies which makes it impossible to use




them to change the elastic behaviour.

Usually, modern sailplane wings are designed as shown
in Fig. 20. There is one main spar with the flange fabricated
from unidirectional rovings. The torsional forces are carried
by 1 45° plies in a sandwich shell construction. Alternatively
a shell construction with coupled bending and torsion plies
was investigated first. Due to the small number of required
plies with a still very small box chord, this design was given
up later, because it showed no improvements and is also very
difficult to make manually.

The final solution has a two web main spar (with 0°-plies)
and an uncoupled torsion shell (x 45° -plies), described in de-
tail later on.

4 x UD (+ 45°) 30 g/m?

Conticell 6 mm

150 o/m?

\

(. 45°
4 x 150 g/m? 45

CFC-Rovings

Fig.20 TYPICAL WING SECTION FOR
MODERN SAILPLANES

TSO-Calculations:

This program describes the wing structure as a plate mo-
del. Therefore, check calculations were necessary to see if the
plate theory can be used for slender wings. For a constant
chord, constant thickness beam with an aspect ratio of 20, the
TSO results could be confirmed with analytical beam theory.
Fig. 21 shows the idealizaton of the wing box within the
planform geometry. This plot also shows typical thickness
contours for the bending layers.

Table5 MATERIAL PROPERTIES USED
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WING IDEALISATION FOR TSO
PROGRAM

Fig. 21

As mentioned before, the possibilites for acroelastic tailo-
ring were limited. Due to geometrical constraints, a main fiber
sweep angle of 3° forward was the maximum. Because of the-
se limitations, several different materials and material combi-
nations were used very early. Table 4 gives some typical re-

sults from these optimization runs.

Carbon Fibers

Glass High High

Fiber Tension Modulus

Fiber Volume Ratio| 0.4 0.55 0.52
£,y Dvmi] 30348 | 131835 | 195103

€y, [N/m) 6481 | 7669 6089

¢ [y 2120 | 3220 3434

v, 0.310 | 0.3115 | o0.272

¢ [orend 1.69 [ 1.510 | 1.469
£, 0.0129| 0.00455 | 0.001287
&, 0.0034] 0.0022 | 0.00266
&, 0.01951 0.01242 | 0.01165

IN THIS STUDY
Main Fiber ¢ v ™ wing
Run-No. Description Sweep Angle 1 F [xq]
(positive fwd.) |0°-plies |+45°-plies| [i] |[im/n] |per side
1 initial Design g° HT HT 2.42] 741 60.2
2 increased bending 0° HM HT 3.14] 99.0 61.1
stiffness with HM-Fibers
3 additional 0°-plies 0° m HT 4.31] 140.8 79.7
4 swept 0°-plies skin thick- + 2.5 ] NT 3.401 111.5 61.1
ness as no, 2
5 swept, optimized lay up + 2.5° WM HT 3.76f 115.0 64.5
6 + 3.0°, Vinear thickness + 3.0° ] HT 4.7 162.2 79.6
distribution
7 free thickness distribution + 3.0° [ ] HT 4.89 178.5 79.2
less weight, higher Vg than 6
8 + 5.0, glass fiber torsion + 5.0° L glass | 4.2 187.6 | 79.8
plies, sweep angle not practi- fibers
calbe
Table4 TSO CALCULATIONS FOR SB13
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nitial Desion)
= 2.42 Hz

f1 = 4,26 Hz

Fig.22 TSO MODE SHAPE 1 FOR INITIAL
AND OPTIMIZED DESIGN

Rather soon, it became obvious that the flutter problem
could not be solved with presently used materials.

The advent of high modulus carbon fibers provides a
Young’s modulus 50% higher than in presently used high ten-
sion fiber. Table 5 gives a comparison of material properties
for unidirectional layers. Fig. 22 shows the first elastic mode
shape for the initial design and for the high modulus fiber
with swept 0°-direction.

RUN 8 (Optimized Desian)

STOP model. The skin is described by membrane elements
whereas the ribs and spars are modelled with shear panels. Al-
though FASTOP can consider free-free conditions in the vi-
bration analysis, it is not capable, to handle rigid body modes
separately. They can only be superposed to the elastic modes.
For this reason, it was necessary to simulate this mode with
soft spring attachments and cantilever conditions in the vibra-
tion analysis.

