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WAVELET METHODS FOR CURVE ESTIMATION

BY A. ANTONIADIS*, G. GREGOIRE* AND I. NV. MCNKEAGUE **

Universitd Joseph Fourier (Grenoble)* and Florida State University"

ABSTRACT. The theory of wavelets is a developing branch of mathematics with a wide range of
potential applications. Compactly supported wavelets are particularly interesting because of their natural
ability to represent data with intrinsically local properties. They are useful for the detection of edges and
singularities in image and sound analysis, and for data compression. However, most of the wavelet based
procedures currently available do not explicitly account for the presence of noise in the data. A discussion
of how this can be done in the setting of some simple nonparametric curve estimation problems is given.
Wavelet analogues of some familiar kernel and orthogonal series estimators are introduced and their finite

sample and asymptotic properties are studied. We discover that there is a fundamental instability in the
asymptotic variance of wavelet estimators caused by the lack of translation invariance of the wavelet

transform. This is related to the properties of certain lacunary sequences. The practical consequences of
this instability are assessed.

MCS 1991 subject classifications. Primary: 62G07; Secondary: 60G05, 62G203.

Key words and phrases. Multiresolution analysis, nonparametric regression, hazard rate, kernel

smoothing, orthogonal series, delta sequences.

1. Introduction

Wavelet theory has the potential to provide statisticians with powerful new techniques for

nonparametric inference. It combines recent advances in approximation theory with insights

gained from applied signal analysis; for a recent survey on the use of wavelets in signal

processing, see Rioul and Vetterli [RV91], and for a recent discussion connecting wavelets with

problems in nonparametric statistical inference, see Wegman [Weg9l]. The mathematical side

of wavelet theory has been developed by Yves Meyer [Mey90] and his coworkers in a long

series of papers, see e.g. Mallat [Mal89], Daubechies [Dau90j; for a concise survey see Strang

[Str89].

Consider the following standard nonparametric regression model involving an unknown

regression function r:

Yi - r(Xi) + E,, i = 1, ... , n.

Two versions of this model are distinguished in the literature:

** Partially supported by US Army Research Office Grant DAAL03-90-G-0103 and US Air Force Office

of Scientific Research Grant AFOSR91-0048.



A. Antoniadis, G. Grigoire and I. WV. McKeague

(i) the fixed design model in which the Xi's are nonrandom design points (in this case the

Xi's are denoted ti and taken to be ordered 0 < r, <... ! t,, < 1), with the observation

errors Ei i.i.d. with mean zero and variance or2;

(ii) the random design model in which the (Xi, Yi)'s are independent and distributed as

(X, Y), with r(x) = IE(Y]X - x) and 6i = Yi - r(Xi).

In each case the problem is to estimate the regression function r(t) for 0 < r < I.

We shall introduce wavelet versions of the most frequently used kernel and orthogonal series

estimators for these models, as well as for the problem of hazard rate estimation in survival

analysis. Our estimators are delta sequence smoothers based on wavelet kernels E,(', -) as

defined in Meyer [Mey90J. These kernels represent integral operators Em that project onto

closed subspaces 1,M of L 2(B). The increasing sequence of subspaces Vm form a so-called

multiresolution analysis of L (2 ). The basic idea (to be discussed at greater length in Section

2) is that the Vm provide successive approximations, with details being added as m increases.

Thus m acts as a tuning parameter, much as the bandwidth does for standard kernel smoothers.

A key aspect of wavelet estimators is that the tuning parameter ranges over a much more limited

set of values than is common with other nonparametric regression techniques. In practice only a

small number of values of n (say three or four) need to be considered. Despite this lack of control

through a tuning parameter, which is in fact an advantage when it comes to cross validation, we

shall see that wavelet estimators can compete effectively. ,

For the fixed design model we propose the estimator:

n
S= NYi Em(t,s)d ds,

where the Ai are intervals that partition [0. 1] with ti E Ai. This is a wavelet version of Gasser

and MUller's [GM79] (convolution) kernel estimator or of Hdrdle's ([Ha90], p. 51) orthogonal

series estimator. For the random design model we propose

F(t) = n-' Yi E,.(t, Xi)/f (t),

i=1
,r'o

where f is a wavelet estimator of the density of X given by

1=]]f t ,, (t[])

A standard kernel density estimator could be used in place of f. The estimator r? is a wavelet ver-
sion of the (evaluation) kernel estimator proposed by Nadarava [Nad90] and Watson [Wat64]. .. C0168

It can also be viewed as a wavelet version of an orthogonal series estimator studied by -al



Wavelet methods for curve estimation

Hdrdle [Ha84]. Antoniadis and Carmona [AC90] introduced density estimators of the form f.
In all these estimators the tuning parameter m = m(n) needs to be chosen appropriatei,. A

recent study of the relative merits of the convolution and evaluation kernel approaches to non-

parametric regression has been made by Chu and Marron [CM9 1].

Like wavelet estimators, orthogonal series estimators employ projections onto closed sub-

spaces of L 2 (IR) to represent successive approximations. However the projections used by or-

thogonal series estimators are finite dimensional, whereas the projections used by the wavelet

estimators are infinite dimensional. Wavelet estimators cannot be seen as location-adaptive ker-

nel estimators either, cf. [BMP77]. In fact wavelet estimators are properly regardea as delta

sequence estimators, see Walter and Blum [WB79]: P is a special type of the delta sequence

estimator studied recently by Isogai [Iso9O]; F is a special case of the estimator considered by

Collomb [Co81 ] and studied recently by Doukhan [Do90]. We shall obtain consistency of P and

F, for i by applying a result of Isogai.

We are also able to establish rate of convergence results for i and asymptotic normality results

for suitably modified versions of P and T. For P we do this by adapting some techniques that were

originally developed for kernel estimators by Gasser and Moller [GM79].

Eubank and Speckman [ES91] have studied rates of convergence for a least squares orthog-

onal series estimator for r. They used trigonometric series and their method of proof is heavily

dependent on the special properties of these systems. In order to avoid the need for periodic

boundary conditions on the derivatives of r they add appropriate polynomial terms to the or-

thogonal series. By using a least squares estimator constructed from an orthonormal wavelet

basis of L2 ([0, 1]), we show that the rates obtained by Eubank and Speckman hold without the

need for more than just a lin'.ar correction to deal with the boundary behavior of r.

Most delta sequence estimators in statistics have a wavelet version that can be studied using

techniques similar to those developed in this paper. We have focused our attention on the

fixed design wavelet estimator P. The paper is organized as follows. Section 2 reviews some

background on wavelet theory. Wavelet estimators for nonparametric regression are discussed

in Section 3, and for hazard rates in Section 4. Section 5 contains a discussion of applications to

real data and a comparison of kernel and wavelet estimators. Proofs are collected in Section 6.