Fig. 24 FIRST STRUCTURAL MODEL FOR
FASTOP CALCULATIONS

Instead of sweeping the fibers within the spar and manu-
facturing the spar with prepregs, a new model with a swept
spar inside the wing, fabricated conventionally from rovings,
showed better results in the flutter behaviour. Fig. 25 shows
the new idealization. To allow a higher sweep angle for the
spar, the wing planform was modified in the inboard section.
The leading edge sweep angle is reduced with three kinks, the

trailing edge sweep angle is reduced with two kinks. The in-
tention was to bring the main spar closer to the pilot’s mass
without increasing the wing area.

In the flutter calculation results (Fig. 23) for the optimi-
zed design No. 8 the improved flutter behaviour is shown. It
should also be mentioned that the rigid body damping (mode

1) is predicted wrongly. y m me  me_mr e v _ms me e
HAX o) L
T —— e ) e, —_— d
“ i
(Y13
“ T—————— —
wp I *
2 - .
Fig.25 MODIFIED STRUCTURAL MODEL
O
voax [aty)
230. 0000
cuin J ‘
-1.00 014 Design Redesign
Fig. 23 TSO FLUTTER CALCULATION RE-
SULTS FOR OPTIMIZED DESIGN
EASTOP-Calculati Fig. 26 WING GEOMETRY MODIFICA-
. TIONS FOR IMPROVED FLUTTER
BEHAVIOUR

Fig. 24 shows the finite clement idealization for the FA-
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Fig. 26 shows these modifications.

Using HM-instead of HT-fibers for the unswept spar in-
creased the flutter speed from 110 km/h to 210 km/h (+ 90%),
sweeping the spar 3 degrees gives 122 km/h for HT-fibers (+
11%), and 237 km/h for HM-fibers. If HT-carbon fibers are
used for the torsion layers instead of glass fibers, the flutter
speed is 3.5 % higher. Table 6 gives a summary of these re-
sults.

Fig. 27 shows the mode shapes and flutter calculation re-
sults for the best design. This wing has a weight of 67.7 kg
compared to 60.0 kg for the initial design (+ 12.8 %) but the
flutter speed is 114 % higher ! Further calculations were ne-
cessary for different water tank positions in the wing. Fig. 28
shows two possible solutions which do not decrease the flut-
ter speed. Because the water is positioned very close to the
nodal line of mode 1, the first frequency does not drop more
than 6% while the short period mode is more than 0% smal-
ler due to the higher moment of inertia. The flutter calculation
for water bailast configuration II (No. 7 in Tabie 6) is shown
in Fig. 29.

Flutter calculations for antisymmetric modes were also
performed. Because the first mode is higher than 6 Hz in this
case, there is nc coupling with low frequency modes. Higher
modes are separated without tendency to couple up to 400
km/h.

The final configuration was analysed using a different ap-
proach whereby the rigid body mode frequencies could be
described more accurately (0.01 Hz for the z-translation and
0.05 Hz for the rigid rotation at O airspeed). This influence
improved the flutter speed considerably. Table 6 gives also
the results using this method.

S-11

From these results it could be expected that the flutter
speed will be sufficiently high to clear the full flight envelope
up to the maximum speed Vg = 210 km/h (including a safety
margin). The predictions were verified during flight test which
happened in the year of 1985. The airplane has been flown
ever since and has never shown any structural instability.

In summary it can be said that most tailless sailplanes
seem to have the great disadvantage of high frequency shon
period modes compared to conventional constructions. To pre-
vent flutter because of coupling with the first elastic mode, the
wing has to be fabricated from extremely stiff materials. New
fibers with a very high elastic modulus could provide the ne-
cessary stiffness for the SB13 wing.

To overcome these difficulties easier in other tailless airc-
raft designs, it could be possible that sweeping the wing for-
ward and thus having the pilot in front of the wing, might
change the first elastic mode in a way that the coupling with
the short period mode will be delayed to higher speeds. J. J.
Marske gathered a lot of experience in the design and con-
struction of several tailless sailplane [15]. His final solution
was a swept forward configuration which had no stability pro-
blems and showed good handling and performance characteri-
stics. For the SB13 design, a swept forward solution was not
possible because of the slender fuselage with a carmry-through
main spar. And it is not possible if the winglets are used as
vertical tails.

Materials f, [ng free/free ]
Main Fiber ! sprin Mwin divergence Flutter Speed[km/
Run-No. Description | Direction |0°-plies |+ 45°-plies | free/free| SP"'N9 1 Lk speed | FASTOP |Check-pgm.
(pos. fwd.) ‘| per side| [km/y]

1 Initial De- 0° HT HT 2.59 2.74 60.0 186.0 110.6 120.0
sign

2 HM-fibers 0° HM HT 5.27 5.19 69.5 342.0 210.2 236.0

3 modified main 3° HT HT 2.85 2.93 60.0 207.0 122.4 140.0
spar HT-fibers

4 modified spar 3° HM glass 5.64 5.46 73.4 390.0 229.0 260.0
HM + glass fibers
fibers

5 HM s HT ¥ HM HT 5.78 5.60 67.7 > 400 237.1 | 2713.0
fibers

6 structure 5 & k i HM HT 5.58 5.46 67.7 >400 240.2 275.0
water ballast |

7 structure 5 § 3° HM HT 5.33 5.24 67.7 > 400 238.7 290.0
water ballast II

8 structure 5 3 WM HY 7.0 - 67.7 - - -
antisymmetric
modes

Table 6 FASTOP CALCULATION RESULTS FOR SB13
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There was also a shortcoming in the US-swept forward
wing aircraft X29 which was solely optimized to achieve a
high divergence speed. With a combination of aeroclastic tai-
loring and active control [17) high swructural weight savings
can be achieved if such a problem exists. Since CCV is quite
common now for fighter airplanes flight certification for such
a flight control system could be received. Most important is
that the lay out is done in the design stage and not as a repair
solutions.

It should also be mentioned here that the interaction bet-
ween rigid body and elastic structure shows the necessity to
incorporate flight mechanics in modern design- and optimiza-
tion programs. A twin-engine prototype from Partenavia was
lost in a fatal accident because of the coupling between a ho-
rizontal tail tab-mode and the short period motion [18].

The use of aeroelastic tailoring makes it even more im-
portant to study acroelasticity parallel to other disciplines (in
the design) and not in series as it was done in the past.

Compared to the initial design, the more than 110% in-
crease in flutter speed with a small weight increase shows the
potential of new carbon fibers and the use of aeroelastic tailo-
ring.

FA WITHT

Since 1982 the TSO program (Aeroelastic Tailoring and
Structural Optmization [19]) is in use at MBB as a prelimina-
ry design tool for aerodynamic surfaces. In this program the
structure of the surface is represented as a continuous plate
with variable thickness.Design variables are coefficients, des-
cribing the thickness distribution of different composite la-
yers, the fiber orientation, and, if necessary, variable concen-
trated masses for flutter optimization. Due to a wide range of
aeroelastic constraints such as frequency, flutter speed, defor-
mations, aeroelastic effectiveness and divergence speed, the
program is very suitable for acroelastic tailoring.

In 1986, TSO was used for a design study on a light
combat aircraft wing shown in Fig. 30. In this case, three sta-
tic load cases were used for the pure strength design with the
main objective: minimum weight.

The flexible wing roll rate was not a constraint in the be-
ginning.The wing flap hinge moments, however, are often a
critical design criterium that can also limit the roll rate of the
aircraft. It could be demonstrated in this study, that by defi-
ning an aileron roll moment effectiveness constraint, the wing
cover skin thickness and fiber orientations could be designed
for higher roll rates and a considerable reduction in hinge mo-
ment with a small weight increase.

The relations between structural weight, roll effective-
ness and flap hinge moment can be seen in Fig. 31. With very
little increase in weight the hinge moment for the required roll
rate of 180° at maximum dynamic pressure and Mach 1.1 can
be reduced to 30% of the original value. This sensitivity ana-
lysis also indicates the region where an additional increase in
structural mass can not improve the performance. Without the
use of an optimization program, this kind of trend studies
would be impossible, especially if composite materials or ae-
roelastic requirements are involved. Fig. 32 gives a compari-
son of the wing cover skin designs for strength requirements
only and for an additional flexible aileron roll effectiveness
requirement. The importance of the seletion of design varia-
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bles is demonstrated in Fig. 33 for four different approaches:

- fixed fiber orientation and W = 100%
balanced -45° and -45° plies
fixed fiber orientation, W = 76%
unbalanced
- free fiber orientation, W = 67%
balanced
- free fiber orientation, W = 54%
unbalanced
|

s S ey
é‘n.%u.») 1 6. \"Z'

- Structural Box
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Fig.30 LIGHT COMBAT AIRCRAFT WING
PLATE MODEL
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Fig.31 OPTIMIZATION WING COVER
SKIN WEIGHT FOR DIFFERENT
ROLL EFFECTIVENESS CON-
STRAINTS AND REQUIRED FLAP
HINGE MOMENT FOR 180 DEG/SEC
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Strenqgth Design
tRot] Effectiveness = 0.15)

RA
teig Ko g“.