2. Some background on wavelets

This section is devoted to a brief introduction to the theory of wavelets that will be used in the

sequel. We limit ourselves to the basic definitions and the main properties of wavelets. For more

information, including proofs of the theorems in full generality and more extensive discussion

and examples, see Meyer [Mey90], Mallat IMa189], Daubechies [Dau90], Chui [Ch92].

Computing with wavelets requires a description of two basic functions, the scaling function

3
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ýp(x) and the primaor wavelet V(x). The function (p(x) is a solution of a two-scale difference

equation

ý(xW ck ( c( 2 x - k) (2.1)
kEZZ

with normalization

JR )(x) dx = 1.

The function V'(x) is defined by

i E(x) - (_1)kCk-,I(2x + k). (2.2)
kEIZ

The coefficients Ck are called the filter coefficients, and it is from careful choice of these that

wavelet functions with desirable properties can be constructed. The condition

Ck=: 2
k

ensures the existence of a unique L'(l?) solution to (2.1), see Daubechies and Lagarias

([DL88a], Theorem 2.1, p. 8). A wavelet system is the infinite collection of nd.nslated and scaled

versions of 'p and af defined by:

pj,k(x) = 2 j2_(2jX - k), j, k E Z

Vfj~k(X) - 2j/2 (2jx - k), j, k E Z.

An additional condition on the filter coefficients,

Ck ck+2i 2 ifE f , = 0,

k

together with some other regularity conditions, imply that {[Vj,k, j, k E Z) is an orthonormal

basis of L 2 (U?), and {fPjk, k E Z) is an orthonormal system in L2 ( B?) for each j E Z; see

Daubechies ([Dau90], Lemma 3.4, p. 958). A key observation of Daubechies ([Dau90], Section

4) is that it is possible to construct finite-length sequences of filter coefficients satisfying all of

these conditions, resulting in compactly supported 'p and V'.

The simplest example of a wavelet system is the Haar system, defined by setting co = cl 1,

and all other Ck = 0. In this case both the scaling function and the primary wavelet are supported

by the interval [0, 1], and the resulting system is an orthonormal basis of L2 (l?). However, if

instead of a general function in L2 ((R), one wants to analyze a function with much less or much

more regularity, the expansion given by the Haar system is inappropriate, the reason being that

4



Wavelet methods for curve estimation

the coefficients either do not make any sense or their decay at infinity is bad. Replacing the

scaling function in the Haaw system by a more regular function produces a system with a much

better behavior with respect to spaces of smooth functions. The regularity of the scaling function

ýo is defined in the following sense:

DEFINITION 2.1. A scaling function ýo is q-regular (q E A') if for any f < q and for any

integer k one has
det'-l '< : Ck (I +-IX1)-

where Ck is a generic constant depending only on k.

We assume throughout that (p is q-regular for some q E N1. Of course the primary wavelet

inherits the regularity of the scaling function. Moreover if V' is regular enough, the resulting

wavelet orthonormal basis provides unconditional bases for most of the usual function spaces,

see Meyer [Mey90]. In order to obtain such a result, Mallat [Ma189] introduced the notion of a

multiresolution analysis, the definition of which we recall here:

ThFFINITION 2.2. A multiresolution analysis of L2 (p) consists of an increasing sequence of

closed subspaces Vj, j E Z, of L 2 (fl?) such that

(a) nvj = {ol;
(b) UVj = L 2 (IR);

(c) there exists a scaling function p0 E Vo such that ((p - k), k E Z) is an orthonormal basis

of Vo ;

and for all h E L 2 (B?):

(d) forallk EZ,h(.) E V0 / =0 h(.-k) E 1o,
(e) h(-) E Vj -ý=* h(2.) E Vlj+ ,"-

The intuitive meaning of (e) is that in passing from V, to Vj+I the resolution of the approximation

is doubled. Mallat [Ma189] has shown that given any multiresolution analysis it is possible to

derive a function Vr (the primary wavelet) such that the family {I'j,k, k E Z} is an orthonormal

basis of the orthogonal complement 9Wj of Vj in Vj+i, so that {'. 1,k, j, k E Z) is an orthonormal

basis of L(2(?). Conversely, the compactly supported wavelet systems mentioned earlier give

rise to multiresolution analyses of L2 (IR); see Daubechies ([Dau90], Theorem 3.6). When the

scaling function is q-regular, the corresponding multiresolution analysis is said to be q-regular.

Let us now introduce the following projector and its associated integral kernel:

h - Ej (h) = E (,, y)h(y) dy = projection of h onto V.'

5



A. Antoniadis, G. Gregoire and I. W. McKeague

It is easy to see that Ej(x, y) = 2iEo(2ix, 21 y) and that Eo(x + k, y + k) = Eo(x, y)

for k E .. Obviously, Eo is not a convolution kernel, but the regularity of p and Vr implies

that it is bounded above by a convolution kernel, that is IEo(x, y)l < K(x - y) where

K is some positive, bounded, integrable function satisfying moment conditions, see Meyer

([Mey90], p. 33). This remark will be exploited in the following sections. In particular, the bound

sup,., I E(x, y)l = O (2J) is often needed. We also mention some other useful properties. For

any polynomial p of degree < q one has

Ej(p) = p, (2.3)

see Meyer ([Mey90j, p. 38). By (2.3) applied to p(x) -- 1 and part (c) of the definition of a

multiresolution analysis we see that

L q0(x - k) = 1. (2.4)
kE7Z

If a function h belongs to the Sobolev space HV = HV (N), then the sequence Ej (h) converges

strongly to h in H' for Jvf < q and

j~h - Ej(h)11, = o(2-j') (2.5)

for 0 < v < q, by Mallat ([Ma189], Theorem 3), where 1I - 11, denotes the norm associated

with H". The Sobolev space H'(Ifd), v E B?, d > 1, is defined to be the space of

tempered distributions whose Fourier transforms are square-integrable with respect to the

measure (1 + IxI2 ) dx on B'd; see Hbrmander ([Ho89], p. 240).

Compactly supported wavelets are pa, titioned by the wavelet number N into families whose

scaling functions have supports of equal size. N is defined as (K,,ax - Ki, + 1),/2, where Knij

is the greatest even integer, and K,,i, is the least odd integer, such that Ck 0 0 =:• Kmin !: k <

K,,,ax. Thus N is generically one half the number of non-zero filter coefficients. The support of

(p is the interval [K,,i•, Kmax], and the support of 4r is the interval [1 - N, N]; note that both

support widths are 2N - 1 unit intervals long. The examples constructed by Daubechies have

the property that their support widths increase linearly with their regularity. This is illustrated

by Figure 2.1. Daubechies shows that there exists v > 0 such that U40 , ^V' E CE V, where

ý0 E C"÷Y if ý E C' and (p(") is Hblder continuous with exponent y (0 > y < 1). More

precisely, Daubechies and Lagarias ([DL88b], p. 62) obtain

2(p E C0355 49 W E C 1.0878. 4,p E C 1 6 179 .