7
THETA 1 » 19°, THETA 2 « 109°, THETA 3 » 64°
Wi w 7.9 kg, W2 = 28.1 kg, ¥le 24.7 X9

Design for Strength and
ROl1 Moment Effectiveness
Constraint 0.60

(Ma. 1.1, sealevel}

THETA | » 26°, THETA 2 = 116°, THETA 3 = 71*
W = 43.9 kg, W2 « 26.5 kg, w) = 12.3 kg

Fig. 32 OPTIMIZED WING SKIN THICK-
NESS DISRIBUTIONS FOR DESIGNS
WITH AND WITHOUT FLAP ROLL
MOMENT EFFECTIVENESS CON-
STRAINT

TN

plies

W - 15).0 rg

- fixed fiber orientations
W~ {16.1 kg

- unbalanced 45° plies

) - fixed fiber orientations
- balanced ¢ 45°

by

~

3934

aze free ro rotate
- Dalances 45° plies
W os 102, kg

together

<) - all plies (0°% 45)
are free to rotate

togethet

- unbalanced 45° plies

d) - all plies

Fig.33 FOUR DIFFERENT DESIGNS FOR
STRENGTH AND ROLL EFFECTI-
VENESS CONSTRAINT (0.60).
ARROWS INDICATE AMOUNT OF
PLIES IN EACH DIRECTION

w s 82.7 kg

B-LAGRANGE

A large number of other studies and applications of LA-
GRANGE to current projecis have been performed already
and presented in several publications [20], [21), [22].

A typical example for the application of LAGRANGE is
the composite wing structure for the experimental aircraft X-
31A. In this case optimization was beneficial for two main
objectives of the program: a low cost approach and a very
short time for development and design. Besides a design for
minimum weight another requirement was a high flutter mar-
gin to reduce efforts and costs for flutter wind tunnel and
flight tests. Although flutter did not effect the design, it could
be surveyed simultancously during optimization. Static aero-
elastic effectiveness was also investigated during the design

process.

T

Fig. 34 FINITE ELEMENT MODEL OF THE
X-31 WING

A finite element model of the wing is depicted in Fig. 34.
It has 1764 elements and 1871 degrees of freedom. The opti-
mized skin thicknesses were then translated into design dra-
wings with small modifications. As an example, the upper
wing skin weight of 53 kg from an initial design (preoptimized
with another program) could be reduced to 44 kg in the FEM
which resulted in 45 kg in the acmal design. The final design
meets the 1arget weight and has a margin of 100% in airspeed
for flutter.

INTEGRATED DESIGN CONCEPT

The experience obtained from various designs with design
requirements coming from different disciplines has shown the
need for integrated design concepts and programs.

The interactions between aerodynamics, performance,
flight control, structural loads, dynamics, acroelasticity,
strength and materials, and finally the design have always exi-
sted.

Due to increasing aircraft performance requirements, like
payload, fuel efficiency, or maneuvering capability, these inte-
ractions have become stronger and more important.

The mass is very important for an aircraft. The acrodyna-
mic lift or drag from different sources like surface area, distri-
bution of cross section areas, lift-induced drag and airfoil sha-
pe are also main design parameters. The influence of



geometric parameters of an aircraft on lift and drag characte-
ristics has been studied since the earliest days of aviation.
The importance of aspect ratio on lift induced drag, of
wing taper ratio on lift diswribution and drag of wing taper ra-
tio on lift distribution and drag, of wing thickness ratio and
sweep angle on drag increase with Mach number is well
known. But how is the influence of these parameters on the
structural mass and on the loads that cause the mass?

To demonstrate these relations, parametric studies have
been performed for typical fighter aircraft wings, using the
TSO proram. Some of these wings are depicted in Fig. 35.

Yariavia of.

~ NN

Fig. 35 WING GEOMETRY PARAMETERS
FOR OPTIMIZATION STUDIES

For all these wings the same basic design requirements
have been defined, using identical total weight and the same
wing area:
® a9 g static load case with aeroelastically rimmed load

distribution
e a maximum roll rate at high dynamic pressure for the ai-

leron effectiveness

e a minimum flutter speed of 1000 kts

The carbon fiber wing cover skins of these wings were
then optimized for the above load cases separately and simul-
tancously.

Fig. 36 depicts the influence of the aspect ratio on the
skin weight for the different design requirements. Of course,
a change in requirements, a different flap geometry or a diffe-
rent mass distribution will give different rends for the geo-
metry parameters and for the additional weight required to
meet each individual requirement on top of others.