An algorithm described in Daubechies and Lagarias ([DL88a], p. 17) (the cascade algorithm)

allows us to construct the orthogonal compactly supported wavelets as limits of step functions
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N-3 N.3

N.6 N-6

N,-8 N-8B

"-I

Ne

FIGURE 2.1. The scaling function N,•O (left-hand column) and

the corresponding wavelet N V1 (right-hand colhnn)for N = 3, 6

and 8. Note that the support widths increase with the regularity.

which are finer and finer scale approximations of ,vs. The algorithm is easy to implement on a

computer and converges very rapidly. Given a finite sequence of filter coefficients, co, . . . ,

define the linear operator A by

(Aa),, T cn-2kak, a = (ak)kE2

k E 7Z

where it is understood that c =-- 0 if k < 0 or k > N. Define aj = AJao, where (a0 )o = 1 and

7
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(a0 )k = 0 for k - 0. Set

9O9(x) = • ax(2Jx - k), (2.6)

where X is the indicator function of the interval [-i, •[" Under certain conditions (see

Daubechies [Dau90], p. 951), the sequence of functions ýpj converges pointwise to a limit func-

tion ýo that satisfies the two-scale difference equation (2.1).

3. Nonparametric regression

In this section we establish consistency of P using a theorem of Isogai [Iso9O]. Also, under

conditions on the regression function r that are weaker than the usual smoothness assumptions.

we give asymptotic bounds for the bias and variance of P and establish asymptotic normality

for a modified version of i. This modified version of P is an approximation that agrees with

F at dyadic points of the form k2-'; it is needed to stabilize the variance. At the non-dyadic

points, the variance of F itself is unstable because of irregularity in the wavelet kernels. In

practice, the "optimal" bandwidth can be selected by cross validation (see subsection 5.2 for

further discussion). This usually amounts to a choice between at most three or four values of

m. This small range of possibly optimal resolutions is very desirable since the computational

demands for P can be large.
The cascade algorithm described in Section 2 gives a simple method to calculate the estimator

F and F. Note that the delta sequence E, used in i and T can be written as

E,(t, s) E (2' t - k)9 (2's - 0).
kEZZ

When 9o has compact support then this is a finite sum, each term of which can be evaluated

by the cascade algorithm. To evaluate the weights fA, E,,(t, s) ds used in P(t) we employ an

integrated version of (2.6):

jo WJdx L f X(2jx - k)dx.

The sequence vf 9ok(x) dx converges to f V ýo(x) dx for each u < v.

Some plots of Em (t, s) for the scaling function 6Op are given in Figure 3.1. Note that the

wavelet kernels are dyadic-translation invariant: Em (z + u, -) = Em (t, - - u) for all dyadic

rationals u of the form k/2 m but not for general real numbers u. Also note the substantial

variation in the form of the wavelet kernel as one passes between the dvadic points. This is

more than just a variation in the local bandwidth--compare the curves corresponding to t = .2

and t = .5 in Figure 3.1(B). It appears that this feature of the wavelet kernel allows wavelet
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(A) (B)

0. 0ý 04 0 8 1

FIGt RE 3. 1. The wavelet kernel Em, (t, s)for the scaling function 6(p: (A) per-

spective plot of E2 (t, S); (B) E 4 (t, -) for ten different values (A. ,.2-...., 1.0)
of t. Note the translation invariance Em,(t + u,) E= E(t, u) for dyadic

rationals u of the form k12'.

estimators to adapt automatically to local features of the regression function. An unfortunate

side effect is that the asyr-iptotic variance of wavelet estimators is unstable.

Another reasonable estimator of r is

Fit Y, E,,(0, s-t) ds,

which is a convolution kernel estimator based on the kernel K(t) =EO(O' -t) and having

bandwidth 2 '.* A similar change can be made to r. Note that F and i, agree at dyadic rationals

of the form k/2'. Asymptotic results for this estimator are special cases of those given in Gasser

and MUller [GM79], although by using this special kernel K we can relax the smoothness

conditions on r. However, a finite sample comparison between F and i, that examines their

integrated mean squared er-rors for various values of m shows that P is superior, see subsection

5.1. This is explained by the global approximation property (2.5) of the projection operator

9
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Em used in i. Such a property is not available for P,. A general bandwidth might improve

the performance of P,, which only uses bandwidth of the form 2'. However, the heavy

computational demands for such an estimator make any bandwidth cross validation selection

procedure inpractical.

Our first result gives consistency of i.

TiEOREM 3.1. If r is continuous at t, m --+ c and max, It, - t,-I = o( 2 -'), then i(t) is

mean square consistent.

Strong consistency of P(t) can be obtained under a more refined condition on .'ie rate of

increase of m using Isogai's Theorem 3.2. In order to obtain deeper results we need the regression

function r and the density f (in the random design case) to satisfy

(1) r, f, rf E H", for some v, > 1,

(2) r and f are Lipschitz of order y > 0;

(3) f does not vanish on ]0, 1 f.
v 3

Functions belonging to H" for v > 2 are continuously differentiable (see Treves, [Tre67],

p. 331), so condition (2) is redundant when v > 3. We also need some additional assumptions

on the scaling function (p:

(4) 'p has compact support;

(5) 'p is Lipschitz:

(6) IJ(ý) - II = O( j)as -- 0.

Here •, denotes the Fourier transform of (p. The compactly supported scaling functions N(0,

N > 3, satisfy all of these conditions. In particular, (6) holds by Daubechies ([Dau90], p. 963).

For our asymptotic normality results we will need 'p to be regular of order q > 1. However, to

obtain good rates of convergence for the mean square error of i we need to adapt the regularity

of (p to the smoothness of r:

(7) 'p is regular of order q > v.

A disadvantage of more regular wavelets is that their support is larger and therefore boundary

effects more pronounced. However, wavelet estimators based on more regular compactly sup-

ported wavelets are unbiased away from the boundary for higher order polynomials, see (2.3).

As in Gasser and Mtiller [GM79] for the fixed design case, to study the mean square error of

r we assume that

max It, - t,- -- = O(n-1). (3.1)
1

We shall also assume that for some Lipschitz function K(),

p(n) = max is, - si-I - = o(n-), (3.2)
I Pn

10)
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where Ai = [si-1 , si). This is a standard assumption for the fixed design model, but somewhat

weaker than the "asymptotic equidistance" assumption of Gasser and MUller [GM791 in which

K(t) =_ 1 and p(n) = O(n -) for some b > 1.

The next result gives an asymptotic bound for the bias c. F.

THEOREM 3.2.

EP (t) - r(t) = O(n-Y) + (7m)

where
(I2 if 1 < v, < 2/" - 1/ 2

ln-z / if V = •,if Vk ~ } ~ . 2'
1/2"' if v> •.

In order to obtain an asymptotic expansion of the variance and an asymptotic normality result

we need to consider an approximation to F based on its values at dyadic points of order m. That

is, define

Pd ) - P(t(M)

where t(m) [2t]/2'. Thus Pd is the piecewise constant approximation to P at resolution

2-. The piecewise constant feature of Fd makes it an unattractive alternative to the unmodified

estimator P (at least for small m). In particular, the bias is increased by an additional term of

order 0 (2 mY). However, if one tries to obtain a precise asymptotic expansion of the variance

of P(t), then a difficulty arises in that the variance is unstable as a function of r. This problem

is avoided with Pd.

THEOREM 3.3.

Var(Fd(t)) n22 K(t)(WLn÷ + o(1)) + 0(2t m p(n)) + 0\--1-2

where - E- 02 (k). The variance of i(t) has this form except that for general (non-

dyadic) t the leading term is 0 (2"'/n).

From the proof of this theorem it can be seen that the leading term of the variance of F(t) is

o 2rmn-K(t)W2 (t,), where tm = 2mt - [2)t] and w2 is the function defined by

u,2 (u) = f 2(u, v) dov.

Notice that for dyadic t and rn sufficiently large, t, = 0, so the variance of F(t) is asymptotically

stable. But if t is non-dyadic then the sequence im wanders around the unit interval and fails

to converge. For example, at it oscillates between 1 (n, even) and (mi odd), so

the variance oscillates between w,2(1) and w'2 (). The sequence t, belongs to the class of

11
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exponential lacunary sequences studied in ergodic theory. It is known that except for at most

countablv many t, the sequence t,, has infinitely many accumulation points (see Rauzy [Ra76],

p. 67, Corollary 2.2). It is also interesting to note that for irrational r 's, the sequence is eventually

confined to the interval [2, -], see ([Ra76], p. 69).

Plots of w 2 for the Daubechies scaling functions (P "-N ý, N - 3, 5, 8, are displayed in

Figure 3.2. It can be seen that the variance of P(t) at non-dyadic t can vary approximately by a

factor of 3 for N = 3 and by a factor of ý for N = 5 and 8. The variance of F is inflated over

the variance of &a by a factor of at most 1.75 for N = 5 and 1.19 for N - 8. Taking the larger

bias of id into account it appears that the unmodified estimator F is at least as efficient as FP, and

it is F that we recommend in practice. Generally, higher regularity of the wavelet basis reduces

instability in the asymptotic variance of F(t), although this comes at the expense of larger bias

(the support of the scaling function increases with the regularity).

.. . 2........ .......

0.0 0.2 0.4 0.6 0.8 1.0

U

FIGUREt£ 3.2. The function w2 for 3(P (solid line), 5(P (dotted line) and 8 ý

(dashed line).

For N = 3, 5, 8, the constants w = w2 (0) are 1.81, 0.72, and 1.05 respectively. Thi,

suggests that that 5(p is more suitable than 340 or 840 when used in connection with Fd. When

used in connection with P there is little difference between 3W0 and 840.

Optimal rates. In order to give a rate of convergence for the mean squared error of their

estimates, Gasser and Moilier [GM79] assume that r is k-times continuously differentiable and

use a kernel of order k > 2. They find that the best rate of convergence for the mean squared

12
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error is n-2'/1/ +1). An analogous result holds in our case. Assume that r is k = q + I times

continuously differentiable, where q is the regularity of the scaling function. Since polynomials

of degTee < q are invariant under Em (t, s), see (2.3), we get by using a Taylor expansion

of r that the best rate of convergence for the mean squared error of i at dyadic points is

the same as for the kernel estimator, and is attained by in - log, n/(2k + 1). It is worth

stressing that the wavelet approach allows us to obtain rates under much weaker assumptions

on r than second order differentiability. For example, the triangular function having Fourier

transform sin2(ý/2)/(ý/2)2 belongs to H' and is Lipschitz of order 1, so it satisfies our

conditions (1) and (2), but is not differentiable. The mean squared error of td is of order

O(2-/n) + 0(2--(2--1)) + 0(2-2mY). The best rate is n- 2r'/(2v"+1), which is attained by

m=log2 n/(2v* +± ), where v* = min(•, v, y +± ) - c andE = 0for v :Fe4 > 0 for
V 3
=

Our next result concerns asymptotic normality of rd. It can be applied to the unmodified

estimator ? at dyadic points.

TiiEOrtEM 3.4. If n2-m oandn2-2' -0, then n2-(d(t)i-r(t)) is asymptotically
"2 2normal with zero mean and variance a Wo K (t).

We now turn to the estimator F used in the random design model. Much of the above

discussion carries over to this case. The following result gives consistency of F.

THEOREM 3.5. If m -- oo and n2-' --+ o, then f(t) is consistent and, if in addition

JE(Yz2 X = x) is bounded for x belonging to a neighborhood oft, then F(t) is consistent.

A result of Doukhan ([Do90j, Theorem 1) dealing with general delta sequence estimates can

be used to establish uniform strong consistency of r, but under more stringent conditions on the

rate of increase of m. Conditions (1)-(6) of Doukhan's paper are easily checked along the lines

that we check Isogai's conditions in the proof of Theorem 3.1 and using (6.2). As for the fixed

design model, in order to obtain an asymptotic distribution result (at all t), we need to consider

the piecewise constant approximation Td(t) = F(t(')) instead of F.

TH1EOREM 3.6. Suppose that for some c > 0 we have IE(Iy12+,IX = x) bounded for x

belonging to a neighborhood of t, n2' -+ oo and n2-zm' -+ 0. Then, v/'H- (Fd(t) - r(t))

is asymptotically normal with zero mean and variance Var(Y I X = t)w /2f (t).

Symmetrized wavelet estimators. Inspecting Figure 3.2(B) it can be seen that there is a

lack of symmetry in the wavelet kernels E,,(t, s) about the point t, as inherited from the

asymmetry in the scaling functions, see Figure 2.1. This is somewhat unnatural from a statistical

point of view since a time-reversal in the data produces a different estimate from the time-

13
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reversed F (denoted Frey). Unfortunately, except for the Haar basis, there exists no compactly

supported wavelet basis in which the scaling function is symmetric around any axis, see

Daubechies [Dau90]. Another difficulty is caused by the excessive weight placed at points far

to the left of t, resulting in a pronounced edge effect at the lower limit of the design interval

(see the discussion concerning the voltage data example in subsection 5.3). A simple way of

correcting these flaws in F is to use a weighted average of F and Fet with weights depending on

th e e v alu a tio n p o in t: W t-
i'sym(t) = t F(t) + (1 -- t)Frev(t).

It is easily seen that this estimator inherits the properties of F proved above. A similar modifi-

cation can be made to any cf the wavelet estimators considered in this paper.

Confidence intervals. In order to use our asymptotic normality result to obtain confidence

intervals for r(t) at a given t, one needs to consistently estimate the noise variance. In the fixed

design case the noise variance is a 2 . We suggest using the follow, rg estimate of Mtller [Mu85]:

3(- 2) [Y, - ' + Y1+')]
i=2

obtained by fitting constants to successive triples of the data. Lemma 1 of MUller shows that if

the regression function is H6lder continuous of order 1, then &2 is almost surely consistent and

nl2

a.s. as n -+ oo for any E > 0. In practice, to obtain a good impression of the errors involved

in the point estimates F(t) of r(t), it would be enough to provide confidence intervals at the 2'

dyadic points of the design region. For m = 4 this would give 16 confidence intervals.