Therefore, similar studies should be performed in the pre-
liminary stage of a new aircraft design.

Relative #ing
Civer k.7 ee.ant

strengrh o {
rals

flucter ' 7
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strengen «
flutter requ.

screngeh —_— ‘_%

roll recuirement
L] / L
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3.0 4.0

¥Wing Aspect Ratio

Fig.36 OPTIMIZED WING COVER SKIN
WEIGHT VS ASPECT RATIO

FIN MADE OF

COMPOSITE MATERIAL {23]

An aircraft fin has to fullfil quite different design require-
ments with a similar priority and the final design requires the
evaluation of many off-design point studies.

The design of aerodynamic surfaces such as wing, fin, fo-
replane and tailplane needs two major design steps:

First, the aerodynamic design 1o define the overall geo-
metry like area, span, aspect ratio, taper ratio and profil.

Second, the structural design to develop the internal struc-
tural arrangement of skin, ribs, stringers, spars, rudder sup-
port, rudder actuation, attachments, equipment systems.

The final design must fulfill the following design require-
ments with minimum weight:

e Static srength to withstand design loads

® Aeroclastic efficiencies for performance

e No flutter inside of the flight envelope

¢  Manufacturing constraints, min. and max. gauges

FIN STRUCTURAL MODEL WITH
SKIN ELEMENT NUMBERS

Fig. 37




It is quite clear that such a design requires an interactive
coupling of the above mentioned two design steps. A structu-
ral model of the investigated fin is shown in Fig. 37.. A com-
parison of initial design analysis results and design constraints
is given in the following table:

DJSIGN IRITIAL
VIOLATION
CONSTRAINT DESIGN
) toad case 2
STRENGTH Strain allowables
Eleaent 18 123
Tension ¢ .0037
Comparison ¢-.0028 Element 22 228
S —
Efficiencaes
AERQELASTICS FIN L783 -.059
na 1.8 YS50KTS RUDDER -9 .44 -.118
- - - JENPUREGRNIY (S ——
Flutterspeed
FLUTTEP
VF = 530 m sec 495 m osec .66
Ma l.2:5.L.
e S S— - —

The frequency versus speed behaviour for the optimi-
zed/initial structure is given in Fig. 38. The corresponding
damping is plotted in Fig. 39. The results of the optimization
procedure are shown in Table 8.

The flunter speed is increased to 530 m/sec. anu aeroela-

stic efficiencies are increased 8% for the fin and for the rud-
der by 13%. The structural weight is reduced by 7%.

Skin thicknesses for the difterent carbon fibre layer.: of
the optimum structural design are presented in Fig. 40-43.

MBB-LAGRANGE
FLUTTER FREQUENCY PLOT
ACA-FIN (BPTIMIZED)

STATIC/AEROELASTIC/FLUTTER

756 .0 —

FREQUENCY (HZ)

0. s — — ¥ {
o. 128. 280. 276 . 800. azs. 780
VELBCITY (M/S)

Initial Design: Ve ™ 495 m/s

Optimized Design: Vo = 530 m/s

Fig. 38 FLUTTER ANALYSIS FREQUENCY
PLOT FOR INITIAL AND OPTIMI-
ZED DESIGN

MBB-LAGRANGE
FLUTTER DAMPIND PLOT

ACAR-FIN

(OPTIMIZED)

SBTRATIC/AERBELABTIC/PFLUTTER
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™~ 1
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Fig. 39 FLUTTER ANALYSIS DAMPING
PLOT FOR INITIAL AND OPTIMI-
ZED DESIGN
INITIAL VIOLATED OPTIMAL
bESIGN CONSTRAINT DESI®N
WEIGHT
[kq]
Structure 99.4 92.9
[Non Struc- 53.6 53.6
ture
Total 153. 146.5
STRENGTH Loadcase 2
Element
18 - .123 -.123
22 - 224 -.228
EIGEN- fl = 8.90 9.20
f2 = 29.83 30.21(x=1.)
[Hz) £3 = 31.16% 30.61
f4 = 39.97 41.08
£5 = 54.86 58.31
FLUTTER fF = 21,22 22.0
FREQUENCY
SPEED [m/s)] VF = 495. -.066 530.
AERO-
ELASTICS
FIN .7153 -.05%9 .814
RUDDER .441 -.118 .500
* {x=1.)