Least squares wavelet regression. Orthogonal series used for least squares regression

should form a basis of the L 2-space on the design region, i.e. L 2 ([0, 1]). The wavelets described

up to now form an orthonormal basis of L 2 (fl?) and are not appropriate. Instead, we shall use

a wavelet orthonormal basis {[/.ik, j > 1, k E Sj} of L2 ([0, 1]) constructed by Jaffard and

Meyer [JM89]. Here Sj is a subset of Z, defined as Rj in Jaffard and Meyer ( [JM89], p. 95).

For some integer Jo depending on q, the set Sj is empty for j _< jo. These wavelets belong

to the space C1q- 2, where q > 2 and the subscript 0 indicates support within 10, 1[. They are

defined through a multiresolution analysis of L 2 ([0, 1]) and form unconditional bases of Ho',

0 < v < 2q - 2. Assume that r(0) = r(l) = 0 and r E H.". This is a weaker assumption

than condition (ii) of Theorem I of Eubank and Speckman [ES91 ], but the boundary condition

14
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r(O) r(1) = 0 is still rather restrictive. It can be removed by adding a linear function to the

regression analysis, cf. Eubank and Speckman [ES91].

We shall obtain a rate of convergence for the mean squared error

R(PI,) = n 1  LIE(r(Xi) - rs(Xi))2,

of the least squares wavelet estimator P1s given by

m

j=1 kES,

where the dik's are obtained by least squares. The number D,,, = '7.jS0 I of functions V/j, k

used in the regression is bounded above by .32 m We assume that the observation errors have

constant variance o2. Let G,, denote the empirical distribution function of the design points Xi

and assume that 5,, = sup, IG,,(t) - G (t) - 0, where G is some distribution function that

is absolutely continuous with density bounded away from zero and infinity. Typically S, is of

order O(n-1) in the fixed design case, and of order O(n- 1 2 log log n) in the random design

case, see Eubank and Speckman [ES91] for further discussion.

THEOREM 3.7. If r E HO where v > I is an integer, then

R(rls) < 0(2-2mv) 4- a'Dm/n ± O(+,2-0(2b])).

This rate of convergence essentially agrees with the rate given in Theorem 1 (iii) of Eubank

and Speckman [ES91].

4. Hazard rate estimation

In this section we study a wavelet version of Ramlau-Hansen's [RH83] estimator of a hazard

rate function. It turns out that most of the wavelet techniques we have used for nonparametric

regression carry over to this setting. Since the work of Aalen [OAA], it is well known that hazard

rate estimation can be viewed in the context of inference for a counting process multiplicative

intensity model given by k(t) = a (t) Y (t), where Y (t) is a nonnegative observed process. In the

usual survival analysis or reliability application, a portion T = min(T, C) of an individual's

lifetime T is observed, where C is a censoring time (assumed to be independent of T). Data

is available on n individuals with corresponding (T,, Cj) being independent and distributed as

(T, C). Suppose that T has hazard rate function a and that the distribution function H of T is

such that H(1) < 1. Then the counting process N,,(t) = Z7. If {T, < t, C, < TI has intensity
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a(t)Y,(t), where Y"%(t) = T > r, C, > t} is the number of individuals at risk at time -.

This is a special case of Aalen's multiplicative intensity model. In what follows, the notation is

essentially the same as in Ramlau-Hansen.

Our wavelet estimator for the hazard function a is defined by

&(t) = f E,,(t, s) do(s), (4.1)

where f is the Nelson-Aalen estimator

Y10 - dN(s),

J(s) = I(Y(s) > 0) and J(s)/Y(s) is defined to be 0 when Y(s) = 0. To obtain asymptotic

results we index the processes N, J and Y by n. We use the same assumptions on a as were

used for r in the regression case. Also assume that there exists a positive function r bounded

away from zero and infinity such that IE[ suP0<s<1 nJ(s)/Y (s)-1/r(s)j] - 0asn - cc.

This condition is easily checked in the survival analysis case described above.

Define 3,, = sup,<,<, IE(i - J4(s)). Our first result implies that the wavelet estimate is

asymptotically unbiased.

THEOREM 4.1.
IE&(t) - a(t) = +(7m, 2 O(51/2)

where 17, is defined in the statement of Theorem 3.2.

As in the regression case it is convenient to approximate & by an estimator based on the values

of& at dyadic points: &d(t) = &(t(')) where t(') = [22't]/2n. Observe that Theorem 4.1 holds

for &d(t) provided that we add O (2-'r) to the asymptotic expansion of the bias.

THEOREM 4.2.

) (1))2  2"' ce(t)
E(&dt+ 2mo~-) + O (r/) + 2-O((,,) + 0 (2 -- Y).

n r(t)

The mean squared error of &(t) has the same form except that for general (non-dyadic) t the

leading term is 0 (2)' / n).

Under n2-' cc, n2-2,' -* 0 and ,, = o(n- 1), we have LU-consistency of &d(t). The

leading term in the asymptotic expansion of the mean squared error is then of order 0(2m/n).

If & is used instead of &d then the Lipschitz condition on a is unnecessary.
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THEOREM 4.3. If n2-' --+ oc, n2-2"* ---, 0 and 6, = o(n- 1), then N/n-2-m(&,I(t) - (t))

is asymptotically normal with zero mean and variance a (t) wo/r().

5. Practical application and discussion

5.1 Finite sample comparisons. So far we have only considered the asymptotic be-

havior of our estimates. However, as long as one deals with linear estimates and is interested in

the mean squared error or the integrated mean squared error of these estimates for finite sam-

ples, numerical calculations are possible that approximate these quantities to any desired degree

of accuracy when the true regression function, the error-variance and the weights are known

(other properties of the error probability law being irrelevant). The method that we are going to

describe has been used by Gasser and Miller [GM84] for a finite sample comparison between

cubic smoothing splines and various types of kernel estimates.

The method applies to linear estimates of the form i (t) = E-.1 wi (t)Y. For such estimates

the bias at t is n wi (t) (r(t,)- r (t)) and the variance is a02 >jjL] w2(t). The integrated mean

squared error is obtained by numerically integrating variance + bias2 over a fine grid of i's.

We used the same underlying function as in Gasser and MUller, that is

r(t) = 2- 2t + 3 exp(-(t - 0.5)2/0.01), t E [0, 1]

and compared our wavelet estimator with a kernel estimate. The residual variance was taken

as a2 = 0.2 and the sample size n = 25. The results are presented in Table 1. The integrated

mean squared error was evaluated using a grid of 200 equidistant points between 0.25 and 0.75.

We restricted attention to an interval smaller than [0, 1] to avoid possible boundary effects.

The wavelet kernels corresponding to four different scaling functions (N40 for N = 3, 5, 6 and

8) were used. They were compared with an Epanechnikov kernel having optimal bandwidth.

Although the results are not reported here, we also examined the performance of the wavelet

convolution estimator P, Th. integrated mean squared error was significantly larger, mainly

due to a larger variance.

The convolution kernel estimate does slightly better than the wavelet estimate, but this is not

unexpected since the optimal bandwidth is chosen from a continuum of possible values, whereas

the tuning parameter m is discrete.

5.2 Cross validation. Any nonparametric regression method is highly dependent on the

tuning parameter, so it is desirable to select such parameters automatically. The problem of

selecting m is rather easier than the bandwidth selection problem for kernel estimators (see, e.g.
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7T Optimal MSE Optimal m Integrated bias2 1Integrated Variance

3q 2.64×10 2  3 i.07x 10- 2  .56x10-

wo 3.09x 10- 2  4 3.54x 10- 4  3.05 x 10- 2

69( 3.08x 10- 2  4 2.04x 10- 4  3.06x 10-2

8s 3.07 x 10- 2  3 1.51 x10-2  1.56x 10- 2

TABLE 1 The performance of the wavelet estimator P for various scaling

functions ýp when or2 = 0.2. For comparison, the integrated mean square error

of the convolution kernel (Epanechnikov) estimate with optimal bandwidth

0.065, is 2.35 x 10-2.

Hardle and Marron [HM85] in the regression case and Grrgoire [Gr9I] in the survival analysis

case), since the bandwidth is essentially reduced to being of the form 2 -' where m < log2 n.

A commonly-used selection rule adapted to our setting is to choose mi as the minimizer of the

cross validation function
n

CV(m) =- n- L(Y, - r(i)(t, ))2,
i=1

where F(i) (t) is the leave-one-out estimator obtained by evaluating P (as a function of m and t)

with the ith data point removed. This gives reasonable results when applied to real and simulated

data. In practice, for sample sizes between 100 and 200, we have found that it suffices to examine

only m = 3, 4 aid 5.

5.3 Examples. To illustrate the techniques given so far, and to add to the earlier discussion,

we now corsider two real examples.

The first example concerns the motor-cycle impact data given in H ardle [Ha90] and presented

in Figure 5.1. The observations consist of accelerometer readings taken through time in an

experiment on the efficacy of crash helmets. This particular data set was also analyzed by

Silverman [Sil80] by spline smoothing techniques. For several reasons the time points are

not regularly spaced. It is of interest both to discern the general shape of the underlying

acceleration curve and to draw inferences about its minimum and maximum values. Obviously,

the observations are correlated and their variance is not constant, but for illustrative purposes

we shall assume that the fixed design model holds.

We plotted the estimate P for various values of m, using the wavelet kernel based on 8ý. This

choice of scaling function is reasonable according to the discussion following the statement of

3.3. We tried W,, which the finite sample comparisons suggested as being even better than 8s, but
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FIGULRE 5.1. Plot of the motorcycle impact data together wit~h the wavelet regression

estimates i based on the scaling function Wp for in = 3 (dotted line), m = 4 (solid line)

and m - 5 (dashed line). Cross validation selected the curve in = 4 as giving the best fit.

obtained a very poor fit. This poor performance of 3q is probably due to the greater instability

of the variance, see Figure 3.2. Cross validation selected the curve m = 4 as giving the best fit:

the function C V (in) was found to be 534 at in = 3, 432 at m = 4 and 497 at in - 5. Inspecting

Figure 5.1 one notices ý is considerably biased for in = 3; for in = 5 it detects the sharp drop

in acceleration around 15 milliseconds, but has undesirable oscillations. The in = 4 estimate is

ciearly the best-it captures the general features of the underlying curve, except for a positive

bias around 12 milliseconds.

Another example is presented in Figure 5.2. The data set is discussed in Example 3.4.5

of Eubank ( [Eu88], p. 82) and represents the voltage drop in the battery of a guided missile

motor during flight. In this example the assumptions of the fixed design model are much more

reasonable. We find that there is an undesirable boundary effect in F at time 0. The time reversed

i has a similar problem at the right-hand end of the design interval. However, the symmetrized

estin.ator isy, discussed in Section 3 produces an acceptable fit. In fact, considering that PY,,,

uses a tuning parameter setting chosen from among only three different values (in - 3, 4 and

5), it gives an outstanding result compared with other nonparametric regression estimates.

6. Proofs

PROOF F THEORI.M 3.1. We apply Theorem 3.1 of Isogai [Iso90] with 2' in the role of in

and E, in place of 3,. We need to check that following conditions hold for each x E [0, 1]:
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4
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FIGI. RE 5.2. Plot of the voltage drop data together with the symmetrized wavelet regression

estimate syn (solid line), P (dotted line) and Frey (dashed line)for m = 4 and scaling function

6(P. Note that symmetrization has improved the estimate at the boundaries.

(i) sup.,]_> fo IE, (x, y) I dy < oc;

(ii) f01 Em (x, y) dy 1;

(iii) fo' IEm(x, y)lI (Ix - y) > E)dy -+ 0 for all E > 0;

(iv) supyj, o I tEm(x, y)I -= 0(2't ).

Using the assumption that ýo is 0-regular we have

f IE,(x, y)Idy ! C22" f(1 + 2"Ix - yY)-2 dy, (6.1)

so (i) holds. (ii) follows by setting f = I in equation (33) of Mallat [Ma189]. Using the indicator

to control the integrand in (6.1), we see that the expression in (iii) is of order 0 (2 -') -+ 0.

Condition (iv) is immediate from the properties of E, discussed in Section 2. 13

PROOF OF Tit EoREM 3.2. Arguing along the lines of Gasser and Moller ([GM79], Appendix

1), and using the Lipschitz condition (2) on r, it can be seen that

IEP(t) = E,(t, s)r(s)ds + O(n-Y).
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To complete the proof it suffices to show thatf E,,(t, s)r(s) ds = r(t) + O (r&). (6.2)

This is demonstrated by applying an extension of a result of Schomburg [Sch90] to the function
g(x, y) = Eo(x, y); see Theorem A.1 in the Appendix. In Lemma A.2 we check that this

function satisfies the conditions of Theorem A.1. First note that

o E..(t, s)r(s) ds = (Emr)(t)

for mn sufficiently large, since t is in the interior of [0, 1] and (p has compact support. Next.
denoting the delta distribution centered at t by 6, and the duality between H " and H -' by (', ")

(see [Tre67], 1967, p. 331), one has

)r(t) - (E,.r)(t) = ( (r, 6,) - (Emr, 6,)l

= J(r, 3, - EmS,)I (6.3)

r IrIr 1l6, - E,. (-, t)11-.,.

Here we have used the fact that E, can be defined on H-' and is a projection operator; see
Meyer ([Mey90], p. 43). Applying Theorem A. 1 with 2' in the role of n now gives the result.