Table8 OPTIMIZATION RESULTS




Fig. 40 AEROELASTIC DESIGN: SKIN
THICKNESS FOR LAYER 1
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Fig. 41 AEROELASTIC DESIGN: SKIN
THICKNESS FOR LAYER 2
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Fig. 2 AEROELASTIC DESIGN: SKIN
THICKNESS FOR LAYER 3

Fig. 43 AEROELASTIC DESIGN: SKIN
THICKNESS FOR LAYER 4

CURRENT ACTIVITIES AT MBB MUNICH IN
THE FIELD OF AEROELASTIC TAIL

Shape Optimization:

For aeroelastic applications, the variation of the external
geometry is most important. The problem in dealing with grid
point coordinates as design variables is the connection with
the aerodynamic model.

The variation of the aerodynamic model and its elements
has to be combined with the structural model. This synthesis
is currently being investigated.

T irnizati

As a higher level aspect of structural optimizaton pro-
blems (after sizing and shape optimization), topology optimi-
zation of the internal and external structural geometry is pro-
missing great potentials in aircraft performance and structural
design. Based on experience gained during a study which has
been made to find the optimal artachment coordinates for
wing-flap connections and with basic analytical tools develo-
ped for general investigations of 1opological aspects, an ex-
tended version of this program is currently planned for air-
craft structures.

Smart Actuators

A new type of actuators with multi-signal input capability
is currently under development. This actuator will offer seve-
ral advantages in aeroclasticity: it will improve the aeroser-
voelastic stability of the system, it could be used to replace
buzz dampers, and it is capable to cover active control tech-
nology for aeroelastic aspects without additional work load
for the flight control computer.

AIRCRAFT OPTIMIZATION PROGRAM

Based on MBB-LAGRANGE, an optimization program
for a total aircraft is currently being developed. In a first step,
it will integrate the external loads in the optimization process.
Because the complete aircraft structure is used, trimmed free-
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free conditions will be simulated to describe the correct load
distribution, inlcuding static acroclastic deformations. Other
acroclastic problems like flutter and gust response will also
be analysed and included in the optimization process for the
complete configuration from the beginning of the design pro-
cess.

The program will then be extended to cover acrodynamic
aspects like drag, L/D, CLa' optimum twist and camber or
design lift conditions.

For this purpose, the acrodynamic model of the aircraft
will be used to provide design variables in addition to the
structural variables. This combination will also allow to cover
other important aspects like stability, performance and con-
trol and it will provide a basis for the integration of active
control techniques into the optimization loop.

The challenge on aeroelastic tailoring is depending on
new flight performance requirements, demanding new confi-
gurations as well as new technologies and new materials.

At the present time the development of new airplanes is
influenced by new techniques, such as flutter suppression,
CCV-configuration, gust load alleviation etc. In addition to
stress, displacement, aeroelastic and dynamic constraints an
integrated design involves all these techniques and the opti-
mization procedures must be extended for these new con-
straints.

Especially the combination of new developments in aero-
dynamic shape optimization and the well experienced active
control technologies with structural optimization routines will
necessarily enter into a multidisciplinary optimization pro-
cess.

It will take a further period of development even if the
progress in computer power and new mathematical optimiza-
tion methods are enormous. Existing technologies have to be
refined, new developments like shape optimization still have
to be completed and experiences gained with this tools, and,
last not least, specialists of different disciplines have to be
convinced that the new opportunities are worth the effort ta-
king into the bargain a highly increased complexity of the de-
sign process. To account for the increased complexity, adap-
ted intelligent user interfaces and checking routines for the
generation of reliable inputs, for the check of interim solu-
tions and for the interpretation of the output as well as impro-
ved integrated expert systems to support the selection of ap-
propiate algorithm are required.

Up to this status it can not be expected that there will be
one program only for the optimal design during different sta-
ges of aircraft projects.

An initial preliminar, design should in fact include as
many desciplines as possibles. But at the same time, this task
must remain in a not too detailed and complex level to allow
the investigation of a great number of designs and to answer
questions concerning essential changes of design require-
ments in a relatively short period of time. After this, the indi-
vidual disciplines should use their own programs and me-
thods to find the optimum in a more detailed model, without
forgetting the neighbour arcas.

The preliminary design program could in parallel serve as
a tool to integrate the results from detail designs.
Large efforts will be required to reduce the enormous

computational costs by the development of efficient methods
for cross sensitivity calculations and for approximate optimi-

zation procedures.

An extensive description of the use of optimization for
concurrent engineering is given in (24].
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