PROOF oF THEOREM 3.3. As in Gasser and MUl1er ([GM79], Appendix 2),

Var(i(t)) - -02 (t, Son E t, s)K(s) ds

nn

=U.2 fEre (t, s) ds) - f E2 (t, s)K (s) ds

<_• •,!(s -sl)E2 (t, u,) - -(s, - s,-,)E' (t, vj,, vj

(where ui and vi belong to Ai)

1( 2

- (E~a 2tvi)K(vl) - E2A(t, Ui)K(Si))~

From (3.2) the number of terms contributing to the above sum is of order O(n2-m). Hence,

using (3.1), the bound sup1,s E2 (t, s) < 22, and the Lipschitz property of K (which implies

K (vi) K (Si) + 0 (1/n)), the last displayed quantity is bounded by

0 0(nf2--) (p(n)22- + 22- + 122m sup IE0 (2m t. 2'"vi) - E0 (2m t, 2mu,)l).
n n n n
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Using the compact support and Lipschitz properties of ýo one can show that Eo(t, .) is Lipschitz

(uniformly in t), so that

sup IEo(2 mt, 2'vý) - Eo(2'r, 2m uj)j = 0

Simplifying, we obtain

Var(-(r)) -- EM,(, s)K(s)dsi = 0 P W) + 0 2n( P f)) ()

The proof is completed by appealing to the following lemma.

LEMMA 6.1. (a) Ifh : B? -* B? is continuous at t, then

lia 2-'J E'(t('K), s)h(s) ds = h(t)w .

(b) If h : B? -+ B? is bounded in a neighbourhood oft, then

JR E•,(r, s)h(s)ds 0(2')

PRooF. Since 2mt(') = [2't] and Eo(x + k, y + k) = Eo(x, y) for all k e Z,

J t E,(tQ)s)h(s) ds - 2J E°(2m tm), 2ms)h(s) ds

-2-2m E E2(O, 2ns - [2nt])h(s) ds

J E2(0, U)h(t(-) + u2-") du

h (t) JE(,u) du

as m -. oo. Here we have used the continuity of h at t and the compact support assumption

for ýp, which implies that E0 (O, -) has compact support. This assumption and the fact that

{fp(. - k) : k E Z} is an orthonormal system in L 2 (B?) give

JR ~(v, u) du - 2 (v - k)

so that fI E 2(0, u) du = w2, completing the proof of (a). The proof of (b) is similar. [

99



Waavelet methods for curve estimation

PitooF OF THEOME.N 3.4. The Lipschitz condition on r gives

r(t) = r(t(m)) + 0(2-mY),

so bv Theorem 3.2 we have in• Ed(t) - r(t)) 0 0. Write Fa(j) - Eid(t) in the form

_,- wiE,, where w,=,, = = fa, Em(t(), s)ds. We shall appeal to a central limit theorem

for weighted sums of i.i.d. random variables (see Eicker [Ei63]) to obtain

rd W) - IErd (t) _WiE 1  'D)= ---*N(0, 1).

To complete the proof we need to check the Lindeberg type condition

max 1wuj 2 /Var(id(t)) -* 0
I <i<n

and show that

Var(•d(t)) -- 2c m wgK(t)/ln.

From Theorem 3.3 and p(n) = o(I/n) we have

n,. Var(rd(t)) c' WK(t) + o(1) + O(np(n)) + 0 ) 2 Uw, Kc(t).

Also using max,.1 i<,, Iw,12 - 0(2 2 n /n 2 ), we have

max Iwil2/Var(?d(t)) = 0(2m/n) 0.
-<i<n n2-"Var(P(r))

so the Lindeberg condition holds. o

PROOF OF THEOREM 3.5. Var(fQ()) = Var(E, (t, X))/n is bounded by

- 0 E2(tx)f(x)dx =- O(21'/n) ---> 0,

by Lemma 6.1 (b). The bias of f(t) is (E, f)(t) - f(t) which tends to zero by the same

argument that was applied to r at the end of the proof of Theorem 3.2. Thus f is pointwise

consistent. Denote g rf and (t) = L_.I 1 E,,(t, Xi)Yi/n, sothatF = , /f. Itcan be shown,

along the lines Var(f (t)) was handled above, except using the conditional variance formula, that
Var(g(t)) = Var(Em(t. X)Y)/n = O(2 t'/n). Finallv, the biasof,ý(r)is (Emg)(t)-g(t) --- 0,

and we conclude that •(t) is pointwise consistent. 0
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PROOF OF TH1EOREM 3.6. Replacing t by t(r) in twe proof of consistency of f(t) and using

continuity of f at t, we have that fd(t) consistently estimates f(t). Thus, by

rd -r = (ýd - rd)/fd,

we can reduce to considering /n2m(gd - rfd)(t) which can be expressed as

-EZLZ) + /n2-- EZ, (6.4)

where Z,,i = E"(t(m), Xi)(Yi - r(t)). But

IEZ,= (E, g)((tm)) - r(r)(E"f)(r, n))

- (Emg)(t(m)) - g )) - [g(t) - (t()

- r(t)f(Ef)(t(m)) f(t(-)) - [f(t) - f(t(m))]}

so the last term in (6.4) is of order fln,2-m(O(r7m) + O(2-mY)), where ih, is given in Theo-

rem 3.2, and we have used the Lipschitz conditions on r and f (which imply that g is Lipschitz

of the same order) to bound the terms inside the square brackets. It follows that IF.Z, I -+ 0 by
n 2-2'" 0. To complete the proof we shall apply the Lindeberg-Feller Theorem to the first

term in (6.4). First note that

2-m Var(IE(Z,,f X])) -- 2- R E2(t("),x)(r(x) - r(t))2 f (x)dx - [IEZ,] 2

which tends to zero by Lemma 6.1. Next,

2-"IE(Var(Z%•IX.)) 2-" 2 f' EM (m), x)Var(YIX = x)f (x) dx

-+ Var(YIX = t)f (t)wo

again by Lemma 6. 1. Thus, by the conditional variance formula

Var(Z,,) - IE(Var(Z,, X1)) + Var (E(Z,;IXi)),

we see that the variance of the first term in (6.4) tends to Var(YIX = t)f(t)wo. It remains to

check the Lindeberg condition, which amounts to showing that

IE(U2I(IU, I > h/fH)) 0 for all 6S > 0,

where U, = (Zj - IEZ, )/N/Var(Z, 1). Suppose that IE(Y4 1X = x) is bounded in a

neighborhood of t; the general case of a bounded conditional moment of order 2 + E is similar.

Then, by the Cauchy-Schwarz and Chebyshev inequalities,

IE(U' U, I> , ) <_ IIEU (n2
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Using the compact support property of ýo,

JEu 4 o('2-•)IEZ 1

- O(2-2m)O(24-) fR I(It - xf < C2-')[IE(ya4 X = x) + C]f(x)dx

0 (2'),

where C is a generic positive constant. Thus IE(U2,I(IU, I > 0= O(-2/n) -0 0, as

required. 0

PROOF OF THEOREM 3.7. The reader should have a copy of Eubank and Speckmnr [ES91]

on hand before attempting this proof. Using the inequality (Jaffard and Meyer, [fM89], p. 104)

Ia'(.I ,k(X)I < C2jt2j''2 exp(-C, 2 Jlx - k2-jI). x e E?. k E Sj and ý < 2 q -2.

where C1 and C2 are generic constants that are indeper,.nt of k, the conclusion of Lemma 2 of

Eubank and Speckman [ES9l] becomes

Ijr' - (T,,.gr)'Il < iL' - ( i + (C/ 1/2C 2)2"C 3IIr - (Trr)II.

The theorem now folio .•F as in Jaban:. and Spccmi' . ", I', by applyingthe inequalit-

2 2) VI,,k1Z <
j1kES,

for r E H e torem 2 of Jaffard and Meyer). C]

PROOF OF THEOREM 4.1. From (4.1) we get the following expansion

E.• (t, s) c(s)J,(s) ds + E,)(t, s) (6.5)SL-s Mo (S) (6.5)

Since the last integral is a zero-mean martingale evaluated at 1, we have

M& (t) = IE fo EE(t, s)at(s)J,(s)ds

= IE Em(t,s)a(s)(J,, (s) - 1)ds] +f Em(t,s)ct(s)ds. (6.6)

The last term in (6.6) is the same as (6.2) with r replaced by a. Using the Cauchy-Schwarz

inequality and Lemma 6.1 the first term in (6.6) is s! en to be of order 2"2O(36'2).
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PrtooF orF THEOREM 4.2. First note that &d(t) - a(t) can be written as

j E,(t(m),s)ct(s)(Jn(s) - 1)ds + [f Em(t(s).s)a(s)ds - ce(t
fo J s)(6.7)

j Epn~i~ J, Jr(S)+ ((t(')) - ce(t)) + E,, (t('), s) dM,(sN

A1 ang the lines of the previous proof we see that the first term in (6.7) is of order 2' 0 (6,) and

the second term is of order O(,.). The third term is of order 0 (2 -my) since ca is Lipschitz

of order y. The second moment of the stochastic integral is n- 1 f0 E (t(r'), s)(s)-r,(s)ds,

where r,(s) = nIE[J, (s)/Y1 (s)j. It follows along the lines of the proof of 6.1, using cer/n in

place of h, and by our assumptions on (-r,) and r, that

f J2(s) W2 22m 1)
IE AE,m(t(Jm), s)- dM,(s) -w + 2 °(n-

L0 Y17(S) n~j n r(t)
The second part of the theorem is proved in a similar fashion, except using part (b) of Lemma

6.1. L

PROOF OF THEOREM 4.3. By our assumptions, fl2m(&d(t) - a(t)) is asymptotically

equivalent to fo I Em(tlm), s)J4(s)/Y,(s) dM,(s), which is the value at 1 of a martin-

gale having quadratic variation asymptotically equivalent to 2-' fo E (t(m). s)a(s),'r(s) ds
at I. The previous proof gives that the latter quantity tends to a(t)w /r(r). The result follows

using Rebolledo's martingale central limit theorem, cf. Ramlau-Hansen [RH83]. [

Appendix

An extension of Schomburg's Theorem and its wavelet application

Schomburg's [Sch90] original result gives the rate of convergence of certain sequences of

type 3 to the delta distribution centered at the origin in Dd. We need to extend this result to

deal with approximations for 6S, the delta distribution centered at t E R'd. As in Schomburg we

allow d > 1, although we really only need d = 1. The sign of v is reversed from Condition (1).

Let v < -d/2, g(., t) E H'(l•d) for all t and define the sequence (g,(-, t)),>] C H,(J d)

for each t, by

(g (., 0,) ) = (g(-, nt),(n)) for4 E S(l?d),

where S(1?d) is the space of rapidly decreasing test functions; see Hormander ([Ho89], p. 160).

For a classical function g one has g,(s, t) = ndg(is, nt). The Fourier transform of a function

h E L1(B~d) is defined by h(ý) =fJRd e-&XJh(x)dx, • E ffld. In this appendix / denotes the

Fourier transform rather than an estimator of h.
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THEOREM A.1. Suppose that

sup Ig(', t)l < cc (A.1.1
I

and for some y > 0 there exists a neighbourhood U of 0 in IRfd such :har

I -*I-YQ(g(,, t) - e-i't ) (A.2.2)

belongs to L '(U) for each t E Pd. Then

d
I n"12) if--v<y+ ,

11g,(-, t) - 0I . (n /o ognn-) if-v = y + 2,
O~nr)if _V > Y + 2d

as n ---). cc.

PROOF. Clearly one may take U as the unit ball in )R. Noting that t,(• r) -(ý!n. nt),

we have

Ig, (, t) - 3II2 = J (1 + 4 2), g, (, t) - e-9j 2 d4

-- f ( 1ý 12)Ul g(4/n, nt) - eZ'I 2

- nd i(1 + n2IrI)fl,(-r, nt) - e-i- 12 dr.
fIRd

Now split the integration into

•d f (1 + n2 1r- 2)•,1k(r, nt) - eC""'12 dr

f 2n2v+d 2  (, nt)I2 dr + 2n 2,+d f fj 2'd'

= O(n 2vd)

by (A. 1.1), and

n J( + n'(-l 2)rl•,(z, ni) - e-i""lI2 dr < Cn (1 + n2 trl 2 )vrl2 r dy

by (A.2.2) with r = ' and t set to nt. The remainder of the proof is routine integration, see

Schomburg [Sch90] for details. E3

LEMMA A.2. The function g(x, y) = E0 (x, y) satisfies Conditions (A.1.]) and (A.12) of

Theorem A.].

PROOF. Noting that

E o (.s, t) = • p(s - k)q(t - k)
k r=77
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one has
[Eo~t )=[ Eo(s, t)e-'ýs ds

E L 9(i - k) f ýos( k)e-is ds
kEZZ

= •o(1) Z ýo(t - k)e'k.
kEZL

k•2k•
- ~(~) L ~t + k)ei.

kcZZ

Changing k to k - [t] and setting u = t - [t] we have

L 4(t + k )eik = e-*e' i, 90(u + k)e iký

kEZW kE2Z

Since 40 has compact support, (A.1.1) holds if9 E: H' for i) < 0. But 40 E L2 (IR) C H" for

v < 0, as required. Next, by (2.4) and again since (p has compact support, we have

L 40(u + k)eik• = 1 + 1 9(u + k)(eik - 1) = 1 + O(1RD)
kEW k EZ

as 0. Thus, by Condition (6),

Eo(•, t) (1 + 0 (1ý 1))e-'i'ei' (I + 0(I•I)) = e-i' (1 + 0(1 I)

so (A.1.2) holds. F
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